Science.gov

Sample records for systemically active antifungal

  1. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.

    PubMed

    Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo

    2013-09-01

    The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen.

  2. Active packaging with antifungal activities.

    PubMed

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-02

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time.

  3. Antifungal activity of ajoene derived from garlic.

    PubMed Central

    Yoshida, S; Kasuga, S; Hayashi, N; Ushiroguchi, T; Matsuura, H; Nakagawa, S

    1987-01-01

    The antifungal activity of six fractions derived from garlic was investigated in an in vitro system. Ajoene had the strongest activity in these fractions. The growth of both Aspergillus niger and Candida albicans was inhibited by ajoene at less than 20 micrograms/ml. Images PMID:3555334

  4. Antifungal activity of juniper extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sawdust from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane or ethanol and the extracts tested for antifungal activity against four species of wood-rot fungi. These species studied represent the junipers with the greatest potential for co...

  5. Antifungal activity against Candida biofilms.

    PubMed

    Iñigo, Melania; Pemán, Javier; Del Pozo, Jose L

    2012-10-01

    Candida species have two distinct lifestyles: planktonic, and surface-attached communities called biofilms. Mature C. albicans biofilms show a complex three-dimensional architecture with extensive spatial heterogeneity, and consist of a dense network of yeast, hyphae, and pseudohyphae encased within a matrix of exopolymeric material. Several key processes are likely to play vital roles at the different stages of biofilm development, such as cell-substrate and cell-cell adherence, hyphal development, and quorum sensing. Biofilm formation is a survival strategy, since biofilm yeasts are more resistant to antifungals and environmental stress. Antifungal resistance is a multifactorial process that includes multidrug efflux pumps, target proteins of the ergosterol biosynthetic pathway. Most studies agree in presenting azoles as agents with poor activity against Candida spp. biofilms. However, recent studies have demonstrated that echinocandins and amphotericin B exhibit remarkable activity against C. albicans and Candida non-albicans biofilms. The association of Candida species with biofilm formation increases the therapeutic complexity of foreign body-related yeast infections. The traditional approach to the management of these infections has been to explant the affected device. There is a strong medical but also economical motivation for the development of novel anti-fungal biofilm strategies due to the constantly increasing resistance of Candida biofilms to conventional antifungals, and the high mortality caused by related infections. A better description of the extent and role of yeast in biofilms may be critical for developing novel therapeutic strategies in the clinical setting.

  6. Antifungal activity of some tetranortriterpenoids.

    PubMed

    Govindachari, T R; Suresh, G; Gopalakrishnan, G; Masilamani, S; Banumathi, B

    2000-06-01

    Natural tetranortriterpenoids such as cedrelone from Toona ciliata, azadiradione from Azadirachta indica, limonin, limonol and nomilinic acid from Citrus medica, along with some cedrelone derivatives were tested for their antifungal activity against Puccinia arachidis, a groundnut rust pathogen. Results show that cedrelone was the most effective in reducing rust pustule emergence. Replacement of functional groups or modification of the A or the B ring in cedrelone reduced the effectiveness indicating the importance of specific structural features for activity.

  7. Treating chromoblastomycosis with systemic antifungals.

    PubMed

    Bonifaz, Alexandro; Paredes-Solís, Vanessa; Saúl, Amado

    2004-02-01

    Chromoblastomycosis is a subcutaneous mycosis for which there is no treatment of choice but rather, several treatment options, with low cure rates and many relapses. The choice of treatment should consider several conditions, such as the causal agent (the most common one being Fonsecaea pedrosoi ), extension of the lesions, clinical topography and health status of the patient. Most oral and systemic antifungals have been used; the best results have been obtained with itraconazole and terbinafine at high doses, for a mean of 6 - 12 months. In extensive and refractory cases, chemotherapy with oral antifungals may be associated with thermotherapy (local heat and/or cryosurgery). Limited or early cases may be managed with surgical methods, always associated with oral antifungal agents. It is important to determine the in vitro sensitivity of the major causal agents to the various drugs, by estimating the minimum inhibitory concentration, as well as drug tolerability and drug interactions.

  8. Posaconazole/hydroxypropyl-β-cyclodextrin host-guest system: Improving dissolution while maintaining antifungal activity.

    PubMed

    Tang, Peixiao; Ma, Xiaoli; Wu, Di; Li, Shanshan; Xu, Kailin; Tang, Bin; Li, Hui

    2016-05-20

    This study aimed to prepare and characterize the inclusion complex between posaconazole (POS) and hydroxypropyl-β-cyclodextrin (HP-β-CD). Phase solubility study was conducted to investigate the drug/CD interaction in solution, including the stoichiometry and apparent stability constant. The solid complex (HP-β-CD-POS) obtained was characterized through Fourier transform infrared spectroscopy, powder X-ray diffraction, (1)H and ROESY 2D nuclear magnetic resonance, differential scanning calorimetry, and scanning electron microscopy. These approaches confirmed the formation of the inclusion complex. The HP-β-CD-POS inclusion complex exhibited better water solubility and higher dissolution rate than the free POS did; the water solubility of POS was increased by 82 times and almost 90% of the loaded drug dissolved after 10 min in the dissolution media. In addition, preliminary in vitro antifungal susceptibility testing revealed that HP-β-CD-POS maintains a high level of antifungal activities. Therefore, the HP-β-CD complex may be useful in the delivery of posaconazole.

  9. Advances in synthetic approach to and antifungal activity of triazoles

    PubMed Central

    Kumar, Nitin; Drabu, Sushma; Sharma, Pramod Kumar

    2011-01-01

    Summary Several five membered ring systems, e.g., triazole, oxadiazole dithiazole and thiadiazole with three heteroatoms at symmetrical or asymmetrical positions have been studied because of their interesting pharmacological properties. In this article our emphasis is on synthetic development and pharmacological activity of the triazole moiety which exhibit a broad spectrum of pharmacological activity such as antifungal, antibacterial, anti-inflammatory and anticancer etc. Triazoles have increased our ability to treat many fungal infections, for example, candidiasis, cryptococcal meningitis, aspergillosis etc. However, mortality due to these infections even with antifungal therapy is still unacceptably high. Therefore, the development of new antifungal agents targeting specific fungal structures or functions is being actively pursued. Rapid developments in molecular mycology have led to a concentrated search for more target antifungals. Although we are entering a new era of antifungal therapy in which we will continue to be challenged by systemic fungal diseases, the options for treatment will have greatly expanded. PMID:21804864

  10. Antifungal Activity of C-27 Steroidal Saponins

    PubMed Central

    Yang, Chong-Ren; Zhang, Ying; Jacob, Melissa R.; Khan, Shabana I.; Zhang, Ying-Jun; Li, Xing-Cong

    2006-01-01

    As part of our search for new antifungal agents from natural resources, 22 C-27 steroidal saponins and 6 steroidal sapogenins isolated from several monocotyledonous plants were tested for their antifungal activity against the opportunistic pathogens Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, and Aspergillus fumigatus. The results showed that the antifungal activity of the steroidal saponins was associated with their aglycone moieties and the number and structure of monosaccharide units in their sugar chains. Within the 10 active saponins, four tigogenin saponins (compounds 1 to 4) with a sugar moiety of four or five monosaccharide units exhibited significant activity against C. neoformans and A. fumigatus, comparable to the positive control amphotericin B. The antifungal potency of these compounds was not associated with cytotoxicity to mammalian cells. This suggests that the C-27 steroidal saponins may be considered potential antifungal leads for further preclinical study. PMID:16641439

  11. Biochemical approaches to selective antifungal activity. Focus on azole antifungals.

    PubMed

    Vanden Bossche, H; Marichal, P; Gorrens, J; Coene, M C; Willemsens, G; Bellens, D; Roels, I; Moereels, H; Janssen, P A

    1989-01-01

    Azole antifungals (e.g. the imidazoles: miconazole, clotrimazole, bifonazole, imazalil, ketoconazole, and the triazoles: diniconazole, triadimenol, propiconazole, fluconazole and itraconazole) inhibit in fungal cells the 14 alpha-demethylation of lanosterol or 24-methylenedihydrolanosterol. The consequent inhibition of ergosterol synthesis originates from binding of the unsubstituted nitrogen (N-3 or N-4) of their imidazole or triazole moiety to the heme iron and from binding of their N-1 substituent to the apoprotein of a cytochrome P-450 (P-450(14)DM) of the endoplasmic reticulum. Great differences in both potency and selectivity are found between the different azole antifungals. For example, after 16h of growth of Candida albicans in medium supplemented with [14C]-acetate and increasing concentrations of itraconazole, 100% inhibition of ergosterol synthesis is achieved at 3 x 10(-8) M. Complete inhibition of this synthesis by fluconazole is obtained at 10(-5) M only. The agrochemical imidazole derivative, imazalil, shows high selectivity, it has almost 80 and 98 times more affinity for the Candida P-450(s) than for those of the piglet testes microsomes and bovine adrenal mitochondria, respectively. However, the topically active imidazole antifungal, bifonazole, has the highest affinity for P-450(s) of the testicular microsomes. The triazole antifungal itraconazole inhibits at 10(-5) M the P-450-dependent aromatase by 17.9, whereas 50% inhibition of this enzyme is obtained at about 7.5 x 10(-6)M of the bistriazole derivative fluconazole. The overall results show that both the affinity for the fungal P-450(14)DM and the selectivity are determined by the nitrogen heterocycle and the hydrophobic N-1 substituent of the azole antifungals. The latter has certainly a greater impact. The presence of a triazole and a long hypdrophobic nonligating portion form the basis for itraconazole's potency and selectivity.

  12. Ultraviolet induction of antifungal activity in plants.

    PubMed

    Schumpp, O; Bruderhofer, N; Monod, M; Wolfender, J-L; Gindro, K

    2012-11-01

    Ultraviolet-C irradiation as a method to induce the production of plant compounds with antifungal properties was investigated in the leaves of 18 plant species. A susceptibility assay to determine the antifungal susceptibility of filamentous fungi was developed based on an agar dilution series in microtiter plates. UV irradiation strongly induced antifungal properties in five species against a clinical Fusarium solani strain that was responsible for an onychomycosis case that was resistant to classic pharmacological treatment. The antifungal properties of three additional plant species were either unaffected or reduced by UV-C irradiation. This study demonstrates that UV-C irradiation is an effective means of modulating the antifungal activity of very diverse plants from a screening perspective.

  13. Synthesis, antifungal activities and qualitative structure activity relationship of carabrone hydrazone derivatives as potential antifungal agents.

    PubMed

    Wang, Hao; Ren, Shuang-Xi; He, Ze-Yu; Wang, De-Long; Yan, Xiao-Nan; Feng, Jun-Tao; Zhang, Xing

    2014-03-11

    Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which led to the improved activities for carabrone and its analogues and further confirmed their potential as antifungal agents.

  14. Antibacterial and antifungal activity of Indonesian ethnomedical plants.

    PubMed

    Goun, E; Cunningham, G; Chu, D; Nguyen, C; Miles, D

    2003-09-01

    Methylene chloride and methanol extracts of 20 Indonesian plants with ethnomedical uses have been assessed for in vitro antibacterial and antifungal properties by disk diffusion method. Extracts of the six plants: Terminalia catappa, Swietenia mahagoni Jacq., Phyllanthus acuminatus, Ipomoea spp., Tylophora asthmatica and Hyptis brevipes demonstrated high activity in this bioassay system. These findings should stimulate the search for novel, natural product such as new antibacterial and antifungal agents.

  15. Testing anti-fungal activity of a soil-like substrate for growing plants in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Nesterenko, E. V.; Kozlov, V. A.; Khizhnyak, S. V.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.; Liu, Hong; Xing, Yidong; Hu, Enzhu

    2009-10-01

    The object of this research is to study a soil-like substrate (SLS) to grow plants in a Bioregenerative Life Support System (BLSS). Wheat and rice straw were used as raw materials to prepare SLS. Anti-fungal activity of SLS using test cultures of Bipolaris sorokiniana, a plant-pathogenic fungus which causes wheat root rot was studied. Experiments were conducted with SLS samples, using natural soil and sand as controls. Infecting the substrates, was performed at two levels: the first level was done with wheat seeds carrying B. sorokiniana and the second level with seeds and additional conidia of B. sorokiniana from an outside source. We measured wheat disease incidence and severity in two crop plantings. Lowest disease incidence values were obtained from the second planting, SLS: 26% and 41% at the first and the second infection levels, respectively. For soil the values were 60% and 82%, respectively, and for sand they were 67% and 74%, respectively. Wheat root rot in the second crop planting on SLS, at both infection levels was considerably less severe (9% and 13%, respectively) than on natural soil (20% and 33%) and sand (22% and 32%). SLS significantly suppressed the germination of B. sorokiniana conidia. Conidia germination was 5% in aqueous SLS suspension, and 18% in clean water. No significant differences were found regarding the impact on conidia germination between the SLS samples obtained from wheat and rice straw. The anti-fungal activity in SLS increased because of the presence of worms. SLS also contained bacteria stimulating and inhibiting B. sorokiniana growth.

  16. Terbinafine: novel formulations that potentiate antifungal activities.

    PubMed

    Ma, Y; Chen, X; Guan, S

    2015-03-01

    Terbinafine, an orally and topically active antifungal agent, has been available for the treatment of dermatophytic infections and onychomycosis for more than a decade. In addition, oral administration has been shown to be associated with drug-drug interactions, hepatotoxicity, low concentration at the infected sites, gastrointestinal and systemic side effects and other adverse effects. Since topical drug delivery can provide higher patient compliance, allow immediate access to the infected site and reduce unwanted systemic drug exposure, an improved topical drug delivery approach with high permeability, sustained release and prolonged retainment could overcome the limitations and side effects caused by oral administration. Conventional topical formulations cannot keep the drug in the targeted sites for a long duration of time and hence a novel drug delivery that can avoid the side effects while still providing sustained efficacy in treatment should be developed. This brief review of novel formulations based on polymers and nanostructure carriers provides insight into the efficacy and topical delivery of terbinafine.

  17. Antifungal activity of Cynara scolymus L. extracts.

    PubMed

    Zhu, X F; Zhang, H X; Lo, R

    2005-01-01

    Chloroform, ethanol and ethyl acetate extracts of Cynara scolymus L. leaves, heads and stems were tested for their antifungal activity using the agar-well diffusion assay technique. The leaves extracts and the ethanol fractions were found to be the most effective extract against all the tested organisms.

  18. [In vitro antifungal activity of anidulafungin].

    PubMed

    Quindós, Guillermo; Eraso, Elena

    2008-06-01

    Anidulafungin is a new and very useful pharmacological tool for the treatment of invasive mycoses. The antifungal spectrum of anidulafungin reaches the most common pathogenic fungi. Anidulafungin is especially active against the genera Candida and Aspergillus. Its antifungal mechanism is based on the inhibition of the beta-1,3-D-glucan synthesis, an essential molecule for the cell wall architecture, with different consequences for Candida and Aspergillus, being anidulafungin fungicide for the former and fungistatic for the latter. This review describes the in vitro antifungal spectrum of anidulafungin based in the scientific and medical literature of recent years. We can underline that most than 99% of Candida isolates are susceptible to < or = 2 microg/ml of anidulafungin. MIC are very low (< or =0.125 microg/ml) for most clinical isolates of the species Candida albicans, Candida glabrata, Candida tropicalis and Candida krusei while Candida parapsilosis and Candida guilliermondii isolates are susceptible to anidulafungin concentrations < or = 2 microg/ml. An excellent activity of anidulafungin has been also described against Aspergillus, Pneumocystis and other fungi. However, its activity is very low against Cryptococcus and the Zygomycetes. The excellent activity of anidulafungin has made this antifungal a first line therapeutic indication for candidemia and invasive candidiasis in non-neutropenic patients.

  19. Resveratrol lacks antifungal activity against Candida albicans.

    PubMed

    Collado-González, Mar; Guirao-Abad, José P; Sánchez-Fresneda, Ruth; Belchí-Navarro, Sarai; Argüelles, Juan-Carlos

    2012-06-01

    The putative candicidal activity of resveratrol is currently a matter of controversy. Here, the antifungal activity as well as the antioxidant response of resveratrol against Candida albicans, have been tested in a set of strains with a well-established genetic background At the doses usually employed in antifungal tests (10-40 μg/ml), resveratrol has no effect on the exponential growth of the C. albicans CAI.4 strain, a tenfold increase (400 μg/ml) was required in order to record a certain degree of cell killing, which was negligible in comparison with the strong antifungal effect caused by the addition of amphotericin B (5 μg/ml). An identical pattern was recorded in the prototrophic strains of C. albicans SC5314 and RM-100, whereas the oxidative sensitive trehalose-deficient mutant (tps1/tps1 strain) was totally refractory to the presence of resveratrol. In turn, the serum-induced yeast-to-hypha transition remained unaffected upon addition of different concentrations of resveratrol. Determination of endogenous trehalose and catalase activity, two antioxidant markers in C. albicans; revealed no significant changes in their basal contents induced by resveratrol. Collectively, our results seem to dismiss a main antifungal role as well as the therapeutic application of resveratrol against the infections caused by C. albicans.

  20. Antifungal activity of thiophenes from Echinops ritro.

    PubMed

    Fokialakis, Nikolas; Cantrell, Charles L; Duke, Stephen O; Skaltsounis, Alexios L; Wedge, David E

    2006-03-08

    Extracts from 30 plants of the Greek flora were evaluated for their antifungal activity using direct bioautography assays with three Colletotrichum species. Among the bioactive extracts, the dichloromethane extract of the radix of Echinops ritro (Asteraceae) was the most potent. Bioassay-guided fractionation of this extract led to the isolation of eight thiophenes. Antifungal activities of isolated compounds together with a previously isolated thiophene from Echinops transiliensis were first evaluated by bioautography and subsequently evaluated in greater detail using a broth microdilution assay against plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, Colletotrichum gloeosporioides, Botrytis cinerea, Fusarium oxysporum, Phomopsis viticola, and Phomopsis obscurans. 5'-(3-Buten-1-ynyl)-2,2'-bithiophen (1), alpha-terthienyl (2), and 2-[pent-1,3-diynyl]-5-[4-hydroxybut-1-ynyl]thiophene (5) at 3 and 30 microM were active against all three Colletotrichum species, F. oxysporum, P. viticola, and P. obscurans.

  1. Antifungal activity of 10 Guadeloupean plants.

    PubMed

    Biabiany, Murielle; Roumy, Vincent; Hennebelle, Thierry; François, Nadine; Sendid, Boualem; Pottier, Muriel; Aliouat, El Moukhtar; Rouaud, Isabelle; Lohézic-Le Dévéhat, Françoise; Joseph, Henry; Bourgeois, Paul; Sahpaz, Sevser; Bailleul, François

    2013-11-01

    Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations.

  2. New targets and delivery systems for antifungal therapy.

    PubMed

    Walsh, T J; Viviani, M A; Arathoon, E; Chiou, C; Ghannoum, M; Groll, A H; Odds, F C

    2000-01-01

    Development of new approaches for treatment of invasive fungal infections encompasses new delivery systems for approved and investigational compounds, as well as exploiting the cell membrane, cell wall and virulence factors as putative antifungal targets. Novel delivery systems consisting of cyclodextrins, cochleates, nanoparticles/nanospheres and long circulating ('stealth') liposomes, substantially modulate the pharmacokinetics of existing compounds, and may also be useful to enhance the delivery of antifungal agents to sites of infection. Further insights into the structure-activity relationship of the antifungal triazoles that target the biosynthesis of ergosterol in the fungal cell membrane have led to the development of highly potent broad spectrum agents, including posaconazole, ravuconazole and voriconazole. Similarly, a novel generation of cell-wall active semisynthetic echinocandin 1,3 beta-glucan inhibitors (caspofungin, FK463, and VER-002) has entered clinical development. These agents have potent and broad-spectrum activity against Candida spp, and potentially useful activity against Aspergillus spp. and Pneumocystis carinii. The ongoing convergence of the fields of molecular pathogenesis, antifungal pharmacology and vaccine development will afford the opportunity to develop novel targets to complement the existing antifungal armamentarium.

  3. Econazole imprinted textiles with antifungal activity.

    PubMed

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections.

  4. Antifungal activity of Eugenia umbelliflora against dermatophytes.

    PubMed

    Machado, Karina E; Cechinel Filho, Valdir; Cruz, Rosana C B; Meyre-Silva, Christiane; Cruz, Alexandre Bella

    2009-09-01

    Antifungal activities of Eugenia umbelliflora Berg. (Myrtaceae) were tested in vitro against a panel of standard and clinical isolates of human fungal pathogens (dermatophytes and opportunistic saprobes). Methanol extracts of leaves and fruits of E. umbelliflora were separately prepared and partitioned, to yield dichloromethane (DCM), ethyl acetate (EtOAc) and aqueous fractions (Aq). Three compounds (1-3) were obtained from the DCM extract using chromatographic procedures. Antifungal assays were performed using agar dilution techniques. Both extracts (fruits and leaves), their DCM and EtOAc fractions, and compound 2 (betulin and betulinic acid) presented selective antifungal activity against dermatophytes (Epidermophyton floccosum, Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Trichophyton mentagrophytes), with MIC values between 200 and 1000 microg/mL, and interestingly, inhibited 4/5 species with MIC values of < or = 500 microg/mL. The aqueous fractions of fruits and leaves, and compounds 1 (alpha, beta amyrin) and 3 (taraxerol) were inactive up to the maximum concentrations tested (1000 microg/mL).

  5. Hp-β-CD-Voriconazole In Situ Gelling System for Ocular Drug Delivery: In Vitro, Stability, and Antifungal Activities Assessment

    PubMed Central

    Pawar, Pravin; Kashyap, Heena; Malhotra, Sakshi; Sindhu, Rakesh

    2013-01-01

    The objective of the present study was to design ophthalmic delivery systems based on polymeric carriers that undergo sol-to-gel transition upon change in temperature or in the presence of cations so as to prolong the effect of HP-β-CD Voriconazole (VCZ) in situ gelling formulations. The in situ gelling formulations of Voriconazole were prepared by using pluronic F-127 (PF-127) or with combination of pluronic F-68 (PF-68) and sodium alginate by cold method technique. The prepared formulations were evaluated for their physical appearance, drug content, gelation temperature (Tgel), in vitro permeation studies, rheological properties, mucoadhesion studies, antifungal studies, and stability studies. All batches of in situ formulations had satisfactory pH ranging from 6.8 to 7.4, drug content between 95% and 100%, showing uniform distribution of drug. As the concentration of each polymeric component was increased, that is, PF-68 and sodium alginate, there was a decrease in Tgel with increase in viscosity and mucoadhesive strength. The in vitro drug release decreased with increase in polymeric concentrations. The stability data concluded that all formulations showed the low degradation and maximum shelf life of 2 years. The antifungal efficiency of the selected formulation against Candida albicans and Asperigillus fumigatus confirmed that designed formulation has prolonged effect and retained its properties against fungal infection. PMID:23762839

  6. Nylon-3 polymers with selective antifungal activity.

    PubMed

    Liu, Runhui; Chen, Xinyu; Hayouka, Zvi; Chakraborty, Saswata; Falk, Shaun P; Weisblum, Bernard; Masters, Kristyn S; Gellman, Samuel H

    2013-04-10

    Host-defense peptides inhibit bacterial growth but show little toxicity toward mammalian cells. A variety of synthetic polymers have been reported to mimic this antibacterial selectivity; however, achieving comparable selectivity for fungi is more difficult because these pathogens are eukaryotes. Here we report nylon-3 polymers based on a novel subunit that display potent antifungal activity (MIC = 3.1 μg/mL for Candida albicans ) and favorable selectivity (IC10 > 400 μg/mL for 3T3 fibroblast toxicity; HC10 > 400 μg/mL for hemolysis).

  7. [S-Acyl derivatives of thiosalicylamides having antifungal activity. II].

    PubMed

    Mazza, M; Modena, T; Montanari, L; Pavanetto, F

    1978-07-01

    Some S-acyl derivatives of N-alkylthiosalicylamides [Table I: substances (I leads to XXXI)] were prepared and tested for antifungal activity. The substances, most of which had not been previously reported, were prepared by condensation of 2-mercapto-N-alkylbenzamides with suitable acylating agents. The antifungal activity of the compounds was tested in vitro against Candida albicans and Trichophyton mentagrophytes. For some compounds the was tested activity against the above strains fungicidal, Candida tropicalis and Saccharomyces cerevisiae. Many of the compounds proved to have high antifungal activity comparable with that of Clotrimazol. The results extended knowledge on the structure-antifungal activity relationships of this class of compounds. The compounds with the highest antifungal activity were: 2-acetylmercapto-N,n-heptylbenzamide (XXVIII); 2-acetylmercapto-5-Cl-N,n-propylbenzamide (XIV); 2-acetylmercapto-N,n-octylbenzamide (XXXI); 2-acetylmercapto-N,n-pentylbenzamide (XXV); 2-acetylmercapto-N,n-hexylbenzamide (XXVII).

  8. Antifungal activity of Piper diospyrifolium Kunth (Piperaceae) essential oil

    PubMed Central

    Vieira, Silvia Cristina Heredia; de Paulo, Luis Fernando; Svidzinski, Terezinha Inez Estivaleti; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; de Souza, Amanda; Young, Maria Cláudia Marx; Cortez, Diógenes Aparício Garcia

    2011-01-01

    In vitro activity of the essential oil from Piper diospyrifolium leaves was tested using disk diffusion techniques. The antifungal assay showed significant potencial antifungal activity: the oil was effective against several clinical fungal strains. The majority compounds in the essential oil were identified as sesquiterpenoids by GC-MS and GC-FID techniques. PMID:24031717

  9. Antifungal activities and chemical composition of some medicinal plants.

    PubMed

    Mohammadi, A; Nazari, H; Imani, S; Amrollahi, H

    2014-06-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists and natural-products scientists are combing the earth for phytochemicals and leads, which could be developed for treatment of infectious diseases. The aim of this study was to investigate the antifungal activities of the essential oils of some medicinal plants such as Stachys pubescens, Thymus kotschyanus, Thymus daenensis and Bupleurum falcatum against Fusarium oxysporum, Aspergillus flavus and Alternaria alternata. The essential oils were used to evaluate their MICs and MFCs compared to the amphotricin B as a standard drug. The essential oils were also analyzed by GC/MS. Essential oils isolated from the S. pubescens, T. kotschyanus and B. falcatum showed strong antifungal activities. The essential oil of T. daenensis exhibited a moderate activity against the selected fungi in comparison with the other plants' essential oils. In addition, the results showed that 26, 23, 22 and 15 components were identified from the essential oils of T. kotschyanus, S. pubescens, T. daenensis and B. falcatum, respectively. These oils exhibited a noticeable antifungal activity against the selected fungi. Regarding obtained results and that natural antimicrobial substances are inexpensive and have fewer side effects, they convey potential for implementation in fungal pathogenic systems.

  10. Antifungal activity of topical microemulsion containing a thiophene derivative

    PubMed Central

    Guimarães, Geovani Pereira; de Freitas Araújo Reis, Mysrayn Yargo; da Silva, Dayanne Tomaz Casimiro; Junior, Francisco Jaime Bezerra Mendonça; Converti, Attílio; Pessoa, Adalberto; de Lima Damasceno, Bolívar Ponciano Goulart; da Silva, José Alexsandro

    2014-01-01

    Fungal infections have become a major problem of worldwide concern. Yeasts belonging to the Candida genus and the pathogenic fungus Cryptococcus neoformans are responsible for different clinical manifestations, especially in immunocompromised patients. Antifungal therapies are currently based on a few chemotherapeutic agents that have problems related to effectiveness and resistance profiles. Microemulsions are isotropic, thermodynamically stable transparent systems of oil, water and surfactant that can improve the solubilization of lipophilic drugs. Taking into account the need for more effective and less toxic drugs along with the potential of thiophene derivatives as inhibitors of pathogenic fungi growth, this study aimed to evaluate the antifungal activity of a thiophene derivative (5CN05) embedded in a microemulsion (ME). The minimum inhibitory concentration (MIC) was determined using the microdilution method using amphotericin B as a control. The formulations tested (ME- blank and ME-5CN05) showed physico-chemical properties that would allow their use by the topical route. 5CN05 as such exhibited moderate or weak antifungal activity against Candida species (MIC = 270–540 μg.mL−1) and good activity against C. neoformans (MIC = 17 μg.mL−1). Candida species were susceptible to ME-5CN05 (70–140 μg.mL−1), but C. neoformans was much more, presenting a MIC value of 2.2 μg.mL−1. The results of this work proved promising for the pharmaceutical industry, because they suggest an alternative therapy against C. neoformans. PMID:25242940

  11. Antifungal and antibacterial activity of marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-03-01

    In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products.

  12. Antifungal activity of fruit pulp extract from Bromelia pinguin.

    PubMed

    Camacho-Hernández, I L; Chávez-Velázquez, J A; Uribe-Beltrán, M J; Ríos-Morgan, A; Delgado-Vargas, F

    2002-08-01

    The methanol extract of the fruit pulp of Bromelia pinguin was evaluated for its antifungal activity. The extract showed a significant activity against some Trichophyton strains, although Candida strains were generally insensitive.

  13. Antileishmanial, antimicrobial and antifungal activities of some new aryl azomethines.

    PubMed

    Al-Kahraman, Yasser M S A; Madkour, Hassan M F; Ali, Dildar; Yasinzai, Masoom

    2010-01-28

    A series of eighteen azomethines has been synthesized by the reaction of appropriate primary aromatic amines with aryl and/or heteroaryl carboxaldehydes. The synthesized azomethines have been evaluated for their in vitro antileishmanial, antibacterial and antifungal activities. The results revealed some antifungal activity of most of the synthesized compounds, whereas the antileishmaniasis activity results highlighted that all synthesized azomethines inhibited parasite growth and most of them showed highly potent action towards Leishmania major promastigotes. No remarkable bactericidal activities were observed.

  14. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    PubMed

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity.

  15. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins.

    PubMed

    Kfoury, Miriana; Lounès-Hadj Sahraoui, Anissa; Bourdon, Natacha; Laruelle, Frédéric; Fontaine, Joël; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2016-04-01

    Effects of the encapsulation in cyclodextrins (CDs) on the solubility, photostability and antifungal activities of some phenylpropanoids (PPs) were investigated. Solubility experiments were carried out to evaluate the effect of CDs on PPs aqueous solubility. Loading capacities and encapsulation efficiencies of freeze-dried inclusion complexes were determined. Moreover, photostability assays for both inclusion complexes in solution and solid state were performed. Finally, two of the most widespread phytopathogenic fungi, Fusarium oxysporum and Botrytis cinerea, were chosen to examine the antifungal activity of free and encapsulated PPs. Results showed that encapsulation in CDs significantly increased the solubility and photostability of studied PPs (by 2 to 17-fold and 2 to 44-fold, respectively). Free PPs revealed remarkable antifungal properties with isoeugenol showing the lowest half-maximal inhibitory concentration (IC50) values of mycelium growth and spore germination inhibition. Encapsulated PPs, despite their reduced antifungal activity, could be helpful to solve drawbacks such as solubility and stability.

  16. Isolation of Bacillus amyloliquefaciens Strains with Antifungal Activities from Meju

    PubMed Central

    Lee, Hwang A; Kim, Jeong Hwan

    2012-01-01

    Bacilli with fibrinolytic activities were isolated from traditionally-prepared Meju and some of these strains showed strong antifungal activities. One isolate, MJ1-4, showed the strongest antifungal activity. MJ1-4 and other isolates were identified as B. amyloliquefaciens strains by recA gene sequencing and RAPD-PCR results. B. amyloliqufaciens MJ1-4 efficiently inhibited an Aspergillus spp.-producing aflatoxin B1 (AFB1) and a Penicillium spp.-producing ochratoxin (OTA) in addition to other fungi. Antifungal activity of B. amyloliquefaciens MJ1-4 culture reached its maximum (40 AU/mg protein) in LB or TSB medium around 48 hr at 37°C. Antifungal activity of the concentrated culture supernatant was not decreased significantly by protease treatments, implying that the antifungal substance might not be a simple peptide or protein. Considering its antifungal and fibrinolytic activities together, B. amyloliquefaciens MJ1-4 can serve as a starter for fermented soyfoods such as Cheonggukjang and Doenjang. PMID:24471064

  17. Optimization of Antifungal Extracts from Ficus hirta Fruits Using Response Surface Methodology and Antifungal Activity Tests.

    PubMed

    Chen, Chuying; Wan, Chunpeng; Peng, Xuan; Chen, Yuhuan; Chen, Ming; Chen, Jinyin

    2015-10-29

    The fruits of Ficus hirta (FH) display strong antifungal activity against Penicillium italicum and Penicillium digitatum. In order to optimize the extraction conditions of antifungal extracts from FH fruit, various extraction parameters, such as ethanol concentration, extraction time, solvent to solid ratio and temperature, were chosen to identify their effects on the diameters of inhibition zones (DIZs) against these two Penicillium molds. Response surface methodology (RSM) was applied to obtain the optimal combination of these parameters. Results showed that the optimal extraction parameters for maximum antifungal activity were: 90% (v/v) ethanol concentration, 65 min extraction time, 31 mL/g solvent to solid ratio and 51 °C temperature. Under the abovementioned extraction conditions, the experimental DIZs values obtained experimentally were 57.17 ± 0.75 and 39.33 ± 0.82 mm, which were very close to the values of 57.26 and 39.29 mm predicted by the model. Further, nine kinds of phytopathogens were tested in vitro to explore the antifungal activity of the FH extracts. It was found for the first time that the FH extracts showed significant inhibition on the growth of P. italicum, A. citri, P. vexans, P. cytosporella and P. digitatum.

  18. In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections

    PubMed Central

    Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera

    2014-01-01

    Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737

  19. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species.

    PubMed

    Campaniello, Daniela; Corbo, Maria Rosaria; Sinigaglia, Milena

    2010-06-01

    The antifungal activity of eugenol in a model system against aspergilli (Aspergillus niger, Aspergillus terreus, and Emericella nidulans), penicilli (Penicillium expansum, Penicillium glabrum, and Penicillium italicum), and fusaria (Fusarium oxysporum and Fusarium avenaceum) was investigated. Minimum detection time (time to attain a colony diameter of 1 cm) and the kinetic parameters were evaluated. The effectiveness of the active compound seemed to be strain or genus dependent; 100 mg/liter represented a critical value for P. expansum, P. glabrum, P. italicum, A. niger, and E. nidulans because a further increase of eugenol resulted in fungistatic activity. The radial growth of A. terreus and F. avenaceum was inhibited at 140 mg/liter, and growth of F. oxysporum was completely inhibited at 150 mg/liter.

  20. Antifungal Activities of Peptides Derived from Domain 5 of High-Molecular-Weight Kininogen

    PubMed Central

    Sonesson, Andreas; Nordahl, Emma Andersson; Malmsten, Martin; Schmidtchen, Artur

    2011-01-01

    In both immunocompromised and immunocompetent patients, Candida and Malassezia are causing or triggering clinical manifestations such as cutaneous infections and atopic eczema. The innate immune system provides rapid responses to microbial invaders, without requiring prior stimulation, through a sophisticated system of antimicrobial peptides (AMPs). High molecular weight kininogen (HMWK) and components of the contact system have previously been reported to bind to Candida and other pathogens, leading to activation of the contact system. A cutaneous Candida infection is characterized by an accumulation of neutrophils, leading to an inflammatory response and release of enzymatically active substances. In the present study we demonstrate that antifungal peptide fragments are generated through proteolytic degradation of HMWK. The recombinant domain 5 (rD5) of HMWK, D5-derived peptides, as well as hydrophobically modified D5-derived peptides efficiently killed Candida and Malassezia. Furthermore, the antifungal activity of modified peptides was studied at physiological conditions. Binding of a D5-derived peptide, HKH20 (His479-His498), to the fungal cell membrane was visualized by fluorescence microscopy. Our data disclose a novel antifungal activity of D5-derived peptides and also show that proteolytic cleavage of HMWK results in fragments exerting antifungal activity. Of therapeutic interest is that structurally modified peptides show an enhanced antifungal activity. PMID:21941573

  1. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02.

