Science.gov

Sample records for systemic viral infection

  1. [Viral infections of human central nervous system].

    PubMed

    Agut, Henri

    2016-01-01

    The viruses that can infect the central nervous system of humans are numerous and form a heterogeneous group with respect to their structural, functional and epidemiological properties. The pathophysiological mechanisms leading to associated neurological diseases, mainly meningitis and encephalitis, also are complex and often intertwined. Overall, neurological clinical symptoms correspond either to acute viral diseases associated with primary infections or to acute, subacute or chronic diseases associated with persistent viral infections. The frequent severity of the clinical situation requires in all cases the practice of virological diagnosis for which the PCR techniques applied to cerebrospinal fluid samples occupy a prominent place. The severity of clinical manifestations justifies the use of prophylactic vaccination when available and antiviral treatment as soon as the causative virus is identified or suspected.

  2. Viral Infections

    MedlinePlus

    ... from medicines, which usually move through your bloodstream. Antibiotics do not work for viral infections. There are a few antiviral medicines available. Vaccines can help prevent you from getting many viral diseases. NIH: National Institute of Allergy and Infectious Diseases

  3. Systemic viral infections and their retinal and choroidal manifestations.

    PubMed

    Yoser, S L; Forster, D J; Rao, N A

    1993-01-01

    Viruses are one of the most common causes of infections involving the posterior segment of the eye. Such infections can occur either on a congenital or an acquired basis, and may affect primarily the retina or the choroid. Congenital cytomegalovirus (CMV) and rubella infections may result in retinitis. CMV retinitis is also the most common cause of acquired viral retinitis, primarily because of the acquired immunodeficiency syndrome (AIDS). Other types of viral retinitis, such as those caused by herpes simplex or herpes zoster, can occur in immunocompromised or immunocompetent individuals. Retinitis or choroiditis caused by viruses such as measles, influenza, Epstein-Barr virus, and Rift Valley fever virus, typically occurs subsequent to an acute viral systemic illness. The systemic and ocular manifestations, as well as the histopathology, laboratory tests, differential diagnoses, and treatment regimens for each of the individual viruses are discussed in detail.

  4. Neuroinvasion and Inflammation in Viral Central Nervous System Infections

    PubMed Central

    Schroten, Horst

    2016-01-01

    Neurotropic viruses can cause devastating central nervous system (CNS) infections, especially in young children and the elderly. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been described as relevant sites of entry for specific viruses as well as for leukocytes, which are recruited during the proinflammatory response in the course of CNS infection. In this review, we illustrate examples of established brain barrier models, in which the specific reaction patterns of different viral families can be analyzed. Furthermore, we highlight the pathogen specific array of cytokines and chemokines involved in immunological responses in viral CNS infections. We discuss in detail the link between specific cytokines and chemokines and leukocyte migration profiles. The thorough understanding of the complex and interrelated inflammatory mechanisms as well as identifying universal mediators promoting CNS inflammation is essential for the development of new diagnostic and treatment strategies. PMID:27313404

  5. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  6. Emerging Viral Infections of the Central Nervous System

    PubMed Central

    Tyler, Kenneth L.

    2010-01-01

    In this 2-part review, I will focus on emerging virus infections of the central nervous system (CNS). Part 1 will introduce the basic features of emerging infections, including their definition, epidemiology, and the frequency of CNS involvement. Important mechanisms of emergence will be reviewed, including viruses spreading into new host ranges as exemplified by West Nile virus (WNV), Japanese encephalitis (JE) virus, Toscana virus, and enterovirus 71 (EV71). Emerging infections also result from opportunistic spread of viruses into known niches, often resulting from attenuated host resistance to infection. This process is exemplified by transplant-associated cases of viral CNS infection caused by WNV, rabies virus, lymphocytic choriomeningitis, and lymphocytic choriomeningitis–like viruses and by the syndrome of human herpesvirus 6 (HHV6)–associated posttransplantation acute limbic encephalitis. The second part of this review begins with a discussion of JC virus and the occurrence of progressive multifocal leukoencephalopathy in association with novel immunomodulatory therapies and then continues with an overview of the risk of infection introduced by imported animals (eg, monkeypox virus) and examples of emerging diseases caused by enhanced competence of viruses for vectors and the spread of vectors (eg, chikungunya virus) and then concludes with examples of novel viruses causing CNS infection as exemplified by Nipah and Hendra viruses and bat lyssaviruses. PMID:19667214

  7. Viral infections and allergies.

    PubMed

    Xepapadaki, Paraskevi; Papadopoulos, Nikolaos G

    2007-01-01

    Respiratory viral infections have been implicated in the origin of, protection from and exacerbation of allergy-related symptoms in a variety of ways. Viral infections are closely linked to infantile wheezing. Severe bronchiolitis in early infancy may predispose to chronic childhood asthma as well as allergic sensitization; alternatively it could represent a marker of susceptible individuals. In contrast, repeated mild infections in early life may have a protective role in the development of asthma or atopy by driving the immune system towards Th1 responses. However, evidence on this hypothesis is not consistent as far as respiratory viruses are concerned. Several factors, including the presence of an atopic environment, timing of exposure and severity of the infection, interactively contribute to the allergy-infection relationship. In the present report, recent data on the role of viral infections in the development and progression of allergy and asthma are reviewed.

  8. Global Analysis of Viral Infection in an Archaeal Model System

    PubMed Central

    Maaty, Walid S.; Steffens, Joseph D.; Heinemann, Joshua; Ortmann, Alice C.; Reeves, Benjamin D.; Biswas, Swapan K.; Dratz, Edward A.; Grieco, Paul A.; Young, Mark J.; Bothner, Brian

    2012-01-01

    The origin and evolutionary relationship of viruses is poorly understood. This makes archaeal virus-host systems of particular interest because the hosts generally root near the base of phylogenetic trees, while some of the viruses have clear structural similarities to those that infect prokaryotic and eukaryotic cells. Despite the advantageous position for use in evolutionary studies, little is known about archaeal viruses or how they interact with their hosts, compared to viruses of bacteria and eukaryotes. In addition, many archaeal viruses have been isolated from extreme environments and present a unique opportunity for elucidating factors that are important for existence at the extremes. In this article we focus on virus-host interactions using a proteomics approach to study Sulfolobus Turreted Icosahedral Virus (STIV) infection of Sulfolobus solfataricus P2. Using cultures grown from the ATCC cell stock, a single cycle of STIV infection was sampled six times over a 72 h period. More than 700 proteins were identified throughout the course of the experiments. Seventy one host proteins were found to change their concentration by nearly twofold (p < 0.05) with 40 becoming more abundant and 31 less abundant. The modulated proteins represent 30 different cell pathways and 14 clusters of orthologous groups. 2D gel analysis showed that changes in post-translational modifications were a common feature of the affected proteins. The results from these studies showed that the prokaryotic antiviral adaptive immune system CRISPR-associated proteins (CAS proteins) were regulated in response to the virus infection. It was found that regulated proteins come from mRNAs with a shorter than average half-life. In addition, activity-based protein profiling (ABPP) profiling on 2D-gels showed caspase, hydrolase, and tyrosine phosphatase enzyme activity labeling at the protein isoform level. Together, this data provides a more detailed global view of archaeal cellular responses

  9. Viral infections of the face.

    PubMed

    Avci, Oktay; Ertam, Ilgen

    2014-01-01

    Viral infections affecting the face may cause significant morbidity, cosmetic disfigurement, and psychological distress. The success of therapy needs whole and correct evaluation of the clinical signs and symptoms. Some viruses such as Papillomaviridae, Herpesviridae, and Polyomaviridae primarily infect the facial skin, whereas others affect the face infrequently, as in parapox virus infections. Sometimes, involvement of the face can be a part of more generalized eruption and systemic symptoms in viral infections caused by Todaviridae, Flaviviridae, Arenaviridiae, and Flaviviridae. Clinical diagnosis can be challenging in various viral diseases when they occur in nonendemic geographic areas. The objective of this review was to concentrate on epidemiologic and clinical characteristics of the viral illnesses with facial skin involvement.

  10. [Vasculitis and viral infection].

    PubMed

    Martínez Aguilar, N E; Guido Bayardo, R; Vargas Camaño, M E; Compañ González, D; Miranda Feria, A J

    1997-01-01

    Viruses have been implicated in vasculitis. To determine activity of viral infection associated with vasculitis. 17 patients with vasculitis had been in immunological and antiviral antibodies evaluation. Twenty five healthy controls sex and age matched with hematic biometry (BH) and AA. All subjects were negative to HIV and HBV. Viral activity was demonstrated in eight patients; vascular purpura (5), Takayasu disease (1), polyarteritis nodosa (1), erythema nodosum (1). None subject of control group had IgM activity. Antibodies response of IgG in patients were of lesser intensity than in control group. 14 abnormalities in BH were found in patients and 4 in control group. Immune response in patients, measured by lymphocyte subpopulations and circulating immune complexes was abnormal. In conclusion 47% showed viral activity, but the dominant feature was abnormal immune response in 82%.

  11. Dengue viral infections

    PubMed Central

    Malavige, G; Fernando, S; Fernando, D; Seneviratne, S

    2004-01-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections. PMID:15466994

  12. Dengue viral infections.

    PubMed

    Malavige, G N; Fernando, S; Fernando, D J; Seneviratne, S L

    2004-10-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections.

  13. Autistic disorder and viral infections.

    PubMed

    Libbey, Jane E; Sweeten, Thayne L; McMahon, William M; Fujinami, Robert S

    2005-02-01

    Autistic disorder (autism) is a behaviorally defined developmental disorder with a wide range of behaviors. Although the etiology of autism is unknown, data suggest that autism results from multiple etiologies with both genetic and environmental contributions, which may explain the spectrum of behaviors seen in this disorder. One proposed etiology for autism is viral infection very early in development. The mechanism, by which viral infection may lead to autism, be it through direct infection of the central nervous system (CNS), through infection elsewhere in the body acting as a trigger for disease in the CNS, through alteration of the immune response of the mother or offspring, or through a combination of these, is not yet known. Animal models in which early viral infection results in behavioral changes later in life include the influenza virus model in pregnant mice and the Borna disease virus model in newborn Lewis rats. Many studies over the years have presented evidence both for and against the association of autism with various viral infections. The best association to date has been made between congenital rubella and autism; however, members of the herpes virus family may also have a role in autism. Recently, controversy has arisen as to the involvement of measles virus and/or the measles, mumps, rubella (MMR) vaccine in the development of autism. Biological assays lend support to the association between measles virus or MMR and autism whereas epidemiologic studies show no association between MMR and autism. Further research is needed to clarify both the mechanisms whereby viral infection early in development may lead to autism and the possible involvement of the MMR vaccine in the development of autism.

  14. Saliva and viral infections.

    PubMed

    Corstjens, Paul L A M; Abrams, William R; Malamud, Daniel

    2016-02-01

    Over the last 10 years there have been only a handful of publications dealing with the oral virome, which is in contrast to the oral microbiome, an area that has seen considerable interest. Here, we survey viral infections in general and then focus on those viruses that are found in and/or are transmitted via the oral cavity; norovirus, rabies, human papillomavirus, Epstein-Barr virus, herpes simplex viruses, hepatitis C virus, and HIV. Increasingly, viral infections have been diagnosed using an oral sample (e.g. saliva mucosal transudate or an oral swab) instead of blood or urine. The results of two studies using a rapid and semi-quantitative lateral flow assay format demonstrating the correlation of HIV anti-IgG/sIgA detection with saliva and serum samples are presented. When immediate detection of infection is important, point-of-care devices that obtain a non-invasive sample from the oral cavity can be used to provide a first line diagnosis to assist in determining appropriate counselling and therapeutic path for an increasing number of diseases.

  15. Iron withholding: a defense against viral infections.

    PubMed

    Weinberg, E D

    1996-10-01

    A variety of laboratory and clinical investigations during the past 15 years have observed that one of the dangers of excessive iron is its ability to favor animal viral infections. The metal is essential for host cell synthesis of virions and can also impair defense cell function and increase oxidative stress. In both animal models and humans, viral infections cause upregulation of the iron withholding defense system. Factors that suppress the system enhance viral progression; factors that strengthen the system augment host defense. Procedures designed to reinforce the system are being developed and tested; some of these may become useful adjuncts in prevention and management of viral diseases.

  16. [Autochthonous acute viral and bacterial infections of the central nervous system (meningitis and encephalitis)].

    PubMed

    Pérez-Ruiz, Mercedes; Vicente, Diego; Navarro-Marí, José María

    2008-07-01

    Rapid diagnosis of acute viral and bacterial infections of the central nervous system (meningitis and encephalitis) is highly important for the clinical management of the patient and helps to establish early therapy that may solve life-threatening situations, to avoid unnecessary empirical treatments, to reduce hospital stay, and to facilitate appropriate interventions in the context of public health. Molecular techniques, especially real-time polymerase chain reaction, have become the fastest and most sensitive diagnostic procedures for autochthonous viral meningitis and encephalitis, and their role is becoming increasingly important for the diagnosis and control of most frequent acute bacterial meningitides. Automatic and closed systems may encourage the widespread and systematic use of molecular techniques for the diagnosis of these neurological syndromes in most laboratories.

  17. Mosquito defense strategies against viral infection

    PubMed Central

    Cheng, Gong; Liu, Yang; Wang, Penghua; Xiao, Xiaoping

    2015-01-01

    Mosquito-borne viral diseases are a major concern of global health and result in significant economic losses in many countries. As natural vectors, mosquitoes are very permissive to and allow systemic and persistent arbovirus infection. Intriguingly, persistent viral propagation in mosquito tissues neither results in dramatic pathological sequelae nor impairs the vectorial behavior or lifespan, indicating that mosquitoes have evolved mechanisms to tolerate persistent infection and developed efficient antiviral strategies to restrict viral replication to non-pathogenic levels. Here, we provide an overview of recent progress in understanding mosquito antiviral immunity and advances in the strategies by which mosquitoes control viral infection in specific tissues. PMID:26626596

  18. A comprehensive collection of systems biology data characterizing the host response to viral infection

    PubMed Central

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; Klem, Edward B.; Agnihothram, Sudhakar; Askovich, Peter S.; Bankhead, Armand; Bolles, Meagen; Carter, Victoria; Chang, Jean; Clauss, Therese R.W.; Dash, Pradyot; Diercks, Alan H.; Eisfeld, Amie J.; Ellis, Amy; Fan, Shufang; Ferris, Martin T.; Gralinski, Lisa E.; Green, Richard R.; Gritsenko, Marina A.; Hatta, Masato; Heegel, Robert A.; Jacobs, Jon M.; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M.; Kelly, Sara; Law, G. Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L.; Matzke, Melissa; McDermott, Jason; Menachery, Vineet; Metz, Thomas O.; Mitchell, Hugh; Monroe, Matthew E.; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L.; Purvine, Samuel O.; Rosenberger, Carrie M.; Sanders, Catherine J.; Schepmoes, Athena A.; Shukla, Anil K.; Sims, Amy; Sova, Pavel; Tam, Vincent C.; Tchitchek, Nicolas; Thomas, Paul G.; Tilton, Susan C.; Totura, Allison; Wang, Jing; Webb-Robertson, Bobbie-Jo; Wen, Ji; Weiss, Jeffrey M.; Yang, Feng; Yount, Boyd; Zhang, Qibin; McWeeney, Shannon; Smith, Richard D.; Waters, Katrina M.; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G.; Scheuermann, Richard H.

    2014-01-01

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection. PMID:25977790

  19. A comprehensive collection of systems biology data characterizing the host response to viral infection

    DOE PAGES

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; ...

    2014-10-14

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less

  20. A comprehensive collection of systems biology data characterizing the host response to viral infection

    SciTech Connect

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; Klem, Edward B.; Agnihothram, Sudhakar; Askovich, Peter S.; Bankhead, Armand; Bolles, Meagan; Carter, Victoria; Chang, Jean H.; Clauss, Therese R. W.; Dash, Pradyot; Diercks, Alan H.; Eisfeld, Amie J.; Ellis, Amy L.; Fan, Shufang; Ferris, Martin T.; Gralinski, Lisa; Green, Richard; Gritsenko, Marina A.; Hatta, Masato; Heegel, Robert A.; Jacobs, Jon M.; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M.; Kelly, Sarah; Law, Gale Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L.; Matzke, Melissa M.; McDermott, Jason E.; Menachery, Vineet; Metz, Thomas O.; Mitchell, Hugh D.; Monroe, Matthew E.; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L.; Purvine, Samuel O.; Rosenberger, Carrie; Sanders, Catherine J.; Schepmoes, Athena A.; Shukla, Anil K.; Sims, Amy; Sova, Pavel; Tam, Vincent C.; Tchitchek, Nicholas; Thomas, Paul G.; Tilton, Susan C.; Totura, Allison L.; Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Wen, Ji; Weiss, Jeffrey M.; Yang, Feng; Yount, Boyd; Zhang, Qibin; Mcweeney, Shannon K.; Smith, Richard D.; Waters, Katrina M.; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G.; Scheuermann, Richard H.

    2014-10-14

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.

  1. A Viral Noncoding RNA Complements a Weakened Viral RNA Silencing Suppressor and Promotes Efficient Systemic Host Infection

    PubMed Central

    Flobinus, Alyssa; Hleibieh, Kamal; Klein, Elodie; Ratti, Claudio; Bouzoubaa, Salah; Gilmer, David

    2016-01-01

    Systemic movement of beet necrotic yellow vein virus (BNYVV) in Beta macrocarpa depends on viral RNA3, whereas in Nicotiana benthamiana this RNA is dispensable. RNA3 contains a coremin motif of 20 nucleotides essential for the stabilization of noncoding RNA3 (ncRNA3) and for long-distance movement in Beta species. Coremin mutants that are unable to accumulate ncRNA3 also do not achieve systemic movement in Beta species. A mutant virus carrying a mutation in the p14 viral suppressor of RNA silencing (VSR), unable to move long distances, can be complemented with the ncRNA3 in the lesion phenotype, viral RNA accumulation, and systemic spread. Analyses of the BNYVV VSR mechanism of action led to the identification of the RNA-dependent RNA polymerase 6 (RDR6) pathway as a target of the virus VSR and the assignment of a VSR function to the ncRNA3. PMID:27782046

  2. Recycling Endosomes and Viral Infection

    PubMed Central

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-01-01

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition. PMID:27005655

  3. Role of metabolism during viral infections, and crosstalk with the innate immune system

    PubMed Central

    González Plaza, Juan José; Hulak, Nataša; Kausova, Galina; Zhumadilov, Zhaxybay; Akilzhanova, Ainur

    2016-01-01

    Summary Viruses have been for long polemic biological particles which stand in the twilight of being living entities or not. As their genome is reduced, they rely on the metabolic machinery of their host in order to replicate and be able to continue with their infection process. The understanding of their metabolic requirements is thus of paramount importance in order to develop tailored drugs to control their population, without affecting the normal functioning of their host. New advancements in high throughput technologies, especially metabolomics are allowing researchers to uncover the metabolic mechanisms of viral replication. In this short review, we present the latest discoveries that have been made in the field and an overview of the intrinsic relationship between metabolism and innate immunity as an important part of the immune system. PMID:27195191

  4. Lactoferrin for prevention of common viral infections.

    PubMed

    Wakabayashi, Hiroyuki; Oda, Hirotsugu; Yamauchi, Koji; Abe, Fumiaki

    2014-11-01

    Although lactoferrin has many biological functions, the host-protective effects against pathogenic microorganisms including bacteria, fungi, and viruses are regarded as one of the most important. Here, we review research on the protective role of lactoferrin administration against common viral infections. Many studies have shown the in vitro antiviral activity of lactoferrin against viral pathogens that cause common infections such as the common cold, influenza, gastroenteritis, summer cold, and herpes, where lactoferrin inhibits mainly viral attachment to the target cells. Recently, studies indicating the in vivo protective effects of lactoferrin by oral administration against common viral infections have been increasing. For instance, norovirus is an extremely important emerging human pathogen that causes a majority of gastroenteritis outbreaks worldwide that may be a target candidate for lactoferrin. Lactoferrin consumption reduced the incidence of noroviral gastroenteritis in children and a similar effect was observed in a wide range of ages in a preliminary survey. A recent in vitro study reported that lactoferrin inhibits both cellular attachment of the murine norovirus, a virus closely-related to the human norovirus, and viral replication in the cells by inducing antiviral cytokines interferon (IFN)-α/β. Lactoferrin administration also enhances NK cell activity and Th1 cytokine responses, which lead to protection against viral infections. In conclusion, lactoferrin consumption may protect the host from viral infections through inhibiting the attachment of a virus to the cells, replication of the virus in the cells, and enhancement of systemic immune functions.

  5. Viral infections of nonhuman primates.

    PubMed

    Kalter, S S; Heberling, R L; Cooke, A W; Barry, J D; Tian, P Y; Northam, W J

    1997-10-01

    Approximately 53,000 serologic tests and viral isolation studies were performed on 1,700 nonhuman primate specimens for evidence of past and/or current viral infection. Information, other than the requested test, generally was not provided with the specimen. This lack of information does not permit any attempt at interpretation of results. Requested testing included a large number of diverse viral agents in approximately 40 primate species. The resulting data are in keeping with those of previous studies and offer an insight into the needs of colony management, as well as some general information on the overall frequency of infection with the indicated viruses. Inasmuch as the results represent testing of single specimens, they are not to be construed as "diagnostic," and simply indicate past infection as represented by the presence of antibody in the test animal. Viral isolation results are listed, and the number of positive results versus the number of animals tested emphasizes the limitations of the procedure. Investigations such as these continue to assist in the maintenance of healthy nonhuman primate colonies. This information also supports continued use of nonhuman primates for research in human viral infections and may be helpful in terms of animal selection for use in xenotransplants.

  6. Nanoparticle-Mediated Systemic Delivery of siRNA for Treatment of Cancers and Viral Infections

    PubMed Central

    Draz, Mohamed Shehata; Fang, Binbin Amanda; Zhang, Pengfei; Hu, Zhi; Gu, Shenda; Weng, Kevin C.; Gray, Joe W.; Chen, Fanqing Frank

    2014-01-01

    RNA interference (RNAi) is an endogenous post-transcriptional gene regulatory mechanism, where non-coding, double-stranded RNA molecules interfere with the expression of certain genes in order to silence it. Since its discovery, this phenomenon has evolved as powerful technology to diagnose and treat diseases at cellular and molecular levels. With a lot of attention, short interfering RNA (siRNA) therapeutics has brought a great hope for treatment of various undruggable diseases, including genetic diseases, cancer, and resistant viral infections. However, the challenge of their systemic delivery and on how they are integrated to exhibit the desired properties and functions remains a key bottleneck for realizing its full potential. Nanoparticles are currently well known to exhibit a number of unique properties that could be strategically tailored into new advanced siRNA delivery systems. This review summarizes the various nanoparticulate systems developed so far in the literature for systemic delivery of siRNA, which include silica and silicon-based nanoparticles, metal and metal oxides nanoparticles, carbon nanotubes, graphene, dendrimers, polymers, cyclodextrins, lipids, hydrogels, and semiconductor nanocrystals. Challenges and barriers to the delivery of siRNA and the role of different nanoparticles to surmount these challenges are also included in the review. PMID:25057313

  7. Viral infections of rabbits.

    PubMed

    Kerr, Peter J; Donnelly, Thomas M

    2013-05-01

    Viral diseases of rabbits have been used historically to study oncogenesis (e.g. rabbit fibroma virus, cottontail rabbit papillomavirus) and biologically to control feral rabbit populations (e.g. myxoma virus). However, clinicians seeing pet rabbits in North America infrequently encounter viral diseases although myxomatosis may be seen occasionally. The situation is different in Europe and Australia, where myxomatosis and rabbit hemorrhagic disease are endemic. Advances in epidemiology and virology have led to detection of other lapine viruses that are now recognized as agents of emerging infectious diseases. Rabbit caliciviruses, related to rabbit hemorrhagic disease, are generally avirulent, but lethal variants are being identified in Europe and North America. Enteric viruses including lapine rotavirus, rabbit enteric coronavirus and rabbit astrovirus are being acknowledged as contributors to the multifactorial enteritis complex of juvenile rabbits. Three avirulent leporid herpesviruses are found in domestic rabbits. A fourth highly pathogenic virus designated leporid herpesvirus 4 has been described in Canada and Alaska. This review considers viruses affecting rabbits by their clinical significance. Viruses of major and minor clinical significance are described, and viruses of laboratory significance are mentioned.

  8. Pediatric Asthma and Viral Infection.

    PubMed

    Garcia-Garcia, M Luz; Calvo Rey, Cristina; Del Rosal Rabes, Teresa

    2016-05-01

    Respiratory viral infections, particularly respiratory syncytial virus (RSV) and rhinovirus, are the most importance risk factors for the onset of wheezing in infants and small children. Bronchiolitis is the most common acute respiratory infection in children under 1year of age, and the most common cause of hospitalization in this age group. RSV accounts for approximately 70% of all these cases, followed by rhinovirus, adenovirus, metapneumovirus and bocavirus. The association between bronchiolitis caused by RSV and the development of recurrent wheezing and/or asthma was first described more than 40years ago, but it is still unclear whether bronchiolitis causes chronic respiratory symptoms, or if it is a marker for children with a genetic predisposition for developing asthma in the medium or long term. In any case, sufficient evidence is available to corroborate the existence of this association, which is particularly strong when the causative agent of bronchiolitis is rhinovirus. The pathogenic role of respiratory viruses as triggers for exacerbations in asthmatic patients has not been fully characterized. However, it is clear that respiratory viruses, and in particular rhinovirus, are the most common causes of exacerbation in children, and some type of respiratory virus has been identified in over 90% of children hospitalized for an episode of wheezing. Changes in the immune response to viral infections in genetically predisposed individuals are very likely to be the main factors involved in the association between viral infection and asthma.

  9. Random Plant Viral Variants Attain Temporal Advantages During Systemic Infections and in Turn Resist other Variants of the Same Virus

    PubMed Central

    Zhang, Xiao-Feng; Guo, Jiangbo; Zhang, Xiuchun; Meulia, Tea; Paul, Pierce; Madden, Laurence V.; Li, Dawei; Qu, Feng

    2015-01-01

    Infection of plants with viruses containing multiple variants frequently leads to dominance by a few random variants in the systemically infected leaves (SLs), for which a plausible explanation is lacking. We show here that SL dominance by a given viral variant is adequately explained by its fortuitous lead in systemic spread, coupled with its resistance to superinfection by other variants. We analyzed the fate of a multi-variant turnip crinkle virus (TCV) population in Arabidopsis and N. benthamiana plants. Both wild-type and RNA silencing-defective plants displayed a similar pattern of random dominance by a few variant genotypes, thus discounting a prominent role for RNA silencing. When introduced to plants sequentially as two subpopulations, a twelve-hour head-start was sufficient for the first set to dominate. Finally, SLs of TCV-infected plants became highly resistant to secondary invasions of another TCV variant. We propose that random distribution of variant foci on inoculated leaves allows different variants to lead systemic movement in different plants. The leading variants then colonize large areas of SLs, and resist the superinfection of lagging variants in the same areas. In conclusion, superinfection resistance is the primary driver of random enrichment of viral variants in systemically infected plants. PMID:26481091

  10. Genome and Infection Characteristics of Human Parechovirus Type 1: The Interplay between Viral Infection and Type I Interferon Antiviral System

    PubMed Central

    Chang, Jenn-Tzong; Yang, Chih-Shiang; Chen, Yao-Shen; Chen, Bao-Chen; Chiang, An-Jen; Chang, Yu-Hsiang; Tsai, Wei-Lun; Lin, You-Sheng; Chao, David; Chang, Tsung-Hsien

    2015-01-01

    Human parechoviruses (HPeVs), members of the family Picornaviridae, are associated with severe human clinical conditions such as gastrointestinal disease, encephalitis, meningitis, respiratory disease and neonatal sepsis. A new contemporary strain of HPeV1, KVP6 (accession no. KC769584), was isolated from a clinical specimen. Full-genome alignment revealed that HPeV1 KVP6 shares high genome homology with the German strain of HPeV1, 7555312 (accession no. FM178558) and could be classified in the clade 1B group. An intertypic recombination was shown within the P2-P3 genome regions of HPeV1. Cell-type tropism test showed that T84 cells (colon carcinoma cells), A549 cells (lung carcinoma cells) and DBTRG-5MG cells (glioblastoma cells) were susceptible to HPeV1 infection, which might be relevant clinically. A facilitated cytopathic effect and increased viral titers were reached after serial viral passages in Vero cells, with viral genome mutation found in later passages. HPeV1 is sensitive to elevated temperature because 39°C incubation impaired virion production. HPeV1 induced innate immunity with phosphorylation of interferon (IFN) regulatory transcription factor 3 and production of type I IFN in A549 but not T84 cells. Furthermore, type I IFN inhibited HPeV1 production in A549 cells but not T84 cells; T84 cells may be less responsive to type I IFN stimulation. Moreover, HPeV1-infected cells showed downregulated type I IFN activation, which indicated a type I IFN evasion mechanism. The characterization of the complete genome and infection features of HPeV1 provide comprehensive information about this newly isolated HPeV1 for further diagnosis, prevention or treatment strategies. PMID:25646764

  11. Viral Infection in Renal Transplant Recipients

    PubMed Central

    Cukuranovic, Jovana; Ugrenovic, Sladjana; Jovanovic, Ivan; Visnjic, Milan; Stefanovic, Vladisav

    2012-01-01

    Viruses are among the most common causes of opportunistic infection after transplantation. The risk for viral infection is a function of the specific virus encountered, the intensity of immune suppression used to prevent graft rejection, and other host factors governing susceptibility. Although cytomegalovirus is the most common opportunistic pathogen seen in transplant recipients, numerous other viruses have also affected outcomes. In some cases, preventive measures such as pretransplant screening, prophylactic antiviral therapy, or posttransplant viral monitoring may limit the impact of these infections. Recent advances in laboratory monitoring and antiviral therapy have improved outcomes. Studies of viral latency, reactivation, and the cellular effects of viral infection will provide clues for future strategies in prevention and treatment of viral infections. This paper will summarize the major viral infections seen following transplant and discuss strategies for prevention and management of these potential pathogens. PMID:22654630

  12. Clinical implications of nucleic acid amplification methods for the diagnosis of viral infections of the nervous system.

    PubMed

    Weber, T; Frye, S; Bodemer, M; Otto, M; Lüke, W

    1996-06-01

    Amplification of viral nucleic acids from the cerebrospinal fluid (CSF) has considerably improved the diagnosis of several acute, subacute and chronic viral infections of the nervous system. In herpes simplex virus (HSV) encephalitis (HSE) the polymerase chain reaction (PCR) has become the method of choice for the rapid, non invasive diagnosis. Other herpes virus associated diseases which can now be reliably diagnosed are encephalitis, ventriculoencephalitis, polymyeloradiculitis, myelitis and an inflammatory polyradiculoneuropathy caused by cytomegalovirus (CMV), HSV, varicella-zoster virus (VZV) or Epstein-Barr virus (EBV), EBV associated primary B-cell-lymphoma of the brain, acute aseptic meningitis in young adults allied with VZV, and meningoencephalitis with recurrent seizures due to human herpes virus type 6 (HHV-6). In AIDS patients, PCR has helped to differentiate lesions either due to the human immunodeficiency virus (HIV) itself or to opportunistic infections such as progressive multifocal leukoencephalopathy (PML) caused by JC virus (JCV) or CMV related complications. HIV can be detected early in the course of infection in the CSF and the amount of proviral DNA in CSF cells seems to be correlated with the severity and/or progression of neurological signs and symptoms. Acute epidemic aseptic meningitis caused by enterovirus infections can now be reliably diagnosed and typed by reverse transcriptase PCR (RT-PCR). Meningitis cases caused by vaccination with the Jeryl Lynn and Urabe vaccine strain of mumps virus have been identified using RT-PCR and sequencing of the amplified products (amplicon).

  13. Long noncoding RNAs in viral infections

    PubMed Central

    Fortes, Puri; Morris, Kevin

    2015-01-01

    Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer. PMID:26454188

  14. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections

    PubMed Central

    Nair, Sharmila; Diamond, Michael S.

    2015-01-01

    The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762

  15. Effects of cannabinoids and their receptors on viral infections.

    PubMed

    Tahamtan, Alireza; Tavakoli-Yaraki, Masoumeh; Rygiel, Tomasz P; Mokhtari-Azad, Talat; Salimi, Vahid

    2016-01-01

    Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis. There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication. The present study reviews current insights into the role of cannabinoids and their receptors on viral infections. The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection. Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections.

  16. Membrane dynamics associated with viral infection.

    PubMed

    de Armas-Rillo, Laura; Valera, María-Soledad; Marrero-Hernández, Sara; Valenzuela-Fernández, Agustín

    2016-05-01

    Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease.

  17. Neutrophil in Viral Infections, Friend or Foe?

    PubMed Central

    Drescher, Brandon; Bai, Fengwei

    2012-01-01

    Polymorphonuclear leukocytes or neutrophils are the first immune cells to the site of injury and microbial infection. Neutrophils are crucial players in controlling bacterial and fungal infections, and in particular secondary infections, by phagocytosis, degranulation and neutrophil extracellular traps (NETs). While neutrophils have been shown to play important roles in viral pathogenesis, there is a lack of detailed investigation. In this article, we will review recent progresses toward understanding the role of neutrophils in viral pathogenesis. PMID:23178588

  18. Adaptive immune response to viral infections in the central nervous system

    PubMed Central

    LIBBEY, JANE E.; FUJINAMI, ROBERT S.

    2015-01-01

    Historically, the central nervous system (CNS) has been considered to be an immunologically privileged site within the body (Bailey et al., 2006; Galea et al. 2007; Engelhardt, 2008; Prendergast and Anderton, 2009). By definition, immunologically privileged sites, to include the brain, cornea, testis, and pregnant uterus, have a reduced/delayed ability to reject foreign tissue grafts compared to conventional sites within the body, such as skin (Streilein, 2003; Bailey et al., 2006; Carson et al., 2006; Mrass and Weninger, 2006; Kaplan and Niederkorn, 2007). In addition and conversely, tissue grafts prepared from immunologically privileged sites have increased survival, compared to tissue grafts prepared from conventional sites, when implanted at conventional sites (Streilein, 2003). The imune privilege of the CNS has been shown to be confined to the parenchyma, whereas the immune reactivity of the meninges and the ventricles, containing the choroid plexus, cerebrospinal fluid (CSF), and the circumventricular organs, is similar to conventionalsites (Carson et al., 2006; Engelhardt, 2006; Galea et al., 2007). This confinement of the imm une privilege to the parenchyma has also been demonstrated for experimental influenza virus infection in which confinement of the infection to the brain parenchyma did not result in efficient immune system priming whereas infection of the CSF elicited a virus-specific immune response comparable to that of intranasal infection (Stevenson et al. 1997). An important functional aspect of immune privilege is that damage due to the immune response and inflammation is limited within sensitive organs containing cell types that regenerate poorly, such as neurons within the brain (Mrass and Weninger, 2006; Galea et al.. 2007; Kaplan and Niederkorn, 2007). PMID:25015488

  19. Oxygen tension level and human viral infections.

    PubMed

    Morinet, Frédéric; Casetti, Luana; François, Jean-Hugues; Capron, Claude; Pillet, Sylvie

    2013-09-01

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition.

  20. Experimental infection with Haemophilus ducreyi in persons who are infected with HIV does not cause local or augment systemic viral replication.

    PubMed

    Janowicz, Diane M; Tenner-Racz, Klara; Racz, Paul; Humphreys, Tricia L; Schnizlein-Bick, Carol; Fortney, Kate R; Zwickl, Beth; Katz, Barry P; Campbell, James J; Ho, David D; Spinola, Stanley M

    2007-05-15

    We infected 11 HIV-seropositive volunteers whose CD4(+) cell counts were >350 cells/ microL (7 of whom were receiving antiretrovirals) with Haemophilus ducreyi. The papule and pustule formation rates were similar to those observed in HIV-seronegative historical control subjects. No subject experienced a sustained change in CD4(+) cell count or HIV RNA level. The cellular infiltrate in biopsy samples obtained from the HIV-seropositive and HIV-seronegative subjects did not differ with respect to the percentage of leukocytes, neutrophils, macrophages, or T cells. The CD4(+):CD8(+) cell ratio in biopsy samples from the HIV-seropositive subjects was 1:3, the inverse of the ratio seen in the HIV-seronegative subjects (P<.0001). Although CD4(+) cells proliferated in lesions, in situ hybridization and reverse-transcription polymerase chain reaction for HIV RNA was negative. We conclude that experimental infection in HIV-seropositive persons is clinically similar to infection in HIV-seronegative persons and does not cause local or augment systemic viral replication. Thus, prompt treatment of chancroid may abrogate increases in viral replication associated with natural disease.

  1. Bacterial and viral infections associated with influenza.

    PubMed

    Joseph, Carol; Togawa, Yu; Shindo, Nahoko

    2013-09-01

    Influenza-associated bacterial and viral infections are responsible for high levels of morbidity and death during pandemic and seasonal influenza episodes. A review was undertaken to assess and evaluate the incidence, epidemiology, aetiology, clinical importance and impact of bacterial and viral co-infection and secondary infection associated with influenza. A review was carried out of published articles covering bacterial and viral infections associated with pandemic and seasonal influenza between 1918 and 2009 (and published through December 2011) to include both pulmonary and extra-pulmonary infections. While pneumococcal infection remains the predominant cause of bacterial pneumonia, the review highlights the importance of other co- and secondary bacterial and viral infections associated with influenza, and the emergence of newly identified dual infections associated with the 2009 H1N1 pandemic strain. Severe influenza-associated pneumonia is often bacterial and will necessitate antibiotic treatment. In addition to the well-known bacterial causes, less common bacteria such as Legionella pneumophila may also be associated with influenza when new influenza strains emerge. This review should provide clinicians with an overview of the range of bacterial and viral co- or secondary infections that could present with influenza illness.

  2. Viral infections associated with haemophagocytic syndrome.

    PubMed

    Maakaroun, Nadine Rouphael; Moanna, Abeer; Jacob, Jesse T; Albrecht, Helmut

    2010-03-01

    Haemophagocytic syndrome (HPS) or haemophagocytic lymphohistiocytosis (HLH) is a rare disease caused by a dysfunction of cytotoxic T cells and NK cells. This T cell/NK cell dysregulation causes an aberrant cytokine release, resulting in proliferation/activation of histiocytes with subsequent haemophagocytosis. Histiocytic infiltration of the reticuloendothelial system results in hepatomegaly, splenomegaly, lymphadenopathy and pancytopenia ultimately leading to multiple organ dysfunctions. Common clinical features include high fevers despite broad spectrum antimicrobials, maculopapular rash, neurological symptoms, coagulopathy and abnormal liver function tests. Haemophagocytic syndrome can be either primary, i.e. due to an underlying genetic defect or secondary, associated with malignancies, autoimmune diseases (also called macrophage activation syndrome) or infections. Infectious triggers are most commonly due to viral infections mainly of the herpes group, with EBV being the most common cause. HPS can be fatal if untreated. Early recognition of the clinical presentation and laboratory abnormalities associated with HPS and prompt initiation of treatment can be life saving. HPS triggered by viral infections generally does not respond to specific antiviral therapy but may be treated with immunosuppressive/immunomodulatory agents and, in refractory cases, with bone marrow transplantation.

  3. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice

    PubMed Central

    Uhde, Ann-Kathrin; Herder, Vanessa; Akram Khan, Muhammad; Ciurkiewicz, Malgorzata; Schaudien, Dirk; Teich, René; Floess, Stefan; Baumgärtner, Wolfgang

    2016-01-01

    Theiler´s murine encephalomyelitis virus (TMEV)-infection is a widely used animal model for studying demyelinating disorders, including multiple sclerosis (MS). The immunosuppressive cytokine Interleukin (IL)-10 counteracts hyperactive immune responses and critically controls immune homeostasis in infectious and autoimmune disorders. In order to investigate the effect of signaling via Interleukin-10 receptor (IL-10R) in infectious neurological diseases, TMEV-infected SJL mice were treated with IL-10R blocking antibody (Ab) in the acute and chronic phase of the disease. The findings demonstrate that (i) Ab-mediated IL-10 neutralization leads to progressive colitis with a reduction in Foxp3+ regulatory T cells and increased numbers of CD8+CD44+ memory T cells as well as activated CD4+CD69+ and CD8+CD69+ T cells in uninfected mice. (ii) Concurrent acute TMEV-infection worsened enteric disease-mediated by IL-10R neutralization. Virus-triggered effects were associated with an enhanced activation of CD4+ T helper cells and CD8+ cytotoxic T lymphocytes and augmented cytokine expression. By contrast, (iii) IL-10R neutralization during chronic TMEV-infection was not associated with enhanced peripheral immunopathology but an increased CD3+ T cell influx in the spinal cord. IL-10R neutralization causes a breakdown in peripheral immune tolerance in genetically predisposed mice, which leads to immune-mediated colitis, resembling inflammatory bowel disease. Hyperactive immune state following IL-10R blockade is enhanced by central nervous system-restricted viral infection in a disease phase-dependent manner. PMID:27611574

  4. Oxygen tension level and human viral infections

    SciTech Connect

    Morinet, Frédéric; Casetti, Luana; François, Jean-Hugues; Capron, Claude; Pillet, Sylvie

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  5. Prostaglandin E2 As a Modulator of Viral Infections

    PubMed Central

    Sander, Willem J.; O'Neill, Hester G.; Pohl, Carolina H.

    2017-01-01

    Viral infections are a major cause of infectious diseases worldwide. Inflammation and the immune system are the major host defenses against these viral infection. Prostaglandin E2 (PGE2), an eicosanoid generated by cyclooxygenases, has been shown to modulate inflammation and the immune system by regulating the expression/concentration of cytokines. The effect of PGE2 on viral infection and replication is cell type- and virus-family-dependent. The host immune system can be modulated by PGE2, with regards to immunosuppression, inhibition of nitrogen oxide (NO) production, inhibition of interferon (IFN) and apoptotic pathways, and inhibition of viral receptor expression. Furthermore, PGE2 can play a role in viral infection directly by increasing the production and release of virions, inhibiting viral binding and replication, and/or stimulating viral gene expression. PGE2 may also have a regulatory role in the induction of autoimmunity and in signaling via Toll-like receptors. In this review the known effects of PGE2 on the pathogenesis of various infections caused by herpes simplex virus, rotavirus, influenza A virus and human immunodeficiency virus as well the therapeutic potential of PGE2 are discussed. PMID:28261111

  6. A nonviral peptide can replace the entire N terminus of zucchini yellow mosaic potyvirus coat protein and permits viral systemic infection.

    PubMed

    Arazi, T; Shiboleth, Y M; Gal-On, A

    2001-07-01

    Systematic deletion and peptide tagging of the amino-terminal domain (NT, ~43 amino acids) of an attenuated zucchini yellow mosaic potyvirus (ZYMV-AGII) coat protein (CP) were used to elucidate its role in viral systemic infection. Deletion mutants truncated by 8, 13, and 33 amino acid residues from the CP-NT 5' end were systemically infectious and produced symptoms similar to those of the AGII virus. Tagging these deletion mutants with either human c-Myc (Myc) or hexahistidine peptides maintained viral infectivity. Similarly, addition of these peptides to the intact AGII CP-NT did not affect viral life cycle. To determine which parts, if any, of the CP-NT are essential for viral systemic infection, a series of Myc-tagged mutants with 8 to 43 amino acids removed from the CP-NT were constructed. All Myc-tagged CP-NT deletion mutants, including those from which virtually all the viral CP-NT had been eliminated, were able to encapsidate and cause systemic infection. Furthermore, chimeric viruses with deletions of up to 33 amino acids from CP-NT produced symptoms indistinguishable from those caused by the parental AGII virus. In contrast to CP-NT Myc fusion, addition of the foot-and-mouth disease virus (FMDV) immunogenic epitope to AGII CP-NT did not permit systemic infection. However, fusion of the Myc peptide to the N terminus of the FMDV peptide restored the capability of the virus to spread systemically. We have demonstrated that all CP-NT fused peptides were exposed on the virion surface, masking natural CP immunogenic determinants. Our findings demonstrate that CP-NT is not essential for ZYMV spread and that it can be replaced by an appropriate foreign peptide while maintaining systemic infectivity.

  7. Fish viral infections in northwest of Spain.

    PubMed

    Ledo, A; Lupiani, B; Dopazo, C P; Toranzo, A E; Barja, J L

    1990-06-01

    During a three years survey, a total of 149 samples from 20 farms of rainbow trout, salmon and turbot were examined for the presence of virus with the purpose to study the viral infections affecting cultured fish and their incidence in the fishfarms of Northwestern Spain. Infectious pancreatic necrosis virus (IPNV) was the only viral agent isolated from salmonid fish. Fry and fingerlings of trout showed the highest infection rate (24%). This virus was not detected in broodstock or embryonated eggs, although it was isolated from ovaric and seminal fluids and from juvenile carriers. From 24 samples of salmon analyzed, IPNV was only detected in one sample of juveniles. Examination of turbot led the isolation of a new virus belonging to the reoviridae family, which affected to the ongrowing population. All of the IPNV tested belonged to serotype Sp regardless of the origin of the trout stocks. During the monitorization of imported embryonated eggs, no virus was detected from any of the samples. However, in some case, IPNV was isolated when testing the fry obtained in our laboratory from those samples of imported eggs. Our findings indicate that: i) the analysis of fingerlings increase the probability to detect viral infections allowing us an optimal control of importations, and ii) most of the viral infections of fish take place in the own fish farms. The detection of mixed viral and bacterial infections emphasize the importance of carrying out an integral microbiological analysis to determine the causal agent(s) of fish mortalities.

  8. [Emerging viral zoonoses: hantavirus infections].

    PubMed

    Enria, D A M; Levis, S C

    2004-08-01

    Hantaviruses are rodent-borne agents belonging to the Bunyaviridae family. These viruses, which are found throughout Europe, Asia and the Americas, are maintained by different species of rodents, in which they produce chronic, inapparent infections. Humans become infected through contact with urine, saliva or faeces from infected rodents, mainly via the aerosol route. In humans, clinical disease occurs in the form of two major syndromes: haemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). Haemorrhagic fever with renal syndrome mainly occurs in Europe and Asia and HPS has only ever been reported in the Americas. Person-to-person transmission of hantaviruses, although uncommon, was described during an outbreak of HPS in southern Argentina. Most epidemics of HFRS and HPS occur in areas with large populations of rodents that have a relatively high prevalence of infection.

  9. Response of diatom-associated bacteria to host growth state, nutrient concentrations, and viral host infection in a model system.

    PubMed

    Baker, Lydia J; Alegado, Rosanna A; Kemp, Paul F

    2016-08-25

    Diatoms are photosynthetic unicellular eukaryotes found ubiquitously in aquatic systems. Frequent physical associations with other microorganisms such as bacteria may influence diatom fitness. The predictability of bacterial-diatom interactions is hypothesized to depend on availability of nutrients as well as the physiological state of the host. Biotic and abiotic factors such as nutrient levels, host growth stage and host viral infection were manipulated to determine their effect on the ecological succession of bacterial communities associated with a single cell line of Chaetoceros sp. KBDT20; this was assessed using the relative abundance of bacterial phylotypes based on 16S rDNA sequences. A single bacterial family, Alteromonadaceae, dominated the attached-bacterial community (84.0%), with the most prevalent phylotypes belonging to the Alteromonas and Marinobacter genera. The taxa comprising the other 16% of the attached bacterial assemblage include Alphaproteobacteria, Betaproteobacteria, Bacilli, Deltaproteobacteria, other Gammaproteobacteria and Flavobacteria. Nutrient concentration and host growth stage had a statistically significant effect on the phylogenetic composition of the attached bacteria. It was inferred that interactions between attached bacteria, as well as the inherent stochasticity mediating contact may also contribute to diatom-bacterial associations.

  10. Basic stochastic models for viral infection within a host.

    PubMed

    Vidurupola, Sukhitha W; Allen, Linda J S

    2012-10-01

    Stochastic differential equation (SDE) models are formulated for intra-host virus-cell dynamics during the early stages of viral infection, prior to activation of the immune system. The SDE models incorporate more realism into the mechanisms for viral entry and release than ordinary differential equation (ODE) models and show distinct differences from the ODE models. The variability in the SDE models depends on the concentration, with much greater variability for small concentrations than large concentrations. In addition, the SDE models show significant variability in the timing of the viral peak. The viral peak is earlier for viruses that are released from infected cells via bursting rather than via budding from the cell membrane.

  11. Laboratory diagnosis of viral infections

    SciTech Connect

    Lennette, E.H.

    1985-01-01

    This book contains 30 chapters. Some of the chapter titles are: Radioimmunoassay Systems; Enzyme Immunoassay Systems; Concepts of Clinical Diagnostic Virology; Role of Tissue Culture Systems, Adenoviruses; Influenza Viruses; Rabies Virus; and Rubella.

  12. Epigenetic Treatment of Persistent Viral Infections.

    PubMed

    Moos, Walter H; Pinkert, Carl A; Irwin, Michael H; Faller, Douglas V; Kodukula, Krishna; Glavas, Ioannis P; Steliou, Kosta

    2017-02-01

    Preclinical Research Approximately 2,500 years ago, Hippocrates used the word herpes as a medical term to describe lesions that appeared to creep or crawl on the skin, advocating heat as a possible treatment. During the last 50 years, pharmaceutical research has made great strides, and therapeutic options have expanded to include small molecule antiviral agents, protease inhibitors, preventive vaccines for a handful of the papillomaviruses, and even cures for hepatitis C virus infections. However, effective treatments for persistent and recurrent viral infections, particularly the highly prevalent herpesviruses, continue to represent a significant unmet medical need, affecting the majority of the world's population. Exploring the population diversity of the human microbiome and the effects its compositional variances have on the immune system, health, and disease are the subjects of intense investigational research and study. Among the collection of viruses, bacteria, fungi, and single-cell eukaryotes that comprise the human microbiome, the virome has been grossly understudied relative to the influence it exerts on human pathophysiology, much as mitochondria have until recently failed to receive the attention they deserve, given their critical biomedical importance. Fortunately, cellular epigenetic machinery offers a wealth of druggable targets for therapeutic intervention in numerous disease indications, including those outlined above. With advances in synthetic biology, engineering our body's commensal microorganisms to seek out and destroy pathogenic species is clearly on the horizon. This is especially the case given recent breakthroughs in genetic manipulation with tools such as the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) gene-editing platforms. Tying these concepts together with our previous work on the microbiome and neurodegenerative and neuropsychiatric diseases, we suggest that, because mammalian cells

  13. Highly variable expression of virus receptors in the human cardiovascular system. Implications for cardiotropic viral infections and gene therapy.

    PubMed

    Poller, W; Fechner, H; Noutsias, M; Tschoepe, C; Schultheiss, H-P

    2002-12-01

    Coxsackieviruses and adenoviruses are common agents of viral heart disease. In the majority of exposed individuals they do not cause myocardial disease, however, since they are not primarily cardiotropic. Until recently the molecular basis of their anomalous tropism in patients who develop viral heart disease was unknown. An important step towards clarification of the molecular basis of cardiotropic viral infections was achieved in 1997, when a common receptor for the two structurally unrelated viruses was cloned. This coxsackievirus-adenovirus receptor (CAR) is a key determinant for the cellular uptake of both viruses and for the molecular pathogenesis of coxsackievirus and adenovirus diseases. We have mapped the CAR expression in human hearts and observed highly variable expression patterns. Healthy donor hearts had low CAR expression levels, whereas explanted hearts of patients with dilated cardiomyopathy (DCM) displayed high CAR expression in the myocardium. Remarkably, however, heart failure per se was not associated with CAR induction, since in heart failure of non-DCM origin no induction was found. Additional studies on the molecular mechanisms of CAR induction in cardiomyocytes indicated the existence of a cell-cell contact-dependent molecular mechanism regulating CAR expression, whereas cellular virus uptake and low level replication had no effect. Recombinant expression of human CAR in cardiomyocytes strongly increased their virus uptake rate suggesting that CAR induction enhances cardiac vulnerability to viral disease, whereas healthy myocardium is rather resistant to CAR-dependent viruses. Receptor induction may significantly aggravate the clinical course of viral heart disease, so that the blockade of receptor expression or receptor-virus interactions opens new therapeutic perspectives. Elucidation of the molecular mechanism of CAR induction in DCM, but not in heart failure per se, may reveal a particular pathogenetic process in this disease. A broader

  14. Three-Dimensional Imaging of Viral Infections.

    PubMed

    Risco, Cristina; de Castro, Isabel Fernández; Sanz-Sánchez, Laura; Narayan, Kedar; Grandinetti, Giovanna; Subramaniam, Sriram

    2014-11-01

    Three-dimensional (3D) imaging technologies are beginning to have significant impact in the field of virology, as they are helping us understand how viruses take control of cells. In this article we review several methodologies for 3D imaging of cells and show how these technologies are contributing to the study of viral infections and the characterization of specialized structures formed in virus-infected cells. We include 3D reconstruction by transmission electron microscopy (TEM) using serial sections, electron tomography, and focused ion beam scanning electron microscopy (FIB-SEM). We summarize from these methods selected contributions to our understanding of viral entry, replication, morphogenesis, egress and propagation, and changes in the spatial architecture of virus-infected cells. In combination with live-cell imaging, correlative microscopy, and new techniques for molecular mapping in situ, the availability of these methods for 3D imaging is expected to provide deeper insights into understanding the structural and dynamic aspects of viral infection.

  15. Visualizing viral transport and host infection

    NASA Astrophysics Data System (ADS)

    Son, Kwangmin; Guasto, Jeffrey; Cubillos-Ruiz, Andres; Sullivan, Matthew; Stocker, Roman; MIT Team

    2013-11-01

    A virus is a non-motile infectious agent that can only replicate inside a living host. They consist of a <100 nm diameter capsid which houses their DNA, and a <20 nm diameter tail used to inject DNA to the host, which are classified into three different morphologies by the tail type: short tail (~ 10 nm, podovirus), rigid contractile tail (~ 100 nm, myovirus), or flexible noncontractile tail (~ 300 nm, siphovirus). Combining microfluidics with epifluorescent microscopy, we studied the simultaneous diffusive transport governing the initial encounter and ultimately the infection of a non-motile cyanobacteria host (~ 1 μm prochlorococcus) and their viral (phage) counterparts in real time. This methodology allows us to quantify the virus-host encounter/adsorption dynamics and subsequently the effectiveness of various tail morphologies for viral infection. Viral transport and the role of viral morphology in host-virus interactions are critical to our understanding of both ecosystem dynamics and human health, as well as to the evolution of virus morphology.

  16. Cutaneous viral infections in organ transplant patients.

    PubMed

    Piaserico, S; Sandini, E; Peserico, A; Alaibac, M

    2014-08-01

    Cutaneous infections might occur in up to 80% of organ transplant recipients (OTR) and viral infections are the most common them. The risk of different skin infection is among related to the intensity of immunosuppression. During the first post-transplant period, herpes viruses are most common. After some months following transplantation, human papilloma viruses represent the most significant infections among OTR. Reactivation of herpes simplex virus in OTR can become more invasive, takes longer to heal, and shows greater potential for dissemination to visceral organs compared to the general population. Specific immunosuppressive drugs (namely muromonab and mycophenolate mofetil) have been associated with an increased risk of herpes virus reactivation after transplantation. On the other hand, there is evidence that the mTOR inhibitors, such as everolimus, may be associated with a decreased incidence of herpesvirus infections in transplant recipients. The incidence of herpes zoster in OTR is 10 to 100 fold higher than the general population, ranging from 1% to 12%. The chronic immunosuppression performed in OTR may lead to persistent replication of herpesviruses, dissemination of the virus with multivisceral involvement (hepatitis, pneumonitis, myocarditis, encephalitis and disseminated intravascular coagulation) and eventually, the emergence of antiviral-drug resistance. Viral warts are the most common cutaneous infection occurring in OTR. The number of warts increases with the duration of immunosuppressive therapy. Since warts in organ recipients are frequently multiple and only rarely undergo spontaneous regression, the therapeutic management of warts in patients treated with immunosuppressive drugs might be challenging. Imiquimod, 1% cidofovir ointment, acitretin proved to be useful off-label strategies for recalcitrant cutaneous viral warts in OTR. Extensive and atypical presentation of molluscum contagiosum has been also reported in OTR, with a prevalence

  17. Cytoplasmic RNA Granules and Viral Infection

    PubMed Central

    Tsai, Wei-Chih; Lloyd, Richard E.

    2016-01-01

    RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principle types of cytoplasmic RNA granules are stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P-bodies, PBs), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts, thus, viruses repress RNA granule functions to favor replication. This review discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently mechanisms for virus manipulation of RNA granules can be loosely grouped into three non-exclusive categories; i) cleavage of key RNA granule factors, ii) regulation of PKR activation and iii) co-opting RNA granule factors for new roles in viral replication. Viral repression of RNA granules supports productive infection by inhibiting their gene silencing functions and counteracting their role in linking stress sensing with innate immune activation. PMID:26958719

  18. SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection.

    PubMed

    Hou, Ying-Ju; Banerjee, Rebecca; Thomas, Bobby; Nathan, Carl; García-Sastre, Adolfo; Ding, Aihao; Uccellini, Melissa B

    2013-07-15

    Four of the five members of the Toll/IL-1R domain-containing adaptor family are required for signaling downstream of TLRs, promoting innate immune responses against different pathogens. However, the role of the fifth member of this family, sterile α and Toll/IL-1R domain-containing 1 (SARM), is unclear. SARM is expressed primarily in the CNS where it is required for axonal death. Studies in Caenorhabditis elegans have also shown a role for SARM in innate immunity. To clarify the role of mammalian SARM in innate immunity, we infected SARM(-/-) mice with a number of bacterial and viral pathogens. SARM(-/-) mice show normal responses to Listeria monocytogenes, Mycobacterium tuberculosis, and influenza virus, but show dramatic protection from death after CNS infection with vesicular stomatitis virus. Protection correlates with reduced CNS injury and cytokine production by nonhematopoietic cells, suggesting that SARM is a positive regulator of cytokine production. Neurons and microglia are the predominant source of cytokines in vivo, supporting a role for SARM as a link between neuronal injury and innate immunity.

  19. Novel approaches and challenges to treatment of CNS viral infections

    PubMed Central

    Nath, Avindra; Tyler, Kenneth L.