    PubMed

    Huh, Chang Ki; Hwang, Tae Yean

    2016-03-01

    This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not H2O2. The molecular weights of the antifungal substances were ≤3,000 Da. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid.

  2. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

    PubMed Central

    Huh, Chang Ki; Hwang, Tae Yean

    2016-01-01

    This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not H2O2. The molecular weights of the antifungal substances were ≤3,000 Da. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid. PMID:27069906

  3. Cytotoxic and Antifungal Activities of Diverse α-Naphthylamine Derivatives

    PubMed Central

    Kouznetsov, Vladímir V.; Zacchino, Susana A.; Sortino, Maximiliano; Vargas Méndez, Leonor Y.; Gupta, Mahabir P.

    2012-01-01

    Diverse α-naphthylamine derivatives were easily prepared from corresponding aldimines derived from commercially available α-naphthaldehyde and anilines or isomeric pyridinecarboxyaldehydes and α-naphthylamine. The secondary amines obtained were tested as possible antifungal and cytotoxic agents. The diverse N-aryl-N-[1-(1-naphthyl)but-3-enyl]amines obtained were active (IC50 < 10 μg/mL) against breast (MCF-7), non-small cell lung (H-460), and central nervous system (SF-268) human cancer cell lines, while N-(pyridinylmethyl)-naphthalen-1-amines resulted in activity against (MIC 25–32 μg/mL) some human opportunistic pathogenic fungi including yeasts, hialohyphomycetes, and dermatophytes. PMID:23264936

  4. Antifungal activity of three mouth rinses--in vitro study.

    PubMed

    Abirami, C P; Venugopal, Pankajalakshmi V

    2005-01-01

    Mouthrinses are nowadays routinely included in the home care oral hygiene maintenance besides dentifrice/tooth paste. Mouthrinses prevent bacterial attachment and prevent or slow down bacterial proliferation. Fungal organisms have now gained more importance due to increased incidence of AIDS/HIV. This has necessitated for mouthrinses to possess antifungal activity also. The mouthrinses used were Povidone iodine ( Wokadine), Thymol with Eucalyptol and Benzoic acid (Listerine) and fluoride with Triclosan (Colgate Plax), which were tested against oral isolates of different species of Candida. The agar diffusion test was used to evaluate the inhibitory activity of the mouthrinses and all of them exhibited antifungal activity especially against Candida albicans.

  5. Screening of a Marine Algal Extract for Antifungal Activities.

    PubMed

    Lopes, Graciliana; Andrade, Paula B; Valentão, Patrícia

    2015-01-01

    Over the past few years algal extracts have become increasingly interesting to the scientific community due to their promising biological properties. Phlorotannin extracts are particularly attractive partly due to their reported antifungal activity against several yeast and dermatophyte strains.The micromethod used for the evaluation of the minimum inhibitory concentration (MIC) and the minimum lethal concentration (MLC) represents an effective and solvent-saving procedure to evaluate the antifungal activity of algae extracts. Here we describe the micromethod for determining the MIC and the MLC of algal extracts by using the example of a purified phlorotannin extract of brown algae.

  6. Antifungal active triterpene glycosides from sea cucumber Holothuria scabra.

    PubMed

    Han, Hua; Yi, Yang-Hua; Li, Ling; Liu, Bao-Shu; La, Ming-Ping; Zhang, Hong-Wei

    2009-06-01

    To study the new antifungal active triterpene glycosides of sea cucumber Holothuria scabra. Triterpene glycosides from Holothuria scabra were separated and purified by silica gel chromatography, reversed-phase silica gel chromatography and RP-HPLC. Their structures were elucidated on the basis of spectral data and chemical evidence. Three triterpene glycosides were identified as scabraside A (1), echinoidea A (2) and holothurin A1 (3). Scabraside A (1) is a new triterpene glycoside, and compounds 2 and 3 were isolated from Holothuria scabra for the first time. They showed antifungal activities (1 < or = MIC80 < or = 16 microg mL(-1)).

  7. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    NASA Astrophysics Data System (ADS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  8. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components.

    PubMed

    Jiang, Hongxia; Wang, Xiaohui; Xiao, Chengze; Wang, Weiyan; Zhao, Xu; Sui, Junkang; Sa, Rongbo; Guo, Tai L; Liu, Xunli

    2015-10-01

    The establishment of safe and effective methods for controlling fungal disease is an urgent issue in agriculture and forestry. Microbiological control of plant disease is expected to achieve better results than use of chemically derived fungicides. This study aimed to establish Brevibacillus laterosporus JX-5 as a potential microbiological control agent of poplar canker. The bacterium was isolated from the poplar rhizosphere and demonstrated significant growth inhibition of several pathogenic fungi in vitro. The antifungal components of Br. laterosporus JX-5 were isolated and identified. The fermentation broth of Br. laterosporus JX-5 and its main antifungal component, designated as component B, reduced Botryosphaeria dothidea associated canker of the excised poplar branch by 70 and 90%, respectively. Component B is considerably heat-stable, adaptable to a broad pH range, and UV-resistant. It could inhibit Bo. dothidea by permeating the fungal membrane, fracturing the nuclei, damaging the cell wall, and eventually killing the pathogenic fungus. The antifungal activity exhibited by Br. laterosporus JX-5 and its bioactive metabolic products indicate its feasibility as a potential biocontrol agent for plant diseases.

  9. Antioxidant and antifungal activities of Smilax campestris Griseb. (Smilacaceae).

    PubMed

    Morais, Marcela Isis; Pinto, Maria Eduarda Amaral; Araújo, Sthéfane Guimarães; Castro, Ana Hortência Fonsêca; Duarte-Almeida, Joaquim Mauricio; Rosa, Luiz Henrique; Rosa, Carlos Augusto; Johann, Susana; Lima, Luciana Alves Rodrigues dos Santos

    2014-01-01

    Ethanol extract and fractions obtained from aerial parts of Smilax campestris were examined in order to determine their phenolic composition, antioxidant capacity and antifungal activities. High-performance liquid chromatography coupled with DAD analysis indicated that quercetin and rutin were the main phenolic compounds present in butanol fraction and ethanol extract, respectively. The antioxidant activity assessed by the scavenging ability on 1,1-diphenyl-2-picrylhydrazyl radical was significantly more pronounced for the ethanol extract and butanol fraction than that of the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol. The antifungal activity of extract and fractions was investigated by using microdilution method against five Candida and two Cryptococcus yeast strains. Ethanol extract and fractions exhibited antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis and Cryptococcus gattii. This work provides the knowledge of profile and content of flavonoids and their antioxidant and antifungal activities in the extract and fractions of aerial parts of S. campestris.

  10. Antifungal activity of heartwood extracts from three Juniperus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heartwood samples from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane, ethanol and methanol and the hexane and ethanol extracts were tested for antifungal activity against four species of wood-rot fungi. These three species represent the ...

  11. Antifungal activity of steroidal glycosides from Yucca gloriosa L.

    PubMed

    Favel, A; Kemertelidze, E; Benidze, M; Fallague, K; Regli, P

    2005-02-01

    The antifungal activity of a crude steroidal glycoside extract from Yucca gloriosa flowers, named alexin, was investigated in vitro against a panel of human pathogenic fungi, yeasts as well as dermatophytes and filamentous species. The minimal inhibitory concentration (MIC) was determined by an agar dilution method. Alexin had a broad spectrum of antifungal activity, found to reside entirely in the spirostanoid fraction. The major tigogenyl glycosides, yuccaloeside B and yuccaloeside C, exhibited MICs between 0.39 and 6.25 microg[sol ]mL for all the tested yeast strains except for two (C. lusitaniae and C. kefyr). They were also active against several clinical Candida isolates known to be resistant to the usual antifungal agents. The MICs for the dermatophytes were between 0.78 and 12.5 microg[sol ]mL. The most sensitive filamentous species was A. fumigatus (MIC = 1.56 microg[sol ]mL). For most of the strains, the MICs of both glycosides were similar to those of the reference antifungal agent.

  12. Synthesis and antifungal activity of benzo[d]oxazole-4,7-diones.

    PubMed

    Ryu, Chung-Kyu; Lee, Ra-Young; Kim, Na Young; Kim, Yang Hui; Song, Ae Li

    2009-10-15

    Benzo[d]oxazole-4,7-diones were synthesized and tested for in vitro antifungal activity against fungi. Among them tested, many compounds showed good antifungal activity. The results suggest that benzo[d]oxazole-4,7-diones would be potent antifungal agents.

  13. Synthesis and antifungal activities of glycosylated derivatives of the cyclic peptide fungicide caspofungin.

    PubMed

    Guo, Junxiang; Hu, Honggang; Zhao, Qingjie; Wang, Ting; Zou, Yan; Yu, Shichong; Wu, Qiuye; Guo, Zhongwu

    2012-08-01

    Diseases caused by systemic fungal infections have become a significant clinical problem in recent decades. A series of glycosyl derivatives of the approved cyclic peptide antifungal drug caspofungin conjugated with β-D-glucopyranose, β-D-galactopyranose, β-D-xylopyranose, β-L-rhamnopyranose, β-maltose and β-lactose units were designed, synthesized, and evaluated as new potential antifungal drugs. The compounds were obtained by coupling the corresponding glycosyl amines to the free primary amino groups of caspofungin through a bifunctional glutaryl linker. In contrast to caspofungin, these glycosylated derivatives are soluble in water, but are not hygroscopic and moreover, are more stable than caspofungin under high humidity and temperature. CD studies showed that glycosylation has very little impact on the conformation of the cyclic peptide of caspofungin. In vitro antifungal tests against seven human pathogenic fungi revealed that the caspofungin-monosaccharide conjugates, but not the disaccharide conjugates, have increased antifungal activities against the majority of tested fungus species relative to caspofungin. The β-D-glucopyranosyl derivative 2 a showed the strongest and broadest antifungal activity, providing a lead for further studies.

  14. Synthesis, antifungal and antibacterial activity of novel 1,2,4-triazole derivatives

    PubMed Central

    Gupta, Deepa; Jain, D. K.

    2015-01-01

    A large number of 1,2,4-triazole-containing ring system have been incorporated into a wide variety of therapeutically interesting drug candidates including anti-inflammatory, central nervous system stimulants, antianxiety, and antimicrobial agents. To overcome the rapid development of drug resistance, new agents should preferably have chemical characteristics that clearly differ from those of existing agents. Thus led to the design and synthesize the new antimicrobial agents. A novel series of Schiff bases based on of 4-(benzylideneamino)-5-phenyl-4H-1,2,4-triazole-3-thiol scaffold was prepared by heating thiocarbohydrazide and substituted benzoic acid and subsequently, treating with substituted benzaldehydes. Seventeen derivatives were synthesized and were biologically screened for antifungal and antibacterial activity. The newly synthesized derivatives of triazole showed antifungal activity against fungal species, Microsporum gypseum; and antibacterial activity against bacterial species, Staphylococcus aureus. It was observed that none of the compounds tested showed positive results for fungi Candida albicans fungi Aspergillus niger, nor against bacterial strain Escherichia coli. Strong antifungal effects were obtained for the synthesized compounds against M. gypseum and were superior or comparable to standard drug ketoconazole. Similarly, all of the synthesized compounds exhibit strong antibacterial activity against S. aureus and were superior or comparable to standard drug streptomycin. It was found that among the triazole derivatives so synthesized, six of them, showed antifungal activity superior to ketoconazole while one of them, showed antibacterial activity superior to streptomycin. Thus, these can be the potential new molecule as an antimicrobial agent. PMID:26317080

  15. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs

    PubMed Central

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M. A.; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E.; Casadevall, Arturo

    2015-01-01

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. PMID:26711773

  16. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs.

    PubMed

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M A; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E; Casadevall, Arturo; Gonçalves, Teresa

    2015-12-28

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis.

  17. Antibacterial and antifungal activity of Syzygium jambolanum seeds.

    PubMed

    Chandrasekaran, M; Venkatesalu, V

    2004-03-01

    The water and methanolic extracts of Syzygium jambolanum seeds were examined for antibacterial and antifungal activity in vitro using the disc diffusion method, minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration. Activity against gram positive bacteria (Bacillus subtilis, Staphylococcus aureus), gram negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli) and fungal strains (Candida albicans, Cryptococcus neoformans, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhizopus sp., Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum gypseum) is discussed.

  18. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.

    PubMed

    Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

    2013-03-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.

  19. In Vitro Antifungal Activities against Moulds Isolated from Dermatological Specimens

    PubMed Central

    Mohd Nizam, Tzar; Binting, Rabiatul Adawiyah AG.; Mohd Saari, Shafika; Kumar, Thivyananthini Vijaya; Muhammad, Marianayati; Satim, Hartini; Yusoff, Hamidah; Santhanam, Jacinta

    2016-01-01

    Background This study aimed to determine the minimum inhibitory concentrations (MICs) of various antifungal agents against moulds isolated from dermatological specimens. Methods We identified 29 moulds from dermatological specimens between October 2012 and March 2013 by conventional methods. We performed antifungal susceptibility testing on six antifungal agents, amphotericin B, clotrimazole, itraconazole, ketoconazole, miconazole and terbinafine, according to the Clinical and Laboratory Standards Institute guidelines contained in the M38-A2 document. Results Most antifungal agents were active against the dermatophytes, except for terbinafine against Trichophyton rubrum (geometric mean MIC, MICGM 3.17 μg/mL). The dematiaceous moulds were relatively susceptible to amphotericin B and azoles (MICGM 0.17–0.34 μg/mL), but not to terbinafine (MICGM 3.62 μg/mL). Septate hyaline moulds showed variable results between the relatively more susceptible Aspergillus spp. (MICGM 0.25–4 μg/mL) and the more resistant Fusarium spp. (MICGM 5.66–32 μg/mL). The zygomycetes were susceptible to amphotericin B (MICGM 0.5 μg/mL) and clotrimazole (MICGM 0.08 μg/mL), but not to other azoles (MICGM 2.52–4 μg/mL). Conclusion Amphotericin B and clotrimazole were the most effective antifungal agents against all moulds excepting Fusarium spp., while terbinafine was useful against dermatophytes (except T. rubrum) and Aspergillus spp. However, a larger study is required to draw more solid conclusions. PMID:27418867

  20. Identification and biological activity of antifungal saponins from shallot ( Allium cepa L. Aggregatum group).

    PubMed

    Teshima, Yoshiki; Ikeda, Tsuyoshi; Imada, Kiyoshi; Sasaki, Kazunori; El-Sayed, Magdi A; Shigyo, Masayoshi; Tanaka, Shuhei; Ito, Shin-Ichi

    2013-08-07

    The n-butanol extract of shallot basal plates and roots showed antifungal activity against plant pathogenic fungi. The purified compounds from the extract were examined for antifungal activity to determine the predominant antifungal compounds in the extract. Two major antifungal compounds purified were determined to be alliospiroside A (ALA) and alliospiroside B. ALA had prominent antifungal activity against a wide range of fungi. The products of acid hydrolysis of ALA showed a reduced antifungal activity, suggesting that the compound's sugar chain is essential for its antifungal activity. Fungal cells treated with ALA showed rapid production of reactive oxygen species. The fungicidal action of ALA was partially inhibited by a superoxide scavenger, Tiron, suggesting that superoxide anion generation in the fungal cells may be related to the compound's action. Inoculation experiments showed that ALA protected strawberry plants against Colletotrichum gloeosporioides , indicating that ALA has the potential to control anthracnose of the plant.

  1. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    DTIC Science & Technology

    2013-04-11

    composition of the essential oils for the majority of the genotypes as well as their antifungal and insecticidal activities against the fungi C...essential oils were ineffective against the fungi Colletotrichum gloeosporioides, C. fragariae, and C. acutatum in this study, but essential oils...extracts against mycotoxigenic fungi . J. Crop Improv. 2012, 26, 389–396. Sample Availability: Contact the authors. © 2013 by the authors; licensee

  2. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

    PubMed Central

    Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2015-01-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333

  3. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    PubMed

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation.

  4. Potential Use of Alginate-Based Carriers As Antifungal Delivery System

    PubMed Central

    Spadari, Cristina de Castro; Lopes, Luciana B.; Ishida, Kelly

    2017-01-01

    Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections. PMID:28194145

  5. Antifungal activity in seed coat extracts of woodland plants.

    PubMed

    Warr, Susan J; Thompson, Ken; Kent, Martin

    1992-11-01

    Aqueous extracts from seeds of four woodland ground flora species (Hyacinthoides non-scripta, Allium ursinum, Digitalis purpurea and Hypericum pulchrum) were tested for antifungal activity using a petriplate technique. Four species of fungi were investigated. The growth of three of these (Trichoderma viride, Rhizoctonia solani and Pythium sp.) was not affected by any of the seed coat extracts. The growth of Botrytis cinerea was inhibited by the seed coat extracts of Digitalis purpurea and Hypericum pulchrum but not by those of Hyacinthoides non-scripta or Allium ursinum. The buried seeds of Digitalis purpurea and Hypericum pulchrum can survive in woodland soils for long periods, whereas those of Hyacinthoides non-scripta and Allium ursinum are short-lived. The presence of antifungal agents in the seed coats of persistent species and their possible role in protecting seeds against fungal pathogens is discussed.

  6. Synthesis of chitosan derivative with diethyldithiocarbamate and its antifungal activity.

    PubMed

    Qin, Yukun; Xing, Ronge; Liu, Song; Li, Kecheng; Hu, Linfeng; Yu, Huahua; Chen, Xiaolin; Li, Pengcheng

    2014-04-01

    With an aim to discover novel chitosan derivatives with enhanced antifungal properties compared with chitosan. Diethyl dithiocarbamate chitosan (EtDTCCS) was investigated and its structure was well identified. The antifungal activity of EtDTCCS against Alternaria porri (A. porri), Gloeosporium theae sinensis Miyake (G. theae sinensis), and Stemphylium solani Weber (S. solani) was tested at 0.25, 0.5, and 1.0 mg/mL, respectively. Compared with plain chitosan, EtDTCCS shows better inhibitory effect with 93.2% inhibitory index on G. theae sinensis at 1.0 mg/mL, even stronger than for polyoxin (82.5%). It was inferred derivatives of this kind may find potential applications for the treatment of various crop-threatening diseases.

  7. Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates.

    PubMed

    Lamoth, Frédéric; Alexander, Barbara D

    2015-07-01

    The limited armamentarium of active and oral antifungal drugs against emerging non-Aspergillus molds is of particular concern. Current antifungal agents and the new orally available beta-1,3-d-glucan synthase inhibitor SCY-078 were tested in vitro against 135 clinical non-Aspergillus mold isolates. Akin to echinocandins, SCY-078 showed no or poor activity against Mucoromycotina and Fusarium spp. However, SCY-078 was highly active against Paecilomyces variotii and was the only compound displaying some activity against notoriously panresistant Scedosporium prolificans.

  8. New constitutive latex osmotin-like proteins lacking antifungal activity.

    PubMed

    Freitas, Cleverson D T; Silva, Maria Z R; Bruno-Moreno, Frederico; Monteiro-Moreira, Ana C O; Moreira, Renato A; Ramos, Márcio V

    2015-11-01

    Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events.

  9. Antifungal activity of two Lactobacillus strains with potential probiotic properties.

    PubMed

    Gerbaldo, Gisela A; Barberis, Carla; Pascual, Liliana; Dalcero, Ana; Barberis, Lucila

    2012-07-01

    Aflatoxin (highly toxic and carcinogenic secondary metabolites produced by fungi) contamination is a serious problem worldwide. Modern agriculture and animal production systems need to use high-quality and mycotoxin-free feedstuffs. The use of microorganisms to preserve food has gained importance in recent years due to the demand for reduced use of chemical preservatives by consumers. Lactic acid bacteria are known to produce various antimicrobial compounds that are considered to be important in the biopreservation of food and feed. Lactobacillus rhamnosus L60 and Lactobacillus fermentum L23 are producers of secondary metabolites, such as organic acids, bacteriocins and, in the case of L60, hydrogen peroxide. The antifungal activity of lactobacilli strains was determined by coculture with Aspergillus section Flavi strains by two qualitative and one quantitative methods. Both L23 and L60 completely inhibited the fungal growth of all aflatoxicogenic strains assayed. Aflatoxin B (1) production was reduced 95.7-99.8% with L60 and 27.5-100% with L23. Statistical analysis of the data revealed the influence of L60 and L23 on growth parameters and aflatoxin B (1) production. These results are important given that these aflatoxicogenic fungi are natural contaminants of feed used for animal production, and could be effectively controlled by Lactobacillus L60 and L23 strains with probiotic properties.

  10. Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi.

    PubMed

    Rautenbach, Marina; Troskie, Anscha M; Vosloo, Johan A; Dathe, Margitta E

    2016-11-01

    The tyrocidines and analogues are cyclic decapeptides produced by Brevibacillus parabrevis with a conserved sequence of cyclo(D-Phe(1)-Pro(2)-X(3)-x(4)-Asn(5)-Gln(6)-X(7)-Val(8)-X(9)-Leu(10)) with Trp(3,4)/Phe(3,4) in the aromatic dipeptide unit, Lys(9)/Orn(9) as their cationic residue and Tyr (tyrocidines), Trp (tryptocidines) or Phe (phenicidines) in position 7. Previous studies indicated they have a broad antifungal spectrum with the peptides containing a Tyr residue in position 7 being more active than those with a Phe or Trp residue in this position. Detailed analysis of antifungal inhibition parameters revealed that Phe(3)-D-Phe(4) in the aromatic dipeptide unit lead to more consistent activity against the three filamentous fungi in this study. These peptides exhibited high membrane activity and fast leakage kinetics against model membranes emulating fungal membranes, with selectivity towards ergosterol containing membranes. More fluid membranes and doping of liposomes with the sphingolipid, glucosylceramide, led to a decreased permeabilising activity. Peptide-induced uptake of membrane impermeable dyes was observed in hyphae of both Fusarium solani and Botrytis cinerea, with uptake more pronounced at the hyphal growth tips that are known to contain ergosterol-sphigolipid rich lipid rafts. Tyrocidine interaction with these rafts may lead to the previously observed fungal hyperbranching. However, the leakage of model membranes and Bot. cinerea did not correlate directly with the antifungal inhibition parameters, indicating another target or mode of action. Proteinase K treatment of target fungi had a minimal influence or even improved the tyrocidine activity, ruling out a mannoprotein target in the fungal cell wall. β-glucanase treatment of Bot. cinerea did not significantly affect the tyrocidine activity, but there was a significant loss in activity towards the β-glucanase treated F. solani. This study showed the tyrocidine antifungal membrane activity is

  11. Antifungal activity of gemini quaternary ammonium salts.

    PubMed

    Obłąk, Ewa; Piecuch, Agata; Krasowska, Anna; Luczyński, Jacek

    2013-12-14

    A series of gemini quaternary ammonium chlorides and bromides with various alkyl chain and spacer lengths was synthesized. The most active compounds against fungi were chlorides with 10 carbon atoms within the hydrophobic chain. Among these compounds were few with no hemolytic activity at minimal inhibitory concentrations. None of the tested compounds were cytotoxic and mutagenic. Cationic gemini surfactants poorly reduced the adhesion of microorganisms to the polystyrene plate, but inhibited the filamentation of Candida albicans. One of the tested compounds eradicated C. albicans and Rodotorula mucilaginosa biofilm, what could be important in overcoming catheter-associated infections. It was also shown that gemini surfactants enhanced the sensitivity of C. albicans to azoles and polyenes, thus they might be potentially used in combined therapy against fungi.

  12. Impact of Absolute Stereochemistry on the Antiangiogenic and Antifungal Activities of Itraconazole

    PubMed Central

    2010-01-01

    Itraconazole is used clinically as an antifungal agent and has recently been shown to possess antiangiogenic acitivity. Itraconazole has three chiral centers that give rise to eight stereoisomers. The complete role of stereochemistry in the two activities of itraconazole, however, has not been addressed adequately. For the first time, all eight stereoisomers of itraconazole (1a−h) have been synthesized and evaluated for activity against human endothelial cell proliferation and for antifungal activity against five fungal strains. Distinct antiangiogenic and antifungal activity profiles of the trans stereoisomers, especially 1e and 1f, suggest different molecular mechanisms underlying the antiangiogenic and antifungal activities of itraconazole. PMID:21892383

  13. Antibacterial and antifungal activities of some Mexican medicinal plants.

    PubMed

    Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E

    2009-12-01

    In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.

  14. Antifungal activity of gold nanoparticles prepared by solvothermal method

    SciTech Connect

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  15. Antifungal activity of Bacillus coagulans against Fusarium sp.

    PubMed

    Czaczyk, Katarzyna; Trojanowska, Krystyna; Mueller, Anna

    2002-01-01

    The antifungal activity of Bacillus coagulans against three pathogenic species of Fusarium was examined. Fungal growth was determined by colony forming units, dry matter and ergosterol level. Biosynthesis of Fusarium mycotoxins was also investigated. The strongest inhibition of fungal growth was noticed when Bacillus coagulans was co-inoculated at the beginning of culture. Estimation of ergosterol level as a determinant of fungal growth showed the greatest degree of Fusarium sp. inhibition. Addition of Bacillus coagulans to Fusarium culmorum culture inhibits the DON (deoxynivalenol) production.

  16. Antifungal and insecticidal activity of two Juniperus essential oils.

    PubMed

    Wedge, David E; Tabanca, Nurhayat; Sampson, Blair J; Werle, Christopher; Demirci, Betul; Baser, K Husnu Can; Nan, Peng; Duan, Jia; Liu, Zhijun

    2009-01-01

    Essential oils of two Tibetan Junipers Juniperus saltuaria and J. squamata var. fargesii (Cupressaceae) were obtained by distilling dried leaves and branches using a Clevenger apparatus. Sixty-seven compounds from J. saltuaria and 58 from J. squamata var. fargesii were identified by gas chromatography-mass spectrometry (GC-MS). Both essential oils contained similar ratios of four abundant monoterpenoids: 44 and 35% sabinene, 13 and 9% elemol, 8 and 7% terpinen-4-ol, and 4 and 17% alpha-pinene, respectively. These oils had antifungal activity based on a direct bioautography assay of Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and insecticidal activity based on serial-time mortality bioassay of azalea lace bugs, Stephanitis pyrioides. Antifungal activity of Juniperus oils was weak when compared with commercial fungicides such as benomyl and captan. Whole Juniperus oils at quarter the dosage used against Colletotrichum species were more insecticidal than 10 mg/mL malathion, killing > or =70-90% adult lace bugs after 4 hours of exposure. Rf values of 0.18 for J. saltuaria oil and 0.19 for J. squamata oil indicated lipophilic monoterpenes which were the putative sources of biological activity.

  17. Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ran-PGA) nanoparticles

    PubMed Central

    Tang, Xiaolong; Jiao, Ronghong; Xie, Chunmei; Xu, Lifa; Huo, Zhen; Dai, Jingjing; Qian, Yunyun; Xu, Weiwen; Hou, Wei; Wang, Jiang; Liang, Yong

    2015-01-01

    To develop amphotericin B-loaded biodegradable TPGS-b-(PCL-ran-PGA) nanoparticles (PLGA-TPGS-AMB NPs) for fungal infection treatment, PLGA-TPGS NPs and PLGA NPs were synthesized by a modified double emulsion method and characterized in terms of size and size distribution, morphology and zeta potential. Drug encapsulation efficiency, in vitro drug release, and in vitro/vivo tests against Candida glabrata were completed. The data showed that both of the two AMB-loaded NPs (PLGA-AMB NPs, PLGA-TPGS-AMB NPs) achieved significantly higher level of antifungal effects than water suspended AMB. In comparison with PLGA-AMB NPs, PLGA-TPGS-AMB NPs had a stronger protective effect against candidiasis and gained an advantage of prolonged antifungal efficacy. In conclusion, PLGA-TPGS-AMB NPs system significantly improves AMB bioavailability by increasing the aqueous dispersibility and improving the antifungal activity. And this would be an excellent choice for the antifungal treatment of the entrapped drug because of its low toxicity and higher effectiveness. PMID:26131089

  18. Synthesis of Novel Pyrimethanil Grafted Chitosan Derivatives with Enhanced Antifungal Activity

    PubMed Central

    Liu, Song; Xing, Ronge; Chen, Xiaolin

    2016-01-01

    In this study, three pyrimethanil grafted chitosan (PML-g-CS) derivatives were obtained. The structures of the conjugates were confirmed by FT-IR, 1H NMR, and EA. The grafting ratios were measured by HPLC. Antifungal properties of pyrimethanil grafted chitosan (PML-g-CS) derivatives against the plant pathogenic fungi Rhizoctonia solani and Gibberella zeae were investigated at concentrations of 100, 200, and 400 mg/L. The PML-g-CS derivatives showed enhanced antifungal activity in comparison with chitosan. The PML-g-CS-1 showed the best antifungal activity against R. solani, whose antifungal index was 58.32%. The PML-g-CS-2 showed the best antifungal activity against G. zeae, whose antifungal index was 53.48%. The conjugation of chitosan and pyrimethanil showed synergistic effect. The PML-g-CS derivatives we developed showed potential for further study and application in crop protection. PMID:27529072

  19. Antifungal activity of Cymbopogon winterianus jowitt ex bor against Candida albicans

    PubMed Central

    de Oliveira, Wylly Araújo; de Oliveira Pereira, Fillipe; de Luna, Giliara Carol Diniz Gomes; Lima, Igara Oliveira; Wanderley, Paulo Alves; de Lima, Rita Baltazar; de Oliveira Lima, Edeltrudes

    2011-01-01

    Candida albicans is an opportunistic yeast and a member of the normal human flora that commonly causes infections in patients with any type of deficiency of the immune system. The essential oils have been tested for antimycotic activity and pose much potential as antifungal agents. This work investigated the activity of the essential oil of Cymbopogon winterianus against C. albicans by MIC, MFC and time-kill methods. The essential oil (EO) was obtained by hydrodistillation using a Clevenger-type apparatus. It was tested fifteen strains of C. albicans. The MIC was determined by the microdilution method and the MFC was determined when an aliquot of the broth microdilution was cultivated in SDA medium. The phytochemical analysis of EO showed presence of citronellal (23,59%), geraniol (18,81%) and citronellol (11,74%). The EO showed antifungal activity, and the concentrations 625 µg/mL and 1250 µg/mL inhibited the growth of all strains tested and it was fungicidal, respectively. The antimicrobial activity of various concentrations of EO was analyzed over time, it was found concentration-dependent antifungal activity, whose behavior was similar to amphotericin B and nystatin. PMID:24031651

  20. Anti-fungal activities of medicinal plants extracts of Ivorian pharmacopoeia

    PubMed Central

    Mathieu, Kra Adou Koffi; Marcel, Ahon Gnamien; Djè, Djo-Bi; Sitapha, Ouattara; Adama, Coulibaly; Joseph, Djaman Allico

    2014-01-01

    Aim: This study was to evaluate in vitro anti-fungal activity of aqueous and hydroethanolic from medicinal plants extracts collected in Côte d’Ivoire. Materials and Methods: Plants extracts were prepared by homogenization and separately incorporated to Sabouraud agar using the agar slanted double dilution method. Ketoconazole was used as standards for anti-fungal assay. The anti-fungal tests were performed by sowing 1000 cells of Candida albicans on the previously prepared medium culture. Anti-fungal activity was determined by evaluating anti-fungal parameters values (minimal fungicidal concentrations [MFC] and IC50). Results: The results showed that all extracts possessed anti-fungal activities whose levels vary from plant species to another. Eight of them had a satisfactory anti-candidosic activity and extracts from Terminalia species were the most active. Among them the Terminalia superba extracts generated the strongest activities (MFC = 0.0975 mg/mL). Compared with ketoconazole (MFC = 0.390 mg/mL), the T. superba extracts, aqueous (MFC = 0.195 mg/mL) and hydroethanolic (0.0975 mg/mL) were successively twice and four times more active. The worst anti-fungal activity (MFC = 1600 mg/mL) was obtained with the Guarea cedrata aqueous extract. Conclusion: All medicinal plants extracts produced anti-fungal activities, and T. superba was the most active. PMID:26401367

  1. Antifungal activity of hypothemycin against Peronophythora litchii in vitro and in vivo.

    PubMed

    Xu, Liangxiong; Xue, Jinghua; Wu, Ping; Wang, Duoduo; Lin, Lijing; Jiang, Yueming; Duan, Xuewu; Wei, Xiaoyi

    2013-10-23

    The antifungal activity of a natural resorcylic acid lactone, hypothemycin (HPM), against Peronophythora litchii in vitro and in vivo was investigated. HPM treatment substantially suppressed spore germination of P. litchi, with the inhibition rate of 100% when 0.78 μg/mL HPM was applied. Similarly, mycelial growth of P. litchii was efficiently inhibited. Furthermore, HPM caused the ultrastructural modifications of P. litchii, including the disruption of the cell wall and the endomembrane system, especially the plasma membrane, mitochondria, and vacuoles, which led to the destruction of the cellular integrity. Moreover, application of HPM significantly reduced decay and suppressed peel browning of postharvest litchi fruit inoculated with P. litchii during storage at 28 °C. Overall, these findings suggested that HPM exhibited excellent antifungal activity against P. litchii both in vitro and in vivo, which could be helpful for the storage of harvest litchi fruit.

  2. Antifungal activity of silver nanoparticles obtained by green synthesis.

    PubMed

    Mallmann, Eduardo José J; Cunha, Francisco Afrânio; Castro, Bruno N M F; Maciel, Auberson Martins; Menezes, Everardo Albuquerque; Fechine, Pierre Basílio Almeida

    2015-01-01

    Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.

  3. Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions.

    PubMed

    Wakabayashi, Tokumitsu; Ymamoto, Ayumi; Kazaana, Akira; Nakano, Yuta; Nojiri, Yui; Kashiwazaki, Moeko

    2016-12-01

    Despite the name, rare earth elements are relatively abundant in soil. Therefore, these elements might interact with biosphere during the history of life. In this study, we have examined the effect of rare earth ions on the growth of bacteria, fungi and soil nematode. All rare earth ions, except radioactive promethium that we have not tested, showed antibacterial and antifungal activities comparable to that of copper ions, which is widely used as antibacterial metals in our daily life. Rare earth ions also have nematicidal activities as they strongly perturb the embryonic development of the nematode, Caenorhabditis elegans. Interestingly, the nematicidal activity increased with increasing atomic number of lanthanide ions. Since the rare earth ions did not show high toxicity to the human lymphoblastoid cell line or even stimulate the growth of the cultured cells at 1 mM, it raised the possibility that we can substitute rare earth elements for the antibacterial metals usually used because of their safety.