    2014-01-01

    Existing and emerging viral CNS infections are major sources of human morbidity and mortality. Treatments of proven efficacy are currently limited predominantly to herpesviruses and human immunodeficiency virus. Development of new therapies has been hampered by the lack of appropriate animal model systems for some important viruses and by the difficulty in conducting human clinical trials for diseases that may be rare, or in the case of arboviral infections, often have variable seasonal and geographic incidence. Nonetheless, many novel approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpesvirus drugs include viral helicase-primase and terminase inhibitors. The use of antisense oligonucleotides and other strategies to interfere with viral RNA translation has shown efficacy in experimental models of CNS viral disease. Identifying specific molecular targets within viral replication cycles has led to many existing antivirals and will undoubtedly continue to be the basis of future drug design. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses. Toll-like receptor agonists, and drugs that inhibit specific cytokines as well as interferon preparations have all shown potential therapeutic efficacy. Passive transfer of virus-specific cytotoxic T-lymphocytes have been used in humans and may provide an effective therapies for some herpesvirus infections and potentially for progressive multifocal leukoencephalopathy. Humanized monoclonal antibodies directed against specific viral proteins have been developed and in several cases evaluated in humans in settings including West Nile virus and HIV infection and in pre-exposure prophylaxis for rabies. PMID:23913580

  20. Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection

    PubMed Central

    Yajima, Toshitaka

    2011-01-01

    Virus infection can inflict significant damage on cardiomyocytes through direct injury and secondary immune reactions, leading to myocarditis and dilated cardiomyopathy. While viral myocarditis or cardiomyopathy is a complication of systemic infection of cardiotropic viruses, most individuals infected with the viruses do not develop significant cardiac disease. However, some individuals proceed to develop severe virus-mediated heart disease. Recent studies have shown that viral infection of cardiomyocytes is required for the development of myocarditis and subsequent cardiomyopathy. This suggests that viral infection of cardiomyocytes can be an important step that determines the pathogenesis of viral myocarditis during systemic infection. Accordingly, this article focuses on potential defense mechanisms within the cardiomyocyte against virus infection. Understanding of the cardiomyocyte defense against invading viruses may give us novel insights into the pathophysiology of viral myocarditis, and enable us to develop innovative strategies of diagnosis and treatment for this challenging clinical entity. PMID:21585262

  1. Phylodynamic analysis of a viral infection network

    PubMed Central

    Shiino, Teiichiro

    2012-01-01

    Viral infections by sexual and droplet transmission routes typically spread through a complex host-to-host contact network. Clarifying the transmission network and epidemiological parameters affecting the variations and dynamics of a specific pathogen is a major issue in the control of infectious diseases. However, conventional methods such as interview and/or classical phylogenetic analysis of viral gene sequences have inherent limitations and often fail to detect infectious clusters and transmission connections. Recent improvements in computational environments now permit the analysis of large datasets. In addition, novel analytical methods have been developed that serve to infer the evolutionary dynamics of virus genetic diversity using sample date information and sequence data. This type of framework, termed “phylodynamics,” helps connect some of the missing links on viral transmission networks, which are often hard to detect by conventional methods of epidemiology. With sufficient number of sequences available, one can use this new inference method to estimate theoretical epidemiological parameters such as temporal distributions of the primary infection, fluctuation of the pathogen population size, basic reproductive number, and the mean time span of disease infectiousness. Transmission networks estimated by this framework often have the properties of a scale-free network, which are characteristic of infectious and social communication processes. Network analysis based on phylodynamics has alluded to various suggestions concerning the infection dynamics associated with a given community and/or risk behavior. In this review, I will summarize the current methods available for identifying the transmission network using phylogeny, and present an argument on the possibilities of applying the scale-free properties to these existing frameworks. PMID:22993510

  2. Phosphorylation events during viral infections provide potential therapeutic targets

    PubMed Central

    Keating, Julie A.; Striker, Rob

    2012-01-01

    SUMMARY For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit, may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine kinase inhibitors that have been previously FDA-approved for cancer treatment are under study in animal models and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction. Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also be discussed. PMID:22113983

  3. Rapid detection of respiratory tract viral infections and coinfections in patients with influenza-like illnesses by use of reverse transcription-PCR DNA microarray systems.

    PubMed

    Renois, Fanny; Talmud, Déborah; Huguenin, Antoine; Moutte, Lauryane; Strady, Christophe; Cousson, Joel; Lévêque, Nicolas; Andréoletti, Laurent

    2010-11-01

    We prospectively tested 95 nasal swabs or nasopharyngeal aspirates taken from 56 adults and 39 children visiting the Reims University Medical Centre (northern France) for influenza-like illnesses (ILI) during the early stage of the French influenza A/H1N1v pandemic (October 2009). Respiratory samples were tested using a combination of two commercially available reverse transcription-PCR (RT-PCR) DNA microarray systems allowing rapid detection of influenza A virus strains, including the new A/H1N1v strain as well as 20 other common or newly discovered respiratory viruses. Concomitantly, a generic and classical real-time RT-PCR assay was performed to detect all circulating influenza A virus strains in the same samples. Of the 95 respiratory samples tested, 30 (31%) were positive for the detection of influenza A/H1N1v virus infection by both RT-PCR DNA microarray and classical real-time RT-PCR detection assays. Among the infections, 25 (83%) were monoinfections, whereas 5 (17%) were multiple infections associating influenza A/H1N1v virus with coronavirus (CoV), human bocavirus (HBoV), respiratory syncytial virus (RSV), or human rhinoviruses (HRVs). Of the 95 respiratory samples tested, 35 (37%) were positive for respiratory viruses other than influenza A/H1N1v virus. Among these infections, we observed 30 monoinfections (HRVs [63%], parainfluenza viruses [PIVs] [20%]), influenza A/H3N2 virus [6%], coronavirus [4%], and HBoV [4%]) and 5 multiple infections, in which HRVs and PIVs were the most frequently detected viruses. No specific single or mixed viral infections appeared to be associated significantly with secondary hospitalization in infectious disease or intensive care departments during the study period (P > 0.5). The use of RT-PCR DNA microarray systems in clinical virology practice allows the rapid and accurate detection of conventional and newly discovered viral respiratory pathogens in patients suffering from ILI and therefore could be of major interest for

  4. Opioids and Viral Infections: A Double-Edged Sword

    PubMed Central

    Tahamtan, Alireza; Tavakoli-Yaraki, Masoumeh; Mokhtari-Azad, Talat; Teymoori-Rad, Majid; Bont, Louis; Shokri, Fazel; Salimi, Vahid

    2016-01-01

    Opioids and their receptors have received remarkable attention because they have the ability to alter immune function, which affects disease progression. In vitro and in vivo findings as well as observations in humans indicate that opioids and their receptors positively or negatively affect viral replication and virus-mediated pathology. The present study reviews recent insights in the role of opioids and their receptors in viral infections and discusses possible therapeutic opportunities. This review supports the emerging concept that opioids and their receptors have both favorable and unfavorable effects on viral disease, depending on the type of virus. Targeting of the opioid system is a potential option for developing effective therapies; however caution is required in relation to the beneficial functions of opioid systems. PMID:27446011

  5. Differential regulation of interferon regulatory factor (IRF)-7 and IRF-9 gene expression in the central nervous system during viral infection.

    PubMed

    Ousman, Shalina S; Wang, Jianping; Campbell, Iain L

    2005-06-01

    Interferon regulatory factors (IRFs) are a family of transcription factors involved in the regulation of the interferons (IFNs) and other genes that may have an essential role in antiviral defense in the central nervous system, although this is currently not well defined. Therefore, we examined the regulation of IRF gene expression in the brain during viral infection. Several IRF genes (IRF-2, -3, -5, -7, and -9) were expressed at low levels in the brain of uninfected mice. Following intracranial infection with lymphocytic choriomeningitis virus (LCMV), expression of the IRF-7 and IRF-9 genes increased significantly by day 2. IRF-7 and IRF-9 gene expression in the brain was widespread at sites of LCMV infection, with the highest levels in infiltrating mononuclear cells, microglia/macrophages, and neurons. IRF-7 and IRF-9 gene expression was increased in LCMV-infected brain from IFN-gamma knockout (KO) but not IFN-alpha/betaR KO animals. In the brain, spleen, and liver or cultured glial and spleen cells, IRF-7 but not IRF-9 gene expression increased with delayed kinetics in the absence of STAT1 but not STAT2 following LCMV infection or IFN-alpha treatment, respectively. The stimulation of IRF-7 gene expression by IFN-alpha in glial cell culture was prevented by cycloheximide. Thus, (i) many of the IRF genes were expressed constitutively in the mouse brain; (ii) the IRF-7 and IRF-9 genes were upregulated during viral infection, a process dependent on IFN-alpha/beta but not IFN-gamma; and (iii) IRF-7 but not IRF-9 gene expression can be stimulated in a STAT1-independent but STAT2-dependent fashion via unidentified indirect pathways coupled to the activation of the IFN-alpha/beta receptor.

  6. Exosome Biogenesis, Regulation, and Function in Viral Infection.

    PubMed

    Alenquer, Marta; Amorim, Maria João

    2015-09-17

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and

  7. Exosome Biogenesis, Regulation, and Function in Viral Infection

    PubMed Central

    Alenquer, Marta; Amorim, Maria João

    2015-01-01

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation. This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system, which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and

  8. Herpes Simplex Virus 1 Infection of Tree Shrews Differs from That of Mice in the Severity of Acute Infection and Viral Transcription in the Peripheral Nervous System

    PubMed Central

    Li, Lihong; Li, Zhuoran; Wang, Erlin; Yang, Rui; Xiao, Yu; Han, Hongbo; Lang, Fengchao; Li, Xin; Xia, Yujie; Gao, Feng; Li, Qihan; Fraser, Nigel W.

    2015-01-01

    ABSTRACT Studies of herpes simplex virus (HSV) infections of humans are limited by the use of rodent models such as mice, rabbits, and guinea pigs. Tree shrews (Tupaia belangeri chinensis) are small mammals indigenous to southwest Asia. At behavioral, anatomical, genomic, and evolutionary levels, tree shrews are much closer to primates than rodents are, and tree shrews are susceptible to HSV infection. Thus, we have studied herpes simplex virus 1 (HSV-1) infection in the tree shrew trigeminal ganglion (TG) following ocular inoculation. In situ hybridization, PCR, and quantitative reverse transcription-PCR (qRT-PCR) analyses confirm that HSV-1 latently infects neurons of the TG. When explant cocultivation of trigeminal ganglia was performed, the virus was recovered after 5 days of cocultivation with high efficiency. Swabbing the corneas of latently infected tree shrews revealed that tree shrews shed virus spontaneously at low frequencies. However, tree shrews differ significantly from mice in the expression of key HSV-1 genes, including ICP0, ICP4, and latency-associated transcript (LAT). In acutely infected tree shrew TGs, no level of ICP4 was observed, suggesting the absence of infection or a very weak, acute infection compared to that of the mouse. Immunofluorescence staining with ICP4 monoclonal antibody, and immunohistochemistry detection by HSV-1 polyclonal antibodies, showed a lack of viral proteins in tree shrew TGs during both acute and latent phases of infection. Cultivation of supernatant from homogenized, acutely infected TGs with RS1 cells also exhibited an absence of infectious HSV-1 from tree shrew TGs. We conclude that the tree shrew has an undetectable, or a much weaker, acute infection in the TGs. Interestingly, compared to mice, tree shrew TGs express high levels of ICP0 transcript in addition to LAT during latency. However, the ICP0 transcript remained nuclear, and no ICP0 protein could be seen during the course of mouse and tree shrew TG

  9. Viral infections and the development of asthma in children

    PubMed Central

    2013-01-01

    Viral aetiology, host susceptibility (in particular allergic predisposition and sensitization), and illness severity, timing and frequency all appear to contribute as synergistic factors to the risk of developing asthma. Experimental models have shown both innate and adaptive immune responses contribute to this risk with lung inflammatory cells showing marked differences in phenotype and function in young compared with older animals, and these differences are further enhanced following virus infection. Findings to date strongly suggest that the impact of infant and preschool viral infections on the maturing immune system and developing lung that subsequently result in an asthma phenotype occur during a critical susceptibility period, and in a genetically susceptible host. There are currently no therapeutic strategies that allow primary or secondary prevention of asthma following early life viral respiratory infections in high-risk children, thus a focus on understanding the mechanisms of progression from viral wheezing in infants and preschool children to asthma development are urgently needed. This review summarizes the data reporting the role of the two most common viruses, that is, respiratory syncytial virus and human rhinovirus, that result in asthma development, comparing risk factors for disease progression, and providing insight into strategies that might be adopted to prevent asthma development. PMID:25165549

  10. Chronic intestinal pseudo-obstruction related to viral infections.

    PubMed

    De Giorgio, R; Ricciardiello, L; Naponelli, V; Selgrad, M; Piazzi, G; Felicani, C; Serra, M; Fronzoni, L; Antonucci, A; Cogliandro, R F; Barbara, G; Corinaldesi, R; Tonini, M; Knowles, C H; Stanghellini, V

    2010-01-01

    Chronic intestinal pseudo-obstruction (CIPO), one of the most severe gastrointestinal motility disorders, is a condition characterized by a clinical picture mimicking small bowel occlusion with related symptoms and signs in the absence of demonstrable mechanical obstruction. Analysis of full-thickness biopsy samples may unravel structural changes of the neuromuscular layer involving the whole gut, although the midgut is usually worst affected. Intestinal pseudo-obstruction can occur in association with systemic neurological, endocrine, and connective tissue diseases or malignancy but, when no recognizable etiology is found, CIPO is referred to as idiopathic (CIIPO). The latter form can be diagnosed early in life due to a genetic etiology or in adulthood when a viral origin may be considered. This review addresses the hypothesis that some systemic neurotrophic viral infections can affect the enteric nervous system thereby altering normal peristaltic activity. Available data are reviewed, focusing specifically on herpesviruses or polyomaviruses (JC virus). These suggest that in comparison to a proportion of CIIPO patients, healthy controls rarely harbor viral DNA in the myenteric plexus, leaving open the possibility that a viral infection might have an etiologic role in the development of CIIPO. The review thus provides some new perspectives in the pathophysiology and perhaps targeted treatment of CIIPO.

  11. Bacteriophage ΦM1 of Pectobacterium evolves to escape two bifunctional Type III toxin-antitoxin and abortive infection systems through mutations in a single viral gene.

    PubMed

    Blower, Tim R; Chai, Ray; Przybilski, Rita; Chindhy, Shahzad; Fang, Xinzhe; Kidman, Samuel E; Tan, Hui; Luisi, Ben F; Fineran, Peter C; Salmond, George P C

    2017-02-03

    Some bacteria, when infected by their viral parasites (bacteriophages), undergo a suicidal response that also terminates productive viral replication (abortive infection; Abi). This response can be viewed as an altruistic act protecting the uninfected bacterial clonal population. Abortive infection can occur through the action of Type III protein-RNA toxin-antitoxin (TA) systems, such as ToxINPa from the phytopathogen, Pectobacterium atrosepticum Rare spontaneous mutants evolved in the generalized transducing phage, ΦM1, which escaped ToxINPa-mediated abortive infection in P. atrosepticum ΦM1 is a member of the Podoviridae and member of the "KMV-like viruses", a subset of the T7 supergroup. Genomic sequencing of ΦM1 escape mutants revealed single-base changes which clustered in a single open reading frame. The "escape" gene product, M1-23, was highly toxic to the host bacterium when over-expressed, but mutations in M1-23 that enabled an escape phenotype caused M1-23 to be less toxic. M1-23 is encoded within the DNA metabolism modular section of the phage genome, and when it was over-expressed, it co-purified with the host nucleotide excision repair protein, UvrA. While the M1-23 protein interacted with UvrA in co-immunoprecipitation assays, a UvrA mutant strain still aborted ΦM1, suggesting that the interaction is not critical for the Type III TA Abi activity. Additionally, ΦM1 escaped a heterologous Type III TA system (TenpINPl) from Photorhabdus luminescens (reconstituted in P. atrosepticum) through mutations in the same protein, M1-23. The mechanistic action of M1-23 is currently unknown but further analysis of this protein could provide insights into the mode of activation of both systems.

  12. Suppression of viral infectivity through lethal defection

    PubMed Central

    Grande-Pérez, Ana; Lázaro, Ester; Lowenstein, Pedro; Domingo, Esteban; Manrubia, Susanna C.

    2005-01-01

    RNA viruses replicate with a very high error rate and give rise to heterogeneous, highly plastic populations able to adapt very rapidly to changing environments. Viral diseases are thus difficult to control because of the appearance of drug-resistant mutants, and it becomes essential to seek mechanisms able to force the extinction of the quasispecies before adaptation emerges. An alternative to the use of conventional drugs consists in increasing the replication error rate through the use of mutagens. Here, we report about persistent infections of lymphocytic choriomeningitis virus treated with fluorouracil, where a progressive debilitation of infectivity leading to eventual extinction occurs. The transition to extinction is accompanied by the production of large amounts of RNA, indicating that the replicative ability of the quasispecies is not strongly impaired by the mutagen. By means of experimental and theoretical approaches, we propose that a fraction of the RNA molecules synthesized can behave as a defective subpopulation able to drive the viable class extinct. Our results lead to the identification of two extinction pathways, one at high amounts of mutagen, where the quasispecies completely loses its ability to infect and replicate, and a second one, at lower amounts of mutagen, where replication continues while the infective class gets extinct because of the action of defectors. The results bear on a potential application of increased mutagenesis as an antiviral strategy in that low doses of a mutagenic agent may suffice to drive persistent virus to extinction. PMID:15767582

  13. Antiviral defense in shrimp: from innate immunity to viral infection.

    PubMed

    Wang, Pei-Hui; Huang, Tianzhi; Zhang, Xiaobo; He, Jian-Guo

    2014-08-01

    The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.

  14. Neurological diseases associated with viral and Mycoplasma pneumoniae infections

    PubMed Central

    Assaad, F.; Gispen, R.; Kleemola, M.; Syrůček, L.; Esteves, K.

    1980-01-01

    In 1963 the World Health Organization established a system for the collection and dissemination of information on viral infections and by 1976, laboratories in 49 countries were participating in this scheme. The present study is in two parts: part 1 is an analysis of almost 60 000 reports on neurological disease associated with viral and Mycoplasma pneumoniae infections reported during the 10-year period 1967-76. This analysis showed a steady increase in the yearly number of reports of viral neurological diseases, which closely followed the general increase in the overall reporting of virus diseases. Likewise, the seasonal pattern was similar to that seen in general for any given virus. Over 75% of the cases were in children. Over half of all viral neurological diseases were associated with enteroviruses, while the myxoviruses accounted for almost 30%. Among the myxoviruses, mumps virus was by far the most frequently reported. The polioviruses were the agents most commonly detected in cases of paralytic disease. The other enteroviruses, mumps virus, and the herpesviruses were the most frequently reported viruses in cases of aseptic meningitis or encephalitis. On the other hand, one-third to over one-half of the reports on the myxoviruses (excluding mumps and measles) related to ill-defined clinical conditions. Part 2 of the study deals in particular with viruses whose role in neurological disease is less well documented. One laboratory reported an outbreak of adenoviral aseptic meningitis in Czechoslovakia, while another described neurological disease associated with M. pneumoniae infection in Finland. Part 2 also includes a detailed appraisal of viral infections diagnosed in the Netherlands during the period 1973-76. The results are very similar to those routinely reported. PMID:6249511

  15. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism.

    PubMed

    Sychev, Zoi E; Hu, Alex; DiMaio, Terri A; Gitter, Anthony; Camp, Nathan D; Noble, William S; Wolf-Yadlin, Alejandro; Lagunoff, Michael

    2017-03-01

    Kaposi's Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi's Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells.

  16. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism

    PubMed Central

    Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael

    2017-01-01

    Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516

  17. Glycosylation, Hypogammaglobulinemia, and Resistance to Viral Infections

    PubMed Central

    Chun, Tae-Wook; Lusso, Paolo; Kaplan, Gerardo; Wolfe, Lynne; Memoli, Matthew J.; He, Miao; Vega, Hugo; Kim, Leo J.Y.; Huang, Yan; Hussein, Nadia; Nievas, Elma; Mitchell, Raquel; Garofalo, Mary; Louie, Aaron; Ireland, Derek C.; Grunes, Claire; Cimbro, Raffaello; Patel, Vyomesh; Holzapfel, Genevieve; Salahuddin, Daniel; Bristol, Tyler; Adams, David; Marciano, Beatriz E.; Hegde, Madhuri; Li, Yuxing; Calvo, Katherine R.; Stoddard, Jennifer; Justement, J. Shawn; Jacques, Jerome; Priel, Debra A. Long; Murray, Danielle; Sun, Peter; Kuhns, Douglas B.; Boerkoel, Cornelius F.; Chiorini, John A.; Di Pasquale, Giovanni; Verthelyi, Daniela; Rosenzweig, Sergio D.

    2014-01-01

    Summary Genetic defects in MOGS, the gene encoding mannosyl-oligosaccharide glucosidase (the first enzyme in the processing pathway of N-linked oligosaccharide), cause the rare congenital disorder of glycosylation type IIb (CDG-IIb), also known as MOGS-CDG. MOGS is expressed in the endoplasmic reticulum and is involved in the trimming of N-glycans. We evaluated two siblings with CDG-IIb who presented with multiple neurologic complications and a paradoxical immunologic phenotype characterized by severe hypogammaglobulinemia but limited clinical evidence of an infectious diathesis. A shortened immunoglobulin half-life was determined to be the mechanism underlying the hypogammaglobulinemia. Impaired viral replication and cellular entry may explain a decreased susceptibility to infections. PMID:24716661

  18. Subversion of the actin cytoskeleton during viral infection

    PubMed Central

    Taylor, Matthew P.; Koyuncu, Orkide O.; Enquist, Lynn W.

    2011-01-01

    Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell. PMID:21522191

  19. [Novel treatments for hepatitis C viral infection and the hepatic fibrosis].

    PubMed

    Lugo-Baruqui, Alejandro; Bautista López, Carlos Alfredo; Armendáriz-Borunda, Juan

    2009-02-01

    Hepatitis C virus (HCV) infection represents a global health problem due to its evolution to hepatic cirrhosis and hepatocellular carcinoma. The viral pathogenesis and infectious processes are not yet fully understood. The development of natural viral resistance towards the host immune system represents a mayor challenge for the design of alternative therapeutic interventions and development of viral vaccines. The molecular mechanisms of hepatic fibrosis are well described. New alternatives for the treatment of patients with HCV infection and hepatic cirrhosis are under intensive research. New drugs such as viral protease inhibitors and assembly inhibitors, as well as immune modulators have been studied in clinical trials. Additional alternatives include antifibrotic drugs, which reverse the hepatic cellular damage caused by HCV infection. This review makes reference to viral infective mechanisms, molecular pathways of liver fibrosis and overviews conventional and new treatments for HCV infection and liver fibrosis.

  20. Spontaneous Clearance of Viral Infections by Mesoscopic Fluctuations

    PubMed Central

    Chaudhury, Srabanti; Perelson, Alan S.; Sinitstyn, Nikolai A.

    2012-01-01

    Spontaneous disease extinction can occur due to a rare stochastic fluctuation. We explore this process, both numerically and theoretically, in two minimal models of stochastic viral infection dynamics. We propose a method that reduces the complexity in models of viral infections so that the remaining dynamics can be studied by previously developed techniques for analyzing epidemiological models. Using this technique, we obtain an expression for the infection clearance time as a function of kinetic parameters. We apply our theoretical results to study stochastic infection clearance for specific stages of HIV and HCV dynamics. Our results show that the typical time for stochastic clearance of a viral infection increases exponentially with the size of the population, but infection still can be cleared spontaneously within a reasonable time interval in a certain population of cells. We also show that the clearance time is exponentially sensitive to the viral decay rate and viral infectivity but only linearly dependent on the lifetime of an infected cell. This suggests that if standard drug therapy fails to clear an infection then intensifying therapy by adding a drug that reduces the rate of cell infection rather than immune modulators that hasten infected cell death may be more useful in ultimately clearing remaining pockets of infection. PMID:22693646

  1. Review of bacterial and viral zoonotic infections transmitted by dogs

    PubMed Central

    Ghasemzadeh, I; Namazi, SH

    2015-01-01

    Dogs are a major reservoir for zoonotic infections. Dogs transmit several viral and bacterial diseases to humans. Zoonotic diseases can be transmitted to human by infected saliva, aerosols, contaminated urine or feces and direct contact with the dog. Viral infections such as rabies and norovirus and bacterial infections including Pasteurella, Salmonella, Brucella, Yersinia enterocolitica, Campylobacter, Capnocytophaga, Bordetella bronchiseptica, Coxiella burnetii, Leptospira, Staphylococcus intermedius and Methicillin resistance staphylococcus aureus are the most common viral and bacterial zoonotic infections transmitted to humans by dogs. This review, focused on the mentioned infectious diseases by describing general information, signs and symptoms, transmission ways, prevention and treatment of the infection. As far as the infections are concerned, the increase of the knowledge and the awareness of dog owners and the general population regarding zoonotic infections could significantly mitigate zoonoses transmission and consequently their fatal complications. PMID:28316698

  2. Brd4 Activates Early Viral Transcription upon Human Papillomavirus 18 Infection of Primary Keratinocytes

    PubMed Central

    McKinney, Caleb C.; Kim, Min Jung; Chen, Dan

    2016-01-01

    ABSTRACT  Human papillomaviruses (HPVs) replicate in the cutaneous and mucosal epithelia, and the infectious cycle is synchronous with the differentiation program of the host keratinocytes. The virus initially infects dividing cells in the lower layers of the epithelium, where it establishes a persistent infection. The viral genome is maintained as a low-copy-number, extrachromosomal element in these proliferating cells but switches to the late stage of the life cycle in differentiated cells. The cellular chromatin adaptor protein Brd4 is involved in several stages and processes of the viral life cycle. In concert with the viral transcriptional regulator E2, Brd4 can repress transcription from the early viral promoter. Brd4 and E2 form a complex with the viral genome that associates with host chromosomes to partition the viral genome in dividing cells; Brd4 also localizes to active sites of productive HPV DNA replication. However, because of the difficulties in producing HPV viral particles, the role of Brd4 in modulating viral transcription and replication at the initial stage of infection is unclear. In this study, we have used an HPV18 quasivirus-based genome delivery system to assess the role of Brd4 in the initial infectivity of primary human keratinocytes. We show that, upon infection of primary human keratinocytes with HPV18 quasivirus, Brd4 activates viral transcription and replication. Furthermore, this activation is independent of the functional interaction between Brd4 and the HPV18 E2 protein. PMID:27879331

  3. Viral Infection in Adults with Severe Acute Respiratory Infection in Colombia

    PubMed Central

    Remolina, Yuly Andrea; Ulloa, María Mercedes; Vargas, Hernán; Díaz, Liliana; Gómez, Sandra Liliana; Saavedra, Alfredo; Sánchez, Edgar; Cortés, Jorge Alberto

    2015-01-01

    Objectives To identify the viral aetiology in adult patients with severe acute respiratory infection (SARI) admitted to sentinel surveillance institutions in Bogotá in 2012. Design A cross-sectional study was conducted in which microarray molecular techniques for viral identification were used on nasopharyngeal samples of adult patients submitted to the surveillance system, and further descriptions of clinical features and relevant clinical outcomes, such as mortality, need for critical care, use of mechanical ventilation and hospital stay, were obtained. Setting Respiratory infections requiring hospital admission in surveillance centres in Bogotá, Colombia. Participants Ninety-one adult patients with acute respiratory infection (55% were female). Measurements Viral identification, intensive care unit admission, hospital stay, and mortality. Results Viral identification was achieved for 63 patients (69.2%). Comorbidity was frequently identified and mainly involved chronic pulmonary disease or pregnancy. Influenza, Bocavirus and Adenovirus were identified in 30.8%, 28.6% and 18.7% of the cases, respectively. Admission to the intensive care unit occurred in 42.9% of the cases, while mechanical ventilation was required for 36.3%. The average hospital stay was 9.9 days, and mortality was 15.4%. Antibiotics were empirically used in 90.1% of patients. Conclusions The prevalence of viral aetiology of SARI in this study was high, with adverse clinical outcomes, intensive care requirements and high mortality. PMID:26576054

  4. Valacyclovir for the management of herpes viral infections.

    PubMed

    Chakrabarty, A; Anderson, N J; Beutner, R; Tyring, S K

    2005-02-01

    The Herpesviridae family (Types 1-8) continues to inflict considerable morbidity and social stigma upon humanity. Once infected with the herpes viruses, especially Types 1-3, they establish permanent residence within our nervous system and reactivate during periods of stress, trauma, and/or other precipitating factors. To date, there is no cure for herpes viral infections but antivirals can attenuate the symptoms and duration of episodic outbreaks. Prophylactic therapy can suppress recurrences. The first antiviral with selective activity against virus-infected cells is considered to be acyclovir. Our article will highlight the clinical indications of the current generation, valacyclovir, which is a prodrug of acyclovir. We consider valacyclovir as a second-generation antiviral, having taken into account the initial selectivity and safety profile of its progenitor, acyclovir.

  5. Stochastic extinction of viral infectivity through the action of defectors

    NASA Astrophysics Data System (ADS)

    Iranzo, J.; Manrubia, S. C.

    2009-01-01

    The high error rates of RNA viruses at replication suggest they might be close to the extinction threshold predicted by quasispecies theory. Hence, moderate increases in the mutation rate could drive them to extinction. In persistent infections of an RNA virus treated with a mutagen, it has been observed that infectivity eventually disappears, although the replicative ability of the virus is not affected. By means of a simple model that takes into account two phenotypic traits, we demonstrate that extinction is a purely stochastic phenomenon caused by the intermittent outbreaks of a defective, non-infective subpopulation. The transition between dynamics dominated by population fluctuations (finite system size N) and the mean-field behavior (N→∞) is characterized. We discuss the implications of this alternative pathway to viral extinction.

  6. Studying the immune response to human viral infections using zebrafish.

    PubMed

    Goody, Michelle F; Sullivan, Con; Kim, Carol H

    2014-09-01

    Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines. These animal models must support the replication of human viruses, recapitulate aspects of human viral illnesses, and respond with conserved immune signaling cascades. The zebrafish is perhaps the simplest, most commonly used laboratory model organism in which innate and/or adaptive immunity can be studied. Herein, we will discuss the current zebrafish models of human viral illnesses and the insights they have provided. We will highlight advantages of early life stage zebrafish and the importance of innate immunity in human viral illnesses. We will also discuss viral characteristics to consider before infecting zebrafish with human viruses as well as predict other human viruses that may be able to infect zebrafish.

  7. Measles virus induces persistent infection by autoregulation of viral replication

    PubMed Central

    Doi, Tomomitsu; Kwon, Hyun-Jeong; Honda, Tomoyuki; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2016-01-01

    Natural infection with measles virus (MV) establishes lifelong immunity. Persistent infection with MV is likely involved in this phenomenon, as non-replicating protein antigens never induce such long-term immunity. Although MV establishes stable persistent infection in vitro and possibly in vivo, the mechanism by which this occurs is largely unknown. Here, we demonstrate that MV changes the infection mode from lytic to non-lytic and evades the innate immune response to establish persistent infection without viral genome mutation. We found that, in the persistent phase, the viral RNA level declined with the termination of interferon production and cell death. Our analysis of viral protein dynamics shows that during the establishment of persistent infection, the nucleoprotein level was sustained while the phosphoprotein and large protein levels declined. The ectopic expression of nucleoprotein suppressed viral replication, indicating that viral replication is self-regulated by nucleoprotein accumulation during persistent infection. The persistently infected cells were able to produce interferon in response to poly I:C stimulation, suggesting that MV does not interfere with host interferon responses in persistent infection. Our results may provide mechanistic insight into the persistent infection of this cytopathic RNA virus that induces lifelong immunity. PMID:27883010

  8. RNase L Activates the NLRP3 Inflammasome During Viral Infections

    PubMed Central

    Chakrabarti, Arindam; Banerjee, Shuvojit; Franchi, Luigi; Loo, Yueh-Ming; Gale, Michael; Núñez, Gabriel; Silverman, Robert H.

    2015-01-01

    SUMMARY The NLRP3 inflammasome assembles in response to danger signals, triggering self-cleavage of procaspase-1 and production of the proinflammatory cytokine IL-1β. Although virus infection activates the NLRP3 inflammasome, the underlying events remain incompletely understood. We report that virus activation of the NLRP3 inflammasome involves the 2′,5′-oligoadenylate (2-5A) synthetase (OAS)/RNase L system, a component of the interferon-induced antiviral response that senses double stranded RNA and activates endoribonuclease RNase L to cleave viral and cellular RNAs. The absence of RNase L reduces IL-1β production in influenza A virus-infected mice. RNA cleavage products generated by RNase L enhance IL-1β production but require the presence of 2′,3′-cyclic phosphorylated termini characteristic of RNase L activity. Additionally, these cleavage products stimulate NLRP3 complex formation with the DExD/H-box helicase, DHX33, and mitochondrial adapter protein, MAVS, which are each required for effective NLRP3 inflammasome activation. Thus, RNA cleavage events catalyzed by RNase L are required for optimal inflammasome activation during viral infections. PMID:25816776

  9. Bovine viral diarrhea virus (BVDV) infections in pigs.

    PubMed

    Tao, Jie; Liao, Jinhu; Wang, Yin; Zhang, Xinjun; Wang, Jianye; Zhu, Guoqiang

    2013-08-30

    Cattle are the natural hosts of bovine viral diarrhea virus (BVDV), which causes mucosal disease, respiratory and gastrointestinal tract infections, and reproductive problems in cattle. However, BVDV can also infect goats, sheep, deer, and pigs. The prevalence of BVDV infection in pig herds has substantially increased in the last several years, causing increased economic losses to the global pig breeding industry. This article is a summary of BVDV infections in pigs, including a historical overview, clinical signs, pathology, source of infection, genetic characteristics, impacts of porcine BVDV infection for diagnosis of classical swine fever virus (CSFV), differentiation of infection with CSFV and BVDV, and future prospects of porcine BVDV infection.

  10. Immunological aspects in viral hepatitis B and C infection.

    PubMed

    Manea, Irena; Manea, Cristian Nicolae; Miron, Nicolae; Cristea, Victor

    2011-01-01

    Worldwide, viral hepatitis chronic infections are a serious health problem and a very interesting topic for both clinicians and researchers. Viral hepatitis has a variety of clinical forms: mild, inactive or severe and with a slow evolution, whose architectural structure of the hepatic tissue evolves towards cirrhosis or hepatocellular carcinoma. Sometimes, the virally induced hepatic injury evolves spectacularly and rapidly leads to exitus. The factors that generate this evolution pattern depend on the immune response of the host and equally on the viral survival and immune surveillance avoidance strategies. This paper aims to resume new discoveries in the field of immunology of the B and C viral hepatitis infection, from the perspective of the complex interactions between virus and host.

  11. Type I IFN Signaling Is Dispensable during Secondary Viral Infection

    PubMed Central

    Hosking, Martin P.; Flynn, Claudia T.; Whitton, J. Lindsay

    2016-01-01

    Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an important and often essential role during primary viral infections, by directly combatting the virus and by maximizing the primary adaptive immune response. Several studies have suggested that T1IFNs also contribute very substantially to the secondary (recall) response; they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the suppression and clearance of the infectious agent. However, many of these observations were predicated upon models in which T1IFN signaling was interrupted prior to a primary immune response, raising the possibility that the resulting memory cells might be intrinsically abnormal. We have directly addressed this by using an inducible-Cre model system in which the host remains genetically-intact during the primary response to infection, and in which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We report that, in stark contrast to primary infection, T1IFN signaling is not required during the recall response. IFNαβR-deficient memory CD8+ and CD4+ memory T cells undergo attrition and expansion with kinetics that are indistinguishable from those of receptor-sufficient cells. Moreover, even in the absence of functional T1IFN signaling, the host’s immune capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact. Thus, this study shows that T1IFN signaling is dispensable during the recall response to a virus infection. Moreover, two broader implications may be drawn. First, a T cell’s requirement for a cytokine is highly dependent on the cell’s maturation / differentiation status. Consequently, second, these data underscore the importance of evaluating a gene’s impact by modulating its expression or function in a temporally-controllable manner. PMID

  12. Viral takeover of the host ubiquitin system.

    PubMed

    Gustin, Jean K; Moses, Ashlee V; Früh, Klaus; Douglas, Janet L

    2011-01-01

    Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage.

  13. Exploring viral infection using single-cell sequencing.

    PubMed

    Rato, Sylvie; Golumbeanu, Monica; Telenti, Amalio; Ciuffi, Angela

    2016-11-02

    Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication.

  14. Synaptic Plasticity and Neurological Disorders in Neurotropic Viral Infections

    PubMed Central

    Atluri, Venkata Subba Rao; Hidalgo, Melissa; Samikkannu, Thangavel; Kurapati, Kesava Rao Venkata; Nair, Madhavan

    2015-01-01

    Based on the type of cells or tissues they tend to harbor or attack, many of the viruses are characterized. But, in case of neurotropic viruses, it is not possible to classify them based on their tropism because many of them are not primarily neurotropic. While rabies and poliovirus are considered as strictly neurotropic, other neurotropic viruses involve nervous tissue only secondarily. Since the AIDS pandemic, the interest in neurotropic viral infections has become essential for all clinical neurologists. Although these neurotropic viruses are able to be harbored in or infect the nervous system, not all the neurotropic viruses have been reported to cause disrupted synaptic plasticity and impaired cognitive functions. In this review, we have discussed the neurotropic viruses, which play a major role in altered synaptic plasticity and neurological disorders. PMID:26649202

  15. Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain

    PubMed Central

    Beatman, Erica L.; Massey, Aaron; Shives, Katherine D.; Burrack, Kristina S.; Chamanian, Mastooreh; Morrison, Thomas E.

    2015-01-01

    ABSTRACT We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 104.5 infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. IMPORTANCE Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal

  16. Viral Ancestors of Antiviral Systems

    PubMed Central

    Villarreal, Luis P.

    2011-01-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  17. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  18. The contribution of viral genotype to plasma viral set-point in HIV infection.

    PubMed

    Hodcroft, Emma; Hadfield, Jarrod D; Fearnhill, Esther; Phillips, Andrew; Dunn, David; O'Shea, Siobhan; Pillay, Deenan; Leigh Brown, Andrew J

    2014-05-01

    Disease progression in HIV-infected individuals varies greatly, and while the environmental and host factors influencing this variation have been widely investigated, the viral contribution to variation in set-point viral load, a predictor of disease progression, is less clear. Previous studies, using transmission-pairs and analysis of phylogenetic signal in small numbers of individuals, have produced a wide range of viral genetic effect estimates. Here we present a novel application of a population-scale method based in quantitative genetics to estimate the viral genetic effect on set-point viral load in the UK subtype B HIV-1 epidemic, based on a very large data set. Analyzing the initial viral load and associated pol sequence, both taken before anti-retroviral therapy, of 8,483 patients, we estimate the proportion of variance in viral load explained by viral genetic effects to be 5.7% (CI 2.8-8.6%). We also estimated the change in viral load over time due to selection on the virus and environmental effects to be a decline of 0.05 log10 copies/mL/year, in contrast to recent studies which suggested a reported small increase in viral load over the last 20 years might be due to evolutionary changes in the virus. Our results suggest that in the UK epidemic, subtype B has a small but significant viral genetic effect on viral load. By allowing the analysis of large sample sizes, we expect our approach to be applicable to the estimation of the genetic contribution to traits in many organisms.

  19. Association of Bovine Viral Diarrhea Virus with Multiple Viral Infections in Bovine Respiratory Disease Outbreaks

    PubMed Central

    Richer, Lisette; Marois, Paul; Lamontagne, Lucie

    1988-01-01

    We investigated eleven outbreaks of naturally occurring bovine respiratory diseases in calves and adult animals in the St-Hyacinthe area of Quebec. Specific antibodies to bovine herpesvirus-1, bovine viral diarrhea virus, respiratory syncytial virus, parainfluenza type 3 virus, reovirus type 3, and serotypes 1 to 7 of bovine adenovirus were found in paired sera from diseased animals. Several bovine viruses with respiratory tropism were involved concomitantly in herds during an outbreak of bovine respiratory disease. In addition, concomitant fourfold rises of antibody titers were frequently observed to two or more viral agents in seroconverted calves (61%) or adult animals (38%). Bovine viral diarrhea virus was found to be the most frequent viral agent associated with multiple viral infection in calves only (92%). PMID:17423116

  20. Modelling HIV-RNA viral load in vertically infected children.

    PubMed

    Gray, Linsay; Cortina-Borja, Mario; Newell, Marie-Louise

    2004-03-15

    Human immunodeficiency virus (HIV) ribo-nucleic acid (RNA) viral load is a measure of actively replicating virus and is used as a marker of disease progression. For a thorough understanding of the dynamics of the evolution of the virus in the early life of HIV-1 vertically infected children, it is important to elucidate the pattern of HIV-RNA viral load over age. An aspect of assay systems used in the quantification of RNA viral load is that they measure values above particular cut-off values for detection, below which the assays used are not sufficiently sensitive. In this way, measurements are potentially left-censored. Recent adult studies suggest that to adequately model RNA pattern over age, it is necessary to account for within-subject correlation, due to repeated measures, and censoring. The aim of this study, therefore, was to establish whether it is necessary to use complex methods to allow for repeated measures within individuals and censoring of the HIV-RNA viral load in children enrolled in a cohort study. The approach involved the identification of an appropriate model for the basic pattern of RNA viral load by age and subsequent assessment of various estimation procedures accounting for repeated measures and censoring in different ways. Methods developed by Hughes involving the expectation-maximization (EM) algorithm and the Gibbs sampler were taken as the benchmark for comparison of simpler alternatives. Other approaches considered involve linear mixed-effects and ordinary least squares in which censoring is dealt with informally by taking the cut-off value as absolute or taking the mid-point between cut-off and zero. Fractional polynomials provided a substantially superior approach for modelling the dynamics of viral load over age compared to conventional polynomials or change-point models. Allowing for repeated measures was necessary to improve the power of the likelihood ratio tests required to establish the final model, but methods beyond taking

  1. Emerging infectious diseases with cutaneous manifestations: Viral and bacterial infections.

    PubMed

    Nawas, Zeena Y; Tong, Yun; Kollipara, Ramya; Peranteau, Andrew J; Woc-Colburn, Laila; Yan, Albert C; Lupi, Omar; Tyring, Stephen K

    2016-07-01

    Given increased international travel, immigration, and climate change, bacterial and viral infections that were once unrecognized or uncommon are being seen more frequently in the Western Hemisphere. A delay in diagnosis and treatment of these diseases can lead to significant patient morbidity and mortality. However, the diagnosis and management of these infections is fraught with a lack of consistency because there is a dearth of dermatology literature on the cutaneous manifestations of these infections. We review the epidemiology, cutaneous manifestations, diagnosis, and management of these emerging bacterial and viral diseases.

  2. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    PubMed Central

    Limongi, Dolores

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). PMID:27110325

  3. Sensors of Infection: Viral Nucleic Acid PRRs in Fish

    PubMed Central

    Poynter, Sarah; Lisser, Graeme; Monjo, Andrea; DeWitte-Orr, Stephanie

    2015-01-01

    Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future. PMID:26184332

  4. Issues and updates in emerging neurologic viral infections.

    PubMed

    Wilson, Michael R; Tyler, Kenneth L

    2011-07-01

    This review discusses the recent advances in the identification of viral pathogens and other etiologies responsible for cases of suspected viral encephalitis. The authors describe new molecular diagnostic strategies for identifying novel causes of viral encephalitis, including MassTag PCR, DNA microarrays, and high-throughput DNA pyrosequencing. They also highlight the increasing recognition of immune-mediated causes of encephalitis among those cases previously thought to be viral encephalitis of unknown etiology. Lastly, they review some of the most recent updates in the field of emerging neurologic viral infections impacting the United States, including the neurologic complications of H1N1 virus and the reemergence of dengue virus in the Florida Keys.

  5. Viral infections as controlling factors for the deep biosphere? (Invited)

    NASA Astrophysics Data System (ADS)

    Engelen, B.; Engelhardt, T.; Sahlberg, M.; Cypionka, H.

    2009-12-01

    The marine deep biosphere represents the largest biotope on Earth. Throughout the last years, we have obtained interesting insights into its microbial community composition. However, one component that was completely overlooked so far is the viral inventory of deep-subsurface sediments. While viral infections were identified to have a major impact on the benthic microflora of deep-sea surface sediments (Danavaro et al. 2008), no studies were performed on deep-biosphere samples, so far. As grazers probably play only a minor role in anoxic and highly compressed deep sediments, viruses might be the main “predators” for indigenous microorganisms. Furthermore, the release of cell components, called “the viral shunt”, could have a major impact on the deep biosphere in providing labile organic compounds to non-infected microorganisms in these generally nutrient depleted sediments. However, direct counting of viruses in sediments is highly challenging due to the small size of viruses and the high background of small particles. Even molecular surveys using “universal” PCR primers that target phage-specific genes fail due to the vast phage diversity. One solution for this problem is the lysogenic viral life cycle as many bacteriophages integrate their DNA into the host genome. It is estimated that up to 70% of cultivated bacteria contain prophages within their genome. Therefore, culture collections (Batzke et al. 2007) represent an archive of the viral composition within the respective habitat. These prophages can be induced to become free phage particles in stimulation experiments in which the host cells are set under certain stress situations such as a treatment with UV exposure or DNA-damaging antibiotics. The study of the viral component within the deep biosphere offers to answer the following questions: To which extent are deep-biosphere populations controlled by viral infections? What is the inter- and intra-specific diversity and the host-specific viral

  6. Viral infections in type 1 diabetes mellitus — why the β cells?

    PubMed Central

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection — particularly by enteroviruses (for example, coxsackievirus) — as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review. PMID:27020257

  7. Viral infections in type 1 diabetes mellitus--why the β cells?

    PubMed

    Op de Beeck, Anne; Eizirik, Decio L

    2016-05-01

    Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection--particularly by enteroviruses (for example, coxsackievirus)--as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review.

  8. Viral infections in travellers from tropical Africa.

    PubMed

    Woodruff, A W; Bowen, E T; Platt, G S

    1978-04-15

    Examination of sera from 86 travellers to Britain from tropical Africa disclosed evidence of past infection with 10 identifiable viruses, of which the most important were O'nyong-nyong, dengue, chikungunya, and Ntaya. The findings indicate that infection with O'nyong-nyong may be acquired sporadically in Nigeria, Ghana, and Sierra Leone, where it has not previously been identified. Chikungunya infection had not been recorded in West Africa other than Nigeria and Senegal. Patients from Sierra Leone and contiguous Liberia had antibodies to this infection. An outbread of dengue fever in the Seychelles in early 1977 was confirmed. Ntaya virus, though known in Uganda, Cameroon, and Zaire, appears also to be transmitted in Kenya, Nigeria, and Zambia. Clinical studies indicated that chikungunya infection may present with alimentary features, possibly with jaundice. The clinical features of Ntaya infection may include kizarre neurological manifestations in addition to fever. The absence of Lassa antibodies among these travellers suggested that this infection is not a common hazard among such persons.

  9. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine.

    PubMed

    Pfeiffer, Julie K; Virgin, Herbert W

    2016-01-15

    Viruses that infect the intestine include major human pathogens (retroviruses, noroviruses, rotaviruses, astroviruses, picornaviruses, adenoviruses, herpesviruses) that constitute a serious public health problem worldwide. These viral pathogens are members of a large, complex viral community inhabiting the intestine termed "the enteric virome." Enteric viruses have intimate functional and genetic relationships with both the host and other microbial constituents that inhabit the intestine, such as the bacterial microbiota, their associated phages, helminthes, and fungi, which together constitute the microbiome. Emerging data indicate that enteric viruses regulate, and are in turn regulated by, these other microbes through a series of processes termed "transkingdom interactions." This represents a changing paradigm in intestinal immunity to viral infection. Here we review recent advances in the field and propose new ways in which to conceptualize this important area.

  10. No evidence of an increase of bacterial and viral infections following Measles, Mumps and Rubella vaccine.

    PubMed

    Stowe, Julia; Andrews, Nick; Taylor, Brent; Miller, Elizabeth

    2009-02-25

    The suggestion that multi-antigen vaccines might overload the immune system has led to calls for single antigen vaccines. In 2003 we showed that rather than an increase there appeared to be a reduced risk of severe bacterial infection in the three months following Measles, Mumps and Rubella vaccine (MMR). The present analysis of illnesses in a general population is based on an additional 10 years of data for bacterial infections and also includes admissions with viral infections. Analyses were carried out using the self-controlled case-series method and separately for bacterial and viral infection cases, using risk periods of 0-30 days, 31-60 days and 61-90 days post MMR vaccine. An analysis was also carried out for those cases which were given MMR and Meningococcal serogroup C (MCC) vaccines concomitantly. A reduced risk was seen in the 0-30-day period for both bacterial infection (relative incidence=0.68, 95% CI 0.54-0.86) and viral infections (relative incidence=0.68, 95% CI 0.49-0.93). There was no increased risk in any period when looking at combined viral or bacterial infections or for individual infections with the single exception of an increased risk in the 31-60 days post vaccination period for herpes infections (relative incidence=1.69, 95% CI 1.06-2.70). For the children given Meningococcal group C vaccines concomitantly no significantly increased risk was seen in either the bacterial (relative incidence=0.54, 95% CI 0.26-1.13) or viral cases (relative incidence=0.46, 95% CI 0.11-1.93). Our study confirms that the MMR vaccine does not increase the risk of invasive bacterial or viral infection in the 90 days after the vaccination and does not support the hypothesis that there is an induced immune deficiency due to overload from multi-antigen vaccines.

  11. Viral loads in dual infection with HIV-1 and cytomegalovirus

    PubMed Central

    Boriskin, Y.; Sharland, M.; Dalton, R.; duMont, G.; Booth, J.

    1999-01-01

    OBJECTIVE—A one year study of the relation between cytomegalovirus (CMV) and human immunodeficiency virus (HIV) viral loads in a cohort of children with vertically acquired HIV-1 infection.
DESIGN—Comparative analysis of viral load measurements for CMV and HIV-1 in peripheral blood leucocytes (PBLs) of individual children in relation to age and clinical staging.
METHODS—Nested polymerase chain reaction (PCR) was used to measure HIV-1 proviral DNA and CMV genomic DNA in PBLs of 56children.
RESULTS—The CMV load was highest in 0-2 year old HIV positive children with stage C disease (range, 1-7143 copies/100 ng DNA; median, 125) and was significantly lower in older children. Although higher in young children, HIV-1 viral load did not show the same marked reduction with age that is seen with CMV. Over a one year period, testing of serial samples for both viruses in a subgroup of children revealed a discordant relation between viral loads for CMV and HIV-1.
CONCLUSIONS—CMV viral load falls much faster than HIV viral load in dually infected children. Screening for clinical CMV disease is most likely to be of benefit in children under 2 years of age with stage C disease. In the few children studied, levels of CMV and HIV replication appear to be independent.

 PMID:10325727

  12. Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells

    PubMed Central

    Hidalgo, Paloma; Anzures, Lourdes; Hernández-Mendoza, Armando; Guerrero, Adán; Wood, Christopher D.; Valdés, Margarita; Dobner, Thomas

    2016-01-01

    ABSTRACT Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the

  13. Neural dysfunction following respiratory viral infection as a cause of chronic cough hypersensitivity.

    PubMed

    Undem, Bradley J; Zaccone, Eric; McGarvey, Lorcan; Mazzone, Stuart B

    2015-08-01

    Respiratory viral infections are a common cause of acute coughing, an irritating symptom for the patient and an important mechanism of transmission for the virus. Although poorly described, the inflammatory consequences of infection likely induce coughing by chemical (inflammatory mediator) or mechanical (mucous) activation of the cough-evoking sensory nerves that innervate the airway wall. For some individuals, acute cough can evolve into a chronic condition, in which cough and aberrant airway sensations long outlast the initial viral infection. This suggests that some viruses have the capacity to induce persistent plasticity in the neural pathways mediating cough. In this brief review we present the clinical evidence of acute and chronic neural dysfunction following viral respiratory tract infections and explore possible mechanisms by which the nervous system may undergo activation, sensitization and plasticity.

  14. MAIT cells are activated during human viral infections.

    PubMed

    van Wilgenburg, Bonnie; Scherwitzl, Iris; Hutchinson, Edward C; Leng, Tianqi; Kurioka, Ayako; Kulicke, Corinna; de Lara, Catherine; Cole, Suzanne; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Young, Duncan; Denney, Laura; Moore, Michael D; Fabris, Paolo; Giordani, Maria Teresa; Oo, Ye Htun; Laidlaw, Stephen M; Dustin, Lynn B; Ho, Ling-Pei; Thompson, Fiona M; Ramamurthy, Narayan; Mongkolsapaya, Juthathip; Willberg, Christian B; Screaton, Gavin R; Klenerman, Paul

    2016-06-23

    Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation-driving cytokine release and Granzyme B upregulation-is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology.

  15. Transient Viremia, Plasma Viral Load, and Reservoir Replenishment in HIV-Infected Patients on Antiretroviral Therapy

    PubMed Central

    Jones, Laura E.; Perelson, Alan S.

    2008-01-01

    Summary When antiretroviral therapy (ART) is administered for long periods to HIV-1–infected patients, most achieve viral loads that are “undetectable” by standard assay methods (ie, HIV-1 RNA <50 copies/mL). Despite sustaining viral loads lower than the level of detection, a number of patients experience unexplained episodes of transient viremia or viral “blips.” We propose that transient activation of the immune system by infectious agents may explain these episodes of viremia. Using 2 different mathematical models, one in which blips arise because of target cell activation and subsequent infection and another in which latent cell activation generates blips, we establish a nonlinear (power law) relationship between blip amplitude and viral load (under ART) that suggest blips should be of lower amplitude, and thus harder to detect, as increasingly potent therapy is used. This effect can be more profound than is predicted by simply lowering the baseline viral load from which blips originate. Finally, we suggest that sporadic immune activation may elevate the level of chronically infected cells and replenish viral reservoirs, including the latent cell reservoir, providing a mechanism for recurrent viral blips and low levels of viremia under ART. PMID:17496565

  16. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics.

    PubMed

    Tao, Ye; Rotem, Assaf; Zhang, Huidan; Chang, Connie B; Basu, Anindita; Kolawole, Abimbola O; Koehler, Stephan A; Ren, Yukun; Lin, Jeffrey S; Pipas, James M; Feldman, Andrew B; Wobus, Christiane E; Weitz, David A

    2015-10-07

    A key viral property is infectivity, and its accurate measurement is crucial for the understanding of viral evolution, disease and treatment. Currently viral infectivity is measured using plaque assays, which involve prolonged culturing of host cells, and whose measurement is unable to differentiate between specific strains and is prone to low number fluctuation. We developed a rapid, targeted and culture-free infectivity assay using high-throughput drop-based microfluidics. Single infectious viruses are incubated in a large number of picoliter drops with host cells for one viral replication cycle followed by in-drop gene-specific amplification to detect infection events. Using murine noroviruses (MNV) as a model system, we measure their infectivity and determine the efficacy of a neutralizing antibody for different variants of MNV. Our results are comparable to traditional plaque-based assays and plaque reduction neutralization tests. However, the fast, low-cost, highly accurate genomic-based assay promises to be a superior method for drug screening and isolation of resistant viral strains. Moreover our technique can be adapted to measuring the infectivity of other pathogens, such as bacteria and fungi.

  17. Progress in Treatment of Viral Infections in Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Moschovi, Maria; Adamaki, Maria; Vlahopoulos, Spiros A.

    2016-01-01

    In children, the most commonly encountered type of leukemia is acute lymphoblastic leukemia (ALL). An important source of morbidity and mortality in ALL are viral infections. Even though allogeneic transplantations, which are often applied also in ALL, carry a recognized risk for viral infections, there are multiple factors that make ALL patients susceptible to viral infections. The presence of those factors has an influence in the type and severity of infections. Currently available treatment options do not guarantee a positive outcome for every case of viral infection in ALL, without significant side effects. Side effects can have very serious consequences for the ALL patients, which include nephrotoxicity. For this reason a number of strategies for personalized intervention have been already clinically tested, and experimental approaches are being developed. Adoptive immunotherapy, which entails administration of ex vivo grown immune cells to a patient, is a promising approach in general, and for transplant recipients in particular. The ex vivo grown cells are aimed to strengthen the immune response to the virus that has been identified in the patients’ blood and tissue samples. Even though many patients with weakened immune system can benefit from progress in novel approaches, a viral infection still poses a very significant risk for many patients. Therefore, preventive measures and supportive care are very important for ALL patients. PMID:27471584

  18. Novel paradigms of innate immune sensing of viral infections.

    PubMed

    Hare, David; Mossman, Karen L

    2013-09-01

    According to the existing paradigm, cellular recognition of viral infection is mediated by molecular patterns within the virus particle or produced during virus replication. However, there are various physical cellular changes indicative of infection that could also trigger innate antiviral responses. The type-I interferon response is rapidly engaged to limit viral infection and a number of studies have shown that the interferon response, or components of it, are induced by general perturbations to cellular processes. Virus entry requires membrane and cytoskeletal perturbation, and both membrane fusion or actin depolymerising agents alone are able to activate antiviral genes. Viruses cause cellular stress and change the cellular environment, and oxidative stress or endoplasmic reticulum stress will amplify antiviral signaling. Many of these responses converge on interferon regulatory factor 3, suggesting that it plays a crucial role in determining the degree to which the cell responds. This review highlights novel paradigms of viral recognition and speculates that viral infection is sensed as a danger signal.

  19. A host-based RT-PCR gene expression signature to identify acute respiratory viral infection.

    PubMed

    Zaas, Aimee K; Burke, Thomas; Chen, Minhua; McClain, Micah; Nicholson, Bradly; Veldman, Timothy; Tsalik, Ephraim L; Fowler, Vance; Rivers, Emanuel P; Otero, Ronny; Kingsmore, Stephen F; Voora, Deepak; Lucas, Joseph; Hero, Alfred O; Carin, Lawrence; Woods, Christopher W; Ginsburg, Geoffrey S

    2013-09-18

    Improved ways to diagnose acute respiratory viral infections could decrease inappropriate antibacterial use and serve as a vital triage mechanism in the event of a potential viral pandemic. Measurement of the host response to infection is an alternative to pathogen-based diagnostic testing and may improve diagnostic accuracy. We have developed a host-based assay with a reverse transcription polymerase chain reaction (RT-PCR) TaqMan low-density array (TLDA) platform for classifying respiratory viral infection. We developed the assay using two cohorts experimentally infected with influenza A H3N2/Wisconsin or influenza A H1N1/Brisbane, and validated the assay in a sample of adults presenting to the emergency department with fever (n = 102) and in healthy volunteers (n = 41). Peripheral blood RNA samples were obtained from individuals who underwent experimental viral challenge or who presented to the emergency department and had microbiologically proven viral respiratory infection or systemic bacterial infection. The selected gene set on the RT-PCR TLDA assay classified participants with experimentally induced influenza H3N2 and H1N1 infection with 100 and 87% accuracy, respectively. We validated this host gene expression signature in a cohort of 102 individuals arriving at the emergency department. The sensitivity of the RT-PCR test was 89% [95% confidence interval (CI), 72 to 98%], and the specificity was 94% (95% CI, 86 to 99%). These results show that RT-PCR-based detection of a host gene expression signature can classify individuals with respiratory viral infection and sets the stage for prospective evaluation of this diagnostic approach in a clinical setting.

  20. Within-host viral dynamics of dengue serotype 1 infection

    PubMed Central

    Clapham, Hannah E.; Tricou, Vianney; Van Vinh Chau, Nguyen; Simmons, Cameron P.; Ferguson, Neil M.

    2014-01-01

    Dengue, the most common mosquito-borne viral infection of humans, is endemic across much of the world, including much of tropical Asia and is increasing in its geographical range. Here, we present a mathematical model of dengue virus dynamics within infected individuals, detailing the interaction between virus and a simple immune response. We fit this model to measurements of plasma viral titre from cases of primary and secondary DENV 1 infection in Vietnam. We show that variation in model parameters governing the immune response is sufficient to create the observed variation in virus dynamics between individuals. Estimating model parameter values, we find parameter differences between primary and secondary cases consistent with the theory of antibody-dependent enhancement (namely enhanced rates of viral entry to target cells in secondary cases). Finally, we use our model to examine the potential impact of an antiviral drug on the within-host dynamics of dengue. We conclude that the impact of antiviral therapy on virus dynamics is likely to be limited if therapy is only started at the onset of symptoms, owing to the typically late stage of viral pathogenesis reached by the time symptoms are manifested and thus treatment is started. PMID:24829280

  1. In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins.

    PubMed

    Granstedt, Andrea E; Bosse, Jens B; Thiberge, Stephan Y; Enquist, Lynn W

    2013-09-10

    A clinical hallmark of human alphaherpesvirus infections is peripheral pain or itching. Pseudorabies virus (PRV), a broad host range alphaherpesvirus, causes violent pruritus in many different animals, but the mechanism is unknown. Previous in vitro studies have shown that infected, cultured peripheral nervous system (PNS) neurons exhibited aberrant electrical activity after PRV infection due to the action of viral membrane fusion proteins, yet it is unclear if such activity occurs in infected PNS ganglia in living animals and if it correlates with disease symptoms. Using two-photon microscopy, we imaged autonomic ganglia in living mice infected with PRV strains expressing GCaMP3, a genetically encoded calcium indicator, and used the changes in calcium flux to monitor the activity of many neurons simultaneously with single-cell resolution. Infection with virulent PRV caused these PNS neurons to fire synchronously and cyclically in highly correlated patterns among infected neurons. This activity persisted even when we severed the presynaptic axons, showing that infection-induced firing is independent of input from presynaptic brainstem neurons. This activity was not observed after infections with an attenuated PRV recombinant used for circuit tracing or with PRV mutants lacking either viral glycoprotein B, required for membrane fusion, or viral membrane protein Us9, required for sorting virions and viral glycoproteins into axons. We propose that the viral fusion proteins produced by virulent PRV infection induce electrical coupling in unmyelinated axons in vivo. This action would then give rise to the synchronous and cyclical activity in the ganglia and contribute to the characteristic peripheral neuropathy.

  2. Viral infections in goose flocks in Poland.

    PubMed

    Kozdruń, W; Woźniakowski, G; Samorek-Salamonowicz, E; Czekaj, H

    2012-01-01

    The aim of this study was to determine the infectious agents isolated from infection - suspected geese sent for the diagnostic examination to National Veterinary Research Institute. The birds were sent from goose flocks localized in different parts of Poland. Totally, 1,013 birds from 122 flocks were examined. The presence of goose parvovirus (GPV), goose haemorrhagic polyomavirus (GHPV), and goose circovirus (GoCV) was detected by triplex PCR. The presence of GPV DNA was shown in 36 flocks. The disease was most frequently diagnosed in goslings aging 3.5 weeks (ten flocks), and 2.5 weeks (six flocks). The analysis of the nucleotide sequence of VP1 encoding region has shown close similarity of Polish GPV strains within the group which ranged from 92% to 100%. Moreover, the similarity level of these strains with GPV isolated in Europe was from 91.3% to 100%. The occurrence of GoCV DNA was shown in 25 goose flocks. The presence of GoCV DNA was found among geese aged from 2 to 6 weeks, but predominantly in those aging 3.5 (three flocks) and 5 weeks (five flocks). The sequence analysis of PCR products from the sequenced region of ORFC1 capsid protein of GoCV has shown that Polish isolates share from 85% to 91% similarity with the sequences of GoCV strains isolated in other countries. The presence of DNA of GHPV was found in 3-week-old geese. During the last 2 years the presence of GHPV was confirmed in three flocks of goslings at the age from 3 to 3.5 weeks. During the last 12 years the occurrence of co-infection with GPV and GoCV was detected in six flocks aging from 5 to 6 weeks.

  3. Viral pneumonia

    MedlinePlus

    ... Names Pneumonia - viral; Walking pneumonia - viral Images Lungs Respiratory system References Lee FE, Treanor JJ. Viral infections. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  4. Myocarditis, Disseminated Infection, and Early Viral Persistence Following Experimental Coxsackievirus B Infection of Cynomolgus Monkeys

    PubMed Central

    Cammock, Cheryl E.; Halnon, Nancy J.; Skoczylas, Jill; Blanchard, James; Bohm, Rudolf; Miller, Christopher J.; Lai, Chi; Krogstad, Paul A.

    2013-01-01

    Coxsackievirus B (CVB) infection is a common cause of acute viral myocarditis. The clinical presentation of myocarditis caused by this enterovirus is highly variable, ranging from mildly symptoms to complete hemodynamic collapse. These variations in initial symptoms and in the immediate and long term outcomes of this disease have impeded development of effective treatment strategies. Nine cynomolgus monkeys were inoculated with myocarditic strains of CVB. Virological studies performed up to 28 days post-inoculation demonstrated the development of neutralizing antibody in all animals, and the presence of CVB in plasma. High dose intravenous inoculation (n = 2) resulted in severe disseminated disease, while low dose intravenous (n = 6) or oral infection (1 animal) resulted in clinically unapparent infection. Transient, minor, echocardiographic abnormalities were noted in several animals, but no animals displayed signs of significant acute cardiac failure. Although viremia rapidly resolved, signs of myocardial inflammation and injury were observed in all animals at the time of necropsy, and CVB was detected in postmortem myocardial specimens up to 28 days PI. This non-human primate system replicates many features of illness in acute coxsackievirus myocarditis and demonstrates that myocardial involvement may be common in enteroviral infection; it may provide a model system for testing of treatment strategies for enteroviral infections and acute coxsackievirus myocarditis. PMID:24040287

  5. Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging.

    PubMed

    Deng, Li; Gregory, Ann; Yilmaz, Suzan; Poulos, Bonnie T; Hugenholtz, Philip; Sullivan, Matthew B

    2012-10-30

    masse, and yet delineating "who infects whom" is fundamental to viral ecology and predictive modeling. This article describes viral tagging-a high-throughput method to investigate virus-host interactions by combining the fluorescent labeling of viruses for "tagging" host cells that can be analyzed and sorted using flow cytometry. Two cultivated hosts (the cyanobacterium Synechococcus and the gammaproteobacterium Pseudoalteromonas) and their viruses (podo-, myo-, and siphoviruses) were investigated to validate the method. These lab-based experiments indicate that for most virus-host pairings, VT (viral tagging) adsorption is equivalent to traditional infection by liquid and plaque assays, with the exceptions being confined to promiscuous adsorption by Pseudoalteromonas siphoviruses. These experiments also reveal variability in life strategies across these oceanic virus-host systems with respect to infection conditions and host growth status, which highlights the need for further model system characterization to break open this virus-host interaction "black box."

  6. Aptamers in Diagnostics and Treatment of Viral Infections

    PubMed Central

    Wandtke, Tomasz; Woźniak, Joanna; Kopiński, Piotr

    2015-01-01

    Aptamers are in vitro selected DNA or RNA molecules that are capable of binding a wide range of nucleic and non-nucleic acid molecules with high affinity and specificity. They have been conducted through the process known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment). It serves to reach specificity and considerable affinity to target molecules, including those of viral origin, both proteins and nucleic acids. Properties of aptamers allow detecting virus infected cells or viruses themselves and make them competitive to monoclonal antibodies. Specific aptamers can be used to interfere in each stage of the viral replication cycle and also inhibit its penetration into cells. Many current studies have reported possible application of aptamers as a treatment or diagnostic tool in viral infections, e.g., HIV (Human Immunodeficiency Virus), HBV (Hepatitis B Virus), HCV (Hepatitis C Virus), SARS (Severe Acute Respiratory Syndrome), H5N1 avian influenza and recently spread Ebola. This review presents current developments of using aptamers in the diagnostics and treatment of viral diseases. PMID:25690797

  7. Analysis of Practical Identifiability of a Viral Infection Model

    PubMed Central

    Nguyen, Van Kinh; Klawonn, Frank; Mikolajczyk, Rafael; Hernandez-Vargas, Esteban A.

    2016-01-01

    Mathematical modelling approaches have granted a significant contribution to life sciences and beyond to understand experimental results. However, incomplete and inadequate assessments in parameter estimation practices hamper the parameter reliability, and consequently the insights that ultimately could arise from a mathematical model. To keep the diligent works in modelling biological systems from being mistrusted, potential sources of error must be acknowledged. Employing a popular mathematical model in viral infection research, existing means and practices in parameter estimation are exemplified. Numerical results show that poor experimental data is a main source that can lead to erroneous parameter estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices of initial conditions as well as data asynchrony distort the parameter estimates but are often overlooked in modelling studies. This work stresses the existence of several sources of error buried in reports of modelling biological systems, voicing the need for assessing the sources of error, consolidating efforts in solving the immediate difficulties, and possibly reconsidering the use of mathematical modelling to quantify experimental data. PMID:28036339

  8. Viral RNA at Two Stages of Reovirus Infection Is Required for the Induction of Necroptosis.

    PubMed

    Berger, Angela K; Hiller, Bradley E; Thete, Deepti; Snyder, Anthony J; Perez, Encarnacion; Upton, Jason W; Danthi, Pranav

    2017-03-15

    Necroptosis, a regulated form of necrotic cell death, requires the activation of the RIP3 kinase. Here, we identify that infection of host cells with reovirus can result in necroptosis. We find that necroptosis requires sensing of the genomic RNA within incoming virus particles via cytoplasmic RNA sensors to produce type I interferon (IFN). While these events that occur prior to the de novo synthesis of viral RNA are required for the induction of necroptosis, they are not sufficient. The induction of necroptosis also requires late stages of reovirus infection. Specifically, efficient synthesis of double-stranded RNA (dsRNA) within infected cells is required for necroptosis. These data indicate that viral RNA interfaces with host components at two different stages of infection to induce necroptosis. This work provides new molecular details about events in the viral replication cycle that contribute to the induction of necroptosis following infection with an RNA virus.IMPORTANCE An appreciation of how cell death pathways are regulated following viral infection may reveal strategies to limit tissue destruction and prevent the onset of disease. Cell death following virus infection can occur by apoptosis or a regulated form of necrosis known as necroptosis. Apoptotic cells are typically disposed of without activating the immune system. In contrast, necroptotic cells alert the immune system, resulting in inflammation and tissue damage. While apoptosis following virus infection has been extensively investigated, how necroptosis is unleashed following virus infection is understood for only a small group of viruses. Here, using mammalian reovirus, we highlight the molecular mechanism by which infection with a dsRNA virus results in necroptosis.

  9. Molecular mimicry in autoimmune neurological disease after viral infection.

    PubMed

    Roep, Bart O

    2003-10-01

    Viral infections have been associated with the development of several neurological and neuroendocrine autoimmune diseases. Structural similarities between environmental proteins and self-proteins have long been proposed to be targets for immune cross reactivity associated with initiation of autoimmune diseases. This mechanism called molecular mimicry has also been put forward for immune mediated neurological diseases associated with viral infection. Although many potential candidates for cross reactivity have been put forward, only few have been substantiated on the molecular level. For the definition of cellular immune cross-reactivity, it proved critical to appreciate that recognition patterns of T-cells are not linear. Subsequent microarray studies unequivocally demonstrated functional mimicry of seemingly disparate amino acid sequences. This review summarises the present evidence for molecular mimicry in neurological autoimmune diseases and virus

  10. Vaccine to control the viral infection of fish

    DOEpatents

    Leong, Jo-Ann C.

    1994-10-11

    Subunit vaccines and their use for immunizing fish against infection by viruses are disclosed. In particular, plasmid pG8 is constructed by joining, with the plasmid pUC8, DNA which encodes the glycoprotein of infectious hematopoietic necrosis virus (IHNV). E. coli cells are transformed by pG8, whereby pure viral antigen is produced to provide a vaccine for the control of IHNV in fish.

  11. Vaccine to Control the Viral Infection of Fish.

    DOEpatents

    Leong, JoAnn Ching

    1994-10-11

    Subunit vaccines and their use for immunizing fish against infection by viruses are disclosed. In particular, plasmid pG8 is constructed by joining, with the plasmid pUC8, DNA which encodes the glycoprotein of infectious hematopoietic necrosis virus (IHNV). E. coli cells are transformed by pG8, whereby pure viral antigen is produced to provide a vaccine for the control of IHNV in fish. 10 figs.

  12. Host Transcriptional Response to Influenza and Other Acute Respiratory Viral Infections – A Prospective Cohort Study

    PubMed Central

    Zhai, Yijie; Franco, Luis M.; Atmar, Robert L.; Quarles, John M.; Arden, Nancy; Bucasas, Kristine L.; Wells, Janet M.; Niño, Diane; Wang, Xueqing; Zapata, Gladys E.; Shaw, Chad A.; Belmont, John W.; Couch, Robert B.

    2015-01-01

    To better understand the systemic response to naturally acquired acute respiratory viral infections, we prospectively enrolled 1610 healthy adults in 2009 and 2010. Of these, 142 subjects were followed for detailed evaluation of acute viral respiratory illness. We examined peripheral blood gene expression at 7 timepoints: enrollment, 5 illness visits and the end of each year of the study. 133 completed all study visits and yielded technically adequate peripheral blood microarray gene expression data. Seventy-three (55%) had an influenza virus infection, 64 influenza A and 9 influenza B. The remaining subjects had a rhinovirus infection (N = 32), other viral infections (N = 4), or no viral agent identified (N = 24). The results, which were replicated between two seasons, showed a dramatic upregulation of interferon pathway and innate immunity genes. This persisted for 2-4 days. The data show a recovery phase at days 4 and 6 with differentially expressed transcripts implicated in cell proliferation and repair. By day 21 the gene expression pattern was indistinguishable from baseline (enrollment). Influenza virus infection induced a higher magnitude and longer duration of the shared expression signature of illness compared to the other viral infections. Using lineage and activation state-specific transcripts to produce cell composition scores, patterns of B and T lymphocyte depressions accompanied by a major activation of NK cells were detected in the acute phase of illness. The data also demonstrate multiple dynamic gene modules that are reorganized and strengthened following infection. Finally, we examined pre- and post-infection anti-influenza antibody titers defining novel gene expression correlates. PMID:26070066

  13. Host Transcriptional Response to Influenza and Other Acute Respiratory Viral Infections--A Prospective Cohort Study.

    PubMed

    Zhai, Yijie; Franco, Luis M; Atmar, Robert L; Quarles, John M; Arden, Nancy; Bucasas, Kristine L; Wells, Janet M; Niño, Diane; Wang, Xueqing; Zapata, Gladys E; Shaw, Chad A; Belmont, John W; Couch, Robert B

    2015-06-01

    To better understand the systemic response to naturally acquired acute respiratory viral infections, we prospectively enrolled 1610 healthy adults in 2009 and 2010. Of these, 142 subjects were followed for detailed evaluation of acute viral respiratory illness. We examined peripheral blood gene expression at 7 timepoints: enrollment, 5 illness visits and the end of each year of the study. 133 completed all study visits and yielded technically adequate peripheral blood microarray gene expression data. Seventy-three (55%) had an influenza virus infection, 64 influenza A and 9 influenza B. The remaining subjects had a rhinovirus infection (N = 32), other viral infections (N = 4), or no viral agent identified (N = 24). The results, which were replicated between two seasons, showed a dramatic upregulation of interferon pathway and innate immunity genes. This persisted for 2-4 days. The data show a recovery phase at days 4 and 6 with differentially expressed transcripts implicated in cell proliferation and repair. By day 21 the gene expression pattern was indistinguishable from baseline (enrollment). Influenza virus infection induced a higher magnitude and longer duration of the shared expression signature of illness compared to the other viral infections. Using lineage and activation state-specific transcripts to produce cell composition scores, patterns of B and T lymphocyte depressions accompanied by a major activation of NK cells were detected in the acute phase of illness. The data also demonstrate multiple dynamic gene modules that are reorganized and strengthened following infection. Finally, we examined pre- and post-infection anti-influenza antibody titers defining novel gene expression correlates.

  14. Impact of Viral Infections on Hematopoiesis: From Beneficial to Detrimental Effects on Bone Marrow Output

    PubMed Central

    Pascutti, Maria Fernanda; Erkelens, Martje N.; Nolte, Martijn A.

    2016-01-01

    The ability of the bone marrow (BM) to generate copious amounts of blood cells required on a daily basis depends on a highly orchestrated process of proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). This process can be rapidly adapted under stress conditions, such as infections, to meet the specific cellular needs of the immune response and the ensuing physiological changes. This requires a tight regulation in order to prevent either hematopoietic failure or transformation. Although adaptation to bacterial infections or systemic inflammation has been studied and reviewed in depth, specific alterations of hematopoiesis to viral infections have received less attention so far. Viruses constantly pose a significant health risk and demand an adequate, balanced response from our immune system, which also affects the BM. In fact, both the virus itself and the ensuing immune response can have a tremendous impact on the hematopoietic process. On one hand, this can be beneficial: it helps to boost the cellular response of the body to resolve the viral infection. But on the other hand, when the virus and the resulting antiviral response persist, the inflammatory feedback to the hematopoietic system will become chronic, which can be detrimental for a balanced BM output. Chronic viral infections frequently have clinical manifestations at the level of blood cell formation, and we summarize which viruses can lead to BM pathologies, like aplastic anemia, pancytopenia, hemophagocytic lymphohistiocytosis, lymphoproliferative disorders, and malignancies. Regarding the underlying mechanisms, we address specific effects of acute and chronic viral infections on blood cell production. As such, we distinguish four different levels in which this can occur: (1) direct viral infection of HSPCs, (2) viral recognition by HSPCs, (3) indirect effects on HSPCs by inflammatory mediators, and (4) the role of the BM microenvironment on hematopoiesis upon virus

  15. Sunscreens Cause Coral Bleaching by Promoting Viral Infections

    PubMed Central

    Danovaro, Roberto; Bongiorni, Lucia; Corinaldesi, Cinzia; Giovannelli, Donato; Damiani, Elisabetta; Astolfi, Paola; Greci, Lucedio; Pusceddu, Antonio

    2008-01-01

    Background Coral bleaching (i.e., the release of coral symbiotic zooxanthellae) has negative impacts on biodiversity and functioning of reef ecosystems and their production of goods and services. This increasing world-wide phenomenon is associated with temperature anomalies, high irradiance, pollution, and bacterial diseases. Recently, it has been demonstrated that personal care products, including sunscreens, have an impact on aquatic organisms similar to that of other contaminants. Objectives Our goal was to evaluate the potential impact of sunscreen ingredients on hard corals and their symbiotic algae. Methods In situ and laboratory experiments were conducted in several tropical regions (the Atlantic, Indian, and Pacific Oceans, and the Red Sea) by supplementing coral branches with aliquots of sunscreens and common ultraviolet filters contained in sunscreen formula. Zooxanthellae were checked for viral infection by epifluorescence and transmission electron microscopy analyses. Results Sunscreens cause the rapid and complete bleaching of hard corals, even at extremely low concentrations. The effect of sunscreens is due to organic ultraviolet filters, which are able to induce the lytic viral cycle in symbiotic zooxanthellae with latent infections. Conclusions We conclude that sunscreens, by promoting viral infection, potentially play an important role in coral bleaching in areas prone to high levels of recreational use by humans. PMID:18414624

  16. Capsid-Targeted Viral Inactivation: A Novel Tactic for Inhibiting Replication in Viral Infections

    PubMed Central

    Zhang, Xingcui; Jia, Renyong; Zhou, Jiakun; Wang, Mingshu; Yin, Zhongqiong; Cheng, Anchun

    2016-01-01

    Capsid-targeted viral inactivation (CTVI), a conceptually powerful new antiviral strategy, is attracting increasing attention from researchers. Specifically, this strategy is based on fusion between the capsid protein of a virus and a crucial effector molecule, such as a nuclease (e.g., staphylococcal nuclease, Barrase, RNase HI), lipase, protease, or single-chain antibody (scAb). In general, capsid proteins have a major role in viral integration and assembly, and the effector molecule used in CTVI functions to degrade viral DNA/RNA or interfere with proper folding of viral key proteins, thereby affecting the infectivity of progeny viruses. Interestingly, such a capsid–enzyme fusion protein is incorporated into virions during packaging. CTVI is more efficient compared to other antiviral methods, and this approach is promising for antiviral prophylaxis and therapy. This review summarizes the mechanism and utility of CTVI and provides some successful applications of this strategy, with the ultimate goal of widely implementing CTVI in antiviral research. PMID:27657114

  17. ModeLang: A New Approach for Experts-Friendly Viral Infections Modeling

    PubMed Central

    Blazewicz, Jacek

    2013-01-01

    Computational modeling is an important element of systems biology. One of its important applications is modeling complex, dynamical, and biological systems, including viral infections. This type of modeling usually requires close cooperation between biologists and mathematicians. However, such cooperation often faces communication problems because biologists do not have sufficient knowledge to understand mathematical description of the models, and mathematicians do not have sufficient knowledge to define and verify these models. In many areas of systems biology, this problem has already been solved; however, in some of these areas there are still certain problematic aspects. The goal of the presented research was to facilitate this cooperation by designing seminatural formal language for describing viral infection models that will be easy to understand for biologists and easy to use by mathematicians and computer scientists. The ModeLang language was designed in cooperation with biologists and its computer implementation was prepared. Tests proved that it can be successfully used to describe commonly used viral infection models and then to simulate and verify them. As a result, it can make cooperation between biologists and mathematicians modeling viral infections much easier, speeding up computational verification of formulated hypotheses. PMID:24454531

  18. New Insights into IDO Biology in Bacterial and Viral Infections

    PubMed Central

    Schmidt, Susanne V.; Schultze, Joachim L.

    2014-01-01

    Initially, indoleamine-2,3-dioxygenase (IDO) has been introduced as a bactericidal effector mechanism and has been linked to T-cell immunosuppression and tolerance. In recent years, evidence has been accumulated that IDO also plays an important role during viral infections including HIV, influenza, and hepatitis B and C. Moreover, novel aspects about the role of IDO in bacterial infections and sepsis have been revealed. Here, we review these recent findings highlighting the central role of IDO and tryptophan metabolism in many major human infections. Moreover, we also shed light on issues concerning human-specific and mouse-specific host–pathogen interactions that need to be considered when studying the biology of IDO in the context of infections. PMID:25157255

  19. Functional Role of Infective Viral Particles on Metal Reduction

    SciTech Connect

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans and the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.

  20. Experimental infection of mice with bovine viral diarrhea virus.

    PubMed

    Seong, Giyong; Oem, Jae-Ku; Lee, Kyung-Hyun; Choi, Kyoung-Seong

    2015-06-01

    The objective of this study was to test the ability of bovine viral diarrhea virus (BVDV) to infect mice. Two mice each were either mock infected or inoculated with one of three BVDV strains by the intraperitoneal (IP) (n = 8) or intranasal (IN) (n = 8) route. All mice were euthanized at day 7 postinfection (p.i.). None of the infected mice exhibited any clinical signs of illness; however, the tissues harvested after BVDV challenge showed significant histopathological changes. Blood samples from five mice that were injected IP and one mouse that was inoculated IN were positive for BVDV by reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemistry (IHC) was used to assess the presence of viral antigen in the organs of mice infected with three BVDV strains. In IP-injected mice, BVDV antigen was detected in the spleen (5/6), mesenteric lymph nodes (4/6), lymphatic tissue of the lung (3/6), lung (1/6), and stomach (1/6) of the infected mice; however, it was not detected in the liver (0/6) or kidney (0/6). In IN-inoculated mice, BVDV antigen was detected in the lung and mesenteric lymph nodes of one BVDV-infected mouse but was not detected in other tissues. The results of this study suggest that the spleen is the most reliable tissue for BVDV antigen detection using IHC in the IP-injected group. Our study demonstrates that mice can be infected by BVDV. This is the first report of BVDV infection in mice.

  1. Liver Monocytes and Kupffer Cells Remain Transcriptionally Distinct during Chronic Viral Infection

    PubMed Central

    van de Garde, Martijn D. B.; Movita, Dowty; van der Heide, Marieke; Herschke, Florence; De Jonghe, Sandra; Gama, Lucio; Boonstra, Andre

    2016-01-01

    Due to the scarcity of immunocompetent animal models for chronic viral hepatitis, little is known about the role of the innate intrahepatic immune system during viral replication in the liver. These insights are however fundamental for the understanding of the inappropriate adaptive immune responses during the chronic phase of the infection. We apply the Lymphocytic Choriomenigitis Virus (LCMV) clone 13 mouse model to examine chronic virus-host interactions of Kupffer cells (KC) and infiltrating monocytes (IM) in an infected liver. LCMV infection induced overt clinical hepatitis, with rise in ALT and serum cytokines, and increased intrahepatic F4/80 expression. Despite ongoing viral replication, whole liver transcriptome showed baseline expression levels of inflammatory cytokines, interferons, and interferon induced genes during the chronic infection phase. Transcriptome analyses of sorted KC and IMs using NanoString technology revealed two unique phenotypes with only minimal overlap. At the chronic viral infection phase, KC showed no increased transcription of activation markers Cd80 and Cd86, but an increased expression of genes related to antigen presentation, whereas monocytes were more activated and expressed higher levels of Tnf transcripts. Although both KCs and intrahepatic IM share the surface markers F4/80 and CD11b, their transcriptomes point towards distinctive roles during virus-induced chronic hepatitis. PMID:27812182

  2. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    SciTech Connect

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    2013-09-28

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and the formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor

  3. PAR-1 contributes to the innate immune response during viral infection

    PubMed Central

    Antoniak, Silvio; Owens, A. Phillip; Baunacke, Martin; Williams, Julie C.; Lee, Rebecca D.; Weithäuser, Alice; Sheridan, Patricia A.; Malz, Ronny; Luyendyk, James P.; Esserman, Denise A.; Trejo, JoAnn; Kirchhofer, Daniel; Blaxall, Burns C.; Pawlinski, Rafal; Beck, Melinda A.; Rauch, Ursula; Mackman, Nigel

    2013-01-01

    Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3–induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1–/– mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1+/+ mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1–/– mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1+/+ mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection. PMID:23391721

  4. Targeted DNA mutagenesis for the cure of chronic viral infections.

    PubMed

    Schiffer, Joshua T; Aubert, Martine; Weber, Nicholas D; Mintzer, Esther; Stone, Daniel; Jerome, Keith R

    2012-09-01

    Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), and herpes simplex virus (HSV) have been incurable to date because effective antiviral therapies target only replicating viruses and do not eradicate latently integrated or nonreplicating episomal viral genomes. Endonucleases that can target and cleave critical regions within latent viral genomes are currently in development. These enzymes are being engineered with high specificity such that off-target binding of cellular DNA will be absent or minimal. Imprecise nonhomologous-end-joining (NHEJ) DNA repair following repeated cleavage at the same critical site may permanently disrupt translation of essential viral proteins. We discuss the benefits and drawbacks of three types of DNA cleavage enzymes (zinc finger endonucleases, transcription activator-like [TAL] effector nucleases [TALENs], and homing endonucleases [also called meganucleases]), the development of delivery vectors for these enzymes, and potential obstacles for successful treatment of chronic viral infections. We then review issues regarding persistence of HIV-1, HBV, and HSV that are relevant to eradication with genome-altering approaches.

  5. Targeted DNA Mutagenesis for the Cure of Chronic Viral Infections

    PubMed Central

    Schiffer, Joshua T.; Aubert, Martine; Weber, Nicholas D.; Mintzer, Esther; Stone, Daniel

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), and herpes simplex virus (HSV) have been incurable to date because effective antiviral therapies target only replicating viruses and do not eradicate latently integrated or nonreplicating episomal viral genomes. Endonucleases that can target and cleave critical regions within latent viral genomes are currently in development. These enzymes are being engineered with high specificity such that off-target binding of cellular DNA will be absent or minimal. Imprecise nonhomologous-end-joining (NHEJ) DNA repair following repeated cleavage at the same critical site may permanently disrupt translation of essential viral proteins. We discuss the benefits and drawbacks of three types of DNA cleavage enzymes (zinc finger endonucleases, transcription activator-like [TAL] effector nucleases [TALENs], and homing endonucleases [also called meganucleases]), the development of delivery vectors for these enzymes, and potential obstacles for successful treatment of chronic viral infections. We then review issues regarding persistence of HIV-1, HBV, and HSV that are relevant to eradication with genome-altering approaches. PMID:22718830

  6. Imaging CD8+ T cells during diverse viral infections

    PubMed Central

    Hickman, Heather D

    2015-01-01

    CD8+ T cells play a critical role in host defense against pathogens and tumors. Much of our current knowledge of the activation and subsequent effector activities of CD8+ T cells has been gained using ex vivo approaches examining the T cell population en masse for surface phenotype, activation status and the production of effector molecules. Thus, the precise behaviors and diversity of individual CD8+ T cells responding to virus infection in vivo have not been extensively explored, leaving many unanswered questions relevant to the rational design of antiviral vaccines and therapeutics. Recently, intravital multiphoton microscopy (MPM) has been used to image CD8+ T cell priming after infection with disparate viral pathogens ranging from small RNA viruses encoding few proteins to DNA viruses producing hundreds of viral proteins (many immunomodulatory). After priming, effector CD8+ T cells have been visualized in virus-infected tissue, both during primary infection and after transitioning to tissue resident memory cells (TRM). Here, I highlight recent advances in our understanding of antiviral CD8+ T cell responses revealed through intravital MPM. PMID:28243513

  7. Viral infection induces cytokine release by beta islet cells.

    PubMed Central

    Cavallo, M G; Baroni, M G; Toto, A; Gearing, A J; Forsey, T; Andreani, D; Thorpe, R; Pozzilli, P

    1992-01-01

    Viral infection has been suggested to play a triggering role in the pancreatic beta cell destruction which occurs in insulin-dependent diabetes (IDDM). However, the underlying mechanism of this phenomenon is unknown. In this study a human insulinoma cell line has been infected with measles, mumps and rubella viruses since a temporal association is reported between the clinical onset of IDDM and diseases caused by these viruses. The infection with measles and mumps viruses induced the release of interleukin-1 (IL-1) and interleukin-6 (IL-6) by the cell line as assessed by a bioassay and up-regulated the expression of human leucocyte antigen (HLA) class I and class II antigens as evaluated by cytofluorimetric analysis. Stimulation with rubella virus induced the release of IL-6 only and had no effect on HLA antigen expression. These data show for the first time that IL-1 and IL-6 secretion by an insulinoma cell line may occur after viral infection and suggest that cytokine release and increased expression of HLA molecules by beta cells may act to induce the immune response towards beta cells in IDDM. PMID:1592439

  8. Acute hemorrhagic encephalitis: An unusual presentation of dengue viral infection

    PubMed Central

    Nadarajah, Jeyaseelan; Madhusudhan, Kumble Seetharama; Yadav, Ajay Kumar; Gupta, Arun Kumar; Vikram, Naval Kumar

    2015-01-01

    Dengue is a common viral infection worldwide with presentation varying from clinically silent infection to dengue fever, dengue hemorrhagic fever, and severe fulminant dengue shock syndrome. Neurological manifestation usually results from multisystem dysfunction secondary to vascular leak. Presentation as hemorrhagic encephalitis is very rare. Here we present the case of a 13-year-old female admitted with generalized tonic clonic seizures. Plain computed tomography (CT) scan of head revealed hypodensities in bilateral deep gray matter nuclei and right posterior parietal lobe without any hemorrhage. Cerebrospinal fluid (CSF) and serology were positive for IgM and IgG antibodies to dengue viral antigen. Contrast-enhanced magnetic resonance imaging (MRI) revealed multifocal T2 and fluid attenuated inversion recovery (FLAIR) hyperintensities in bilateral cerebral parenchyma including basal ganglia. No hemorrhage was seen. She was managed with steroids. As her clinical condition deteriorated, after being stable for 2 days, repeat MRI was done which revealed development of hemorrhage within the lesions, and diagnosis of acute hemorrhagic encephalitis of dengue viral etiology was made. PMID:25709166

  9. Acute hemorrhagic encephalitis: An unusual presentation of dengue viral infection.

    PubMed

    Nadarajah, Jeyaseelan; Madhusudhan, Kumble Seetharama; Yadav, Ajay Kumar; Gupta, Arun Kumar; Vikram, Naval Kumar

    2015-01-01

    Dengue is a common viral infection worldwide with presentation varying from clinically silent infection to dengue fever, dengue hemorrhagic fever, and severe fulminant dengue shock syndrome. Neurological manifestation usually results from multisystem dysfunction secondary to vascular leak. Presentation as hemorrhagic encephalitis is very rare. Here we present the case of a 13-year-old female admitted with generalized tonic clonic seizures. Plain computed tomography (CT) scan of head revealed hypodensities in bilateral deep gray matter nuclei and right posterior parietal lobe without any hemorrhage. Cerebrospinal fluid (CSF) and serology were positive for IgM and IgG antibodies to dengue viral antigen. Contrast-enhanced magnetic resonance imaging (MRI) revealed multifocal T2 and fluid attenuated inversion recovery (FLAIR) hyperintensities in bilateral cerebral parenchyma including basal ganglia. No hemorrhage was seen. She was managed with steroids. As her clinical condition deteriorated, after being stable for 2 days, repeat MRI was done which revealed development of hemorrhage within the lesions, and diagnosis of acute hemorrhagic encephalitis of dengue viral etiology was made.

  10. Transmission spectroscopy of dengue viral infection Transmission spectroscopy of dengue viral infection

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Ahmed, M.; Rehman, A.; Nawaz, M.; Anwar, S.; Murtaza, S.

    2012-04-01

    We presented the rapid diagnostic test for dengue infection based on light spectrum of human blood. The transmission spectra of dengue infected whole blood samples have been recorded in ultra violet to near infrared range (400 - 800 nm) of about 30 conformed infected patients and compared to normal blood samples. Transmission spectra of dengue infected blood illustrate a strong band from 400 - 600 nm with prominant peaks at 540 and 580 nm, where is in case of normal blood below 600 nm, total absorption has been observed. These prominent peaks from 400 - 600 nm are characteristics of cells damage and dangue virus antibodies immunoglobulin G (IgG) and immunoglobulin M (IgM) produced against dengue antigen. The presented diagnostic method is non invasive, cost effective, easy and fast screening technique for dengue infected patients.

  11. Bovine viral diarrhea virus infections: manifestations of infection and recent advances in understanding pathogenesis and control.

    PubMed

    Brodersen, B W

    2014-03-01

    Bovine viral diarrhea virus (BVDV) continues to be of economic significance to the livestock industry in terms of acute disease and fetal loss. Many of the lesions relating to BVDV infection have been well described previously. The virus is perpetuated in herds through the presence of calves that are persistently infected. Relationships between various species and biotypes of BVDV and host defenses are increasingly understood. Understanding of the host defense mechanisms of innate immunity and adaptive immunity continues to improve, and the effects of the virus on these immune mechanisms are being used to explain how persistent infection develops. The noncytopathic biotype of BVDV plays the major role in its effects on the host defenses by inhibiting various aspects of the innate immune system and creation of immunotolerance in the fetus during early gestation. Recent advances have allowed for development of affordable test strategies to identify and remove persistently infected animals. With these improved tests and removal strategies, the livestock industry can begin more widespread effective control programs.

  12. Human NK Cell Diversity in Viral Infection: Ramifications of Ramification

    PubMed Central

    Strauss-Albee, Dara M.; Blish, Catherine A.

    2016-01-01

    Natural killer (NK) cells are a unique lymphocyte lineage with remarkable agility in the rapid destruction of virus-infected cells. They are also the most poorly understood class of lymphocyte. A spectrum of activating and inhibitory receptors at the NK cell surface leads to an unusual and difficult-to-study mechanism of cellular recognition, as well as a very high capacity for diversity at the single-cell level. Here, we review the evidence for the role of NK cells in the earliest stage of human viral infection, and in its prevention. We argue that single-cell diversity is a logical evolutionary adaptation for their position in the immune response and contributes to their ability to kill virus-infected cells. Finally, we look to the future, where emerging single-cell technologies will enable a new generation of rigorous and clinically relevant studies on NK cells accounting for all of their unique and diverse characteristics. PMID:26973646

  13. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection

    PubMed Central

    Vincenti, Ilena; Wagner, Ingrid; Pinschewer, Daniel

    2016-01-01

    Tissue-resident memory T cells (TRM) persist at sites of prior infection and have been shown to enhance pathogen clearance by recruiting circulating immune cells and providing bystander activation. Here, we characterize the functioning of brain-resident memory T cells (bTRM) in an animal model of viral infection. bTRM were subject to spontaneous homeostatic proliferation and were largely refractory to systemic immune cell depletion. After viral reinfection in mice, bTRM rapidly acquired cytotoxic effector function and prevented fatal brain infection, even in the absence of circulating CD8+ memory T cells. Presentation of cognate antigen on MHC-I was essential for bTRM-mediated protective immunity, which involved perforin- and IFN-γ–dependent effector mechanisms. These findings identify bTRM as an organ-autonomous defense system serving as a paradigm for TRM functioning as a self-sufficient first line of adaptive immunity. PMID:27377586

  14. Viral co-infections are common and are associated with higher bacterial burden in children with clostridium difficile infection.

    PubMed

    El Feghaly, Rana E; Stauber, Jennifer L; Tarr, Phillip I; Haslam, David B

    2013-12-01

    Clostridium difficile infections in children are increasing. In this cohort study, we enrolled 62 children with diarrhea and C difficile. We performed polymerase chain reaction assays to detect viral agents of gastroenteritis and quantify C difficile burden. Fifteen (24%) children diagnosed as having C difficile infection had a concomitant viral co-infection. These patients tended to be younger and had a higher C difficile bacterial burden than children with no viral co-infections (median difference = 565,957 cfu/mL; P = 0.011), but were clinically indistinguishable. The contribution of viral co-infection to C difficile disease in children warrants future investigation.

  15. Infections of the nervous system

    PubMed Central

    Parikh, Vevek; Tucci, Veronica; Galwankar, Sagar

    2012-01-01

    Glycemic control is an important aspect of patient care in the surgical Infections of the nervous system are among the most difficult infections in terms of the morbidity and mortality posed to patients, and thereby require urgent and accurate diagnosis. Although viral meningitides are more common, it is the bacterial meningitides that have the potential to cause a rapidly deteriorating condition that the physician should be familiar with. Viral encephalitis frequently accompanies viral meningitis, and can produce focal neurologic findings and cognitive difficulties that can mimic other neurologic disorders. Brain abscesses also have the potential to mimic and present like other neurologic disorders, and cause more focal deficits. Finally, other infectious diseases of the central nervous system, such as prion disease and cavernous sinus thrombosis, are explored in this review. PMID:22837896

  16. The p22 RNA Silencing Suppressor of the Crinivirus Tomato chlorosis virus is Dispensable for Local Viral Replication but Important for Counteracting an Antiviral RDR6-Mediated Response during Systemic Infection

    PubMed Central

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2016-01-01

    Among the components of the RNA silencing pathway in plants, RNA-dependent RNA polymerases (RDRs) play fundamental roles in antiviral defence. Here, we demonstrate that the Nicotiana benthamiana RDR6 is involved in defence against the bipartite crinivirus (genus Crinivirus, family Closteroviridae) Tomato chlorosis virus (ToCV). Additionally, by producing a p22-deficient ToCV infectious mutant clone (ToCVΔp22), we studied the role of this viral suppressor of RNA silencing in viral infection in both wild-type and RDR6-silenced N. benthamiana (NbRDR6i) plants. We demonstrate that p22 is dispensable for the replication of ToCV, where RDR6 appears not to have any effect. Furthermore, the finding that ToCV∆p22 systemic accumulation was impaired in wild-type N. benthamiana but not in NbRDR6i plants suggests a role for p22 in counteracting an RDR6-mediated antiviral response of the plant during systemic infection. PMID:27367718

  17. [Constrictive pericarditis as complication of viral respiratory infection].

    PubMed

    Darocha, Szymon; Paczek, Anna; Wawrzyńska, Liliana; Szturmowicz, Monika; Kober, Jarosław; Kurzyna, Marcin; Oniszh, Karina; Langfort, Renata; Litwiński, Paweł; Torbicki, Adam

    2012-01-01

    A 24 year-old man with 3-months medical history of recurrent respiratory infections and pericardial effusion, despite treatment with nonsteroid anti-inflammatory drugs, was admitted to the hospital with dyspnea on exertion. On admission he presented the symptoms of right heart insufficiency. Computed tomography of the chest demonstrated a thickened pericardium. Echocardiographic examination and right heart catheterisation established the diagnosis of constrictive pericarditis. Serologic tests suggested viral aetiology. The patient was referred to cardiothoracic surgery, partial pericardiectomy was performed with marked haemodynamic improvement.

  18. Autonomic Nervous System in Viral Myocarditis: Pathophysiology and Therapy.

    PubMed

    Cheng, Zheng; Li-Sha, Ge; Yue-Chun, Li

    2016-01-01

    Myocarditis, which is caused by viral infection, can lead to heart failure, malignant arrhythmias, and even sudden cardiac death in young patients. It is also one of the most important causes of dilated cardiomyopathy worldwide. Although remarkable advances in diagnosis and understanding of pathophysiological mechanisms of viral myocarditis have been gained during recent years, no standard treatment strategies have been defined as yet. Fortunately, recent studies present some evidence that immunomodulating therapy is effective for myocarditis. The immunomodulatory effect of the autonomic nervous system has raised considerable interest over recent decades. Studying the influence on the inflammation and immune system of the sympathetic and parasympathetic nervous systems will not only increase our understanding of the mechanism of disease but could also lead to the identification of potential new therapies for viral myocarditis. Studies have shown that the immunomodulating effect of the sympathetic and parasympathetic nervous system is realized by the release of neurotransmitters to their corresponding receptors (catecholamine for α or β adrenergic receptor, acetylcholine for α7 nicotinic acetylcholinergic receptor). This review will discuss the current knowledge of the roles of both the sympathetic and parasympathetic nervous system in inflammation, with a special focus on their roles in viral myocarditis.

  19. Hepatitis C viral infection as an associated risk factor for necrotizing fasciitis.

    PubMed

    Scher, Danielle; Kanlic, Enes; Bader, Julia; Ortiz, Melchor; Abdelgawad, Amr

    2012-04-01

    Necrotizing fasciitis is a rare soft tissue infection associated with a high mortality rate. Several risk factors for the development of necrotizing fasciitis have been studied, which has given surgeons insight into the types of patients who are more likely to present with this rapidly progressive infection. The concomitant diagnosis of hepatitis C viral infection has not been reported in the literature previously. In this retrospective study covering a 12-year period in 1 Level I trauma center, 10 (34%) of 29 patients presenting with necrotizing fasciitis had an underlying diagnosis of hepatitis C viral infection. The mortality rate in patients with hepatitis C viral infection was 30% compared with 21% for those without hepatitis C viral infection (P=.59). The proportion of patients presenting with the concomitant diagnosis of hepatitis C viral infection and necrotizing fasciitis was statistically greater than that expected from the prevalence of hepatitis C viral infection in the general population (1.8%; P<.001).Our study showed that hepatitis C viral infection is a risk factor for developing necrotizing fasciitis. Although our sample size was too small to show a statistical significance, we believe that a clinically significant increase in mortality of necrotizing fasciitis occurred in patients with concomitant hepatitis C viral infection. Therefore, the presence of hepatitis C viral infection in patients presenting with symptoms of necrotizing fasciitis should raise the clinical suspicion for this diagnosis, with the potential for a worse prognosis.

  20. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    PubMed

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P < 0.05) when transfected with one or two viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P < 0.05) when transfected with one or two viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P < 0.05) when viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P < 0.05) when viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  1. Role of the innate immune system in acute viral myocarditis.

    PubMed

    Huang, Chien-Hua; Vallejo, Jesus G; Kollias, George; Mann, Douglas L

    2009-05-01

    Although the adaptive immune system is thought to play an important role in the pathogenesis of viral myocarditis, the role of the innate immune system has not been well defined. To address this deficiency, we employed a unique line of mice that harbor a genomic "knock in" of a mutated TNF gene lacking the AU rich element (TNF(ARE/ARE)) that is critical for TNF mRNA stability and translation, in order to examine the contribution of the innate immune system in encephalomyocarditis-induced myocarditis (EMCV). Heterozygous mice (TNF(ARE/+)) were infected with 500 plaque-forming units of EMCV. TNF(ARE/+)mice had a significantly higher 14-day mortality and myocardial inflammation when compared to littermate control mice. Virologic studies showed that the viral load at 14 days was significantly lower in the hearts of TNF(ARE/+) mice. TNF(ARE/+) mice had an exaggerated proinflammatory cytokine and chemokine response in the heart following EMCV infection. Modulation of the innate immune response in TNF(ARE/+) mice by the late administration of prednisolone resulted in a significant improvement in survival and decreased cardiac inflammation, whereas early administration of prednisolone resulted in a blunted innate response and increased mortality in littermate control mice. Viewed together, these data suggest that the duration and degree of activation of the innate immune system plays a critical role in determining host outcomes in experimental viral myocarditis.

  2. Innate immune system activation by viral RNA: How to predict it?

    PubMed

    Kondili, M; Roux, M; Vabret, N; Bailly-Bechet, M

    2016-01-15

    The immune system is able to identify foreign pathogens via different pathways. In the case of viral infection, recognition of the viral RNA is a crucial step, and many efforts have been made to understand which features of viral RNA are detected by the immune system. The biased viral RNA composition, measured as host-virus nucleotidic divergence, or CpG enrichment, has been proposed as salient signal. Peculiar structural features of these RNA could also be related to the immune system activation. Here, we gather multiple datasets and proceed to a meta-analysis to uncover the best predictors of immune system activation by viral RNA. "A" nucleotide content and Minimum Folding Energy are good predictors, and are more easily generalized than more complex indicators suggested previously. As RNA composition and structure are highly correlated, we suggest further experiments on synthetic sequences to identify the viral RNA sensing mechanisms by immune system receptors.

  3. Hepatitis associated with herpes viral infection in the tortoise (Testudo horsfieldii).

    PubMed

    Hervás, J; Sánchez-Cordón, P J; de Chacón Lara, F; Carrasco, L; Gómez-Villamandos, J C

    2002-03-01

    Herpesvirus infection in tortoises is largely characterized by the development of respiratory clinical signs. Usually lesions develop in the respiratory, oral pharyngeal, intestinal tract and are accompanied by cutaneous and ocular lesions. In chelonids affected by herpesvirus, systemic-type lesions in organs such as the liver and spleen are commonly observed. In this paper we describe a case of multifocal necrotic hepatitis associated with herpesviruses in an adult female land tortoise of the species Testudo horsfieldii. This article is the first description of a viral hepatitis in Testudo spp. with lesions compatible with herpesvirus infection, with no clinical signs or lesions in the respiratory system, oral cavity or other organs.

  4. Complexities in Isolation and Purification of Multiple Viruses from Mixed Viral Infections: Viral Interference, Persistence and Exclusion

    PubMed Central

    Kumar, Naveen; Barua, Sanjay; Riyesh, Thachamvally; Chaubey, Kundan K.; Rawat, Krishan Dutt; Khandelwal, Nitin; Mishra, Anil K.; Sharma, Nitika; Chandel, Surender S.; Sharma, Shalini; Singh, Manoj K.; Sharma, Dinesh K.; Singh, Shoor V.; Tripathi, Bhupendra N.

    2016-01-01

    Successful purification of multiple viruses from mixed infections remains a challenge. In this study, we investigated peste des petits ruminants virus (PPRV) and foot-and-mouth disease virus (FMDV) mixed infection in goats. Rather than in a single cell type, cytopathic effect (CPE) of the virus was observed in cocultured Vero/BHK-21 cells at 6th blind passage (BP). PPRV, but not FMDV could be purified from the virus mixture by plaque assay. Viral RNA (mixture) transfection in BHK-21 cells produced FMDV but not PPRV virions, a strategy which we have successfully employed for the first time to eliminate the negative-stranded RNA virus from the virus mixture. FMDV phenotypes, such as replication competent but noncytolytic, cytolytic but defective in plaque formation and, cytolytic but defective in both plaque formation and standard FMDV genome were observed respectively, at passage level BP8, BP15 and BP19 and hence complicated virus isolation in the cell culture system. Mixed infection was not found to induce any significant antigenic and genetic diversity in both PPRV and FMDV. Further, we for the first time demonstrated the viral interference between PPRV and FMDV. Prior transfection of PPRV RNA, but not Newcastle disease virus (NDV) and rotavirus RNA resulted in reduced FMDV replication in BHK-21 cells suggesting that the PPRV RNA-induced interference was specifically directed against FMDV. On long-term coinfection of some acute pathogenic viruses (all possible combinations of PPRV, FMDV, NDV and buffalopox virus) in Vero cells, in most cases, one of the coinfecting viruses was excluded at passage level 5 suggesting that the long-term coinfection may modify viral persistence. To the best of our knowledge, this is the first documented evidence describing a natural mixed infection of FMDV and PPRV. The study not only provides simple and reliable methodologies for isolation and purification of two epidemiologically and economically important groups of viruses, but

  5. Complexities in Isolation and Purification of Multiple Viruses from Mixed Viral Infections: Viral Interference, Persistence and Exclusion.

    PubMed

    Kumar, Naveen; Barua, Sanjay; Riyesh, Thachamvally; Chaubey, Kundan K; Rawat, Krishan Dutt; Khandelwal, Nitin; Mishra, Anil K; Sharma, Nitika; Chandel, Surender S; Sharma, Shalini; Singh, Manoj K; Sharma, Dinesh K; Singh, Shoor V; Tripathi, Bhupendra N

    2016-01-01

    Successful purification of multiple viruses from mixed infections remains a challenge. In this study, we investigated peste des petits ruminants virus (PPRV) and foot-and-mouth disease virus (FMDV) mixed infection in goats. Rather than in a single cell type, cytopathic effect (CPE) of the virus was observed in cocultured Vero/BHK-21 cells at 6th blind passage (BP). PPRV, but not FMDV could be purified from the virus mixture by plaque assay. Viral RNA (mixture) transfection in BHK-21 cells produced FMDV but not PPRV virions, a strategy which we have successfully employed for the first time to eliminate the negative-stranded RNA virus from the virus mixture. FMDV phenotypes, such as replication competent but noncytolytic, cytolytic but defective in plaque formation and, cytolytic but defective in both plaque formation and standard FMDV genome were observed respectively, at passage level BP8, BP15 and BP19 and hence complicated virus isolation in the cell culture system. Mixed infection was not found to induce any significant antigenic and genetic diversity in both PPRV and FMDV. Further, we for the first time demonstrated the viral interference between PPRV and FMDV. Prior transfection of PPRV RNA, but not Newcastle disease virus (NDV) and rotavirus RNA resulted in reduced FMDV replication in BHK-21 cells suggesting that the PPRV RNA-induced interference was specifically directed against FMDV. On long-term coinfection of some acute pathogenic viruses (all possible combinations of PPRV, FMDV, NDV and buffalopox virus) in Vero cells, in most cases, one of the coinfecting viruses was excluded at passage level 5 suggesting that the long-term coinfection may modify viral persistence. To the best of our knowledge, this is the first documented evidence describing a natural mixed infection of FMDV and PPRV. The study not only provides simple and reliable methodologies for isolation and purification of two epidemiologically and economically important groups of viruses, but

  6. Mathematical models of immune effector responses to viral infections: Virus control versus the development of pathology

    NASA Astrophysics Data System (ADS)

    Wodarz, Dominik

    2005-12-01

    This article reviews mathematical models which have investigated the importance of lytic and non-lytic immune responses for the control of viral infections. Lytic immune responses fight the virus by killing infected cells, while non-lytic immune responses fight the virus by inhibiting viral replication while leaving the infected cell alive. The models suggest which types or combinations of immune responses are required to resolve infections which vary in their characteristics, such as the rate of viral replication and the rate of virus-induced target cell death. This framework is then applied to persistent infections and viral evolution. It is investigated how viral evolution and antigenic escape can influence the relative balance of lytic and non-lytic responses over time, and how this might correlate with the transition from an asymptomatic infection to pathology. This is discussed in the specific context of hepatitis C virus infection.

  7. Radiometric Methods for Rapid Diagnosis of Viral Infection.

    DTIC Science & Technology

    1975-11-01

    4, 6, 24, 48, and 72 hours postinfection, infection time beginning when the 14C-labeled medium was added. Nucleic acid sT, thesis system. Stationary...coccus epidermidis, Pseudomonas aeruginosa, and Acinetobacter caloaceticus var. anitratus) had no effect on the DNA synthesis of HSV-1 infected or...7 UNCLASS 41 RADIOMETRIC METHODS FOR RAPID DIAGNIS F VIRA ~ /fl INFECTION (U) JOHNS HOPKINS UNIV BALTIMORE MDUNC . IFEDH N WAG ER FT AL. NOV 75

  8. Gene Expression Correlates with the Number of Herpes Viral Genomes Initiating Infection in Single Cells

    PubMed Central

    Cohen, Efrat M.

    2016-01-01

    Viral gene expression varies significantly among genetically identical cells. The sources of these variations are not well understood and have been suggested to involve both deterministic host differences and stochastic viral host interactions. For herpesviruses, only a limited number of incoming viral genomes initiate expression and replication in each infected cell. To elucidate the effect of this limited number of productively infecting genomes on viral gene expression in single cells, we constructed a set of fluorescence-expressing genetically tagged herpes recombinants. The number of different barcodes originating from a single cell is a good representative of the number of incoming viral genomes replicating (NOIVGR) in that cell. We identified a positive correlation between the NOIVGR and viral gene expression, as measured by the fluorescent protein expressed from the viral genome. This correlation was identified in three distinct cell-types, although the average NOIVGR per cell differed among these cell-types. Among clonal single cells, high housekeeping gene expression levels are not supportive of high viral gene expression, suggesting specific host determinants effecting viral infection. We developed a model to predict NOIVGR from cellular parameters, which supports the notion that viral gene expression is tightly linked to the NOIVGR in single-cells. Our results support the hypothesis that the stochastic nature of viral infection and host cell determinants contribute together to the variability observed among infected cells. PMID:27923068

  9. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection.

    PubMed

    Wakim, Linda M; Bevan, Michael J

    2011-03-31

    After an infection, cytotoxic T lymphocyte precursors proliferate and become effector cells by recognizing foreign peptides in the groove of major histocompatibility complex (MHC) class I molecules expressed by antigen-presenting cells (APCs). Professional APCs specialized for T-cell activation acquire viral antigen either by becoming infected themselves (direct presentation) or by phagocytosis of infected cells, followed by transfer of antigen to the cytosol, processing and MHC class I loading in a process referred to as cross-presentation. An alternative way, referred to as 'cross-dressing', by which an uninfected APC could present antigen was postulated to be by the transfer of preformed peptide-MHC complexes from the surface of an infected cell to the APC without the need of further processing. Here we show that this mechanism exists and boosts the antiviral response of mouse memory CD8(+) T cells. A number of publications have demonstrated sharing of peptide-loaded MHC molecules in vitro. Our in vitro experiments demonstrate that cross-dressing APCs do not acquire peptide-MHC complexes in the form of exosomes released by donor cells. Rather, the APCs and donor cells have to contact each other for the transfer to occur. After a viral infection, we could isolate cross-dressed APCs able to present viral antigen in vitro. Furthermore, using the diphtheria toxin system to selectively eliminate APCs that could only acquire viral peptide-MHC complexes by cross-dressing, we show that such presentation can promote the expansion of resting memory T cells. Notably, naive T cells were excluded from taking part in the response. Cross-dressing is a mechanism of antigen presentation used by dendritic cells that may have a significant role in activating previously primed CD8(+) T cells.

  10. Epidemiological investigation of selected pigeon viral infections in Poland.

    PubMed

    Stenzel, T A; Pestka, D; Tykałowski, B; Śmiałek, M; Koncicki, A

    2012-12-01

    Due to a lack of data in regard to the spread of viral infections in Polish pigeon populations, studies were undertaken to assess the frequency of adeno-, circo- and herpesvirus infections in flocks of pigeons across the entire country. In total, 107 flocks were examined, of which 61 per cent consisted of racing and 39 per cent of fancy pigeons. The flocks were divided into groups according to breed (racing and fancy pigeons) as well as physical condition (healthy and sick). In the studied pigeon flocks, the pigeon circovirus (PiCV) genetic material was the most frequently detected (44.5-100 per cent depending on the group), pigeon herpesvirus genetic material was second in frequency (0-30 per cent depending on the group), while genetic material of pigeon adenovirus was found only in two flocks of young birds with clinical symptoms of Young Pigeon Disease Syndrome (YPDS). The presence of fowl adenovirus (FAdV) genetic material was not detected in any of the studied flocks. Results obtained demonstrate a wide spread of circovirus in pigeon flocks in Poland, and substantiate earlier theories proposed by other authors, that immunosuppression evoked by PiCV infection is one of the main causative agents of YPDS.

  11. Sex Drives Dimorphic Immune Responses to Viral Infections.

    PubMed

    Ghosh, Soumitra; Klein, Robyn S

    2017-03-01

    New attention to sexual dimorphism in normal mammalian physiology and disease has uncovered a previously unappreciated breadth of mechanisms by which females and males differentially exhibit quantitative phenotypes. Thus, in addition to the established modifying effects of hormones, which prenatally and postpubertally pattern cells and tissues in a sexually dimorphic fashion, sex differences are caused by extragonadal and dosage effects of genes encoded on sex chromosomes. Sex differences in immune responses, especially during autoimmunity, have been studied predominantly within the context of sex hormone effects. More recently, immune response genes have been localized to sex chromosomes themselves or found to be regulated by sex chromosome genes. Thus, understanding how sex impacts immunity requires the elucidation of complex interactions among sex hormones, sex chromosomes, and immune response genes. In this Brief Review, we discuss current knowledge and new insights into these intricate relationships in the context of viral infections.

  12. [Diagnosis and treatment of ocular viral infections in AIDS patients].