  4. ANTIFUNGAL ACTIVITY OF SILVER NANOPARTICLES OBTAINED BY GREEN SYNTHESIS

    PubMed Central

    MALLMANN, Eduardo José J.; CUNHA, Francisco Afrânio; CASTRO, Bruno N.M.F.; MACIEL, Auberson Martins; MENEZES, Everardo Albuquerque; FECHINE, Pierre Basílio Almeida

    2015-01-01

    Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment. PMID:25923897

  5. Synthesis, Structure-Activity Relationships (SAR) and in Silico Studies of Coumarin Derivatives with Antifungal Activity

    PubMed Central

    de Araújo, Rodrigo S. A.; Guerra, Felipe Q. S.; de O. Lima, Edeltrudes; de Simone, Carlos A.; Tavares, Josean F.; Scotti, Luciana; Scotti, Marcus T.; de Aquino, Thiago M.; de Moura, Ricardo O.; Mendonça, Francisco J. B.; Barbosa-Filho, José M.

    2013-01-01

    The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 μg/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity. PMID:23306152

  6. Antifungal activities of the leaves of three Pistacia species grown in Turkey.

    PubMed

    Kordali, S; Cakir, A; Zengin, H; Duru, M E

    2003-02-01

    The crude extracts obtained from the leaves of Pistacia vera, Pistacia terebinthus and Pistacia lentiscus were tested for antifungal activities against three pathogenic agricultural fungi, Phythium ultimum, Rhizoctania solani and Fusarium sambucinum. The extracts significantly inhibited the growth of P. ultimum and R. solani. However, the antifungal activity was not observed against F. sambucinum.

  7. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    PubMed Central

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested. PMID:24031180

  8. Structure-activity of antifungal compounds inspired by aminobisabolenes from the sponge Halichondria sp.

    PubMed

    Jamison, Matthew T; Macho, Jocelyn; Molinski, Tadeusz F

    2016-11-01

    Structure-activity relationships of the antifungal aminobisabolene natural product, 1 isolated from Halichondria sp., and synthetic analogs were explored, in parallel with the antidermatophytic allylamine, Terbinafine®, against a panel of pathogenic fungi: Candida spp., Cryptococcus spp. and Trichophyton rubrum. Interpretation of the results suggest different modes of action in antifungal activity for the two classes of compounds.

  9. Development of a novel in vitro onychomycosis model for the evaluation of topical antifungal activity.

    PubMed

    Sleven, Reindert; Lanckacker, Ellen; Boulet, Gaëlle; Delputte, Peter; Maes, Louis; Cos, Paul

    2015-05-01

    A novel in vitro onychomycosis model was developed to easily predict the topical activity potential of novel antifungal drugs. The model encompasses drug activity and diffusion through bovine hoof slices in a single experimental set-up. Results correspond well with the antifungal susceptibility assay and Franz cell diffusion test.

  10. [Tomato root exudates and their effect on the growth and antifungal activity of Pseudomonas strains].

    PubMed

    Kravchenko, L V; Azarova, T S; Leonova-Erko, E I; Shaposhnikov, A I; Makarova, N M; Tikhonovich, I A

    2003-01-01

    The study of the effect of the root exometabolites of tomato plants on the growth and antifungal activity of the plant growth-promoting Pseudomonas strains showed that the antifungal activity of plant growth-promoting rhizobacteria in the plant rhizosphere may depend on the sugar and organic acid composition of root exudates.

  11. Antifungal, mosquito deterrent, and larvicidal activity of N-(benzylidene)-3-cyclohexylpropionic acid hydrazide derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrazone derivatives possess good antifungal and insecticidal activities and their structure are used in pesticide design. In the present study, ten hydrazone derivatives (2a-j) were evaluated for their antifungal activity against Colletotrichum, Botrytis, Fusarium and Phomopsis species and for the...

  12. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  13. Light-induced antifungal activity of TiO 2 nanoparticles/ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-09-01

    Antifungal activity of TiO2/ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO2/ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO2 (anatase and rutile) and ZnO. TiO2/ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  14. Synthesis and antifungal activity of bile acid-derived oxazoles.

    PubMed

    Fernández, Lucía R; Svetaz, Laura; Butassi, Estefanía; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

    2016-04-01

    Peracetylated bile acids (1a-g) were used as starting materials for the preparation of fourteen new derivatives bearing an oxazole moiety in their side chain (6a-g, 8a-g). The key step for the synthetic path was a Dakin-West reaction followed by a Robinson-Gabriel cyclodehydration. A simpler model oxazole (12) was also synthesized. The antifungal activity of the new compounds (6a-g) as well as their starting bile acids (1a-g) was tested against Candida albicans. Compounds 6e and 6g showed the highest percentages of inhibition (63.84% and 61.40% at 250 μg/mL respectively). Deacetylation of compounds 6a-g, led to compounds 8a-g which showed lower activities than the acetylated derivatives.

  15. Antifungal Activity of Amphotericin B Conjugated to Nanosized Magnetite in the Treatment of Paracoccidioidomycosis

    PubMed Central

    Saldanha, Camila Arruda; Garcia, Mônica Pereira; Iocca, Diego Cesar; Rebelo, Luciana Guilherme; Souza, Ana Camila Oliveira; Bocca, Anamélia Lorenzetti; Almeida Santos, Maria de Fátima Menezes; Morais, Paulo Cesar; Azevedo, Ricardo Bentes

    2016-01-01

    This study reports on in vitro and in vivo tests that sought to assess the antifungal activity of a newly developed magnetic carrier system comprising amphotericin B loaded onto the surface of pre-coated (with a double-layer of lauric acid) magnetite nanoparticles. The in vitro tests compared two drugs; i.e., this newly developed form and free amphotericin B. We found that this nanocomplex exhibited antifungal activity without cytotoxicity to human urinary cells and with low cytotoxicity to peritoneal macrophages. We also evaluated the efficacy of the nanocomplex in experimental paracoccidioidomycosis. BALB/c mice were intratracheally infected with Paracoccidioides brasiliensis and treated with the compound for 30 or 60 days beginning the day after infection. The newly developed amphotericin B coupled with magnetic nanoparticles was effective against experimental paracoccidioidomycosis, and it did not induce clinical, biochemical or histopathological alterations. The nanocomplex also did not induce genotoxic effects in bone marrow cells. Therefore, it is reasonable to believe that amphotericin B coupled to magnetic nanoparticles and stabilized with bilayer lauric acid is a promising nanotool for the treatment of the experimental paracoccidioidomycosis because it exhibited antifungal activity that was similar to that of free amphotericin B, did not induce adverse effects in therapeutic doses and allowed for a reduction in the number of applications. PMID:27303789

  16. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil.

    PubMed

    Mohr, F B M; Lermen, C; Gazim, Z C; Gonçalves, J E; Alberton, O

    2017-03-16

    Ocimum gratissimum L. or clove basil, belongs to the Lamiaceae family, has various desirable uses and applications. Beyond its aromatic, seasoning, and medicinal applications, this plant also has antimicrobial activity. This study was aimed at assessing the antifungal activity, yield, and composition of the essential oil (EO) of O. gratissimum. The species was cultivated in garden beds with dystrophic red latosol soil type containing high organic-matter content. The EO was obtained by hydrodistillation of dried leaves in a modified Clevenger apparatus, followed by determination of its content. Chemical characterization was carried out by gas chromatography-mass spectrometry (GC-MS). Microbial activity was assessed using the broth microdilution method, by determining the minimum inhibitory concentration (MIC), in order to compare the antimicrobial effect of EO in 10 isolates-Fusarium oxysporum f. sp tracheiphilum (CMM-0033), F. oxysporum f. sp. cubense (CMM-0813 and CMM-2819), F. oxysporum f. sp lycopersici (CMM-1104), F. solani (CMM-3828), Rhizoctonia solani (CMM-3274), and Macrophomina phaseolina (CMM-2715, CMM-3875, CMM-3615, and CMM-3650). The EO was a highly effective inhibitor of the studied phytopathogenic fungi, with MICs varying from 31.25 to 125 µg/mL. F. oxysporum f. sp lycopersici and R. solani were the most sensitive; both were inhibited at an MIC of 31.25 µg/mL. The EO content in the plant extract was 0.18%. Thirty chemical compounds were detected via GC-MS, with linalool (32.9%) being the major compound followed by 1,8-cineole (21.9%), both oxygenated monoterpenes. It can be concluded that clove basil EO is a highly effective antifungal agent, and therefore, a potential alternative for the control of plant pathogenic diseases.

  17. Antifungal activities of Hedychium essential oils and plant extracts against mycotoxigenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-derived antifungal compounds are preferred to chemicals to reduce the risk of toxic effects on humans, livestock and the environment. Essential oil extracted from rhizomes and plant extracts of ornamental ginger lily (Hedychium spp.) were evaluated for their antifungal activity against two fu...

  18. Antifungal and antibacterial activities of Petroselinum crispum essential oil.

    PubMed

    Linde, G A; Gazim, Z C; Cardoso, B K; Jorge, L F; Tešević, V; Glamoćlija, J; Soković, M; Colauto, N B

    2016-07-29

    Parsley [Petroselinum crispum (Mill.) Fuss] is regarded as an aromatic, culinary, and medicinal plant and is used in the cosmetic, food, and pharmaceutical industries. However, few studies with conflicting results have been conducted on the antimicrobial activity of parsley essential oil. In addition, there have been no reports of essential oil obtained from parsley aerial parts, except seeds, as an alternative natural antimicrobial agent. Also, microorganism resistance is still a challenge for health and food production. Based on the demand for natural products to control microorganisms, and the re-evaluation of potential medicinal plants for controlling diseases, the objective of this study was to determine the chemical composition and antibacterial and antifungal activities of parsley essential oil against foodborne diseases and opportunistic pathogens. Seven bacteria and eight fungi were tested. The essential oil major compounds were apiol, myristicin, and b-phellandrene. Parsley essential oil had bacteriostatic activity against all tested bacteria, mainly Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica, at similar or lower concentrations than at least one of the controls, and bactericidal activity against all tested bacteria, mainly S. aureus, at similar or lower concentrations than at least one of the controls. This essential oil also had fungistatic activity against all tested fungi, mainly, Penicillium ochrochloron and Trichoderma viride, at lower concentrations than the ketoconazole control and fungicidal activity against all tested fungi at higher concentrations than the controls. Parsley is used in cooking and medicine, and its essential oil is an effective antimicrobial agent.

  19. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    PubMed Central

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  20. Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani.

    PubMed

    Nguyen, Dang-Minh-Chanh; Seo, Dong-Jun; Lee, Hyang-Burm; Kim, In-Seon; Kim, Kil-Yong; Park, Ro-Dong; Jung, Woo-Jin

    2013-03-01

    The antifungal activities of methanolic extracts from Terminalia nigrovenulosa bark (TNB) was investigated for effects on the initial growth of mycelia against Fusarium solani. The ethyl acetate fraction separated from TNB demonstrated the highest antifungal activity against F. solani. The antifungal compound was isolated from TNB using silica gel column and Sephadex LH-20 chromatography combined with thin-layer chromatography and high performance liquid chromatography. Structural identification of the antifungal compound was conducted using (1)H NMR, (13)C NMR, and liquid chromatography-tandem mass spectrometry. The purified antifungal compound was gallic acid (GA) or 3,4,5-trihydroxy benzoic acid. Purified-GA possesses the high antifungal activity against F. solani, and that antifungal activity was dosage-dependent. The hyphae became collapsed and shrunken after 24 h incubation with GA (500 ppm). In pot experiments, the application of TNB crude extract was found to be effective in controlling the cucumber Fusarium root rot disease by enhancing activities of chitinase, peroxidase thereby promoting the growth of plants. The applied TNB extract significantly suppressed root rot disease compared to control. It resulted in 33, 75 and 81% disease suppression with 100, 500 and 1000 ppm of TNB crude extract, respectively. The study effectively demonstrated biological activities of the TNB extract, therefore suggesting the application of TNB for the control of soil-borne diseases of cucumber plants.

  1. Quantitative structure-antifungal activity relationships of some benzohydrazides against Botrytis cinerea.

    PubMed

    Reino, José L; Saiz-Urra, Liane; Hernandez-Galan, Rosario; Aran, Vicente J; Hitchcock, Peter B; Hanson, James R; Gonzalez, Maykel Perez; Collado, Isidro G

    2007-06-27

    Fourteen benzohydrazides have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The best antifungal activity was observed for the N',N'-dibenzylbenzohydrazides 3b-d and for the N-aminoisoindoline-derived benzohydrazide 5. A quantitative structure-activity relationship (QSAR) study has been developed using a topological substructural molecular design (TOPS-MODE) approach to interpret the antifungal activity of these synthetic compounds. The model described 98.3% of the experimental variance, with a standard deviation of 4.02. The influence of an ortho substituent on the conformation of the benzohydrazides was investigated by X-ray crystallography and supported by QSAR study. Several aspects of the structure-activity relationships are discussed in terms of the contribution of different bonds to the antifungal activity, thereby making the relationships between structure and biological activity more transparent.

  2. The antifungal, cytotoxic, antitermite and insecticidal activities of Zizyphus jujube.

    PubMed

    Ahmad, Bashir; Khan, Ibrar; Bashir, Shumaila; Azam, Sadiq; Ali, Niaz

    2011-10-01

    Plants are very useful, self-generating machines, producing a variety of useful bioactive products. Keeping in view this idea, the crude methanolic extract and various fractions of Zizyphus jujuba were screened for antifungal, cytotoxic, antitermite and insecticidal activities. Low activity was shown by the crude methanolic extract (12%), n-hexane (9%), chloroform (20%) and ethyl acetate (14%) fraction against Penicillium notatum. Low activity was shown by the n-hexane fraction against Aspergillus niger (10%) and Trichoderma harzianum (13%) and inactive against Aspergillus flavus, Fusarium oxysporum and Rhizopus stolonifer. The CHCl(3) fraction exhibited low activity of 10% against F. oxysporum while showing no activity against the rest of the test fungi. All the test samples were inactive against Rhizopus stolonifer. The crude methanolic extract was highly cytotoxic (73.33%) at the concentration of 1000 (µg/ml) while the rest of the test samples were low in toxicity at the same concentration. The crude methanolic extract of Zizyphus jujuba showed significant antitermite activity against Heterotermes indicola, among the test samples. Against Tribolium castaneum, Rhizopertha dominica and Callosbruchus analis the insecticidal activity was determined. All the test samples except n-hexane showed low activity (20%) against T. castaneum. The n-hexane fraction showed low activity (20%) against R. dominica while the rest of the fractions were inactive against it. Low activity of 40% and 20% was shown by the chloroform and n-hexane fraction respectively against C. analis. The results of the present study revealed that the plant could be as potent source of cytotoxic drugs.

  3. Human Neutrophil-Mediated Nonoxidative Antifungal Activity against Cryptococcus neoformans

    PubMed Central

    Mambula, Salamatu S.; Simons, Elizabeth R.; Hastey, Ryan; Selsted, Michael E.; Levitz, Stuart M.

    2000-01-01

    It has long been appreciated that polymorphonuclear leukocytes (PMN) kill Cryptococcus neoformans, at least in part via generation of fungicidal oxidants. The aim of this study was to examine the contribution of nonoxidative mechanisms to the inhibition and killing of C. neoformans. Treatment of human PMN with inhibitors and scavengers of respiratory burst oxidants only partially reversed anticryptococcal activity, suggesting that both oxidative and nonoxidative mechanisms were operative. To define the mediators of nonoxidative anticryptococcal activity, PMN were fractionated into cytoplasmic, primary (azurophil) granule, and secondary (specific) granule fractions. Incubation of C. neoformans with these fractions for 18 h resulted in percents inhibition of growth of 67.4 ± 3.4, 84.6 ± 4.4, and 29.2 ± 10.5 (mean ± standard error, n = 3), respectively. Anticryptococcal activity of the cytoplasmic fraction was abrogated by zinc and depletion of calprotectin. Antifungal activity of the primary granules was significantly reduced by pronase treatment, boiling, high ionic strength, and magnesium but not calcium. Fractionation of the primary granules by reverse phase high-pressure liquid chromatography on a C4 column over an acetonitrile gradient revealed multiple peaks with anticryptococcal activity. Of these, peaks 1 and 6 had substantial fungistatic and fungicidal activity. Peak 1 was identified by acid-urea polyacrylamide gel electrophoresis (PAGE) and mass spectroscopy as human neutrophil proteins (defensins) 1 to 3. Analysis of peak 6 by sodium dodecyl sulfate-PAGE revealed multiple bands. Thus, human PMN have nonoxidative anticryptococcal activity residing principally in their cytoplasmic and primary granule fractions. Calprotectin mediates the cytoplasmic activity, whereas multiple proteins, including defensins, are responsible for activity of the primary granules. PMID:11035733

  4. Synthesis and antifungal activity evaluation of new heterocycle containing amide derivatives.

    PubMed

    Wang, Xuesong; Gao, Sumei; Yang, Jian; Gao, Yang; Wang, Ling; Tang, Xiaorong

    2016-01-01

    A series of heterocycle containing amide derivatives (1-28) were synthesised by the combination of acyl chlorides (1a, 2a) and heterocyclic/homocyclic ring containing amines, and their in vitro antifungal activity was evaluated against five plant pathogenic fungi, namely Gibberella zeae, Helminthosporium maydis, Rhizoctonia solani, Botrytis cinerea and Sclerotinia sclerotiorum. Results of antifungal activity analysis indicated that some of the products showed good to excellent antifungal activity, as compound 2 showed excellent activity against G. zeae and R. solani and potent activity against H. maydi, B. cinerea and S. sclerotiorum, and compounds 1, 8 and 10 also displayed excellent antifungal potential against H. maydi, B. cinerea and S. sclerotiorum and good activity against R. solani when compared with the standard carbendazim.

  5. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    PubMed Central

    Lee, Seung-Bae

    2016-01-01

    Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates. PMID:27280049

  6. Eupatorium capillifolium essential oil: chemical composition antifungal activity and insecticidal activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...

  7. Comparison of antifungal activity of extracts from different Juglans regia cultivars and juglone.

    PubMed

    Wianowska, D; Garbaczewska, S; Cieniecka-Roslonkiewicz, A; Dawidowicz, A L; Jankowska, A

    2016-11-01

    This study discusses the similarities and differences between the antifungal activity of extracts from walnut green husks of Lake, Koszycki, UO1, UO2 and non-grafted cultivars as well as juglone against the plant pathogenic fungi such as Alternaria alternata, Rhizoctonia solani, Botrytis cinerea, Fusarium culmorum, Phytophthora infestans as well as Ascosphaera apis causing chalkbrood disease in honey bees. The obtained data show that the antifungal activities of the extracts do not always depend on the antifungal activity of juglone, and that they can be modulated by their other components. This fact allows us to conclude that juglone is not the only component of walnut green husk extracts which is responsible for the inhibition of mycelial growth. Phenolic compounds were found to be responsible for activity of the extracts and they can modify antifungal activity of juglone.

  8. Theoretical Reactivity Study of Indol-4-Ones and Their Correlation with Antifungal Activity.

    PubMed

    Zermeño-Macías, María de Los Ángeles; González-Chávez, Marco Martín; Méndez, Francisco; González-Chávez, Rodolfo; Richaud, Arlette

    2017-03-08

    Chemical reactivity descriptors of indol-4-ones obtained via density functional theory (DFT) and hard-soft acid-base (HSAB) principle were calculated to prove their contribution in antifungal activity [...].

  9. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L

    PubMed Central

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankeviandccaron;ius, Edgaras

    2017-01-01

    Background The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. Material/Methods The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. Results The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. Conclusions The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity. PMID:28132065

  10. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L.

    PubMed

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankevičius, Edgaras

    2017-01-29

    BACKGROUND The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. MATERIAL AND METHODS The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. RESULTS The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. CONCLUSIONS The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity.

  11. In vitro antifungal activity and probable fungicidal mechanism of aqueous extract of Barleria grandiflora.

    PubMed

    Kumari, Suman; Jain, Preeti; Sharma, Bhawana; Kadyan, Preeti; Dabur, Rajesh

    2015-04-01

    Barleria grandiflora Dalz. (Acanthaceae) is being used in India to treat different types of disorders including skin infections. Therefore, there are good possibilities to find antifungal compounds in its extracts with novel mechanism of action. The main objectives of the present study were to evaluate the antifungal activity of plant extracts and to study its effects on metabolic pathways of A. fumigatus. The microbroth dilution assay was used to explore antifungal activity and MIC of various extracts. Metabolic profiles of control and treated cultures were collected from Q-TOF-MS interfaced with HPLC. Affected metabolic pathways of A. fumigatus after the treatment were analyzed by discrimination analysis of mass data. Antifungal activities were observed in hot and cold water extracts of the plant. Hot water extract of B. grandiflora showed significant activity against tested fungi in the range 0.625-1.25 mg/mL. Partial least discrimination analysis revealed that the hot water plant extract downregulated amino acid, glyoxylate pathway, and methylcitrate pathways at the same time due to the synergistic effects of secondary metabolites. Hot water extract also downregulated several other metabolic pathways unique to fungi indicating its specific activity toward fungi. B. grandiflora showed promising antifungal activity which can further be exploited by identification of active compounds, to inhibit the specific fungal pathways and development of novel therapeutic antifungal drugs.

  12. Antifungal activities of azole agents against the Malassezia species.

    PubMed

    Miranda, Karla Carvalho; de Araujo, Crystiane Rodrigues; Costa, Carolina Rodrigues; Passos, Xisto Sena; de Fátima Lisboa Fernandes, Orionalda; do Rosário Rodrigues Silva, Maria

    2007-03-01

    In this paper, we identified 95 Malassezia isolates by morphological and biochemical criteria and assessed the in vitro activity of fluconazole, itraconazole, ketoconazole and voriconazole by broth microdilution against these species using slightly modified Leeming-Notman medium. The Malassezia isolates were identified as M. furfur (74), M. sympodialis (11), M. obtusa (8) and M. globosa (2). The modified Leeming-Notman medium used for susceptibility testing allowed good growth of Malassezia spp. Visual reading of the minimal inhibitory concentration (MIC) was readily achieved until Day 5 of incubation at 32 degrees C. Although high MIC values of 16 microg/mL for fluconazole were observed in 9.5% of Malassezia isolates, in general these microorganisms were susceptible to all drugs studied. Interestingly, one M. globosa isolate showed high MIC values for voriconazole, itraconazole and fluconazole. For the 95 strains, the MIC ranges were <0.03-4 microg/mL for ketoconazole, <0.03 to >16 microg/mL for voriconazole, <0.125 to >64 microg/mL for fluconazole and <0.03-16 microg/mL for itraconazole. In summary, the good reproducibility and visual readings obtained using modified Leeming-Notman medium suggest that this medium should be proposed for antifungal testing of drugs against Malassezia spp.

  13. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum.

    PubMed

    Tortora, María L; Díaz-Ricci, Juan C; Pedraza, Raúl O

    2011-04-01

    Anthracnose, caused by the fungus Colletotrichum acutatum is one of the most important diseases in strawberry crop. Due to environmental pollution and resistance produced by chemical fungicides, nowadays biological control is considered a good alternative for crop protection. Among biocontrol agents, there are plant growth-promoting bacteria, such as members of the genus Azospirillum. In this work, we demonstrate that under iron limiting conditions different strains of A. brasilense produce siderophores, exhibiting different yields and rates of production according to their origin. Chemical assays revealed that strains REC2 and REC3 secrete catechol type siderophores, including salicylic acid, detected by thin layer chromatography coupled with fluorescence spectroscopy and gas chromatography-mass spectrometry analysis. Siderophores produced by them showed in vitro antifungal activity against C. acutatum M11. Furthermore, this latter coincided with results obtained from phytopathological tests performed in planta, where a reduction of anthracnose symptoms on strawberry plants previously inoculated with A. brasilense was observed. These outcomes suggest that some strains of A. brasilense could act as biocontrol agent preventing anthracnose disease in strawberry.

  14. In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans.

    PubMed

    Zuo, Ran; Garrison, Aaron T; Basak, Akash; Zhang, Peilan; Huigens, Robert W; Ding, Yousong

    2016-08-01

    With the increasing prevalence of fungal infections coupled with emerging drug resistance, there is an urgent need for new and effective antifungal agents. Here we report the antifungal activities of 19 diverse halogenated quinoline (HQ) small molecules against Candida albicans and Cryptococcus neoformans. Four HQ analogues inhibited C. albicans growth with a minimum inhibitory concentration (MIC) of 100 nM, whilst 16 analogues effectively inhibited C. neoformans at MICs of 50-780 nM. Remarkably, two HQ analogues eradicated mature C. albicans and C. neoformans biofilms [minimum biofilm eradication concentration (MBEC) = 6.25-62.5 µM]. Several active HQs were found to penetrate into fungal cells, whilst one inactive analogue was unable to, suggesting that HQs elicit their antifungal activities through an intracellular mode of action. HQs are a promising class of small molecules that may be useful in future antifungal treatments.

  15. Antifungal activity of mango peel and seed extracts against clinically pathogenic and food spoilage yeasts.

    PubMed

    Dorta, E; González, M; Lobo, M G; Laich, F

    2015-11-26

    The antioxidant and antifungal (antiyeast) properties of mango (Mangifera indica) peel and seed by-products were investigated. Nine extracts were obtained using three cultivars and two extraction methods. Significant differences between cultivars and extraction methods were detected in their bioactive compounds and antioxidant activity. The antifungal property was determined using agar diffusion and broth micro-dilution assays against 18 yeast species of the genera Candida, Dekkera, Hanseniaspora, Lodderomyces, Metschnikowia, Pichia, Schizosaccharomyces, Saccharomycodes and Zygosaccharomyces. All mango extracts showed antifungal activity. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) values were lower for seed than for peel extracts. MICs and MFCs ranged from values <0.1 to 5 and 5 to >30 mgGAE/mL, respectively. The multivariate analysis showed a relationship between antifungal activity, the capacity to inhibit lipid peroxidation and total phenol content. These properties were associated with high levels of proanthocyanidins, gallates and gallotannins in the extracts.

  16. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M.S.; Rodriguez, Abimael D.; Berlinck, Roberto G.S.; Hamann, Mark T.

    2007-01-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity. PMID:17392033

  17. Marine pharmacology in 2005–6: Marine Compounds with Anthelmintic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.

    2009-01-01

    BACKGROUND The review presents the 2005–2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors’ 1998–2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005–2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity and will probably result in novel therapeutic agents for the treatment of multiple disease categories. PMID:19303911

  18. Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Berlinck, Roberto G S; Fusetani, Nobuhiro

    2011-03-01

    The peer-reviewed marine pharmacology literature in 2007-8 is covered in this review, which follows a similar format to the previous 1998-2006 reviews of this series. The preclinical pharmacology of structurally characterized marine compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 74 marine natural products. Additionally, 59 marine compounds were reported to affect the cardiovascular, immune and nervous systems as well as to possess anti-inflammatory effects. Finally, 65 marine metabolites were shown to bind to a variety of receptors and miscellaneous molecular targets, and thus upon further completion of mechanism of action studies, will contribute to several pharmacological classes. Marine pharmacology research during 2007-8 remained a global enterprise, with researchers from 26 countries, and the United States, contributing to the preclinical pharmacology of 197 marine compounds which are part of the preclinical marine pharmaceuticals pipeline. Sustained preclinical research with marine natural products demonstrating novel pharmacological activities, will probably result in the expansion of the current marine pharmaceutical clinical pipeline, which currently consists of 13 marine natural products, analogs or derivatives targeting a limited number of disease categories.

  19. Preparation, characterization, and antifungal activity of hymexazol-linked chitosan derivatives

    NASA Astrophysics Data System (ADS)

    Li, Yan; Qin, Yukun; Liu, Song; Li, Pengcheng; Xing, Rong'e.

    2016-09-01

    In this study, three hymexazol-linked chitosan derivatives (HML-CS) were synthesized and their structures confirmed by Fourier transform infrared and elemental analysis. Linkage ratios were measured by high performance liquid chromatography. The derivatives' antifungal activity against the plant pathogenic fungi Rhizoctonia solani CGMCC 3.28 and Gibberella zeae CGMCC 3.42 were investigated at concentrations of 100, 200, and 400 mg/L. These HML-CS derivatives exhibited stronger antifungal activity than CS alone. HML-CS-1 showed the best antifungal activity against G. zeae, whose antifungal index was 65.9% at 400 mg/L, and also showed the best antifungal activity against R. solani, whose antifungal index was 52.7% at 400 mg/L. This conjugation of CS and HML suggested the presence of synergistic effects between the moieties and indicated that these derivatives possessed great potential as novel fungicides and require further research for the development of applications in crop protection.

  20. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure.

    PubMed

    Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Arasu, Mariadhas Valan; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon

    2015-01-01

    The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  1. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure

    PubMed Central

    Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Valan Arasu, Mariadhas; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon

    2015-01-01

    The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains. PMID:26167534

  2. Antifungal activity of Tagetes patula extracts on some phytopathogenic fungi: ultrastructural evidence on Pythium ultimum.

    PubMed

    Mares, D; Tosi, B; Poli, F; Andreotti, E; Romagnoli, C

    2004-01-01

    Methanol extract, obtained from Tagetes patula plant, was assayed against three phytopathogenic fungi: Botrytis cinerea, Fusarium moniliforme and Pythium ultimum. The antifungal activity was tested both in the dark and in the light, using two different lighting systems. The data showed that the extract proved to have a dose-dependent activity on all the fungi with a marked difference between treatments in the light than in the dark. Good growth inhibition was observed in fungi only when these were treated with the highest dose of the extract and irradiated, whereas the same dose gave only a modest inhibition when the experiment was conducted in the dark. At 5 and 10 microg/ml in the dark, growth increased. The results indicated that the presence of a luminous source enhances the antifungal activity, with small differences between UV-A and solar spectrum light. SEM and TEM observations on Pythium ultimum revealed that the Tagetes patula extract induced alterations on cell fungal membranes with a photoactivation mechanism possibly involving the production of free radicals and leading to a premature aging of the mycelium.

  3. Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood.

    PubMed

    Yen, Tsair-Bor; Chang, Hui-Ting; Hsieh, Chun-Chun; Chang, Shang-Tzen

    2008-07-01

    The ethanolic extract of Calocedrus macrolepis var. formosana heartwood was screened for antifungal compounds by agar dilution assay and liquid chromatography. Two compounds, beta-thujaplicin and gamma-thujaplicin, responsible for the antifungal property of C. macrolepis var. formosana heartwood were isolated by high performance liquid chromatography (HPLC), and identified by 1H NMR and 13C NMR. The antifungal activities of these two compounds were further evaluated against total 15 fungi, including wood decay fungi, tree pathogenic fungi and molds. The hexane soluble fraction showed the strongest antifungal activities among all fractions. beta-Thujaplicin and gamma-thujaplicin exhibited not only very strong antifungal activity, but also broad antifungal spectrum. The MIC values of beta-thujaplicin and gamma-thujaplicin were in the range of 5.0-50.0 microg/ml. In addition, scanning electron microscopy (SEM) was carried out to study the structural change of fungal hyphae induced by beta-thujaplicin. Strong cell wall shrinkage indicated the fungicidal effect could be attributed to the combined actions of metal chelating and cytoplasm leakage. It also suggests that the role of metal chelating is indispensable in the design of environmental-friendly fungicides.

  4. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  5. Antifungal adjuvants: Preserving and extending the antifungal arsenal.

    PubMed

    Butts, Arielle; Palmer, Glen E; Rogers, P David

    2017-02-17

    As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance.

  6. Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae).

    PubMed

    Kosalec, Ivan; Pepeljnjak, Stjepan; Kustrak, Danica

    2005-12-01

    Antifungal activities of fluid extract and essential oil obtained from anise fruits Pimpinella anisum L. (Apiaceae) were tested in vitro on clinical isolates of seven species of yeasts and four species of dermatophytes. Diffusion method with cylinders and the broth dilution method were used for antifungal activity testing. Anise fluid extract showed antimycotic activity against Candida albicans, C. parapsilosis, C. tropicalis, C. pseudotropicalis and C. krusei with MIC values between 17 and 20% (v/v). No activity was noticed against C. glabrata, and anis fruits extracts showed growth promotion activity on Geotrichum spp. Anise fruits extract inhibited the growth of dermatophyte species (Trichophyton rubrum, T. mentagrophytes, Microsporum canis and M. gypseum) with MIC values between 1.5 and 9.0% (V/V). Anise essential oil showed strong antifungal activity against yeasts with MIC lower than 1.56% (V/V) and dermatophytes with MIC lower than 0.78% (V/V). Significant differences in antifungal activities were found between anise fluid extract and anise essential oil (p<0.01). Anise essential oil exhibited stronger antifungal activities against yeasts and dermatophytes with MIC values between 0.10 and 1.56% (V/V), respectively.

  7. Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous Systems and Other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Hamann, Mark T.

    2016-01-01

    During 2000 research on the pharmacology of marine chemicals involved investigators from Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Israel, Italy, Japan, the Netherlands, New Zealand, Phillipines, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, United Kingdom, and the United States. This current review, a sequel to the authors’ 1998 and 1999 reviews, classifies 68 peer-reviewed articles on the basis of the reported preclinical pharmacologic properties of marine chemicals derived from a diverse group of marine animals, algae, fungi, and bacteria. Antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis, or antiviral activity was reported for 35 marine chemicals. An additional 20 marine compounds were shown to have significant effects on the cardiovascular and nervous system, and to possess anti-inflammatory or immunosuppressant properties. Finally, 23 marine compounds were reported to act on a variety of molecular targets and thus could potentially contribute to several pharmacologic classes. Thus, as in 1998 and 1999, during 2000 pharmacologic research with marine chemicals continued to contribute potentially novel chemical leads to the ongoing global search for therapeutic agents in the treatment of multiple disease categories. PMID:14583811

  8. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action

    PubMed Central

    Mayer, Alejandro M.S.; Hamann, Mark T.

    2016-01-01

    During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242

  9. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  10. Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-07-16

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998-2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009-2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories.

  11. Prokaryotic expression of a constitutively expressed Tephrosia villosa defensin and its potent antifungal activity.

    PubMed

    Vijayan, S; Guruprasad, Lalitha; Kirti, P B

    2008-10-01

    Plant defensins are small, highly stable, cysteine-rich antimicrobial peptides produced by the plants for inhibiting a broad-spectrum of microbial pathogens. Some of the well-characterized plant defensins exhibit potent antifungal activity on certain pathogenic fungal species only. We characterized a defensin, TvD1 from a weedy leguminous herb, Tephrosia villosa. The open reading frame of the cDNA was 228 bp, which codes for a peptide with 75 amino acids. Expression analyses indicated that this defensin is expressed constitutively in T. villosa with leaf, stem, root, and seed showing almost similar levels of high expression. The recombinant peptide (rTvD1), expressed in the Escherichia coli expression system, exhibited potent in vitro antifungal activity against several filamentous soil-borne fungal pathogens. The purified peptide also showed significant inhibition of root elongation in Arabidopsis seedlings, subsequently affecting the extension of growing root hairs indicating that it has the potential to disturb the plant growth and development.