    PubMed

    Guex-Crosier, Y

    1998-11-01

    Ocular complication of AIDS are seen in about 75% of patients. Viral infections are predominant and can involve either external segment in the eye (Herpes type 8 in Kaposi sarcoma, molluscum contagiosum, Herpes simplex and zoster), or the posterior segment of the eye (CMV retinitis). The introduction of a Highly Active Antiretroviral Therapy (HAART) which associates two reverse transcriptase inhibitors and one antiprotease has changed the evolution of AIDS. The decrease of onset of CMV retinitis in AIDS patient is one of the best exemple. For the first time it was possible to stop the maintenance therapy against CMV retinitis in patients that have a sufficient increase in CD4+ cells and they did not present any relapse of CMV retinitis. But an increase of ocular inflammation can be observed with the onset of HAART such as uveitis or cystoid macular edema.

  13. Virus-induced CD8+ T cells accelerate the onset of experimental autoimmune encephalomyelitis: implications for how viral infections might trigger multiple sclerosis exacerbations

    PubMed Central

    Rainey-Barger, Emily K.; Blakely, Pennelope K.; Huber, Amanda K.; Segal, Benjamin M.; Irani, David N.

    2013-01-01

    Viral infections can exacerbate multiple sclerosis (MS) through poorly defined mechanisms. We developed an experimental system whereby infection with an asymptomatic neurotropic alphavirus caused a transient acceleration of experimental autoimmune encephalomyelitis (EAE) without altering the expansion or differentiation of autoreactive CD4+ T cells. Instead, this effect on the clinical course of EAE depended on CD8+ T cells that neither participate in viral clearance nor induce neuropathology in infected mice without EAE. Our system should be useful to further unravel how certain viral infections trigger MS exacerbations and to understand how CD8+ T cells can exert pathogenic effects within active demyelinating lesions. PMID:23602715

  14. Cerebral Candidal Abscess and Bovine Viral Diarrhoea Virus Infection in an Aborted Bovine Fetus.

    PubMed

    Vilander, A C; Niles, G A; Frank, C B

    2016-01-01

    Candida species are opportunistic fungi associated with immunosuppression and are the most commonly isolated fungal pathogens from the human central nervous system. Invasive candidiasis is reported uncommonly in animals and there have only been two reports of candidal infection of the brain. This report presents a case of a cerebral candidal abscess in an aborted late-term calf co-infected with bovine viral diarrhoea virus. Candida etchellsii, a species not previously identified as pathogenic, was identified as the causative agent by polymerase chain reaction.

  15. Interferon at the crossroads of allergy and viral infections.

    PubMed

    Gonzales-van Horn, Sarah R; Farrar, J David

    2015-08-01

    IFN-α/β was first described as a potent inhibitor of viral replication, but it is now appreciated that IFN signaling plays a pleiotropic role in regulating peripheral T cell functions. Recently, IFN-α/β was shown to block human Th2 development by suppressing the transcription factor GATA3. This effect is consistent with the role for IFN-α/β in suppressing allergic inflammatory processes by blocking granulocyte activation and IL-4-mediated B cell isotype switching to IgE. With the consideration of recent studies demonstrating a defect in IFN-α/β secretion in DCs and epithelial cells from individuals with severe atopic diseases, there is an apparent reciprocal negative regulatory loop in atopic individuals, whereby the lack of IFN-α/β secretion by innate cells contributes to the development of allergic Th2 cells. Is it possible to overcome these events by treating with IFN-α/β or by inducing its secretion in vivo? In support of this approach, case studies have documented the therapeutic potential of IFN-α/β in treating steroid-resistant allergic asthma and other atopic diseases. Additionally, individuals with asthma who are infected with HCV and respond to IFN therapy showed a reduction in symptoms and severity of asthma attacks. These findings support a model, whereby allergic and antiviral responses are able to cross-regulate each other, as IgER cross-linking of pDCs prevents IFN-α/β production in response to viral infection. The clinical importance of upper-respiratory viruses in the context of allergic asthma supports the need to understand how these pathways intersect and to identify potential therapeutic targets.

  16. Comparative transcriptome response in swine tracheobronchial lymph nodes to viral infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tracheobronchial lymph node (TBLN) transcriptome response was evaluated following viral infection using Digital Gene Expression Tag Profiling (DGETP). Pigs were sham-treated or infected intranasally with porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, pseudorabies...

  17. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  18. Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection.

    PubMed

    Kohio, Hinissan P; Adamson, Amy L

    2013-09-01

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection.

  19. Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor.

    PubMed

    Cardenas, Ingrid; Means, Robert E; Aldo, Paulomi; Koga, Kaori; Lang, Sabine M; Booth, Carmen J; Booth, Carmen; Manzur, Alejandro; Oyarzun, Enrique; Romero, Roberto; Mor, Gil

    2010-07-15

    Pandemics pose a more significant threat to pregnant women than to the nonpregnant population and may have a detrimental effect on the well being of the fetus. We have developed an animal model to evaluate the consequences of a viral infection characterized by lack of fetal transmission. The experiments described in this work show that viral infection of the placenta can elicit a fetal inflammatory response that, in turn, can cause organ damage and potentially downstream developmental deficiencies. Furthermore, we demonstrate that viral infection of the placenta may sensitize the pregnant mother to bacterial products and promote preterm labor. It is critical to take into consideration the fact that during pregnancy it is not only the maternal immune system responding, but also the fetal/placental unit. Our results further support the immunological role of the placenta and the fetus affecting the global response of the mother to microbial infections. This is relevant for making decisions associated with treatment and prevention during pandemics.

  20. Pseudo-nitzschia Challenged with Co-occurring Viral Communities Display Diverse Infection Phenotypes.

    PubMed

    Carlson, Michael C G; McCary, Nicolette D; Leach, Terence S; Rocap, Gabrielle

    2016-01-01

    Viruses are catalysts of biogeochemical cycling, architects of microbial community structure, and terminators of phytoplankton blooms. Viral lysis of diatoms, a key group of eukaryotic phytoplankton, has the potential to impact carbon export and marine food webs. However, the impact of viruses on diatom abundance and community composition is unknown. Diatom-virus dynamics were explored by sampling every month at two coastal and estuarine locations in Washington state, USA resulting in 41 new isolates of the pennate diatom Pseudo-nitzschia and 20 environmental virus samples. We conducted a total of 820 pair-wise crosses of the Pseudo-nitzschia isolates and viral communities. Viral communities infected Pseudo-nitzschia isolates in 8% of the crosses overall and 16% of crosses when the host and viral communities were isolated from the same sample. Isolates ranged in their permissivity to infection with some isolates not infected by any viral samples and others infected by up to 10 viral communities. Isolates that were infected by the most viral communities also had the highest maximum observed viral titers (as high as 16000 infectious units ml(-1)). Titers of the viral communities were host dependent, as titers for one viral sample on eight different hosts spanned four orders of magnitude. Sequencing of the Pseudo-nitzschia Internal Transcribed Spacer 1 (ITS1) of the revealed multiple subgroups of hosts with 100% ITS1 identities that were infected by different viral communities. Indeed, we repeatedly isolated groups of isolates with identical ITS1 sequences from the same water sample that displayed different viral infection phenotypes. The interactions between Pseudo-nitzschia and the viral communities highlight the diversity of diatoms and emphasize the complexity and variability of diatom-virus dynamics in the ocean.

  1. Pseudo-nitzschia Challenged with Co-occurring Viral Communities Display Diverse Infection Phenotypes

    PubMed Central

    Carlson, Michael C. G.; McCary, Nicolette D.; Leach, Terence S.; Rocap, Gabrielle

    2016-01-01

    Viruses are catalysts of biogeochemical cycling, architects of microbial community structure, and terminators of phytoplankton blooms. Viral lysis of diatoms, a key group of eukaryotic phytoplankton, has the potential to impact carbon export and marine food webs. However, the impact of viruses on diatom abundance and community composition is unknown. Diatom-virus dynamics were explored by sampling every month at two coastal and estuarine locations in Washington state, USA resulting in 41 new isolates of the pennate diatom Pseudo-nitzschia and 20 environmental virus samples. We conducted a total of 820 pair-wise crosses of the Pseudo-nitzschia isolates and viral communities. Viral communities infected Pseudo-nitzschia isolates in 8% of the crosses overall and 16% of crosses when the host and viral communities were isolated from the same sample. Isolates ranged in their permissivity to infection with some isolates not infected by any viral samples and others infected by up to 10 viral communities. Isolates that were infected by the most viral communities also had the highest maximum observed viral titers (as high as 16000 infectious units ml-1). Titers of the viral communities were host dependent, as titers for one viral sample on eight different hosts spanned four orders of magnitude. Sequencing of the Pseudo-nitzschia Internal Transcribed Spacer 1 (ITS1) of the revealed multiple subgroups of hosts with 100% ITS1 identities that were infected by different viral communities. Indeed, we repeatedly isolated groups of isolates with identical ITS1 sequences from the same water sample that displayed different viral infection phenotypes. The interactions between Pseudo-nitzschia and the viral communities highlight the diversity of diatoms and emphasize the complexity and variability of diatom-virus dynamics in the ocean. PMID:27148216

  2. Evaluation of Innate Immune Biomarkers in Saliva for Diagnostic Potential of Bacterial and Viral Respiratory Infection

    DTIC Science & Technology

    2014-02-03

    infection and genetic disease (4). Similar to serum, saliva contains electrolytes, proteins, nucleic acids, and cells of epithelial and immune origin...which play a role in B-cell differentiation and activation (11, 12). While similar immune pathways are activated in response to viral infections... role in diagnostics for detection of infection and disease. Because the clinical symptoms of viral and bacterial respiratory infections are very

  3. The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression

    NASA Astrophysics Data System (ADS)

    Wang, Jinliang; Liu, Shengqiang

    2015-01-01

    We investigate an in-host model with general incidence and removal rate, as well as distributed delays in virus infections and in productions. By employing Lyapunov functionals and LaSalle's invariance principle, we define and prove the basic reproductive number R0 as a threshold quantity for stability of equilibria. It is shown that if R0 > 1 , then the infected equilibrium is globally asymptotically stable, while if R0 ⩽ 1 , then the infection free equilibrium is globally asymptotically stable under some reasonable assumptions. Moreover, n + 1 distributed delays describe (i) the time between viral entry and the transcription of viral RNA, (ii) the n - 1 -stage time needed for activated infected cells between viral RNA transcription and viral release, and (iii) the time necessary for the newly produced viruses to be infectious (maturation), respectively. The model can describe the viral infection dynamics of many viruses such as HIV-1, HCV and HBV.

  4. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    SciTech Connect

    Kohio, Hinissan P.; Adamson, Amy L.

    2013-09-15

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells.

  5. Dopamine and serotonin levels following prenatal viral infection in mouse--implications for psychiatric disorders such as schizophrenia and autism.

    PubMed

    Winter, Christine; Reutiman, Teri J; Folsom, Timothy D; Sohr, Reinhard; Wolf, Rainer J; Juckel, Georg; Fatemi, S Hossein

    2008-10-01

    Prenatal viral infection has been associated with neurodevelopmental disorders such as schizophrenia and autism. It has previously been demonstrated that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and middle-late second trimester (E18) administration of influenza virus. Neurochemical analysis following infection on E18 using this model has revealed significantly altered levels of serotonin, 5-hydroxyindoleacetic acid, and taurine, but not dopamine. In order to monitor these different patterns of monoamine expression in exposed offspring in more detail and to see if there are changes in the dopamine system at another time point, pregnant C57BL6J mice were infected with a sublethal dose of human influenza virus or sham-infected using vehicle solution on E16. Male offspring of the infected mice were collected at P0, P14, and P56, their brains removed and cerebellum dissected and flash frozen. Dopamine and serotonin levels were then measured using HPLC-ED technique. When compared to controls, there was a significant decrease in serotonin levels in the cerebella of offspring of virally exposed mice at P14. No differences in levels of dopamine were observed in exposed and control mice, although there was a significant decrease in dopamine at P14 and P56 when compared to P0. The present study shows that the serotonergic system is disrupted following prenatal viral infection, potentially modelling disruptions that occur in patients with schizophrenia and autism.

  6. Use of uniform designs in combination with neural networks for viral infection process development.

    PubMed

    Buenno, Laís Hara; Rocha, José Celso; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo

    2015-01-01

    This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.

  7. Simulated microgravity effects on the resistance of potato plants to viral infection

    NASA Astrophysics Data System (ADS)

    Mishchenko, L. T.; Gordyeichik, O. I.; Taran, O. P.

    Our earlier research results showed that prolonged clinostating impeded the reproduction of the wheat streak mosaic virus WSMV in artificially infected Apogee wheat plants The WSMW reproduction reduction leads to the formation of yield at the expense of the various physiologo-biochemical mechanisms of adaptation The results of our research activities open up the possibilities for the creation of new biotechnologies for both orbital and terrestrial conditions There arises a need to verify this phenomenon on potato plants which reproduce by tubers and in which viral infection unlike the WSMV is easily spread with planting material The initial parental potato plants were cultivated in a universal clinostat Cycle-2 and horizontal clinostat KG-8 on artificial substrate employing a balanced nutrient mixture of macro and microelements Viral antigens were detected in the organs of infected plants by a solid-phase immunoenzymatic analysis in its indirect das-ELISA variant sandwich variant A test system manufactured by the Bioreba firm Switzerland was employed for diagnostics The reader of the Termo Labsystems Opsis MR firm was employed for the measurements of optical density of the immunoenzymatic reaction product with a software of the Dynex Revelation Quicklik USA at wavelength of 405 630 nm Virion identification was carried out using the electron microscopy negative contrasting procedure Statistical data processing was performed using Excel AGROSTAT program We investigated the effects of clinostating on the development of viral

  8. Engineering large viral DNA genomes using the CRISPR-Cas9 system.

    PubMed

    Suenaga, Tadahiro; Kohyama, Masako; Hirayasu, Kouyuki; Arase, Hisashi

    2014-09-01

    Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus-infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time-consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat-Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene-ablated HSV but also gene knock-in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein-Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.

  9. Two Populations of Viral Minichromosomes Are Present in a Geminivirus-Infected Plant Showing Symptom Remission (Recovery)

    PubMed Central

    Ceniceros-Ojeda, Esther Adriana; Rodríguez-Negrete, Edgar Antonio

    2016-01-01

    ABSTRACT Geminiviruses are important plant pathogens characterized by circular, single-stranded DNA (ssDNA) genomes. However, in the nuclei of infected cells, viral double-stranded DNA (dsDNA) associates with host histones to form a minichromosome. In phloem-limited geminiviruses, the characterization of viral minichromosomes is hindered by the low concentration of recovered complexes due to the small number of infected cells. Nevertheless, geminiviruses are both inducers and targets of the host posttranscriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) machinery. We have previously characterized a “recovery” phenomenon observed in pepper plants infected with pepper golden mosaic virus (PepGMV) that is associated with a reduction of viral DNA and RNA levels, the presence of virus-related siRNAs, and an increase in the levels of viral DNA methylation. Initial micrococcal nuclease-based assays pinpointed the presence of different viral chromatin complexes in symptomatic and recovered tissues. Using the pepper-PepGMV system, we developed a methodology to obtain a viral minichromosome-enriched fraction that does not disturb the basic chromatin structural integrity, as evaluated by the detection of core histones. Using this procedure, we have further characterized two populations of viral minichromosomes in PepGMV-infected plants. After further purification using sucrose gradient sedimentation, we also observed that minichromosomes isolated from symptomatic tissue showed a relaxed conformation (based on their sedimentation rate), are associated with a chromatin activation marker (H3K4me3), and present a low level of DNA methylation. The minichromosome population obtained from recovered tissue, on the other hand, sedimented as a compact structure, is associated with a chromatin-repressive marker (H3K9me2), and presents a high level of DNA methylation. IMPORTANCE Viral minichromosomes have been reported in several animal and plant models

  10. The molecule of DC-SIGN captures enterovirus 71 and confers dendritic cell-mediated viral trans-infection

    PubMed Central

    2014-01-01

    Background Enterovirus 71 (EV71) is the main causative agent of hand, foot and mouth disease that occurs in young children. Neither antiviral agents nor vaccines are available for efficiently combating viral infection. Study of EV71–host interplay is important for understanding viral infection and developing strategies for prevention and therapy. Here the interactions of EV71 with human dendritic cells were analyzed. Methods EV71 capture, endocytosis, infection, and degradation in monocyte-derived dendritic cells (MDDCs) were detected by Flow cytometry or real-time (RT-) PCR, and MDDCs-mediated EV71 trans-infection of RD cells was determined via coculture system. Cell morphology or viability was monitored with microscopy or flow cytometry. SiRNA interference was used to knock down gene expression. Results MDDCs can bind EV71, but these loaded-EV71 particles in MDDCs underwent a rapid degradation in the absence of efficient replication; once the captured EV71 encountered susceptible cells, MDDCs efficiently transferred surface-bound viruses to target cells. The molecule of DC-SIGN (DC-specific intercellular adhesion molecule-3 grabbing nonintegrin) mediated viral binding and transfer, because interference of DC-SIGN expression with specific siRNAs reduced EV71 binding and impaired MDDC-mediated viral trans-infection, and exogenous expression of DC-SIGN molecule on Raji cell initiated viral binding and subsequent transmission. Conclusion MDDCs could bind efficiently EV71 viruses through viral binding to DC-SIGN molecule, and these captured-viruses could be transferred to susceptible cells for robust infection. The novel finding of DC-mediated EV71 dissemination might facilitate elucidation of EV71 primary infection and benefit searching for new clues for preventing viruses from initial infection. PMID:24620896

  11. EV71 infection correlates with viral IgG preexisting at pharyngo-laryngeal mucosa in children.

    PubMed

    Xue, Jingchang; Li, Yaoming; Xu, Xiaoyi; Yu, Jie; Yan, Hu; Yan, Huimin

    2015-04-01

    Enterovirus 71 (EV71) infection causes severe central nervous system damage, particularly for children under the age of 5 years old, which remains a major public health burden worldwide. Clinical data released that children may be repeatedly infected by different members in enterovirus and get even worsen. Mucosa, especially epithelium of alimentary canal, was considered the primary site of EV71 infection. It has been elusive whether the preexsiting viral antibody in mucosa plays a role in EV71 infection. To answer this question, we respectively measured viral antibody response and EV71 RNA copy number of one hundred throat swab specimens from clinically confirmed EV71-infected children. The results released that low-level of mucosal IgG antibody against EV71 broadly existed in young population. More importantly, it further elucidated that the children with mucosal preexsiting EV71 IgG were prone to be infected, which suggested a former viral IgG mediated enhancement of viral infection in vivo.

  12. Clinical Impact of Mixed Respiratory Viral Infection in Children with Adenoviral Infection

    PubMed Central

    Seo, Young Eun

    2016-01-01

    Background Although adenovirus (ADV) infection occurs steadily all year round in Korea and the identification of respiratory viral coinfections has been increasing following the introduction of multiplex real-time polymerase chain reaction tests, the clinical impact of viral coinfection in children with ADV infection has rarely been reported. Materials and Methods Medical records of children diagnosed with ADV infection were retrospectively reviewed. The enrolled children were divided into two groups based on the identified respiratory viruses: ADV group and coinfection group. Clinical and laboratory parameters were compared between the two groups. Results In total, 105 children (60 males and 45 females) with a median age of 29 months (range: 0-131 months) diagnosed with an ADV infection were enrolled. Fever (99.0%) was by far the most frequent symptom, followed by respiratory (82.9%), and gastrointestinal (22.9%) symptoms. Upper and lower respiratory tract infections were diagnosed in 56 (53.3%), and 32 (30.5%) children, respectively. Five (4.8%) children received oxygen therapy, and no child died due to ADV infection. Coinfection was diagnosed in 32 (30.5%) children, with rhinovirus (46.9%), and respiratory syncytial virus (21.9%) being the most frequent. The proportions of children younger than 24 months (P <0.001), with underlying medical conditions (P = 0.020), and diagnosed with lower respiratory tract infection (P = 0.011) were significantly higher in the coinfection group than in the ADV group. In a multivariate analysis, only the younger age was significantly associated with coinfection (P <0.001). Although more children in the coinfection group received oxygen therapy (P = 0.029), the duration of fever and hospitalization was not significantly different between the two groups. Conclusion Respiratory viral coinfection with ADV occurred more frequently in children younger than 24 months of age compared with children aged 24 months or older. Respiratory

  13. Emergence of distinct multi-armed immunoregulatory antigen presenting cells during persistent viral infection

    PubMed Central

    Wilson, Elizabeth B.; Kidani, Yoko; Elsaesser, Heidi; Barnard, Jennifer; Raff, Laura; Karp, Christopher L.; Bensinger, Steven; Brooks, David G.

    2012-01-01

    During persistent viral infection, adaptive immune responses are suppressed by immunoregulatory factors, contributing to viral persistence. Although this suppression is mediated by inhibitory factors, the mechanisms by which virus-specific T cells encounter and integrate immunoregulatory signals during persistent infection are unclear. We show that a distinct population of IL-10-expressing immunoregulatory antigen presenting cells (APC) is amplified during chronic versus acute lymphocytic choriomeningitis virus (LCMV) infection and suppresses T cell responses. Although acute LCMV infection induces the expansion of immunoregulatory APC, they subsequently decline. However, during persistent LCMV infection, immunoregulatory APC are amplified and parallel the viral replication kinetics. Further characterization demonstrates that immunoregulatory APC are molecularly and metabolically distinct, and exhibit increased expression of T cell-interacting molecules and negative regulatory factors that suppress T cell responses. Thus, immunoregulatory APC are amplified during viral persistence and deliver inhibitory signals that suppress antiviral T cell immunity and likely contribute to persistent infection. PMID:22607801

  14. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    SciTech Connect

    Weber, Nicholas D.; Aubert, Martine; Dang, Chung H.; Stone, Daniel; Jerome, Keith R.

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  15. Molecular basis of organ-specific selection of viral variants during chronic infection.

    PubMed Central

    Ahmed, R; Hahn, C S; Somasundaram, T; Villarete, L; Matloubian, M; Strauss, J H

    1991-01-01

    Viral variants of different phenotypes are present in the central nervous system (CNS) and lymphoid tissues of carrier mice infected at birth with the Armstrong strain of lymphocytic choriomeningitis virus. The CNS isolates are similar to the parental virus and cause acute infections in adult mice, whereas the lymphoid isolates cause chronic infections associated with suppressed T-cell responses. In this study, we provide a molecular basis for this organ-specific selection and identify a single amino acid change in the viral glycoprotein that correlates with the tissue specific selection and the persistent and immunosuppressive phenotype of the variants. This phenylalanine (F)-to-leucine (L) change at position 260 of the viral glycoprotein was seen in the vast majority (43 of 47) of the lymphoid isolates, and variants with L at this residue were selected in spleens of persistently infected mice. In striking contrast, isolates with the parental sequence (F at residue 260) predominated (48 of 59 isolates) in the CNS of the same carrier mice. Complete nucleotide sequence analysis of the major structural genes of several independently derived (from different mice) spleen isolates showed that these variants were greater than 99.8% identical to the parental virus. In fact, the only common change among these spleen isolates was the F----L mutation at residue 260 of the glycoprotein. These results show that an RNA virus can exhibit minimal genetic drift during chronic infection in its natural host, and yet a single or few mutations can result in the organ-specific selection of variants that are markedly different from the parental virus. Images PMID:2072451

  16. Viral Infection in the Development and Progression of Pediatric Acute Respiratory Distress Syndrome

    PubMed Central

    Nye, Steven; Whitley, Richard J.; Kong, Michele

    2016-01-01

    Viral infections are an important cause of pediatric acute respiratory distress syndrome (ARDS). Numerous viruses, including respiratory syncytial virus (RSV) and influenza A (H1N1) virus, have been implicated in the progression of pneumonia to ARDS; yet the incidence of progression is unknown. Despite acute and chronic morbidity associated with respiratory viral infections, particularly in “at risk” populations, treatment options are limited. Thus, with few exceptions, care is symptomatic. In addition, mortality rates for viral-related ARDS have yet to be determined. This review outlines what is known about ARDS secondary to viral infections including the epidemiology, the pathophysiology, and diagnosis. In addition, emerging treatment options to prevent infection, and to decrease disease burden will be outlined. We focused on RSV and influenza A (H1N1) viral-induced ARDS, as these are the most common viruses leading to pediatric ARDS, and have specific prophylactic and definitive treatment options. PMID:27933286

  17. Viral Infection in the Development and Progression of Pediatric Acute Respiratory Distress Syndrome.

    PubMed

    Nye, Steven; Whitley, Richard J; Kong, Michele

    2016-01-01

    Viral infections are an important cause of pediatric acute respiratory distress syndrome (ARDS). Numerous viruses, including respiratory syncytial virus (RSV) and influenza A (H1N1) virus, have been implicated in the progression of pneumonia to ARDS; yet the incidence of progression is unknown. Despite acute and chronic morbidity associated with respiratory viral infections, particularly in "at risk" populations, treatment options are limited. Thus, with few exceptions, care is symptomatic. In addition, mortality rates for viral-related ARDS have yet to be determined. This review outlines what is known about ARDS secondary to viral infections including the epidemiology, the pathophysiology, and diagnosis. In addition, emerging treatment options to prevent infection, and to decrease disease burden will be outlined. We focused on RSV and influenza A (H1N1) viral-induced ARDS, as these are the most common viruses leading to pediatric ARDS, and have specific prophylactic and definitive treatment options.

  18. Factors affecting responses to murine oncogenic viral infections.

    PubMed Central

    Harvey, J. J.; Rager-Zisman, B.; Wheelock, E. F.; Nevin, P. A.

    1980-01-01

    Silica specifically kills macrophages in vitro, and in vivo has been used as a method of determining the possible immunological or other roles of macrophages in a number of viral infections. In experiments reported here, injection of 30 or 50 mg silica i.p. increased the severity of the oncogenic effects of the murine sarcoma virus (MSV) and Friend virus (FV) in BALB/c mice. Unlike Herpes simplex and Coxsackie B-3 infections, however, passive transfer of adult macrophages to suckling mice did not protect the latter against MSV. In mice injected with silica, histological evidence of the compensatory proliferation of macrophages suggests that precursors of these cells may act as target cells for the virus and that this may override any immunosuppressive response effected by the silica. In addition, there was a considerable enhancing effect on the erythroproliferative response to both MSV and FV by injection of saline 5 h before the virus, and indeed to FV after only a simple abdominal needle puncture. We attributed this to the lymphopenic immunodepressive effects of stress, and our data may explain previously published findings of augmented oncogenic responses in mice after "normal" serum injections. Newborn BALB/c (FV-1b) mice were susceptible to N-tropic FV, but developed resistance by 29 days of age. Antithymocyte serum (ATS) but not silica injections or adult thymectomy ablated this resistance. C57BL (FV-2r) mice were completely resistant to FV; however, those receiving FV and ATS developed late-onset leukaemia histologically characteristic of that produced by the helper component of the FV complex. Images Fig. PMID:6248095

  19. Gene Expression Profiles Link Respiratory Viral Infection, Platelet Response to Aspirin, and Acute Myocardial Infarction

    PubMed Central

    Cyr, Derek D.; Lucas, Joseph E.; Zaas, Aimee K.; Woods, Christopher W.; Newby, L. Kristin; Kraus, William E.; Ginsburg, Geoffrey S.

    2015-01-01

    Background Influenza infection is associated with myocardial infarction (MI), suggesting that respiratory viral infection may induce biologic pathways that contribute to MI. We tested the hypotheses that 1) a validated blood gene expression signature of respiratory viral infection (viral GES) was associated with MI and 2) respiratory viral exposure changes levels of a validated platelet gene expression signature (platelet GES) of platelet function in response to aspirin that is associated with MI. Methods A previously defined viral GES was projected into blood RNA data from 594 patients undergoing elective cardiac catheterization and used to classify patients as having evidence of viral infection or not and tested for association with acute MI using logistic regression. A previously defined platelet GES was projected into blood RNA data from 81 healthy subjects before and after exposure to four respiratory viruses: Respiratory Syncytial Virus (RSV) (n=20), Human Rhinovirus (HRV) (n=20), Influenza A virus subtype H1N1 (H1N1) (n=24), Influenza A Virus subtype H3N2 (H3N2) (n=17). We tested for the change in platelet GES with viral exposure using linear mixed-effects regression and by symptom status. Results In the catheterization cohort, 32 patients had evidence of viral infection based upon the viral GES, of which 25% (8/32) had MI versus 12.2% (69/567) among those without evidence of viral infection (OR 2.3; CI [1.03-5.5], p=0.04). In the infection cohorts, only H1N1 exposure increased platelet GES over time (time course p-value = 1e-04). Conclusions A viral GES of non-specific, respiratory viral infection was associated with acute MI; 18% of the top 49 genes in the viral GES are involved with hemostasis and/or platelet aggregation. Separately, H1N1 exposure, but not exposure to other respiratory viruses, increased a platelet GES previously shown to be associated with MI. Together, these results highlight specific genes and pathways that link viral infection

  20. First report of viral infections that affect argentine honeybees.

    PubMed

    Reynaldi, Francisco José; Sguazza, Guillermo Hernán; Pecoraro, Marcelo Ricardo; Tizzano, Marco Andrés; Galosi, Cecilia Mónica

    2010-12-01

    Honey is one of the most important agricultural products for export in Argentina. In fact, more than 3.5 million beehives and 50 000 beekeepers are related with this production, mainly located in Buenos Aires province. Honeybee mortality is a serious problem that beekeepers in Argentina have had to face during the last 3 years. It is known that the consequence of the complex interactions between environmental and beekeeping parameters added to the effect of different disease agents such as viruses, bacteria, fungi and parasitic mites may result in a sudden collapse of the colony. In addition, multiple viral infections are frequently detected concomitantly in bee colonies. We describe here the preliminary results of a survey of three honeybee-pathogenic viruses, acute bee paralysis viruses (ABPV), chronic bee paralysis viruses (CBPV) and Sacbrood viruses (SBV) detected during a screening of 61 apiaries located in the main honey producer province using a RT-PCR assay. This is the first molecular report of the presence of these viruses in Argentine apiaries.

  1. Some viral and rickettsial infections in Bosnia and Herzegovina

    PubMed Central

    Terzin, A. L.; Gaon, J.

    1956-01-01

    Investigating viral and rickettsial infections in Bosnia and Herzegovina, the authors submitted 115 sera of healthy persons to complement-fixation tests with typhus, Q fever, mumps, rickettsialpox, and psittacosis antigens. The results obtained indicate that the Moslem population tends to show more typhus-positive titres, and at an earlier age, than the non-Moslem. While Moslems under 20 years old tend to develop typhus in epidemic form, an approximately equal number of epidemic and apparently sporadic cases occurs among non-Moslems. On the other hand, Q fever is more frequent, and occurs earlier, in the non-Moslems. An epidemiological explanation of these phenomena is advanced. From the findings on mumps, it is thought possible that this disease tends to be primarily one of children in Moslems but not in non-Moslems. The rickettsialpox titres suggest the presence of an agent or agents antigenically related to Ricksettsia akari, and the psittacosis titres are thought to be caused by contact with organisms of the psittacosis and lymphogranuloma venereum group. PMID:13383366

  2. Inferring Viral Dynamics in Chronically HCV Infected Patients from the Spatial Distribution of Infected Hepatocytes

    SciTech Connect

    Graw, Frederik; Balagopal, Ashwin; Kandathil, Abraham J.; Ray, Stuart C.; Thomas, David L.; Ribeiro, Ruy M.; Perelson, Alan S.; Yates, Andrew J.

    2014-11-13

    Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, we are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from 4-50 infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Lastly, our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data.

  3. Inferring Viral Dynamics in Chronically HCV Infected Patients from the Spatial Distribution of Infected Hepatocytes

    DOE PAGES

    Graw, Frederik; Balagopal, Ashwin; Kandathil, Abraham J.; ...

    2014-11-13

    Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, wemore » are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from 4-50 infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Lastly, our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data.« less

  4. Viral Load Drives Disease in Humans Experimentally Infected with Respiratory Syncytial Virus

    PubMed Central

    DeVincenzo, John P.; Wilkinson, Tom; Vaishnaw, Akshay; Cehelsky, Jeff; Meyers, Rachel; Nochur, Saraswathy; Harrison, Lisa; Meeking, Patricia; Mann, Alex; Moane, Elizabeth; Oxford, John; Pareek, Rajat; Moore, Ryves; Walsh, Ed; Studholme, Robert; Dorsett, Preston; Alvarez, Rene; Lambkin-Williams, Robert

    2010-01-01

    Rationale: Respiratory syncytial virus (RSV) is the leading cause of childhood lower respiratory infection, yet viable therapies are lacking. Two major challenges have stalled antiviral development: ethical difficulties in performing pediatric proof-of-concept studies and the prevailing concept that the disease is immune-mediated rather than being driven by viral load. Objectives: The development of a human experimental wild-type RSV infection model to address these challenges. Methods: Healthy volunteers (n = 35), in five cohorts, received increasing quantities (3.0–5.4 log plaque-forming units/person) of wild-type RSV-A intranasally. Measurements and Main Results: Overall, 77% of volunteers consistently shed virus. Infection rate, viral loads, disease severity, and safety were similar between cohorts and were unrelated to quantity of RSV received. Symptoms began near the time of initial viral detection, peaked in severity near when viral load peaked, and subsided as viral loads (measured by real-time polymerase chain reaction) slowly declined. Viral loads correlated significantly with intranasal proinflammatory cytokine concentrations (IL-6 and IL-8). Increased viral load correlated consistently with increases in multiple different disease measurements (symptoms, physical examination, and amount of nasal mucus). Conclusions: Viral load appears to drive disease manifestations in humans with RSV infection. The observed parallel viral and disease kinetics support a potential clinical benefit of RSV antivirals. This reproducible model facilitates the development of future RSV therapeutics. PMID:20622030

  5. The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages

    PubMed Central

    1994-01-01

    Considerable controversy and uncertainty have surrounded the biological function of the Human Immunodeficiency Virus (HIV)-1 nef gene product. Initial studies suggested that this early, nonstructural viral protein functioned as a negative regulatory factor; thus, it was proposed to play a role in establishing or maintaining viral latency. In contrast, studies in Simian Immunodeficiency Virus (SIV)mac-infected rhesus monkeys have suggested that Nef is not a negative factor but rather plays a central role in promoting high-level viral replication and is required for viral pathogenesis in vivo. We sought to define a tissue culture system that would approximate the in vivo setting for virus infection in order to assess the role of HIV-1 Nef in viral replication. We show that infection of mitogen-activated peripheral blood mononuclear cells (PBMC) with Nef+ HIV results in enhanced replication as evidenced by earlier gag p24 expression when compared with infections performed with nef mutant viruses. Moreover, when unstimulated freshly isolated PBMC are infected with Nef+ and Nef- viruses and then subsequently activated with mitogen, the Nef-induced difference in viral replication kinetics is even more pronounced, with the Nef- viruses requiring much more time in culture for appreciable growth. A positive effect of Nef on viral replication was also observed in primary macrophages infected with a recombinant of YU-2, a patient- derived molecular clone with macrophage tropism. These positive effects of Nef on viral replication are dependent on the initial multiplicity of infection (MOI), in that infections of unstimulated PBMC at low MOI are most dependent upon intact nef for subsequent viral growth. We now provide evidence that the Nef+ HIV is more infectious than Nef- HIV from both a tissue culture infectious dose analysis, and a single-cell HIV infection assay. In the latter case, we demonstrate that infection with equivalent doses of HIV based on virion-associated gag p

  6. Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs

    NASA Astrophysics Data System (ADS)

    Komarova, Natalia L.; Levy, David N.; Wodarz, Dominik

    2013-07-01

    Cell-to-cell viral transmission via virological synapses has been argued to reduce susceptibility of the virus population to anti-viral drugs through multiple infection of cells, contributing to low-level viral persistence during therapy. Using a mathematical framework, we examine the role of synaptic transmission in treatment susceptibility. A key factor is the relative probability of individual virions to infect a cell during free-virus and synaptic transmission, a currently unknown quantity. If this infection probability is higher for free-virus transmission, then treatment susceptibility is lowest if one virus is transferred per synapse, and multiple infection of cells increases susceptibility. In the opposite case, treatment susceptibility is minimized for an intermediate number of virions transferred per synapse. Hence, multiple infection via synapses does not simply lower treatment susceptibility. Without further experimental investigations, one cannot conclude that synaptic transmission provides an additional mechanism for the virus to persist at low levels during anti-viral therapy.

  7. Peroxynitrite inhibition of Coxsackievirus infection by prevention of viral RNA entry

    PubMed Central

    Padalko, Elizaveta; Ohnishi, Tomokazu; Matsushita, Kenji; Sun, Henry; Fox-Talbot, Karen; Bao, Clare; Baldwin, William M.; Lowenstein, Charles J.

    2004-01-01

    Although peroxynitrite is harmful to the host, the beneficial effects of peroxynitrite are less well understood. We explored the role of peroxynitrite in the host immune response to Coxsackievirus infection. Peroxynitrite inhibits viral replication in vitro, in part by inhibiting viral RNA entry into the host cell. Nitrotyrosine, a marker for peroxynitrite production, is colocalized with viral antigens in the hearts of infected mice but not control mice. Nitrotyrosine coprecipitates with the viral polypeptide VP1 as well. Guanidinoethyl disulfide, a scavenger of peroxynitrite, blocks peroxynitrite inhibition of viral replication in vitro and permits an increase in viral replication in vivo. These data suggest that peroxynitrite is an endogenous effector of the immune response to viruses. PMID:15286280

  8. Early immune responses in rainbow trout liver upon viral hemorrhagic septicemia virus (VHSV) infection.

    PubMed

    Castro, Rosario; Abós, Beatriz; Pignatelli, Jaime; von Gersdorff Jørgensen, Louise; González Granja, Aitor; Buchmann, Kurt; Tafalla, Carolina

    2014-01-01

    Among the essential metabolic functions of the liver, in mammals, a role as mediator of systemic and local innate immunity has also been reported. Although the presence of an important leukocyte population in mammalian liver is well documented, the characterization of leukocyte populations in the teleost liver has been only scarcely addressed. In the current work, we have confirmed the presence of IgM+, IgD+, IgT+, CD8α+, CD3+ cells, and cells expressing major histocompatibility complex (MHC-II) in rainbow trout (Oncorhynchus mykiss) liver by flow cytometry and/or immunohistochemistry analysis. Additionally, the effect of viral hemorrhagic septicemia virus (VHSV) on the liver immune response was assessed. First, we studied the effect of viral intraperitoneal injection on the transcription of a wide selection of immune genes at days 1, 2 and 5 post-infection. These included a group of leukocyte markers genes, pattern recognition receptors (PRRs), chemokines, chemokine receptor genes, and other genes involved in the early immune response and in acute phase reaction. Our results indicate that T lymphocytes play a key role in the initial response to VHSV in the liver, since CD3, CD8, CD4, perforin, Mx and interferon (IFN) transcription levels were up-regulated in response to VHSV. Consequently, flow cytometry analysis of CD8α+ cells in liver and spleen at day 5 post-infection revealed a decrease in the number of CD8α+ cells in the spleen and an increased population in the liver. No differences were found however in the percentages of B lymphocyte (IgM+ or IgD+) populations. In addition, a strong up-regulation in the transcription levels of several PRRs and chemokines was observed from the second day of infection, indicating an important role of these factors in the response of the liver to viral infections.

  9. Early Immune Responses in Rainbow Trout Liver upon Viral Hemorrhagic Septicemia Virus (VHSV) Infection

    PubMed Central

    Castro, Rosario; Abós, Beatriz; Pignatelli, Jaime; von Gersdorff Jørgensen, Louise; González Granja, Aitor; Buchmann, Kurt; Tafalla, Carolina

    2014-01-01

    Among the essential metabolic functions of the liver, in mammals, a role as mediator of systemic and local innate immunity has also been reported. Although the presence of an important leukocyte population in mammalian liver is well documented, the characterization of leukocyte populations in the teleost liver has been only scarcely addressed. In the current work, we have confirmed the presence of IgM+, IgD+, IgT+, CD8α+, CD3+ cells, and cells expressing major histocompatibility complex (MHC-II) in rainbow trout (Oncorhynchus mykiss) liver by flow cytometry and/or immunohistochemistry analysis. Additionally, the effect of viral hemorrhagic septicemia virus (VHSV) on the liver immune response was assessed. First, we studied the effect of viral intraperitoneal injection on the transcription of a wide selection of immune genes at days 1, 2 and 5 post-infection. These included a group of leukocyte markers genes, pattern recognition receptors (PRRs), chemokines, chemokine receptor genes, and other genes involved in the early immune response and in acute phase reaction. Our results indicate that T lymphocytes play a key role in the initial response to VHSV in the liver, since CD3, CD8, CD4, perforin, Mx and interferon (IFN) transcription levels were up-regulated in response to VHSV. Consequently, flow cytometry analysis of CD8α+ cells in liver and spleen at day 5 post-infection revealed a decrease in the number of CD8α+ cells in the spleen and an increased population in the liver. No differences were found however in the percentages of B lymphocyte (IgM+ or IgD+) populations. In addition, a strong up-regulation in the transcription levels of several PRRs and chemokines was observed from the second day of infection, indicating an important role of these factors in the response of the liver to viral infections. PMID:25338079

  10. p53 Activation following Rift Valley Fever Virus Infection Contributes to Cell Death and Viral Production

    PubMed Central

    Lundberg, Lindsay; Shafagati, Nazly; Schoonmaker, Annalise; Narayanan, Aarthi; Popova, Taissia; Panthier, Jean Jacques; Kashanchi, Fatah; Bailey, Charles; Kehn-Hall, Kylene

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production. PMID:22574148

  11. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    PubMed

    Austin, Dana; Baer, Alan; Lundberg, Lindsay; Shafagati, Nazly; Schoonmaker, Annalise; Narayanan, Aarthi; Popova, Taissia; Panthier, Jean Jacques; Kashanchi, Fatah; Bailey, Charles; Kehn-Hall, Kylene

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  12. Effect of Acyclovir on Viral Protein Synthesis in Cells Infected with Herpes Simplex Virus Type 1

    PubMed Central

    Furman, Phillip A.; McGuirt, Paul V.

    1983-01-01

    The effect of the antiviral agent 9-(2-hydroxyethoxymethyl)guanine (acyclovir) on herpes simplex virus type 1 protein synthesis during virus replication was examined. Treatment of infected cells with acyclovir markedly affected the amounts of the four major glycosylated and certain non-glycosylated viral polypeptides synthesized; other viral polypeptides were made in normal amounts. The reduced amount of late protein synthesis was most likely due to the inhibition of progeny viral DNA synthesis by acyclovir. Images PMID:6301368

  13. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories

    PubMed Central

    Nikolic, Jovan; Civas, Ahmet; Lagaudrière-Gesbert, Cécile; Blondel, Danielle

    2016-01-01

    Stress granules (SGs) are membrane-less dynamic structures consisting of mRNA and protein aggregates that form rapidly in response to a wide range of environmental cellular stresses and viral infections. They act as storage sites for translationally silenced mRNAs under stress conditions. During viral infection, SG formation results in the modulation of innate antiviral immune responses, and several viruses have the ability to either promote or prevent SG assembly. Here, we show that rabies virus (RABV) induces SG formation in infected cells, as revealed by the detection of SG-marker proteins Ras GTPase-activating protein-binding protein 1 (G3BP1), T-cell intracellular antigen 1 (TIA-1) and poly(A)-binding protein (PABP) in the RNA granules formed during viral infection. As shown by live cell imaging, RABV-induced SGs are highly dynamic structures that increase in number, grow in size by fusion events, and undergo assembly/disassembly cycles. Some SGs localize in close proximity to cytoplasmic viral factories, known as Negri bodies (NBs). Three dimensional reconstructions reveal that both structures remain distinct even when they are in close contact. In addition, viral mRNAs synthesized in NBs accumulate in the SGs during viral infection, revealing material exchange between both compartments. Although RABV-induced SG formation is not affected in MEFs lacking TIA-1, TIA-1 depletion promotes viral translation which results in an increase of viral replication indicating that TIA-1 has an antiviral effect. Inhibition of PKR expression significantly prevents RABV-SG formation and favors viral replication by increasing viral translation. This is correlated with a drastic inhibition of IFN-B gene expression indicating that SGs likely mediate an antiviral response which is however not sufficient to fully counteract RABV infection. PMID:27749929

  14. Filariae-Retrovirus Co-infection in Mice is Associated with Suppressed Virus-Specific IgG Immune Response and Higher Viral Loads

    PubMed Central

    Dietze, Kirsten Katrin; Dittmer, Ulf; Koudaimi, Daniel Karim; Schimmer, Simone; Reitz, Martina

    2016-01-01

    Worldwide more than 2 billion people are infected with helminths, predominantly in developing countries. Co-infections with viruses such as human immunodeficiency virus (HIV) are common due to the geographical overlap of these pathogens. Helminth and viral infections induce antagonistic cytokine responses in their hosts. Helminths shift the immune system to a type 2-dominated immune response, while viral infections skew the cytokine response towards a type 1 immune response. Moreover, chronic helminth infections are often associated with a generalized suppression of the immune system leading to prolonged parasite survival, and also to a reduced defence against unrelated pathogens. To test whether helminths affect the outcome of a viral infection we set up a filarial/retrovirus co-infection model in C57BL/6 mice. Although Friend virus (FV) infection altered the L. sigmodontis-specific immunoglobulin response towards a type I associated IgG2 isotype in co-infected mice, control of L. sigmodontis infection was not affected by a FV-superinfection. However, reciprocal control of FV infection was clearly impaired by concurrent L. sigmodontis infection. Spleen weight as an indicator of pathology and viral loads in spleen, lymph nodes (LN) and bone marrow (BM) were increased in L. sigmodontis/FV-co-infected mice compared to only FV-infected mice. Numbers of FV-specific CD8+ T cells as well as cytokine production by CD4+ and CD8+ cells were alike in co-infected and FV-infected mice. Increased viral loads in co-infected mice were associated with reduced titres of neutralising FV-specific IgG2b and IgG2c antibodies. In summary our findings suggest that helminth infection interfered with the control of retroviral infection by dampening the virus-specific neutralising antibody response. PMID:27923052

  15. Experimental infection of pregnant goats with bovine viral diarrhea virus (BVDV)1 or 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections with bovine viral diarrhea virus (BVDV) of the genus pestivirus, family Flaviviridae, are not limited to cattle but occur in various artiodactyls. Persistently infected (PI) cattle are the main source of BVDV. Persistent infections also occur in heterologous hosts such as sheep and deer. ...

  16. Epidemiology and prevention of pediatric viral respiratory infections in health-care institutions.

    PubMed Central

    Goldmann, D. A.

    2001-01-01

    Nosocomial viral respiratory infections cause considerable illness and death on pediatric wards. Common causes of these infections include respiratory syncytial virus and influenza. Although primarily a community pathogen, rhinovirus also occasionally results in hospitalization and serious sequelae. This article reviews effective infection control interventions for these three pathogens, as well as ongoing controversies. PMID:11294717

  17. Prevalence and incidence of bloodborne viral infections among Danish prisoners.

    PubMed

    Christensen, P B; Krarup, H B; Niesters, H G; Norder, H; Georgsen, J

    2000-01-01

    In order to determine the prevalence and incidence of bloodborne viral infections among prisoners, we conducted a prospective study in a Danish medium security prison for males. The prisoners were offered an interview and blood test for hepatitis and human immunodeficiency virus HIV at inclusion as well as at release from prison or end of study. Of 403 prisoners available 325 (79%) participated in the initial survey and for 142 (44%) a follow-up test was available. 43% (140/325) of the participants were injecting drug users (IDUs) of whom 64% were positive for hepatitis B (HBV) and 87% for hepatitis C (HCV) markers. No cases of HIV or human T lymphotropic virus (HTLV) were found. 32% of all prisoners could transmit HBV and/or HCV by blood contact. 70% of IDUs had shared injecting equipment, and 60% had injected inside prison. Only 2% of IDUs were vaccinated against HBV. Duration of injecting drug use, numbers of imprisonments, and injecting in prison were independently and positively associated with the presence of HBV antibodies among IDUs by logistic regression analysis. The HBV incidence was 16/100 PY (95% CI: 2-56/100 PY) and the HCV incidence 25/100 PY (1-140) among injecting drug users (IDUs). We conclude that IDUs in prison have an incidence of hepatitis B and C 100 times higher than reported in the general Danish population. They should be vaccinated against hepatitis B and new initiatives to stop sharing of injecting equipment in and outside prison is urgently needed.

  18. Peripheral immunophenotype and viral promoter variants during the asymptomatic phase of feline immunodeficiency virus infection

    PubMed Central

    Murphy, B.; Hillman, C.; McDonnel, S.

    2014-01-01

    Feline immunodeficiency virus (FIV)-infected cats enter a clinically asymptomatic phase during chronic infection. Despite the lack of overt clinical disease, the asymptomatic phase is characterized by persistent immunologic impairment. In the peripheral blood obtained from cats experimentally infected with FIV-C for approximately 5 years, we identified a persistent inversion of the CD4/CD8 ratio. We cloned and sequenced the FIV-C long terminal repeat containing the viral promoter from cells infected with the inoculating virus and from in vivo-derived peripheral blood mononuclear cells and CD4 T cells isolated at multiple time points throughout the asymptomatic phase. Relative to the inoculating virus, viral sequences amplified from cells isolated from all of the infected animals demonstrated multiple single nucleotide mutations and a short deletion within the viral U3, R and U5 regions. A transcriptionally inactivating proviral mutation in the U3 promoter AP-1 site was identified at multiple time points from all of the infected animals but not within cell-associated viral RNA. In contrast, no mutations were identified within the sequence of the viral dUTPase gene amplified from PBMC isolated at approximately 5 years post-infection relative to the inoculating sequence. The possible implications of these mutations to viral pathogenesis are discussed. PMID:24291288

  19. Immune and Viral Correlates of “Secondary Viral Control” after Treatment Interruption in Chronically HIV-1 Infected Patients

    PubMed Central

    Van Gulck, Ellen; Bracke, Lotte; Heyndrickx, Leo; Coppens, Sandra; Atkinson, Derek; Merlin, Céline; Pasternak, Alexander; Florence, Eric; Vanham, Guido

    2012-01-01

    Upon interruption of antiretroviral therapy, HIV-infected patients usually show viral load rebound to pre-treatment levels. Four patients, hereafter referred to as secondary controllers (SC), were identified who initiated therapy during chronic infection and, after stopping treatment, could control virus replication at undetectable levels for more than six months. In the present study we set out to unravel possible viral and immune parameters or mechanisms of this phenomenon by comparing secondary controllers with elite controllers and non-controllers, including patients under HAART. As candidate correlates of protection, virus growth kinetics, levels of intracellular viral markers, several aspects of HIV-specific CD4+ and CD8+ T cell function and HIV neutralizing antibodies were investigated. As expected all intracellular viral markers were lower in aviremic as compared to viremic subjects, but in addition both elite and secondary controllers had lower levels of viral unspliced RNA in PBMC as compared to patients on HAART. Ex vivo cultivation of the virus from CD4+ T cells of SC consistently failed in one patient and showed delayed kinetics in the three others. Formal in vitro replication studies of these three viruses showed low to absent growth in two cases and a virus with normal fitness in the third case. T cell responses toward HIV peptides, evaluated in IFN-γ ELISPOT, revealed no significant differences in breadth, magnitude or avidity between SC and all other patient groups. Neither was there a difference in polyfunctionality of CD4+ or CD8+ T cells, as evaluated with intracellular cytokine staining. However, secondary and elite controllers showed higher proliferative responses to Gag and Pol peptides. SC also showed the highest level of autologous neutralizing antibodies. These data suggest that higher T cell proliferative responses and lower replication kinetics might be instrumental in secondary viral control in the absence of treatment. PMID:22666392

  20. Temporal effect of HLA-B*57 on viral control during primary HIV-1 infection

    PubMed Central

    2013-01-01

    Background HLA-B alleles are associated with viral control in chronic HIV-1 infection, however, their role in primary HIV-1 disease is unclear. This study sought to determine the role of HLA-B alleles in viral control during the acute phase of HIV-1 infection and establishment of the early viral load set point (VLSP). Findings Individuals identified during primary HIV-1 infection were HLA class I typed and followed longitudinally. Associations between HLA-B alleles and HIV-1 viral replication during acute infection and VLSP were analyzed in untreated subjects. The results showed that neither HLA-B*57 nor HLA-B*27 were significantly associated with viral control during acute HIV-1 infection (Fiebig stage I-IV, n=171). HLA-B*57 was however significantly associated with a subsequent lower VLSP (p<0.001, n=135) with nearly 1 log10 less median viral load. Analysis of a known polymorphism at position 97 of HLA-B showed significant associations with both lower initial viral load (p<0.01) and lower VLSP (p<0.05). However, this association was dependent on different amino acids at this position for each endpoint. Conclusions The effect of HLA-B*57 on viral control is more pronounced during the later stages of primary HIV-1 infection, which suggests the underlying mechanism of control occurs at a critical period in the first several months after HIV-1 acquisition. The risk profile of polymorphisms at position 97 of HLA-B are more broadly associated with HIV-1 viral load during primary infection and may serve as a focal point in further studies of HLA-B function. PMID:24245727

  1. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection.

    PubMed

    He, Ran; Hou, Shiyue; Liu, Cheng; Zhang, Anli; Bai, Qiang; Han, Miao; Yang, Yu; Wei, Gang; Shen, Ting; Yang, Xinxin; Xu, Lifan; Chen, Xiangyu; Hao, Yaxing; Wang, Pengcheng; Zhu, Chuhong; Ou, Juanjuan; Liang, Houjie; Ni, Ting; Zhang, Xiaoyan; Zhou, Xinyuan; Deng, Kai; Chen, Yaokai; Luo, Yadong; Xu, Jianqing; Qi, Hai; Wu, Yuzhang; Ye, Lilin

    2016-08-02

    During chronic viral infection, virus-specific CD8(+) T cells become exhausted, exhibit poor effector function and lose memory potential. However, exhausted CD8(+) T cells can still contain viral replication in chronic infections, although the mechanism of this containment is largely unknown. Here we show that a subset of exhausted CD8(+) T cells expressing the chemokine receptor CXCR5 has a critical role in the control of viral replication in mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). These CXCR5(+) CD8(+) T cells were able to migrate into B-cell follicles, expressed lower levels of inhibitory receptors and exhibited more potent cytotoxicity than the CXCR5(-) [corrected] subset. Furthermore, we identified the Id2-E2A signalling axis as an important regulator of the generation of this subset. In patients with HIV, we also identified a virus-specific CXCR5(+) CD8(+) T-cell subset, and its number was inversely correlated with viral load. The CXCR5(+) subset showed greater therapeutic potential than the CXCR5(-) [corrected] subset when adoptively transferred to chronically infected mice, and exhibited synergistic reduction of viral load when combined with anti-PD-L1 treatment. This study defines a unique subset of exhausted CD8(+) T cells that has a pivotal role in the control of viral replication during chronic viral infection.

  2. Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV).

    PubMed

    Cho, Hyun Kook; Kim, Julan; Moon, Ji Young; Nam, Bo-Hye; Kim, Young-Ok; Kim, Woo-Jin; Park, Jung Youn; An, Cheul Min; Cheong, Jaehun; Kong, Hee Jeong

    2016-02-01

    The most fatal viral pathogen in olive flounder Paralichthys olivaceus, is viral hemorrhagic septicemia virus, which afflicts over 48 species of freshwater and marine fish. Here, we performed gene expression profiling on transcripts isolated from VHSV-infected olive flounder livers using a 13 K cDNA microarray chip. A total of 1832 and 1647 genes were upregulated and down-regulated over two-fold, respectively, after infection. A variety of immune-related genes showing significant changes in gene expression were identified in upregulated genes through gene ontology annotation. These genes were grouped into categories such as antibacterial peptide, antigen-recognition and adhesion molecules, apoptosis, cytokine-related pathway, immune system, stress response, and transcription factor and regulatory factors. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to the microarray data. In conclusion, these results may be useful for the identification of specific genes or for the diagnosis of VHSV infection in flounder.

  3. About Training and Memory: NK-Cell Adaptation to Viral Infections.

    PubMed

    Hammer, Q; Romagnani, C

    2017-01-01

    Viral infections continuously challenge and shape our immune system. Due to their fine antigen recognition ability, adaptive lymphocytes protect against pathogen reencounter by generating specific immunological memory. Innate cells such as macrophages also adapt to pathogen challenge and mount resistance to reinfection, a phenomenon termed trained immunity. As part of the innate immunity, natural killer (NK) cells can display rapid effector functions and play a crucial role in the control of viral infections, especially by the β-herpesvirus cytomegalovirus (CMV). CMV activates the NK-cell pool by inducing proinflammatory signals, which prime NK cells, paralleling macrophage training. In addition, CMV dramatically shapes the NK-cell repertoire due to its ability to trigger specific NK cell-activating receptors, and enables the expansion and persistence of a specific NK-cell subset displaying adaptive and memory features. In this chapter, we will discuss how different signals during CMV infection contribute to NK-cell training and acquisition of classical memory properties and how these events can impact on reinfection and cross-resistance.

  4. Cytokine and Chemokine Responses of Lung Exposed to Surrogate Viral and Bacterial Infections

    PubMed Central

    Liberati, Teresa A; Trammell, Rita A; Randle, Michelle; Barrett, Sarah; Toth, Linda A

    2013-01-01

    The use of in vitro models of complex in vivo systems has yielded many insights into the molecular mechanisms that underlie normal and pathologic physiology. However although the reduced complexity of these models is advantageous with regard to some research questions, the simplification may obscure or eliminate key influences that occur in vivo. We sought to examine this possibility with regard to the lung's response to infection, which may be inherent to resident lung cells or related to the systemic response to pulmonary infection. We used the inbred mouse strains C57BL/6J, DBA/2J, and B6.129S2-IL6tm1Kopf, which differ in their response to inflammatory and infectious challenges, to assess in vivo responses of lung to surrogate viral and bacterial infection and compared these with responses of cultured lung slices and human A549 cells. Pulmonary cytokine concentrations were measured both after in vivo inoculation of mice and in vitro exposure of lung slices and A549 cells to surrogate viral and bacterial infections. The data indicate similarities and differences in early lung responses to in vivo compared with in vitro exposure to these inflammatory substances. Therefore, resident cells in the lung appear to respond to some challenges in a strain-independent manner, whereas some stimuli may elicit recruitment of peripheral inflammatory cells that generate the subsequent response in a genotype-related manner. These results add to the body of information pointing to host genotype as a crucial factor in mediating the severity of microbial infections and demonstrate that some of these effects may not be apparent in vitro. PMID:23582418

  5. Human parainfluenza virus infection of the airway epithelium: viral hemagglutinin-neuraminidase regulates fusion protein activation and modulates infectivity.

    PubMed

    Palermo, Laura M; Porotto, Matteo; Yokoyama, Christine C; Palmer, Samantha G; Mungall, Bruce A; Greengard, Olga; Niewiesk, Stefan; Moscona, Anne

    2009-07-01

    Three discrete activities of the paramyxovirus hemagglutinin-neuraminidase (HN) protein, receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein, each affect the promotion of viral fusion and entry. For human parainfluenza virus type 3 (HPIV3), the effects of specific mutations that alter these functions of the receptor-binding protein have been well characterized using cultured monolayer cells, which have identified steps that are potentially relevant to pathogenesis. In the present study, proposed mechanisms that are relevant to pathogenesis were tested in natural host cell cultures, a model of the human airway epithelium (HAE) in which primary HAE cells are cultured at an air-liquid interface and retain functional properties. Infection of HAE cells with wild-type HPIV3 and variant viruses closely reflects that seen in an animal model, the cotton rat, suggesting that HAE cells provide an ideal system for assessing the interplay of host cell and viral factors in pathogenesis and for screening for inhibitory molecules that would be effective in vivo. Both HN's receptor avidity and the function and timing of F activation by HN require a critical balance for the establishment of ongoing infection in the HAE, and these HN functions independently modulate the production of active virions. Alterations in HN's F-triggering function lead to the release of noninfectious viral particles and a failure of the virus to spread. The finding that the dysregulation of F triggering prohibits successful infection in HAE cells suggests that antiviral strategies targeted to HN's F-triggering activity may have promise in vivo.

  6. Effect of sodium butyrate on induction of cellular and viral DNA syntheses in polyoma virus-infected mouse kidney cells.

    PubMed Central

    Wawra, E; Pöckl, E; Müllner, E; Wintersberger, E

    1981-01-01

    Sodium butyrate inhibited initiation of viral and cellular DNA replication in polyoma virus-infected mouse kidney cells. Ongoing viral or cellular DNA replication, however, was not affected by the presence of the substance. Butyrate had no effect on T-antigen synthesis and on the stimulation of transcription, one of the earliest reactions of the infected cells to the appearance of T-antigen, nor did it inhibit expression of late viral genes (synthesis of viral capsid proteins). In addition to blocking the onset of DNA synthesis, butyrate also inhibited stimulation of the activities of enzymes involved in DNA synthesis. When butyrate was removed, viral and cellular DNA syntheses were induced in parallel after a lag period of approximately 4 h. At the same time, the activities of enzymes involved in DNA synthesis increase. If protein synthesis was inhibited during part of the lag period, the initiation of DNA synthesis was retarded for the same time interval, suggesting that the proteins involved in the initiation of DNA replication had to be made. We have developed an in vitro system for measuring DNA synthesis in crude nuclear preparations which mimics the status of DNA replication in intact cells and may help in future experiments to study the requirements for initiation of cellular and viral DNA synthesis and the possible involvement of T-antigens in this reaction. Images PMID:6264167

  7. Impact of cell regeneration in human respiratory tract on simultaneous viral infections

    NASA Astrophysics Data System (ADS)

    Pinky, Lubna Jahan Rashid; Dobrovolny, Hana

    2015-03-01

    Studies have found that ~ 40% of patients hospitalized with influenza-like illness are infected with at least two different viruses. In these longer infections, we need to consider the role of cell regeneration. Several mathematical models have been used to describe cell regeneration in infection models, though the effect of model choice on the predicted time course of simultaneous viral infections is not clear. We investigate a series of mathematical models of cell regeneration during simultaneous respiratory virus infections to determine the effect of cell regeneration on infection dynamics. We perform a nonlinear stability analysis for each model. The analysis suggests that coexistence of two viral species is not possible for any form of regeneration. We find that chronic illness is possible, but with only one viral species.

  8. Viral bacterial co-infection of the respiratory tract during early childhood.

    PubMed

    Brealey, Jaelle C; Sly, Peter D; Young, Paul R; Chappell, Keith J

    2015-05-01

    Acute respiratory infection (ARI) is an important cause of morbidity in children. Mixed aetiology is frequent, with pathogenic viruses and bacteria co-detected in respiratory secretions. However, the clinical significance of these viral/bacterial co-infections has long been a controversial topic. While severe bacterial pneumonia following influenza infection has been well described, associations are less clear among infections caused by viruses that are more common in young children, such as respiratory syncytial virus. Although assessing the overall contribution of bacteria to disease severity is complicated by the presence of many confounding factors in clinical studies, understanding the role of viral/bacterial co-infections in defining the outcome of paediatric ARI will potentially reveal novel treatment and prevention strategies, improving patient outcomes. This review summarizes current evidence for the clinical significance of respiratory viral/bacterial co-infections in young children, discusses possible mechanisms of cooperative interaction between these pathogens and highlights areas that require further investigation.

  9. Macrophage Polarization in AIDS: Dynamic Interface between Anti-Viral and Anti-Inflammatory Macrophages during Acute and Chronic Infection.

    PubMed

    Burdo, Tricia H; Walker, Joshua; Williams, Kenneth C

    2015-06-01

    Monocyte and macrophage inflammation in parenchymal tissues during acute and chronic HIV and SIV infection plays a role in early anti-viral immune responses and later in restorative responses. Macrophage polarization is observed in such responses in the central nervous system (CNS) and the heart and cardiac vessels that suggest early responses are M1 type antiviral responses, and later responses favor M2 restorative responses. Macrophage polarization is unique to different tissues and is likely dictated as much by the local microenvironment as well as other inflammatory cells involved in the viral responses. Such polarization is found in HIV infected humans, and the SIV infected animal model of AIDS, and occurs even with effective anti-retroviral therapy. Therapies that directly target macrophage polarization in HIV infection have recently been implemented, as have therapies to directly block traffic and accumulation of macrophages in tissues.

  10. Cleavage of Grb2-Associated Binding Protein 2 by Viral Proteinase 2A during Coxsackievirus Infection

    PubMed Central

    Deng, Haoyu; Fung, Gabriel; Qiu, Ye; Wang, Chen; Zhang, Jingchun; Jin, Zheng-Gen; Luo, Honglin

    2017-01-01

    Coxsackievirus type B3 (CV-B3), an enterovirus associated with the pathogenesis of several human diseases, subverts, or employs the host intracellular signaling pathways to support effective viral infection. We have previously demonstrated that Grb2-associated binding protein 1 (GAB1), a signaling adaptor protein that serves as a platform for intracellular signaling assembly and transduction, is cleaved upon CV-B3 infection, resulting in a gain-of-pro-viral-function via the modification of GAB1-mediated ERK1/2 pathway. GAB2 is a mammalian homolog of GAB1. In this study, we aim to address whether GAB2 plays a synergistic role with GAB1 in the regulation of CV-B3 replication. Here, we reported that GAB2 is also a target of CV-B3-encoded viral proteinase. We showed that GAB2 is cleaved at G238 during CV-B3 infection by viral proteinase 2A, generating two cleaved fragments of GAB2-N1−237 and GAB2-C238−676. Moreover, knockdown of GAB2 significantly inhibits the synthesis of viral protein and subsequent viral progeny production, accompanied by reduced levels of phosphorylated p38, suggesting a pro-viral function for GAB2 linked to p38 activation. Finally, we examined whether the cleavage of GAB2 can promote viral replication as observed for GAB1 cleavage. We showed that expression of neither GAB2-N1−237 nor GAB2-C238−676 results in enhanced viral infectivity, indicating a loss-of-function, rather than a gain-of-function of GAB2 cleavage in mediating virus replication. Taken together, our findings in this study suggest a novel host defense machinery through which CV-B3 infection is limited by the cleavage of a pro-viral protein. PMID:28361043

  11. Who Regulates Whom? An Overview of RNA Granules and Viral Infections.

    PubMed

    Poblete-Durán, Natalia; Prades-Pérez, Yara; Vera-Otarola, Jorge; Soto-Rifo, Ricardo; Valiente-Echeverría, Fernando

    2016-06-28

    After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs).

  12. How does viral DNA find the nucleus of an infected cell?

    PubMed Central

    Widulle, Herbert

    2012-01-01

    If all locations of a living cell would have the same chemical potential, most viral infections of a cell should be abortive, even after the a penetration of the cell wall by the viral DNA-polymer or viral RNA-polymer occurred. This is obviously not the case. Therefore, there must be a mechanism which transports a viral DNA-polymer from the cell wall to the nucleus and not to any other location. A possible mechanism is proposed which is in accordance with biophysical chemistry. The presented description of the mechanism uses non equilibrium thermodynamics to find a simple solution for the problem. PMID:22558035

  13. Who Regulates Whom? An Overview of RNA Granules and Viral Infections

    PubMed Central

    Poblete-Durán, Natalia; Prades-Pérez, Yara; Vera-Otarola, Jorge; Soto-Rifo, Ricardo; Valiente-Echeverría, Fernando

    2016-01-01

    After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs). PMID:27367717

  14. Viral Load and CD4+ T-Cell Dynamics in Primary HIV-1 Subtype C Infection

    PubMed Central

    Novitsky, Vladimir; Woldegabriel, Elias; Kebaabetswe, Lemme; Rossenkhan, Raabya; Mlotshwa, Busisiwe; Bonney, Caitlin; Finucane, Mariel; Musonda, Rosemary; Moyo, Sikhulile; Wester, Carolyn; van Widenfelt, Erik; Makhema, Joseph; Lagakos, Stephen; Essex, M.

    2009-01-01

    Background Most knowledge of primary HIV-1 infection is based on subtype B studies, whereas the evolution of viral parameters in the early phase of HIV-1 subtype C infection is not well characterized. Methods The kinetics of viral RNA, proviral DNA, CD4+ T-cell count, and subsets of CD4+ T cells expressing CCR5 or CXCR4 were characterized in 8 acute and 62 recent subtype C infections over the first year postseroconversion. Results The viral RNA peak was 6.25 ± 0.92 log10 copies per milliliter. After seroconversion, heterogeneity among acute cases was evident by patterns of change in viral load and CD4+ T-cell count over time. The patterns were supported by the rate of viral RNA decline from peak (P = 0.022), viral RNA means (P = 0.005), CD4 levels (P <0.001), and CD4 decline to 350 (P = 0.011) or 200 (P = 0.046). Proviral DNA had no apparent peak and its mean was 2.59 ± 0.69 log10 per 106 peripheral blood mononuclear cell. In recent infections, viral RNA set point was 4.00 ± 0.97 log10 and viral RNA correlated inversely with CD4+ T cells (P <0.001) and directly with proviral DNA (P <0.001). Conclusions Distinct patterns of viral RNA evolution may exist shortly after seroconversion in HIV-1 subtype C infection. The study provides better understanding of the early phase of subtype C infection. PMID:19295336

  15. Sperm viral infection and male infertility: focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV.

    PubMed

    Garolla, Andrea; Pizzol, Damiano; Bertoldo, Alessandro; Menegazzo, Massimo; Barzon, Luisa; Foresta, Carlo

    2013-11-01

    Chronic viral infections can infect sperm and are considered a risk factor in male infertility. Recent studies have shown that the presence of HIV, HBV or HCV in semen impairs sperm parameters, DNA integrity, and in particular reduces forward motility. In contrast, very little is known about semen infection with human papillomaviruses (HPV), herpesviruses (HSV), cytomegalovirus (HCMV), and adeno-associated virus (AAV). At present, EU directives for the viral screening of couples undergoing assisted reproduction techniques require only the evaluation of HIV, HBV, and HCV. However, growing evidence suggests that HPV, HSV, and HCMV might play a major role in male infertility and it has been demonstrated that HPV semen infection has a negative influence on sperm parameters, fertilization, and the abortion rate. Besides the risk of horizontal or vertical transmission, the negative impact of any viral sperm infection on male reproductive function seems to be dramatic. In addition, treatment with antiviral and antiretroviral therapies may further affect sperm parameters. In this review we attempted to focus on the interactions between defined sperm viral infections and their association with male fertility disorders. All viruses considered in this article have a potentially negative effect on male reproductive function and dangerous infections can be transmitted to partners and newborns. In light of this evidence, we suggest performing targeted sperm washing procedures for each sperm infection and to strongly consider screening male patients seeking fertility for HPV, HSV, and HCMV, both to avoid viral transmission and to improve assisted or even spontaneous fertility outcome.

  16. Prophylaxis and therapy of viral infections in pediatric patients treated for malignancy

    PubMed Central

    Licciardello, Maria; Pegoraro, Anna; Cesaro, Simone

    2011-01-01

    Infections are still an important cause of mortality and morbidity in pediatric cancer patients. Most of the febrile episodes in immunocompromised patients are classified as a fever of unknown origin (FUO) while bacteria are the more frequent causes of documented infections. Viral infections are also feared during chemotherapy but less data are available on their incidence and morbidity. We reviewed the literature on incidence, morbidity, and mortality of viral infections in children undergoing chemotherapy and discussed the evidence concerning the prophylaxis and the therapy. PMID:21647278

  17. Prophylaxis and therapy of viral infections in pediatric patients treated for malignancy.

    PubMed

    Licciardello, Maria; Pegoraro, Anna; Cesaro, Simone

    2011-02-24

    Infections are still an important cause of mortality and morbidity in pediatric cancer patients. Most of the febrile episodes in immunocompromised patients are classified as a fever of unknown origin (FUO) while bacteria are the more frequent causes of documented infections. Viral infections are also feared during chemotherapy but less data are available on their incidence and morbidity. We reviewed the literature on incidence, morbidity, and mortality of viral infections in children undergoing chemotherapy and discussed the evidence concerning the prophylaxis and the therapy.

  18. Coral Mucus Is a Hot Spot for Viral Infections

    PubMed Central

    Nguyen-Kim, Hanh; Bouvier, Thierry; Bouvier, Corinne; Doan-Nhu, Hai; Nguyen-Ngoc, Lam; Nguyen-Thanh, Thuy; Tran-Quang, Huy; Brune, Justine

    2015-01-01

    There is increasing suspicion that viral communities play a pivotal role in maintaining coral health, yet their main ecological traits still remain poorly characterized. In this study, we examined the seasonal distribution and reproduction pathways of viruses inhabiting the mucus of the scleractinians Fungia repanda and Acropora formosa collected in Nha Trang Bay (Vietnam) during an 11-month survey. The strong coupling between epibiotic viral and bacterial abundance suggested that phages are dominant among coral-associated viral communities. Mucosal viruses also exhibited significant differences in their main features between the two coral species and were also remarkably contrasted with their planktonic counterparts. For example, their abundance (inferred from epifluorescence counts), lytic production rates (KCN incubations), and the proportion of lysogenic cells (mitomycin C inductions) were, respectively, 2.6-, 9.5-, and 2.2-fold higher in mucus than in the surrounding water. Both lytic and lysogenic indicators were tightly coupled with temperature and salinity, suggesting that the life strategy of viral epibionts is strongly dependent upon environmental circumstances. Finally, our results suggest that coral mucus may represent a highly favorable habitat for viral proliferation, promoting the development of both temperate and virulent phages. Here, we discuss how such an optimized viral arsenal could be crucial for coral viability by presumably forging complex links with both symbiotic and adjacent nonsymbiotic microorganisms. PMID:26092456

  19. Late onset cytopenias following haematopoietic stem cell transplant associated with viral infection and cell specific antibodies.

    PubMed

    Lucas, Geoff; Culliford, Steven; Bendukidze, Nina; Dahlstrom, Julia; Grandage, Victoria; Carpenter, Ben; Hough, Rachael

    2017-02-04

    This report describes a patient who received an allogeneic haematopoietic stem cell transplant and who, following a viral infection, developed late onset cytopenias associated with antibodies against red cells, platelets and granulocytes. Investigation of these cytopenias revealed the presence of lineage specific auto- and allo-antibodies, which were not present in either the donor or in the recipient prior to the viral infection. This case provides further evidence for the concept that viral challenges following HSCT can result in the production of cell specific antibodies that can have significant implications for patient management.

  20. In Vivo Analysis of Infectivity, Fusogenicity, and Incorporation of a Mutagenic Viral Glycoprotein Library Reveals Determinants for Virus Incorporation

    PubMed Central

    Salamango, Daniel J.; Alam, Khalid K.; Burke, Donald H.

    2016-01-01

    ABSTRACT Enveloped viruses utilize transmembrane surface glycoproteins to gain entry into target cells. Glycoproteins from diverse viral families can be incorporated into nonnative viral particles in a process termed pseudotyping; however, the molecular mechanisms governing acquisition of these glycoproteins are poorly understood. For murine leukemia virus envelope (MLV Env) glycoprotein, incorporation into foreign viral particles has been shown to be an active process, but it does not appear to be caused by direct interactions among viral proteins. In this study, we coupled in vivo selection systems with Illumina next-generation sequencing (NGS) to test hundreds of thousands of MLV Env mutants for the ability to be enriched in viral particles and to perform other glycoprotein functions. NGS analyses on a subset of these mutants predicted that the residues important for incorporation are in the membrane-proximal external region (MPER), particularly W127 and W137, and the residues in the membrane-spanning domain (MSD) and also immediately flanking it (T140 to L163). These predictions were validated by directly measuring the impact of mutations in these regions on fusogenicity, infectivity, and incorporation. We suggest that these two regions dictate pseudotyping through interactions with specific lipid environments formed during viral assembly. IMPORTANCE Researchers from numerous fields routinely exploit the ability to manipulate viral tropism by swapping viral surface proteins. However, this process, termed pseudotyping, is poorly understood at the molecular level. For murine leukemia virus envelope (MLV Env) glycoprotein, incorporation into foreign viral particles is an active process, but it does not appear to occur through direct viral protein-protein interactions. In this study, we tested hundreds of thousands of MLV Env mutants for the ability to be enriched in viral particles as well as perform other glycoprotein functions. Our analyses on a subset of these

  1. Acute transverse myelitis and subacute thyroiditis associated with dengue viral infection: A case report and literature review

    PubMed Central

    Mo, Zhiming; Dong, Yaxian; Chen, Xiaolian; Yao, Huiyan; Zhang, Bin

    2016-01-01

    Acute transverse myelitis is a rare manifestation of dengue infection. To the best of our knowledge, only 6 cases of acute transverse myelitis as a manifestation of dengue infection have been reported thus far. The present study described a case of acute transverse myelitis complicated with subacute thyroiditis 6 days after the onset of dengue viral infection. In addition, the available literature was searched to identify similar previous cases. Treatment with intravenous pulse methylprednisolone immunoglobulin plasmapheresis and physiotherapy resulted in partial recovery at 3 months post-infection. In conclusion, the involvement of dengue infection should be considered in patients who develop central nervous system manifestations during or after the recovery period of dengue infection. Furthermore, since methylprednisolone and immunoglobulin are effective during the active phase of the infection, prompt diagnosis and initiation of treatment are crucial. PMID:27703498

  2. The V3 Loop of HIV-1 Env Determines Viral Susceptibility to IFITM3 Impairment of Viral Infectivity.

    PubMed

    Wang, Yimeng; Pan, Qinghua; Ding, Shilei; Wang, Zhen; Yu, Jingyou; Finzi, Andrés; Liu, Shan-Lu; Liang, Chen

    2017-04-01

    Interferon-inducible transmembrane proteins (IFITMs) inhibit a broad spectrum of viruses, including HIV-1. IFITM proteins deter HIV-1 entry when expressed in target cells and also impair HIV-1 infectivity when expressed in virus producer cells. However, little is known about how viruses resist IFITM inhibition. In this study, we have investigated the susceptibilities of different primary isolates of HIV-1 to the inhibition of viral infectivity by IFITMs. Our results demonstrate that the infectivity of different HIV-1 primary isolates, including transmitted founder viruses, is diminished by IFITM3 to various levels, with strain AD8-1 exhibiting strong resistance. Further mutagenesis studies revealed that HIV-1 Env, and the V3 loop sequence in particular, determines the extent of inhibition of viral infectivity by IFITM3. IFITM3-sensitive Env proteins are also more susceptible to neutralization by soluble CD4 or the 17b antibody than are IFITM3-resistant Env proteins. Together, data from our study suggest that the propensity of HIV-1 Env to sample CD4-bound-like conformations modulates viral sensitivity to IFITM3 inhibition.IMPORTANCE Results of our study have revealed the key features of the HIV-1 envelope protein that are associated with viral resistance to the IFITM3 protein. IFITM proteins are important effectors in interferon-mediated antiviral defense. A variety of viruses are inhibited by IFITMs at the virus entry step. Although it is known that envelope proteins of several different viruses resist IFITM inhibition, the detailed mechanisms are not fully understood. Taking advantage of the fact that envelope proteins of different HIV-1 strains exhibit different degrees of resistance to IFITM3 and that these HIV-1 envelope proteins share the same domain structure and similar sequences, we performed mutagenesis studies and determined the key role of the V3 loop in this viral resistance phenotype. We were also able to associate viral resistance to IFITM3

  3. Human papillomavirus type 16 viral load measurement as a predictor of infection clearance

    PubMed Central

    Schlecht, Nicolas F.; Ramanakumar, Agnihotram V.; Villa, Luisa L.; Franco, Eduardo L.

    2013-01-01

    Viral load measurements may predict whether human papillomavirus (HPV) type 16 infections may become persistent and eventually lead to cervical lesions. Today, multiple PCR methods exist to estimate viral load. We tested three protocols to investigate viral load as a predictor of HPV clearance. We measured viral load in 418 HPV16-positive cervical smears from 224 women participating in the Ludwig–McGill Cohort Study by low-stringency PCR (LS-PCR) using consensus L1 primers targeting over 40 known HPV types, and quantitative real-time PCR (qRT-PCR) targeting the HPV16 E6 and L1 genes. HPV16 clearance was determined by MY09/11 and PGMY PCR testing on repeated smears collected over 5 years. Correlation between viral load measurements by qRT-PCR (E6 versus L1) was excellent (Spearman’s rank correlation, ρ = 0.88), but decreased for L1 qRT-PCR versus LS-PCR (ρ = 0.61). Viral load by LS-PCR was higher for HPV16 and related types independently of other concurrent HPV infections. Median duration of infection was longer for smears with high copy number by all three PCR protocols (log rank P<0.05). Viral load is inversely related to HPV16 clearance independently of concurrent HPV infections and PCR protocol. PMID:23677791

  4. Consortia's critical role in developing medical countermeasures for re-emerging viral infections: a USA perspective.

    PubMed

    Everts, Maaike; Suto, Mark J; Painter, George R; Whitley, Richard J

    2016-03-01

    Viral infections, such as Ebola, severe acute respiratory syndrome/Middle East respiratory syndrome and West Nile virus have emerged as a serious health threat with no effective therapies. These infections have little commercial potential and are not a high priority for the pharmaceutical industry. However, the academic community has been active in this area for many years. The challenge is how to take this academic virology knowledge into a drug discovery and development domain. One approach is the use of consortia and public-private partnerships - this article highlights ongoing efforts in the USA. Public funds, such as those from government sources, can support research efforts that do not to appear to have commercial value. The key to success is finding a way to combine the different cultural and operational values and reward systems into a productive collaboration to identify new antivirals.

  5. Distribution of bovine viral diarrhoea virus antigen in persistently infected white-tailed deer (Odocoileus virginianus).

    PubMed

    Passler, T; Walz, H L; Ditchkoff, S S; van Santen, E; Brock, K V; Walz, P H

    2012-11-01

    Infection with bovine viral diarrhoea virus (BVDV), analogous to that occurring in cattle, is reported rarely in white-tailed deer (Odocoileus virginianus). This study evaluated the distribution of BVDV antigen in persistently infected (PI) white-tailed deer and compared the findings with those from PI cattle. Six PI fawns (four live-born and two stillborn) from does exposed experimentally to either BVDV-1 or BVDV-2 were evaluated. Distribution and intensity of antigen expression in tissues was evaluated by immunohistochemistry. Data were analyzed in binary fashion with a proportional odds model. Viral antigen was distributed widely and was present in all 11 organ systems. Hepatobiliary, integumentary and reproductive systems were respectively 11.8, 15.4 and 21.6 times more likely to have higher antigen scores than the musculoskeletal system. Pronounced labelling occurred in epithelial tissues, which were 1.9-3.0 times likelier than other tissues to contain BVDV antigen. Antigen was present in >90% of samples of liver and skin, suggesting that skin biopsy samples are appropriate for BVDV diagnosis. Moderate to severe lymphoid depletion was detected and may hamper reliable detection of BVDV in lymphoid organs. Muscle tissue contained little antigen, except for in the cardiovascular system. Antigen was present infrequently in connective tissues. In nervous tissues, antigen expression frequency was 0.3-0.67. In the central nervous system (CNS), antigen was present in neurons and non-neuronal cells, including microglia, emphasizing that the CNS is a primary target for fetal BVDV infection. BVDV antigen distribution in PI white-tailed deer is similar to that in PI cattle.

  6. Dynamics of the Cytotoxic T Cell Response to a Model of Acute Viral Infection

    PubMed Central

    DeWitt, William S.; Emerson, Ryan O.; Lindau, Paul; Vignali, Marissa; Snyder, Thomas M.; Desmarais, Cindy; Sanders, Catherine; Utsugi, Heidi; Warren, Edus H.; McElrath, Juliana; Makar, Karen W.; Wald, Anna

    2015-01-01

    ABSTRACT A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8+ T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8+ T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼2,000 CD8+ T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. IMPORTANCE The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we

  7. Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9

    PubMed Central

    Chou, Yi-ying; Krupp, Annabel; Kaynor, Campbell; Gaudin, Raphaël; Ma, Minghe; Cahir-McFarland, Ellen; Kirchhausen, Tom

    2016-01-01

    Progressive multifocal leukoencephalopathy (PML) is a debilitating disease resulting from infection of oligodendrocytes by the JC polyomavirus (JCPyV). Currently, there is no anti-viral therapeutic available against JCPyV infection. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system (CRISPR/Cas9) is a genome editing tool capable of introducing sequence specific breaks in double stranded DNA. Here we show that the CRISPR/Cas9 system can restrict the JCPyV life cycle in cultured cells. We utilized CRISPR/Cas9 to target the noncoding control region and the late gene open reading frame of the JCPyV genome. We found significant inhibition of virus replication and viral protein expression in cells recipient of Cas9 together with JCPyV-specific single-guide RNA delivered prior to or after JCPyV infection. PMID:27841295

  8. Limiting influenza virus, HIV and dengue virus infection by targeting viral proteostasis

    PubMed Central

    Heaton, Nicholas S.; Moshkina, Natasha; Fenouil, Romain; Gardner, Thomas J.; Aguirre, Sebastian; Shah, Priya S.; Zhao, Nan; Manganaro, Lara; Hultquist, Judd; Noel, Justine; Sachs, David; Hamilton, Jennifer; Leon, Paul E.; Chawdury, Amit; Tripathy, Shashank; Melegari, Camilla; Campisi, Laura; Hai, Rong; Metreveli, Giorgi; Gamarnik, Andrea V.; García-Sastre, Adolfo; Greenbaum, Benjamin; Simon, Viviana; Fernandez-Sesma, Ana; Krogan, Nevan; Mulder, Lubbertus C.F.; van Bakel, Harm; Tortorella, Domenico; Taunton, Jack; Palese, Peter; Marazzi, Ivan

    2016-01-01

    Viruses are obligate parasites as they require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy to suppress viral replication and a potential pan antiviral therapy. To define the cellular proteins and processes required for a virus during infection is thus crucial to understanding the mechanisms of virally induced disease. In this report, we generated fully infectious tagged influenza viruses and used infection-based proteomics to identify pivotal arms of cellular signaling required for influenza virus growth and infectivity. Using mathematical modeling, genetic, and pharmacologic approaches, we revealed that modulation of Sec61-mediated cotranslational translocation selectively impaired glycoprotein proteostasis of influenza as well as HIV and dengue viruses, and led to inhibition of viral growth and infectivity. Thus, by studying virus-human protein-protein interactions in the context of active replication we have identified targetable host factors for broad-spectrum antiviral therapies. PMID:26789921

  9. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    PubMed

    Rainey, Stephanie M; Martinez, Julien; McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A; Jiggins, Francis M; Kohl, Alain

    2016-04-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  10. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways

    PubMed Central

    McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A.; Jiggins, Francis M.; Kohl, Alain

    2016-01-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3´ open reading frame than the 5´ non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia’s antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  11. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection.

    PubMed

    Yang, Qian; Zhang, Qiong; Tang, Jun; Feng, Wen-Hai

    2015-10-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) represents a significantly economical challenge to the swine industry worldwide. In this study, we investigated the importance of cellular and viral lipid rafts in PRRSV infection. First, we demonstrated that PRRSV glycoproteins, Gp3 and Gp4, were associated with lipid rafts during viral entry, and disruption of cellular lipid rafts inhibited PRRSV entry. We also showed the raft-location of CD163, which might contribute to the glycoproteins-raft association. Subsequently, raft disruption caused a significant reduction of viral RNA production. Moreover, Nsp9 was shown to be distributed in rafts, suggesting that rafts probably serve as a platform for PRRSV replication. Finally, we confirmed that disassembly of rafts on the virus envelope may affect the integrity of PRRSV particles and cause the leakage of viral proteins, which impaired PRRSV infectivity. These findings might provide insights on our understanding of the mechanism of PRRSV infection.

  12. Deciphering Multiplicity of HIV-1C Infection: Transmission of Closely Related Multiple Viral Lineages

    PubMed Central

    Novitsky, Vlad; Moyo, Sikhulile; Wang, Rui; Gaseitsiwe, Simani; Essex, M.

    2016-01-01

    Background A single viral variant is transmitted in the majority of HIV infections. However, about 20% of heterosexually transmitted HIV infections are caused by multiple viral variants. Detection of transmitted HIV variants is not trivial, as it involves analysis of multiple viral sequences representing intra-host HIV-1 quasispecies. Methodology We distinguish two types of multiple virus transmission in HIV infection: (1) HIV transmission from the same source, and (2) transmission from different sources. Viral sequences representing intra-host quasispecies in a longitudinally sampled cohort of 42 individuals with primary HIV-1C infection in Botswana were generated by single-genome amplification and sequencing and spanned the V1C5 region of HIV-1C env gp120. The Maximum Likelihood phylogeny and distribution of pairwise raw distances were assessed at each sampling time point (n = 217; 42 patients; median 5 (IQR: 4–6) time points per patient, range 2–12 time points per patient). Results Transmission of multiple viral variants from the same source (likely from the partner with established HIV infection) was found in 9 out of 42 individuals (21%; 95 CI 10–37%). HIV super-infection was identified in 2 patients (5%; 95% CI 1–17%) with an estimated rate of 3.9 per 100 person-years. Transmission of multiple viruses combined with HIV super-infection at a later time point was observed in one individual. Conclusions Multiple HIV lineages transmitted from the same source produce a monophyletic clade in the inferred phylogenetic tree. Such a clade has transiently distinct sub-clusters in the early stage of HIV infection, and follows a predictable evolutionary pathway. Over time, the gap between initially distinct viral lineages fills in and initially distinct sub-clusters converge. Identification of cases with transmission of multiple viral lineages from the same source needs to be taken into account in cross-sectional estimation of HIV recency in epidemiological and

  13. Cotton Leaf Curl Multan Virus-Derived Viral Small RNAs Can Target Cotton Genes to Promote Viral Infection

    PubMed Central

    Wang, Jinyan; Tang, Yafei; Yang, Yuwen; Ma, Na; Ling, Xitie; Kan, Jialiang; He, Zifu; Zhang, Baolong

    2016-01-01

    RNA silencing is a conserved mechanism in plants that targets viruses. Viral small RNAs (vsiRNAs) can be generated from viral double-stranded RNA replicative intermediates within the infected host, or from host RNA-dependent RNA polymerases activity on viral templates. The abundance and profile of vsiRNAs in viral infections have been reported previously. However, the involvement of vsiRNAs during infection of the Geminiviridae family member cotton leaf curl virus (CLCuD), which causes significant economic losses in cotton growing regions, remains largely uncharacterized. Cotton leaf curl Multan virus (CLCuMuV) associated with a betasatellite called Cotton leaf curl Multan betasatellite (CLCuMuB) is a major constraint to cotton production in South Asia and is now established in Southern China. In this study, we obtained the profiles of vsiRNAs from CLCuMV and CLCuMB in infected upland cotton (Gossypium hirsutum) plants by deep sequencing. Our data showed that vsiRNA that were derived almost equally from sense and antisense CLCuD DNA strands accumulated preferentially as 21- and 22-nucleotide (nt) small RNA population and had a cytosine bias at the 5′-terminus. Polarity distribution revealed that vsiRNAs were almost continuously present along the CLCuD genome and hotspots of sense and antisense strands were mainly distributed in the Rep proteins region of CLCuMuV and in the C1 protein of CLCuMuB. In addition, hundreds of host transcripts targeted by vsiRNAs were predicted, many of which encode transcription factors associated with biotic and abiotic stresses. Quantitative real-time polymerase chain reaction analysis of selected potential vsiRNA targets showed that some targets were significantly down-regulated in CLCuD-infected cotton plants. We also verified the potential function of vsiRNA targets that may be involved in CLCuD infection by virus-induced gene silencing (VIGS) and 5′-rapid amplification of cDNA end (5′-RACE). Here, we provide the first report

  14. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    PubMed

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  15. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    PubMed Central

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  16. Impaired Expression of Cytokines as a Result of Viral Infections with an Emphasis on Small Ruminant Lentivirus Infection in Goats

    PubMed Central

    Jarczak, Justyna; Kaba, Jarosław; Reczyńska, Daria; Bagnicka, Emilia

    2016-01-01

    Knowing about the genes involved in immunity, and being able to identify the factors influencing their expressions, helps in gaining awareness of the immune processes. The qPCR method is a useful gene expression analysis tool, but studies on immune system genes are still limited, especially on the caprine immune system. Caprine arthritis encephalitis, a disease caused by small ruminant lentivirus (SRLV), causes economic losses in goat breeding, and there is no therapy against SRLV. The results of studies on vaccines against other viruses are promising. Moreover, the Marker-Assisted Selection strategy against SRLV is possible, as has been shown in sheep breeding. However, there are still many gaps in our knowledge on the caprine immune response to infection. All types of cytokines play pivotal roles in immunity, and SRLV infection influences the expression of many cytokines in different types of cells. This information encouraged the authors to examine the results of studies conducted on SRLV and other viral infections, with an emphasis on the expression of cytokine genes. This review attempts to summarize the results of studies on the expression of cytokines in the context of the SRLV infection. PMID:27399757

  17. Using experimental human influenza infections to validate a viral dynamic model and the implications for prediction.

    PubMed

    Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M

    2012-09-01

    The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.

  18. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection.

    PubMed

    Mueller, Scott N; Matloubian, Mehrdad; Clemens, Daniel M; Sharpe, Arlene H; Freeman, Gordon J; Gangappa, Shivaprakash; Larsen, Christian P; Ahmed, Rafi

    2007-09-25

    Many chronic viral infections are marked by pathogen persistence and a generalized immunosuppression. The exact mechanisms by which this occurs are still unknown. Using a mouse model of persistent lymphocytic choriomeningitis virus (LCMV) infection, we demonstrate viral targeting of fibroblastic reticular cells (FRC) in the lymphoid organs. The FRC stromal networks are critical for proper lymphoid architecture and function. High numbers of FRC were infected by LCMV clone 13, which causes a chronic infection, whereas few were infected by the acute strain, LCMV Armstrong. The function of the FRC conduit network was altered after clone 13 infection by the action of CD8(+) T cells. Importantly, expression of the inhibitory programmed death ligand 1, which was up-regulated on FRC after infection, reduced early CD8(+) T cell-mediated immunopathology and prevented destruction of the FRC architecture in the spleen. Together, this reveals an important tropism during a persistent viral infection. These data also suggest that the inhibitory PD-1 pathway, which likely evolved to prevent excessive immunopathology, may contribute to viral persistence in FRC during chronic infection.

  19. Myxomavirus-Derived Serpin Prolongs Survival and Reduces Inflammation and Hemorrhage in an Unrelated Lethal Mouse Viral Infection

    PubMed Central

    Chen, Hao; Zheng, Donghang; Abbott, Jeff; Liu, Liying; Bartee, Mee Y.; Long, Maureen; Davids, Jennifer; Williams, Jennifer; Feldmann, Heinz; Strong, James; Grau, Katrina R.; Tibbetts, Scott; Macaulay, Colin; McFadden, Grant; Thoburn, Robert; Lomas, David A.; Spinale, Francis G.; Virgin, Herbert W.

    2013-01-01

    Lethal viral infections produce widespread inflammation with vascular leak, clotting, and bleeding (disseminated intravascular coagulation [DIC]), organ failure, and high mortality. Serine proteases in clot-forming (thrombotic) and clot-dissolving (thrombolytic) cascades are activated by an inflammatory cytokine storm and also can induce systemic inflammation with loss of normal serine protease inhibitor (serpin) regulation. Myxomavirus secretes a potent anti-inflammatory serpin, Serp-1, that inhibits clotting factor X (fX) and thrombolytic tissue- and urokinase-type plasminogen activators (tPA and uPA) with anti-inflammatory activity in multiple animal models. Purified serpin significantly improved survival in a murine gammaherpesvirus 68 (MHV68) infection in gamma interferon receptor (IFN-γR) knockout mice, a model for lethal inflammatory vasculitis. Treatment of MHV68-infected mice with neuroserpin, a mammalian serpin that inhibits only tPA and uPA, was ineffective. Serp-1 reduced virus load, lung hemorrhage, and aortic, lung, and colon inflammation in MHV68-infected mice and also reduced virus load. Neuroserpin suppressed a wide range of immune spleen cell responses after MHV68 infection, while Serp-1 selectively increased CD11c+ splenocytes (macrophage and dendritic cells) and reduced CD11b+ tissue macrophages. Serp-1 altered gene expression for coagulation and inflammatory responses, whereas neuroserpin did not. Serp-1 treatment was assessed in a second viral infection, mouse-adapted Zaire ebolavirus in wild-type BALB/c mice, with improved survival and reduced tissue necrosis. In summary, treatment with this unique myxomavirus-derived serpin suppresses systemic serine protease and innate immune responses caused by unrelated lethal viral infections (both RNA and DNA viruses), providing a potential new therapeutic approach for treatment of lethal viral sepsis. PMID:23774438

  20. The Role of F-Box Proteins during Viral Infection

    PubMed Central

    Correa, Régis Lopes; Bruckner, Fernanda Prieto; de Souza Cascardo, Renan; Alfenas-Zerbini, Poliane

    2013-01-01

    The F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin–proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin–proteasome system in virus–host interactions. PMID:23429191

  1. Early Viral Suppression Improves Neurocognitive Outcomes in HIV-infected Children

    PubMed Central

    CROWELL, Claudia S.; HUO, Yanling; TASSIOPOULOS, Katherine; MALEE, Kathleen M.; YOGEV, Ram; HAZRA, Rohan; RUTSTEIN, Richard M.; NICHOLS, Sharon L.; SMITH, Renee A.; WILLIAMS, Paige L.; OLESKE, James; MULLER, William J.

    2014-01-01

    Objective To estimate the association of age of viral suppression and central nervous system penetration effectiveness (CPE) score with neurocognitive functioning among school-age children with perinatally-acquired HIV infection (PHIV+). Design We analyzed data from two U.S.-based multisite prospective cohort studies. Methods Multivariable general linear regression models were used to evaluate associations of age at viral suppression and CPE scores [of initial ART regimen and weighted average] with WISC-III or WISC-IV neurocognitive assessments [full scale IQ (FSIQ); performance IQ/ perceptual reasoning index (PIQ/PRI); and verbal IQ/ verbal comprehension index (VIQ/VCI)], adjusted for demographic and clinical covariates. Sensitivity analyses were stratified by birth cohort (before vs after 1996). Results 396 PHIV+ children were included. Estimated differences in mean FSIQ (comparing virally suppressed vs. unsuppressed children) by each age cutoff were 3.7, 2.2, 3.2, 4.4, and 3.9 points at ages 1, 2, 3, 4, and 5, respectively. For PIQ/PRI, estimated mean differences were 3.7, 2.4, 2.2, 4.6, and 4.5 at ages 1 through 5 respectively. In both cases, these differences were significant only at the age 4 and 5 thresholds. After stratifying by birth cohort the association between age at suppression and cognitive function persisted only among those born after 1996. Age at viral suppression was not associated with VIQ/VCI; CPE score was not associated with FSIQ, verbal comprehension or perceptual reasoning indices. Conclusions Virologic suppression during infancy or early childhood is associated with improved neurocognitive outcomes in school-aged PHIV+ children. In contrast, CPE scores showed no association with neurocognitive outcomes. PMID:25686678

  2. Viral Co-Infections in Pediatric Patients Hospitalized with Lower Tract Acute Respiratory Infections

    PubMed Central

    Cebey-López, Miriam; Herberg, Jethro; Pardo-Seco, Jacobo; Gómez-Carballa, Alberto; Martinón-Torres, Nazareth; Salas, Antonio; Martinón-Sánchez, José María; Gormley, Stuart; Sumner, Edward; Fink, Colin; Martinón-Torres, Federico

    2015-01-01

    Background Molecular techniques can often reveal a broader range of pathogens in respiratory infections. We aim to investigate the prevalence and age pattern of viral co-infection in children hospitalized with lower tract acute respiratory infection (LT-ARI), using molecular techniques. Methods A nested polymerase chain reaction approach was used to detect Influenza (A, B), metapneumovirus, respiratory syncytial virus (RSV), parainfluenza (1–4), rhinovirus, adenovirus (A—F), bocavirus and coronaviruses (NL63, 229E, OC43) in respiratory samples of children with acute respiratory infection prospectively admitted to any of the GENDRES network hospitals between 2011–2013. The results were corroborated in an independent cohort collected in the UK. Results A total of 204 and 97 nasopharyngeal samples were collected in the GENDRES and UK cohorts, respectively. In both cohorts, RSV was the most frequent pathogen (52.9% and 36.1% of the cohorts, respectively). Co-infection with multiple viruses was found in 92 samples (45.1%) and 29 samples (29.9%), respectively; this was most frequent in the 12–24 months age group. The most frequently observed co-infection patterns were RSV—Rhinovirus (23 patients, 11.3%, GENDRES cohort) and RSV—bocavirus / bocavirus—influenza (5 patients, 5.2%, UK cohort). Conclusion The presence of more than one virus in pediatric patients admitted to hospital with LT-ARI is very frequent and seems to peak at 12–24 months of age. The clinical significance of these findings is unclear but should warrant further analysis. PMID:26332375

  3. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    PubMed Central

    Labonté, Jessica M.; Field, Erin K.; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K. Eric; Kieft, Thomas L.; Onstott, Tullis C.; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  4. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  5. The effect of malnutrition on the susceptibility of the host to viral infection.

    PubMed

    FLANIGAN, C C; SPRUNT, D H

    1956-11-01

    The effect of progressive long term dietary protein depletion on viral susceptibility was investigated in 2 host-virus systems: (1) swine influenza in the male CF(1) mouse, and (2) Rous sarcoma virus in the New Hampshire red chicken. Data are presented demonstrating a relationship between host protein nutrition and susceptibility to virus infection. This relationship is shown to be cyclic in character, involving phases of increased and decreased viral susceptibility. The relative resistance of the host on low protein intake is a function of the duration on incomplete diet administration before virus inoculation, and consequently a function of the host's state of depletion. As illustrated in Fig. 6, the cyclic susceptibility change demonstrated by these animals on low protein diet was characterized by an initial phase of increased susceptibility, a secondary phase of increased resistance, and a final phase of increased susceptibility. It is proposed that these alterations in relative viral susceptibility result from metabolic changes occurring within the host during the process of dietary protein depletion. The resistance changes are roughly correlated to periods of depot fat utilization (increased susceptibility), reserve protein utilization (decreased susceptibility), and tissue breakdown subsequent to protein starvation (increased susceptibility). Many previously published concepts of the interplay of viral susceptibility and host nutrition maintained that host malnourishment led to increased host resistance. The cyclic change in resistance, reported herein, is given as evidence that the effect of host deficiency cannot be explained simply on the basis of an inhibition of virus growth due to retarded cellular metabolism in the host. Protein deficiency is shown not to produce an "all-or-none" effect, but a series of reproducible phases of increased and decreased resistance. From the aforementioned results it is proposed that the phases of viral susceptibility seen

  6. Dynamics of viral replication in infants with vertically acquired human immunodeficiency virus type 1 infection.

    PubMed Central

    De Rossi, A; Masiero, S; Giaquinto, C; Ruga, E; Comar, M; Giacca, M; Chieco-Bianchi, L

    1996-01-01

    About one-third of vertically HIV-1 infected infants develop AIDS within the first months of life; the remainder show slower disease progression. We investigated the relationship between the pattern of HIV-1 replication early in life and disease outcome in eleven infected infants sequentially studied from birth. Viral load in cells and plasma was measured by highly sensitive competitive PCR-based methods. Although all infants showed an increase in the indices of viral replication within their first weeks of life, three distinct patterns emerged: (a) a rapid increase in plasma viral RNA and cell-associated proviral DNA during the first 4-6 wk, reaching high steady state levels (> 1,000 HIV-1 copies/10(5) PBMC and > 1,000,000 RNA copies/ml plasma) within 2-3 mo of age; (b) a similar initial rapid increase in viral load, followed by a 2.5-50-fold decline in viral levels; (c) a significantly lower (> 10-fold) viral increase during the first 4-6 wk of age. All infants displaying the first pattern developed early AIDS, while infants with slower clinical progression exhibited the second or third pattern. These findings demonstrate that the pattern of viral replication and clearance in the first 2-3 mo of life is strictly correlated with, and predictive of disease evolution in vertically infected infants. PMID:8567951

  7. Type-I Interferon Responses: From Friend to Foe in the Battle against Chronic Viral Infection

    PubMed Central

    Murira, Armstrong; Lamarre, Alain

    2016-01-01

    Type I interferons (IFN-I) have long been heralded as key contributors to effective antiviral responses. More widely understood in the context of acute viral infection, the role of this pleiotropic cytokine has been characterized as triggering antiviral states in cells and potentiating adaptive immune responses. Upon induction in the innate immune response, IFN-I triggers the expression of interferon-stimulated genes (ISGs), which upregulate the effector function of immune cells (e.g., dendritic cells, B cells, and T cells) toward successful resolution of infections. However, emerging lines of evidence reveal that viral persistence in the course of chronic infections could be driven by deleterious immunomodulatory effects upon sustained IFN-I expression. In this setting, elevation of IFN-I and ISGs is directly correlated to viral persistence and elevated viral loads. It is important to note that the correlation among IFN-I expression, ISGs, and viral persistence may be a cause or effect of chronic infection and this is an important distinction to make toward establishing the dichotomous nature of IFN-I responses. The aim of this mini review is to (i) summarize the interaction between IFN-I and downstream effector responses and therefore (ii) delineate the function of this cytokine on positive and negative immunoregulation in chronic infection. This is a significant consideration given the current therapeutic administration of IFN-I in chronic viral infections whose therapeutic significance is projected to continue despite emergence of increasingly efficacious antiviral regimens. Furthermore, elucidation of the interplay between virus and the antiviral response in the context of IFN-I will elucidate avenues toward more effective therapeutic and prophylactic measures against chronic viral infections. PMID:28066419

  8. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    SciTech Connect

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-06-05

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection.

  9. A live attenuated human metapneumovirus vaccine strain provides complete protection against homologous viral infection and cross-protection against heterologous viral infection in BALB/c mice.

    PubMed

    Liu, Ping; Shu, Zhou; Qin, Xian; Dou, Ying; Zhao, Yao; Zhao, Xiaodong

    2013-08-01

    A live attenuated vaccine candidate strain (M2) of human metapneumovirus (hMPV) was generated by removing the N-linked carbohydrate at amino acid 172 in the fusion (F) protein. Previously, replication of M2 in mouse lungs could be detected by molecular assays but not by viral titration. In the present study, the protective effects of M2 against infection by homologous or heterologous viruses were evaluated in BALB/c mice. Immunization with M2 produced a high titer of serum virus-neutralizing antibodies in BALB/c mice at 4 and 8 weeks postimmunization, with the titers against the homologous virus being higher than those against the heterologous virus. Challenges at 4 and 8 weeks postinoculation with M2 or wild-type virus led to no replication when mice were challenged with a homologous virus and extremely reduced replication when mice were challenged with a heterologous virus, as determined by the detection of viral genomic RNA copies in the lungs, as well as significantly milder pulmonary pathology. Thus, M2, with only one N-linked carbohydrate removed in the F protein, provides complete protection from homologous virus infection and substantial cross-protection from heterologous virus infection for at least 56 days after inoculation. This vaccine strain may therefore be a candidate for further preclinical study. Furthermore, this attenuating strategy (changing the glycosylation of a major viral protein) may be useful in the development of other viral vaccines.

  10. Management of Respiratory Viral Infections in Hematopoietic Cell Transplant Recipients and Patients With Hematologic Malignancies

    PubMed Central

    Chemaly, Roy F.; Shah, Dimpy P.; Boeckh, Michael J.

    2014-01-01

    Despite preventive strategies and increased awareness, a high incidence of respiratory viral infections still occur in patients with hematologic malignancies (HMs) and in recipients of hematopoietic cell transplant (HCT). Progression of these viral infections to lower respiratory tract may prove fatal, especially in HCT recipients. Increasing evidence on the successful use of ribavirin (alone or in combination with immunomodulators) for the treatment of respiratory syncytial virus infections in HM patients and HCT recipients is available from retrospective studies; however, prospective clinical trials are necessary to establish its efficacy with confidence. The impact on progression to pneumonitis and/or mortality of treating parainfluenza virus infections with available (ribavirin) or investigational (DAS181) antiviral agents still needs to be determined. Influenza infections have been successfully treated with neuraminidase inhibitors (oseltamivir or zanamivir); however, the efficacy of these agents for influenza pneumonia has not been established, and immunocompromised patients are highly susceptible to emergence of antiviral drug resistance, most probably due to prolonged viral shedding. Infection control measures and an appreciation of the complications following respiratory viral infections in immunocompromised patients remain crucial for reducing transmission. Future studies should focus on strategies to identify patients at high risk for increased morbidity and mortality from these infections and to determine the efficacy of novel or available antiviral drugs. PMID:25352629

  11. Evidence for persistent bovine viral diarrhea virus infection in a captive mountain goat (Oreamnos americanus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine viral diarrhea viruses (BVDV) are pestiviruses that have been isolated from domestic and wild ruminants, and there is serologic evidence of pestiviral infection in more than 40 species of free-ranging and captive mammals. Vertical transmission can produce persistently infected animals that ar...

  12. Long-term clincopathological characteristics of alpacas naturally infected with bovine viral diarrhea virus type Ib

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Substantial bovine viral diarrhea virus (BVDV)-related production losses in North American alpaca herds have been associated with BVDV type Ib infection. Objectives: To classify and differentiate the long-term clinicopathological characteristics of BVDV type Ib infection of alpaca crias,...

  13. The effects of exposure of susceptible alpacas to alpacas persistently infected with bovine viral diarrhea virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports of bovine viral diarrhea virus (BVDV) infections in alpacas have been increasing over the past several years but much is still unknown about the mechanisms of disease in this species. This report describes research performed to characterize the transmission of BVDV from persistently infected...

  14. HBV/HCV dual infection impacts viral load, antibody response, and cytokine expression differently from HBV or HCV single infection

    PubMed Central

    Chen, Fei; Zhang, Jian; Wen, Bo; Luo, Shan; Lin, Yingbiao; Ou, Wensheng; Guo, Fengfan; Tang, Ping; Liu, Wenpei; Qu, Xiaowang

    2016-01-01

    Hepatitis B virus/hepatitis C virus (HBV/HCV) dual infection is common among high-risk individuals. To characterize the virological and immunological features of patients with HBV/HCV dual infection, we enrolled 1,049 individuals who have been identified as injection drug users. Patients were divided into single and dual infection groups according to the serological markers. We found the average HCV RNA level was significantly lower; however, HBV viral load was significantly higher in HBV/HCV dual-infected patients (n = 42) comparing HCV single infection (n = 340) or HBV single infection (n = 136). The level of anti-HBs in patients who experienced spontaneous HBV clearance was higher than that in HCV single-infected patients with HBV spontaneous clearance. The level of anti-HCV E2 in HBV/HCV dual infection was lower than that detected in HCV single infection. Serum levels of IL-6, IL-8, and TNF-α were significantly lower in HBV/HCV dual-infected patients than in patients infected with HBV or HCV alone. Taken together, two viral replications are imbalanced in dual infected patients. The anti-HBs and anti-HCV E2 antibody production were impaired and proinflammatory IL-6, IL-8, and TNF-α also downregulated due to dual infection. These findings will help further understanding the pathogenesis of HBV/HCV dual infection. PMID:28009018

  15. Suppressor of cytokine signaling 4 (SOCS4) protects against severe cytokine storm and enhances viral clearance during influenza infection.

    PubMed

    Kedzierski, Lukasz; Linossi, Edmond M; Kolesnik, Tatiana B; Day, E Bridie; Bird, Nicola L; Kile, Benjamin T; Belz, Gabrielle T; Metcalf, Donald; Nicola, Nicos A; Kedzierska, Katherine; Nicholson, Sandra E

    2014-05-01

    Suppressor of cytokine signaling (SOCS) proteins are key regulators of innate and adaptive immunity. There is no described biological role for SOCS4, despite broad expression in the hematopoietic system. We demonstrate that mice lacking functional SOCS4 protein rapidly succumb to infection with a pathogenic H1N1 influenza virus (PR8) and are hypersusceptible to infection with the less virulent H3N2 (X31) strain. In SOCS4-deficient animals, this led to substantially greater weight loss, dysregulated pro-inflammatory cytokine and chemokine production in the lungs and delayed viral clearance. This was associated with impaired trafficking of influenza-specific CD8 T cells to the site of infection and linked to defects in T cell receptor activation. These results demonstrate that SOCS4 is a critical regulator of anti-viral immunity.

  16. Suppressor of Cytokine Signaling 4 (SOCS4) Protects against Severe Cytokine Storm and Enhances Viral Clearance during Influenza Infection

    PubMed Central

    Kedzierski, Lukasz; Linossi, Edmond M.; Kolesnik, Tatiana B.; Day, E. Bridie; Bird, Nicola L.; Kile, Benjamin T.; Belz, Gabrielle T.; Metcalf, Donald; Nicola, Nicos A.; Kedzierska, Katherine; Nicholson, Sandra E.

    2014-01-01

    Suppressor of cytokine signaling (SOCS) proteins are key regulators of innate and adaptive immunity. There is no described biological role for SOCS4, despite broad expression in the hematopoietic system. We demonstrate that mice lacking functional SOCS4 protein rapidly succumb to infection with a pathogenic H1N1 influenza virus (PR8) and are hypersusceptible to infection with the less virulent H3N2 (X31) strain. In SOCS4-deficient animals, this led to substantially greater weight loss, dysregulated pro-inflammatory cytokine and chemokine production in the lungs and delayed viral clearance. This was associated with impaired trafficking of influenza-specific CD8 T cells to the site of infection and linked to defects in T cell receptor activation. These results demonstrate that SOCS4 is a critical regulator of anti-viral immunity. PMID:24809749

  17. Emerging therapies for herpes viral infections (types 1 - 8).

    PubMed

    Chakrabarty, Arun; Pang, Katie R; Wu, Jashin J; Narvaez, Julio; Rauser, Michael; Huang, David B; Beutner, Karl R; Tyring, Stephen K

    2004-11-01

    There are eight members of the herpesviridae family: herpes simplex virus-1 (HSV-1), HSV-2, varicella-zoster virus, Epstein-Barr virus, cytomegalovirus, human herpes virus-6, human herpes virus-7 and human herpes virus-8. The diseases caused by viruses of the herpesviridae family are treated with and managed by systemic and topical antiviral therapies and immunomodulating drugs. Because these viruses establish a latent state in hosts, antiherpetic agents, such as nucleoside analogues, only control symptoms of disease or prevent outbreaks, and cannot cure the infections. There is a need for treatments that require less frequent dosing, can be taken even when lesions are more advanced than the first signs or symptoms, and can treat resistant strains of the viruses without the toxicities of existing therapies. Immunomodulating agents, such as resiquimod, can act on the viruses indirectly by inducing host production of cytokines, and can thereby reduce recurrences of herpes. The new helicase primase inhibitors, which are the first non-nucleoside antiviral compounds, are being investigated for treatment of HSV disease, including infections resistant to existing therapy.

  18. Rapid diagnosis of goose viral infections by multiplex PCR.

    PubMed

    Chen, Zongyan; Li, Chuanfeng; Li, Guoxin; Yu, Hai; Jiang, Yifeng; Yan, Liping; Meng, Chunchun; Zhou, Yanjun; Tong, Guangzhi; Liu, Guangqing

    2013-08-01

    Goose parvovirus (GPV), newcastle disease virus (NDV), goose herpesvirus (GHV) and goose adenovirus (GAV) are considered collectively to be four of the most important and widespread viruses of geese. Because all of these viruses cause similar pathological changes, histological differentiation among these viruses is difficult. A reliable, specific and sensitive multiplex PCR (mPCR) assay was developed for the combined detection of GPV, NDV, GHV and GAV in clinical samples of geese. Using the mPCR technique, single infections with GPV (28/76; 36.8%), NDV (9/76; 11.8%), GHV (3/76; 3.9%) and GAV (12/76; 15.8%) were identified in the samples; co-infections with GAV and either GPV or NDV (31.6%; 24/76) were also identified with this approach. The results for all of the samples tested were the same in both the uPCR and mPCR systems. The mPCR approach is considered to be useful for routine molecular diagnosis and epidemiological applications in geese.

  19. First report of bovine viral diarrhoea virus-2 infection in cattle in Poland.

    PubMed

    Polak, Mirosław P; Kuta, Aleksandra; Rybałtowski, Wiesław; Rola, Jerzy; Larska, Magdalena; Zmudziński, Jan F

    2014-12-01

    This report describes the first identification in Poland of bovine viral diarrhoea virus (BVDV)-2 in a dairy herd where severe clinical disease with losses of young animals was observed. The virus was readily cultivated in cell culture and a phylogenetic analysis of the nucleotide sequences and secondary structures of the viral genomic 5' untranslated region confirmed virus identity. The economic impact of the infection was significant compared to the previously prevalent BVDV-1 infections confirming that this genotype of BVDV can cause severe sickness in affected herds. The use of BVDV-1 vaccine did not prevent the infection with the BVDV-2 genotype.

  20. Identification of focal viral infections by confocal microscopy for subsequent ultrastructural analysis.

    PubMed

    Miller, S E; Levenson, R M; Aldridge, C; Hester, S; Kenan, D J; Howell, D N

    1997-01-01

    A correlative microscopy method for the ultrastructural analysis of focal viral tissue infections is presented. Using a confocal scanning laser microscope, foci of infection are identified in tissue sections prior to embedment; a variety of techniques can be employed for viral detection, including staining with standard histochemical reagents and fluorescently labeled antibodies. Areas of infection identified using confocal microscopy are excised from the tissue sections, embedded, and examined by transmission electron microscopy. Applications of this technique in both diagnostic and basic research settings are described.