  12. The structure-antifungal activity relationship of 5,7-dihydroxyflavonoids against Penicillium italicum.

    PubMed

    Yang, Shuzhen; Zhou, Jie; Li, Dongmei; Shang, Chunyu; Peng, Litao; Pan, Siyi

    2017-06-01

    To evaluate the structure-activity relationship of 5,7-dihydroxyflavonoids against P. italicum, we tested the antifungal activity of 23 selected 5,7-dihydroxyflavonoids against spore germination of P. italicum, and the effects of hydroxyl group, hydrogenation, methylation and glycosylation on the antifungal activity are explored. C-4'-OH and C-3-OH are active groups for the 5,7-dihydroxyflavonoids against P. italicum. We find that hydrogenation of the C2/C3 bond decreases the antifungal activity of 5,7-dihydroxyflavonoids. Antifungal activity of 5,7-dihydroxyflavonoids against P. italicum was affected by the conjugation site of glycosylation and the class of sugar moiety. The correlation between antifungal activity and the inhibition of respiration of 5,7-dihydroxyflavonoids was further evaluated. We find no significant relationship among the IC50 of 5,7-dihydroxyflavonoids on spore germination and on respiration. Some 5,7-dihydroxyflavonoids even enhance the respiration of P. italicum. This indicate respiration is not the only target for 5,7-dihydroxyflavonoids against P. italicum.

  13. [Ajoene the main active compound of garlic (Allium sativum): a new antifungal agent].

    PubMed

    Ledezma, Eliades; Apitz-Castro, Rafael

    2006-06-01

    The curative properties of garlic in medicine have been known for a long time. But, it was only in the last three decades when garlic properties were seriously investigated confirming its potential as therapeutic agent. Allicin, ajoene, thiosulfinates and a wide range of other organosulphurate compounds, are known to be the constituents linked to the garlic properties. Regarding the biochemical properties of these compounds, ajoene [(E,Z)-4,5,9 Trithiadodeca 1,6,11 Triene 9-oxide] is stable in water, and it can be obtained by chemical synthesis. There is evidence that some of the garlic constituents exert a wide variety of effects on different biological systems. However, ajoene is the garlic compound related to more biological activities, as showed in in vitro and in vivo systems. Those studies found that ajoene has antithrombotic, anti-tumoral,antifungal, and antiparasitic effects. This study deals with a recently described antifungal property of ajoene, and its potential use in clinical trails to treat several fungal infections.

  14. Antifungal Therapy for Systemic Mycosis and the Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity

    PubMed Central

    Souza, Ana C. O.; Amaral, Andre C.

    2017-01-01

    Fungal diseases have been emerging as an important public health problem worldwide with the increase in host predisposition factors due to immunological dysregulations, immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis is limited, most of times expensive and causes important toxic effects. Nanotechnology has become an interesting strategy to improve efficacy of traditional antifungal drugs, which allows lower toxicity, better biodistribution, and drug targeting, with promising results in vitro and in vivo. In this review, we provide a discussion about conventional antifungal and nanoantifungal therapies for systemic mycosis. PMID:28326065

  15. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group.

    PubMed

    Tevyashova, Anna N; Olsufyeva, Evgenia N; Solovieva, Svetlana E; Printsevskaya, Svetlana S; Reznikova, Marina I; Trenin, Aleksei S; Galatenko, Olga A; Treshalin, Ivan D; Pereverzeva, Eleonora R; Mirchink, Elena P; Isakova, Elena B; Zotchev, Sergey B; Preobrazhenskaya, Maria N

    2013-08-01

    A comprehensive comparative analysis of the structure-antifungal activity relationships for the series of biosynthetically engineered nystatin analogues and their novel semisynthetic derivatives, as well as amphotericin B (AMB) and its semisynthetic derivatives, was performed. The data obtained revealed the significant influence of the structure of the C-7 to C-10 polyol region on the antifungal activity of these polyene antibiotics. Comparison of positions of hydroxyl groups in the antibiotics and in vitro antifungal activity data showed that the most active are the compounds in which hydroxyl groups are in positions C-8 and C-9 or positions C-7 and C-10. Antibiotics with OH groups at both C-7 and C-9 had the lowest activity. The replacement of the C-16 carboxyl with methyl group did not significantly affect the in vitro antifungal activity of antibiotics without modifications at the amino group of mycosamine. In contrast, the activity of the N-modified derivatives was modulated both by the presence of CH3 or COOH group in the position C-16 and by the structure of the modifying substituent. The most active compounds were tested in vivo to determine the maximum tolerated doses and antifungal activity on the model of candidosis sepsis in leukopenic mice (cyclophosphamide-induced). Study of our library of semisynthetic polyene antibiotics led to the discovery of compounds, namely, N-(L-lysyl)-BSG005 (compound 3n) and, especially, L-glutamate of 2-(N,N-dimethylamino)ethyl amide of S44HP (compound 2j), with high antifungal activity that were comparable in in vitro and in vivo tests to AMB and that have better toxicological properties.

  16. A novel antifungal protein with lysozyme-like activity from seeds of Clitoria ternatea.

    PubMed

    K, Ajesh; K, Sreejith

    2014-06-01

    An antifungal protein with a molecular mass of 14.3 kDa was isolated from the seeds of butterfly pea (Clitoria ternatea) and designated as Ct protein. The antifungal protein was purified using different methods including ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration on Sephadex G-50 column. Ct protein formed a single colourless rod-shaped crystal by hanging drop method after 7 days of sample loading. The protein showed lytic activity against Micrococcus luteus and broad-spectrum, fungicidal activity, particularly against the most clinically relevant yeasts, such as Cryptococcus neoformans, Cryptococcus albidus, Cryptococcus laurentii, Candida albicans and Candida parapsilosis. It also exerted an inhibitory activity on mycelial growth in several mould species including Curvularia sp., Alternaria sp., Cladosporium sp., Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhizopus sp., and Sclerotium sp. The present study adds to the literature on novel seed proteins with antifungal activity.

  17. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds.

    PubMed

    Alves, Maria José; Ferreira, Isabel C F R; Dias, Joana; Teixeira, Vânia; Martins, Anabela; Pintado, Manuela

    2013-01-01

    The present review reports the antifungal activity of mushroom extracts and isolated compounds including high (e.g. peptides and proteins) and low (e.g. sesquiterpenes and other terpenes, steroids, organic acids, acylcyclopentenediones and quinolines) molecular weight compounds. Most of the studies available on literature focused on screening of antifungal activity of mushroom extracts, rather than of isolated compounds. Data indicate that mushroom extracts are mainly tested against different Candida species, while mushroom compounds are mostly tested upon other fungi. Therefore, the potential of these compounds might be more useful in food industry than in clinics. Oudemansiella canarii and Agaricus bisporus methanolic extracts proved to be the most active mushroom extracts against Candida spp. Grifolin, isolated from Albatrellus dispansus, seemed to be the most active compound against phytopathogenic fungi. Further studies should be performed in order to better understand the mechanism of action of this and other antifungal compounds as well as safety issues.

  18. Chemical constituents from the rhizome of Polygonum paleaceum and their antifungal activity.

    PubMed

    Yang, Yi-Xi; An, Mao-Mao; Jin, Yong-Sheng; Chen, Hai-Sheng

    2017-01-01

    A new compounds neopaleaceolactoside (1), along with nine known compounds phyllocoumarin (2), quercetin (3), quercitrin (4), quercetin-3-methyl ether (5), vincetoxicoside B (6), isoquercitrin (7), kaempferol (8), (-)-epicatechin (9), and chlorogenic acid (10), was isolated from Polygonum paleaceum Wall. Their chemical structures were established based on one-dimensional and two-dimensional nuclear magnetic resonance techniques, mass spectrometry and by comparison with spectroscopic data reported. Some selected compounds were screened for their antifungal activity. Quercetin (3), vincetoxicoside B (6), kaempferol (8), and (-)-epicatechin (9) showed synergistic antifungal activities with the FICI values <0.5. A preliminary structure-activity relationship could be observed that free 3-OH in the structure of flavonoids was important for synergistic antifungal activity.

  19. New facets of antifungal therapy.

    PubMed

    Chang, Ya-Lin; Yu, Shang-Jie; Heitman, Joseph; Wellington, Melanie; Chen, Ying-Lien

    2017-02-17

    Invasive fungal infections remain a major cause of morbidity and mortality in immunocompromised patients, and such infections are a substantial burden to healthcare systems around the world. However, the clinically available armamentarium for invasive fungal diseases is limited to 3 main classes (i.e., polyenes, triazoles, and echinocandins), and each has defined limitations related to spectrum of activity, development of resistance, and toxicity. Further, current antifungal therapies are hampered by limited clinical efficacy, high rates of toxicity, and significant variability in pharmacokinetic properties. New antifungal agents, new formulations, and novel combination regimens may improve the care of patients in the future by providing improved strategies to combat challenges associated with currently available antifungal agents. Likewise, therapeutic drug monitoring may be helpful, but its present use remains controversial due to the lack of available data. This article discusses new facets of antifungal therapy with a focus on new antifungal formulations and the synergistic effects between drugs used in combination therapy.

  20. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway

    PubMed Central

    Thangamani, Shankar; Maland, Matthew; Mohammad, Haroon; Pascuzzi, Pete E.; Avramova, Larisa; Koehler, Carla M.; Hazbun, Tony R.; Seleem, Mohamed N.

    2017-01-01

    Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin's potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin's antifungal activity—mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections. PMID:28149831

  1. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms

    PubMed Central

    Watamoto, Takao; Egusa, Hiroshi; Sawase, Takashi; Yatani, Hirofumi

    2015-01-01

    Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using Candida albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM) using an antifungal susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF) cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and nine compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal candidiasis. PMID

  2. Factors affecting antifungal activity of Streptomyces philanthi RM-1-138 against Rhizoctonia solani.

    PubMed

    Boukaew, Sawai; Prasertsan, Poonsuk

    2014-01-01

    Sheath blight disease of rice caused by Rhizoctonia solani Kühn is economically important disease in most of the world's rice growing areas. The disease causes severe yield losses of >20% of rice in Thailand. Our previous investigation reported the antifungal activity of Streptomyces philanthi RM-1-138 against R. solani PTRRC-9. In this study, glucose yeast-malt extract medium, initial pH of 7.5 and a temperature of 30 °C were found to be optimum for both cell growth and antifungal activity of S. philanthi RM-1-138. The inhibition of 94 and 100% on the growth of R. solani PTRRC-9 were achieved from the antifungal metabolites of the 6 and 9-days-old culture filtrates of S. philanthi RM-1-138, respectively. Heat treatment on the culture filtrate had slight effect on its antifungal activity. The culture broth demonstrated higher antifungal activity on growth of R. solani PTRRC-9 (90.4%) than the culture filtrate (31.5%) and its effective dose was at 0.1% (v/v). The present results indicated the possibilities of using either the culture broth or culture filtrate of S. philanthi RM-1-138 to inhibit growth of R. solani PTRRC-9.

  3. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats.

    PubMed

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections.

  4. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    PubMed Central

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

  5. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans.

    PubMed

    Hwang, Ji Hong; Jin, Qinglong; Woo, Eun-Rhan; Lee, Dong Gun

    2013-10-01

    In this study, the antifungal activity and mode of action(s) of hibicuslide C derived from Abutilon theophrasti were investigated. Antifungal susceptibility testing showed that hibicuslide C possessed potent activities toward various fungal strains and less hemolytic activity than amphotericin B. To understand the antifungal mechanism(s) of hibicuslide C in Candida albicans, flow cytometric analysis with propidium iodide was done. The results showed that hibicuslide C perturbed the plasma membrane of the C. albicans. The analysis of the transmembrane electrical potential with 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] indicated that hibicuslide C induced membrane depolarization. Furthermore, model membrane studies were performed with calcein encapsulating large unilamellar vesicles (LUVs) and FITC-dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of hibicuslide C on the fungal plasma membrane were through the formation of pores with radii between 2.3 nm and 3.3 nm. Finally, in three dimensional flow cytometric contour plots, a reduced cell sizes by the pore-forming action of hibicuslide C were observed. Therefore, the present study suggests that hibicuslide C exerts its antifungal effect by membrane-active mechanism.

  6. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species.

    PubMed

    Zeng, Hong; Chen, Xinping; Liang, Jingnan

    2015-01-01

    Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent.

  7. Nutritional Composition and Phytochemical, Antioxidative, and Antifungal Activities of Pergularia tomentosa L.

    PubMed Central

    Belghith, Hafedh; Ben Abdallah, Ferjani; Belghith, Karima

    2017-01-01

    Crude extracts from a medicinal Tunisian plant, Pergularia tomentosa L., were the investigated natural material. Butanolic extract of roots analyzed with IR spectra revealed the presence of hydroxyl, alcoholic, and carboxylic groups and sugars units. Analysis of some secondary metabolites, total phenolic, flavonoids, flavonols, and procyanidins, was performed using different solvents following the increased gradient of polarity. Fruits and leaves contained the highest amounts of all these compounds. Antioxidant properties were evaluated by the determination of free radical scavenging activity and the reducing power of methanolic extracts. Fruits and leaf extracts were the most powerful antioxidants for the two-assay in vitro system. Stems and fruits extracts exhibit an antifungal activity against Fusarium oxysporum f. sp. lycopersici which could become an alternative to synthetic fungicide to control Solanum species fungal diseases.

  8. Acylated flavone glycosides from the roots of Saussurea lappa and their antifungal activity.

    PubMed

    Rao, Kolisetty Sambasiva; Babu, Goriparthi Venu; Ramnareddy, Yemireddy Venkata

    2007-03-07

    The isolation of four novel acylated flavonoid glycosides from the roots of Saussurea lappa and their identification using a combination of 1D and 2D NMR and mass spectrometry is described. The in vitro antifungal and antibacterial activities of the isolated compounds and their mixture were tested on nine fungal and four bacterial strains, using the microdilution method. The compounds and mixture showed moderate to high antifungal activity against most of the fungi tested, compared to a miconazole standard, while only one compound and the mixture showed antibacterial activity against all strains tested.

  9. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  10. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities.

    PubMed

    Soković, Marina D; Vukojević, Jelena; Marin, Petar D; Brkić, Dejan D; Vajs, Vlatka; van Griensven, Leo J L D

    2009-01-07

    The potential antifungal effects of Thymus vulgaris L., Thymus tosevii L., Mentha spicata L., and Mentha piperita L. (Labiatae) essential oils and their components against 17 micromycetal food poisoning, plant, animal and human pathogens are presented. The essential oils were obtained by hydrodestillation of dried plant material. Their composition was determined by GC-MS. Identification of individual constituents was made by comparison with analytical standards, and by computer matching mass spectral data with those of the Wiley/NBS Library of Mass Spectra. MIC's and MFC's of the oils and their components were determined by dilution assays. Thymol (48.9%) and p-cymene (19.0%) were the main components of T. vulgaris, while carvacrol (12.8%), a-terpinyl acetate (12.3%), cis-myrtanol (11.2%) and thymol (10.4%) were dominant in T. tosevii. Both Thymus species showed very strong antifungal activities. In M. piperita oil menthol (37.4%), menthyl acetate (17.4%) and menthone (12.7%) were the main components, whereas those of M. spicata oil were carvone (69.5%) and menthone (21.9%). Mentha sp. showed strong antifungal activities, however lower than Thymus sp. The commercial fungicide, bifonazole, used as a control, had much lower antifungal activity than the oils and components investigated. It is concluded that essential oils of Thymus and Mentha species possess great antifungal potential and could be used as natural preservatives and fungicides.

  11. Antifungal Activity of Two Root Canal Sealers against Different Strains of Candida

    PubMed Central

    Jafari, Farnaz; Jafari, Sanaz; Samadi Kafil, Hossein; Momeni, Tahereh; Jamloo, Helen

    2017-01-01

    Introduction: Microorganisms and microbial products are the main etiologic factors in pulp and periapical diseases. The present study aimed to compare the antifungal activity of two different sealers, AH-26 and MTA Fillapex against three strains of Candida, 24, 48, 72 h and 7 days after mixing. Methods and Materials: The microorganisms used in this study were Candidia albicans (ATCC 10231), Candidia glabrata (ATCC 90030) and Candidia krusei (DSM 70079). This test was based on growth of microorganisms and turbidity measurement technique using a spectrophotometer. The direct contact test was conducted by direct and indirect methods. Multiple comparisons were carried out using analysis of variances (ANOVA) with repeated measures followed by Tukey’s tests. Results: The antifungal activity of both sealers was similar in the indirect method. The antifungal activity of both sealers in the direct method was similar against Candida albicans and higher for AH-26 sealer against Candida krusei and Candida glabrata. Conclusion: The total antifungal effect of MTA Fillapex sealer was significantly less than AH-26 sealer in direct method. The antifungal effect of both sealers was similar in indirect method. PMID:28179934

  12. Antifungal activity of chemically different essential oils from wild Tunisian Thymus spp.

    PubMed

    Maissa, Ben Jabeur; Walid, Hamada

    2015-01-01

    Essential oils isolated by using hydrodistillation from the aerial parts of Thymus algeriensis and Thymus capitatus Hoff. et Link. from different locations of Tunisia (Kef, Takelsa, Zaghouan, Fahs and Toukeber) were characterised. The chemical composition was analysed by using gas chromatography/mass spectrometry, the major component of T. capitatus from Kef and T. algeriensis was thymol while carvacrol was the main component of T. capitatus from Zaghouan, Fahs and Toukeber. The antifungal activity of the oils and some pure components was assessed by the in vitro assay against several fungi and oomycetes. T. capitatus (chemotype carvacrol) exhibited the strongest antifungal activity followed by T. capitatus (chemotype thymol) and T. algeriensis, indicating that carvacrol might have a stronger antifungal activity than thymol.

  13. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    PubMed

    Tomczykowa, Monika; Tomczyk, Michał; Jakoniuk, Piotr; Tryniszewska, Elzbieta

    2008-01-01

    The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+), Klebsiella pneumoniae (ESBL+), Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts), which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  14. Candida albicans and Candida tropicalis in oral candidosis: quantitative analysis, exoenzyme activity, and antifungal drug sensitivity.

    PubMed

    da Costa, Karen Regina Carim; Ferreira, Joseane Cristina; Komesu, Marilena Chinali; Candido, Regina Celia

    2009-02-01

    Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both C. albicans and C. tropicalis, but phospholipase activity was noted only in C. albicans. In vitro resistance to antifungals was verified in both species, but C. tropicalis appears to be more resistant to the tested antifungals than C. albicans.

  15. Antifungal activity of essential oil from fruits of Indian Cuminum cyminum.

    PubMed

    Romagnoli, Carlo; Andreotti, Elisa; Maietti, Silvia; Mahendra, Rai; Mares, Donatella

    2010-07-01

    The essential oil of fruits of Cuminum cyminum L. (Apiaceae), from India, was analyzed by GC and GC-MS, and its antifungal activity was tested on dermatophytes and phytopathogens, fungi, yeasts and some new Aspergilli. The most abundant components were cumin aldehyde, pinenes, and p-cymene, and a fraction of oxygenate compounds such as alcohol and epoxides. Because of the large amount of the highly volatile components in the cumin extract, we used a modified recent technique to evaluate the antifungal activity only of the volatile parts at doses from 5 to 20 microL of pure essential oil. Antifungal testing showed that Cuminum cyminum is active in general on all fungi but in particular on the dermatophytes, where Trichophyton rubrum was the most inhibited fungus also at the lowest dose of 5 microL. Less sensitive to treatment were the phytopathogens.

  16. In Vitro Antifungal Activity of Epigallocatechin 3-O-Gallate against Clinical Isolates of Dermatophytes

    PubMed Central

    Park, Bong Joo; Taguchi, Hideaki; Kamei, Katsuhiko; Matsuzawa, Tetsuhiro; Hyon, Suong-Hyu

    2011-01-01

    Previously, we reported that epigallocatechin 3-O-gallate (EGCg) has growth-inhibitory effect on clinical isolates of Candida species. In this study, we investigated the antifungal activity of EGCg and antifungal agents against thirty-five of dermatophytes clinically isolated by the international guidelines (M38-A2). All isolates exhibited good susceptibility to EGCg (MIC50, 2-4 µg/mL, MIC90, 4-8 µg/mL, and geometric mean (GM) MICs, 3.36-4 µg/mL) than those of fluconazole (MIC50, 2-16 µg/mL, MIC90, 4-32 µg/mL, and GM MICs, 3.45-25.8 µg/mL) and flucytosin (MIC50, MIC90, and GM MICs, >64 µg/mL), although they were less susceptible to other antifungal agents, such as amphotericin B, itraconazole, and miconazole. These activities of EGCg were approximately 4-fold higher than those of fluconazole, and were 4 to 16-fold higher than flucytosin. This result indicates that EGCg can inhibit pathogenic dermatophyte species. Therefore, we suggest that EGCg may be effectively used solely as a possible agent or combined with other antifungal agents for antifungal therapy in dermatophytosis. PMID:21488200

  17. The chemical composition of some Lauraceae essential oils and their antifungal activities.

    PubMed

    Simić, A; Soković, M D; Ristić, M; Grujić-Jovanović, S; Vukojević, J; Marin, P D

    2004-09-01

    The antifungal activity of Aniba rosaeodora, Laurus nobilis, Sassafras albidum and Cinnamomum zeylanicum essential oils were investigated against 17 micromycetes. Among the tested fungal species were food poisoning, spoilage fungi, plant and animal pathogens. In order to determine fungistatic and fungicidal concentrations (MIC and MFC) macrodilution and microdilution tests were used. Linalool was the main component in the essential oil of A. rosaeodora, while 1.8-cineole was dominant in L. nobilis. In sassafras essential oil safrole was the major component and in the oil of C. zeylanicum the main component was trans-cinnamaldehyde. The essential oil of cinnamon showed the strongest antifungal activity.

  18. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group

    PubMed Central

    Xu, Kehan; Huang, Lei; Xu, Zheng; Wang, Yanwei; Bai, Guojing; Wu, Qiuye; Wang, Xiaoyan; Yu, Shichong; Jiang, Yuanying

    2015-01-01

    In previous studies undertaken by our group, a series of 1-(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-substituted-2-propanols (1a–r), which were analogs of fluconazole, was designed and synthesized by click chemistry. In the study reported here, the in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Compounds 1a, 1q, and 1r showed the more antifungal activity than the others. PMID:25792806

  19. Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity

    PubMed Central

    Khedr, Mohammed A

    2015-01-01

    Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were synthesized and evaluated for their antifungal activity. In silico study results showed the high binding affinity to lanosterol 14α-demethylase (−24.49 and −25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (−18.19 kcal/mol) and fluconazole (−16.08 kcal/mol). Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively. The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole. PMID:26309398

  20. Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties.

    PubMed

    Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Kwon, Kae Kyoung; Sohn, Jae Hak; Lim, Young Woon

    2014-08-01

    The diversity of marine-derived Penicillium from Korea was investigated using morphological and multigene phylogenetic approaches, analyzing sequences of the internal transcribed spacer region, β-tubulin gene, and RNA polymerase subunit II gene. In addition, the biological activity of all isolated strains was evaluated. We tested for the extracellular enzyme activity of alginase, endoglucanase, and β-glucosidase, and antifungal activity against two plant pathogens (Colletotrichum acutatum and Fusarium oxysporum). A total of 184 strains of 36 Penicillium species were isolated, with 27 species being identified. The most common species were Penicillium polonicum (19.6 %), P. rubens (11.4 %), P. chrysogenum (11.4 %), and P. crustosum (10.9 %). The diversity of Penicillium strains isolated from soil (foreshore soil and sand) and marine macroorganisms was higher than the diversity of strains isolated from seawater. While many of the isolated strains showed alginase and β-glucosidase activity, no endoglucanase activity was found. More than half the strains (50.5 %) showed antifungal activity against at least one of the plant pathogens tested. Compared with other strains in this study, P. citrinum (strain SFC20140101-M662) showed high antifungal activity against both plant pathogens. The results reported here expand our knowledge of marine-derived Penicillium diversity. The relatively high proportion of strains that showed antifungal and enzyme activity demonstrates that marine-derived Penicillium have great potential to be used in the production of natural bioactive products for pharmaceutical and/or industrial use.

  1. In-vitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes.

    PubMed

    Rehman, Saeed U; Chohan, Zahid H; Gulnaz, Farzana; Supuran, Claudiu T

    2005-08-01

    A series of new antibacterial and antifungal coumarin-derived compounds and their transition metal complexes [cobalt (II), copper (II), nickel (II) and zinc (II)] have been synthesized, characterized and screened for their in vitro antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed coumarins. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties.

  2. Caenorhabditis elegans-based Model Systems for Antifungal Drug Discovery

    PubMed Central

    Anastassopoulou, Cleo G.; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2013-01-01

    The substantial morbidity and mortality associated with invasive fungal infections constitute undisputed tokens of their severity. The continued expansion of susceptible population groups (such as immunocompromised individuals, patients undergoing extensive surgery, and those hospitalized with serious underlying diseases especially in the intensive care unit) and the limitations of current antifungal agents due to toxicity issues or to the development of resistance, mandate the development of novel antifungal drugs. Currently, drug discovery is transitioning from the traditional in vitro large-scale screens of chemical libraries to more complex bioassays, including in vivo studies on whole animals; invertebrates, such as Caenorhabditis elegans, are thus gaining momentum as screening tools. Key pathogenesis features of fungal infections, including filament formation, are expressed in certain invertebrate and mammalian hosts; among the various potential hosts, C. elegans provides an attractive platform both for the study of host-pathogen interactions and the identification of new antifungal agents. Advantages of compound screening in this facile, relatively inexpensive and not as ethically challenged whole-animal context, include the simultaneous assessment of antifungal efficacy and toxicity that could result in the identification of compounds with distinct mechanisms of action, for example by promoting host immune responses or by impeding fungal virulence factors. With the recent advent of using predictive models to screen for compounds with improved chances of bioavailability in the nematode a priori, high-throughput screening of chemical libraries using the C. elegans-c. albicans antifungal discovery assay holds even greater promise for the identification of novel antifungal agents in the near future. PMID:21470110

  3. Glycerol Enhances the Antifungal Activity of Dairy Propionibacteria

    PubMed Central

    Lind, Helena; Broberg, Anders; Jacobsson, Karin; Jonsson, Hans; Schnürer, Johan

    2010-01-01

    Dairy propionibacteria are widely used in starter cultures for Swiss type cheese. These bacteria can ferment glucose, lactic acid, and glycerol into propionic acid, acetic acid, and carbon dioxide. This research examined the antifungal effect of dairy propionibacteria when glycerol was used as carbon source for bacterial growth. Five type strains of propionibacteria were tested against the yeast Rhodotorula mucilaginosa and the molds Penicillium commune and Penicillium roqueforti. The conversion of 13C glycerol by Propionibacterium jensenii was followed with nuclear magnetic resonance. In a dual culture assay, the degree of inhibition of the molds was strongly enhanced by an increase in glycerol concentrations, while the yeast was less affected. In broth cultures, decreased pH in glycerol medium was probably responsible for the complete inhibition of the indicator fungi. NMR spectra of the glycerol conversion confirmed that propionic acid was the dominant metabolite. Based on the results obtained, the increased antifungal effect seen by glycerol addition to cultures of propionibacteria is due to the production of propionic acid and pH reduction of the medium. PMID:21331381

  4. Synthesis, antifungal activity and structure-activity relationships of vanillin oxime-N-O-alkanoates.

    PubMed

    Ahluwalia, Vivek; Garg, Nandini; Kumar, Birendra; Walia, Suresh; Sati, Om P

    2012-12-01

    Vanillin oxime-N-O-alkanoates were synthesized following reaction of vanillin with hydroxylamine hydrochloride, followed by reaction of the resultant oxime with acyl chlorides. The structures of the compounds were confirmed by IR, 1H, 13C NMR and mass spectral data. The test compounds were evaluated for their in vitro antifungal activity against three phytopathogenic fungi Macrophomina phaseolina, Rhizoctonia solani and Sclerotium rolfsii by the poisoned food technique. The moderate antifungal activity of vanillin was slightly increased following its conversion to vanillin oxime, but significantly increased after conversion of the oxime to oxime-N-O-alkanoates. While vanillin oxime-N-O-dodecanoate with an EC50 value 73.1 microg/mL was most active against M. phaseolina, vanillin oxime-N-O-nonanoate with EC50 of value 66.7 microg/mL was most active against R. solani. The activity increased with increases in the acyl chain length and was maximal with an acyl chain length of nine carbons.

  5. Effects of hydrophobicity on the antifungal activity of α-helical antimicrobial peptides

    PubMed Central

    Jiang, Ziqing; Kullberg, Bart Jan; Lee, Hein van der; Vasil, Adriana I.; Hale, John D.; Mant, Colin T.; Hancock, Robert E. W.; Vasil, Michael L.; Netea, Mihai G.; Hodges, Robert S.

    2009-01-01

    We utilized a series of analogs of D-V13K (a 26-residue amphipathic α-helical antimicrobial peptide, denoted D1) to compare and contrast the role of hydrophobicity on antifungal and antibacterial activity to the results obtained previously with Pseudomonas aeruginosa strains. Antifungal activity for Zygomycota fungi decreased with increasing hydrophobicity (D-V13K/A12L/A20L/A23L, denoted D4, the most hydrophobic analog was 6-fold less active than D1, the least hydrophobic analog). In contrast, antifungal activity for Ascomycota fungi increased with increasing hydrophobicity (D4, the most hydrophobic analog was 5-fold more active than D1). Hemolytic activity is dramatically affected by increasing hydrophobicity with peptide D4 being 286-fold more hemolytic than peptide D1. The therapeutic index for peptide D1 is 1569-fold and 62-fold better for Zygomycota fungi and Ascomycota fungi, respectively, compared to peptide D4. To reduce the hemolytic activity of peptide D4 and improve/maintain the antifungal activity of D4, we substituted another lysine residue in the center of the nonpolar face (V16K) to generate D5 (D-V13K/V16K/A12L/A20L/A23L). This analog D5 decreased hemolytic activity by 13-fold, enhanced antifungal activity to Zygomycota fungi by 16-fold and improved the therapeutic index by 201-fold compared to D4 and represents a unique approach to control specificity while maintaining high hydrophobicity in the two hydrophobic segments on the nonpolar face of D5. PMID:19090916

  6. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  7. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  8. Characterization of Diterpenes from Euphorbia prolifera and Their Antifungal Activities against Phytopathogenic Fungi.

    PubMed

    Xu, Jing; Kang, Jing; Cao, Xiangrong; Sun, Xiaocong; Yu, Shujing; Zhang, Xiao; Sun, Hongwei; Guo, Yuanqiang

    2015-07-01

    Euphorbia prolifera is a poisonous plant belonging to the Euphorbiaceae family. In this survey on plant secondary metabolites to obtain bioactive substances for the development of new antifungal agents for agriculture, the chemical constituents of the plant E. prolifera were investigated. This procedure led to the isolation of six new and two known diterpenes. Their structures, including absolute configurations, were elucidated on the basis of extensive NMR spectroscopic data analyses and time-dependent density functional theory ECD calculations. Biological screenings revealed that these diterpenes possessed antifungal activities against three phytopathogenic fungi. The results of the phytochemical investigation further revealed the chemical components of the poisonous plant E. prolifera, and biological screenings implied the extract or bioactive diterpenes from this plant may be regarded as candidate agents of antifungal agrochemicals for crop protection products.

  9. Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L.

    PubMed

    Romagnoli, C; Bruni, R; Andreotti, E; Rai, M K; Vicentini, C B; Mares, D

    2005-04-01

    The essential oil extracted by steam distillation from the capitula of Indian Tagetes patula, Asteraceae, was evaluated for its antifungal properties and analyzed by gas chromatography and gas chromatography-mass spectrometry. Thirty compounds were identified, representing 89.1% of the total detected. The main components were piperitone (24.74%), piperitenone (22.93%), terpinolene (7.8%), dihydro tagetone (4.91%), cis-tagetone (4.62%), limonene (4.52%), and allo-ocimene (3.66%). The oil exerted a good antifungal activity against two phytopathogenic fungi, Botrytis cinerea and Penicillium digitatum, providing complete growth inhibition at 10 microl/ml and 1.25 microl/ml, respectively. The contribution of the two main compounds, piperitone and piperitenone, to the antifungal efficacy was also evaluated and ultrastructural modifications in mycelia were observed via electron microscopy, evidencing large alterations in hyphal morphology and a multisite mechanism of action.

  10. Experimental and theoretical approach of nanocrystalline TiO2 with antifungal activity

    NASA Astrophysics Data System (ADS)

    Longo, Valeria M.; Picon, Francini C.; Zamperini, Camila; Albuquerque, Anderson R.; Sambrano, Julio R.; Vergani, Carlos E.; Machado, Ana L.; Andrés, Juan; Hernandes, Antônio C.; Varela, José A.; Longo, Elson

    2013-07-01

    Using a solvothermal method for this research we synthesized nanocrystalline titanium dioxide (nc-TiO2) anatase particles with a mean diameter of 5.4 nm and evaluated their potential antifungal effect against planktonic cells of Candida albicans without UV radiation. To complement experimental data, we analyzed structural and electronic properties of both the bulk and the (1 0 1) surface of anatase by first-principles calculations. Based on experimental and theoretical results, a reactive O2H and OH species formation mechanism was proposed to explain the key factor which facilitates the antifungal activity.

  11. Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi

    PubMed Central

    de Paula e Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Gullo, Fernanda Patrícia; Sangalli-Leite, Fernanda; de Oliveira, Haroldo Cesar; da Silva, Julhiany de Fátima; Rossi, Suélen Andrea; Benaducci, Tatiane; Wolf, Vanessa Gonçalves; Regasini, Luis Octávio; Petrônio, Maicon Segalla; Silva, Dulce Helena Siqueira; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José Soares

    2014-01-01

    This work aims to demonstrate that the gallic acid structure modification to the decyl gallate (G14) compound contributed to increase the antifungal activity against several species of pathogenic fungi, mainly, Candida spp., Cryptococcus spp., Paracoccidioides spp., and Histoplasma capsulatum, according to standardized microdilution method described by Clinical Laboratory Standard Institute (CLSI) documents. Moreover this compound has a particularly good selectivity index value, which makes it an excellent candidate for broad-spectrum antifungal prototype and encourages the continuation of subsequent studies for the discovery of its mechanism of action. PMID:25505923

  12. Synthesis and antifungal activity of natural product-based 6-alkyl-2 3 4 5-tetrahydropyridines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven 6-alkyl-2,3,4,5-tetrahydropyridines (5a–5g) that mimic the natural products piperideines that were recently identified in the fire ant venom have been synthesized. Compounds 5c–5g with the C-6 alkyl chain lengths from C14 to C18 showed varying degrees of antifungal activities, with 5e (6-hexa...

  13. Two new flavonoids from Artemisa sacrorum Ledeb and their antifungal activity

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Hu; Wu, Jie-si; Wu, Rong-jun; Han, Na-ren-chao-ke-tu; Dai, Na-yin-tai

    2015-05-01

    Two new flavonoids, named as sacriflavone A (1) and sacriflavone B (2), were isolated from the CHCl3 extract of Artemisa sacrorum Ledeb (A. sacrorum). The structures of the isolated compounds have been elucidated unambiguously by UV, MS, and a series of 1D and 2D NMR analyses. The isolated compounds exhibited antifungal activity against different Fusarium oxysporum f. sp. dianthi pathotypes.

  14. Structure-activity relationships for antibacterial to antifungal conversion of kanamycin to amphiphilic analogues.

    PubMed

    Fosso, Marina; AlFindee, Madher N; Zhang, Qian; Nziko, Vincent de Paul Nzuwah; Kawasaki, Yukie; Shrestha, Sanjib K; Bearss, Jeremiah; Gregory, Rylee; Takemoto, Jon Y; Chang, Cheng-Wei Tom

    2015-05-01

    Novel fungicides are urgently needed. It was recently reported that the attachment of an octyl group at the O-4″ position of kanamycin B converts this antibacterial aminoglycoside into a novel antifungal agent. To elucidate the structure-activity relationship (SAR) for this phenomenon, a lead compound FG03 with a hydroxyl group replacing the 3″-NH2 group of kanamycin B was synthesized. FG03's antifungal activity and synthetic scheme inspired the synthesis of a library of kanamycin B analogues alkylated at various hydroxyl groups. SAR studies of the library revealed that for antifungal activity the O-4″ position is the optimal site for attaching a linear alkyl chain and that the 3″-NH2 and 6″-OH groups of the kanamycin B parent molecule are not essential for antifungal activity. The discovery of lead compound, FG03, is an example of reviving clinically obsolete drugs like kanamycin by simple chemical modification and an alternative strategy for discovering novel antimicrobials.

  15. “In vitro” antifungal activity of ozonized sunflower oil on yeasts from onychomycosis

    PubMed Central

    Guerrer, L.V.; Cunha, K. C.; Nogueira, M. C. L.; Cardoso, C. C.; Soares, M. M. C. N.; Almeida, M. T. G.

    2012-01-01

    The “in vitro” antifungal activity of ozonized sunflower oil (Bioperoxoil®) was tested on 101 samples of yeasts originating from onychomycosis using the disk diffusion method. The oil was efficacious against several clinical fungal strains: Candida parapsilosis, Candida albicans, Trichosporon asahii, Candida tropicalis and Candida guilliermondii. PMID:24031958

  16. Modeling Production of Antifungal Compounds and their Role in Biocontrol Inhibitory Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial Least Squares (PLS) regression modeling was used to relate the antifungal activity of B. subtilis solid-state fermentation extracts to the individual HPLC peaks from those extracts. A model was developed that predicted bioassay inhibition based on extract HPLC profile (R2 = 0.99). Concentr...

  17. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin.

    PubMed

    Kujumgiev, A; Tsvetkova, I; Serkedjieva, Y; Bankova, V; Christov, R; Popov, S

    1999-03-01

    Propolis samples from different geographic origins were investigated for their antibacterial (against Staphylococcus aureus and Escherichia coli), antifungal (against Candida albicans) and antiviral (against Avian influenza virus) activities. All samples were active against the fungal and Gram-positive bacterial test strains, and most showed antiviral activity. The activities of all samples were similar in spite of the differences in their chemical composition. In samples from the temperate zone, flavonoids and esters of phenolic acids are known to be responsible for the above mentioned activities of bee glue; tropical samples did not contain such substances but showed similar activities. Obviously, in different samples, different substance combinations are essential for the biological activity of the bee glue. It seems that propolis has general pharmacological value as a natural mixture and not as a source of new powerful antimicrobial, antifungal and antiviral compounds.

  18. Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Darbari, S.; Abdi, Y.; Haghighi, F.; Mohajerzadeh, S.; Haghighi, N.

    2011-06-01

    Branched carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Ni was used as the catalyst and played an important role in the realization of branches in vertically aligned nanotubes. TiO2 nanoparticles on the branched CNTs were produced by atmospheric pressure chemical vapour deposition followed by a 500 °C annealing step. Transmission and scanning electron microscopic techniques were used to study the morphology of the TiO2/branched CNT structures while x-ray diffraction and Raman spectroscopy were used to verify the characteristics of the prepared nanostructures. Their antifungal effect on Candida albicans biofilms under visible light was investigated and compared with the activity of TiO2/CNT arrays and thin films of TiO2. The TiO2/branched CNTs showed a highly improved photocatalytic antifungal activity in comparison with the TiO2/CNTs and TiO2 film. The excellent visible light-induced photocatalytic antifungal activity of the TiO2/branched CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate, in addition to the high surface area provided for the interaction between the cells and the nanostructures. Scanning electron microscopy was used to observe the resulting morphological changes in the cell body of the biofilms existing on the antifungal samples.

  19. Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans.

    PubMed

    Choi, Hyemin; Lee, Dong Gun

    2014-10-01

    In a previous report, a novel antibacterial peptide astacidin 1 (FKVQNQHGQVVKIFHH) was isolated from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. In this study, the antifungal activity and mechanism of astacidin 1 were evaluated. Astacidin 1 exhibited antifungal activity against Candida albicans, Trichosporon beigelii, Malassezia furfur, and Trichophyton rubrum. Also, astacidin 1 had fungal cell selectivity in human erythrocytes without causing hemolysis. To understand the antifungal mechanism, membrane studies were done against C. albicans and T. beigelii. Flow cytometric analysis and K(+) measurement showed membrane damage, resulting in membrane permeabilization and K(+) release-induced membrane depolarization. Furthermore, the calcein leakage from liposomes mimicking C. albicans membrane demonstrated that the membrane-active action was driven by pore-forming mechanism. Live cell imaging using fluorescein isothiocyanate-labeled dextrans of various sizes suggested that the radii of pores formed in the C. albicans membrane were 1.4-2.3 nm. Therefore, the present study suggests that astacidin 1 exerts its antifungal effect by damaging the fungal membrane via pore formation.

  20. Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria.

    PubMed

    Shishido, Tania K; Jokela, Jouni; Kolehmainen, Clara-Theresia; Fewer, David P; Wahlsten, Matti; Wang, Hao; Rouhiainen, Leo; Rizzi, Ermanno; De Bellis, Gianluca; Permi, Perttu; Sivonen, Kaarina

    2015-11-03

    Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, β-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria.

  1. Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making.

    PubMed

    Rizzello, Carlo Giuseppe; Cassone, Angela; Coda, Rossana; Gobbetti, Marco

    2011-08-01

    This study aimed at investigating the antifungal activity of sourdough fermented (Lactobacillus plantarum LB1 and Lactobacillus rossiae LB5) wheat germ (SFWG). Preliminarily, methanol and water/salt-soluble extracts from SFWG were assayed by agar diffusion towards Penicillium roqueforti DPPMAF1. As shown by hyphal radial growth rate, the water/salt-soluble extract showed the inhibition of various fungi isolated from bakeries. The antifungal activity was attributed to a mixture of organic acids and peptides which were synthesized during fermentation. Formic (24.7mM) acid showed the highest antifungal activity. Four peptides, having similarities with well known antifungal sequences, were identified and chemically synthesized. The minimal inhibitory concentration was 2.5-15.2mg/ml. Slices of bread made by addition of 4% (wt/wt) of freeze dried SFWG were packed in polyethylene bags and stored at room temperature. Slices did not show contamination by fungi until at least 28days of storage and behaved as the calcium propionate (0.3%, wt/wt).

  2. Endogenous nitric oxide accumulation is involved in the antifungal activity of Shikonin against Candida albicans

    PubMed Central

    Liao, Zebin; Yan, Yu; Dong, Huaihuai; Zhu, Zhenyu; Jiang, Yuanying; Cao, Yingying

    2016-01-01

    The aim of the present study was to investigate the role of nitric oxide (NO) in the antifungal activity of Shikonin (SK) against Candida albicans (C. albicans) and to clarify the underlying mechanism. The results showed that the NO donors S-nitrosoglutathione (GSNO) and L-arginine could enhance the antifungal activity of SK, whereas the NO production inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) attenuated antifungal action. Using the fluorescent dye 3-amino,4-aminomethyl-2′, 7-difluorescein, diacetate (DAF-FM DA), we found that the accumulation of NO in C. albicans was increased markedly by SK in a time- and dose-dependent manner. In addition, the results of real-time reverse transcription-PCR (RT-PCR) demonstrated that the transcription level of YHB1 in C. albicans was greatly increased upon incubation of SK. Consistently, the YHB1-null mutant (yhb1Δ/Δ) exhibited a higher susceptibility to SK than wild-type cells. In addition, although the transcription level of CTA4 in C. albicans was not significantly changed when exposed to SK, the CTA4-null mutant (cta4Δ/Δ) was more susceptible to SK. Collectively, SK is the agent found to execute its antifungal activity directly via endogenous NO accumulation, and NO-mediated damage is related to the suppression of YHB1 and the function of CTA4. PMID:27530748

  3. In vitro antifungal activity of dihydroxyacetone against causative agents of dermatomycosis.

    PubMed

    Stopiglia, Cheila Denise Ottonelli; Vieira, Fabiane Jamono; Mondadori, Andressa Grazziotin; Oppe, Tércio Paschke; Scroferneker, Maria Lúcia

    2011-04-01

    Dihydroxyacetone (DHA), a three-carbon sugar, is the browning ingredient in commercial sunless tanning formulations. DHA preparations have been used for more than 50 years and are currently highly popular for producing temporary pigmentation resembling an ultraviolet-induced tan. In this work, the in vitro antifungal activity of dihydroxyacetone was tested against causative agents of dermatomycosis, more specifically against dermatophytes and Candida spp. The antifungal activity was determined by the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines for yeasts and filamentous fungi. The data obtained show that the fungicidal activity varied from 1.6 to 50 mg ml(-1). DHA seems to be a promising substance for the treatment of dermatomycosis because it has antifungal properties at the same concentration used in artificial suntan lotions. Therefore, it is a potential low-toxicity antifungal agent that may be used topically because of its penetration into the corneal layers of the skin.

  4. New Polyurethane Nail Lacquers for the Delivery of Terbinafine: Formulation and Antifungal Activity Evaluation.

    PubMed

    Gregorí Valdes, Barbara S; Serro, Ana Paula; Gordo, Paulo M; Silva, Alexandra; Gonçalves, Lídia; Salgado, Ana; Marto, Joana; Baltazar, Diogo; Dos Santos, Rui Galhano; Bordado, João Moura; Ribeiro, Helena Margarida

    2017-03-03

    Onychomycosis is a fungal nail infection. The development of new topical antifungal agents for the treatment of onychomycosis has focused on formulation enhancements that optimize the pharmacological characteristics required for its effective treatment. Polyurethanes (PUs) have never been used in therapeutic nail lacquers. The aim of this work has been the development of new PU-based nail lacquers with antifungal activity containing 1.0% (wt/wt) of terbinafine hydrochloride. The biocompatibility, wettability, and the prediction of the free volume in the polymeric matrix were assessed using a human keratinocytes cell line, contact angle, and Positron Annihilation Lifetime Spectroscopy determinations, respectively. The morphology of the films obtained was confirmed by scanning electron microscopy, while the nail lacquers' bioadhesion to nails was determined by mechanical tests. Viscosity, in vitro release profiles, and antifungal activity were also assessed. This study demonstrated that PU-terbinafine-based nail lacquers have good keratinocyte compatibility, good wettability properties, and adequate free volume. They formed a homogenous film after application, with suitable adhesion to the nail plate. Furthermore, the antifungal test results demonstrated that the terbinafine released from the nail lacquer Formulation A PU 19 showed activity against dermatophytes, namely Trichophyton rubrum.

  5. Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity.

    PubMed

    Pan, Feng; Liu, Zheng-Qiong; Chen, Que; Xu, Ying-Wen; Hou, Kai; Wu, Wei

    2016-01-01

    The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4-8d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80°C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata.

  6. Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria

    PubMed Central

    Shishido, Tania K.; Jokela, Jouni; Kolehmainen, Clara-Theresia; Fewer, David P.; Wahlsten, Matti; Wang, Hao; Rouhiainen, Leo; Rizzi, Ermanno; De Bellis, Gianluca; Permi, Perttu; Sivonen, Kaarina

    2015-01-01

    Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, β-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria. PMID:26474830

  7. Chemical Composition and Antifungal Activity of Angelica sinensis Essential Oil Against Three Colletotrichum Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical fungicides are an important component in disease management for most crops. As part of a program to discover natural product-based fungicides, several sensitive assay systems have been developed for the evaluation of naturally occurring antifungal agents. In this study, we focused on the di...

  8. Antifungal Activity of Tioconazole (UK-20,349), a New Imidazole Derivative

    PubMed Central

    Jevons, S.; Gymer, G. E.; Brammer, K. W.; Cox, D. A.; Leeming, M. R. G.

    1979-01-01

    Tioconazole (UK-20,349), a new antifungal imidazole derivative, was compared with miconazole for activity in vitro against Candida spp., Torulopsis glabrata, Cryptococcus neoformans, Aspergillus spp., and dermatophyte fungi (Trichophyton spp. and Microsporum spp.). Tioconazole was more active than miconazole against all the fungal species examined except Aspergillus, against which both agents showed similar activity. Both tioconazole and miconazole inhibited the growth of all fungi examined at concentrations well below their quoted minimum inhibitory concentrations. Their activity against fungi in vivo was investigated in mice infected systemically with Candida albicans. Both agents significantly reduced the numbers of viable Candida cells recoverable from the kidneys of infected animals, with tioconazole producing a generally more marked reduction. After administration of a single oral dose (25 mg/kg) to beagle dogs or white mice, higher and more sustained circulating levels of bioactive drug were detectable of tioconazole than of miconazole. These observations suggest that tioconazole may have potential in the treatment of both superficial and systemic mycoses in humans. PMID:464592

  9. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum.

    PubMed

    de Oliveira Pereira, Fillipe; Mendes, Juliana Moura; de Oliveira Lima, Edeltrudes

    2013-07-01

    Trichophyton rubrum is a worldwide agent responsible for chronic cases of dermatophytosis which have high rates of resistance to antifungal drugs. Attention has been drawn to the antimicrobial activity of aromatic compounds because of their promising biological properties. Therefore, we investigated the antifungal activity of eugenol against 14 strains of T. rubrum which involved determining its minimum inhibitory concentration (MIC) and effects on mycelial growth (dry weight), conidial germination and morphogenesis. The effects of eugenol on the cell wall (sorbitol protect effect) and the cell membrane (release of intracellular material, complex with ergosterol, ergosterol synthesis) were investigated. Eugenol inhibited the growth of 50% of T. rubrum strains employed in this study at an MIC = 256 μg/ml, as well as mycelial growth and conidia germination. It also caused abnormalities in the morphology of the dermatophyte in that we found wide, short, twisted hyphae and decreased conidiogenesis. The results of these studies on the mechanisms of action suggested that eugenol exerts antifungal effects on the cell wall and cell membrane of T. rubrum. Eugenol act on cell membrane by a mechanism that seems to involve the inhibition of ergosterol biosynthesis. The lower ergosterol content interferes with the integrity and functionality of the cell membrane. Finally, our studies support the potential use of the eugenol as an antifungal agent against T. rubrum.

  10. Chemical composition and antifungal activity of Salvia macrochlamys and Salvia recognita essential oils.

    PubMed

    Tabanca, Nurhayat; Demirci, Betul; Baser, Kemal Husnu Can; Aytac, Zeki; Ekici, Murat; Khan, Shabana I; Jacob, Melissa R; Wedge, David E

    2006-09-06

    Essential oils of Salvia macrochlamys and Salvia recognita were obtained by hydrodistillation of dried aerial parts and characterized by gas chromatography and gas chromatography-mass spectrometry. One hundred and twenty identified constituents representing 97.7% in S. macrochlamys and 96.4% in S. recognita were characterized, and 1,8-cineole, borneol, and camphor were identified as major components of the essential oils. The oils were evaluated for their antimalarial, antimicrobial, and antifungal activities. Antifungal activity of the essential oils from both Salvia species was nonselective at inhibiting growth and development of reproductive stroma of the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. S. macrochlamys oil had good antimycobacterial activity against Mycobacterium intracellulare; however, the oils showed no antimicrobial activity against human pathogenic bacteria or fungi up to a concentration of 200 microg/mL. S. recognita oil exhibited a weak antimalarial activity against Plasmodium falciparum.

  11. Characterization of anticancer, DNase and antifungal activity of pumpkin 2S albumin.

    PubMed

    Tomar, Prabhat Pratap Singh; Nikhil, Kumar; Singh, Anamika; Selvakumar, Purushotham; Roy, Partha; Sharma, Ashwani Kumar

    2014-06-13

    The plant 2S albumins exhibit a spectrum of biotechnologically exploitable functions. Among them, pumpkin 2S albumin has been shown to possess RNase and cell-free translational inhibitory activities. The present study investigated the anticancer, DNase and antifungal activities of pumpkin 2S albumin. The protein exhibited a strong anticancer activity toward breast cancer (MCF-7), ovarian teratocarcinoma (PA-1), prostate cancer (PC-3 and DU-145) and hepatocellular carcinoma (HepG2) cell lines. Acridine orange staining and DNA fragmentation studies indicated that cytotoxic effect of pumpkin 2S albumin is mediated through induction of apoptosis. Pumpkin 2S albumin showed DNase activity against both supercoiled and linear DNA and exerted antifungal activity against Fusarium oxysporum. Secondary structure analysis by CD showed that protein is highly stable up to 90°C and retains its alpha helical structure. These results demonstrated that pumpkin 2S albumin is a multifunctional protein with host of potential biotechnology applications.

  12. Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones.

    PubMed

    Ryu, Chung-Kyu; Park, Rae-Eun; Ma, Mi-Young; Nho, Ji-Hee

    2007-05-01

    6-Arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones were synthesized and tested for in vitro antifungal activity against two pathogenic strains of fungi. Among those tested, many compounds showed good antifungal activity. The results suggest that phthalazine-5,8-diones would be potent antifungal agents.

  13. The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll pathway activation function

    PubMed Central

    Matskevich, Alexey A.; Quintin, Jessica; Ferrandon, Dominique

    2010-01-01

    Summary The Drosophila Toll signalling pathway controls the systemic antifungal host response. Gram-negative binding protein 3 (GNBP3), a member of the β-Glucan recognition protein (βGRP) family, senses fungal infections and activates this pathway. A second detection system perceives the activity of proteolytic fungal virulence factors and redundantly activates Toll. GNBP3hades mutant flies succumb more rapidly to Candida albicans and to entomopathogenic fungal infections than wild type (WT) flies, despite normal triggering of the Toll pathway via the virulence detection system. These observations suggest that GNBP3 triggers antifungal defenses that are not dependent on activation of the Toll pathway. Here, we show that GNBP3 agglutinates fungal cells. Furthermore, it can activate melanization in a Toll-independent manner. Melanization is likely to be an essential defense against some fungal infections since the entomopathogenic fungus B. bassiana inhibits the activity of the main melanization enzymes, the phenol oxidases. Finally, we show that GNBP3 assembles “attack complexes”, which comprise PO and the serpin NEC. We propose that Drosophila GNBP3 targets fungi immediately at the inception of the infection by bringing effector molecules in direct contact with the invading microorganisms. PMID:20201042

  14. The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll-pathway activation function.

    PubMed

    Matskevich, Alexey A; Quintin, Jessica; Ferrandon, Dominique

    2010-05-01

    The Drosophila Toll-signaling pathway controls the systemic antifungal host response. Gram-negative binding protein 3 (GNBP3), a member of the beta-glucan recognition protein family senses fungal infections and activates this pathway. A second detection system perceives the activity of proteolytic fungal virulence factors and redundantly activates Toll. GNBP3(hades) mutant flies succumb more rapidly to Candida albicans and to entomopathogenic fungal infections than WT flies, despite normal triggering of the Toll pathway via the virulence detection system. These observations suggest that GNBP3 triggers antifungal defenses that are not dependent on activation of the Toll pathway. Here, we show that GNBP3 agglutinates fungal cells. Furthermore, it can activate melanization in a Toll-independent manner. Melanization is likely to be an essential defense against some fungal infections given that the entomopathogenic fungus Beauveria bassiana inhibits the activity of the main melanization enzymes, the phenol oxidases. Finally, we show that GNBP3 assembles "attack complexes", which comprise phenoloxidase and the necrotic serpin. We propose that Drosophila GNBP3 targets fungi immediately at the inception of the infection by bringing effector molecules in direct contact with the invading microorganisms.

  15. In Vitro and In Vivo Antifungal Activity of Lichochalcone-A against Candida albicans Biofilms

    PubMed Central

    Seleem, Dalia; Benso, Bruna; Noguti, Juliana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2016-01-01

    Oral candidiasis (OC) is an opportunistic fungal infection with high prevalence among immunocompromised patients. Candida albicans is the most common fungal pathogen responsible for OC, often manifested in denture stomatitis and oral thrush. Virulence factors, such as biofilms formation and secretion of proteolytic enzymes, are key components in the pathogenicity of C. albicans. Given the limited number of available antifungal therapies and the increase in antifungal resistance, demand the search for new safe and effective antifungal treatments. Lichochalcone-A is a polyphenol natural compound, known for its broad protective activities, as an antimicrobial agent. In this study, we investigated the antifungal activity of lichochalcone-A against C. albicans biofilms both in vitro and in vivo. Lichochalcone-A (625 μM; equivalent to 10x MIC) significantly reduced C. albicans (MYA 2876) biofilm growth compared to the vehicle control group (1% ethanol), as indicated by the reduction in the colony formation unit (CFU)/ml/g of biofilm dry weight. Furthermore, proteolytic enzymatic activities of proteinases and phospholipases, secreted by C. albicans were significantly decreased in the lichochalcone-A treated biofilms. In vivo model utilized longitudinal imaging of OC fungal load using a bioluminescent-engineered C. albicans (SKCa23-ActgLUC) and coelenterazine substrate. Mice treated with lichochalcone-A topical treatments exhibited a significant reduction in total photon flux over 4 and 5 days post-infection. Similarly, ex vivo analysis of tongue samples, showed a significant decrease in CFU/ml/mg in tongue tissue sample of lichochalcone-A treated group, which suggest the potential of lichochalcone-A as a novel antifungal agent for future clinical use. PMID:27284694

  16. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms.

    PubMed

    Seleem, Dalia; Chen, Emily; Benso, Bruna; Pardi, Vanessa; Murata, Ramiro M

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9-2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5-125 µM and 125-250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host.

  17. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    PubMed Central

    Benso, Bruna; Pardi, Vanessa

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9–2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5–125 µM and 125–250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host. PMID:27366648

  18. Rapamycin Exerts Antifungal Activity In Vitro and In Vivo against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor

    PubMed Central

    Bastidas, Robert J.; Shertz, Cecelia A.; Lee, Soo Chan; Heitman, Joseph

    2012-01-01

    The zygomycete Mucor circinelloides is an opportunistic fungal pathogen that commonly infects patients with malignancies, diabetes mellitus, and solid organ transplants. Despite the widespread use of antifungal therapy in the management of zygomycosis, the incidence of infections continues to rise among immunocompromised individuals. In this study, we established that the target and mechanism of antifungal action of the immunosuppressant rapamycin in M. circinelloides are mediated via conserved complexes with FKBP12 and a Tor homolog. We found that spontaneous mutations that disrupted conserved residues in FKBP12 conferred rapamycin and FK506 resistance. Disruption of the FKBP12-encoding gene, fkbA, also conferred rapamycin and FK506 resistance. Expression of M. circinelloides FKBP12 (McFKBP12) complemented a Saccharomyces cerevisiae mutant strain lacking FKBP12 to restore rapamycin sensitivity. Expression of the McTor FKBP12-rapamycin binding (FRB) domain conferred rapamycin resistance in S. cerevisiae, and McFKBP12 interacted in a rapamycin-dependent fashion with the McTor FRB domain in a yeast two-hybrid assay, validating McFKBP12 and McTor as conserved targets of rapamycin. We showed that in vitro, rapamycin exhibited potent growth inhibitory activity against M. circinelloides. In a Galleria mellonella model of systemic mucormycosis, rapamycin improved survival by 50%, suggesting that rapamycin and nonimmunosuppressive analogs have the potential to be developed as novel antifungal therapies for treatment of patients with mucormycosis. PMID:22210828

  19. Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity

    PubMed Central

    de Beer, Abré; Vivier, Melané A

    2008-01-01

    Background Latest research shows that small antimicrobial peptides play a role in the innate defense system of plants. These peptides typically contribute to preformed defense by developing protective barriers around germinating seeds or between different tissue layers within plant organs. The encoding genes could also be upregulated by abiotic and biotic stimuli during active defense processes. The peptides display a broad spectrum of antimicrobial activities. Their potent anti-pathogenic characteristics have ensured that they are promising targets in the medical and agricultural biotechnology sectors. Results A berry specific cDNA sequence designated Vv-AMP1, Vitis vinifera antimicrobial peptide 1, was isolated from Vitis vinifera. Vv-AMP1 encodes for a 77 amino acid peptide that shows sequence homology to the family of plant defensins. Vv-AMP1 is expressed in a tissue specific, developmentally regulated manner, being only expressed in berry tissue at the onset of berry ripening and onwards. Treatment of leaf and berry tissue with biotic or abiotic factors did not lead to increased expression of Vv-AMP1 under the conditions tested. The predicted signal peptide of Vv-AMP1, fused to the green fluorescent protein (GFP), showed that the signal peptide allowed accumulation of its product in the apoplast. Vv-AMP1 peptide, produced in Escherichia coli, had a molecular mass of 5.495 kDa as determined by mass spectrometry. Recombinant Vv-AMP1 was extremely heat-stable and showed strong antifungal activity against a broad spectrum of plant pathogenic fungi, with very high levels of activity against the wilting disease causing pathogens Fusarium oxysporum and Verticillium dahliae. The Vv-AMP1 peptide did not induce morphological changes on the treated fungal hyphae, but instead strongly inhibited hyphal elongation. A propidium iodide uptake assay suggested that the inhibitory activity of Vv-AMP1 might be associated with altering the membrane permeability of the fungal

  20. Antifungal activity of some 2,2':5',2"-terthiophene derivatives.

    PubMed

    Mares, D; Romagnoli, C; Rossi, R; Carpita, A; Ciofalo, M; Bruni, A

    1994-01-01

    The dermatophyte Microsporum cookei Ajello was treated with nine new natural and synthetic 2,2':5',2"-terthiophenes to determine their possible antifungal activity. In the dark the thiophenes were inactive, while when photoactivated with UV-A they induced a remarkable reduction in the growth rate of the fungus. The only exception was (E)-N-(2-methylpropyl)-3-(2,2':5',2"-terthien-5-yl)-propenamide , which was not fungistatic even at the highest dose tested (24 microM). The more active compounds were 3'-methoxy-2,2':5',2"-terthiophene and 3'-methylthio-2,2':5',2"-terthiophene, whose activity seems to be related to the presence of a substituent in the 3' position of the central ring of thiophenes. Transmission electron microscopic observations demonstrated the photoactive nature of the synthetic molecules to be similar to that of alpha-terthienyl, a natural thiophene present in some Asteraceae. The dark treatment caused only the accumulation of the compound in vacuoles, without other evident alterations. After UV-A irradiation the activated thiophene causes severe modifications to the endomembrane system, probably via oxygen-dependent mechanism.

  1. Isolation of a novel deoxyribonuclease with antifungal activity from Asparagus officinalis seeds.

    PubMed

    Wang, H; Ng, T B

    2001-11-23

    A deoxyribonuclease distinct from the previously isolated asparagus ribosome-inactivating proteins, possessing a molecular weight of 30 kDa and requiring a pH of 7.5 for optimum hydrolytic activity toward herring sperm DNA, was isolated from Asparagus officinalis seeds. The isolation procedure involved extraction with saline, (NH(4))(2)SO(4) precipitation, ion-exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on CM-Sepharose, and FPLC gel filtration on Superdex 75. The doxyribonuclease was unadsorbed onto DEAE-cellulose and Affi-gel blue gel and adsorbed onto CM-Sepharose. It exhibited the novel N-terminal sequence, GIEVIKIREL. The deoxyribonuclease was purified to a specific activity of 1584 units/mg. It was devoid of ribonuclease, protease, and HIV-1 reverse transcriptase-inhibitory activities. However, it inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC(50) of 20 microM. It exhibited antifungal activity toward Botrytis cinerea but not toward Fusarium oxysporum and Mycosphaerella arachidicola.

  2. Diversity of Endophytic Fungi Associated with Taraxacum coreanum and Their Antifungal Activity.

    PubMed

    Paul, Narayan Chandra; Kim, Won Ki; Woo, Sung Kyoon; Park, Myung Soo; Yu, Seung Hun

    2006-12-01

    Endophytic fungi were isolated from healthy leaf and root samples of Taraxacum coreanum. Of the 72 isolates recovered, 39 were from leaves and 33 from roots with an isolation frequency of 54% and 46%, respectively. Based on ITS sequence analysis, 72 isolates were classified into 19 genera of which 17 were under the phylum Ascomycota and 2 were under Basidiomycota. Diverse genera were found and Alternaria, Cladosporium, Fusarium and Phoma were dominant. Out of 19 genera, Apodus, Ceriporia, Dothideales, Leptodontidium, Nemania, Neoplaconema, Phaeosphaeria, Plectosphaerella and Terfezia were new to Korea. Seventy two isolates were screened for antifungal activity, of which 10 isolates (14%) were found active at least against one of the tested fungi. Isolate 050603 had the widest antifungal spectra of activity, and isolates 050592 and 050611 were active against three plant pathogenic fungi.

  3. Microwave-assisted synthesis and antifungal activity of novel fused Osthole derivatives.

    PubMed

    Zhang, Ming-Zhi; Zhang, Rong-Rong; Wang, Jia-Qun; Yu, Xiang; Zhang, Ya-Ling; Wang, Qing-Qing; Zhang, Wei-Hua

    2016-11-29

    Based on the microwave-assisted synthetic protocol developed in our previous work, we have synthesized a series of novel furo[3,2-c]coumarins as fused Osthole derivatives, via the reaction of 4-hydroxycoumarins and β-ketoesters catalyzed by DMAP. All the target compounds were evaluated in vitro for their antifungal activity against six phytopathogenic fungi, some compounds exhibited potential activity in the primary assays. Especially compounds 6c, 7b, 8b and 8c (shown in Fig. 1) were the most active ones, EC50 values of these four compounds against Colletotrichum capsica, Botrytis cinerea and Rhizoctonia solani were further investigated. 6c was identified as the most promising candidate with the EC50 value at 0.110 μM against Botrytis cinerea and 0.040 μM against Colletotrichum capsica, respectively, representing better antifungal activity than that of the commonly used fungicide Azoxystrobin.

  4. Synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones

    NASA Astrophysics Data System (ADS)

    Wang, H. M.; Deng, S. H.; Zheng, A. H.; Zhang, Q. Y.; Chen, X. B.; Zeng, X. H.; Hu, Y. G.

    2016-08-01

    The 3-aryl substituted thieno[2,3-d]pyrimidinones 3 by sequential reaction of iminophosphorane 1, aromatic isocyanates and various nucleophiles (HY), found some compounds showed good antitumor and antibacterial activities. Meanwhile, aliphatic isocyanates were applied in the reaction to prepare 3-alkyl substituted thieno[2,3- d]pyrimidinones, but there are no reports of their antifungal activities. As a continuation of our research for new biologically active heterocycles, we herein wish to report a facile synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones 6 via easily accessible iminophosphorane 1. The growth inhibitory effect of one concentration (50mg/L) of compounds 6 against five fungus(Fusarium oxysporium, Rhizoctonia solani, Colletotrichum gossypii, Gibberella zeae and Dothiorella gregaria) in vitro was tested by the method of toxic medium. Compound 6d showed the best inhibition rate against Gibberella zeae with 85.68%.

  5. Antifungal activity of itraconazole and voriconazole against clinical isolates obtained from animals with mycoses.

    PubMed

    Okabayashi, Ken; Imaji, Mashio; Osumi, Takafumi; Murakami, Yoshihiko; Maruyama, Haruhiko; Kano, Rui; Hasegawa, Atsuhiko; Watanabe, Toshi

    2009-01-01

    Animal mycosis, particularly deep mycosis, is one of the most challenging conditions encountered by veterinarians. Pathogens causing mycotic infections in animals include fungi such as Cryptococcus neoformans, Candida spp., and Aspergillus spp. The antifungal drugs used for the treatment of deep mycoses in animals as well as humans are polyenes and azoles. However, the sensitivity of clinical isolates obtained from animals toward these drugs has rarely been assayed. In this study, the antifungal activities of itraconazole and voriconazole against clinical isolates of C. neoformans, Candida spp., and A. fumigatus isolated from animals with mycoses were examined using the broth microdilution method performed according to the guidelines provided by the Clinical and Laboratory Standards Institute. The minimum inhibitory concentrations (MICs) of itraconazole toward the C. neoformans, Candida spp., and A. fumigatus isolates were 0.125 - 1, 0.125 - 2, and 0.25 - 2 microg/ml, respectively, and those of voriconazole were 0.0625 - 0.5, < or =0.0313 - 0.0625, and 0.0625 - 1 microg/ml, respectively. The results of the MIC analyses implied that the fungal isolates obtained from infected animals exhibit an equivalent degree of susceptibility to itraconazole and voriconazole, as is observed in the case of isolates obtained from humans. The appropriate antifungal therapeutic strategy for the treatment of mycoses in animals must be selected taking into consideration the host immune status and organ function as well as the in vitro sensitivity of the pathogens to antifungal drugs.

  6. One-pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety.

    PubMed

    Zhang, Jin; Liu, Jia; Ma, Yangmin; Ren, Decheng; Cheng, Pei; Zhao, Jiawen; Zhang, Fan; Yao, Yuan

    2016-05-01

    An efficient one-pot, three-component synthesis of quinazolinone derivatives containing 3-acrylamino motif was carried out using CeO2 nanoparticles as catalyst. Thirty-nine synthesized compounds were obtained with satisfied yield and elucidated by spectroscopic analysis. Four phytopathogenic fungi were chosen to test the antifungal activities by minimum inhibitory concentration (MIC) method. Compounds 4ag, 4bb, 4bc showed broad antifungal activities against at least three fungi, and dramatic effects of substituents on the activities were observed. Docking studies were established to explore the potential antifungal mechanism of quinazolinone derivatives as the chitinase inhibitors, and also verified the importance of the amide moiety.

  7. Antifungal Activity of Cinnamon Oil and Olive Oil against Candida Spp. Isolated from Blood Stream Infections

    PubMed Central

    Rohilla, Hina; Singh, Gajender; Punia, Parul

    2016-01-01

    Introduction Recently non-albicans Candida has emerged as a major cause of morbidity and mortality in blood stream infections. Some species of the Candida are becoming increasingly resistant to first line and second line antifungals such as echinocandins and fluconazole. In view of increasing global antifungal resistance, role of alternative and better antifungals like natural plant products need to be explored. Essential oils are known to exhibit antimicrobial activity against various fungi. Hence, we evaluated the efficacy of cinnamon oil and olive oil against Candida spp. Aim To evaluate the invitro antifungal activity of olive oil and cinnamon oil against blood stream Candida isolates. Materials and Methods The present prospective observational study was conducted in the Department of Microbiology at a tertiary care teaching hospital during one year June 2011-July 2012. Blood samples were collected from 1376 patients clinically suspected to have fungal septicaemia, out of which 100 (7.2%) Candida isolates obtained, were speciated by conventional methods. Antifungal susceptibility testing of all the isolates was done against fluconazole, voriconazole as per NCCL (M27-A2) and against olive oil and cinnamon oil by agar well diffusion method. Results Prevalence of Candidemia was 7.26%. C. albicans (85.3%) and C. parapsilosis (85.7%) were most sensitive to fluconazole followed by C. tropicalis (67.4%). All isolates were 100% sensitive to voriconazole. Both oils were found to be effective against nearly 50% of the Candida isolates. About 55.5% of fluconazole resistant C. krusei strains were sensitive to olive and cinnamon oil. Conclusion Fluconazole resistant non-albicans Candida has emerged as major cause of Candidemia. Cinnamon and olive oil show marked sensitivity against albicans and non-albicans spp. PMID:27656437

  8. Impact of brief exposure to antifungal agents on the post-antifungal effect and hemolysin activity of oral Candida albicans

    PubMed Central

    ELLEPOLA, Arjuna Nishantha; KHAJAH, Rana; JAYATILAKE, Sumedha; SAMARANAYAKE, Lakshman; SHARMA, Prem; KHAN, Zia

    2015-01-01

    Post-antifungal effect (PAFE) of Candida and its production of hemolysin are determinants of candidal pathogenicity. Candida albicans is the foremost aetiological agent of oral candidosis, which can be treated with polyene, azole, and echinocandin antifungals. However, once administered, the intraoral concentrations of these drugs tend to be subtherapeutic and transient due to the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, Candida may undergo a brief exposure to antifungal drugs. Objective Therefore, the PAFE and hemolysin production of oral C. albicans isolates following brief exposure to sublethal concentrations of the foregoing antifungals were evaluated. Material and Methods A total of 50 C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sublethal concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for 60 min. Thereafter, the drugs were removed and the PAFE and hemolysin production were determined by previously described turbidometric and plate assays, respectively. Results Nystatin, amphotericin B, caspofungin and ketoconazole induced mean PAFE (hours) of 2.2, 2.18, 2.2 and 0.62, respectively. Fluconazole failed to produce a PAFE. Hemolysin production of these isolates was suppressed with a percentage reduction of 12.27, 13.47, 13.33, 8.53 and 4.93 following exposure to nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole, respectively. Conclusions Brief exposure to sublethal concentrations of antifungal drugs appears to exert an antifungal effect by interfering with the growth as well as hemolysin production of C. albicans. PMID:26398514

  9. Comparative study of antifungal activities of six selected essential oils against fungal isolates from cheese wagashi in Benin.