  1. Increased cytokine/chemokines in serum from asthmatic and non-asthmatic patients with viral respiratory infection

    PubMed Central

    Giuffrida, María J; Valero, Nereida; Mosquera, Jesús; Alvarez de Mon, Melchor; Chacín, Betulio; Espina, Luz Marina; Gotera, Jennifer; Bermudez, John; Mavarez, Alibeth

    2014-01-01

    Background Respiratory viral infections can induce different cytokine/chemokine profiles in lung tissues and have a significant influence on patients with asthma. There is little information about the systemic cytokine status in viral respiratory-infected asthmatic patients compared with non-asthmatic patients. Objectives The aim of this study was to determine changes in circulating cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP1: monocyte chemoattractant protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in patients with an asthmatic versus a non-asthmatic background with respiratory syncytial virus, parainfluenza virus or adenovirus respiratory infection. In addition, human monocyte cultures were incubated with respiratory viruses to determine the cytokine/chemokine profiles. Patients/Methods Patients with asthmatic (n = 34) and non-asthmatic (n = 18) history and respiratory infections with respiratory syncytial virus, parainfluenza, and adenovirus were studied. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in blood and culture supernatants was determined by ELISA. Monocytes were isolated by Hystopaque gradient and cocultured with each of the above-mentioned viruses. Results Similar increased cytokine concentrations were observed in asthmatic and non-asthmatic patients. However, higher concentrations of chemokines were observed in asthmatic patients. Virus-infected monocyte cultures showed similar cytokine/chemokine profiles to those observed in the patients. Conclusions Circulating cytokine profiles induced by acute viral lung infection were not related to asthmatic status, except for chemokines that were already increased in the asthmatic status. Monocytes could play an important role in the increased circulating concentration of cytokines found during respiratory viral infections. PMID:23962134

  2. Tick-borne flavivirus infection in Ixodes scapularis larvae: development of a novel method for synchronous viral infection of ticks

    PubMed Central

    Mitzel, Dana N.; Wolfinbarger, James B.; Daniel Long, R.; Masnick, Max; Best, Sonja M.; Bloom, Marshall E.

    2007-01-01

    Following a bite from an infected tick, tick-borne flaviviruses cause encephalitis, meningitis and hemorrhagic fever in humans. Although these viruses spend most of their time in the tick, little is known regarding the virus-vector interactions. We developed a simple method for synchronously infecting Ixodes scapularis larvae with Langat virus (LGTV) by immersion in media containing the virus. This technique resulted in approximately 96% of ticks becoming infected. LGTV infection and replication were demonstrated by both viral antigen expression and the accumulation of viral RNA. Furthermore, ticks transmitted LGTV to 100% of the mice and maintained the virus through molting into the next life stage. This technique circumvents limitations present in the current methods by mimicking the natural route of infection and by using attenuated virus strains to infect ticks; thereby, making this technique a powerful tool to study both virus and tick determinants of replication, pathogenesis and transmission. PMID:17490700

  3. Tick-borne flavivirus infection in Ixodes scapularis larvae: development of a novel method for synchronous viral infection of ticks.

    PubMed

    Mitzel, Dana N; Wolfinbarger, James B; Long, R Daniel; Masnick, Max; Best, Sonja M; Bloom, Marshall E

    2007-09-01

    Following a bite from an infected tick, tick-borne flaviviruses cause encephalitis, meningitis and hemorrhagic fever in humans. Although these viruses spend most of their time in the tick, little is known regarding the virus-vector interactions. We developed a simple method for synchronously infecting Ixodes scapularis larvae with Langat virus (LGTV) by immersion in media containing the virus. This technique resulted in approximately 96% of ticks becoming infected. LGTV infection and replication were demonstrated by both viral antigen expression and the accumulation of viral RNA. Furthermore, ticks transmitted LGTV to 100% of the mice and maintained the virus through molting into the next life stage. This technique circumvents limitations present in the current methods by mimicking the natural route of infection and by using attenuated virus strains to infect ticks, thereby making this technique a powerful tool to study both virus and tick determinants of replication, pathogenesis and transmission.

  4. The use of sialidase therapy for respiratory viral infections.

    PubMed

    Nicholls, John M; Moss, Ronald B; Haslam, Stuart M

    2013-06-01

    DAS181 is an inhaled bacterial sialidase which functions by removing sialic acid (Sia) from the surface of epithelial cells, preventing attachment and subsequent infection by respiratory viruses that utilize Sia as a receptor. DAS181 is typical of bacterial sialidases in cleaving Sia α2-3 and Sia α2-6 linkages, and it also has a demonstrated effect against acetylated and hydroxylated forms of Sia. The potency of the compound has been enhanced by coupling the active sialidase with an amphiregulin tag, allowing a longer duration of action and minimizing spread to the systemic circulation. DAS181 is now in Phase II development for the treatment of influenza, and it has also demonstrated activity in individual cases of parainfluenza in immunosuppressed patients. Continued evaluation of the roles and activities of bacterial sialidases is required to expand the range of successful antiviral therapies targeting Sia or its derivatives.

  5. Development of a symptom score for clinical studies to identify children with a documented viral upper respiratory tract infection.

    PubMed

    Taylor, James A; Weber, Wendy J; Martin, Emily T; McCarty, Rachelle L; Englund, Janet A

    2010-09-01

    The objective of this study was to develop a symptom scoring system for use in clinical studies that differentiates children with cold symptoms who have an identifiable viral etiology for their upper respiratory tract infection (URI) from those in whom no virus is detected. Nasal swabs for PCR testing for identification of respiratory viruses were obtained on children aged 2-11 y at baseline and when parents thought their child was developing a cold. Parental-recorded severity of specific symptoms in children with and without a documented viral URI were compared. Nasal swabs were obtained on 108 children whose parents reported their child was developing a cold. A viral etiology was identified in 62 of 108 (57.4%) samples. Symptom measures that best differentiated children with a viral etiology from those without were significant runny nose and significant cough on days 1-4 of the illness. A URI symptom score was developed based on these symptoms, with a sensitivity of 81.4%, specificity of 61.9%, and accuracy of 73.3%. Parental impression is only a moderately accurate predictor of viral URI in children. Our URI symptom score provided a more accurate method for identifying children with viral URIs for clinical studies.

  6. Role of mTOR inhibitors for the control of viral infection in solid organ transplant recipients.

    PubMed

    Pascual, Julio; Royuela, Ana; Fernández, Ana M; Herrero, Ignacio; Delgado, Juan F; Solé, Amparo; Guirado, Lluis; Serrano, Trinidad; de la Torre-Cisneros, Julián; Moreno, Asunción; Cordero, Elisa; Gallego, Roberto; Lumbreras, Carlos; Aguado, José M

    2016-12-01

    Appropriate post-transplant immunosuppressive regimens that avoid acute rejection, while reducing risk of viral reactivation, have been sought, but remain a chimera. Recent evidence suggesting potential regulatory and antiviral effects of mammalian target of rapamycin inhibitors (mTORi) is of great interest. Although the concept of an immunosuppressive drug with antiviral properties is not new, little effort has been made to put the evidence together to assess the management of immunosuppressive therapy in the presence of a viral infection. This review was developed to gather the evidence on antiviral activity of the mTORi against the viruses that most commonly reactivate in adult solid organ recipients: cytomegalovirus (CMV), polyomavirus, Epstein-Barr virus (EBV), human herpesvirus 8 (HHV8), and hepatitis C virus (HCV). A rapid review methodology and evaluation of quality and consistency of evidence based on the GRADE system was used. The existing literature was variable in nature, although indicating a potential advantage of mTORi in CMV, polyomavirus, and HHV8 infection, and a most doubtful relation with EBV and HCV infection. Several recommendations about the management of these infections are presented that can change certain current patterns of immunosuppression and help to improve the prognosis of the direct and indirect effects of viral infection in solid organ recipients.

  7. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

    SciTech Connect

    Ebina, Hirotaka Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio

    2012-05-25

    HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.

  8. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues.

    PubMed

    Hirsch, Alec J; Smith, Jessica L; Haese, Nicole N; Broeckel, Rebecca M; Parkins, Christopher J; Kreklywich, Craig; DeFilippis, Victor R; Denton, Michael; Smith, Patricia P; Messer, William B; Colgin, Lois M A; Ducore, Rebecca M; Grigsby, Peta L; Hennebold, Jon D; Swanson, Tonya; Legasse, Alfred W; Axthelm, Michael K; MacAllister, Rhonda; Wiley, Clayton A; Nelson, Jay A; Streblow, Daniel N

    2017-03-01

    Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.

  9. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues

    PubMed Central

    Hirsch, Alec J.; Smith, Jessica L.; Parkins, Christopher J.; Kreklywich, Craig; DeFilippis, Victor R.; Denton, Michael; Smith, Patricia P.; Messer, William B.; Colgin, Lois M. A.; Ducore, Rebecca M.; Grigsby, Peta L.; Hennebold, Jon D.; Swanson, Tonya; Legasse, Alfred W.; Axthelm, Michael K.; MacAllister, Rhonda; Nelson, Jay A.; Streblow, Daniel N.

    2017-01-01

    Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1–7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission. PMID:28278237

  10. Live cell imaging reveals the relocation of dsRNA binding proteins upon viral infection.

    PubMed

    Barton, Deborah; Roovers, Elke; Gouil, Quentin; C da Fonseca, Guilherme; Reis, Rodrigo S; Jackson, Craig; Overall, Robyn; Fusaro, Adriana; Waterhouse, Peter

    2017-03-15

    Viral infection triggers a range of plant responses such as the activation of the RNA interference (RNAi) pathway. The double-stranded RNA binding (DRB) proteins, DRB3 and DRB4, are part of this pathway and aid in defending against DNA and RNA viruses, respectively. Using live cell imaging, we show that DRB2, DRB3 and DRB5 relocate from their uniform cytoplasmic distribution to concentrated accumulation in nascent viral replication complexes (VRCs) that develop following cell invasion by viral RNA. Inactivation of the DRB3 gene in Arabidopsis, by T-DNA insertion, rendered these plants less able to repress RNA viral replication. We propose a model for the early stages of virus defense in which DRB2, DRB3 and DRB5 are invasion sensors that relocate to nascent VRCs, where they bind to viral RNA and inhibit virus replication.

  11. An accurate two-phase approximate solution to the acute viral infection model

    SciTech Connect

    Perelson, Alan S

    2009-01-01

    During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate the accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the subsequent fall in virus concentration was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of the parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and investigating host and virus heterogeneities.

  12. Intra-host viral variability in children clinically infected with H1N1 (2009) pandemic influenza.

    PubMed

    Bourret, Vincent; Croville, Guillaume; Mansuy, Jean-Michel; Mengelle, Catherine; Mariette, Jérôme; Klopp, Christophe; Genthon, Clémence; Izopet, Jacques; Guérin, Jean-Luc

    2015-07-01

    Recent in-depth genetic analyses of influenza A virus samples have revealed patterns of intra-host viral genetic variability in a variety of relevant systems. These have included laboratory infected poultry, horses, pigs, chicken eggs and swine respiratory cells, as well as naturally infected poultry and horses. In humans, next generation sequencing techniques have enabled the study of genetic variability at specific positions of the viral genome. The present study investigated how 454 pyrosequencing could help unravel intra-host genetic diversity patterns on the full-length viral hæmagglutinin and neuraminidase genes from human H1N1 (2009) pandemic influenza clinical cases. This approach revealed unexpected patterns of co-infection in a 3-week old toddler, arising from rapid and complex reassortment phenomena on a local epidemiological scale. It also suggested the possible existence of very low frequency mutants resistant to neuraminidase inhibitors in two untreated patients. As well as revealing patterns of intra-host viral variability, this report highlights technical challenges in the appraisal of scientifically and medically relevant topics such as the natural occurrence of homologous recombination or very low frequency drug-resistant variants in influenza virus populations.

  13. Effect of the bovine viral diarrhoea virus (BVDV) infection on dairy calf rearing.

    PubMed

    Diéguez, Francisco J; Yus, Eduardo; Vilar, María J; Sanjuán, María L; Arnaiz, Ignacio

    2009-08-01

    The aim of this study was to compare the cumulative incidence of mortality, clinical diarrhoea and respiratory disease in calves, during their first six months of age, in herds with different bovine viral diarrhoea virus (BVDV) infection status. Calves' health indicators were tested by comparing proportions in 101 farms with dissimilar infection condition. The results indicate that there was a significant relationship between the BVDV status (actively infected herd or not) and the cumulative incidence of mortality and respiratory disorders.

  14. Viral Etiologies of Lower Respiratory Tract Infections Among Egyptian Children under Five Years of Age

    DTIC Science & Technology

    2012-12-13

    authors thank Dr. Dean Erdman from the Centers for Disease Control and Prevention (CDC) Atlanta, GA for providing the primers/probes and protocol...Etiology of acute respiratory tract infections among children in a combined community and hospital study in Rio de Janeiro. Clin Infect Dis 1995, 20(4...Garcia-Garcia ML, Blanco C, Vazquez MC, Frias ME, Perez-Brena P, Casas I: Multiple simultaneous viral infections in infants with acute respiratory

  15. [Presence of autocomplementary RNA with viral specificity in cells infected with herpes virus].

    PubMed

    Béchet, J M; Montagnier, L; Latarjet, R

    1975-01-13

    RNA from cells infected with Herpes simplex virus contain a higher percentage of double-stranded RNA than non-infected cells. This percentage increases three-fold upon self-annealing. The complementary RNA sequences were shown to be virus-specific by the following criteria: (1) high melting temperature than double-stranded RNA from non infected cells; (2) higher density in caesium sulphate; (3) specific hybridization with viral DNA.

  16. Asthma: the interplay between viral infections and allergic diseases.

    PubMed

    Rowe, Regina K; Gill, Michelle A

    2015-02-01

    Respiratory viruses and allergens synergistically contribute to disease pathogenesis in asthma. Potential mechanisms underlying this clinically relevant association are the subject of intense investigation. This review summarizes current knowledge and recent advances in this area, with an emphasis on potential mechanisms involving immunoglobulin E, type I interferon antiviral responses, epithelial factors, and the role of dendritic cells and other antigen-presenting cells in linking viral and allergic inflammatory responses relevant to asthmatic disease.

  17. Twenty years of psychoneuroimmunology and viral infections in Brain, Behavior, and Immunity.

    PubMed

    Bonneau, Robert H; Padgett, David A; Sheridan, John F

    2007-03-01

    For 20 years, Brain, Behavior, and Immunity has provided an important venue for the publication of studies in psychoneuroimmunology. During this time period, psychoneuroimmunology has matured into an important multidisciplinary science that has contributed significantly to our knowledge of mind, brain, and body interactions. This review will not only focus on the primary research papers dealing with psychoneuroimmunology, viral infections, and anti-viral vaccine responses in humans and animal models that have appeared on the pages of Brain, Behavior, and Immunity during the past 20 years, but will also outline a variety of strategies that could be used for expanding our understanding of the neuroimmune-viral pathogen relationship.

  18. Viral infections transmitted by food of animal origin: the present situation in the European Union.

    PubMed

    Stolle, A; Sperner, B

    1997-01-01

    The goal of this presentation was to clarify which foods are involved in viral diseases, which viruses are transmitted via food and how to evaluate the risk of a foodborne viral infection. Food items frequently identified as cause of viral disease outbreaks were shellfish harvested in sewage-contaminated water. Another common source of foodborne viral illness was cold food contaminated by infected food handlers. In the European Union the viruses most frequently associated with foodborne illness were hepatitis A virus and the SRSV's. A few isolated cases of foodborne hepatitis E were reported in Mediterranean countries. Compared to other foodborne diseases, those caused by viruses are less severe and seldom fatal. This might be a reason why the problem of viral contamination of food has been neglected. Yet, because many foodborne viral diseases are not recognized either as foodborne or as caused by viruses, the actual number of cases must be assumed to be significantly higher than the reported number. Consequently, food associated diseases of viral origin should be granted more attention.

  19. A combination HIV reporter virus system for measuring post-entry event efficiency and viral outcome in primary CD4+ T cell subsets.

    PubMed

    Tilton, Carisa A; Tabler, Caroline O; Lucera, Mark B; Marek, Samantha L; Haqqani, Aiman A; Tilton, John C

    2014-01-01

    Fusion between the viral membrane of human immunodeficiency virus (HIV) and the host cell marks the end of the HIV entry process and the beginning of a series of post-entry events including uncoating, reverse transcription, integration, and viral gene expression. The efficiency of post-entry events can be modulated by cellular factors including viral restriction factors and can lead to several distinct outcomes: productive, latent, or abortive infection. Understanding host and viral proteins impacting post-entry event efficiency and viral outcome is critical for strategies to reduce HIV infectivity and to optimize transduction of HIV-based gene therapy vectors. Here, we report a combination reporter virus system measuring both membrane fusion and viral promoter-driven gene expression. This system enables precise determination of unstimulated primary CD4+ T cell subsets targeted by HIV, the efficiency of post-entry viral events, and viral outcome and is compatible with high-throughput screening and cell-sorting methods.

  20. Stimulation of viral infection of bacterioplankton during a mesoscale iron fertilization experiment in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Weinbauer, M. G.; Arrieta, J.-M.; Herndl, G. J.

    2003-04-01

    A mesoscale iron fertilization in the Southern Ocean (Eisenex ) induced a phytoplankton bloom within three weeks observation as well as in an increased bacterial abundance and production. Viral abundance and viral production were stimulated as well. A virus-dilution approach was used to estimate the frequency of infected cells (FIC) and the frequency of lysogenic cells (FLC), i.e. cells with a dormant viral genome. While the FLC did not vary strongly within the iron-enriched patch and did not differ from waters outside the patch, FIC increased significantly within the iron fertilized patch. This suggests that induction of the lytic cycle in lysogenic cells was not significant. Rather, the stimulated bacterial production and abundance within the patch resulted in higher and more successful encounters between viruses and hosts and thus in higher FIC values. Consequently, the iron fertilization enhanced the influence of viral infection in the microbial food web. According to the current model, this should result a stimulation of bacterial production, since lysed bacterial cells cannot be consumed up by protists and transferred to higher trophic level; lysis products can be taken up by bacteria and thus organic carbon spins within this viral loop. Viral infection is a significant and previously overlooked factor in the carbon flow during iron fertilization experiments.

  1. Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Firdous, Shamaraz; Anwar, Shahzad

    2015-08-01

    Raman spectroscopy has been found useful for monitoring the dengue patient diagnostic and recovery after infection. In the present work, spectral changes that occurred in the blood sera of a dengue infected patient and their possible utilization for monitoring of infection and recovery were investigated using 532 nm wavelength of light. Raman spectrum peaks for normal and after recovery of dengue infection are observed at 1527, 1170, 1021 cm-1 attributed to guanine, adenine, TRP (protein) carbohydrates peak for solids, and skeletal C-C stretch of lipids acyl chains. Where in the dengue infected patient Raman peaks are at 1467, 1316, 1083, and 860 attributed to CH2/CH3 deformation of lipids and collagen, guanine (B, Z-marker), lipids and protein bands. Due to antibodies and antigen reactions the portions and lipids concentration totally changes in dengue viral infection compared to normal blood. These chemical changes in blood sera of dengue viral infection in human blood may be used as possible markers to indicate successful remission and suggest that Raman spectroscopy may provide a rapid optical method for continuous monitoring or evaluation of a protein bands and an antibodies population. Accumulate acquisition mode was used to reduce noise and thermal fluctuation and improve signal to noise ratio. This in vitro dengue infection monitoring methodology will lead in vivo noninvasive on-line monitoring and screening of viral infected patients and their recovery.

  2. Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells.

    PubMed

    Hou, Wanqiu; Gibbs, James S; Lu, Xiuju; Brooke, Christopher B; Roy, Devika; Modlin, Robert L; Bennink, Jack R; Yewdell, Jonathan W

    2012-03-29

    Surprisingly little is known about the interaction of human blood mononuclear cells with viruses. Here, we show that monocytes are the predominant cell type infected when peripheral blood mononuclear cells are exposed to viruses ex vivo. Remarkably, infection with vesicular stomatitis virus, vaccinia virus, and a variety of influenza A viruses (including circulating swine-origin virus) induces monocytes to differentiate within 18 hours into CD16(-)CD83(+) mature dendritic cells with enhanced capacity to activate T cells. Differentiation into dendritic cells does not require cell division and occurs despite the synthesis of viral proteins, which demonstrates that monocytes counteract the capacity of these highly lytic viruses to hijack host cell biosynthetic capacity. Indeed, differentiation requires infectious virus and viral protein synthesis. These findings demonstrate that monocytes are uniquely susceptible to viral infection among blood mononuclear cells, with the likely purpose of generating cells with enhanced capacity to activate innate and acquired antiviral immunity.

  3. Evidence for persistent Bovine viral diarrhea virus infection in a captive mountain goat (Oreamnos americanus).

    PubMed

    Nelson, Danielle D; Dark, Michael J; Bradway, Daniel S; Ridpath, Julia F; Call, Neill; Haruna, Julius; Rurangirwa, Fred R; Evermann, James F

    2008-11-01

    Bovine viral diarrhea (BVD) viruses are pestiviruses that have been isolated from domestic and wild ruminants. There is serologic evidence of pestiviral infection in more than 40 species of free-range and captive mammals. Vertical transmission can produce persistently infected animals that are immunotolerant to the infecting strain of Bovine viral diarrhea virus (BVDV) and shed virus throughout their lives. Seven species (white-tailed deer, mouse deer, eland, domestic cattle, alpaca, sheep, and pigs) have been definitively identified as persistently infected with BVDV. This study provides serological, molecular, immunohistochemical, and histological evidence for BVDV infection in 2 captive mountain goats from a zoological park in Idaho. The study was triggered by isolation of BVDV from tissues and immunohistochemical identification of viral antigen within lesions of a 7-month-old male mountain goat (goat 1). Blood was collected from other mountain goats and white-tailed and mule deer on the premises for BVDV serum neutralization, viral isolation, and reverse transcription polymerase chain reaction. One 3-month-old mountain goat (goat 2) was antibody negative and BVDV positive in serum samples collected 3 months apart. This goat subsequently died, and though still antibody negative, BVDV was isolated from tissues and identified by immunohistochemistry within lesions. Sequencing and phylogenetic analysis identified the isolates as BVDV-2. These findings provide evidence of persistent infection in a mountain goat, underscoring the need for pestivirus control strategies for wild ruminants in zoological collections.

  4. Cytotoxic CD4 T Cells—Friend or Foe during Viral Infection?

    PubMed Central

    Juno, Jennifer A.; van Bockel, David; Kent, Stephen J.; Kelleher, Anthony D.; Zaunders, John J.; Munier, C. Mee Ling

    2017-01-01

    CD4 T cells with cytotoxic function were once thought to be an artifact due to long-term in vitro cultures but have in more recent years become accepted and reported in the literature in response to a number of viral infections. In this review, we focus on cytotoxic CD4 T cells in the context of human viral infections and in some infections that affect mice and non-human primates. We examine the effector mechanisms used by cytotoxic CD4 cells, the phenotypes that describe this population, and the transcription factors and pathways that lead to their induction following infection. We further consider the cells that are the predominant targets of this effector subset and describe the viral infections in which CD4 cytotoxic T lymphocytes have been shown to play a protective or pathologic role. Cytotoxic CD4 T cells are detected in the circulation at much higher levels than previously realized and are now recognized to have an important role in the immune response to viral infections. PMID:28167943

  5. Cytotoxic CD4 T Cells-Friend or Foe during Viral Infection?

    PubMed

    Juno, Jennifer A; van Bockel, David; Kent, Stephen J; Kelleher, Anthony D; Zaunders, John J; Munier, C Mee Ling

    2017-01-01

    CD4 T cells with cytotoxic function were once thought to be an artifact due to long-term in vitro cultures but have in more recent years become accepted and reported in the literature in response to a number of viral infections. In this review, we focus on cytotoxic CD4 T cells in the context of human viral infections and in some infections that affect mice and non-human primates. We examine the effector mechanisms used by cytotoxic CD4 cells, the phenotypes that describe this population, and the transcription factors and pathways that lead to their induction following infection. We further consider the cells that are the predominant targets of this effector subset and describe the viral infections in which CD4 cytotoxic T lymphocytes have been shown to play a protective or pathologic role. Cytotoxic CD4 T cells are detected in the circulation at much higher levels than previously realized and are now recognized to have an important role in the immune response to viral infections.

  6. Viral Protein Kinetics of Piscine Orthoreovirus Infection in Atlantic Salmon Blood Cells

    PubMed Central

    Haatveit, Hanne Merethe; Wessel, Øystein; Markussen, Turhan; Lund, Morten; Thiede, Bernd; Nyman, Ingvild Berg; Braaen, Stine; Dahle, Maria Krudtaa; Rimstad, Espen

    2017-01-01

    Piscine orthoreovirus (PRV) is ubiquitous in farmed Atlantic salmon (Salmo salar) and the cause of heart and skeletal muscle inflammation. Erythrocytes are important target cells for PRV. We have investigated the kinetics of PRV infection in salmon blood cells. The findings indicate that PRV causes an acute infection of blood cells lasting 1–2 weeks, before it subsides into persistence. A high production of viral proteins occurred initially in the acute phase which significantly correlated with antiviral gene transcription. Globular viral factories organized by the non-structural protein µNS were also observed initially, but were not evident at later stages. Interactions between µNS and the PRV structural proteins λ1, µ1, σ1 and σ3 were demonstrated. Different size variants of µNS and the outer capsid protein µ1 appeared at specific time points during infection. Maximal viral protein load was observed five weeks post cohabitant challenge and was undetectable from seven weeks post challenge. In contrast, viral RNA at a high level could be detected throughout the eight-week trial. A proteolytic cleavage fragment of the µ1 protein was the only viral protein detectable after seven weeks post challenge, indicating that this µ1 fragment may be involved in the mechanisms of persistent infection. PMID:28335455

  7. Combined genetic and epigenetic interferences with interferon signaling expose prostate cancer cells to viral infection

    PubMed Central

    Sabo, Yosef; Bacharach, Eran; Ehrlich, Marcelo

    2016-01-01

    Interferons (IFNs) induce anti-viral programs, regulate immune responses, and exert anti-proliferative effects. To escape anti-tumorigenic effects of IFNs, malignant cells attenuate JAK/STAT signaling and expression of IFN stimulated genes (ISGs). Such attenuation may enhance the susceptibility of tumor cells to oncolytic virotherapy. Here we studied genetic and epigenetic mechanisms of interference with JAK/STAT signaling and their contribution to susceptibility of prostate cancer cells to viral infection. Bioinformatics analysis of gene-expression in cohorts of prostate cancer patients revealed genetic and epigenetic interference with the IFN program. To correlate lack of IFN signaling and susceptibility to viral infection and oncolysis; we employed LNCaP prostate cancer cells as cellular model, and the human metapneumovirus and the epizootic hemorrhagic disease virus as infectious agents. In LNCaP cells, JAK1 is silenced by bi-allelic inactivating mutations and epigenetic silencing, which also silences ISGs. Chemical inhibition of epigenetic silencing partially restored IFN-sensitivity, induced low levels of expression of selected ISGs and attenuated, but failed to block, viral infection and oncolysis. Since viral infection was not blocked by epigenetic modifiers, and these compounds may independently-induce anti-tumor effects, we propose that epigenetic modifiers and virotherapy are compatible in treatment of prostate tumors defective in JAK1 expression and IFN signaling. PMID:27366948

  8. Influence of viral infection on essential oil composition of Ocimum basilicum (Lamiaceae).

    PubMed

    Nagai, Alice; Duarte, Ligia M L; Santos, Déborah Y A C

    2011-08-01

    Ocimum basilicum L., popularly known as sweet basil, is a Lamiaceae species whose essential oil is mainly composed of monoterpenes, sesquiterpenes and phenylpropanoids. The contents of these compounds can be affected by abiotic and biotic factors such as infections caused by viruses. The main goal of this research was an investigation of the effects of viral infection on the essential oil profile of common basil. Seeds of O. basilicum L. cv. Genovese were sowed and kept in a greenhouse. Plants presenting two pairs of leaves above the cotyledons were inoculated with an unidentified virus isolated from a field plant showing chlorotic yellow spots and foliar deformation. Essential oils of healthy and infected plants were extracted by hydrodistillation and analyzed by GCMS. Changes in essential oil composition due to viral infection were observed. Methyleugenol and p-cresol,2,6-di-tert-butyl were the main constituents. However, methyleugenol contents were significantly decreased in infected plants.

  9. Long-range transport and universality classes in in vitro viral infection spread

    NASA Astrophysics Data System (ADS)

    Manrubia, S. C.; García-Arriaza, J.; Domingo, E.; Escarmís, C.

    2006-05-01

    Dispersal mechanisms play a main role in the dynamics of infection spread. Recent experimental results with in vitro infections of foot-and-mouth disease virus reveal that the time needed for the virus to kill a cellular monolayer depends qualitatively on the number of viral particles required to initiate infection in a susceptible cell. A two-dimensional susceptible-infected-removed (SIR) model based on the experimental setting agrees with the observations only when viral particles are subject to long-range transport. Numerical and analytical results show that this long-range transport plays a role when a single particle causes infection, while it is inefficient when complementation between two or more particles is necessary.

  10. Tissue distribution of bovine viral diarrhea virus antigens in persistently infected cattle.

    PubMed

    Shin, T; Acland, H

    2001-08-01

    The tissue distribution and cellular localization of viral antigens in three cattle with persistent bovine viral diarrhea virus (BVDV) infection was studied. In three cases, necropsy findings of oral ulcers, abmasal ulcers and necrosis of Peyer's patches were suspected have been caused by BVDV infection. Non-cytopathic BVDV was isolated from a tissue pool of liver, kidneys and spleen. Immunohistochemical detection of BVDV showed that BVDV antigens were detected in both epithelial and nonepithelial cells in all examined organs, including the gastrointestinal tract, liver, pancreas, lung, lymphatic organs (spleen, lymph nodes), adrenal gland, ovary, uterus, and the mammary gland. These findings support the hypothesis that animals with persistent BVDV infection spread BVDV through all routes, and that infertility in BVDV infection is associated with the infection of BVDV in the ovaries and uteri.

  11. Sphingosine Kinase 1 Serves as a Pro-Viral Factor by Regulating Viral RNA Synthesis and Nuclear Export of Viral Ribonucleoprotein Complex upon Influenza Virus Infection

    PubMed Central

    Seo, Young-Jin; Pritzl, Curtis J.; Vijayan, Madhuvanthi; Bomb, Kavita; McClain, Mariah E.; Alexander, Stephen; Hahm, Bumsuk

    2013-01-01

    Influenza continues to pose a threat to humans by causing significant morbidity and mortality. Thus, it is imperative to investigate mechanisms by which influenza virus manipulates the function of host factors and cellular signal pathways. In this study, we demonstrate that influenza virus increases the expression and activation of sphingosine kinase (SK) 1, which in turn regulates diverse cellular signaling pathways. Inhibition of SK suppressed virus-induced NF-κB activation and markedly reduced the synthesis of viral RNAs and proteins. Further, SK blockade interfered with activation of Ran-binding protein 3 (RanBP3), a cofactor of chromosome region maintenance 1 (CRM1), to inhibit CRM1-mediated nuclear export of the influenza viral ribonucleoprotein complex. In support of this observation, SK inhibition altered the phosphorylation of ERK, p90RSK, and AKT, which is the upstream signal of RanBP3/CRM1 activation. Collectively, these results indicate that SK is a key pro-viral factor regulating multiple cellular signal pathways triggered by influenza virus infection. PMID:24137500

  12. Viral Infection Is Not Uncommon in Adult Patients with Severe Hospital-Acquired Pneumonia

    PubMed Central

    Hong, Hyo-Lim; Hong, Sang-Bum; Ko, Gwang-Beom; Huh, Jin Won; Sung, Heungsup; Do, Kyung-Hyun; Kim, Sung-Han; Lee, Sang-Oh; Kim, Mi-Na; Jeong, Jin-Yong; Lim, Chae-Man; Kim, Yang Soo; Woo, Jun Hee; Koh, Younsuck; Choi, Sang-Ho

    2014-01-01

    Background Viral pathogens have not generally been regarded as important causes of severe hospital-acquired pneumonia (HAP), except in patients with hematologic malignancy or transplant recipients. We investigated the role and distribution of viruses in adult with severe HAP who required intensive care. Methods From March 2010 to February 2012, adult patients with severe HAP required admission to the intensive care unit (ICU), 28-bed medical ICU in a tertiary care hospital, were prospectively enrolled. Respiratory viruses were detected using multiplex reverse-transcription polymerase chain reaction and/or shell vial culture. Results A total of 262 patients were enrolled and 107 patients (40.8%) underwent bronchoscopic BAL for etiologic diagnosis. One hundred and fifty-six patients (59.5%) had bacterial infections and 59 patients (22.5%) had viral infections. Viruses were detected in BAL fluid specimens of 37 patients (62.7%, 37/59). The most commonly identified viruses were respiratory syncytial virus and parainfluenza virus (both 27.1%, 16/59), followed by rhinovirus (25.4%, 15/59), and influenza virus (16.9%, 10/59). Twenty-one patients (8.0%, 21/262) had bacterial-viral coinfections and Staphylococcus aureus was the most commonly coexisting bacteria (n = 10). Viral infection in non-immunocompromised patients was not uncommon (11.1%, 16/143), although it was not as frequent as that in immunocompromised patients (36.4%, 43/119). Non-immunocompromised patients were significantly older than immunocompromised patients and had significantly higher rates of underlying chronic obstructive pulmonary disease, tuberculous destroyed lung and chronic kidney disease. The 28 day mortalities of patients with bacterial infections, viral infections and bacterial-viral coinfections were not significantly different (29.5%, 35.6% and 19.0%, respectively; p = 0.321). Conclusions Viral pathogens are not uncommon in adult patients with severe HAP who required ICU admission

  13. Viral Infection of the Placenta Leads to Fetal Inflammation and Sensitization to Bacterial Products Predisposing to Preterm Labor

    PubMed Central

    Cardenas, Ingrid; Means, Robert E.; Aldo, Paulomi; Koga, Kaori; Lang, Sabine M.; Booth, Carmen; Manzur, Alejandro; Oyarzun, Enrique; Romero, Roberto; Mor, Gil

    2011-01-01

    Pandemics pose a more significant threat to pregnant women than to the nonpregnant population and may have a detrimental effect on the well being of the fetus. We have developed an animal model to evaluate the consequences of a viral infection characterized by lack of fetal transmission. The experiments described in this work show that viral infection of the placenta can elicit a fetal inflammatory response that, in turn, can cause organ damage and potentially downstream developmental deficiencies. Furthermore, we demonstrate that viral infection of the placenta may sensitize the pregnant mother to bacterial products and promote preterm labor. It is critical to take into consideration the fact that during pregnancy it is not only the maternal immune system responding, but also the fetal/placental unit. Our results further support the immunological role of the placenta and the fetus affecting the global response of the mother to microbial infections. This is relevant for making decisions associated with treatment and prevention during pandemics. PMID:20554966

  14. The control of bovine viral diarrhoea virus infection.

    PubMed

    Harkness, J W

    1987-01-01

    In this paper, current ideas concerning the epidemiology of BVD virus infection are reviewed briefly, together with its possible economic implications. The different types of control strategies are considered. Problems associated with vaccination are discussed.

  15. The Role of Cytidine Deaminases on Innate Immune Responses against Human Viral Infections

    PubMed Central

    Vieira, Valdimara C.; Soares, Marcelo A.

    2013-01-01

    The APOBEC family of proteins comprises deaminase enzymes that edit DNA and/or RNA sequences. The APOBEC3 subgroup plays an important role on the innate immune system, acting on host defense against exogenous viruses and endogenous retroelements. The role of APOBEC3 proteins in the inhibition of viral infection was firstly described for HIV-1. However, in the past few years many studies have also shown evidence of APOBEC3 action on other viruses associated with human diseases, including HTLV, HCV, HBV, HPV, HSV-1, and EBV. APOBEC3 inhibits these viruses through a series of editing-dependent and independent mechanisms. Many viruses have evolved mechanisms to counteract APOBEC effects, and strategies that enhance APOBEC3 activity constitute a new approach for antiviral drug development. On the other hand, novel evidence that editing by APOBEC3 constitutes a source for viral genetic diversification and evolution has emerged. Furthermore, a possible role in cancer development has been shown for these host enzymes. Therefore, understanding the role of deaminases on the immune response against infectious agents, as well as their role in human disease, has become pivotal. This review summarizes the state-of-the-art knowledge of the impact of APOBEC enzymes on human viruses of distinct families and harboring disparate replication strategies. PMID:23865062

  16. Inhibition of HIV-1 Viral Infection by an Engineered CRISPR Csy4 RNA Endoribonuclease.

    PubMed

    Guo, Rui; Wang, Hong; Cui, Jiuwei; Wang, Guanjun; Li, Wei; Hu, Ji-Fan

    2015-01-01

    The bacterial defense system CRISPR (clustered regularly interspaced short palindromic repeats) has been explored as a powerful tool to edit genomic elements. In this study, we test the potential of CRISPR Csy4 RNA endoribonuclease for targeting HIV-1. We fused human codon-optimized Csy4 endoribonuclease with VPR, a HIV-1 viral preintegration complex protein. An HIV-1 cell model was modified to allow quantitative detection of active virus production. We found that the trans-expressing VPR-Csy4 almost completely blocked viral infection in two target cell lines (SupT1, Ghost). In the MAGI cell assay, where the HIV-1 LTR β-galactosidase is expressed under the control of the tat gene from an integrated provirus, VPR-Csy4 significantly blocked the activity of the provirus-activated HIV-1 reporter. This proof-of-concept study demonstrates that Csy4 endoribonuclease is a promising tool that could be tailored further to target HIV-1.

  17. Inhibition of HIV-1 Viral Infection by an Engineered CRISPR Csy4 RNA Endoribonuclease

    PubMed Central

    Guo, Rui; Wang, Hong; Cui, Jiuwei; Wang, Guanjun; Li, Wei; Hu, Ji-Fan

    2015-01-01

    The bacterial defense system CRISPR (clustered regularly interspaced short palindromic repeats) has been explored as a powerful tool to edit genomic elements. In this study, we test the potential of CRISPR Csy4 RNA endoribonuclease for targeting HIV-1. We fused human codon-optimized Csy4 endoribonuclease with VPR, a HIV-1 viral preintegration complex protein. An HIV-1 cell model was modified to allow quantitative detection of active virus production. We found that the trans-expressing VPR-Csy4 almost completely blocked viral infection in two target cell lines (SupT1, Ghost). In the MAGI cell assay, where the HIV-1 LTR β-galactosidase is expressed under the control of the tat gene from an integrated provirus, VPR-Csy4 significantly blocked the activity of the provirus-activated HIV-1 reporter. This proof-of-concept study demonstrates that Csy4 endoribonuclease is a promising tool that could be tailored further to target HIV-1. PMID:26495836

  18. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process.

  19. Chemistry-based functional proteomics to identify novel deubiquitylating enzymes involved in viral infection.

    PubMed

    Lei, Yunlong; Xie, Ke; Huang, Kai; Wu, Hong; Huang, Canhua

    2012-05-01

    Ubiquitylation is a reversible post-translational modification pathway that regulates a variety of cellular processes including protein degradation and trafficking, intracellular localization, DNA repair, immune response and cellcycle progression. Deubiquitylating enzymes (DUBs) can remove the ubiquitin from the modified proteins and reverse the ubiquitylation-induced biological processes; hence it isn't hard to understand that viral pathogens take advantage of the host cell ubiquitin system through disturbing DUBs, for infection and replication. Although accumulated virus-related DUBs have been defined, but how viruses regulate their expression and activities is poor understand because of limitation of technologies. Recently, chemistry-based functional proteomics, which can not only monitor the alteration of abundance but also changes in activity of enzymes, was used to study the function of DUBs involved in virus infection and held much promise. Theses works suggest that chemistry-based functional proteomics is a potent strategy for high throughput screening of virus-related DUBs and exploring their roles in virus infection.

  20. High Serum Lipopolysaccharide-Binding Protein Level in Chronic Hepatitis C Viral Infection Is Reduced by Anti-Viral Treatments

    PubMed Central

    Nien, Hsiao-Ching; Hsu, Shih-Jer; Su, Tung-Hung; Yang, Po-Jen; Sheu, Jin-Chuan; Wang, Jin-Town; Chow, Lu-Ping; Chen, Chi-Ling

    2017-01-01

    Background Lipopolysaccharide-binding protein (LBP) has been reported to associate with metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease. Since chronic hepatitis C virus (HCV) infection is associated with metabolic derangements, the relationship between LBP and HCV deserves additional studies. This study aimed to determine the serum LBP level in subjects with or without HCV infection and investigate the change of its level after anti-viral treatments with or without interferon. Methods and Findings We recruited 120 non-HCV subjects, 42 and 17 HCV-infected subjects respectively treated with peginterferon α-2a/ribavirin and direct-acting antiviral drugs. Basic information, clinical data, serum LBP level and abdominal ultrasonography were collected. All the subjects provided written informed consent before being enrolled approved by the Research Ethics Committee of the National Taiwan University Hospital. Serum LBP level was significantly higher in HCV-infected subjects than non-HCV subjects (31.0 ± 8.8 versus 20.0 ± 6.4 μg/mL; p-value < 0.001). After multivariate analyses, LBP at baseline was independently associated with body mass index, hemoglobin A1c, alanine aminotransferase (ALT) and HCV infection. Moreover, the baseline LBP was only significantly positively associated with ALT and inversely with fatty liver in HCV-infected subjects. The LBP level significantly decreased at sustained virologic response (27.4 ± 6.6 versus 34.6 ± 7.3 μg/mL, p-value < 0.001; 15.9 ± 4.4 versus 22.2 ± 5.7 μg/mL, p-value = 0.001), regardless of interferon-based or -free therapy. Conclusions LBP, an endotoxemia associated protein might be used as an inflammatory biomarker of both infectious and non-infectious origins in HCV-infected subjects. PMID:28107471

  1. Fatal hepatitis E viral infection in pregnant women in Ghana: a case series

    PubMed Central

    2012-01-01

    Background Viral infections during pregnancy can pose serious threats to mother and fetus from the time of conception to the time of delivery. These lead to congenital defects, spontaneous abortion and even death. The definitive diagnosis and management of pregnancy-related viral infections may be challenging especially in less resourced countries. Case presentation We present clinical and laboratory responses to the diagnosis and management of three cases of fulminant hepatitis secondary to Hepatitis E viral infection in pregnancy. Case 1 was a 31-year-old Ghanaian woman who presented with a week’s history of passing dark urine as well as yellowish discoloration of the eyes. She subsequently developed fulminant hepatitis secondary to Hepatitis E viral infection, spontaneously aborted at 24 weeks of gestation and later died. Case 2 was also a 31-year-old Ghanaian woman who was admitted with a four-day history of jaundice. She had low grade fever, but no history of abdominal pain, haematuria, pale stool or pruritus. She next developed fulminant hepatitis secondary to Hepatitis E viral infection. However, she did not miscarry but died at 28 weeks of gestation. Case 3 was a 17-year-old Ghanaian woman who was referred to the tertiary health facility on account of jaundice and anaemia. She had delivered a live male infant at maturity of 32 weeks but noticed she was jaundiced and had a presentation of active disease 3 days prior to delivery. The baby was icteric at birth and on evaluation, had elevated bilirubin (mixed type) with normal liver enzymes. Hepatitis E virus infection was confirmed in both mother and baby. However, the jaundice and the hepatomegaly resolved in mother and baby after 5 and 12 days respectively. Conclusion To the best of our knowledge, these are the first documented cases of fatal fulminant hepatic failures resulting from HEV infection in Ghana. PMID:22937872

  2. Respiratory viral infections in children with asthma: do they matter and can we prevent them?

    PubMed Central

    2012-01-01

    Background Asthma is a major public health problem with a huge social and economic burden affecting 300 million people worldwide. Viral respiratory infections are the major cause of acute asthma exacerbations and may contribute to asthma inception in high risk young children with susceptible genetic background. Acute exacerbations are associated with decreased lung growth or accelerated loss of lung function and, as such, add substantially to both the cost and morbidity associated with asthma. Discussion While the importance of preventing viral infection is well established, preventive strategies have not been well explored. Good personal hygiene, hand-washing and avoidance of cigarette smoke are likely to reduce respiratory viral infections. Eating a healthy balanced diet, active probiotic supplements and bacterial-derived products, such as OM-85, may reduce recurrent infections in susceptible children. There are no practical anti-viral therapies currently available that are suitable for widespread use. Summary Hand hygiene is the best measure to prevent the common cold. A healthy balanced diet, active probiotic supplements and immunostimulant OM-85 may reduce recurrent infections in asthmatic children. PMID:22974166

  3. P53-Mediated Rapid Induction of Apoptosis Conveys Resistance to Viral Infection in Drosophila melanogaster

    PubMed Central

    Liu, Bo; Behura, Susanta K.; Clem, Rollie J.; Schneemann, Anette; Becnel, James; Severson, David W.; Zhou, Lei

    2013-01-01

    Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress–responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection. PMID:23408884

  4. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    SciTech Connect

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian . E-mail: bzheng@hkucc.hku.hk

    2007-07-20

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.

  5. Epidemiology and aetiology of maternal bacterial and viral infections in low- and middle-income countries

    PubMed Central

    Velu, Prasad Palani; Gravett, Courtney A.; Roberts, Tom K.; Wagner, Thor A.; Zhang, Jian Shayne F.; Rubens, Craig E.; Gravett, Michael G.; Campbell, Harry; Rudan, Igor

    2011-01-01

    Background Maternal morbidity and mortality in low- and middle-income countries has remained exceedingly high. However, information on bacterial and viral maternal infections, which are important contributors to poor pregnancy outcomes, is sparse and poorly characterised. This review aims to describe the epidemiology and aetiology of bacterial and viral maternal infections in low- and middle-income countries. Methods A systematic search of published literature was conducted and data on aetiology and epidemiology of maternal infections was extracted from relevant studies for analysis. Searches were conducted in parallel by two reviewers (using OVID) in the following databases: Medline (1950 to 2010), EMBASE (1980 to 2010) and Global Health (1973 to 2010). Results Data from 158 relevant studies was used to characterise the epidemiology of the 10 most extensively reported maternal infections with the following median prevalence rates: Treponema pallidum (2.6%), Neisseria gonorrhoeae (1.5%), Chlamydia trachomatis (5.8%), Group B Streptococcus (8.6%), bacterial vaginosis (20.9%), hepatitis B virus (4.3%), hepatitis C virus (1.4%), Cytomegalovirus (95.7% past infection), Rubella (8.9% susceptible) and Herpes simplex (20.7%). Large variations in the prevalence of these infections between countries and regions were noted. Conclusion This review confirms the suspected high prevalence of maternal bacterial and viral infections and identifies particular diseases and regions requiring urgent attention in public health policy planning, setting research priorities and donor funding towards reducing maternal morbidity and mortality in low- and middle-income countries. PMID:23198117

  6. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga

    PubMed Central

    Ziv, Carmit; Malitsky, Sergey; Ben-Dor, Shifra; Wei, Yu; Zheng, Shuning; Aharoni, Asaph; Vardi, Assaf

    2016-01-01

    Marine viruses are the most abundant biological entities in the oceans shaping community structure and nutrient cycling. The interaction between the bloom-forming alga Emiliania huxleyi and its specific large dsDNA virus (EhV) is a major factor determining the fate of carbon in the ocean, thus serving as a key host-pathogen model system. The EhV genome encodes for a set of genes involved in the de novo sphingolipid biosynthesis, not reported in any viral genome to date. We combined detailed lipidomic and biochemical analyses to characterize the functional role of this virus-encoded pathway during lytic viral infection. We identified a major metabolic shift, mediated by differential substrate specificity of virus-encoded serine palmitoyltransferase, a key enzyme of sphingolipid biosynthesis. Consequently, unique viral glycosphingolipids, composed of unusual hydroxylated C17 sphingoid bases (t17:0) were highly enriched in the infected cells, and their synthesis was found to be essential for viral assembly. These findings uncover the biochemical bases of the virus-induced metabolic rewiring of the host sphingolipid biosynthesis during the chemical “arms race” in the ocean. PMID:26984500

  7. T cell-, interleukin-12-, and gamma interferon-driven viral clearance in measles virus-infected brain tissue.

    PubMed

    Stubblefield Park, Samantha R; Widness, Mi; Levine, Alan D; Patterson, Catherine E

    2011-04-01

    Genetic studies with immunocompetent mice show the importance of both T cells and gamma interferon (IFN-γ) for survival of a measles virus (MV) challenge; however, the direct role of T cells and IFN-γ within the MV-infected brain has not been addressed. Organotypic brain explants represent a successful ex vivo system to define central nervous system (CNS)-specific mechanisms of leukocyte migration, activation, and MV clearance. Within the heterogeneous, brain-derived, primed leukocyte population which reduced MV RNA levels in brain explants by 60%, CD3 T cells are the active antiviral cells, as purified CD3-positive cells are highly antiviral and CD3-negative leukocytes are unable to reduce the viral load. Neutralization of CCL5 and CXCL10 decreases leukocyte migration to areas of infection by 70%. However, despite chemokines directing the migration of T cells to infected neurons, chemokine neutralization revealed that migration is not required for viral clearance, suggesting a cytokine-mediated antiviral mechanism. In accordance with our hypothesis, the ability of leukocytes to clear the virus is abrogated when explants are treated with anti-IFN-γ neutralizing antibodies. IFN-γ applied to infected slices in the absence of primed leukocytes reduces the viral load by more than 80%; therefore, in brain tissue, IFN-γ is both necessary and sufficient to clear MV. Secretion of IFN-γ is stimulated by interleukin-12 (IL-12) in the brain, as neutralization of IL-12 results in loss of antiviral activity and stimulation of leukocytes with IL-12/IL-18 enhances their immune effector function of viral clearance. MV-primed leukocytes can reduce both West Nile and mouse hepatitis viral RNAs, indicating that cytokine-mediated viral clearance occurs in an antigen-independent manner. The IFN-γ signal is transduced within the brain explant by the Jak/STAT signaling pathway, as inhibition of Jak kinases results in a loss of antiviral activity driven by either brain

  8. DNA methyltransferase DNMT3A associates with viral proteins and impacts HSV-1 infection.

    PubMed

    Rowles, Daniell L; Tsai, Yuan-Chin; Greco, Todd M; Lin, Aaron E; Li, Minghao; Yeh, Justin; Cristea, Ileana M

    2015-06-01

    Viral infections can alter the cellular epigenetic landscape, through modulation of either DNA methylation profiles or chromatin remodeling enzymes and histone modifications. These changes can act to promote viral replication or host defense. Herpes simplex virus type 1 (HSV-1) is a prominent human pathogen, which relies on interactions with host factors for efficient replication and spread. Nevertheless, the knowledge regarding its modulation of epigenetic factors remains limited. Here, we used fluorescently-labeled viruses in conjunction with immunoaffinity purification and MS to study virus-virus and virus-host protein interactions during HSV-1 infection in primary human fibroblasts. We identified interactions among viral capsid and tegument proteins, detecting phosphorylation of the capsid protein VP26 at sites within its UL37-binding domain, and an acetylation within the major capsid protein VP5. Interestingly, we found a nuclear association between viral capsid proteins and the de novo DNA methyltransferase DNA (cytosine-5)-methyltransferase 3A (DNMT3A), which we confirmed by reciprocal isolations and microscopy. We show that drug-induced inhibition of DNA methyltransferase activity, as well as siRNA- and shRNA-mediated DNMT3A knockdowns trigger reductions in virus titers. Altogether, our results highlight a functional association of viral proteins with the mammalian DNA methyltransferase machinery, pointing to DNMT3A as a host factor required for effective HSV-1 infection.

  9. Actin-binding Protein Drebrin Regulates HIV-1-triggered Actin Polymerization and Viral Infection*

    PubMed Central

    Gordón-Alonso, Mónica; Rocha-Perugini, Vera; Álvarez, Susana; Ursa, Ángeles; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Muñoz-Fernández, María A.; Sánchez-Madrid, Francisco

    2013-01-01

    HIV-1 contact with target cells triggers F-actin rearrangements that are essential for several steps of the viral cycle. Successful HIV entry into CD4+ T cells requires actin reorganization induced by the interaction of the cellular receptor/co-receptor complex CD4/CXCR4 with the viral envelope complex gp120/gp41 (Env). In this report, we analyze the role of the actin modulator drebrin in HIV-1 viral infection and cell to cell fusion. We show that drebrin associates with CXCR4 before and during HIV infection. Drebrin is actively recruited toward cell-virus and Env-driven cell to cell contacts. After viral internalization, drebrin clustering is retained in a fraction of the internalized particles. Through a combination of RNAi-based inhibition of endogenous drebrin and GFP-tagged expression of wild-type and mutant forms, we establish drebrin as a negative regulator of HIV entry and HIV-mediated cell fusion. Down-regulation of drebrin expression promotes HIV-1 entry, decreases F-actin polymerization, and enhances profilin local accumulation in response to HIV-1. These data underscore the negative role of drebrin in HIV infection by modulating viral entry, mainly through the control of actin cytoskeleton polymerization in response to HIV-1. PMID:23926103

  10. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency

    PubMed Central

    Jolmes, Fabian; Welke, Robert-William; Klipp, Edda; Herrmann, Andreas; Flöttmann, Max

    2016-01-01

    After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA) triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus. PMID:27780209

  11. Healthcare-associated viral and bacterial infections in dentistry

    PubMed Central

    Laheij, A.M.G.A.; Kistler, J.O.; Belibasakis, G.N.; Välimaa, H.; de Soet, J.J.

    2012-01-01

    Infection prevention in dentistry is an important topic that has gained more interest in recent years and guidelines for the prevention of cross-transmission are common practice in many countries. However, little is known about the real risks of cross-transmission, specifically in the dental healthcare setting. This paper evaluated the literature to determine the risk of cross-transmission and infection of viruses and bacteria that are of particular relevance in the dental practice environment. Facts from the literature on HSV, VZV, HIV, Hepatitis B, C and D viruses, Mycobacterium spp., Pseudomonas spp., Legionella spp. and multi-resistant bacteria are presented. There is evidence that Hepatitis B virus is a real threat for cross-infection in dentistry. Data for the transmission of, and infection with, other viruses or bacteria in dental practice are scarce. However, a number of cases are probably not acknowledged by patients, healthcare workers and authorities. Furthermore, cross-transmission in dentistry is under-reported in the literature. For the above reasons, the real risks of cross-transmission are likely to be higher. There is therefore a need for prospective longitudinal research in this area, to determine the real risks of cross-infection in dentistry. This will assist the adoption of effective hygiene procedures in dental practice. PMID:22701774

  12. Systematic review and meta-analysis of hepatitis C virus infection and HIV viral load: new insights into epidemiologic synergy

    PubMed Central

    Petersdorf, Nicholas; Ross, Jennifer M; Weiss, Helen A; Barnabas, Ruanne V; Wasserheit, Judith N

    2016-01-01

    Introduction Hepatitis C virus (HCV) and HIV infection frequently co-occur due to shared transmission routes. Co-infection is associated with higher HCV viral load (VL), but less is known about the effect of HCV infection on HIV VL and risk of onward transmission. Methods We undertook a systematic review comparing 1) HIV VL among ART-naïve, HCV co-infected individuals versus HIV mono-infected individuals and 2) HIV VL among treated versus untreated HCV co-infected individuals. We performed a random-effects meta-analysis and quantified heterogeneity using the I2 statistic. We followed Cochrane Collaboration guidelines in conducting our review and PRISMA guidelines in reporting results. Results and discussion We screened 3925 articles and identified 17 relevant publications. A meta-analysis found no evidence of increased HIV VL associated with HCV co-infection or between HIV VL and HCV treatment with pegylated interferon-alpha-2a/b and ribavirin. Conclusions This finding is in contrast to the substantial increases in HIV VL observed with several other systemic infections. It presents opportunities to elucidate the biological pathways that underpin epidemiological synergy in HIV co-infections and may enable prediction of which co-infections are most important to epidemic control. PMID:27649908

  13. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  14. Management of respiratory viral infections in hematopoietic cell transplant recipients

    PubMed Central

    Shah, Dimpy P; Ghantoji, Shashank S; Mulanovich, Victor E; Ariza-heredia, Ella J; Chemaly, Roy F

    2012-01-01

    Advances in stem cell transplantation procedures and the overall improvement in the clinical management of hematopoietic cell transplant (HCT) recipients over the past 2 decades have led to an increase in survival duration, in part owing to better strategies for prevention and treatment of post-transplant complications, including opportunistic infections. However, post-HCT infections remain a concern for HCT recipients, particularly infections caused by community respiratory viruses (CRVs), which can lead to significant morbidity and mortality. These viruses can potentially cause lower respiratory tract illness, which is associated with a higher mortality rate among HCT recipients. Clinical management of CRV infections in HCT recipients includes supportive care and antiviral therapy, especially in high-risk individuals, when available. Directed antiviral therapy is only available for influenza infections, where successful use of neuraminidase inhibitors (oseltamivir or zanamivir) and/or M2 inhibitors (amantadine or rimantadine) has been reported. Data on the successful use of ribavirin, with or without immunomodulators, for respiratory syncytial virus infections in HCT recipients has emerged over the past 2 decades but is still controversial at best because of a lack of randomized controlled trials. Because of the lack of directed antiviral therapy for most of these viruses, prevention should be emphasized for healthcare workers, patients, family, and friends and should include the promotion of the licensed inactivated influenza vaccine for HCT recipients, when indicated. In this review, we discuss the clinical management of respiratory viruses in this special patient population, focusing on commercially available antivirals, adjuvant therapy, and novel drugs under investigation, as well as on available means for prevention. PMID:23226621

  15. Nuclear Sensing of Viral DNA, Epigenetic Regulation of Herpes Simplex Virus Infection, and Innate Immunity

    PubMed Central

    Knipe, David M.

    2015-01-01

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. Herpes viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. PMID:25742715

  16. Value of serological tests in the diagnosis of viral acute respiratory infections in adults.

    PubMed

    Căruntu, F; Dogaru, D; Stefan, D; Căruntu, V; Angelescu, C; Streinu-Cercel, A; Colţan, G; Petrescu, A L; Tarţă, D; Bârnaure, F

    1986-01-01

    The dynamics of the antibody response to influenza viruses A (H1N1), A (H3N2) and B, to parainfluenza viruses 1, 2, 3, to adenoviruses and respiratory syncytial virus was studied in paired serum samples collected from 110 patients hospitalized with acute respiratory infections (ARI) and in 40 patients suffering from other diseases. Rises in serum antibody titers to 1--5 of the above mentioned antigens were detected in many of the patients of both groups. The fact is most likely due to the presence of some epidemiologically and clinically uncharacteristic viral ARI (influenza included); simultaneous or successive infections with influenza virus and different other viruses were very frequent. A greater efficiency of the etiological diagnosis of viral ARI can be achieved only by the association of epidemiological and clinical criteria with serological data, the visualization of viral antigens and virus isolation.