    PubMed

    Sessou, P; Farougou, S; Ahounou, S; Hounnankpon, Y; Azokpota, P; Youssao, I; Sohounhloue, D

    2013-12-01

    The study has compared the antifungal efficacy of six essential oils, Cinnamomum zeylanicum, Cymbopogon citratus, Ocimum gratissimum, Pimenta racemosa, Syzygium aromaticum and Zingiber officinale, tested in culture medium and in traditional cheese wagashi system against moulds belonging to Aspergillus, Penicillium, Fusarium and Scopulariopsis genera in perspective to select the most actives as substitutes of chemical preservatives for wagashi preservation. Results obtained from this work indicated that Syzygium aromaticum, Pimenta racemosa, Ocimum gratissimum and Cymbopogon citratus essentials oils were the most actives extracts at in vitro assay in decreasing order with strong fungistatic activity against the isolates tested; the pronounced activity was provided by S. aromaticum essential oil. The effectiveness of these actives oils on the less sensitive moulds common to these oils showed that, among these extracts that of Syzygium aromaticum in particular exerted high sporale reduction against all the strains tested. In sum, Syzygium aromaticum essential oil possessed the highest antifungal activity both in culture medium and in wagashi system. Essential oils of C. citratus, O. gratissimum, P. racemosa and above all that of S. aromaticum, among the six extracts investigated, were the most promising oils as wagashi additives in substitution of synthetic chemicals ones to extend shelf life time of this by-product of milk for its valorization. Further studies are needed to be performed on the safety of oils for human, the shelf life time of this cheese and its acceptability when treated with essential oils to reduce and control pathogen contamination or native microflora.

  10. Phylogenetic Diversity and Antifungal Activity of Endophytic Fungi Associated with Tephrosia purpurea

    PubMed Central

    Luo, Ze-Ping; Lin, Hai-Yan; Ding, Wen-Bing; He, Hua-Liang

    2015-01-01

    Sixty-one endophytic fungus strains with different colony morphologies were isolated from the leaves, stems and roots of Tephrosia purpurea with colonization rates of 66.95%, 37.50%, and 26.92%, respectively. Based on internal transcribed spacer sequence analysis, 61 isolates were classified into 16 genera belonging to 3 classes under the phylum Ascomycota. Of the 61 isolates, 6 (9.84%) exhibited antifungal activity against one or more indicator plant pathogenic fungi according to the dual culture test. Isolate TPL25 had the broadest antifungal spectrum of activity, and isolate TPL35 was active against 5 plant pathogenic fungi. Furthermore, culture filtrates of TPL25 and TPL35 exhibited greater than 80% growth inhibition against Sclerotinia sclerotiorum. We conclude that the endophytic fungal strains TPL25 and TPL35 are promising sources of bioactive compounds. PMID:26839503

  11. Phylogenetic Diversity and Antifungal Activity of Endophytic Fungi Associated with Tephrosia purpurea.

    PubMed

    Luo, Ze-Ping; Lin, Hai-Yan; Ding, Wen-Bing; He, Hua-Liang; Li, You-Zhi

    2015-12-01

    Sixty-one endophytic fungus strains with different colony morphologies were isolated from the leaves, stems and roots of Tephrosia purpurea with colonization rates of 66.95%, 37.50%, and 26.92%, respectively. Based on internal transcribed spacer sequence analysis, 61 isolates were classified into 16 genera belonging to 3 classes under the phylum Ascomycota. Of the 61 isolates, 6 (9.84%) exhibited antifungal activity against one or more indicator plant pathogenic fungi according to the dual culture test. Isolate TPL25 had the broadest antifungal spectrum of activity, and isolate TPL35 was active against 5 plant pathogenic fungi. Furthermore, culture filtrates of TPL25 and TPL35 exhibited greater than 80% growth inhibition against Sclerotinia sclerotiorum. We conclude that the endophytic fungal strains TPL25 and TPL35 are promising sources of bioactive compounds.

  12. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species.

    PubMed

    Cavaleiro, Carlos; Salgueiro, Lígia; Gonçalves, Maria-José; Hrimpeng, Karnjana; Pinto, Jéssica; Pinto, Eugénia

    2015-04-01

    The composition and antifungal activity of the essential oil (EO) of Angelica major and its main components α-pinene and cis-β-ocimene against clinically relevant yeasts and moulds were evaluated. EO from the plant's aerial parts was obtained by hydrodistillation and analysed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The oil showed high contents of α-pinene (21.8 %) and cis-β-ocimene (30.4 %). Minimum inhibitory concentrations (MICs) were measured according to the broth macrodilution protocols by the Clinical and Laboratory Standards Institute (CLSI). The EO, α-pinene and cis-β-ocimene displayed low MICs and minimum fungicidal concentrations (MFCs) against dermatophytes and Cryptococcus neoformans, with α-pinene being the most active. Regarding Candida species, the EO susceptibility profiles seem to be diverse and not correlated with fluconazole susceptibility patterns. Moreover, an inhibition of yeast-mycelium transition was demonstrated at sub-inhibitory concentrations of the EO, α-pinene and cis-β-ocimene in C. albicans. In addition, their haemolytic activity was low. The activity displayed by A. major EO and its main components associated with low cytotoxic activity confirms their potential as an antifungal agent against fungal species frequently implicated in human mycoses, particularly cryptococcosis and dermatophytosis. The association with commercial antifungal compounds could bring benefits, by the effect on germ tube formation, and be used in mucocutaneous candidiasis treatment.

  13. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.

    PubMed

    Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang

    2015-04-10

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential.

  14. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.

    PubMed

    Radwan, Mohamed M; Tabanca, Nurhayat; Wedge, David E; Tarawneh, Amer H; Cutler, Stephen J

    2014-12-01

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from turmeric (1-3) and three compounds from nutmeg (4-6). Their chemical structures were elucidated by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-Δ(8')-4,7-dihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan (4), erythro-(7R,8R)-Δ8'-7-acetoxy-3,4,3',5'-tetra-methoxy-8-O-4'-neolignan (5), and 5-hydroxy-eugenol (6). The isolated compounds were subsequently evaluated using a 96-well microbioassay against plant pathogens. At 30 μM, compounds 2 and 3 possessed the most antifungal activity against Phomopsis obscurans and Phomopsis viticola, respectively.

  15. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

    PubMed Central

    Bulgasem, Bulgasem Y.; Lani, Mohd Nizam; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G.

    2016-01-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species. PMID:28154488

  16. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species.

    PubMed

    Bulgasem, Bulgasem Y; Lani, Mohd Nizam; Hassan, Zaiton; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G

    2016-12-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

  17. Antibacterial and Antifungal Activity of ZnO Containing Glasses

    PubMed Central

    Esteban-Tejeda, Leticia; Prado, Catuxa; Cabal, Belén; Sanz, Jesús; Torrecillas, Ramón; Moya, José Serafín

    2015-01-01

    A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15–40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S. aureus) and yeast (C. krusei); they are chemically stable in different media (distilled water, sea-like water, LB and DMEN media) as well as biocompatible. The cytotoxicity was evaluated by the Neutral Red Uptake using NIH-3T3 (mouse embryonic fibroblast cells) and the cell viability was >80%. These new glasses can be considered in several and important applications in the field of inorganic non-toxic biocide agents such as medical implants, surgical equipment, protective apparels in hospitals, water purifications systems, food packaging, food storages or textiles. PMID:26230940

  18. Assessment of Antifungal Activity of Bakuchiol on Oral-Associated Candida spp.

    PubMed Central

    Nordin, Mohd-Al-Faisal; Abdul Razak, Fathilah; Himratul-Aznita, Wan Harun

    2015-01-01

    Bakuchiol is an active component of Psoralea glandulosa and Psoralea corylifolia, used in traditional Chinese medicine. The study aimed at investigating the antifungal activity of bakuchiol on planktonic and biofilm forms of orally associated Candida species. The antifungal susceptibility testing was determined by the broth micro dilution technique. Growth kinetics and cell surface hydrophobicity (CSH) of Candida were measured to assess the inhibitory effect of bakuchiol on Candida planktonic cells. Biofilm biomass and cellular metabolic activity were quantitatively estimated by the crystal violet (CV) and the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) assays. All Candida strains have been shown to be susceptible to bakuchiol with the MIC ranges from 12.5 to 100 μg/mL. Significant decrease in specific growth rates and viable counts demonstrates the inhibitory effect of bakuchiol on Candida planktonic cells. A brief exposure to bakuchiol also reduced CSH of Candida (P < 0.05), indicating altered surface properties of yeast cells towards hydrophobic interfaces. Biofilm biomass and cell metabolic activity were mostly decreased, except for C. glabrata (P = 0.29). The antifungal properties of bakuchiol on Candida species in this in vitro study may give insights into the application in therapeutic strategy against Candida infections. PMID:26633986

  19. Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils.

    PubMed

    Tabanca, Nurhayat; Demirci, Betul; Crockett, Sara L; Başer, Kemal Hüsnü Can; Wedge, David E

    2007-10-17

    Essential oils from three different Asteraceae obtained by hydrodistillation of aerial parts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Main compounds obtained from each taxon were found as follows: Arnica longifolia carvacrol 37.3%, alpha-bisabolol 8.2%; Aster hesperius hexadecanoic acid 29.6%, carvacrol 15.2%; and Chrysothamnus nauseosus var. nauseosus beta-phellandrene 22.8% and beta-pinene 19.8%. Essential oils were also evaluated for their antimalarial and antimicrobial activity against human pathogens, and antifungal activities against plant pathogens. No antimalarial and antimicrobial activities against human pathogens were observed. Direct bioautography demonstrated antifungal activity of the essential oils obtained from three Asteraceae taxa and two pure compounds, carvacrol and beta-bisabolol, to the plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Subsequent evaluation of antifungal compounds using a 96-well micro-dilution broth assay indicated that alpha-bisabolol showed weak growth inhibition of the plant pathogen Botrytis cinerea after 72 h.

  20. Antifungal activity of Turkish honey against Candida spp. and Trichosporon spp: an in vitro evaluation.

    PubMed

    Koc, Ayşe Nedret; Silici, Sibel; Ercal, Bariş Derya; Kasap, Filiz; Hörmet-Oz, Hatice Tuna; Mavus-Buldu, Hikmet

    2009-11-01

    Abstract Honey samples from different floral sources were evaluated for their ability to inhibit the growth of 40 yeast strains (Candida albicans, C. krusei, C. glabrata and Trichosoporon spp.). Broth microdilution method (CLSI, M27-A2) was used to assess the activity of the honeys against yeasts at different concentrations ranging from 1.25-80% (v/v). All of the yeast strains tested were inhibited by honeys in this study. Broth microdilution assay revealed that inhibition of growth depends on the type and concentration of honey as well as the test pathogen. Little or no antifungal activity was seen at honey concentrations <2%. Rhododendron and multifloral honeys have generally more inhibitory effect than eucalyptus and orange honeys (P<0.05). Fluconazole-resistant yeast strains were examined for their susceptibility to honeys. This study demonstrated that, in vitro, these honeys had antifungal activity at the high concentration of 80% (v/v) in these fluconazole-resistant strains. Further studies are now required to demonstrate if this antifungal activity has any clinical application.

  1. Phytochemical Composition, Antifungal and Antioxidant Activity of Duguetia furfuracea A. St.-Hill

    PubMed Central

    Pinho, Francisca Valéria Soares de Araújo; da Cruz, Litiele Cezar; Rodrigues, Nathane Rosa; Waczuk, Emily Pansera; Souza, Celestina Elba Sobral; da Costa, José Galberto Martins; Athayde, Margareth Linde; de Menezes, Irwin Rose Alencar

    2016-01-01

    Background. Duguetia furfuracea is popular plant used in popular medicine. Hypothesis/Purpose. This claim evaluated the phytochemical composition of the hydroethanolic extract (HEDF), fractions of Duguetia furfuracea, and antioxidant and antifungal activity. Methods. The chemical profile was carried out by HPLC-DAD. The total phenolic contents and flavonoid components were determined by Folin-Ciocalteu and aluminium chloride reaction. The antioxidant activity was measured by scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and ferric reducing ability of plasma (FRAP) methods. The antifungal activity was determined by microdilution assay. Results. HPLC analysis revealed caffeic acid and rutin as major compounds (HEDF), caffeic acid and quercitrin (Mt-OH fraction), and quercitrin and isoquercitrin (Ac-OEt fraction). The highest levels of phenols and total flavonoids were found for Ac-OEt fraction, and the crude extract showed higher in vitro antioxidant potential. The antifungal activity showed synergic effect with fluconazole and EHDF against C. krusei, fluconazole and Mt-OH against C. krusei and C. tropicalis, and Ac-OE and fluconazole against C. albicans. Conclusion. The highest levels of phenols and total flavonoids were marked with antioxidant effect. This is the first report of bioactivity of the synergic effect of HEDF and fractions. More studies would be required to better clarify its mechanism of synergic action. PMID:27127550

  2. In vitro antifungal activity of organic compounds derived from amino alcohols against onychomycosis.

    PubMed

    Caneschi, César Augusto; Almeida, Angelina Maria de; Martins, Francislene Juliana; Hyaric, Mireille Le; Oliveira, Manoel Marques Evangelista; Macedo, Gilson Costa; Almeida, Mauro Vieira de; Raposo, Nádia Rezende Barbosa

    2017-02-09

    Onychomycosis is a fungal infection of the nail caused by high densities of filamentous fungi and yeasts. Treatment for this illness is long-term, and recurrences are frequently detected. This study evaluated in vitro antifungal activities of 12 organic compounds derived from amino alcohols against standard fungal strains, such as Trichophyton rubrum CCT 5507 URM 1666, Trichophyton mentagrophytes ATCC 11481, and Candida albicans ATCC 10231. The antifungal compounds were synthesized from p-hydroxybenzaldehyde (4a-4f) and p-hydroxybenzoic acid (9a-9f). Minimum inhibitory concentrations and minimum fungicidal concentrations were determined according to Clinical and Laboratory Standards Institute protocols M38-A2, M27-A3, and M27-S4. The amine series 4b-4e, mainly 4c and 4e compounds, were effective against filamentous fungi and yeast (MIC from 7.8 to 312μg/mL). On the other hand, the amide series (9a-9f) did not present inhibitory effect against fungi, except amide 9c, which demonstrated activity only against C. albicans. This allowed us to infer that the presence of amine group and intermediate carbon number (8C-11C) in its aliphatic side chain seems to be important for antifungal activity. Although these compounds present cytotoxic activity on macrophages J774, our results suggest that these aromatic compounds might constitute potential as leader molecules in the development of more effective and less toxic analogs that could have considerable implications for future therapies of onychomycosis.

  3. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav.

    PubMed

    Zuzarte, Monica; Gonçalves, Maria J; Cavaleiro, Carlos; Dinis, Augusto M; Canhoto, Jorge M; Salgueiro, Lígia R

    2009-08-01

    The chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav., harvested in North and Central Portugal, were investigated. The essential oils were isolated by hydrodistillation and analyzed by GC and GC/MS. The minimal-inhibitory concentration (MIC) and the minimal-lethal concentration (MLC) of the essential oils and of their major constituents were used to evaluate the antifungal activity against different strains of fungi involved in candidosis, dematophytosis, and aspergillosis. The oils were characterized by a high percentage of oxygenated monoterpenes, the main compounds being 1,8-cineole (2.4-55.5%), fenchone (1.3-59.7%), and camphor (3.6-48.0%). Statistical analysis differentiated the essential oils into two main types, one characterized by the predominance of fenchone and the other one by the predominance of 1,8-cineole. Within the 1,8-cineole chemotype, two subgroups were well-defined taking into account the percentages of camphor. A significant antifungal activity of the oils was found against dermatophyte strains. The essential oil with the highest content of camphor was the most active with MIC and MLC values ranging from 0.32-0.64 microl/ml.

  4. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.

    PubMed

    Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

    2015-01-01

    This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations.

  5. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species.

    PubMed

    Pinto, Eugénia; Vale-Silva, Luís; Cavaleiro, Carlos; Salgueiro, Lígia

    2009-11-01

    The composition and antifungal activity of clove essential oil (EO), obtained from Syzygium aromaticum, were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against Candida, Aspergillus and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by Candida albicans was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.

  6. Antifungal activity, toxicity and chemical composition of the essential oil of Coriandrum sativum L. fruits.

    PubMed

    Soares, Bruna V; Morais, Selene M; dos Santos Fontenelle, Raquel Oliveira; Queiroz, Vanessa A; Vila-Nova, Nadja S; Pereira, Christiana M C; Brito, Edy S; Neto, Manoel A S; Brito, Erika H S; Cavalcante, Carolina S P; Castelo-Branco, Débora S C M; Rocha, Marcos F G

    2012-07-11

    The aims of this study were to test the antifungal activity, toxicity and chemical composition of essential oil from C. sativum L. fruits. The essential oil, obtained by hydro-distillation, was analyzed by gas chromatography/mass spectroscopy. Linalool was the main constituent (58.22%). The oil was considered bioactive, showing an LC₅₀ value of 23 μg/mL in the Artemia salina lethality test. The antifungal activity was evaluated against Microsporum canis and Candida spp. by the agar-well diffusion method and the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were established by the broth microdilution method. The essential oil induced growth inhibition zones of 28 ± 5.42 and 9.25 ± 0.5 for M. canis and Candida spp. respectively. The MICs and MFCs for M. canis strains ranged from 78 to 620 and 150 to 1,250 μg/mL, and the MICs and MFCs for Candida spp strains ranged from 310 to 620 and 620 to 1,250 μg/mL, respectively. C. sativum essential oil is active in vitro against M. canis and Candida spp. demonstrating good antifungal activity.

  7. Binding mode of dihydroquinazolinones with lysozyme and its antifungal activity against Aspergillus species.

    PubMed

    Hemalatha, K; Madhumitha, G; Ravi, Lokesh; Khanna, V Gopiesh; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan

    2016-08-01

    Aspergillosis is one of the infectious fungal diseases affecting mainly the immunocompromised patients. The scarcity of the antifungal targets has identified the importance of N-myristoyl transferase (NMT) in the regulation of fungal pathway. The dihydroquinazolinone molecules were designed on the basis of fragments responsible for binding with the target enzyme. The aryl halide, 1(a-g), aryl boronic acid and potassium carbonate were heated together in water and dioxane mixture to yield new CC bond formation in dihydroquinazolinone. The bis(triphenylphosphine)palladium(II) dichloride was used as catalyst for the CC bond formation. The synthesized series were screened for their in vitro antifungal activity against Aspergillus niger and Aspergillus fumigatus. The binding interactions of the active compound with lysozyme were explored using multiple spectroscopic studies. Molecular docking study of dihydroquinazolinones with the enzyme revealed the information regarding various binding forces involved in the interaction.

  8. Endophytic fungi diversity of aquatic/riparian plants and their antifungal activity in vitro.

    PubMed

    Li, Hai-Yan; Zhao, Chun-An; Liu, Chen-Jian; Xu, Xiao-Fei

    2010-02-01

    Two hundred and fourteen endophytic fungi were isolated from 500 segments of aquatic/riparian plants Ottelia acuminata, Myriophyllum verticillatum, Equisetum arvense, Cardamine multijuga, and Impatiens chinensis. They were identified to 31 taxa in which Cladosporium, Fusarium, and Geotrichum were the dominant genera. Among all isolates, 169 (79%) were anamorphic fungi, 1 (0.5%) was an teleomorphic ascomycete and 44 (21%) were sterile mycelia. There were significant differences in the colonization frequency of endophytes between the five plant species (X~2=51.128, P<0.001, Chi-square test). The riparian plants harboured more endophytes than the submerged plants. The antifungal activity of these isolates against Fusarium solani and Phytophthora nicotianae in vitro were tested and 28 (13.1%) isolates showed antifungal activities with more than 30% growth inhibition rate against the two pathogens.

  9. Purification and characterisation of a novel chitinase from persimmon (Diospyros kaki) with antifungal activity.

    PubMed

    Zhang, Jianzhi; Kopparapu, Narasimha Kumar; Yan, Qiaojuan; Yang, Shaoqing; Jiang, Zhengqiang

    2013-06-01

    A novel chitinase from the persimmon fruit was isolated, purified and characterised in this report. The Diospyros kaki chitinase (DKC) was found to be a monomer with a molecular mass of 29 kDa. It exhibited optimal activity at pH 4.5 with broad pH stability from pH 4.0-9.0. It has an optimal temperature of 60°C and thermostable up to 60°C when incubated for 30 min. The internal peptide sequences of DKC showed similarity with other reported plant chitinases. It has the ability to hydrolyse colloidal chitin into chito-oligomers such as chitotriose, chitobiose and into its monomer N-acetylglucosamine. It can be used to degrade chitin waste into useful products such as chito-oligosacchaarides. DKC exhibited antifungal activity towards pathogenic fungus Trichoderma viride. Chitinases with antifungal property can be used as biocontrol agents replacing chemical fungicides.

  10. Antifungal Activity of Plant Extracts against Candida Species from Oral Lesions

    PubMed Central

    Prabhakar, K.; Kumar, L. Sathish; Rajendran, S.; Chandrasekaran, M.; Bhaskar, K.; Sajit Khan, A. K.

    2008-01-01

    Seventy five patients with oral lesions attending the different departments of Rajah Muthiah Medical College and Hospital, Annamalai University were screened for Candida. Forty six (61.3%) Candida strains were isolated from the oral lesions. Of the 46 Candida strains, Candida albicans accounted for 35 (76.08%), Candida glabrata for 5 (10.86%), Candida tropicalis and Candida krusei for 2 (4.34%) each and Candida parapsilosis and Candida guilliermondii for one (2.17%) each. Antifungal activity of ethanol extracts of five plant species that included Syzygium jambolanum, Cassia siamea, Odina wodier, Momordica charantia and Melia azedarach and two algal species, Sargassum wightii and Caulerpa scalpelliformis were tested against 25 isolated strains by disc diffusion method. Antifungal activity was observed at 100 mg/ml for Syzygium jambolanum, Cassia siamea and Caulerpa scalpelliformis and at 10 mg/ml for Sargassum wightii. PMID:21369447

  11. Antifungal Activity of Plant Extracts against Candida Species from Oral Lesions.

    PubMed

    Prabhakar, K; Kumar, L Sathish; Rajendran, S; Chandrasekaran, M; Bhaskar, K; Sajit Khan, A K

    2008-11-01

    Seventy five patients with oral lesions attending the different departments of Rajah Muthiah Medical College and Hospital, Annamalai University were screened for Candida. Forty six (61.3%) Candida strains were isolated from the oral lesions. Of the 46 Candida strains, Candida albicans accounted for 35 (76.08%), Candida glabrata for 5 (10.86%), Candida tropicalis and Candida krusei for 2 (4.34%) each and Candida parapsilosis and Candida guilliermondii for one (2.17%) each. Antifungal activity of ethanol extracts of five plant species that included Syzygium jambolanum, Cassia siamea, Odina wodier, Momordica charantia and Melia azedarach and two algal species, Sargassum wightii and Caulerpa scalpelliformis were tested against 25 isolated strains by disc diffusion method. Antifungal activity was observed at 100 mg/ml for Syzygium jambolanum, Cassia siamea and Caulerpa scalpelliformis and at 10 mg/ml for Sargassum wightii.

  12. Antifungal activity of Syzygium cumini against Ascochyta rabiei-the cause of chickpea blight.

    PubMed

    Jabeen, Khajista; Javaid, Arshad

    2010-07-01

    Aqueous, ethanol and n-hexane extracts from leaves, fruit, root-bark and stem-bark of Syzygium cumini (L.) Skeels were tested for their antifungal activity against Ascochyta rabiei (Pass.) Lab., the cause of blight disease of the chickpea (Cicer arietinum L.). Different concentrations, namely 1, 2, ..., 5% of both aqueous and the two organic solvent extracts were used in this study. Aqueous extracts of all the four test plant parts, namely leaves, fruit, stem-bark and root-bark, showed significant antifungal activity resulting in 7-30%, 22-59%, 23-39% and 21-64% reduction in fungal growth, respectively. Similarly, n-hexane stem-bark extract, and ethanol root- and stem-bark extracts also significantly suppressed the growth of target fungal species, resulting in 17-39%, 24-30% and 12-32% suppression in fungal growth.

  13. Influence of soil reaction on diversity and antifungal activity of fluorescent pseudomonads in crop rhizospheres.

    PubMed

    Verma, Rajni; Naosekpam, Ajit Singh; Kumar, Sanjay; Prasad, Ramdeen; Shanmugam, V

    2007-05-01

    The diversity and antifungal activity of fluorescent pseudomonads isolated from rhizospheres of tea, gladiolus, carnation and black gram grown in acidic soils with similar texture and climatic conditions were studied. Biochemical characterisation including antibiotic resistance assay, RAPD and PCR-RFLP studies revealed a largely homogenous population. At soil pH (5.2), the isolates exhibited growth with varying levels of siderophore production, irrespective of crop rhizospheres. Two isolates with maximum chitinase production showed antagonism. The bacterial populations in general lacked the ability to produce deleterious traits such as cellulase, pectinase and hydrogen cyanide. However, increased pH levels beyond 5.2 caused reduction in metabolite production with reduced antifungal activity. The homogeneity of the bacterial population irrespective of crop rhizospheres together with decreased secondary metabolite production at higher pH levels reinstated the importance of soil over host plant in influencing rhizosphere populations. The studies also yielded acid tolerant chitinase producing antagonistic fluorescent pseudomonads.

  14. In vitro activities of a wide panel of antifungal drugs against various Scopulariopsis and Microascus species.

    PubMed

    Skóra, Magdalena; Bulanda, Małgorzata; Jagielski, Tomasz

    2015-09-01

    The in vitro activities of 11 antifungal drugs against 68 Scopulariopsis and Microascus strains were investigated. Amphotericin B, 5-fluorocytosine, fluconazole, itraconazole, ketoconazole, miconazole, posaconazole, voriconazole, and ciclopirox showed no or poor antifungal effect. The best activities were exhibited by terbinafine and caspofungin, where the MIC and MEC (minimal effective concentration) ranges were 0.0313 to >16 μg/ml and 0.125 to 16 μg/ml, respectively. The MIC and MEC modes were both 1 µg/ml for terbinafine and caspofungin; the MIC50 and MEC50 were 1 µg/ml for both drugs, whereas the MIC90 and MEC90 were 4 µg/ml and 16 µg/ml, respectively.

  15. Synthesis and antifungal activity of the derivatives of novel pyrazole carboxamide and isoxazolol pyrazole carboxylate.

    PubMed

    Sun, Jialong; Zhou, Yuanming

    2015-03-09

    A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy). Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani) using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol.

  16. Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity.

    PubMed

    Li, Qing; Tan, Wenqiang; Zhang, Caili; Gu, Guodong; Guo, Zhanyong

    2016-10-01

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed prior to further utilization. Three novel water soluble chitosan derivatives containing 1,2,3- triazole with or without halogen was designed and synthesized. Their antifungal activity against three kinds of phytopathogens was estimated by hyphal measurement in vitro. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that thiazolyl groups enable the synthesized chitosan to possess obviously better antifungal activity. Moreover, CTCTS and BTCTS, which have halogens at the periphery of polymers, inhibited the growth of tested phytopathogens more effectively with inhibitory indices of 81-93% at 1.0mg/mL. The halogens could have a synergistic effect with triazole as they exhibited antifungal activity and electron-withdrawing capacity, which improve the antifungal activity of chitosan derivatives.

  17. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent.

    PubMed

    Elfadil, Hassabelrasoul; Fahal, Ahmed; Kloezen, Wendy; Ahmed, Elhadi M; van de Sande, Wendy

    2015-03-01

    Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml) and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging.

  18. Antifungal activity of Malaysian honey and propolis extracts against pathogens implicated in denture stomatitis

    NASA Astrophysics Data System (ADS)

    Yusoff, Nik Yusliyana Nik; Mohamad, Suharni; Abdullah, Haswati@Nurhayati; Rahman, Nurhayu Ab

    2016-12-01

    Malaysian honey and propolis extracts were investigated for their antifungal properties against pathogens implicated in denture stomatitis. Each of the honey and aqueous extracts propolis at net preparation, 1:1 and 1:2 dilutions was evaluated by using agar well diffusion assay and further investigated by minimum inhibitory concentration (MIC) within the range of 500 mg/mL to 62.5 mg/mL against oral fungi. The findings indicated that there was no effect of propolis on Candida spp for both types of propolis based on no inhibition zones was recorded. Meanwhile, for antifungal activity of honey, only honey from Trigona spp has shown activity at net preparation against C. albicans (10.47 ± 0.23 mm), C. tropicalis (12.29 ± 0.23 mm) and C. glabrata (8.69 ± 0.53 mm). For minimum inhibitory concentration, the data indicates that both propolis have shown inhibitory effect at 500 mg/mL. As for honey, Trigona spp was the effective honey that give MIC value at 250 mg/mL against Candida spp. Apis dorsata honey has shown MIC value at 500 mg/mL while Apis mellifera honey had inhibited C.albicans and C.glabrata at 500 mg/mL except for C.tropicalis at 250 mg/mL. It can be concluded that both propolis has shown weaker antifungal activity against oral fungi while only honey produced from Trigona spp had strong antifungal activity compare to other honey against oral fungi implicated in denture stomatitis.

  19. Synthesis and evaluation of antifungal activity of C21-steroidal derivatives.

    PubMed

    Huang, Lie-Jun; Wang, Bin; Zhang, Jian-Xin; Yuan, Chun-Mao; Gu, Wei; Mu, Shu-Zhen; Hao, Xiao-Jiang

    2016-04-15

    The antifungal activities of eleven C21-steroidal compounds isolated from Cynanchum wilfordii, together with thirty-six derivatives of caudatin and qingyangshengenin were evaluated on Sclerotinia sclerotiorum and other five fungal strains by the mycelium growth rate method. Four derivatives 1k, 1y, 10d, and 10j exhibited much stronger inhibitions on growth of S. sclerotiorum with IC50 values of 0.0084, 0.0049, 0.0053, and 0.0034 μM, respectively.

  20. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.

    PubMed

    He, Lili; Liu, Yang; Mustapha, Azlin; Lin, Mengshi

    2011-03-20

    Antifungal activities of zinc oxide nanoparticles (ZnO NPs) and their mode of action against two postharvest pathogenic fungi (Botrytis cinerea and Penicillium expansum) were investigated in this study. ZnO NPs with sizes of 70 ± 15 nm and concentrations of 0, 3, 6 and 12 mmol l(-1) were used. Traditional microbiological plating, scanning electron microscopy (SEM), and Raman spectroscopy were used to study antifungal activities of ZnO NPs and to characterize the changes in morphology and cellular compositions of fungal hyphae treated with ZnO NPs. Results show that ZnO NPs at concentrations greater than 3 mmol l(-1) can significantly inhibit the growth of B. cinerea and P. expansum. P. expansum was more sensitive to the treatment with ZnO NPs than B. cinerea. SEM images and Raman spectra indicate two different antifungal activities of ZnO NPs against B. cinerea and P. expansum. ZnO NPs inhibited the growth of B. cinerea by affecting cellular functions, which caused deformation in fungal hyphae. In comparison, ZnO NPs prevented the development of conidiophores and conidia of P. expansum, which eventually led to the death of fungal hyphae. These results suggest that ZnO NPs could be used as an effective fungicide in agricultural and food safety applications.

  1. Chemical Composition, Antifungal and Antibiofilm Activities of the Essential Oil of Mentha piperita L.

    PubMed

    Saharkhiz, Mohammad Jamal; Motamedi, Marjan; Zomorodian, Kamiar; Pakshir, Keyvan; Miri, Ramin; Hemyari, Kimia

    2012-01-01

    Variations in quantity and quality of essential oil (EO) from the aerial parts of cultivated Mentha piperita were determined. The EO of air-dried sample was obtained by a hydrodistillation method and analyzed by a gas chromatography/mass spectrometry (GC/MS). The antifungal activity of the EO was investigated by broth microdilution methods as recommended by Clinical and Laboratory Standards Institute. A biofilm formation inhibition was measured by using an XTT reduction assay. Menthol (53.28%) was the major compound of the EO followed by Menthyl acetate (15.1%) and Menthofuran (11.18%). The EO exhibited strong antifungal activities against the examined fungi at concentrations ranging from 0.12 to 8.0 μL/mL. In addition, the EO inhibited the biofilm formation of Candida albicans and C. dubliniensis at concentrations up to 2 μL/mL. Considering the wide range of the antifungal activities of the examined EO, it might be potentially used in the management of fungal infections or in the extension of the shelf life of food products.

  2. Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae)

    PubMed Central

    Bagiu, Radu Vasile; Vlaicu, Brigitha; Butnariu, Monica

    2012-01-01

    The objective of the study was to summarize the methods for isolating and identifying natural sulfur compounds from Allium ursinum (ramson) and to discuss the active constituents with regard to antifungal action. Using chromatographic techniques, the active constituents were isolated and subsequently identified. Analyses by high-performance liquid chromatography (HPLC) suggested that these compounds were sulfur constituents, with a characteristic absorbance at 250 nm. Gas chromatography-mass spectrometry (GC-MS) analyses allowed the chemical structures of the isolated constituents to be postulated. We adopted the same methods to identify the health-giving profiling of ramsons and the effects are thought to be primarily derived from the presence and breakdown of the alk(en)ylcysteine sulphoxide, alliin and its subsequent breakdown to allicin (sulfur-compounds of ramson) in connection with antifungal action. The aim of the study was the characterization of the chemical composition of ramsons and the testing of the action of the in vitro extracts, on different strains of Candida albicans. The main goal was to highlight the most efficient extracts of Allium ursinum that can provide long-term antifungal activity without remissions. The extracts from Allium ursinum plants, inhibited growth of Candida spp. cells at concentrations ranging from 0.5 to 4.0 mg/mL, while that of adherent cells at concentrations ranging from 1.0 to > 4.0 mg/mL, depending on the yeast and plant species. PMID:22408399

  3. Chemical composition and in vitro antifungal activity screening of the Allium ursinum L. (Liliaceae).

    PubMed

    Bagiu, Radu Vasile; Vlaicu, Brigitha; Butnariu, Monica

    2012-01-01

    The objective of the study was to summarize the methods for isolating and identifying natural sulfur compounds from Allium ursinum (ramson) and to discuss the active constituents with regard to antifungal action. Using chromatographic techniques, the active constituents were isolated and subsequently identified. Analyses by high-performance liquid chromatography (HPLC) suggested that these compounds were sulfur constituents, with a characteristic absorbance at 250 nm. Gas chromatography-mass spectrometry (GC-MS) analyses allowed the chemical structures of the isolated constituents to be postulated. We adopted the same methods to identify the health-giving profiling of ramsons and the effects are thought to be primarily derived from the presence and breakdown of the alk(en)ylcysteine sulphoxide, alliin and its subsequent breakdown to allicin (sulfur-compounds of ramson) in connection with antifungal action. The aim of the study was the characterization of the chemical composition of ramsons and the testing of the action of the in vitro extracts, on different strains of Candida albicans. The main goal was to highlight the most efficient extracts of Allium ursinum that can provide long-term antifungal activity without remissions. The extracts from Allium ursinum plants, inhibited growth of Candida spp. cells at concentrations ranging from 0.5 to 4.0 mg/mL, while that of adherent cells at concentrations ranging from 1.0 to > 4.0 mg/mL, depending on the yeast and plant species.

  4. Chemical Composition, Antifungal and Antibiofilm Activities of the Essential Oil of Mentha piperita L.

    PubMed Central

    Saharkhiz, Mohammad Jamal; Motamedi, Marjan; Zomorodian, Kamiar; Pakshir, Keyvan; Miri, Ramin; Hemyari, Kimia

    2012-01-01

    Variations in quantity and quality of essential oil (EO) from the aerial parts of cultivated Mentha piperita were determined. The EO of air-dried sample was obtained by a hydrodistillation method and analyzed by a gas chromatography/mass spectrometry (GC/MS). The antifungal activity of the EO was investigated by broth microdilution methods as recommended by Clinical and Laboratory Standards Institute. A biofilm formation inhibition was measured by using an XTT reduction assay. Menthol (53.28%) was the major compound of the EO followed by Menthyl acetate (15.1%) and Menthofuran (11.18%). The EO exhibited strong antifungal activities against the examined fungi at concentrations ranging from 0.12 to 8.0 μL/mL. In addition, the EO inhibited the biofilm formation of Candida albicans and C. dubliniensis at concentrations up to 2 μL/mL. Considering the wide range of the antifungal activities of the examined EO, it might be potentially used in the management of fungal infections or in the extension of the shelf life of food products. PMID:23304561

  5. In Vitro Nail Penetration and Antifungal Activity of Tavaborole, a Boron-Based Pharmaceutical.

    PubMed

    Coronado, Dina; Merchant, Tejal; Chanda, Sanjay; Zane, Lee T

    2015-06-01

    An effective topical antifungal medication must penetrate through the nail plate at sufficient concentrations to eradicate the fungal infection. Tavaborole topical solution, 5% is a novel boron-based pharmaceutical approved for the treatment of toenail onychomycosis due to Trichophyton rubrum or T mentagrophytes. Four in vitro studies assessed the antifungal activity and nail penetration of tavaborole. In Study 1, tavaborole demonstrated minimum inhibitory concentration (MIC) values ranging from 0.25-2 μg/mL against all fungi tested; addition of 5% keratin powder did not affect the MIC against T rubrum. The minimum fungicidal concentration (MFC) values for tavaborole against T rubrum and T mentagrophytes were 8 and 16 μg/mL, respectively. In Study 2, tavaborole effectively penetrated through the nail plate; mean concentrations in the ventral/intermediate nail layer were significantly higher than ciclopirox at day 15. In Study 3, mean cumulative tavaborole penetration through ex vivo human nails was significantly higher than ciclopirox at day 15. In Study 4, tavaborole demonstrated superior nail penetration and fungicidal activity, as measured by zones of inhibition. These studies demonstrated the superior penetration of tavaborole through the nail plate vs ciclopirox. Tavaborole demonstrated robust antifungal activity, with low MIC and MFC values, even in the presence of keratin.

  6. Antifungal activity of methanol and n-hexane extracts of three Chenopodium species against Macrophomina phaseolina.

    PubMed

    Javaid, Arshad; Amin, Muhammad

    2009-01-01

    Antifungal activity of methanol and n-hexane leaf, stem, root and inflorescence extracts (1, 2, 3 and 4% w/v) of three Chenopodium species (family Chenopodiaceae) namely Chenopodium album L., Chenopodium murale L. and Chenopodium ambrosioides L. was investigated against Macrophomina phaseolina (Tassi) G. Goid., a soil-borne fungal plant pathogen that has a broad host range and wide geographical distribution. All the extracts of the three Chenopodium species significantly suppressed the test fungal growth. However, there was marked variation among the various extract treatments. Methanol inflorescence extract of C. album exhibited highest antifungal activity resulting in up to 96% reduction in fungal biomass production. By contrast, methanol leaf extract of the same species exhibited least antifungal activity where 21-44% reduction in fungal biomass was recorded due to various employed extract concentrations. The various methanol extracts of C. murale and C. ambrosioides decreased fungal biomass by 62-90 and 50-84%, respectively. Similarly, various n-hexane extracts of C. album, C. murale and C. ambrosioides reduced fungal biomass by 60-94, 43-90 and 49-86%, respectively.

  7. Antifungal activity of alkanols against Zygosaccharomyces bailii and their effects on fungal plasma membrane.

    PubMed

    Fujita, Ken-Ichi; Fujita, Tomoko; Kubo, Isao

    2008-10-01

    A series of aliphatic primary alkanols from C(6) to C(13) were tested for antifungal activity against a food spoilage fungus Zygosaccharomyces bailii using a broth dilution method and were compared for their effects against Saccharomyces cerevisiae and Z. rouxii. Decanol (C(10)) was found to be the most potent fungicide against Z. bailii at a minimum fungicidal concentration of 50 microg/ml (0.31 mM), whereas undecanol (C(11)) was found to be the most potent fungistatic at a minimum inhibitory concentration of 25 microg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. Octanol (C(8)) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The primary antifungal action of alkanols comes from their ability to disrupt the native membrane-associated function of integral proteins nonspecifically as nonionic surface-active agents (surfactants). The antifungal activity of decanol against Z. bailii was slightly enhanced in combination with anethole.

  8. Diminished Antimicrobial Peptide and Antifungal Antibiotic Activities against Candida albicans in Denture Adhesive

    PubMed Central

    Bates, Amber M.; Garaicoa, Jorge L.; Fischer, Carol L.; Brogden, Kim A.

    2017-01-01

    The underlying causes of denture stomatitis may be related to the long-term use of adhesives, which may predispose individuals to oral candidiasis. In this study, we hypothesize that antimicrobial peptides and antifungal antibiotics have diminished anti-Candida activities in denture adhesive. To show this, nine antimicrobial peptides and five antifungal antibiotics with and without 1.0% denture adhesive were incubated with Candida albicans strains ATCC 64124 and HMV4C in radial diffusion assays. In gels with 1.0% adhesive, HNP-1, HBD2, HBD3, IP-10, LL37 (only one strain), histatin 5 (only one strain), lactoferricin B, and SMAP28 showed diminished activity against C. albicans. In gels with 1.0% adhesive, amphotericin B and chlorhexidine dihydrochloride were active against both strains of C. albicans. These results suggest that denture adhesive may inactivate innate immune mediators in the oral cavity increasing the risk of C. albicans infections, but inclusion of antifungal antibiotics to denture adhesive may aid in prevention or treatment of Candida infections and denture stomatitis. PMID:28178179

  9. Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf.

    PubMed

    Taira, Toki; Toma, Noriko; Ishihara, Masanobu

    2005-01-01

    Three chitinases, designated pineapple leaf chitinase (PL Chi)-A, -B, and -C were purified from the leaves of pineapple (Ananas comosus) using chitin affinity column chromatography followed by several column chromatographies. PL Chi-A is a class III chitinase having a molecular mass of 25 kDa and an isoelectric point of 4.4. PL Chi-B and -C are class I chitinases having molecular masses of 33 kDa and 39 kDa and isoelectric points of 7.9 and 4.6 respectively. PL Chi-C is a glycoprotein and the others are simple proteins. The optimum pHs of PL Chi-A, -B, and -C toward glycolchitin are pH 3, 4, and 9 respectively. The chitin-binding ability of PL Chi-C is higher than that of PL Chi-B, and PL Chi-A has lower chitin-binding ability than the others. At low ionic strength, PL Chi-B exhibits strong antifungal activity toward Trichoderma viride but the others do not. At high ionic strength, PL Chi-B and -C exhibit strong and weak antifungal activity respectively. PL Chi-A does not have antifungal activity.

  10. Cinnamaldehyde and its derivatives, a novel class of antifungal agents.

    PubMed

    Shreaz, Sheikh; Wani, Waseem A; Behbehani, Jawad M; Raja, Vaseem; Irshad, Md; Karched, Maribasappa; Ali, Intzar; Siddiqi, Weqar A; Hun, Lee Ting

    2016-07-01

    The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal.

  11. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    PubMed Central

    El-Soud, Neveen Helmy Abou; Deabes, Mohamed; El-Kassem, Lamia Abou; Khalil, Mona

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC) and GC coupled with mass spectrometry (GC/MS). The essential oil was tested for its effects on Aspergillus flavus (A. flavus) mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES) growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC). RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%). The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm). CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production. PMID:27275253

  12. Syntheses of new rare earth complexes with carboxymethylated polysaccharides and evaluation of their in vitro antifungal activities.

    PubMed

    Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping

    2014-11-26

    In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP).

  13. Dermoscopic Visualization of Vellus Hair Involvement in Tinea Corporis: A Criterion for Systemic Antifungal Therapy?

    PubMed

    Knöpfel, Nicole; del Pozo, Luis Javier; Escudero, Maria del Mar; Martín-Santiago, Ana

    2015-01-01

    Dermoscopy has been shown to be a valuable tool in the diagnosis and monitoring of several infectious diseases. We report a case of tinea corporis in an infant in whom dermoscopy helped us to determine vellus hair involvement, causing treatment to be switched from topical to systemic antifungal therapy.

  14. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L.

    PubMed

    Kim, Seokwon; Kubec, Roman; Musah, Rabi A

    2006-03-08

    A total of 18 organosulfur compounds originating from Petiveria alliacea L. roots have been tested for their antibacterial and antifungal activities. These represent compounds occurring in fresh homogenates as well as those present in various macerates, extracts and other preparations made from Petiveria alliacea. Of the compounds assayed, the thiosulfinates, trisulfides and benzylsulfinic acid were observed to be the most active, with the benzyl-containing thiosulfinates exhibiting the broadest spectrum of antimicrobial activity. The effect of plant sample preparation conditions on the antimicrobial activity of the extract is discussed.

  15. Antifungal Activity of Selected Indigenous Pseudomonas and Bacillus from the Soybean Rhizosphere

    PubMed Central

    León, M.; Yaryura, P. M.; Montecchia, M. S.; Hernández, A. I.; Correa, O. S.; Pucheu, N. L.; Kerber, N. L.; García, A. F.

    2009-01-01

    The purpose of this study was to isolate and select indigenous soil Pseudomonas and Bacillus bacteria capable of developing multiple mechanisms of action related to the biocontrol of phytopathogenic fungi affecting soybean crops. The screening procedure consisted of antagonism tests against a panel of phytopathogenic fungi, taxonomic identification, detection by PCR of several genes related to antifungal activity, in vitro detection of the antifungal products, and root colonization assays. Two isolates, identified and designated as Pseudomonas fluorescens BNM296 and Bacillus amyloliquefaciens BNM340, were selected for further studies. These isolates protected plants against the damping-off caused by Pythium ultimum and were able to increase the seedling emergence rate after inoculation of soybean seeds with each bacterium. Also, the shoot nitrogen content was higher in plants when seeds were inoculated with BNM296. The polyphasic approach of this work allowed us to select two indigenous bacterial strains that promoted the early development of soybean plants. PMID:20016811

  16. The "in vitro" antifungal activity evaluation of propolis G12 ethanol extract on Cryptococcus neoformans.

    PubMed

    Fernandes, Fabrício Freitas; Dias, Amanda Latercia Tranches; Ramos, Cíntia Lacerda; Ikegaki, Masaharu; de Siqueira, Antonio Martins; Franco, Marília Caixeta

    2007-01-01

    Cryptococcosis is a worldwide disease caused by the etiological agent Cryptococcus neoformans. It affects mainly immunocompromised humans. It is relatively rare in animals only affecting those that have received prolonged antibiotic therapy. The propolis is a resin that can present several biological properties, including antibacterial, antifungal and antiviral activities. The standard strain C. neoformans ATTC 90112 was used to the antifungal evaluation. The tests were realized with propolis ethanol extract (PEE) G12 in concentrations from 0.1 to 1.6 mg mL-1. The evaluation of MIC and MFC were done according to DUARTE (2002)5. The inhibitory effect of PEE G12 on the fungal growing was seen at the concentration of 0.2 mg mL-1 and 1.6 mg mL-1 was considered a fungicidal one.

  17. Synergistic Effect of Photosynthetic Bacteria and Isolated Bacteria in Their Antifungal Activities against Root Rot Fungi.

    PubMed

    Wei, Hongyi; Okunishi, Suguru; Yoshikawa, Takeshi; Kamei, Yuto; Dawwoda, Mahmoud A O; Santander-DE Leon, Sheila Mae S; Nuñal, Sharon Nonato; Maeda, Hiroto

    2016-01-01

    Antifungal bacteria (AB) in root rot fungus (RRF)-contaminated sweet potato farms were isolated, and seven strains were initially chosen as antagonistic candidates. An antagonistic test by using the mycelial disk placement method revealed that one AB strain by itself could inhibit the RRF growth. This AB strain was identified as Bacillus polyfermenticus based on phylogeny of 16S ribosomal RNA genes. Two AB strains (Bacillus aerophilus) displayed high levels of antifungal activity when paired with photosynthetic bacterial strain A (a purple nonsulfur photosynthetic bacterium Rhodopseudomonas faecalis). The results suggest the possible use of the isolates as agents for the biological control of the RRF infection of agricultural products in fields of cultivation.

  18. Isolation and characterization of sesquiterpenes from Celastrus orbiculatus and their antifungal activities against phytopathogenic fungi.

    PubMed

    Wang, Meicheng; Zhang, Qiang; Ren, Quanhui; Kong, Xianglei; Wang, Lizhong; Wang, Hao; Xu, Jing; Guo, Yuanqiang

    2014-11-12

    Celastrus orbiculatus is an insecticidal plant belonging to the Celastraceae family. In this survey on the secondary metabolites of plants for obtaining bioactive substances to serve agriculture, the chemical constituents of the fruits of C. orbiculatus were investigated. This phytochemical investigation resulted in the isolation of nine new and one known sesquiterpene. Their structures, especially the complicated stereochemical features, were elucidated on the basis of extensive NMR spectroscopic data analyses, time-dependent density functional theory CD calculations, and the CD exciton chirality method. Biological screenings disclosed that these sesquiterpenes showed antifungal activities against six phytopathogenic fungi. The results of our phytochemical investigation further disclosed the chemical components of C. orbiculatus, and biological screening implied that it may be potentially useful to protect crops against phytopathogenic fungi and the bioactive compounds may be regarded as candidate agents of antifungal agrochemicals for crop protection products.

  19. Antifungal activity of the honeybee products against Candida spp. and Trichosporon spp.

    PubMed

    Koç, Ayşe Nedret; Silici, Sibel; Kasap, Filiz; Hörmet-Oz, Hatice Tuna; Mavus-Buldu, Hikmet; Ercal, Bariş Derya

    2011-01-01

    Honeybee products (honey, royal jelly, pollen, and propolis) were evaluated for their ability to inhibit the growth of 40 yeast strains of Candida albicans, Candida glabrata, Candida krusei, and Trichosporon spp. The broth microdilution method was used to assess the antifungal activity of honeybee products against yeasts. Fluconazole was selected as the antifungal control agent. Using the broth microdilution method, minimal inhibitory concentration ranges with regard to all isolates were 5-80% (vol/vol), 0.06-1 μg/mL, 0.002-0.25 μg/mL, 0.006-0.1 μg/mL, and 0.02-96 μg/mL for honey, royal jelly, pollen, propolis, and fluconazole, respectively. The antifungal activities of each product decreased in the following order: propolis >pollen > royal jelly > > honey. This study demonstrated that honeybee products, particularly propolis and pollen, can help to control some fluconazole-resistant fungal strains.

  20. A survey of the in vitro antifungal activity of heather (Erica sp.) organic honey.

    PubMed

    Feás, Xesús; Estevinho, María L

    2011-10-01

    Monofloral heather (Erica sp.) honey samples (n=89), harvested in Portugal according to European organic beekeeping rules, were analyzed to test their antifungal effect against Candida albicans, Candida krusei, and Cryptococcus neoformans. A synthetic honey solution was also tested to determine antifungal activity attributable to sugars. The specific growth rate (μ) values showed that growth of all the yeasts was reduced in the presence of honey. The honey concentration (% wt/vol) that inhibited 10% of the yeast growth (X(min)) was 13.5% for C. albicans, 20.5% for C. krusei, and 17.1% for C. neoformans. The respective concentrations of heather honey and synthetic honey in the C. krusei culture medium above 60% (wt/vol) that inhibited 90% of the yeast growth (X(max)) and X(min), respectively, were established, whereas C. albicans and C. neoformans were more resistant because X(max) values were not reached over the range tested (10-60%, wt/vol). Heather honey might be tapped as a natural resource to look for new medicines for the treatment of mycotic infections. Further studies are now required to demonstrate if this antifungal activity has any clinical application.

  1. Inhibition of the enzymatic activity of heme oxygenases by azole-based antifungal drugs.

    PubMed

    Kinobe, Robert T; Dercho, Ryan A; Vlahakis, Jason Z; Brien, James F; Szarek, Walter A; Nakatsu, Kanji

    2006-10-01

    Ketoconazole (KTZ) and other azole antifungal agents are known to have a variety of actions beyond the inhibition of sterol synthesis in fungi. These drugs share structural features with a series of novel heme oxygenase (HO) inhibitors designed in our laboratory. Accordingly, we hypothesized that therapeutically used azole-based antifungal drugs are effective HO inhibitors. Using gas chromatography to quantify carbon monoxide formation in vitro and in vivo, we have shown that azole-containing antifungal drugs are potent HO inhibitors. Terconazole, sulconazole, and KTZ were the most potent drugs with IC(50) values of 0.41 +/- 0.01, 1.1 +/- 0.4, and 0.3 +/- 0.1 microM for rat spleen microsomal HO activity, respectively. Kinetic characterization revealed that KTZ was a noncompetitive HO inhibitor. In the presence of KTZ (2.5 and 10 microM), K(m) values for both rat spleen and brain microsomal HO were not altered; however, a significant decrease in the catalytic capacity (V(max)) was observed (P < 0.005). KTZ was also found to weakly inhibit nitric-oxide synthase with an IC(50) of 177 +/- 2 microM but had no effect on the enzymatic activity of NADPH cytochrome P450 reductase. Because these drugs were effective within the concentration range observed in humans, it is possible that inhibition of HO may play a role in some of the pharmacological actions of these antimycotic drugs.

  2. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans

    PubMed Central

    Leite, Maria Clerya Alvino; Bezerra, André Parente de Brito; de Sousa, Janiere Pereira; Guerra, Felipe Queiroga Sarmento; Lima, Edeltrudes de Oliveira

    2014-01-01

    Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast's morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral's mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals. PMID:25250053

  3. Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens.

    PubMed

    Ma, Jimei; Li, Yupeng; Chen, Hangwei; Zeng, Zhen; Li, Zi-Long; Jiang, Hong

    2016-02-22

    Nine oxylipin mimics were designed and synthesized starting from d-mannose. Their antifungal activity against three citrus postharvest pathogens was evaluated by spore germination assay. The results indicated that all the compounds significantly inhibited the growth of Penicillium digitatum, Penicillium italicum and Aspergillus niger. The compound (3Z,6Z,8S,9R,10R)-octadeca-3,6-diene-8,9,10-triol (3) exhibited excellent inhibitory effect on both Penicillium digitatum (IC50 = 34 ppm) and Penicillium italicum (IC50 = 94 ppm). Their in vivo antifungal activities against citrus postharvest blue mold were tested with fruit inoculated with the pathogen Penicillium italicum. The compound (3R,4S)-methyl 3,4-dihydroxy-5-octyltetrahydrofuran-2-carboxylate (9) demonstrated significant efficacy by reducing the disease severity to 60%. The antifungal mechanism of these oxylipin mimics was postulated in which both inhibition of pathogenic mycelium and stimuli of the host oxylipin-mediated defense response played important roles.

  4. Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells.

    PubMed

    Souza, Caio Marcelo Cury; Pereira Junior, Silvio Alves; Moraes, Thaís da Silva; Damasceno, Jaqueline Lopes; Amorim Mendes, Suzana; Dias, Herbert Júnior; Stefani, Ricardo; Tavares, Denise Crispim; Martins, Carlos Henrique Gomes; Crotti, Antônio Eduardo Miller; Mendes-Giannini, Maria José Soares; Pires, Regina Helena

    2016-07-01

    Dental prosthesis supports Candida species growth and may predispose the oral cavity to lesions. C. tropicalis has emerged as a colonizer of prosthesis and has shown resistance to clinically used antifungal agents, which has increased the search for new antifungals. This work describes the effectiveness of fifteen essential oils (EOs) against C. tropicalis The EOs were obtained by hydrodistillation and were chemically characterized by gas chromatography-mass spectrometry. The antifungal activities of the EOs were evaluated by the microdilution method and showed that Pelargonium graveolens (Geraniaceae) (PG-EO) was the most effective oil. Geraniol and linalool were the major constituents of PG-EO. The 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) assay showed that all the clinical C. tropicalis strains formed viable biofilms. Scanning electron microscopy examination of the biofilms revealed a complex architecture with basal layer of yeast cells and an upper layer of filamentous cells. Treatments with PG-EO, linalool, and geraniol significantly reduced the number of viable biofilm cells and inhibited biofilm formation after exposure for 48 h. PG-EO, geraniol, and linalool were not toxic to normal human lung fibroblasts (GM07492A) at the concentrations they were active against C. tropicalis Together, our results indicated that C. tropicalis is susceptible to treatment with PG-EO, geraniol, and linalool, which could become options to prevent or treat this infection.

  5. Chemical composition and antifungal activity of Carica papaya Linn. seed essential oil against Candida spp.

    PubMed

    He, X; Ma, Y; Yi, G; Wu, J; Zhou, L; Guo, H

    2017-05-01

    In recent years, the incidence of clinical yeast infections has increased dramatically. Due to the extensive use of broad-spectrum antifungal agents, there has been a notable increase in drug resistance among infections yeast species. As one of the most popular natural antimicrobial agents, essential oils (EOs) have attracted a lot of attention from the scientific community. The aim of this study was to analyse the chemical composition and examine the antifungal activity of the EO extracted from the seeds of Carica papaya Linn. The papaya seed EO was analysed by gas chromatography-mass spectrometry. The major constituent is benzyl isothiocyanate (99·36%). The filter paper disc diffusion method and broth dilution method were employed. The EO showed inhibitory effect against all the tested Candida strains including C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropical with inhibition zone diameters in the range of 14·2-33·2 mm, the minimal inhibitory concentrations (MICs) in the range of 4·0-16·0 μg ml(-1) and the minimum fungicidal concentrations (MFCs) in the range of 16·0-64·0 μg ml(-1) . Here, we found that the papaya seed EO has promising anticandida activity and identify C. papaya L. as a potential natural source of antifungal agents.

  6. Design, synthesis of novel starch derivative bearing 1,2,3-triazolium and pyridinium and evaluation of its antifungal activity.

    PubMed

    Tan, Wenqiang; Li, Qing; Gao, Zhenpeng; Qiu, Shuai; Dong, Fang; Guo, Zhanyong

    2017-02-10

    Based on cuprous-catalyzed azide-alkyne cycloaddition (CuAAC), starch derivative bearing 1,2,3-triazole and pyridine (II) was prepared and subsequently followed by alkylation with iodomethane to synthesize starch derivative bearing 1,2,3-triazolium and pyridinium (III). The antifungal activities of starch derivatives against Colletotrichum lagenarium, Watermelon fusarium, and Phomopsis asparagi, were then assayed by hypha measurement in vitro. Apparently, starch derivatives showed enhanced antifungal activity against three fungi at the tested concentrations compared with starch. Especially, the best inhibitory index of starch derivative (III) against Colletotrichum lagenarium attained 97% above at 1.0mg/mL. Meanwhile, starch derivative (III) had stronger antifungal activity than starch derivative (II), which was reasonable to propose that the alkylation of 1,2,3-triazole and pyridine was significant for enhanced antifungal activity. As this novel starch derivative bearing 1,2,3-triazolium and pyridinium could be prepared efficiently and exhibited superduper antifungal activity, this material might provide an effective way and notion to prepare novel antifungal agents.

  7. Quantitative Structure-Antifungal Activity Relationships for cinnamate derivatives.

    PubMed

    Saavedra, Laura M; Ruiz, Diego; Romanelli, Gustavo P; Duchowicz, Pablo R

    2015-12-01

    Quantitative Structure-Activity Relationships (QSAR) are established with the aim of analyzing the fungicidal activities of a set of 27 active cinnamate derivatives. The exploration of more than a thousand of constitutional, topological, geometrical and electronic molecular descriptors, which are calculated with Dragon software, leads to predictions of the growth inhibition on Pythium sp and Corticium rolfsii fungi species, in close agreement to the experimental values extracted from the literature. A set containing 21 new structurally related cinnamate compounds is prepared. The developed QSAR models are applied to predict the unknown fungicidal activity of this set, showing that cinnamates like 38, 28 and 42 are expected to be highly active for Pythium sp, while this is also predicted for 28 and 34 in C. rolfsii.

  8. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Ellanskaya, Irina; Ellanskaya, legal representative, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2009-09-15

    The invention relates to antifungal compositions and methods for protecting a plant from a fungal pathogen. Compositions including antifungal polypeptides isolated from a fungal fermentation broth are provided.

  9. Microemulsion Formulation of Carbendazim and Its In Vitro Antifungal Activities Evaluation

    PubMed Central

    Leng, Pengfei; Zhang, Zhiming; Li, Qian; Zhao, Maojun; Pan, Guangtang

    2014-01-01

    The fungus Rhizoctonia solani Kuhn is a widespread and destructive plant pathogen with a very broad host range. Although various pathogens, including R. solani, have been traditionally controlled using chemical pesticides, their use faces drawbacks such as environmental pollution, development of pesticide resistance, and other negative effects. Carbendazim is a well-known antifungal agent capable of controlling a broad range of plant diseases, but its use is hampered by its poor aqueous solubility. In this study, we describe an environmentally friendly pharmaceutical microemulsion system using carbendazim as the active ingredient, chloroform and acetic acid as solvents, and the surfactants HSH and 0204 as emulsifiers. This system increased the solubility of carbendazim to 30 g/L. The optimal microemulsion formulation was determined based on a pseudo-ternary phase diagram; its physicochemical characteristics were also tested. The cloud point was greater than 90°C and it was resistant to freezing down to −18°C, both of which are improvements over the temperature range in which pure carbendazim can be used. This microemulsion meets the standard for pesticide microemulsions and demonstrated better activity against R. solani AG1-IA, relative to an aqueous solution of pure carbendazim (0.2 g/L). The mechanism of activity was reflected in the inhibition of against R. solani AG1-IA including mycelium growth, and sclerotia formation and germination were significantly better than that of 0.2 g/L carbendazim water solution according to the results of t-test done by SPSS 19. PMID:25310219

  10. Antifungal Activity of the Ethanol Extract from Flos Rosae Chinensis with Activity against Fluconazole-Resistant Clinical Candida

    PubMed Central

    Lin, Hui; Liu, Wei; Dai, Baodi; Yan, Lan

    2017-01-01

    This study was designed to investigate the antifungal activity of a hydroalcoholic extract from Flos Rosae Chinensis (FRC) combined with fluconazole (FCZ) against clinical isolates of Candida albicans resistant to FCZ. The minimum inhibitory concentration (MIC) of FRC was determined using a checkerboard microdilution assay. The synergistic effects of the combination of FRC and FCZ against clinical isolates of C. albicans resistant to FCZ were further confirmed by constructing time-growth curves and performing an agar diffusion test. FRC alone exerted efficient antifungal activities against C. albicans within a MIC80 ranging from 20 μg/ml to 40 μg/ml. FRC failed to enhance the effects of FCZ against sensitive C. albicans strains, although it rendered FCZ-resistant C. albicans more sensitive. These results were further confirmed by the result of in vivo study. Our study is the first to discover that FRC can inhibit the growth of C. albicans to a certain degree. An FRC antifungal mechanism study showed that FRC strengthens FCZ to inhibit the action of ergosterol biosynthesis by promoting the transformation of lanosterol to eburicol, suggesting that the antifungal mechanism of FRC involves the inhibition of ergosterol biosynthesis. PMID:28303159

  11. A facile synthesis of novel miconazole analogues and the evaluation of their antifungal activity.

    PubMed

    Ramírez-Villalva, Alejandra; González-Calderón, Davir; González-Romero, Carlos; Morales-Rodríguez, Macario; Jauregui-Rodríguez, Bertha; Cuevas-Yáñez, Erick; Fuentes-Benítes, Aydeé

    2015-06-05

    Four novel miconazole analogues (8-11) were synthetized and evaluated for activity against four filamentous fungi (Mucor hiemalis, Aspergillus fumigatus, Trichosporon cutaneum, and Rhizopus oryzae) and eight species of Candida as yeast specimens. Compounds 9 and 10 showed very good activity when evaluated in yeast (MIC 0.112 and 0.163 μg/mL) compared to the reference compound, itraconazole (MIC 0.067 μg/mL). The best antifungal activity in filamentous strains was shown by compound 9. Hence compounds 9 and 10 represent new leads for further pharmacomodulation in this series.

  12. Antifungal Activity of Phenyllactic Acid against Molds Isolated from Bakery Products

    PubMed Central

    Lavermicocca, Paola; Valerio, Francesca; Visconti, Angelo

    2003-01-01

    Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution test and 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and Fusarium that were isolated from bakery products, flours, or cereals. Less than 7.5 mg of PLA ml−1 was required to obtain 90% growth inhibition for all strains, while fungicidal activity against 19 strains was shown by PLA at levels of ≤10 mg ml−1. Levels of growth inhibition of 50 to 92.4% were observed for all fungal strains after incubation for 3 days in the presence of 7.5 mg of PLA ml−1 in buffered medium at pH 4, which is a condition more similar to those in real food systems. Under these experimental conditions PLA caused an unpredictable delaying effect that was more than 2 days long for 12 strains, including some mycotoxigenic strains of Penicillium verrucosum and Penicillium citrinum and a strain of Penicillium roqueforti (the most widespread contaminant of bakery products); a growth delay of about 2 days was observed for seven other strains. The effect of pH on the inhibitory activity of PLA and the combined effects of the major organic acids produced by lactic acid bacteria isolated from sourdough bread (PLA, lactic acid, and acetic acid) were also investigated. The ability of PLA to act as a fungicide and delay the growth of a variety of fungal contaminants provides new perspectives for possibly using this natural antimicrobial compound to control fungal contaminants and extend the shelf lives of foods and/or feedstuffs. PMID:12514051

  13. Increased antifungal activity of L-733,560, a water-soluble, semisynthetic pneumocandin, is due to enhanced inhibition of cell wall synthesis.

    PubMed Central

    Kurtz, M B; Douglas, C; Marrinan, J; Nollstadt, K; Onishi, J; Dreikorn, S; Milligan, J; Mandala, S; Thompson, J; Balkovec, J M

    1994-01-01

    The pneumocandins are natural lipopeptide products of the echinocandin class which inhibit the synthesis of 1,3-beta-D-glucan in susceptible fungi. The lack of a corresponding pathway in mammalian hosts makes this mode of action an attractive one for treating systemic infections. Substitution by an aminoethyl ether at the hemiaminal and dehydration and reduction of the glutamine of pneumocandin B0 produced a semisynthetic compound (L-733,560) with intrinsic water solubility, significantly increased potency, and a broader antifungal spectrum. To evaluate the mechanism for the improved antifungal efficacy, we determined that L-733,560 was a more potent inhibitor of glucan synthase activity in vitro, did not affect the other membrane-bound enzymes tested, conferred susceptibility to lysis in the absence of osmotic support, and did not disrupt currents in liposomal bilayers or 86Rb+ fluxes from liposomes. In Aspergillus species L-733,560 also produced the same morphological alterations as pneumocandin B0. A stereoisomer of L-733,560 with poor antifungal activity was a weak inhibitor of glucan synthase. All of these results support the notion that the enhanced antifungal activity of L-733,560 is achieved by superior inhibition of glucan synthesis and not by nonspecific membrane effects or a second mode of action. Images PMID:7695257

  14. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity.

    PubMed

    Mendes, A I; Silva, A C; Catita, J A M; Cerqueira, F; Gabriel, C; Lopes, C M

    2013-11-01

    Miconazole is a widely used antifungal agent with poor aqueous solubility, which requires the development of drug delivery systems able to improve its therapeutic activity. For this purpose, a miconazole-loaded nanostructured lipid carriers (NLC) dispersion was prepared and characterized. Further, the dispersion was used to prepare a NLC-based hydrogel formulation proposed as an alternative system to improve the local delivery of miconazole to the oral mucosa. NLC dispersion showed particles in the nanometer range (≈ 200 nm) with low polidispersity index (<0.3), good physical stability and high encapsulation efficiency (>87%). A controlled miconazole release was observed from NLC and NLC-based hydrogel formulations, in contrast to a commercial oral gel formulation, which demonstrated a faster release. Additionally, it was observed that the encapsulation of miconazole in the NLC improved its antifungal activity against Candida albicans. Therefore, it was demonstrated that the encapsulation of miconazole in NLC allows for obtaining the same therapeutic effect of a commercial oral gel formulation, using a 17-fold lower dose of miconazole.