  17. Transkingdom control of viral infection and immunity in the mammalian intestine

    PubMed Central

    Pfeiffer, Julie K.; Virgin, Herbert W.

    2016-01-01

    Viruses that infect the intestine include major human pathogens (retroviruses, noroviruses, rotaviruses, astroviruses, picornaviruses, adenoviruses, herpesviruses) constituting a major public health problem worldwide. These viral pathogens are members of a large, complex viral community inhabiting the intestine termed the enteric virome. Enteric viruses have intimate functional and genetic relationships with both the host and other microbial constituents that inhabit the intestine, like the bacterial microbiota, their associated phages, helminthes and fungi which together constitute the microbiome. Emerging data indicate that enteric viruses regulate, and are in turn regulated by, these other microbes through a series of processes termed transkingdom interactions. This represents a changing paradigm in intestinal immunity to viral infection. Here we review recent advances in the field and propose new ways in which to conceptualize this important area. PMID:26816384

  18. Does Viral Co-Infection Influence the Severity of Acute Respiratory Infection in Children?

    PubMed Central

    Pardo-Seco, Jacobo; Gómez-Carballa, Alberto; Martinón-Torres, Nazareth; Salas, Antonio; Martinón-Sánchez, José María; Justicia, Antonio; Rivero-Calle, Irene; Sumner, Edward; Fink, Colin

    2016-01-01

    Background Multiple viruses are often detected in children with respiratory infection but the significance of co-infection in pathogenesis, severity and outcome is unclear. Objectives To correlate the presence of viral co-infection with clinical phenotype in children admitted with acute respiratory infections (ARI). Methods We collected detailed clinical information on severity for children admitted with ARI as part of a Spanish prospective multicenter study (GENDRES network) between 2011–2013. A nested polymerase chain reaction (PCR) approach was used to detect respiratory viruses in respiratory secretions. Findings were compared to an independent cohort collected in the UK. Results 204 children were recruited in the main cohort and 97 in the replication cohort. The number of detected viruses did not correlate with any markers of severity. However, bacterial superinfection was associated with increased severity (OR: 4.356; P-value = 0.005), PICU admission (OR: 3.342; P-value = 0.006), higher clinical score (1.988; P-value = 0.002) respiratory support requirement (OR: 7.484; P-value < 0.001) and longer hospital length of stay (OR: 1.468; P-value < 0.001). In addition, pneumococcal vaccination was found to be a protective factor in terms of degree of respiratory distress (OR: 2.917; P-value = 0.035), PICU admission (OR: 0.301; P-value = 0.011), lower clinical score (-1.499; P-value = 0.021) respiratory support requirement (OR: 0.324; P-value = 0.016) and oxygen necessity (OR: 0.328; P-value = 0.001). All these findings were replicated in the UK cohort. Conclusion The presence of more than one virus in hospitalized children with ARI is very frequent but it does not seem to have a major clinical impact in terms of severity. However bacterial superinfection increases the severity of the disease course. On the contrary, pneumococcal vaccination plays a protective role. PMID:27096199

  19. Canine viral enteritis: prevalence of parvo-, corona- and rotavirus infections in dogs in the Netherlands.

    PubMed

    Osterhaus, A D; Drost, G A; Wirahadiredja, R M; van den Ingh, T S

    1980-10-15

    After a brief review of the present knowledge about canine viral enteritis, the role played by parvoviral, coronaviral and rotaviral infections in contagious diarrhoea in dogs in the Netherlands is discussed. For this purpose a serologic survey, pathologic findings in dogs, and the demonstration of parvoviral antigen with an immunofluorescence test and with a newly developed haemadsorption-elution-haemagglutination assay (HEHA) are presented. It is concluded that infections with canine parvovirus, coronavirus and rotavirus appear widespread among dog populations in the Netherlands.

  20. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    PubMed

    Staples, Karl J; Nicholas, Ben; McKendry, Richard T; Spalluto, C Mirella; Wallington, Joshua C; Bragg, Craig W; Robinson, Emily C; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M A

    2015-01-01

    Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  1. Nutrition, immunity and viral infections in honey bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bees can be infected with viruses that can spread rapidly in colonies. Here we discuss how honey bees decrease the risk of disease outbreaks by a combination of behaviors (social immunity) and individual immunity. The effectiveness of both social and individual immunity relies on nutrition. Ho...

  2. Comment on ‘Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy’

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Lademann, Juergen; Brandt, Nikolay N.

    2016-04-01

    The results of the letter ‘Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy’ authored by Firdous and Anwar (2015 Laser Phys. Lett. 12 085601) are discussed. We show that the original interpretation of the results is not correct and does not correspond to data in the literature.

  3. At the crossroads of autophagy and infection: Noncanonical roles for ATG proteins in viral replication

    PubMed Central

    Solvik, Tina

    2016-01-01

    Autophagy-related (ATG) proteins have increasingly demonstrated functions other than cellular self-eating. In this issue, Mauthe et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201602046) conduct an unbiased RNA interference screen of the ATG proteome to reveal numerous noncanonical roles for ATG proteins during viral infection. PMID:27573461

  4. Case Report: Emergence of bovine viral diarrhea virus persistently infected calves in a closed herd

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine viral diarrhea virus (BVDV) continues to have significant economic impact on the cattle industry worldwide. The virus is primarily maintained in the cattle population due to persistently infected animals. Herd surveillance along with good vaccination programs and biosecurity practices are the...

  5. Effects of Viral Infection on Blood-Feeding Behavior in Culicoides sonorensis (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culicoides sonorensis (Diptera: Ceratopogonidae) is the primary vector of bluetongue virus (BTV) in North America and a competent vector of vesicular stomatitis virus (VSV). Little is known about how viral infection of this midge affects its blood feeding behavior. Midges were intrathoracically inoc...

  6. Effects of Viral Infection on Blood Feeding Behavior and Fecundity in Culicoides Sonorensis (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culicoides sonorensis (Diptera: Ceratopogonidae) is the primary vector of bluetongue virus (BTV) in North America and a competent vector of vesicular stomatitis virus (VSV). Little is known about how viral infection of this midge affects its blood feeding behavior and fecundity. Blood feeding succes...

  7. Resolving bovine viral diarrhea virus subtypes from persistently infected US beef calves with complete genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic differences. Currently, three major subtypes circulate in the United States: BVDV-1a, 1b, and 2a. In addition, a single case of BVDV-2b infection ...

  8. Improved impression cytology techniques for the immunopathological diagnosis of superficial viral infections

    PubMed Central

    Thiel, M; Bossart, W; Bernauer, W

    1997-01-01

    BACKGROUND—For epidemiological and therapeutic reasons early diagnosis of superficial viral infections is crucial. Conventional microbiological techniques are expensive, time consuming, and not sufficiently sensitive. In this study impression cytology techniques were evaluated to analyse their diagnostic potential in viral infections of the ocular surface.
METHOD—A Biopore membrane device instead of the original impression cytology technique was used to allow better quality and handling of the specimens. The impressions were processed, using monoclonal antibodies and immunoperoxidase or immunofluorescence techniques to assess the presence of herpes simplex virus, varicella zoster virus, or adenovirus antigens. Ocular surface specimens from healthy individuals (n=10) and from patients with suspected viral surface disease (n=19) were studied. Infected and non-infected cell cultures served as controls.
RESULTS—This modified technique of impression cytology allowed the collection of large conjunctival and corneal epithelial cell layers with excellent morphology. Immunocytological staining of these samples provided diagnostic results for all three viruses in patients with viral surface disease.
CONCLUSIONS—The use of Biopore membrane devices for the collection of ocular surface epithelia offers new diagnostic possibilities for external eye diseases. Immunopathological methods that are applied directly on these membrane devices can provide virological results within 1-4 hours. This contributes considerably to the clinical management of patients with infectious diseases of the ocular surface.

 PMID:9505824

  9. Noninvasive visualization of respiratory viral infection using bioorthogonal conjugated near-infrared-emitting quantum dots.

    PubMed

    Pan, Hong; Zhang, Pengfei; Gao, Duyang; Zhang, Yijuan; Li, Ping; Liu, Lanlan; Wang, Ce; Wang, Hanzhong; Ma, Yifan; Cai, Lintao

    2014-06-24

    Highly pathogenic avian influenza A viruses are emerging pandemic threats in human beings. Monitoring the in vivo dynamics of avian influenza viruses is extremely important for understanding viral pathogenesis and developing antiviral drugs. Although a number of technologies have been applied for tracking viral infection in vivo, most of them are laborious with unsatisfactory detection sensitivity. Herein we labeled avian influenza H5N1 pseudotype virus (H5N1p) with near-infrared (NIR)-emitting QDs by bioorthogonal chemistry. The conjugation of QDs onto H5N1p was highly efficient with superior stability both in vitro and in vivo. Furthermore, QD-labeled H5N1p (QD-H5N1p) demonstrated bright and sustained fluorescent signals in mouse lung tissues, allowing us to visualize respiratory viral infection in a noninvasive and real-time manner. The fluorescence signals of QD-H5N1p in lung were correlated with the severity of virus infection and significantly attenuated by antiviral agents, such as oseltamivir carboxylate and mouse antiserum against H5N1p. The biodistribution of QD-H5N1p in lungs and other organs could be easily quantified by measuring fluorescent signals and cadmium concentration of virus-conjugated QDs in tissues. Hence, virus labeling with NIR QDs provides a simple, reliable, and quantitative strategy for tracking respiratory viral infection and for antiviral drug screening.

  10. Viral infection and innate pattern recognition receptors in induction of Hashimoto's thyroiditis.

    PubMed

    Morohoshi, Kazuki; Takahashi, Yurie; Mori, Kouki

    2011-12-01

    Hashimoto's thyroiditis, a common organ-specific autoimmune disease, is multifactorial in which both genetic susceptibility and environmental factors including infection play a critical role in its pathogenesis. Viral infection activates both the innate and adaptive immunity and is implicated as a trigger of Hashimoto's thyroiditis. Candidate viruses include hepatitis C virus and human parvovirus B19. Viral components, which are recognized by innate receptors including Toll-like receptors (TLRs), are detected in thyroid tissues and sera of patients with Hashimoto's thyroiditis. While conflicting results have been obtained regarding the role of TLRs in autoimmune diseases, our preliminary study suggested a contribution of TLR2 and dectin-1 in combination, TLR4, or TLR7 to the production of anti-thyroglobulin antibody in nonobese diabetic mice, a mouse model of Hashimoto's thyroiditis. Despite interesting circumstantial evidence, however, whether viral infection and innate receptors are involved in the development of Hashimoto's thyroiditis remains largely unclear. In this review, we summarize our knowledge regarding the role of viral infection and innate receptors in the etiology of Hashimoto's thyroiditis.

  11. Chronic and persistent viral hemorrhagic septicemia virus infections in Pacific herring

    USGS Publications Warehouse

    Hershberger, Paul K.; Gregg, Jacob L.; Winton, James R.; Grady, Cortney A.; Taylor, L.

    2010-01-01

    Chronic viral hemorrhagic septicemia virus (VHSV) infections were established in a laboratory stock of Pacific herring Clupea pallasii held in a large-volume tank supplied with pathogen-free seawater at temperatures ranging from 6.8 to 11.6°C. The infections were characterized by viral persistence for extended periods and near-background levels of host mortality. Infectious virus was recovered from mortalities occurring up to 167 d post-exposure and was detected in normal-appearing herring for as long as 224 d following initial challenge. Geometric mean viral titers were generally as high as or higher in brain tissues than in pools of kidney and spleen tissues, with overall prevalence of infection being higher in the brain. Upon re-exposure to VHSV in a standard laboratory challenge, negligible mortality occurred among groups of herring that were either chronically infected or fully recovered, indicating that survival from chronic manifestations conferred protection against future disease. However, some survivors of chronic VHS infections were capable of replicating virus upon re-exposure. Demonstration of a chronic manifestation of VHSV infection among Pacific herring maintained at ambient seawater temperatures provides insights into the mechanisms by which the virus is maintained among populations of endemic hosts.

  12. Chronic and persistent viral hemorrhagic septicemia virus infections in Pacific herring

    USGS Publications Warehouse

    Hershberger, P.K.; Gregg, J.L.; Grady, C.A.; Taylor, L.; Winton, J.R.

    2010-01-01

    Chronic viral hemorrhagic septicemia virus (VHSV) infections were established in a laboratory stock of Pacific herring Clupea pallasii held in a large-volume tank supplied with pathogenfree seawater at temperatures ranging from 6.8 to 11.6??C. The infections were characterized by viral persistence for extended periods and near-background levels of host mortality. Infectious virus was recovered from mortalities occurring up to 167 d post-exposure and was detected in normal-appearing herring for as long as 224 d following initial challenge. Geometric mean viral titers were generally as high as or higher in brain tissues than in pools of kidney and spleen tissues, with overall prevalence of infection being higher in the brain. Upon re-exposure to VHSV in a standard laboratory challenge, negligible mortality occurred among groups of herring that were either chronically infected or fully recovered, indicating that survival from chronic manifestations conferred protection against future disease. However, some survivors of chronic VHS infections were capable of replicating virus upon re-exposure. Demonstration of a chronic manifestation of VHSV infection among Pacific herring maintained at ambient seawater temperatures provides insights into the mechanisms by which the virus is maintained among populations of endemic hosts. ?? 2010 Inter-Research.

  13. Clinical and Associated Immunological Manifestations of HFMD Caused by Different Viral Infections in Children

    PubMed Central

    Wang, Jingjing; Pu, Jing; Liu, Longding; Che, Yanchun; Liao, Yun; Wang, Lichun; Guo, Lei; Feng, Min; Liang, Yan; Fan, Shengtao; Cai, Lukui; Zhang, Ying; Li, Qihan

    2016-01-01

    Hand, foot, and mouth disease (HFMD), with vesiculae on the hands, feet and mouth, is an infectious disease caused by many viral pathogens. However, the differences of immune response induced by these pathogens are unclear. We compared the clinical manifestations and the levels of immunologic indicators from 60 HFMD patients caused by different viral pathogens to analyze the differences in the immune response. It was shown that Th2 cytokines (IL-4 and IL-10) increased significantly in EV71-infected children; Th1 cytokines (IL-2 and IFN-γ) rose in CA16-infected children; both Th1 and Th2 cytokines elevated in non-EVG-infected children; only individual cytokines (such as IL-10) went up in EVG-infected children. Meanwhile, the antibodies induced by viral infection could not cross-interfere between the different pathogens. These differences might be due to variations in the immune response induced by the individual pathogens or to the pathogenesis of the infections by the individual pathogens. PMID:27336013

  14. Establishment of a viral hepatitis surveillance system--Pakistan, 2009-2011.

    PubMed

    2011-10-14

    Hepatitis A is thought to infect almost all persons living in Pakistan by age 15 years, and hepatitis E is responsible for sporadic infections and outbreaks. The prevalence of hepatitis B virus (HBV) infection is estimated at 2.5% and the prevalence of hepatitis C virus (HCV) infection, estimated at 4.8%, is one of the highest rates in the world. Hepatitis surveillance in Pakistan has been syndromic, failing to confirm infection, distinguish among viruses, or collect information on risk factors. To understand the epidemiology of viral hepatitis in Pakistan more clearly, the Ministry of Health (MOH) asked the Pakistan Field Epidemiology and Laboratory Training Program (FELTP) to establish a hepatitis sentinel surveillance system in five large public hospitals in four provinces and Islamabad Capital Territory. This report describes the implementation of the viral hepatitis surveillance system in Pakistan and summarizes major findings from June 2010 through March 2011. A total of 712 cases of viral hepatitis were reported; newly reported HCV infection accounted for 53.2% of reported cases, followed by acute hepatitis A (19.8%), acute hepatitis E (12.2%), and newly reported HBV infection (10.8%). A history of health-care--related exposures, particularly receipt of therapeutic injections and infusions, commonly were reported by persons infected with HBV and HCV, and most patients reported drinking unboiled water. These findings point to the need for improved provider and community education about risks associated with unsafe injections, strengthening infection control practices in health facilities, increasing hepatitis B vaccination coverage, and improving access to clean drinking water in Pakistan.

  15. Emerging Infections: Lessons from the Viral Hemorrhagic Fevers

    PubMed Central

    Peters, C. J

    2006-01-01

    Two Institute of Medicine reports since 1992 have emphasized the dangerous and continuing threat to the world from emerging infectious diseases. Working with viral hemorrhagic fevers provides a number of lessons related to the processes that control emergence, the pattern of disease after emergence, and how to cope with these incidents. This short paper uses two arenavirus hemorrhagic fevers to illustrate some of these principles. Argentine and Bolivian hemorrhagic fevers first came to medical attention in the 1950’s. The forces that underlie the emergence of disease in Argentina are not understood, but the Bolivian episode has a reasonably understandable train of events behind it. The Argentine disease had serious impact on the large agricultural economy, and the ecology of the rodent reservoir did not lend itself to control; a vaccine was developed by Argentina and the U.S. with the latter motivated largely by biodefense. The Bolivian disease was controlled in large part by eliminating rodents that invaded towns, and the impact was subsequently below the level needed to trigger drug or vaccine development. These two viruses were important in the recognition of a new family of viruses (Arenaviridae), and this finding of new taxons during the investigation of emerging infectious diseases continues. PMID:18528473

  16. Causes of thrombocytopenia in chronic hepatitis C viral infection.

    PubMed

    Osada, Makoto; Kaneko, Makoto; Sakamoto, Minoru; Endoh, Masumi; Takigawa, Koichi; Suzuki-Inoue, Katsue; Inoue, Osamu; Satoh, Kaneo; Enomoto, Nobuyuki; Yatomi, Yutaka; Ozaki, Yukio

    2012-06-01

    We retrospectively studied 89 patients with chronic hepatitis C virus (HCV) infection, including 50 chronic hepatitis (CH) cases, 18 liver cirrhosis (LC) cases, and 21 LC with hepatocellular carcinoma (LC + HCC) cases, with regard to various factors related with thrombocytopenia. The platelet count decreased with the stage advancement of liver diseases. Multiple regression analysis revealed that splenomegaly and von Willebrand factor (vWF) were explanatory variables that correlated with thrombocytopenia. Splenomegaly appears to be the most responsible factor, although there are a considerable number of thrombocytopenic cases without splenomegaly, suggesting other factors may also be responsible. The vWF level is inversely correlated with the platelet count. Soluble thrombomodulin, a marker of endothelial dysfunction, increases with the advancement of liver fibrosis. It is positively correlated with vWF and inversely with the platelet count. Our present results imply that vascular endothelial dysfunction is also involved in thrombocytopenia during chronic HCV infection.

  17. Fibrillary glomerulonephritis with hepatitis C viral infection and hypocomplementemia.

    PubMed

    Ray, Susan; Rouse, Kelly; Appis, Andrew; Novak, Robert; Haller, Nairmeen Awad

    2008-01-01

    Fibrillary glomerulonephritis (FGN) is a relatively rare cause of renal disease, found in only 0.6-1.5% of native renal biopsies. The pathogenesis of FGN is not well described, and very few associations with disease processes other than hepatitis C virus (HCV) have been made. We describe a case that provides evidence in support of the FGN-HCV association, as well as introduces the association of FGN-HCV and hypocomplementemia. The case is a 53-year-old African-American female demonstrating a classical presentation of FGN complicated by a concomitant HCV infection. Treating an HCV infection with alpha-interferon has been shown to result in subsequent improvement in the nephrotic syndrome and renal function. However, this patient is unique in that she is complicated with hypocomplementemia, creating a complex treatment situation.

  18. Similar pattern of chemokines after acute viral and bacterial infection.

    PubMed

    Vyas, Ashish Kumar

    2017-01-27

    Read with great interest the article by Cavalcanti et al (1). Which describes the levels of chemokine such as MCP-1, RANETS, MIG and IP-10 in children with sepsis community acquired pneumonia and skin abscess. Author has found increased levels of RANETS in all infections mentioned above. Interestingly IP-10 was significantly increased in sepsis groups with low levels of MCP1. This article is protected by copyright. All rights reserved.

  19. Heat Shock Protein 27 Mediated Signaling in Viral Infection

    PubMed Central

    Rajaiya, Jaya; Yousuf, Mohammad A.; Singh, Gurdeep; Stanish, Heather; Chodosh, James

    2013-01-01

    Heat shock proteins (HSPs) play a critical role in many intracellular processes, including apoptosis and delivery of other proteins to intracellular compartments. Small HSPs have been shown previously to participate in many cellular functions, including IL-8 induction. Human adenovirus infection activates intracellular signaling, involving particularly the c-Src and mitogen-activated protein kinases [Natarajan, K., et al. (2003) J. Immunol. 170, 6234–6243]. HSP27 and MK2 are also phosphorylated, and c-Src, and its downstream targets, p38, ERK1/2, and c-Jun-terminal kinase (JNK), differentially mediate IL-8 and MCP-1 expression. Specifically, activation and translocation of transcription factor NFκB-p65 occurs in a p38-dependent fashion [Rajaiya, J., et al. (2009) Mol. Vision 15, 2879–2889]. Herein, we report a novel role for HSP27 in an association of p38 with NFκB-p65. Immunoprecipitation assays of virus-infected but not mock-infected cells revealed a signaling complex including p38 and NFκB-p65. Transfection with HSP27 short interfering RNA (siRNA) but not scrambled RNA disrupted this association and reduced the level of IL-8 expression. Transfection with HSP27 siRNA also reduced the level of nuclear localization of NFκB-p65 and p38. By use of tagged p38 mutants, we found that amino acids 279–347 of p38 are necessary for the association of p38 with NFκB-p65. These studies strongly suggest that HSP27, p38, and NFκB-p65 form a signalosome in virus-infected cells and influence downstream expression of pro-inflammatory mediators. PMID:22734719

  20. Prophylactic managements of hepatitis B viral infection in liver transplantation

    PubMed Central

    Onoe, Takashi; Tahara, Hiroyuki; Tanaka, Yuka; Ohdan, Hideki

    2016-01-01

    Liver transplantation (LT) is a considerably effective treatment for patients with end-stage hepatitis B virus (HBV)-related liver disease. However, HBV infection often recurs after LT without prophylaxis. Since the 1990s, the treatment for preventing HBV reinfection after LT has greatly progressed with the introduction of hepatitis B immunoglobulin (HBIG) and nucleos(t)ide analogues (NAs), resulting in improved patient survival. The combination therapy consisting of high-dose HBIG and lamivudine is highly efficacious for preventing the recurrence of HBV infection after LT and became the standard prophylaxis for HBV recurrence. However, mainly due to the high cost of HBIG treatment, an alternative protocol for reducing the dose and duration of HBIG has been evaluated. Currently, combination therapy using low-dose HBIG and NAs is considered as the most efficacious and cost-effective prophylaxis for post-LT HBV reinfection. Recently, NA monotherapy and withdrawal of HBIG from combination therapy, along with the development of new, potent high genetic barrier NAs, have provided promising efficacy, especially for low-risk recipients. This review summarizes the prophylactic protocol and their efficacy including prophylaxis of de novo HBV infection from anti-HBc antibody-positive donors. In addition, challenging approaches such as discontinuation of all prophylaxis and active immunity through hepatitis B vaccination are discussed. PMID:26755868

  1. A Generalized Entropy Measure of Within-Host Viral Diversity for Identifying Recent HIV-1 Infections

    PubMed Central

    Wu, Julia Wei; Patterson-Lomba, Oscar; Novitsky, Vladimir; Pagano, Marcello

    2015-01-01

    Abstract There is a need for incidence assays that accurately estimate HIV incidence based on cross-sectional specimens. Viral diversity-based assays have shown promises but are not particularly accurate. We hypothesize that certain viral genetic regions are more predictive of recent infection than others and aim to improve assay accuracy by using classification algorithms that focus on highly informative regions (HIRs). We analyzed HIV gag sequences from a cohort in Botswana. Forty-two subjects newly infected by HIV-1 Subtype C were followed through 500 days post-seroconversion. Using sliding window analysis, we screened for genetic regions within gag that best differentiate recent versus chronic infections. We used both nonparametric and parametric approaches to evaluate the discriminatory abilities of sequence regions. Segmented Shannon Entropy measures of HIRs were aggregated to develop generalized entropy measures to improve prediction of recency. Using logistic regression as the basis for our classification algorithm, we evaluated the predictive power of these novel biomarkers and compared them with recently reported viral diversity measures using area under the curve (AUC) analysis. Change of diversity over time varied across different sequence regions within gag. We identified the top 50% of the most informative regions by both nonparametric and parametric approaches. In both cases, HIRs were in more variable regions of gag and less likely in the p24 coding region. Entropy measures based on HIRs outperformed previously reported viral-diversity-based biomarkers. These methods are better suited for population-level estimation of HIV recency. The patterns of diversification of certain regions within the gag gene are more predictive of recency of infection than others. We expect this result to apply in other HIV genetic regions as well. Focusing on these informative regions, our generalized entropy measure of viral diversity demonstrates the potential for

  2. A Generalized Entropy Measure of Within-Host Viral Diversity for Identifying Recent HIV-1 Infections.

    PubMed

    Wu, Julia Wei; Patterson-Lomba, Oscar; Novitsky, Vladimir; Pagano, Marcello

    2015-10-01

    There is a need for incidence assays that accurately estimate HIV incidence based on cross-sectional specimens. Viral diversity-based assays have shown promises but are not particularly accurate. We hypothesize that certain viral genetic regions are more predictive of recent infection than others and aim to improve assay accuracy by using classification algorithms that focus on highly informative regions (HIRs).We analyzed HIV gag sequences from a cohort in Botswana. Forty-two subjects newly infected by HIV-1 Subtype C were followed through 500 days post-seroconversion. Using sliding window analysis, we screened for genetic regions within gag that best differentiate recent versus chronic infections. We used both nonparametric and parametric approaches to evaluate the discriminatory abilities of sequence regions. Segmented Shannon Entropy measures of HIRs were aggregated to develop generalized entropy measures to improve prediction of recency. Using logistic regression as the basis for our classification algorithm, we evaluated the predictive power of these novel biomarkers and compared them with recently reported viral diversity measures using area under the curve (AUC) analysis.Change of diversity over time varied across different sequence regions within gag. We identified the top 50% of the most informative regions by both nonparametric and parametric approaches. In both cases, HIRs were in more variable regions of gag and less likely in the p24 coding region. Entropy measures based on HIRs outperformed previously reported viral-diversity-based biomarkers. These methods are better suited for population-level estimation of HIV recency.The patterns of diversification of certain regions within the gag gene are more predictive of recency of infection than others. We expect this result to apply in other HIV genetic regions as well. Focusing on these informative regions, our generalized entropy measure of viral diversity demonstrates the potential for improving

  3. Comorbidity and high viral load linked to clinical presentation of respiratory human bocavirus infection.

    PubMed

    Ghietto, Lucía María; Majul, Diego; Ferreyra Soaje, Patricia; Baumeister, Elsa; Avaro, Martín; Insfrán, Constanza; Mosca, Liliana; Cámara, Alicia; Moreno, Laura Beatriz; Adamo, Maria Pilar

    2015-01-01

    Human bocavirus (HBoV) is a new parvovirus associated with acute respiratory tract infection (ARTI). In order to evaluate HBoV significance as an agent of acute respiratory disease, we screened 1,135 respiratory samples from children and adults with and without symptoms during two complete calendar years. HBoV1 prevalence in patients with ARTI was 6.33 % in 2011 and 11.64 % in 2012, including neonatal and adult patients. HBoV1 was also detected in 3.77 % of asymptomatic individuals. The co-detection rate was 78.1 %. Among children, 87 % were clinically diagnosed with lower respiratory infection (no significant differences between patients with and without coinfection), and 31 % exhibited comorbidities. Pediatric patients with comorbidities were significantly older than patients without comorbidities. Patients with ARTI had either high or low viral load, while controls had only low viral load, but there were no clinical differences between patients with high or low viral load. In conclusion, we present evidence of the pathogenic potential of HBoV1 in young children with ARTI. Since patients with HBoV1-single infection are not significantly different from those with coinfection with respect to clinical features, the virus can be as pathogenic by itself as other respiratory agents are. Furthermore, an association between high HBoV1 load and disease could not be demonstrated in this study, but all asymptomatic individuals had low viral loads. Also, children with comorbidities are susceptible to HBoV1 infection at older ages than previously healthy children. Thus, the clinical presentation of infection may occur depending on both viral load and the particular interaction between the HBoV1 and the host.

  4. Treating Viral Exacerbations of Chronic Obstructive Pulmonary Disease: Insights from a Mouse Model of Cigarette Smoke and H1N1 Influenza Infection

    PubMed Central

    Bauer, Carla M. T.; Zavitz, Caleb C. J.; Botelho, Fernando M.; Lambert, Kristen N.; Brown, Earl G.; Mossman, Karen L.; Taylor, John D.; Stämpfli, Martin R.

    2010-01-01

    Background Chronic obstructive pulmonary disease is a progressive lung disease that is punctuated by periods of exacerbations (worsening of symptoms) that are attributable to viral infections. While rhinoviruses are most commonly isolated viruses during episodes of exacerbation, influenza viruses have the potential to become even more problematic with the increased likelihood of an epidemic. Methodology and Principal Findings This study examined the impact of current and potential pharmacological targets namely the systemic corticosteroid dexamethasone and the peroxisome proliferator-activated receptor- gamma agonist pioglitazone on the outcome of infection in smoke-exposed mice. C57BL/6 mice were exposed to room air or cigarette smoke for 4 days and subsequently inoculated with an H1N1 influenza A virus. Interventions were delivered daily during the course of infection. We show that smoke-exposed mice have an exacerbated inflammatory response following infection. While smoke exposure did not compromise viral clearance, precision cut lung slices from smoke-exposed mice showed greater expression of CC (MCP-1, -3), and CXC (KC, MIP-2, GCP-2) chemokines compared to controls when stimulated with a viral mimic or influenza A virus. While dexamethasone treatment partially attenuated the inflammatory response in the broncho-alveolar lavage of smoke-exposed, virally-infected animals, viral-induced neutrophilia was steroid insensitive. In contrast to controls, dexamethasone-treated smoke-exposed influenza-infected mice had a worsened health status. Pioglitazone treatment of virally-infected smoke-exposed mice proved more efficacious than the steroid intervention. Further mechanistic evaluation revealed that a deficiency in CCR2 did not improve the inflammatory outcome in smoke-exposed, virally-infected animals. Conclusions and Significance This animal model of cigarette smoke and H1N1 influenza infection demonstrates that smoke-exposed animals are differentially primed to

  5. Hepatitis B Infection, Viral Load and Resistance in HIV-Infected Patients in Mozambique and Zambia

    PubMed Central

    Wandeler, Gilles; Musukuma, Kalo; Zürcher, Samuel; Vinikoor, Michael J.; Llenas-García, Jara; Aly, Mussa M.; Mulenga, Lloyd; Chi, Benjamin H.; Ehmer, Jochen; Hobbins, Michael A.; Bolton-Moore, Carolyn; Hoffmann, Christopher J.; Egger, Matthias

    2016-01-01

    Background Few data on the virological determinants of hepatitis B virus (HBV) infection are available from southern Africa. Methods We enrolled consecutive HIV-infected adult patients initiating antiretroviral therapy (ART) at two urban clinics in Zambia and four rural clinics in Northern Mozambique between May 2013 and August 2014. HBsAg screening was performed using the Determine® rapid test. Quantitative real-time PCR and HBV sequencing were performed in HBsAg-positive patients. Risk factors for HBV infection were evaluated using Chi-square and Mann-Whitney tests and associations between baseline characteristics and high level HBV replication explored in multivariable logistic regression. Results Seventy-eight of 1,032 participants in Mozambique (7.6%, 95% confidence interval [CI]: 6.1–9.3) and 90 of 797 in Zambia (11.3%, 95% CI: 9.3–13.4) were HBsAg-positive. HBsAg-positive individuals were less likely to be female compared to HBsAg-negative ones (52.3% vs. 66.1%, p<0.001). Among 156 (92.9%) HBsAg-positive patients with an available measurement, median HBV viral load was 13,645 IU/mL (interquartile range: 192–8,617,488 IU/mL) and 77 (49.4%) had high values (>20,000 UI/mL). HBsAg-positive individuals had higher levels of ALT and AST compared to HBsAg-negative ones (both p<0.001). In multivariable analyses, male sex (adjusted odds ratio: 2.59, 95% CI: 1.22–5.53) and CD4 cell count below 200/μl (2.58, 1.20–5.54) were associated with high HBV DNA. HBV genotypes A1 (58.8%) and E (38.2%) were most prevalent. Four patients had probable resistance to lamivudine and/or entecavir. Conclusion One half of HBsAg-positive patients demonstrated high HBV viremia, supporting the early initiation of tenofovir-containing ART in HIV/HBV-coinfected adults. PMID:27032097

  6. Viral quasispecies.

    PubMed

    Andino, Raul; Domingo, Esteban

    2015-05-01

    New generation sequencing is greatly expanding the capacity to examine the composition of mutant spectra of viral quasispecies in infected cells and host organisms. Here we review recent progress in the understanding of quasispecies dynamics, notably the occurrence of intra-mutant spectrum interactions, and implications of fitness landscapes for virus adaptation and de-adaptation. Complementation or interference can be established among components of the same mutant spectrum, dependent on the mutational status of the ensemble. Replicative fitness relates to an optimal mutant spectrum that provides the molecular basis for phenotypic flexibility, with implications for antiviral therapy. The biological impact of viral fitness renders particularly relevant the capacity of new generation sequencing to establish viral fitness landscapes. Progress with experimental model systems is becoming an important asset to understand virus behavior in the more complex environments faced during natural infections.

  7. The ins and outs of eukaryotic viruses: Knowledge base and ontology of a viral infection

    PubMed Central

    Hulo, Chantal; Masson, Patrick; de Castro, Edouard; Auchincloss, Andrea H.; Foulger, Rebecca; Poux, Sylvain; Lomax, Jane; Bougueleret, Lydie; Xenarios, Ioannis

    2017-01-01

    Viruses are genetically diverse, infect a wide range of tissues and host cells and follow unique processes for replicating themselves. All these processes were investigated and indexed in ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address unique viral replication cycle processes, and existing terminology was modified and adapted. The virus life-cycle is classically described by schematic pictures. Using this ontology, it can be represented by a combination of successive terms: “entry”, “latency”, “transcription”, “replication” and “exit”. Each of these parts is broken down into discrete steps. For example Zika virus “entry” is broken down in successive steps: “Attachment”, “Apoptotic mimicry”, “Viral endocytosis/ macropinocytosis”, “Fusion with host endosomal membrane”, “Viral factory”. To demonstrate the utility of a standard ontology for virus biology, this work was completed by annotating virus data in the ViralZone, UniProtKB and Gene Ontology databases. PMID:28207819

  8. A study of some pathogenetic aspects of bovine viral diarrhea virus infection.

    PubMed

    Castrucci, G; Frigeri, F; Osburn, B I; Ferrari, M; Sawyer, M M; Aldrovandi, V

    1990-01-01

    The cytopathic (CP) TVM-2 strain of bovine viral diarrhea virus (BVDV) induced in calves a severe disease, characterized by the clinical picture which is usually reported for the acute primary infection observed under natural conditions. In contrast, the calves inoculated with a different biotype of BVDV, the non-cytopathic (NCP) New York-1 strain, remained clinically normal with the only evidence of virus replication in these calves being the recovery of the virus from their pharyngeal swabbings and blood and also the detection of specific neutralizing antibody in their serums. When calves were immunosuppressed with dexamethasone (DMS), they underwent an overt systemic disease of such a severity that in most of the cases it ended with the death of the animals. This result was obtained with either the CP and the NCP strain of BVDV. Finally, the mixed infection that was obtained in the calves with the CP and the NCP BVDV did not result in any particular unexpected pathological situation. It was speculated that the immunosuppressive activity of BVDV could be a property peculiar to certain isolates of the virus.

  9. Virulent Properties of Russian Bovine Viral Diarrhea Virus Strains in Experimentally Infected Calves

    PubMed Central

    Koteneva, Svetlana V.; Semenova, Olga V.; Sergeev, Alexander A.; Titova, Ksenya A.; Morozova, Anastasia A.

    2016-01-01

    The results of experimental study of three noncytopathic and two cytopathic bovine viral diarrhea virus (BVDV) strains isolated from cattle in the Siberian region and belonging to the type 1 (subtypes 1a, 1b, and 1d) have been presented. All investigated strains caused the development of infectious process in the seronegative 4–6-month-old calves after aerosol challenge with the dose of 6 log10 TCID50. The greatest virulence had noncytopathic strain and cytopathic strain related to the subtypes 1d and 1b, respectively. All strains in infected calves caused some signs of moderate acute respiratory disease and diarrhea: depression 3–5 days postinfection (p.i.), refusal to food, severe hyperthermia to 41.9°С, serous exudate discharges from the nasal cavity and eyes, transient diarrhea with blood, leukopenia (up to 2700 cells/mm3), and macroscopic changes in the respiratory organs and intestine. The infected animals recovered from 12 to 15 days p.i. and in 90% cases formed humoral immune response 25 days p.i. (antibody titers to BVDV: 1 : 4–1 : 16). Our results confirmed the presence of virulent BVDV1 strains and showed the need for researches on the molecular epidemiology of the disease, development of more effective diagnostic systems, and optimization of control programs with use of vaccines. PMID:27190687

  10. Detection of viral respiratory pathogens in mild and severe acute respiratory infections in Singapore

    PubMed Central

    Jiang, Lili; Lee, Vernon Jian Ming; Cui, Lin; Lin, Raymond; Tan, Chyi Lin; Tan, Linda Wei Lin; Lim, Wei-yen; Leo, Yee-Sin; Low, Louie; Hibberd, Martin; Chen, Mark I-Cheng

    2017-01-01

    To investigate the performance of laboratory methods and clinical case definitions in detecting the viral pathogens for acute respiratory infections (ARIs) from a prospective community cohort and hospital inpatients, nasopharyngeal swabs from cohort members reporting ARIs (community-ARI) and inpatients admitted with ARIs (inpatient-ARI) were tested by Singleplex Real Time-Polymerase Chain Reaction (SRT-PCR), multiplex RT-PCR (MRT-PCR) and pathogen-chip system (PathChip) between April 2012 and December 2013. Community-ARI and inpatient-ARI was also combined with mild and severe cases of influenza from a historical prospective study as mild-ARI and severe-ARI respectively to evaluate the performance of clinical case definitions. We analysed 130 community-ARI and 140 inpatient-ARI episodes (5 inpatient-ARI excluded because multiple pathogens were detected), involving 138 and 207 samples respectively. Detection by PCR declined with days post-onset for influenza virus; decrease was faster for community-ARI than for inpatient-ARI. No such patterns were observed for non-influenza respiratory virus infections. PathChip added substantially to viruses detected for community-ARI only. Clinical case definitions discriminated influenza from other mild-ARI but performed poorly for severe-ARI and for older participants. Rational strategies for diagnosis and surveillance of influenza and other respiratory virus must acknowledge the differences between ARIs presenting in community and hospital settings. PMID:28218288

  11. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Jiao, N.; Zhang, R.

    2013-12-01

    As the most abundant biological entities in the ocean, viruses can influence host mortality and nutrients recycling mainly through lytic infection. Yet ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In present study, viral abundance and lytic infection was investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21-16.23 to 2.45-23.40, at surface and 2000 m depth, respectively. The lytic viral production rates in surface and 2000 m waters were, averagely, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1, respectively. Relatively high percentages of prokaryotic cells lysed by virus in 1000 m and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in the deep western Pacific Ocean and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  12. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.

    2014-05-01

    As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  13. IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease.

    PubMed

    Mukherjee, Sumanta; Lindell, Dennis M; Berlin, Aaron A; Morris, Susan B; Shanley, Thomas P; Hershenson, Marc B; Lukacs, Nicholas W

    2011-07-01

    Severe respiratory syncytial virus (RSV) infections are characterized by airway epithelial cell damage, mucus hypersecretion, and Th2 cytokine production. Less is known about the role of IL-17. We observed increased IL-6 and IL-17 levels in tracheal aspirate samples from severely ill infants with RSV infection. In a mouse model of RSV infection, time-dependent increases in pulmonary IL-6, IL-23, and IL-17 expression were observed. Neutralization of IL-17 during infection and observations from IL-17(-/-) knockout mice resulted in significant inhibition of mucus production during RSV infection. RSV-infected animals treated with anti-IL-17 had reduced inflammation and decreased viral load, compared with control antibody-treated mice. Blocking IL-17 during infection resulted in significantly increased RSV-specific CD8 T cells. Factors associated with CD8 cytotoxic T lymphocytes, T-bet, IFN-γ, eomesodermin, and granzyme B were significantly up-regulated after IL-17 blockade. Additionally, in vitro analyses suggest that IL-17 directly inhibits T-bet, eomesodermin, and IFN-γ in CD8 T cells. The role of IL-17 was also investigated in RSV-induced exacerbation of allergic airway responses, in which neutralization of IL-17 led to a significant decrease in the exacerbated disease, including reduced mucus production and Th2 cytokines, with decreased viral proteins. Taken together, our data demonstrate that IL-17 plays a pathogenic role during RSV infections.

  14. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase.

    PubMed Central

    Longstaff, M; Brigneti, G; Boccard, F; Chapman, S; Baulcombe, D

    1993-01-01

    Three types of mutation were introduced into the sequence encoding the GDD motif of the putative replicase component of potato virus X (PVX). All three mutations rendered the viral genome completely noninfectious when inoculated into Nicotiana clevelandii or into protoplasts of Nicotiana tabacum (cv. Samsun NN). In order to test whether these negative mutations could inactivate the viral genome in trans, the mutant genes were expressed in transformed N.tabacum (cv. Samsun NN) under control of the 35S RNA promoter of cauliflower mosaic virus and the transformed lines were inoculated with PVX. In 10 lines tested in which the GDD motif was expressed as GAD or GED there was no effect on susceptibility to PVX. In two of four lines transformed to express the ADD form of the conserved motif, the F1 and F2 progeny plants were highly resistant to infection by PVX, although only to strains closely related to the source of the transgene. The resistance was associated with suppression of PVX accumulation in the inoculated and systemic leaves and in protoplasts of the transformed plants, although some low level viral RNA production was observed in the inoculated but not the systemic leaves when the inoculum was as high as 100 or 250 micrograms/ml PVX RNA. These results suggest for a plant virus, as reported previously for Q beta phage, that virus resistance may be engineered by expression of dominant negative mutant forms of viral genes in transformed cells. Images PMID:8440232

  15. Sputnik, a virophage infecting the viral domain of life.

    PubMed

    Desnues, Christelle; Boyer, Mickaël; Raoult, Didier

    2012-01-01

    This chapter discusses the astonishing discovery of the Sputnik virophage, a new virus infecting giant viruses of the genera Mimivirus and Mamavirus. While other virophages have also since been described, this chapter focuses mainly on Sputnik, which is the best described. We detail the general properties of the virophage life cycle, as well as its hosts, genomic characteristics, ecology, and origin. In addition to genetic, phylogenetic, and structural evidence, the existence of virophages has deeply altered our view of the tripartite division of life to include the addition of a fourth domain constituted of the nucleocytoplasmic large DNA viruses, an important point that is discussed.

  16. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells.

    PubMed

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-11-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells.

  17. Assessment of packed bed bioreactor systems in the production of viral vaccines

    PubMed Central

    2014-01-01

    Vaccination is believed to be the most effective method for the prevention of infectious diseases. Thus it is imperative to develop cost effective and scalable process for the production of vaccines so as to make them affordable for mass use. In this study, performance of a novel disposable iCELLis fixed bed bioreactor system was investigated for the production of some viral vaccines like Rabies, Hepatitis-A and Chikungunya vaccines in comparison to conventional systems like the commercially available packed bed system and roller bottle system. Vero and MRC-5 cell substrates were evaluated for growth parameters in all the three systems maintaining similar seeding density, multiplicity of infection (MOI) and media components. It was observed that Vero cells showed similar growth in all the three bioreactors whereas MRC-5 cells showed better growth in iCELLis Nano system and roller bottle system. Subsequently, the virus infection and antigen production studies also revealed that for Hepatitis-A and Chikungunya iCELLis Nano bioreactor system was better to the commercial packed bed bioreactor and roller bottle systems. Although for rabies antigen production commercially available packed bed bioreactor system was found to be better. This study shows that different bioreactor platforms may be employed for viral vaccine production and iCELLis Nano is one of such new convenient and a stable platform for production of human viral vaccines. PMID:24949260

  18. Assessment of packed bed bioreactor systems in the production of viral vaccines.

    PubMed

    Rajendran, Ramya; Lingala, Rajendra; Vuppu, Siva Kumar; Bandi, Bala Obulapathi; Manickam, Elaiyaraja; Macherla, Sankar Rao; Dubois, Stéphanie; Havelange, Nicolas; Maithal, Kapil

    2014-01-01

    Vaccination is believed to be the most effective method for the prevention of infectious diseases. Thus it is imperative to develop cost effective and scalable process for the production of vaccines so as to make them affordable for mass use. In this study, performance of a novel disposable iCELLis fixed bed bioreactor system was investigated for the production of some viral vaccines like Rabies, Hepatitis-A and Chikungunya vaccines in comparison to conventional systems like the commercially available packed bed system and roller bottle system. Vero and MRC-5 cell substrates were evaluated for growth parameters in all the three systems maintaining similar seeding density, multiplicity of infection (MOI) and media components. It was observed that Vero cells showed similar growth in all the three bioreactors whereas MRC-5 cells showed better growth in iCELLis Nano system and roller bottle system. Subsequently, the virus infection and antigen production studies also revealed that for Hepatitis-A and Chikungunya iCELLis Nano bioreactor system was better to the commercial packed bed bioreactor and roller bottle systems. Although for rabies antigen production commercially available packed bed bioreactor system was found to be better. This study shows that different bioreactor platforms may be employed for viral vaccine production and iCELLis Nano is one of such new convenient and a stable platform for production of human viral vaccines.

  19. Singapore grouper iridovirus protein VP088 is essential for viral infectivity

    PubMed Central

    Yuan, Yongming; Wang, Yunzhi; Liu, Qizhi; Zhu, Feng; Hong, Yunhan

    2016-01-01

    Viral infection is a great challenge in healthcare and agriculture. The Singapore grouper iridovirus (SGIV) is highly infectious to numerous marine fishes and increasingly threatens mariculture and wildlife conservation. SGIV intervention is not available because little is known about key players and their precise roles in SGVI infection. Here we report the precise role of VP088 as a key player in SGIV infection. VP088 was verified as an envelope protein encoded by late gene orf088. We show that SGIV could be neutralized with an antibody against VP088. Depletion or deletion of VP088 significantly suppresses SGIV infection without altering viral gene expression and host responses. By precisely quantifying the genome copy numbers of host cells and virions, we reveal that VP088 deletion dramatically reduces SGIV infectivity through inhibiting virus entry without altering viral pathogenicity, genome stability and replication and progeny virus release. These results pinpoint that VP088 is a key player in SGIV entry and represents an ideal target for SGIV intervention. PMID:27498856

  20. Restitution of infectivity to spikeless vesicular stomatitis virus by solubilized viral components.

    PubMed

    Bishop, D H; Repik, P; Obijeski, J F; Moore, N F; Wagner, R R

    1975-07-01

    Noninfectious spikeless particles have been obtained from vesicular stomatitis virus (VSV, Indiana serotype) by bromelain or Pronase treatment. They lack the viral glycoprotein (G) but contain all the other viral components (RNA, lipid, and other structural proteins). Triton-solubilized VSV-Indiana glycoprotein preparations, containing the viral G protein as well as lipids (including phospholipids), have been extracted from whole virus preparations, freed from the majority of the detergent, and used to restore infectivity to spikeless VSV. The infectivity of such particles has been found to be enhanced by poly-L-ornithine but inhibited by Trition or homologous antiserum pretreatment. Heat-denatured glycoprotein preparations were not effective in restoring the infectivity to spikeless VSV. Heterologous glycoprotein preparations from the serologically distinct VSV-New Jersey serotype were equally capable of making infectious entities with VSV-Indiana spikeless particles, and the infectivity of these structures was inhibited by VSV-New Jersey antiserum but not by VSV-Indiana antiserum. Purified, detergent-free glycoprotein selectively solubilized from VSV-Indiana by the dialyzable detergent, octylglucoside, also restored infectivity of spikeless virions of VSV-Indiana and VSV-New Jersey.

  1. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide.

    PubMed

    Madera, Sharline; Rapp, Moritz; Firth, Matthew A; Beilke, Joshua N; Lanier, Lewis L; Sun, Joseph C

    2016-02-08

    Type I interferon (IFN) is crucial in host antiviral defense. Previous studies have described the pleiotropic role of type I IFNs on innate and adaptive immune cells during viral infection. Here, we demonstrate that natural killer (NK) cells from mice lacking the type I IFN-α receptor (Ifnar(-/-)) or STAT1 (which signals downstream of IFNAR) are defective in expansion and memory cell formation after mouse cytomegalovirus (MCMV) infection. Despite comparable proliferation, Ifnar(-/-) NK cells showed diminished protection against MCMV infection and exhibited more apoptosis compared with wild-type NK cells. Furthermore, we show that Ifnar(-/-) NK cells express increased levels of NK group 2 member D (NKG2D) ligands during viral infection and are susceptible to NK cell-mediated fratricide in a perforin- and NKG2D-dependent manner. Adoptive transfer of Ifnar(-/-) NK cells into NK cell-deficient mice reverses the defect in survival and expansion. Our study reveals a novel type I IFN-dependent mechanism by which NK cells evade mechanisms of cell death after viral infection.

  2. Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection.

    PubMed

    Heaton, Nicholas S; Moshkina, Natasha; Fenouil, Romain; Gardner, Thomas J; Aguirre, Sebastian; Shah, Priya S; Zhao, Nan; Manganaro, Lara; Hultquist, Judd F; Noel, Justine; Sachs, David; Sachs, David H; Hamilton, Jennifer; Leon, Paul E; Chawdury, Amit; Tripathi, Shashank; Melegari, Camilla; Campisi, Laura; Hai, Rong; Metreveli, Giorgi; Gamarnik, Andrea V; García-Sastre, Adolfo; Greenbaum, Benjamin; Simon, Viviana; Fernandez-Sesma, Ana; Krogan, Nevan J; Mulder, Lubbertus C F; van Bakel, Harm; Tortorella, Domenico; Taunton, Jack; Palese, Peter; Marazzi, Ivan

    2016-01-19

    Viruses are obligate parasites and thus require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy hosts use to suppress viral replication and a potential pan-antiviral therapy. To define the cellular proteins and processes required for a virus during infection is thus crucial to understanding the mechanisms of virally induced disease. In this report, we generated fully infectious tagged influenza viruses and used infection-based proteomics to identify pivotal arms of cellular signaling required for influenza virus growth and infectivity. Using mathematical modeling and genetic and pharmacologic approaches, we revealed that modulation of Sec61-mediated cotranslational translocation selectively impaired glycoprotein proteostasis of influenza as well as HIV and dengue viruses and led to inhibition of viral growth and infectivity. Thus, by studying virus-human protein-protein interactions in the context of active replication, we have identified targetable host factors for broad-spectrum antiviral therapies.

  3. An integrated map of HIV-human protein complexes that facilitate viral infection.

    PubMed

    Emig-Agius, Dorothea; Olivieri, Kevin; Pache, Lars; Shih, Hsin Ling; Pustovalova, Olga; Bessarabova, Marina; Young, John A T; Chanda, Sumit K; Ideker, Trey

    2014-01-01

    Recent proteomic and genetic studies have aimed to identify a complete network of interactions between HIV and human proteins and genes. This HIV-human interaction network provides invaluable information as to how HIV exploits the host machinery and can be used as a starting point for further functional analyses. We integrated this network with complementary datasets of protein function and interaction to nominate human protein complexes with likely roles in viral infection. Based on our approach we identified a global map of 40 HIV-human protein complexes with putative roles in HIV infection, some of which are involved in DNA replication and repair, transcription, translation, and cytoskeletal regulation. Targeted RNAi screens were used to validate several proteins and complexes for functional impact on viral infection. Thus, our HIV-human protein complex map provides a significant resource of potential HIV-host interactions for further study.

  4. Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis.

    PubMed

    Pavia, Andrew T

    2011-05-01

    Viral infections of the lower respiratory tract cause an enormous disease burden in children, and the role of respiratory viruses in serious lower respiratory tract infections (LRTIs) in older adults is increasingly appreciated. Although viruses are responsible for a large proportion LRTIs, antibiotics are often prescribed. New diagnostic platforms have the potential to detect a wider range of established and newly discovered viruses with greater sensitivity. This will create additional challenges. Although it is clear that influenza, parainfluenza, respiratory syncytial virus, human metapneumovirus, and adenovirus are important causes of pneumonia, the role of rhinoviruses and some of the newly described viruses, including human coronaviruses and bocavirus, is harder to determine. Better diagnostic tests that establish the cause of LRTIs in children have the potential to both reduce overall antibiotic use and to improve the targeted use of antibiotics. In addition, rapid identification of viral infections can help control nosocomial transmission.

  5. Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus

    SciTech Connect

    Rosas, Maria F.; Vieira, Yuri A.; Postigo, Raul; Martin-Acebes, Miguel A.; Armas-Portela, Rosario; Martinez-Salas, Encarnacion; Sobrino, Francisco

    2008-10-10

    The foot-and-mouth disease virus (FMDV) 3A protein is involved in virulence and host range. A distinguishing feature of FMDV 3B among picornaviruses is that three non-identical copies are encoded in the viral RNA and required for optimal replication in cell culture. Here, we have studied the involvement of the 3AB region on viral infection using constitutive and transient expression systems. BHK-21 stably transformed clones expressed low levels of FMDV 3A or 3A(B) proteins in the cell cytoplasm. Transformed cells stably expressing these proteins did not exhibit inner cellular rearrangements detectable by electron microscope analysis. Upon FMDV infection, clones expressing either 3A alone or 3A(B) proteins showed a significant increase in the percentage of infected cells, the number of plaque forming units and the virus yield. The 3A-enhancing effect was specific for FMDV as no increase in viral multiplication was observed in transformed clones infected with another picornavirus, encephalomyocarditis virus, or the negative-strand RNA virus vesicular stomatitis virus. A potential role of 3A protein in viral RNA translation was discarded by the lack of effect on FMDV IRES-dependent translation. Increased viral susceptibility was not caused by a released factor; neither the supernatant of transformed clones nor the addition of purified 3A protein to the infection medium was responsible for this effect. Unlike stable expression, high levels of 3A or 3A(B) protein transient expression led to unspecific inhibition of viral infection. Therefore, the effect observed on viral yield, which inversely correlated with the intracellular levels of 3A protein, suggests a transacting role operating on the FMDV multiplication cycle.

  6. Real-time PCR detection of Human Herpesvirus 1-5 in patients lacking clinical signs of a viral CNS infection

    PubMed Central

    2011-01-01

    Background Infections of the central nervous system (CNS) with herpes- or enterovirus can be self-limiting and benign, but occasionally result in severe and fatal disease. The polymerase chain reaction (PCR) has revolutionized the diagnostics of viral pathogens, and by multiple displacement amplification (MDA) prior to real-time PCR the sensitivity might be further enhanced. The aim of this study was to investigate if herpes- or enterovirus can be detected in cerebrospinal fluid (CSF) from patients without symptoms. Methods Cerebrospinal fluid (CSF) samples from 373 patients lacking typical symptoms of viral CNS infection were analysed by real-time PCR targeting herpesviruses or enteroviruses with or without prior MDA. Results In total, virus was detected in 17 patients (4%). Epstein-Barr virus (EBV) was most commonly detected, in general from patients with other conditions (e.g. infections, cerebral hemorrhage). MDA satisfactorily amplified viral DNA in the absence of human nucleic acids, but showed poor amplification capacity for viral DNA in CSF samples, and did not increase the sensitivity for herpes virus-detection with our methodology. Conclusions Viral pathogens are rarely detected in CSF from patients without signs of CNS infection, supporting the view that real-time PCR is a highly specific method to detect symptomatic CNS-infection caused by these viruses. However, EBV may be subclinically reactivated due to other pathological conditions in the CNS. PMID:21849074

  7. Viral Metagenomics on Animals as a Tool for the Detection of Zoonoses Prior to Human Infection?

    PubMed Central

    Temmam, Sarah; Davoust, Bernard; Berenger, Jean-Michel; Raoult, Didier; Desnues, Christelle

    2014-01-01

    Many human viral infections have a zoonotic, i.e., wild or domestic animal, origin. Several zoonotic viruses are transmitted to humans directly via contact with an animal or indirectly via exposure to the urine or feces of infected animals or the bite of a bloodsucking arthropod. If a virus is able to adapt and replicate in its new human host, human-to-human transmissions may occur, possibly resulting in an epidemic, such as the A/H1N1 flu pandemic in 2009. Thus, predicting emerging zoonotic infections is an important challenge for public health officials in the coming decades. The recent development of viral metagenomics, i.e., the characterization of the complete viral diversity isolated from an organism or an environment using high-throughput sequencing technologies, is promising for the surveillance of such diseases and can be accomplished by analyzing the viromes of selected animals and arthropods that are closely in contact with humans. In this review, we summarize our current knowledge of viral diversity within such animals (in particular blood-feeding arthropods, wildlife and domestic animals) using metagenomics and present its possible future application for the surveillance of zoonotic and arboviral diseases. PMID:24918293

  8. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    SciTech Connect

    Knipe, David M.

    2015-05-15

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.

  9. High Prevalence of Human Metapneumovirus Infection in Young Children and Genetic Heterogeneity of the Viral Isolates

    PubMed Central

    Viazov, S.; Ratjen, F.; Scheidhauer, R.; Fiedler, M.; Roggendorf, M.

    2003-01-01

    RNA of the newly identified human metapneumovirus (HMPV) was detected in nasopharyngeal aspirates of 11 of 63 (17.5%) young children with respiratory tract disease. Markers of infection caused by another member of the Pneumovirinae subfamily of the family Paramyxoviridae, respiratory syncytial virus (RSV), were identified in 15 of these patients (23.8%). Three patients were simultaneously infected with HMPV and RSV. Studies of the clinical characteristics of HMPV-infected children did not reveal any difference between HMPV-infected patients and a control population of RSV-infected patients with regard to disease severity, but the duration of symptoms was significantly shorter for HMPV-infected patients. Phylogenetic analysis of the amplified viral genome fragments confirmed the existence and simultaneous circulation within one epidemic season of HMPV isolates belonging to two genetic lineages. PMID:12843040

  10. A comparative review of HLA associations with hepatitis B and C viral infections across global populations.

    PubMed

    Singh, Rashmi; Kaul, Rashmi; Kaul, Anil; Khan, Khalid

    2007-03-28

    Hepatitis B (HBV) and hepatitis C (HCV) viral infection or co-infection leads to risk of development of chronic infection, cirrhosis and hepatocellular carcinoma (HCC). Immigration and globalization have added to the challenges of public health concerns regarding chronic HBV and HCV infections worldwide. The aim of this study is to review existing global literature across ethnic populations on HBV and HCV related human leukocyte antigen (HLA) associations in relation to susceptibility, viral persistence and treatment. Extensive literature search was conducted to explore the HLA associations in HBV and HCV infections reported across global populations over the past decade to understand the knowledge status, weaknesses and strengths of this information in different ethnic populations. HLA DR13 is consistently associated with HBV clearance globally. HLADRB1*11/*12 alleles and DQB1*0301 are associated with HBV persistence but with HCV clearance worldwide. Consistent association of DRB1*03 and *07 is observed with HCV susceptibility and non-responsiveness to HBV vaccination across the population. HLA DR13 is protective for vertical HBV and HCV transmission in Chinese and Italian neonates, but different alleles are associated with their susceptibility in these populations. HLA class I molecule interactions with Killer cell immunoglobulin like receptors (KIR) of natural killer (NK) cells modulate HCV infection outcome via regulating immune regulatory cells and molecules. HLA associations with HBV vaccination, interferon therapy in HBV and HCV, and with extra hepatic manifestations of viral hepatitis are also discussed. Systematic studies in compliance with global regulatory standards are required to identify the HLA specific viral epitope, stage specific T cell populations interacting with different HLA alleles during disease progression and viral clearance of chronic HBV or HCV infections among different ethnic populations. These studies would facilitate stage specific

  11. Seasonality of viral respiratory infections in southeast of Brazil: the influence of temperature and air humidity

    PubMed Central

    Gardinassi, Luiz Gustavo; Marques Simas, Paulo Vitor; Salomão, João Batista; Durigon, Edison Luiz; Zanetta Trevisan, Dirce Maria; Cordeiro, José Antonio; Lacerda, Mauricio Nogueira; Rahal, Paula; de Souz, Fátima Pereira

    2012-01-01

    Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods. PMID:24031808

  12. IL-10: A Multifunctional Cytokine in Viral Infections

    PubMed Central

    2017-01-01

    The anti-inflammatory master regulator IL-10 is critical to protect the host from tissue damage during acute phases of immune responses. This regulatory mechanism, central to T cell homeostasis, can be hijacked by viruses to evade immunity. IL-10 can be produced by virtually all immune cells, and it can also modulate the function of these cells. Understanding the effects of this multifunctional cytokine is therefore a complex task. In the present review we discuss the factors driving IL-10 production and the cellular sources of the cytokine during antiviral immune responses. We particularly focus on the IL-10 regulatory mechanisms that impact antiviral immune responses and how viruses can use this central regulatory pathway to evade immunity and establish chronic/latent infections. PMID:28316998

  13. Tupaia Belangeri as an Experimental Animal Model for Viral Infection

    PubMed Central

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development. PMID:25048261

  14. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus.

    PubMed

    Hansen, Thomas R; Smirnova, Natalia P; Webb, Brett T; Bielefeldt-Ohmann, Helle; Sacco, Randy E; Van Campen, Hana

    2015-06-01

    Infection of pregnant cows with noncytopathic (ncp) bovine viral diarrhea virus (BVDV) induces rapid innate and adaptive immune responses, resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent infection with ncpBVDV in the fetus has been attributed to the inability to mount an immune response before 90-150 days of gestational age. The result is 'immune tolerance', persistent viral replication and shedding of ncpBVDV. In contrast, we describe the chronic upregulation of fetal Type I interferon (IFN) pathway genes and the induction of IFN-γ pathways in fetuses of cows infected on day 75 of gestation. Persistently infected (PI) fetal IFN-γ concentrations also increased at day 97 at the peak of fetal viremia and IFN-γ mRNA was significantly elevated in fetal thymus, liver and spleen 14-22 days post maternal inoculation. PI fetuses respond to ncpBVDV infection through induction of Type I IFN and IFN-γ activated genes leading to a reduction in ncpBVDV titer. We hypothesize that fetal infection with BVDV persists because of impaired induction of IFN-γ in the face of activated Type I IFN responses. Clarification of the mechanisms involved in the IFN-associated pathways during BVDV fetal infection may lead to better detection methods, antiviral compounds and selection of genetically resistant breeding animals.

  15. Plasma and Mucosal HIV Viral Loads Are Associated with Genital Tract Inflammation In HIV-Infected Women

    PubMed Central

    Herold, Betsy C.; Keller, Marla J.; Shi, Qiuhu; Hoover, Donald R.; Carpenter, Colleen A.; Huber, Ashley; Parikh, Urvi M.; Agnew, Kathy J.; Minkoff, Howard; Colie, Christine; Nowicki, Marek J.; D’Souza, Gypsyamber; Watts, D. Heather; Anastos, Kathryn

    2013-01-01

    Background Systemic and mucosal inflammation may play a role in HIV control. A cross-sectional comparison was conducted among women in the Women’s Interagency HIV Study (WIHS) to explore the hypothesis that compared to HIV-uninfected participants, women with HIV and in particular, those with high plasma viral load (PVL) have increased levels of mucosal and systemic inflammatory mediators and impaired mucosal endogenous antimicrobial activity. Methods 19 HIV-uninfected, 40 HIV-infected on antiretroviral therapy (ART) with PVL ≤ 2600 copies/ml (low viral load) (HIV+-LVL), and 19 HIV-infected on or off ART with PVL >10,000 (high viral load) (HIV+-HVL) were evaluated. Immune mediators and viral RNA were quantified in plasma and cervicovaginal lavage (CVL). CVL antimicrobial activity was also determined. Results Compared to HIV-uninfected, HIV+-HVL women had higher levels of mucosal, but not systemic pro-inflammatory cytokines and chemokines, higher Nugent scores, and lower E. coli bactericidal activity. In contrast, there were no significant differences between HIV+-LVL and HIV-uninfected controls. After adjusting for PVL, HIV genital tract shedding was significantly associated with higher CVL concentrations of IL-6, IL-1β, MIP-1α, and RANTES and higher plasma concentrations of MIP-1α. High PVL was associated with higher CVL levels of IL-1β and RANTES, as well as with higher Nugent scores, lower E. coli bactericidal activity, smoking and lower CD4 counts; smoking and CD4 count retained statistical significance in a multivariate model. Conclusion Further study is needed to determine if the relationship between mucosal inflammation and PVL is causal and to determine if reducing mucosal inflammation is beneficial. PMID:23591635

  16. Identification of bovine viral diarrhea virus infection in Saanen goats in the Republic of Korea.

    PubMed

    Han, Yu-Jung; Chae, Jeong-Byoung; Chae, Joon-Seok; Yu, Do-Hyeon; Park, Jinho; Park, Bae-Keun; Kim, Hyeon-Cheol; Yoo, Jae-Gyu; Choi, Kyoung-Seong

    2016-06-01

    Bovine viral diarrhea virus (BVDV) is one of the most important viral pathogens of livestock and causes substantial economic losses to the livestock industry worldwide. BVDV is not necessarily species specific and is known to infect domesticated and wild ruminants. In the present study, BVDV infection was identified in two Saanen goats from one farm, and two different viral subtypes were found, BVDV-1a and BVDV-2a. Each isolate was closely related to cattle isolates identified in the Republic of Korea. The two sequences obtained in this study were not consistent with border disease virus (BDV). The incidence of BVDV in this farm apparently occurred in the absence of contact with cattle and may be associated with grazing. This study demonstrates that BVDV infection may be possible to transmit among goats without exposure to cattle. Therefore, this result indicates that Saanen goats may act as natural reservoirs for BVDV. This is the first report of BVDV-1a infection in a Saanen goat.

  17. Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway

    PubMed Central

    Wang, Wei; Wu, Jiandong; Zhang, Xiaoshuang; Hao, Cui; Zhao, Xiaoliang; Jiao, Guangling; Shan, Xindi; Tai, Wenjing; Yu, Guangli

    2017-01-01

    Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future. PMID:28094330

  18. IL-21 is required for CD4 memory formation in response to viral infection

    PubMed Central

    Yuan, Yuqing; Huang, Xiaopei

    2017-01-01

    IL-21 has been shown to play an important role in the CD8 T cell response during acute and chronic viral infections. However, the role of IL-21 signaling in the CD4 T cell response to viral infection remains incompletely defined. In a model of infection with vaccinia virus, we show that intrinsic IL-21 signaling on CD4 T cells was critical for the formation of memory CD4 T cells in vivo. We further reveal that IL-21 promoted CD4 T cell survival in a mechanism dependent on activation of the STAT1 and STAT3 signaling pathways. In addition, the activation of Akt is also required for IL-21–dependent survival of CD4 T cells in vivo. These results identify a critical role for intrinsic IL-21 signaling in CD4 T cell survival and memory formation in response to viral infection in vivo and may provide insights into the design of effective vaccine strategies.

  19. Viral latency in blood and saliva of simian foamy virus-infected humans.

    PubMed

    Rua, Rejane; Betsem, Edouard; Gessain, Antoine

    2013-01-01

    Simian foamy viruses (SFV) are widespread retroviruses among non-human primates (NHP). SFV actively replicate in the oral cavity and can be transmitted to humans through NHP bites, giving rise to a persistent infection. We aimed at studying the natural history of SFV infection in human. We have analyzed viral load and gene expression in 14 hunters from Cameroon previously shown to be infected with a gorilla SFV strain. Viral DNA could be detected by quantitative polymerase chain reaction (q-PCR) targeting the pol-in region, in most samples of peripheral blood mononuclear cells (PBMCs) (7.1 ± 6.0 SFV DNA copies/105 PBMCs) and saliva (2.4 ± 4.3 SFV DNA copies/105 cells) derived from the hunters. However, quantitative real-time reverse-transcription polymerase chain reaction (RT)-qPCR revealed the absence of SFV viral gene expression in both PBMCs and saliva, suggesting that SFV was latent in the human samples. Our study demonstrates that a latent infection can occur in humans and persist for years, both in PBMCs and saliva. Such a scenario may contribute to the putative lack of secondary human-to-human transmissions of SFV.

  20. Comparison of type I and type II bovine viral diarrhea virus infection in swine.

    PubMed Central

    Walz, P H; Baker, J C; Mullaney, T P; Kaneene, J B; Maes, R K

    1999-01-01

    Some isolates of type II bovine viral diarrhea virus (BVDV) are capable of causing severe clinical disease in cattle. Bovine viral diarrhea virus infection has been reported in pigs, but the ability of these more virulent isolates of type II BVDV to induce severe clinical disease in pigs is unknown. It was our objective to compare clinical, virologic, and pathologic findings between type I and type II BVDV infection in pigs. Noninfected control and BVDV-infected 2-month-old pigs were used. A noncytopathic type I and a noncytopathic type II BVDV isolate were chosen for evaluation in feeder age swine based upon preliminary in vitro and in vivo experiments. A dose titration study was performed using 4 groups of 4 pigs for each viral isolate. The groups were inoculated intranasally with either sham (control), 10(3), 10(5), or 10(7) TCID50 of virus. The pigs were examined daily and clinical findings were recorded. Antemortem and postmortem samples were collected for virus isolation. Neither the type I nor type II BVDV isolates resulted in clinical signs of disease in pigs. Bovine viral diarrhea virus was isolated from antemortem and postmortem samples from groups of pigs receiving the 10(5) and the 10(7) TCID50 dose of the type I BVDV isolate. In contrast, BVDV was only isolated from postmortem samples in the group of pigs receiving the 10(7) TCID50 dose of the type II BVDV isolate. Type I BVDV was able to establish infection in pigs at lower doses by intranasal instillation than type II BVDV. Infection of pigs with a type II isolate of BVDV known to cause severe disease in calves did not result in clinically apparent disease in pigs. PMID:10369569

  1. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    PubMed

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs.

  2. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.

    PubMed

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-06-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.

  3. Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone.

    PubMed

    Mostafa, Heba H; Vogel, Peter; Srinivasan, Ashok; Russell, Charles J

    2016-09-01

    In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus-specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential.

  4. Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone

    PubMed Central

    Mostafa, Heba H.; Vogel, Peter; Srinivasan, Ashok; Russell, Charles J.

    2016-01-01

    In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus—specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential. PMID:27589232

  5. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera).

    PubMed

    Galbraith, David A; Yang, Xingyu; Niño, Elina Lastro; Yi, Soojin; Grozinger, Christina

    2015-03-01

    Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.

  6. Parallel Epigenomic and Transcriptomic Responses to Viral Infection in Honey Bees (Apis mellifera)

    PubMed Central

    Niño, Elina Lastro; Yi, Soojin; Grozinger, Christina

    2015-01-01

    Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20–24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections. PMID:25811620

  7. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases.

    PubMed

    Gan, Lu; O'Hanlon, Terrance P; Lai, Zhennan; Fannin, Rick; Weller, Melodie L; Rider, Lisa G; Chiorini, John A; Miller, Frederick W

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups-probands with SAID, their unaffected twins, and matched, unrelated healthy controls-using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID.

  8. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases

    PubMed Central

    Gan, Lu; O’Hanlon, Terrance P.; Lai, Zhennan; Fannin, Rick; Weller, Melodie L.; Rider, Lisa G.; Chiorini, John A.; Miller, Frederick W.

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups—probands with SAID, their unaffected twins, and matched, unrelated healthy controls—using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID. PMID:26556803

  9. New data on the effects of simulated microgravity on viral infection development in wheat plants

    NASA Astrophysics Data System (ADS)

    Mishchenko, Lidiya

    The aim of research was to identify the effects of simulated microgravity on plant relations with the most widespread and damageful viruses of important agricultural crops, particularly wheat with wheat streak mosaic virus (WSMV). The experiments were carried out in autumn of 2007. The object of research were spring wheat plants of the Apogee variety (third reproduction) grown by us under clinorotation in 2002 - 2003 and multiplied in 2005 in the hothouse of the biological faculty of Kyiv National Taras Shevchenko University and the wheat streak mosaic virus. Microgravity was simulated using KG - 8 and "Cycle- 2" clinostats with horizontal and vertical clinorotation (HC and VC). In the first variant the axis of plant growth is placed horizontally and coincides with the axis of container rotation; in the second variant the axis is placed vertically and perpendicular to the axis of rotation. Virus identification in plants and quantitative determination of antigens were carried out using ELISA procedure and electron microscopy. Under the action of simulated microgravity, in KG -8 the lowering of height of infected plants as compared with healthy did not exceed this parameter in plants grown in motionless containers, as the percent of lowering in both variants with WSMV infection was the same - about 15 It was detected, that "WSMV - host plant" system was endowed with a certain gravisensitivity, and the action of simulated microgravity on this system was connected with the formation of reactions in host plant, which limit the reproduction of viruses in the cells. Longterm influence of simulated microgravity lowered the activity of viral pathogens in the system "virus - host" even in the third reproduction. Te influence of simulated microgravity caused the stress in wheat plants but its intensity was not threshold and plants could adapt themselves to the action of stress agent. This proves the possibility of the growth and development of plants under conditions of

  10. US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection

    PubMed Central

    Lee, Sungjin; Chung, Yoon Hee; Lee, Choongho

    2017-01-01

    Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling. PMID:28035083

  11. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    NASA Astrophysics Data System (ADS)

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-07-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.

  12. [Laboratory diagnosis of HIV infection, viral tropism and resistance to antiretrovirals].

    PubMed

    García, Federico; Álvarez, Marta; Bernal, Carmen; Chueca, Natalia; Guillot, Vicente

    2011-04-01

    The accurate diagnosis of HIV infection demands that to consider a positive result, at least three assays with different antigenic base should be used, one of them, Western-Blot being mandatory for confirmation. Fourth generation ELISAs shorten the window phase to 13-15 days, as they now include p24 antigen detection. Proviral DNA or Viral RNA detection by molecular methods have proved useful for addressing complex situations in which serology was inconclusive. Viral load (HIV-RNA) is routinely used to follow-up HIV infected patients and is used for treatment initiation decisions. It is also used to monitor viral failure. When this happens, resistance tests are needed to guide treatment changes. Resistance is also used to assess the transmission of drug resistance to newly diagnosed patients. Finally, before using an anti-CCR5 drug, viral tropism needs to be determined. This can be done using genotypic tests, widely available in many HIV labs, or phenotypic tests, only available at certain sites.

  13. Gene expression analysis during acute hepatitis C virus infection associates dendritic cell activation with viral clearance.

    PubMed

    Zabaleta, Aintzane; Riezu-Boj, Jose-Ignacio; Larrea, Esther; Villanueva, Lorea; Lasarte, Juan Jose; Guruceaga, Elizabeth; Fisicaro, Paola; Ezzikouri, Sayeh; Missale, Gabriele; Ferrari, Carlo; Benjelloun, Soumaya; Prieto, Jesús; Sarobe, Pablo

    2016-05-01

    Viral clearance during acute hepatitis C virus (HCV) infection is associated with the induction of potent antiviral T-cell responses. Since dendritic cells (DC) are essential in the activation of primary T-cell responses, gene expression was analyzed in DC from patients during acute HCV infection. By using microarrays, gene expression was compared in resting and activated peripheral blood plasmacytoid (pDC) and myeloid (mDC) DC from acute HCV resolving patients (AR) and from patients who become chronically infected (ANR), as well as in healthy individuals (CTRL) and chronically-infected patients (CHR). For pDC, a high number of upregulated genes was found in AR patients, irrespective of DC stimulation. However, for mDC, most evident differences were detected after DC stimulation, again corresponding to upregulated genes in AR patients. Divergent behavior of ANR was also observed when analyzing DC from CTRL and CHR, with ANR patients clustering again apart from these groups. These differences corresponded to metabolism-associated genes and genes belonging to pathways relevant for DC activation and cytokine responses. Thus, upregulation of relevant genes in DC during acute HCV infection may determine viral clearance, suggesting that dysfunctional DC may be responsible for the lack of efficient T-cell responses which lead to chronic HCV infection.

  14. Transmission of viral infections by the water route: implications for developing countries.

    PubMed

    Ramia, S

    1985-01-01

    The "enteric" virus group comprises greater than 100 different viruses. These viruses typically infect the cell lining of the alimentary canal and are discharged in very large numbers in the feces of infected persons. Contamination of water supplies by enteric viruses represents an important source of viral infection. Many communities, particularly in developing countries, depend on sewage-polluted sources for their recreational and drinking water. Because conventional methods of sewage and water treatment have proved inefficient in the removal and inactivation of most enteric viruses, great concern has been raised over the impact of waterborne infection on the health of such communities. Current evidence implicating drinking and recreational water supplies in the transmission of nonbacterial gastroenteritis and hepatitis A virus and adenovirus infections is overwhelming. Water-borne transmission of other enteric viruses is also possible. Effective antiviral drugs are generally unavailable, and current vaccines can control only a limited number of viral infections; therefore, provision of uncontaminated water is a basic requirement in raising the standard of health in affected communities.

  15. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics

    PubMed Central

    Sweeney, Timothy E.; Wong, Hector R.; Khatri, Purvesh

    2017-01-01

    Improved diagnostics for acute infections could decrease morbidity and mortality by increasing early antibiotics for patients with bacterial infections and reducing unnecessary antibiotics for patients without bacterial infections. Several groups have used gene expression microarrays to build classifiers for acute infections, but these have been hampered by the size of the gene sets, use of overfit models, or lack of independent validation. We used multicohort analysis to derive a set of seven genes for robust discrimination of bacterial and viral infections, which we then validated in 30 independent cohorts. We next used our previously published 11-gene Sepsis MetaScore together with the new bacterial/viral classifier to build an integrated antibiotics decision model. In a pooled analysis of 1057 samples from 20 cohorts (excluding infants), the integrated antibiotics decision model had a sensitivity and specificity for bacterial infections of 94.0 and 59.8%, respectively (negative likelihood ratio, 0.10). Prospective clinical validation will be needed before these findings are implemented for patient care. PMID:27384347

  16. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  17. Enterovirus 71 Infection Cleaves a Negative Regulator for Viral Internal Ribosomal Entry Site-Driven Translation

    PubMed Central

    Chen, Li-Lien; Kung, Yu-An; Weng, Kuo-Feng; Lin, Jing-Yi; Horng, Jim-Tong

    2013-01-01

    Far-upstream element-binding protein 2 (FBP2) is an internal ribosomal entry site (IRES) trans-acting factor (ITAF) that negatively regulates enterovirus 71 (EV71) translation. This study shows that EV71 infection cleaved FBP2. Live EV71 and the EV71 replicon (but not UV-inactivated virus particles) induced FBP2 cleavage, suggesting that viral replication results in FBP2 cleavage. The results also showed that virus-induced proteasome, autophagy, and caspase activity co-contribute to EV71-induced FBP2 cleavage. Using FLAG-fused FBP2, we mapped the potential cleavage fragments of FBP2 in infected cells. We also found that FBP2 altered its function when its carboxyl terminus was cleaved. This study presents a mechanism for virus-induced cellular events to cleave a negative regulator for viral IRES-driven translation. PMID:23345520

  18. Bloodborne Viral Hepatitis Infections among Drug Users: The Role of Vaccination

    PubMed Central

    Lugoboni, Fabio; Quaglio, Gianluca; Civitelli, Paolo; Mezzelani, Paolo

    2009-01-01

    Drug use is a prevalent world-wide phenomenon and hepatitis virus infections are traditionally a major health problem among drug users (DUs). HBV and HCV, and to a lesser extent HAV, are easily transmitted through exposure to infected blood and body fluids. Viral hepatitis is not inevitable for DUs. Licensed vaccines are available for hepatitis A and hepatitis B. The purpose of this overview is to show some epidemiological data about HBV and the other blood-borne viral hepatitis among DUs and to summarize and discuss use of hepatitis vaccinations in this population. Successful vaccination campaigns among DUs are feasible and well described. We try to focus on the most significant results achieved in successful vaccination programs as reported in scientific literature. Vaccination campaigns among DUs represent a highly effective form of health education and they are cost-saving. PMID:19440291

  19. Multiplexed detection of viral infections using rapid in-situ RNA analysis on a chip

    PubMed Central

    Shaffer, Sydney M.; Joshi, Rohan P.; Chambers, Benjamin S.; Sterken, David; Biaesch, Andrew G.; Gabrieli, David J.; Li, Yang; Feemster, Kristen A.; Hensley, Scott E.; Issadore, David; Raj, Arjun

    2015-01-01

    Viral infections are a major cause of human disease, but many require molecular assays for conclusive diagnosis. Current assays typically rely on RT-PCR or ELISA; however, these tests often have limited speed, sensitivity or specificity. Here, we demonstrate that rapid RNA FISH is a viable alternative method that could improve upon these limitations. We describe a platform beginning with software to generate RNA FISH probes both for distinguishing related strains of virus (even those different by a single base) and for capturing large numbers of strains simultaneously. Next, we present a simple fluidic device for reliably performing RNA FISH assays in an automated fashion. Finally, we describe an automated image processing pipeline to robustly identify uninfected and infected samples. Together, our results establish RNA FISH as a methodology with potential for viral point-of-care diagnostics. PMID:26113495

  20. Control of bovine viral diarrhea infection by use of vaccination.

    PubMed

    Bolin, S R

    1995-11-01

    Vaccination with either inactivated or modified live virus vaccines is beneficial for control of BVD in cattle. The advantages and/or disadvantages of each type of vaccine often influence vaccine selection. The frequency of vaccination depends on the herd management system, regional prevalence of BVDV, and required duration of protection. Vaccines for BVD likely will change in content as knowledge of BVDV increases and as new technologies are adapted for vaccine production.

  1. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    SciTech Connect

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  2. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome

    PubMed Central

    Kreins, Alexandra Y.; Ciancanelli, Michael J.; Okada, Satoshi; Kong, Xiao-Fei; Ramírez-Alejo, Noé; Kilic, Sara Sebnem; El Baghdadi, Jamila; Nonoyama, Shigeaki; Mahdaviani, Seyed Alireza; Ailal, Fatima; Bousfiha, Aziz; Mansouri, Davood; Nievas, Elma; Ma, Cindy S.; Rao, Geetha; Bernasconi, Andrea; Sun Kuehn, Hye; Niemela, Julie; Stoddard, Jennifer; Deveau, Paul; Cobat, Aurelie; El Azbaoui, Safa; Sabri, Ayoub; Lim, Che Kang; Sundin, Mikael; Avery, Danielle T.; Halwani, Rabih; Grant, Audrey V.; Boisson, Bertrand; Bogunovic, Dusan; Itan, Yuval; Moncada-Velez, Marcela; Martinez-Barricarte, Ruben; Migaud, Melanie; Deswarte, Caroline; Alsina, Laia; Kotlarz, Daniel; Klein, Christoph; Muller-Fleckenstein, Ingrid; Fleckenstein, Bernhard; Cormier-Daire, Valerie; Rose-John, Stefan; Picard, Capucine; Hammarstrom, Lennart; Puel, Anne; Al-Muhsen, Saleh; Abel, Laurent; Chaussabel, Damien; Rosenzweig, Sergio D.; Minegishi, Yoshiyuki; Tangye, Stuart G.; Bustamante, Jacinta; Casanova, Jean-Laurent

    2015-01-01

    Autosomal recessive, complete TYK2 deficiency was previously described in a patient (P1) with intracellular bacterial and viral infections and features of hyper-IgE syndrome (HIES), including atopic dermatitis, high serum IgE levels, and staphylococcal abscesses. We identified seven other TYK2-deficient patients from five families and four different ethnic groups. These patients were homozygous for one of five null mutations, different from that seen in P1. They displayed mycobacterial and/or viral infections, but no HIES. All eight TYK2-deficient patients displayed impaired but not abolished cellular responses to (a) IL-12 and IFN-α/β, accounting for mycobacterial and viral infections, respectively; (b) IL-23, with normal proportions of circulating IL-17+ T cells, accounting for their apparent lack of mucocutaneous candidiasis; and (c) IL-10, with no overt clinical consequences, including a lack of inflammatory bowel disease. Cellular responses to IL-21, IL-27, IFN-γ, IL-28/29 (IFN-λ), and leukemia inhibitory factor (LIF) were normal. The leukocytes and fibroblasts of all seven newly identified TYK2-deficient patients, unlike those of P1, responded normally to IL-6, possibly accounting for the lack of HIES in these patients. The expression of exogenous wild-type TYK2 or the silencing of endogenous TYK2 did not rescue IL-6 hyporesponsiveness, suggesting that this phenotype was not a consequence of the TYK2 genotype. The core clinical phenotype of TYK2 deficiency is mycobacterial and/or viral infections, caused by impaired responses to IL-12 and IFN-α/β. Moreover, impaired IL-6 responses and HIES do not appear to be intrinsic features of TYK2 deficiency in humans. PMID:26304966

  3. Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection

    PubMed Central

    Ady, Justin; Thayanithy, Venugopal; Mojica, Kelly; Wong, Phillip; Carson, Joshua; Rao, Prassanna; Fong, Yuman; Lou, Emil

    2016-01-01

    Tunneling nanotubes (TNTs) are ultrafine, filamentous actin-based cytoplasmic extensions which form spontaneously to connect cells at short and long-range distances. We have previously described long-range intercellular communication via TNTs connecting mesothelioma cells in vitro and demonstrated TNTs in intact tumors from patients with mesothelioma. Here, we investigate the ability of TNTs to mediate a viral thymidine kinase based bystander effect after oncolytic viral infection and administration of the nucleoside analog ganciclovir. Using confocal microscopy we assessed the ability of TNTs to propagate enhanced green fluorescent protein (eGFP), which is encoded by the herpes simplex virus NV1066, from infected to uninfected recipient cells. Using time-lapse imaging, we observed eGFP expressed in infected cells being transferred via TNTs to noninfected cells; additionally, increasing fluorescent activity in recipient cells indicated cell-to-cell transmission of the eGFP-expressing NV1066 virus had also occurred. TNTs mediated cell death as a form of direct cell-to-cell transfer following viral thymidine kinase mediated activation of ganciclovir, inducing a unique long-range form of the bystander effect through transmission of activated ganciclovir to nonvirus-infected cells. Thus, we provide proof-of-principle demonstration of a previously unknown and alternative mechanism for inducing apoptosis in noninfected recipient cells. The conceptual advance of this work is that TNTs can be harnessed for delivery of oncolytic viruses and of viral thymidine kinase activated drugs to amplify the bystander effect between cancer cells over long distances in stroma-rich tumor microenvironments. PMID:27933314

  4. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    NASA Astrophysics Data System (ADS)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  5. The Complement System in Flavivirus Infections.

    PubMed

    Conde, Jonas N; Silva, Emiliana M; Barbosa, Angela S; Mohana-Borges, Ronaldo

    2017-01-01

    The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses.

  6. The Complement System in Flavivirus Infections

    PubMed Central

    Conde, Jonas N.; Silva, Emiliana M.; Barbosa, Angela S.; Mohana-Borges, Ronaldo

    2017-01-01

    The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses. PMID:28261172

  7. Microarray analysis of glial cells resistant to JCV infection suggests a correlation between viral infection and inflammatory cytokine gene expression

    PubMed Central

    Manley, Kate; Gee, Gretchen V; Simkevich, Carl P; Sedivy, John M; Atwood, Walter J

    2007-01-01

    The human polyomavirus, JCV, has a highly restricted tropism and primarily infects glial cells. The mechanisms restricting infection of cells by JCV are poorly understood. Previously we developed and described a glial cell line that was resistant to JCV infection with the aim of using these cells to identify factors that determine JCV tropism. Gene expression profiling of susceptible and resistant glial cells revealed a direct correlation between the expression of inflammatory cytokines and susceptibility to JCV infection. This correlation manifested at the level of viral gene transcription. Previous studies have suggested a link between an increase in cytokine gene expression in HIV patients and the development of PML and these data support this hypothesis. PMID:17555786

  8. Expression of late viral proteins is restricted in nasal mucosal leucocytes but not in epithelial cells during early-stage equine herpes virus-1 infection.

    PubMed

    Gryspeerdt, Annick C; Vandekerckhove, Annelies P; Baghi, Hossein Bannazadeh; Van de Walle, Gerlinde R; Nauwynck, Hans J

    2012-08-01

    Equine herpes virus (EHV)-1 replicates in the epithelial cells of the upper respiratory tract and reaches the lamina propria and bloodstream in infected mononuclear cells. This study evaluated expression of the late viral proteins gB, gC, gD and gM in respiratory epithelial and mononuclear cells using: (1) epithelial-like rabbit kidney cells and peripheral blood mononuclear cells infected with EHV-1 in vitro; (2) an equine ex vivo nasal explant system; and (3) nasal mucosa tissue of ponies infected in vivo. The viral proteins were expressed in all late-infected epithelial cells, whereas expression was not observed in infected leucocytes where proteins gB and gM were expressed in 60-90%, and proteins gC and gD in only 20% of infected cells, respectively. The results indicate that expression of these viral proteins during early-stage EHV-1 infection is highly dependent on the cell type infected.

  9. Bovine viral diarrhea virus (BVDV) infection in dairy cattle herds in northeast Thailand.

    PubMed

    Nilnont, Theerakul; Aiumlamai, Suneerat; Kanistanont, Kwankate; Inchaisri, Chaidate; Kampa, Jaruwan

    2016-08-01

    Bovine viral diarrhea virus causes a wide range of clinical manifestation with subsequent economic losses in dairy production worldwide. Our study of a population of dairy cattle in Thailand based on 933 bulk tank milk samples from nine public milk collection centers aimed to monitor infective status and to evaluate the effect of the infection in cows as well as to examine the reproductive performance of heifers to provide effective recommendations for disease control in Thailand. The results showed a moderate antibody-positive prevalence in the herd (62.5 %), with the proportion of class-3 herd, actively infected stage, being 17.3 %. Fourteen persistently infected (PI) animals were identified among 1196 young animals from the class-3 herds. Most of the identified PI animals, 11/14, were born in one sub-area where bovine viral diarrhea virus (BVDV) investigation has not been performed to date. With respect to reproductive performance, class-3 herds also showed higher median values of reproductive indices than those of class-0 herds. Cows and heifers in class-3 herds had higher odds ratio of calving interval (CI) and age at first service (AFS) above the median, respectively, compared to class-0 herds (OR = 1.29; P = 0.02 and OR = 1.63; P = 0.02). Our study showed that PI animals were still in the area that was previously studied. Furthermore, a newly studied area had a high prevalence of BVDV infection and the infection affected the reproductive performance of cows and heifers. Although 37.5 % of the population was free of BVDV, the lack of official disease prevention and less awareness of herd biosecurity may have resulted in continuing viral spread and silent economic losses have potentially occurred due to BVDV. We found that BVDV is still circulating in the region and, hence, a national control program is required.

  10. Viral morphogenesis and morphological changes in human neuronal cells following Tioman and Menangle virus infection.

    PubMed

    Yaiw, K C; Hyatt, A; Vandriel, R; Crameri, S G; Eaton, B; Wong, M H; Wang, L F; Ng, M L; Bingham, J; Shamala, D; Wong, K T

    2008-01-01

    Tioman virus (TioPV) and Menangle virus (MenPV) are two antigenically and genetically related paramyxoviruses (genus: Rubulavirus, family: Paramyxoviridae) isolated from Peninsular Malaysia (2001) and Australia (1997), respectively. Both viruses are potential zoonotic agents. In the present study, the infectivity, growth kinetics, morphology and morphogenesis of these two paramyxoviruses in a human neuronal cell (SK-N-SH) line were investigated. Sub-confluent SK-N-SH cells were infected with TioPV and MenPV at similar multiplicity of infection. These cells were examined by conventional and immunoelectron microscopy, and virus titres in the supernatants were assayed. Syncytia were observed for both infections in SK-N-SH cells and were more pronounced during the early stages of TioPV infection. The TioPV titre increased consistently (10(1)) every 12 h after infection. In MenPV-infected cells, cellular material was frequently observed within budding virions, and microfilaments and microtubules were abundant. Viral budding was common, and extracellular MenPVs tended to be more pleomorphic compared to TioPVs, which appeared to be more spherical in appearance. The MenPV cytoplasmic viral inclusion appeared to be comparatively smaller, loose and interspersed with randomly scattered circle-like particles, whereas huge tubule-like cytoplasmic inclusions were observed in TioPV-infected cells. Both viruses also displayed different cellular pathology in the SK-N-SH cells. The intracellular ultrastructural characteristics of these two viruses in infected neuronal cells may allow them to be differentiated by electron microscopy.

  11. Viral DNA Replication-Dependent DNA Damage Response Activation during BK Polyomavirus Infection

    PubMed Central

    Verhalen, Brandy; Justice, Joshua L.; Imperiale, Michael J.

    2015-01-01

    ABSTRACT BK polyomavirus (BKPyV) reactivation is associated with severe human disease in kidney and bone marrow transplant patients. The interplay between viral and host factors that regulates the productive infection process remains poorly understood. We have previously reported that the cellular DNA damage response (DDR) is activated upon lytic BKPyV infection and that its activation is required for optimal viral replication in primary kidney epithelial cells. In this report, we set out to determine what viral components are responsible for activating the two major phosphatidylinositol 3-kinase-like kinases (PI3KKs) involved in the DDR: ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3-related (ATR) kinase. Using a combination of UV treatment, lentivirus transduction, and mutant virus infection experiments, our results demonstrate that neither the input virus nor the expression of large T antigen (TAg) alone is sufficient to trigger the activation of ATM or ATR in our primary culture model. Instead, our data suggest that the activation of both the ATM- and ATR-mediated DDR pathways is linked to viral DNA replication. Intriguingly, a TAg mutant virus that is unable to activate the DDR causes substantial host DNA damage. Our study provides insight into how DDRs are activated by polyomaviruses in primary cells with intact cell cycle checkpoints and how the activation might be linked to the maintenance of host genome stability. IMPORTANCE Polyomaviruses are opportunistic pathogens that are associated with several human diseases under immunosuppressed conditions. BK polyomavirus (BKPyV) affects mostly kidney and bone marrow transplant patients. The detailed replication mechanism of these viruses remains to be determined. We have previously reported that BKPyV activates the host DNA damage response (DDR), a response normally used by the host cell to combat genotoxic stress, to aid its own replication. In this study, we identified that the trigger for DDR

  12. Protective Efficacy of Individual CD8+ T Cell Specificities in Chronic Viral Infection §§

    PubMed Central

    Johnson, Susan; Bergthaler, Andreas; Graw, Frederik; Flatz, Lukas; Bonilla, Weldy V.; Siegrist, Claire-Anne; Lambert, Paul-Henri; Regoes, Roland R.; Pinschewer, Daniel D.

    2014-01-01

    Specific CD8+ T cells (CTLs) play an important role in resolving protracted infection with hepatitis B and C virus in humans and lymphocytic choriomeningitis virus (LCMV) in mice. The contribution of individual CTL specificities to chronic virus control, as well as epitope-specific patterns in timing and persistence of antiviral selection pressure remain, however, incompletely defined. To monitor and characterize the antiviral efficacy of individual CTL specificities throughout the course of chronic infection, we co-inoculated mice with a mixture of wildtype LCMV and genetically engineered CTL epitope-deficient mutant virus. A quantitative longitudinal assessment of viral competition revealed that mice continuously exerted CTL selection pressure on the persisting virus population. The timing of selection pressure characterized individual epitope specificities, and its magnitude varied considerably between individual mice. This longitudinal assessment of “antiviral efficacy” provides a novel parameter to characterize CTL responses in chronic viral infection. It demonstrates remarkable perseverance of all antiviral CTL specificities studied, thus raising hope for therapeutic vaccination in the treatment of persistent viral diseases. PMID:25567678

  13. Review of Non-Bacterial Infections in Respiratory Medicine: Viral Pneumonia.

    PubMed

    Galván, José María; Rajas, Olga; Aspa, Javier

    2015-11-01

    Although bacteria are the main pathogens involved in community-acquired pneumonia, a significant number of community-acquired pneumonia are caused by viruses, either directly or as part of a co-infection. The clinical picture of these different pneumonias can be very similar, but viral infection is more common in the pediatric and geriatric populations, leukocytes are not generally elevated, fever is variable, and upper respiratory tract symptoms often occur; procalcitonin levels are not generally affected. For years, the diagnosis of viral pneumonia was based on cell culture and antigen detection, but since the introduction of polymerase chain reaction techniques in the clinical setting, identification of these pathogens has increased and new microorganisms such as human bocavirus have been discovered. In general, influenza virus type A and syncytial respiratory virus are still the main pathogens involved in this entity. However, in recent years, outbreaks of deadly coronavirus and zoonotic influenza virus have demonstrated the need for constant alert in the face of new emerging pathogens. Neuraminidase inhibitors for viral pneumonia have been shown to reduce transmission in cases of exposure and to improve the clinical progress of patients in intensive care; their use in common infections is not recommended. Ribavirin has been used in children with syncytial respiratory virus, and in immunosuppressed subjects. Apart from these drugs, no antiviral has been shown to be effective. Prevention with anti-influenza virus vaccination and with monoclonal antibodies, in the case of syncytial respiratory virus, may reduce the incidence of pneumonia.

  14. Spatial-Temporal Patterns of Viral Amplification and Interference Initiated by a Single Infected Cell

    PubMed Central

    Akpinar, Fulya; Inankur, Bahar

    2016-01-01

    ABSTRACT When viruses infect their host cells, they can make defective virus-like particles along with intact virus. Cells coinfected with virus and defective particles often exhibit interference with virus growth caused by the competition for resources by defective genomes. Recent reports of the coexistence and cotransmission of such defective interfering particles (DIPs) in vivo, across epidemiological length and time scales, suggest a role in viral pathogenesis, but it is not known how DIPs impact infection spread, even under controlled culture conditions. Using fluorescence microscopy, we quantified coinfections of vesicular stomatitis virus (VSV) expressing a fluorescent reporter protein and its DIPs on BHK-21 host cell monolayers. We found that viral gene expression was more delayed, infections spread more slowly, and patterns of spread became more “patchy” with higher DIP inputs to the initial cell. To examine how infection spread might depend on the behavior of the initial coinfected cell, we built a computational model, adapting a cellular automaton (CA) approach to incorporate kinetic data on virus growth for the first time. Specifically, changes in observed patterns of infection spread could be directly linked to previous high-throughput single-cell measures of virus-DIP coinfection. The CA model also provided testable hypotheses on the spatial-temporal distribution of the DIPs, which remain governed by their predator-prey interaction. More generally, this work offers a data-driven computational modeling approach for better understanding of how single infected cells impact the multiround spread of virus infections across cell populations. IMPORTANCE Defective interfering particles (DIPs) compete with intact virus, depleting host cell resources that are essential for virus growth and infection spread. However, it is not known how such competition, strong or weak, ultimately affects the way in which infections spread and cause disease. In this study

  15. Four cases with Kawasaki disease and viral infection: aetiology or association.

    PubMed

    Giray, Tuba; Biçer, Suat; Küçük, Öznur; Çöl, Defne; Yalvaç, Zerrin; Gürol, Yeşim; Yilmaz, Gülden; Saç, Ahmet; Mogol, Yigit

    2016-12-01

    The aetiology of Kawasaki disease has not yet been precisely determined. It has been associated with a variety of bacterial and viral agents. Some viruses including human adenovirus, coronavirus, and parainfluenza virus type 3 have been isolated from patients with Kawasaki disease. Clinical presentation of patients with human coronavirus and adenovirus infections mimics Kawasaki disease. In addition, these viruses may also be detected in Kawasaki disease as a coinfection. In this report, we present four Kawasaki disease patients infected with adenovirus, coronavirus OC43/HKU1 and parainfluenza virus type 3.

  16. Preventing stem cell transplantation-associated viral infections using T-cell therapy.

    PubMed

    Tzannou, Ifigeneia; Leen, Ann M

    2015-01-01

    Hematopoietic stem cell transplantation is the treatment of choice for many hematologic malignancies and genetic diseases. However, viral infections continue to account for substantial post-transplant morbidity and mortality. While antiviral drugs are available against some viruses, they are associated with significant side effects and are frequently ineffective. This review focuses on the immunotherapeutic strategies that have been used to prevent and treat infections over the past 20 years and outlines different refinements that have been introduced with the goal of moving this therapy beyond specialized academic centers.

  17. A Novel Strategy for Live Detection of Viral Infection in Drosophila melanogaster

    PubMed Central

    Ekström, Jens-Ola; Hultmark, Dan

    2016-01-01

    We have created a transgenic reporter for virus infection, and used it to study Nora virus infection in Drosophila melanogaster. The transgenic construct, Munin, expresses the yeast transcription factor Gal4, tethered to a transmembrane anchor via a linker that can be cleaved by a viral protease. In infected cells, liberated Gal4 will then transcribe any gene that is linked to a promoter with a UAS motif, the target for Gal4 transcription. For instance, infected cells will glow red in the offspring of a cross between the Munin stock and flies with a UAS-RFPnls transgene (expressing a red fluorescent protein). In such flies we show that after natural infection, via the faecal-oral route, 5–15% of the midgut cells are infected, but there is little if any infection elsewhere. By contrast, we can detect infection in many other tissues after injection of virus into the body cavity. The same principle could be applied for other viruses and it could also be used to express or suppress any gene of interest in infected cells. PMID:27189868

  18. Effects in calves of mixed infections with bovine viral diarrhea virus and several other bovine viruses.

    PubMed

    Castrucci, G; Ferrari, M; Traldi, V; Tartaglione, E

    1992-10-01

    The objective of this study was to verify whether a mixed infection in calves with bovine viral diarrhea virus (BVDV) and other bovine viruses, such as bovid herpesvirus-4 (BHV-4), parainfluenza-3 (PI-3) and infectious bovine rhinotracheitis (IBR) virus, would influence the pathogenesis of the BVDV infection sufficiently to result in the typical form of mucosal disease being produced. Accordingly, two experiments were undertaken. In one experiment calves were first infected with BVDV and subsequently with BHV-4 and IBR virus, respectively. The second experiment consisted in a simultaneous infection of calves with BVDV and PI-3 virus or BVDV and IBR virus. From the first experiment it seems that BVDV infection can be reactivated in calves by BHV-4 and IBR virus. Evidence of this is that BVDV, at least the cytopathic (CP) strain, was recovered from calves following superinfection. Moreover, following such superinfection the calves showed signs which could most likely be ascribed to the pathogenetic activity of BVDV. Superinfection, especially by IBR virus, created a more severe clinical response in calves that were initially infected with CP BVDV, than in those previously given the non-cytopathic (NCP) biotype of the virus. Simultaneous infection with PI-3 virus did not seem to modify to any significant extent the pathogenesis of the experimentally induced BVDV infection whereas a severe clinical response was observed in calves when simultaneous infection was made with BVDV and IBR virus.

  19. Toll-interacting protein inhibits HIV-1 infection and regulates viral latency.

    PubMed

    Li, Chuan; Kuang, Wen-Dong; Qu, Di; Wang, Jian-Hua

    2016-06-24

    HIV-1 latency is mainly characterized by a reversible silencing of long-terminal repeat (LTR)-driven transcription of provirus. The existing of repressive factors has been described to contribute to transcription silencing of HIV-1. Toll-interacting protein (Tollip) has been identified as a repressor of Toll like receptors (TLR)-mediated signaling. Our previous study has found that Tollip inhibited NF-κB-dependent HIV-1 promoter LTR-driven transcription, indicating the potential role of Tollip in governing viral latency. In this study, by using HIV-1 latently infected Jurkat T-cell and central memory CD4(+) T-cells, we demonstrate the role of Tollip in regulating HIV-1 latency, as the knock-down of Tollip promoted HIV-1 reactivation from both HIV-1 latently infected Jurkat CD4(+) T cells and primary central memory T cells (TCM). Moreover, we found that the activities of LTRs derived from multiple HIV-1 subtypes could be repressed by Tollip; Knock-down of Tollip promoted HIV-1 transcription and infection in CD4(+) T cells. Our data indicate a key role of Tollip in suppressing HIV-1 infection and regulating viral latency, which provides a potential host target for combating HIV-1 infection and latency.

  20. TGF-β receptor maintains CD4 T helper cell identity during chronic viral infections

    PubMed Central

    Lewis, Gavin M.; Wehrens, Ellen J.; Labarta-Bajo, Lara; Streeck, Hendrik; Zuniga, Elina I.

    2016-01-01

    Suppression of CD8 and CD4 T cells is a hallmark in chronic viral infections, including hepatitis C and HIV. While multiple pathways are known to inhibit CD8 T cells, the host molecules that restrict CD4 T cell responses are less understood. Here, we used inducible and CD4 T cell–specific deletion of the gene encoding the TGF-β receptor during chronic lymphocytic choriomeningitis virus infection in mice, and determined that TGF-β signaling restricted proliferation and terminal differentiation of antiviral CD4 T cells. TGF-β signaling also inhibited a cytotoxic program that includes granzymes and perforin expression at both early and late stages of infection in vivo and repressed the transcription factor eomesodermin. Overexpression of eomesodermin was sufficient to recapitulate in great part the phenotype of TGF-β receptor–deficient CD4 T cells, while SMAD4 was necessary for CD4 T cell accumulation and differentiation. TGF-β signaling also restricted accumulation and differentiation of CD4 T cells and reduced the expression of cytotoxic molecules in mice and humans infected with other persistent viruses. These data uncovered an eomesodermin-driven CD4 T cell program that is continuously suppressed by TGF-β signaling. During chronic viral infection, this program limits CD4 T cell responses while maintaining CD4 T helper cell identity. PMID:27599295

  1. Importance of SARS-CoV spike protein Trp-rich region in viral infectivity

    SciTech Connect

    Lu Yanning; Neo, T.L.; Liu, D.Xi.; Tam, James P.

    2008-07-04

    SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalanine substitutions. Our results show that individually substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10-25% infectivity comparing to the wild-type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.

  2. Association between Respiratory Disease and Bacterial and Viral Infections in British Racehorses

    PubMed Central

    Wood, J. L. N.; Newton, J. R.; Chanter, N.; Mumford, J. A.

    2005-01-01

    Respiratory disease is important in horses, particularly in young Thoroughbred racehorses, and inflammation that is detected in the trachea and bronchi (termed inflammatory airway disease [IAD]) is more significant in this population in terms of impact and frequency than other presentations of respiratory disease. IAD, which is characterized by neutrophilic inflammation, mild clinical signs, and accumulation of mucus in the trachea, may be multifactorial, possibly involving infections and environmental and immunological factors, and its etiology remains unclear. This 3-year longitudinal study of young Thoroughbred racehorses was undertaken to characterize the associations of IAD and nasal discharge with viral and bacterial infections. IAD was statistically associated with tracheal infection with Streptococcus pneumoniae (capsule type 3), Streptococcus zooepidemicus, Actinobacillus spp., and Mycoplasma equirhinis and equine herpesvirus 1 and 4 infections, after adjustment for variation between training yards, seasons, and age groups. The association with S. pneumoniae and S. zooepidemicus was independent of prior viral infection and, critically, was dependent on the numbers of organisms isolated. S. pneumoniae was significant only in horses that were 2 years old or younger. The prevalence and incidence of IAD, S. zooepidemicus, and S. pneumoniae decreased in parallel with age, consistent with increased disease resistance, perhaps by the acquisition of immunity. The study provided evidence for S. zooepidemicus and S. pneumoniae playing an important etiological role in the pathogenesis of IAD in young horses. PMID:15634959

  3. Melatonin in bacterial and viral infections with focus on sepsis: a review.

    PubMed

    Srinivasan, Venkataramanujam; Mohamed, Mahaneem; Kato, Hisanori

    2012-01-01

    Melatonin is a versatile molecule, synthesized not only by the pineal gland, but also in small amounts by many other organs like retina, gastrointestinal tract, thymus, bone marrow, lymphocytes etc. It plays an important role in various functions of the body like sleep and circadian rhythm regulation, immunoregulatory mechanism, free radical scavenger, antioxidant functions, oncostatic actions, control of reproductive functions, regulation of mood etc. Melatonin has also been found to be effective in combating various bacterial and viral infections. Its administration has been shown to be effective in controlling chlamydial infections, infections induced by Mycobacterium tuberculosis, and also in many viral infections. Molecular mechanisms of anti microbial actions of melatonin have suggested to be due to effects on free radical formation, direct regulation of duplication of bacteria, depletion of intracellular substrates like iron etc. Besides, it is effective in sepsis as demonstrated in various animal models of septic shock. Melatonin's protective action against sepsis is suggested to be due to its antioxidant, immunomodulating and inhibitory actions against the production and activation of pro-inflammatory mediators. Use of melatonin has been beneficial in treating premature infants suffering from severe respiratory distress syndrome and septic shock. It has a potential therapeutic value in treating septic shock and associated multi organ failure in critically ill patients in addition to its antimicrobial and antiviral actions. The patents related to melatonin's use for treatment of bacterial infections and its use in clinical disorders are included.

  4. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection

    PubMed Central

    Cui, Hongguang

    2016-01-01

    ABSTRACT The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. IMPORTANCE Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically

  5. The role of viral and host microRNAs in the Aujeszky's disease virus during the infection process.

    PubMed

    Timoneda, Oriol; Núñez-Hernández, Fernando; Balcells, Ingrid; Muñoz, Marta; Castelló, Anna; Vera, Gonzalo; Pérez, Lester J; Egea, Raquel; Mir, Gisela; Córdoba, Sarai; Rosell, Rosa; Segalés, Joaquim; Tomàs, Anna; Sánchez, Armand; Núñez, José I

    2014-01-01

    Porcine production is a primary market in the world economy. Controlling swine diseases in the farm is essential in order to achieve the sector necessities. Aujeszky's disease is a viral condition affecting pigs and is endemic in many countries of the world, causing important economic losses in the swine industry. microRNAs (miRNAs) are non-coding RNAs which modulates gene expression in animals, plants and viruses. With the aim of understanding miRNA roles during the Aujeszky's disease virus [ADV] (also known as suid herpesvirus type 1 [SuHV-1]) infection, the expression profiles of host and viral miRNAs were determined through deep sequencing in SuHV-1 infected porcine cell line (PK-15) and in an animal experimental SuHV-1 infection with virulent (NIA-3) and attenuated (Begonia) strains. In the in vivo approach miR-206, miR-133a, miR-133b and miR-378 presented differential expression between virus strains infection. In the in vitro approach, most miRNAs were down-regulated in infected groups. miR-92a and miR-92b-3p were up-regulated in Begonia infected samples. Functional analysis of all this over expressed miRNAs during the infection revealed their association in pathways related to viral infection processes and immune response. Furthermore, 8 viral miRNAs were detected by stem loop RT-qPCR in both in vitro and in vivo approaches, presenting a gene regulatory network affecting 59 viral genes. Most described viral miRNAs were related to Large Latency Transcript (LLT) and to viral transcription activators EP0 and IE180, and also to regulatory genes regarding their important roles in the host-pathogen interaction during viral infection.

  6. Viral and host cellular transcription in Autographa californica nuclear polyhedrosis virus-infected gypsy moth cell lines.

    PubMed Central

    Guzo, D; Rathburn, H; Guthrie, K; Dougherty, E

    1992-01-01

    Infection of two gypsy moth cell lines (IPLB-Ld652Y and IPLB-LdFB) by the Autographa californica multiple-enveloped nuclear polyhedrosis virus (AcMNPV) is characterized by extremely attenuated viral protein synthesis followed by a total arrest of all viral and cellular protein production. In this study, AcMNPV- and host cell-specific transcription were examined. Overall levels of viral RNAs in infected gypsy moth cells were, at most measured times, comparable to RNA levels from an infected cell line (TN-368) permissive for AcMNPV replication. Northern blot (RNA) analyses using viral and host gene-specific probes revealed predominantly normal-length virus- and cell-specific transcripts postinfection. Transport of viral RNAs from the nucleus to the cytoplasm and transcript stability in infected gypsy moth cells also appeared normal compared with similar parameters for AcMNPV-infected TN-368 cells. Host cellular and viral mRNAs extracted from gypsy moth and TN-368 cells at various times postinfection and translated in vitro yielded similar spectra of host and viral proteins. Treatment of infected gypsy moth cells with the DNA synthesis inhibitor aphidicolin eliminated the total protein synthesis shutoff in infected IPLB-LdFB cells but had no effect on protein synthesis inhibition in infected IPLB-Ld652Y cells. The apparent selective block in the translation of viral transcripts early in infection and the absence of normal translation or transcription of host cellular genes at later times is discussed. Images PMID:1560533

  7. Human T Cell Leukemia Virus Type 1 Infection of the Three Monocyte Subsets Contributes to Viral Burden in Humans

    PubMed Central

    de Castro-Amarante, Maria Fernanda; McKinnon, Katherine; Washington Parks, Robyn; Galli, Veronica; Omsland, Maria; Andresen, Vibeke; Massoud, Raya; Brunetto, Giovanna; Caruso, Breanna; Venzon, David; Jacobson, Steven

    2015-01-01

    ABSTRACT Because the viral DNA burden correlates with disease development, we investigated the contribution of monocyte subsets (classical, intermediate, and nonclassical monocytes) to the total viral burden in 22 human T cell leukemia virus type 1 (HTLV-1)-infected individuals by assessing their infectivity status, frequency, as well as chemotactic and phagocytic functions. All three monocyte subsets sorted from HTLV-1-infected individuals were positive for viral DNA, and the frequency of classical monocytes was lower in the blood of HTLV-1-infected individuals than in that of uninfected individuals, while the expression levels of the chemokine receptors CCR5, CXCR3, and CX3CR1 in classical monocytes were higher in HTLV-1-infected individuals than uninfected individuals; the percentage of intermediate monocytes and their levels of chemokine receptor expression did not differ between HTLV-1-infected and uninfected individuals. However, the capacity of intermediate monocytes to migrate to CCL5, the ligand for CCR5, was higher, and a higher proportion of nonclassical monocytes expressed CCR1, CXCR3, and CX3CR1. The level of viral DNA in the monocyte subsets correlated with the capacity to migrate to CCL2, CCL5, and CX3CL1 for classical monocytes, with lower levels of phagocytosis for intermediate monocytes, and with the level of viral DNA in CD8+ and CD4+ T cells for nonclassical monocytes. These data suggest a model whereby HTLV-1 infection augments the number of classical monocytes that migrate to tissues and become infected and the number of infected nonclassical monocytes that transmit virus to CD4+ and CD8+ T cells. These results, together with prior findings in a macaque model of HTLV-1 infection, support the notion that infection of monocytes by HTLV-1 is likely a requisite for viral persistence in humans. IMPORTANCE Monocytes have been implicated in immune regulation and disease progression in patients with HTLV-1-associated inflammatory diseases. We detected

  8. Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions.

    PubMed Central

    Lu, Y L; Spearman, P; Ratner, L

    1993-01-01

    The subcellular localization of human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) was examined by subcellular fractionation. In HIV-1-infected peripheral blood mononuclear cells, Vpr was found in the nuclear and membrane fractions as well as the conditioned medium. Expression of Vpr without other HIV-1 proteins, in two different eukaryotic expression systems, demonstrated a predominant localization of Vpr in the nuclear matrix and chromatin extract fractions. Deletion of the carboxyl-terminal 19-amino-acid arginine-rich sequence impaired Vpr nuclear localization. Indirect immunofluorescence confirmed the nuclear localization of Vpr and also indicated a perinuclear location. Expression of Vpr alone did not result in export of the protein from the cell, but when coexpressed with the Gag protein, Vpr was exported and found in virus-like particles. A truncated Gag protein, missing the p6 sequence and a portion of the p9 sequence, was incapable of exporting Vpr from the cell. Regulation of Vpr localization may be important in the influence of this protein on virus replication. Images PMID:8411357

  9. The role of C5a in acute lung injury induced by highly pathogenic viral infections

    PubMed Central

    Wang, Renxi; Xiao, He; Guo, Renfeng; Li, Yan; Shen, Beifen

    2015-01-01

    The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton. Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory sequelae named “cytokine storm”, and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat ALI induced by highly pathogenic viruses. PMID:26060601

  10. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections.

    PubMed

    Skeldon, Alexander; Saleh, Maya

    2011-01-01

    The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs) that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns or host-derived danger signals (danger-associated molecular patterns) by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1β (IL-1β) and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of "alarmins" and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defense against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic, and fungal infections and the beneficial or detrimental effects of inflammasome signaling in host resistance.

  11. Augmentation of protective immune responses against viral infection by oral administration of schizophyllan

    PubMed Central

    Itoh, Wataru

    1997-01-01

    An oral administration of fungal polysaccharide schizophyllan has augmented protective immune responses to Sendai virus infection in mice and the rodshaped DNA virus of Penaeus japonicus (RV-PJ) infection in Kuruma shrimps. When schizophyllan was administered orally at a dose of 50 or 100 mg/kg body weight per day, the survival rates after virus challenge were significantly higher than those of the control groups. High phagocytic activities were observed in the haemocytes of the schizophyllan-fed shrimps.These results suggest that schizophyllan confers effective protection against viral infection by increasing antiviral immune responses, and that it could be used to boost immunity to virus infection in animals or in invertebrates. PMID:18472856

  12. Leukotriene B4 induces re