  15. Effects of temperature on anti-Candida activities of antifungal antibiotics.

    PubMed Central

    Odds, F C

    1993-01-01

    The relative growth (percentage of growth relative to control growth) of 767 Candida isolates representing five species was measured in microcultures at 25 and 37 degrees C. In the presence of 10(-4) M flucytosine, the distribution of relative yeast growth data indicated that Candida albicans isolates were less susceptible at 25 degrees C than at 37 degrees C, while the opposite was found with 4 x 10(-5) M amorolfine for most of the isolates tested. Repetition of the experiments at four different temperatures with 99 C. albicans isolates and five antifungal agents confirmed a direct relationship between growth inhibition and increasing temperature from 25 to 40 degrees C with amphotericin B, flucytosine, and terconazole; a strong inverse relationship between inhibition and temperature with amorolfine; and a weak inverse relationship with terbinafine. However, these relationships were not always noted with other Candida spp.: in particular, the growth of C. glabrata and C. parapsilosis isolates tended to be greater at 37 degrees C than at 25 degrees C in the presence of the azole-derivative antifungal agents itraconazole and terconazole. These findings stress the species-specific individuality of yeast susceptibility to azole antifungal agents. The results with C. albicans and amorolfine and terbinafine accord with their known in vivo efficacy in mycoses involving low-temperature superficial sites and poor activity against mycoses involving deep body sites. The data also reinforce the need for control of experimental variables such as temperature in the design of standardized yeast susceptibility tests. PMID:8494363

  16. Effects of temperature on anti-Candida activities of antifungal antibiotics.

    PubMed

    Odds, F C

    1993-04-01

    The relative growth (percentage of growth relative to control growth) of 767 Candida isolates representing five species was measured in microcultures at 25 and 37 degrees C. In the presence of 10(-4) M flucytosine, the distribution of relative yeast growth data indicated that Candida albicans isolates were less susceptible at 25 degrees C than at 37 degrees C, while the opposite was found with 4 x 10(-5) M amorolfine for most of the isolates tested. Repetition of the experiments at four different temperatures with 99 C. albicans isolates and five antifungal agents confirmed a direct relationship between growth inhibition and increasing temperature from 25 to 40 degrees C with amphotericin B, flucytosine, and terconazole; a strong inverse relationship between inhibition and temperature with amorolfine; and a weak inverse relationship with terbinafine. However, these relationships were not always noted with other Candida spp.: in particular, the growth of C. glabrata and C. parapsilosis isolates tended to be greater at 37 degrees C than at 25 degrees C in the presence of the azole-derivative antifungal agents itraconazole and terconazole. These findings stress the species-specific individuality of yeast susceptibility to azole antifungal agents. The results with C. albicans and amorolfine and terbinafine accord with their known in vivo efficacy in mycoses involving low-temperature superficial sites and poor activity against mycoses involving deep body sites. The data also reinforce the need for control of experimental variables such as temperature in the design of standardized yeast susceptibility tests.

  17. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis

    PubMed Central

    2011-01-01

    Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs. PMID

  18. Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives

    PubMed Central

    Rami, Chirag; Patel, Laxmanbhai; Patel, Chhaganbhai N.; Parmar, Jayshree P.

    2013-01-01

    Introduction: A practical synthesis of pyrimidinone would be very helpful for chemists because pyrimidinone is found in many bioactive natural products and exhibits a wide range of biological properties. The biological significance of pyrimidine derivatives has led us to the synthesis of substituted pyrimidine. Materials and Methods: With the aim of developing potential antimicrobials, new series of 5-cyano-6-oxo-1,6-dihydro-pyrimidine derivatives namely 2-(5-cyano-6-oxo-4-substituted (aryl)-1,6-dihydropyrimidin-2-ylthio)-N-substituted (phenyl) acetamide (C1-C41) were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), mass analysis, and proton nuclear magnetic resonance (1H NMR). All the compounds were screened for their antifungal activity against Candida albicans (MTCC, 227). Results and Discussion: Quantitative structure activity relationship (QSAR) studies of a series of 1,6-dihydro-pyrimidine were carried out to study various structural requirements for fungal inhibition. Various lipophilic, electronic, geometric, and spatial descriptors were correlated with antifungal activity using genetic function approximation. Developed models were found predictive as indicated by their square of predictive regression values (r2pred) and their internal and external cross-validation. Study reveals that CHI_3_C, Molecular_SurfaceArea, and Jurs_DPSA_1 contributed significantly to the activity along with some electronic, geometric, and quantum mechanical descriptors. Conclusion: A careful analysis of the antifungal activity data of synthesized compounds revealed that electron withdrawing substitution on N-phenyl acetamide ring of 1,6-dihydropyrimidine moiety possess good activity. PMID:24302836

  19. An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity Against Diverse Fungal Pathogens

    PubMed Central

    Robbins, Nicole; Spitzer, Michaela; Yu, Tennison; Cerone, Robert P.; Averette, Anna K.; Bahn, Yong-Sun; Heitman, Joseph; Sheppard, Donald C.; Tyers, Mike; Wright, Gerard D.

    2015-01-01

    SUMMARY There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl and cyprodinil with ~3600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM). Follow-up susceptibility testing against a fluconazole resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode-of-action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Further tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens. PMID:26549450

  20. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida).

    PubMed

    Céspedes, Carlos L; Avila, J Guillermo; Martínez, Andrés; Serrato, Blanca; Calderón-Mugica, José C; Salgado-Garciglia, Rafael

    2006-05-17

    Mexican tarragon (Tagetes lucida Cv. Asteraceae: Campanulatae) is an important, nutritious plant and an effective herbal medicine. Seven coumarins, 7,8-dihydroxycoumarin (4), umbelliferone (7-hydroxycoumarin) (5), scoparone (6,7-dimethoxycoumarin) (7), esculetin (6,7-dihydroxycoumarin) (11), 6-hydroxy-7-methoxycoumarin (12), herniarin (7-methoxycoumarin) (13), and scopoletin (6-methoxy-7-hydroxycoumarin) (14), and three flavonoids, patuletin (18), quercetin (19), and quercetagetin (20), were isolated from CH2Cl2 and MeOH extracts from aerial parts of T. lucida. In addition, 6,7-diacetoxy coumarin (15), 6-methoxy-7-acetylcoumarin (16), and 6-acetoxy-7-methoxycoumarin (17) derivatives were synthesized. 8-Methoxypsoralen (1), 8-acetyl-7-hydroxycoumarin (2), 7,8-dihydroxy-6-meth-oxycoumarin (3), 6,7-dimethoxy-4-methylcoumarin (6), 5,7-dihydroxy-4-methylcoumarin (8), 4-hydroxycoumarin (9), 4-hydroxy-6,7-dimethylcoumarin (10), naringenin (21), glycoside-7-rhamnonaringin (22), and rutin (23) were commercially obtained (Sigma-Aldrich). All of these compounds and extracts (M1 and M2) were assayed against bacteria and fungi. The antibacterial activity was determined on Bacillus subtilis, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Salmonella typhi, Salmonella sp., Shigella boydii, Shigella sp., Enterobacter aerogenes, Enterobacter agglomerans, Sarcina lutea, Staphylococcus epidermidis, Staphylococcus aureus, Yersinia enterolitica, Vibrio cholerae (three El Tor strains, CDC-V12, clinic case, and INDRE-206, were obtained from contaminated water), and V. cholerae (NO-O1). The evaluated fungi were Aspergillus niger, Penicillium notatum, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes. The most active compounds against Gram-positive and -negative bacteria were the dihydroxylated coumarins 3 and 4. In addition, 2-4, 6, 7, and 11 showed an interesting activity against V. cholerae, a key bacterium in the contaminated

  1. Total synthesis of racemic and (R) and (S)-4-methoxyalkanoic acids and their antifungal activity.

    PubMed

    Das, Biswanath; Shinde, Digambar Balaji; Kanth, Boddu Shashi; Kamle, Avijeet; Kumar, C Ganesh

    2011-07-01

    The total synthesis of 4-methoxydecanoic acid and 4-methoxyundecanoic acid in racemic and stereoselective [(R) and (S)] forms has been accomplished. For stereoselective synthesis of the compounds (S) and (R)-BINOL complexes have been used to generate the required chiral centres. The antifungal activity of these compounds has been studied against different organisms and the results were found to be impressive. The activity of the compounds in racemic and in stereoselective forms was compared. (R)-4-Methoxydecanoic acid was found to be most potent (MIC: 0.019 mg/mL against Candida albicans MTCC 227, C. albicans MTCC 4748, Aspergillus brasiliensis (niger) MTCC 281 and Issatchenkia orientalis MTCC 3020).

  2. In vitro screening of antifungal activity of marine sponge extracts against five phytopathogenic fungi.

    PubMed

    El Amraoui, Belkassem; El Wahidi, Majida; Fassouane, Aziz

    2014-01-01

    The aim of our research is the screening of extracts of marine sponges for their antifungal activity against phytopathogenic fungi. The in vitro screening of hydroalcoholic and organic extracts of ten marine sponges from Atlantic coast of Morocco against five phytopathogenic fungi (Fusarium oxysporum f.sp. melonis, Fusarium oxysporum f.sp. radicis-lycopersici, Fusarium oxysporum f.sp. ciceris, Botrytis cinerea and Penicillium digitatum) showed that only two sponges (Haliclona viscosa and Cynachirella tarentina) are active against all phytopathogenic fungi studied.

  3. Isolation of major components from the roots of Godmania aesculifolia and determination of their antifungal activities.

    PubMed

    Tamayo-Castillo, Giselle; Vásquez, Víctor; Ríos, María Isabel; Rodríguez, María Victoria; Solano, Godofredo; Zacchino, Susana; Gupta, Mahabir P

    2013-12-01

    From the methanol root extract of Godmania aesculifolia, a species selected in a multinational OAS program aimed at discovering antifungal compounds from Latin American plants, a new chavicol diglycoside (1), the known 3,4-dihydroxy-2-(3-methylbut-2-en-1-yl)-3,4-dihydronaphthalen-1(2H)-one (2), and lapachol (3) were isolated and characterized by 1D and 2D NMR and MS techniques. Only 3 exhibited fairly good activity against a panel of clinical isolates of Cryptococcus neoformans (MIC50 between 7.8 and 31.2 µg/mL) and moderate activities against Candida spp. and non-albicans Candida spp.

  4. [Evaluation of antifungal and mollusuicidial activities of Moroccan Zizyphus lotus (L.) Desf].

    PubMed

    Lahlou, M; El Mahi, M; Hamamouchi, J

    2002-11-01

    Zizyphus lotus (L.) Desf. is one of the traditional drugs commonly used in folk medicine in Morocco. Extracts obtained from the successive exhaustion in petroleum ether, chloroform, ethyl acetate and methanol were in vitro found active either against nine pathogenic fungi and Bulinus truncatus, the intermediate host and vector of transmission of unitary schistosomiasis in Morocco. Particularly, the chloroform extract appears the most interesting in antifungal tests at lowest concentrations because of its countenance on terpenic compounds. Whereas, methanolic extract was found to possess the strong mollusuicidial activity and exhibited potent "knock-down" effect on molluscans related to its countenance on saponins.

  5. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L.

    PubMed

    Akroum, S

    2017-03-01

    Human and animal mycoses become more frequent and more resistant to traditional treatments. In this work, we tested the in vitro antifungal activity of acetonic extracts of Punica granatum L., Quercus suber L. and Vicia faba L. against seven pathogen fungi and the in vivo antifungal activity against Candida albicans and Trichophyton mentagrophytes. The phytochemical screening was also carried out and showed that the extracts contained mainly proanthocyanidins. Other polyphenols were also present but in low quantity. The acetone extract of V. faba L. gave a good in vitro inhibition of yeasts and was the most active for treating candidiasis in mice. It decreased the percentage of mortality with only 20μg. But the in vivo antifungal activity of this extract on T. mentagrophytes was low. It only showed a small diminution of crusting and erythema after the administration of 100μg. On the contrary, the acetone extracts of P. granatum L. had a poor activity against yeasts and a better one against moulds. It gave the best in vivo antifungal activity against T. mentagrophytes by healing animals with 40μg. The extract of P. granatum L. gave also an interesting in vivo antifungal activity against T. mentagrophytes with an active dose of 80μg.

  6. Antibacterial and Antifungal Activity of Holothuria leucospilota Isolated From Persian Gulf and Oman Sea

    PubMed Central

    Adibpour, Neda; Nasr, Farhad; Nematpour, Fatemeh; Shakouri, Arash; Ameri, Abdolghani

    2014-01-01

    Background: Emergence of antimicrobial resistance toward a number of conventional antibiotics has triggered the search for antimicrobial agents from a variety of sources including the marine environment. Objectives: The aim of this study was to evaluate the antimicrobial potential of Holothuria leucospilota from Qeshm and Kharg Islands against some selected bacteria and fungi. Materials and Methods: In this investigation, sea cucumbers from two coastal cities of Persian Gulf were collected in March and May 2011 and identified by the scale method according to the food and agriculture organization of the United Nations. Antibacterial activity of hydroalcoholic extracts of the body wall, cuvierian organs and coelomic fluid, methanol, chloroform, and n-hexane extracts of the body wall were evaluated by the spot test. In addition, their antifungal activity was assessed by the broth dilution method. Results: The displayed effect was microbiostatic at concentrations of 1000 and 2000 µg/mL rather than microbicidal. The highest activity of hydroalcoholic extracts was exhibited by body wall, cuvierian organs and coelomic fluid against Escherichia coli, Salmonella typhi, Staphylococcus aureus and Pseudomonas aeruginosa; Aspergillus niger, A. fumigatus, A. flavus and A. brasilensis. However, none of the methanol, chloroform and n-haxane extracts showed appreciable effects against Shigella dysenteriae, Proteus vulgaris, Bacillus cereus, S. epidermidis and Candida albicans. Moreover, cuvierian organs did not possess any antifungal potential. Conclusions: Our data indicated that water-methanol extracts from the body wall of H. leucospilota possess antibacterial and antifungal activity. However, additional and in-depth studies are required to isolate and identify the active component(s). PMID:25147657

  7. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition.

    PubMed

    Elansary, Hosam O; Salem, Mohamed Z M; Ashmawy, Nader A; Yessoufou, Kowiyou; El-Settawy, Ahmed A A

    2017-03-16

    The crude methanolic extracts from leaves of Eucalyptus camaldulensis L., E. camaldulensis var obtusa and E. gomphocephala grown in Egypt were investigated to explore their chemical composition as well as their antibacterial, antifungal and antioxidant activities. Major phenolics found were ellagic acid, quercetin 3-O-rhamnoside, quercetin 3-O-b-D-glucuronide, caffeic acid and chlorogenic acid. The antioxidant activities were examined by the 2,2'-diphenypicrylhydrazyl (DPPH) and β-Carotene-linoleic acid assays. E. camaldulensis extracts showed the highest phenolic content, antioxidant and antimicrobial activities compared to other cultivars. MIC values reported for antibacterial activity of E. camaldulensis ranged from 0.08 μg/mL (Bacillus cereus) to 0.22 μg/mL (Staphylococcus aureus), while MBC values ranged from 0.16 μg/mL (Dickeya solani and B. cereus) to 0.40 μg/mL (S. aureus). The inhibitory activities against growth of bacteria and fungi used is an indication that E. camaldulensis a might be useful resource for the development and formulation of antibacterial and antifungal drugs.

  8. Purification and identification of bovine cheese whey fatty acids exhibiting in vitro antifungal activity.

    PubMed

    Clément, M; Tremblay, J; Lange, M; Thibodeau, J; Belhumeur, P

    2008-07-01

    Milk lipids contain several bioactive factors exhibiting antimicrobial activity against bacteria, viruses, and fungi. In the present study, we demonstrate that free fatty acids (FFA) derived from the saponification of bovine whey cream lipids are active in vitro at inhibiting the germination of Candida albicans, a morphological transition associated with pathogenicity. This activity was found to be significantly increased when bovine FFA were enriched in non-straight-chain FFA. At low cell density, this non-straight-chain FFA-enriched fraction was also found to inhibit in a dose-dependant manner the growth of both developmental forms of C. albicans as well as the growth of Aspergillus fumigatus. Using an assay-guided fractionation, the main components responsible for these activities were isolated. On the basis of mass spectroscopic and gas chromatographic analysis, antifungal compounds were identified as capric acid (C10:0), lauroleic acid (C12:1), 11-methyldodecanoic acid (iso-C13:0), myristoleic acid (C14:1n-5), and gamma-linolenic acid (C18:3n-6). The most potent compound was gamma-linolenic acid, with minimal inhibitory concentration values of 5.4 mg/L for C. albicans and 1.3 mg/L for A. fumigatus, in standardized conditions. The results of this study indicate that bovine whey contains bioactive fatty acids exhibiting antifungal activity in vitro against 2 important human fungal pathogens.

  9. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives

    PubMed Central

    Shakhatreh, Muhamad Ali K; Al-Smadi, Mousa L; Khabour, Omar F; Shuaibu, Fatima A; Hussein, Emad I; Alzoubi, Karem H

    2016-01-01

    Several applications of chalcones and their derivatives encouraged researchers to increase their synthesis as an alternative for the treatment of pathogenic bacterial and fungal infections. In the present study, chalcone derivatives were synthesized through cross aldol condensation reaction between 4-(N,N-dimethylamino)benzaldehyde and multiarm aromatic ketones. The multiarm aromatic ketones were synthesized through nucleophilic substitution reaction between 4-hydroxy acetophenone and benzyl bromides. The benzyl bromides, multiarm aromatic ketones, and corresponding chalcone derivatives were evaluated for their activities against eleven clinical pathogenic Gram-positive, Gram-negative bacteria, and three pathogenic fungi by the disk diffusion method. The minimum inhibitory concentration was determined by the microbroth dilution technique. The results of the present study demonstrated that benzyl bromide derivatives have strong antibacterial and antifungal properties as compared to synthetic chalcone derivatives and ketones. Benzyl bromides (1a and 1c) showed high ester activity against Gram-positive bacteria and fungi but moderate activity against Gram-negative bacteria. Therefore, these compounds may be considered as good antibacterial and antifungal drug discovery. However, substituted ketones (2a–b) as well as chalcone derivatives (3a–c) showed no activity against all the tested strains except for ketone (2c), which showed moderate activity against Candida albicans. PMID:27877017

  10. Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase.

    PubMed

    Lee, Yu-Ting; Cui, Chang-Jun; Chow, Eve W L; Pue, Nason; Lonhienne, Thierry; Wang, Jian-Guo; Fraser, James A; Guddat, Luke W

    2013-01-10

    The sulfonylurea herbicides exert their activity by inhibiting plant acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway. It has previously been shown that if the gene for AHAS is deleted in Candida albicans , attenuation of virulence is achieved, suggesting AHAS as an antifungal drug target. Herein, we have cloned, expressed, and purified C. albicans AHAS and shown that several sulfonylureas are inhibitors of this enzyme and possess antifungal activity. The most potent of these compounds is ethyl 2-(N-((4-iodo-6-methoxypyrimidin-2-yl)carbamoyl)sulfamoyl)benzoate (10c), which has a K(i) value of 3.8 nM for C. albicans AHAS and an MIC₉₀ of 0.7 μg/mL for this fungus in cell-based assays. For the sulfonylureas tested there was a strong correlation between inhibitory activity toward C. albicans AHAS and fungicidal activity, supporting the hypothesis that AHAS is the target for their inhibitory activity within the cell.

  11. Antitumor and antifungal activities of organic extracts of seacucumber Holothuria atra from the southeast coast of India

    NASA Astrophysics Data System (ADS)

    Dhinakaran, Devaraj Isaac; Lipton, Aaron Premnath

    2015-02-01

    In phylum Echinodermata, the family Holothuridae is distinguished by its capacity of bioactive compounds. Sea cucumber Holothuria atra is commonly known as the lollyfish. The antifungal activity was detected using agar well diffusion method against the various fungal strains such as Trichoderma viride, Aspergillus niger, Aspergillus flavis, Candida albicans and Penicillium chrysogenum. Relatively high antifungal activity was seen against Candida albicans at 100 μL-1 concentration of extracts. Zone of inhibition was measured at 18 mm of diameter. The anti-tumor activities were detected against the Vero and Hep2 cell lines using MTT assay. The cells were treated with H. atra extract at concentrations 0.078-10mg mL-1. The extract showed high proliferative activity against the Hep2 cells. The body wall extracts of sea cucumber ( H. atra) showed effective antifungal and antitumor activities. All these findings suggest that the extracts could be used for the development of drugs.

  12. In vitro activities of new and conventional antifungal agents against clinical Scedosporium isolates.

    PubMed

    Meletiadis, Joseph; Meis, Jacques F G M; Mouton, Johan W; Rodriquez-Tudela, Juan Luis; Donnelly, J Peter; Verweij, Paul E

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro for most of the drugs tested against S. prolificans isolates, with the MICs at which 90% of isolates are inhibited (MIC(90)s) being >8 microg/ml; the MIC(90)s of voriconazole and UR-9825, however, were 4 microg/ml. S. apiospermum isolates were more susceptible in vitro, with the highest activity exhibited by voriconazole (MIC(90)s, 0.5 microg/ml), followed by miconazole (MIC(90)s, 1 microg/ml), UR-9825 and posaconazole (MIC(90)s, 2 microg/ml), and itraconazole (MIC(90)s, 4 microg/ml). The MICs of terbinafine, amphotericin B, and the two formulations of nystatin (for which no statistically significant differences in antifungal activities were found for the two species) for S. apiospermum isolates were high. Cross-resistance was observed among all the azoles except posaconazole and among all the polyenes except the lipid formulation. A distribution analysis was performed with the MICs of each drug and for each species. Bimodal and skewed MIC distributions were obtained, and cutoffs indicating the borders of different MIC subpopulations of the distributions were determined on the basis of the normal plot technique. These cutoffs were in many cases reproducible between 48 and 72 h.

  13. New N,N,N',N'-tetradentate Pyrazoly Agents: Synthesis and Evaluation of their Antifungal and Antibacterial Activities.

    PubMed

    Abrigach, Farid; Bouchal, Btissam; Riant, Olivier; Macé, Yohan; Takfaoui, Abdelilah; Radi, Smaail; Oussaid, Abdelouahad; Bellaoui, Mohammed; Touzani, Rachid

    2016-01-01

    A new library of N,N,N',N' -tetradentate pyrazoly compounds containing a pyrazole moiety was synthesized by the condensation of (3,5-dimethyl-1H-pyrazol-1-yl)methanol 2a or (1H-pyrazol-1-yl)methanol 2b with a series of primary diamines in refluxed acetonitrile for 6h. The antifungal activity against the budding yeast Saccharomyces cerevisiae, as well as the antibacterial activity against Escherichia coli of these new tetradentate ligands were studied. We found that these tetradentate ligands act specifically as antifungal agents and lack antibacterial activity. Their biological activities depend on the nature of the structure of the compounds.

  14. Antifungal and Zearalenone Inhibitory Activity of Pediococcus pentosaceus Isolated from Dairy Products on Fusarium graminearum.

    PubMed

    Sellamani, Muthulakshmi; Kalagatur, Naveen K; Siddaiah, Chandranayaka; Mudili, Venkataramana; Krishna, Kadirvelu; Natarajan, Gopalan; Rao Putcha, Venkata L

    2016-01-01

    The present study was aimed to evaluate the bio-control efficacy of Pediococcus pentosaceus isolated from traditional fermented dairy products originated from India, against the growth and zearalenone (ZEA) production of Fusarium graminearum. The cell-free supernatants of P. pentosaceus (PPCS) were prepared and chemical profiling was carried out by GC-MS and MALDI-TOF analysis. Chemical profiling of PPCS evidenced that, the presence of phenolic antioxidants, which are responsible for the antifungal activity. Another hand, MALDI-TOF analysis also indicated the presence of antimicrobial peptides. To know the antioxidant potential of PPCS, DPPH free radical scavenging assay was carried out and IC50 value was determined as 32 ± 1.89 μL/mL. The antifungal activity of P. pentosaceus was determined by dual culture overlay technique and zone of inhibition was recorded as 47 ± 2.81%, and antifungal activity of PPCS on F. graminearum was determined by micro-well dilution and scanning electron microscopic techniques. The minimum inhibitory concentration (MIC) of PPCS was determined as 66 ± 2.18 μL/mL in the present study. Also a clear variation in the micromorphology of mycelia treated with MIC value of PPCS compared to untreated control was documented. Further, the mechanism of growth inhibition was revealed by ergosterol analysis and determination of reactive oxygen species (ROS) in PPCS treated samples. The effects of PPCS on mycelial biomass and ZEA production were observed in a dose-dependent manner. The mechanism behind the suppression of ZEA production was studied by reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13), and results showed that there is a dose dependent down-regulation of target gene expression in PPCS treated samples. The results of the present study were collectively proved that, the antifungal and ZEA inhibitory activity of PPCS against F. graminearum and it may find a potential application in agriculture and food

  15. Antifungal and Zearalenone Inhibitory Activity of Pediococcus pentosaceus Isolated from Dairy Products on Fusarium graminearum

    PubMed Central

    Sellamani, Muthulakshmi; Kalagatur, Naveen K.; Siddaiah, Chandranayaka; Mudili, Venkataramana; Krishna, Kadirvelu; Natarajan, Gopalan; Rao Putcha, Venkata L.

    2016-01-01

    The present study was aimed to evaluate the bio-control efficacy of Pediococcus pentosaceus isolated from traditional fermented dairy products originated from India, against the growth and zearalenone (ZEA) production of Fusarium graminearum. The cell-free supernatants of P. pentosaceus (PPCS) were prepared and chemical profiling was carried out by GC-MS and MALDI-TOF analysis. Chemical profiling of PPCS evidenced that, the presence of phenolic antioxidants, which are responsible for the antifungal activity. Another hand, MALDI-TOF analysis also indicated the presence of antimicrobial peptides. To know the antioxidant potential of PPCS, DPPH free radical scavenging assay was carried out and IC50 value was determined as 32 ± 1.89 μL/mL. The antifungal activity of P. pentosaceus was determined by dual culture overlay technique and zone of inhibition was recorded as 47 ± 2.81%, and antifungal activity of PPCS on F. graminearum was determined by micro-well dilution and scanning electron microscopic techniques. The minimum inhibitory concentration (MIC) of PPCS was determined as 66 ± 2.18 μL/mL in the present study. Also a clear variation in the micromorphology of mycelia treated with MIC value of PPCS compared to untreated control was documented. Further, the mechanism of growth inhibition was revealed by ergosterol analysis and determination of reactive oxygen species (ROS) in PPCS treated samples. The effects of PPCS on mycelial biomass and ZEA production were observed in a dose-dependent manner. The mechanism behind the suppression of ZEA production was studied by reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13), and results showed that there is a dose dependent down-regulation of target gene expression in PPCS treated samples. The results of the present study were collectively proved that, the antifungal and ZEA inhibitory activity of PPCS against F. graminearum and it may find a potential application in agriculture and food

  16. Antifungal activity of the essential oil of Thymus vulgaris L. and thymol on experimentally induced dermatomycoses.

    PubMed

    Soković, M; Glamoclija, J; Cirić, A; Kataranovski, D; Marin, P D; Vukojević, J; Brkić, D

    2008-12-01

    The in vivo evaluation of the toxicological and antifungal activity of the essential oil of Thymus vulgaris L. and its main component thymol was made on 2-month-old male Wistar rats. We examined the therapeutic potency against experimentally induced dermatomycoses in rats, using the most frequent dermatomycetes, Trichophyton mentagrophytes, T. rubrum, and T. tonsurans. The therapeutic efficacy of a 1% solution of the essential oil of Thymus vulgaris and thymol as well as the commercial preparation bifonazole was evaluated. During the 37-day observation period the oil-treated animals were cured.

  17. UVA Photoactivation of Harmol Enhances Its Antifungal Activity against the Phytopathogens Penicillium digitatum and Botrytis cinerea

    PubMed Central

    Olmedo, Gabriela M.; Cerioni, Luciana; González, María M.; Cabrerizo, Franco M.; Volentini, Sabrina I.; Rapisarda, Viviana A.

    2017-01-01

    Phytopathogenic fungi responsible for post-harvest diseases on fruit and vegetables cause important economic losses. We have previously reported that harmol (1-methyl-9H-pyrido[3,4-b]indol-7-ol) is active against the causal agents of green and gray molds Penicillium digitatum and Botrytis cinerea, respectively. Here, antifungal activity of harmol was characterized in terms of pH dependency and conidial targets; also photodynamic effects of UVA irradiation on the antimicrobial action were evaluated. Harmol was able to inhibit the growth of both post-harvest fungal disease agents only in acidic conditions (pH 5), when it was found in its protonated form. Conidia treated with harmol exhibited membrane integrity loss, cell wall disruption, and cytoplasm disorganization. All these deleterious effects were more evident for B. cinerea in comparison to P. digitatum. When conidial suspensions were irradiated with UVA in the presence of harmol, antimicrobial activity against both pathogens was enhanced, compared to non-irradiated conditions. B. cinerea exhibited a high intracellular production of reactive oxygen species (ROS) when was incubated with harmol in irradiated and non-irradiated treatments. P. digitatum showed a significant increase in ROS accumulation only when treated with photoexcited harmol. The present work contributes to unravel the antifungal activity of harmol and its photoexcited counterpart against phytopathogenic conidia, focusing on ROS accumulation which could account for damage on different cellular targets. PMID:28326067

  18. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin.

    PubMed

    Balaguer, Mari Pau; Fajardo, Paula; Gartner, Hunter; Gomez-Estaca, Joaquin; Gavara, Rafael; Almenar, Eva; Hernandez-Munoz, Pilar

    2014-03-03

    Gliadin films cross-linked with cinnamaldehyde (1.5, 3, and 5%) and incorporated with natamycin (0.5%) were prepared by casting, and their antifungal activity, water resistance, and barrier properties were characterized. Incorporation of natamycin gave rise to films with greater water uptake, weight loss and diameter gain, and higher water vapor and oxygen permeabilities. These results may be associated to a looser packing of the protein chains as a consequence of the presence of natamycin. The different cross-linking degree of the matrices influenced the natamycin migration to the agar test media, increasing from 13.3 to 23.7 (μg/g of film) as the percentage of cinnamaldehyde was reduced from 5% to 1.5%. Antifungal activity of films was assayed against common food spoilage fungi (Penicillium species, Alternaria solani, Colletotrichum acutatum). The greatest effectiveness was obtained for films containing natamycin and treated with 5% of cinnamaldehyde. The level of cinnamaldehyde reached in the head-space of the test assay showed a diminishing trend as a function of time, which was in agreement with fungal growth and cinnamaldehyde metabolization. Developed active films were used in the packaging of cheese slices showing promising results for their application in active packaging against food spoilage.

  19. The antifungal activity of Artemisia sieberi essential oil from different localities of Iran against dermatophyte fungi.

    PubMed

    Mahboubi, M; Kazempour, N

    2015-06-01

    Dermatophyte fungi are the most common cause of dermatophytosis in humans and animals. Artemisia sieberi is traditionally used for treatment of fungi related skin infections. In this investigation, we analyzed five samples of A. sieberi oils (different harvesting times and distinctive collecting locations) by GC-FID and GC-MS. The antifungal activities of A. sieberi oils were evaluated against different dermatophytes. The anti-elastase activities of essential oils were also evaluated. The results of analysis showed that the harvesting time and collecting location can affect the chemical compositions and oil yields. The best time for collecting the A. sieberi with high yield was spring season (January-February). There was no significant difference between the desirable anti-dermatophyte activities of A. sieberi oils with different chemical compositions. M. gypseum, T. rubrum and M. canis had more sensitivity than others to A. sieberi oils. The oils with higher amounts of α-thujone, β-thujone showed the higher anti-elastase activity. Therefore, A. sieberi can be used as topical antifungal agent for treatment of skin dermatophyte infections.

  20. UVA Photoactivation of Harmol Enhances Its Antifungal Activity against the Phytopathogens Penicillium digitatum and Botrytis cinerea.

    PubMed

    Olmedo, Gabriela M; Cerioni, Luciana; González, María M; Cabrerizo, Franco M; Volentini, Sabrina I; Rapisarda, Viviana A

    2017-01-01

    Phytopathogenic fungi responsible for post-harvest diseases on fruit and vegetables cause important economic losses. We have previously reported that harmol (1-methyl-9H-pyrido[3,4-b]indol-7-ol) is active against the causal agents of green and gray molds Penicillium digitatum and Botrytis cinerea, respectively. Here, antifungal activity of harmol was characterized in terms of pH dependency and conidial targets; also photodynamic effects of UVA irradiation on the antimicrobial action were evaluated. Harmol was able to inhibit the growth of both post-harvest fungal disease agents only in acidic conditions (pH 5), when it was found in its protonated form. Conidia treated with harmol exhibited membrane integrity loss, cell wall disruption, and cytoplasm disorganization. All these deleterious effects were more evident for B. cinerea in comparison to P. digitatum. When conidial suspensions were irradiated with UVA in the presence of harmol, antimicrobial activity against both pathogens was enhanced, compared to non-irradiated conditions. B. cinerea exhibited a high intracellular production of reactive oxygen species (ROS) when was incubated with harmol in irradiated and non-irradiated treatments. P. digitatum showed a significant increase in ROS accumulation only when treated with photoexcited harmol. The present work contributes to unravel the antifungal activity of harmol and its photoexcited counterpart against phytopathogenic conidia, focusing on ROS accumulation which could account for damage on different cellular targets.

  1. Chemical composition, antibacterial, antifungal and antioxidant activities of Algerian Eryngium tricuspidatum L. essential oil.

    PubMed

    Merghache, Djamila; Boucherit-Otmani, Zahia; Merghache, Salima; Chikhi, Ilyas; Selles, Chaouki; Boucherit, Kebir

    2014-01-01

    This study describes the chemical composition and the antibacterial, antifungal and antioxidant activities of the essential oil extracted from aerial parts of the Algerian Eryngium tricuspidatum L., obtained by hydrodistillation and analysed by using the combination of gas chromatography (GC) and GC/mass spectrometry. A total of 63 compounds were identified accounting for 93.1% of the total oil. Chemical composition of oil was characterised by a high proportion of oxygenated sesquiterpenes (49.6%) among which α-bisabolol (32.6%) was the predominant compound. The sesquiterpene hydrocarbons represent the second major fraction (31.9%) with α-curcumene (6.5%) being the predominant one. Antibacterial and antifungal activities of the oil were tested using the micro-well determination of minimum inhibitory concentration (MIC) assay against eleven bacteria and two Candida species. It was found that the aerial parts of E. tricuspidatum exhibited interesting antibacterial and anticandidal activities (MIC = 9 μg/mL against several strains of bacteria and MIC = 4.6 μg/mL against Candida albicans). The antioxidant effect of this oil was evaluated using the 2,2-diphenyl-l-1-picrylhydrazil (DPPH) and ferric reducing antioxidant power (FRAP) assays. Results revealed significant activities (DPPH method: IC₅₀ = 510 μg/mL; FRAP assay: reducing power of oil increases from 0.0188 at 5 μg/mL to 0.5016 at 1000 μg/mL).

  2. In Vitro Antifungal Activities of a Series of Dication-Substituted Carbazoles, Furans, and Benzimidazoles

    PubMed Central

    Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.

    1998-01-01

    Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748

  3. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers.

    PubMed

    Garg, A; Singh, S

    2011-10-15

    In the present study eugenol loaded solid lipid nanoparticles (SLN) was prepared and characterized for particle size, polydispersity index, zeta potential, encapsulation efficiency, in vitro release and in vivo antifungal activity. Effect of addition of liquid lipid (caprylic triglyceride) to solid lipid (stearic acid) on crystallinity of lipid matrix of SLN was determined by using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. Transmission electron microscopy (TEM) was carried out to determine the morphology of SLN. In vivo antifungal activity of eugenol loaded lipid nanoparticles was evaluated by using a model of oral candidiasis in immunosuppressed rats. Particle size results showed that d(90) of SLN(1) (single lipid matrix) and SLN(2) (binary lipid matrix) was 332±14.2 nm and 87.8±3.8 nm, respectively. Polydispersity index was found to be in the range of 0.27-0.4 which indicate moderate size distribution. Encapsulation efficiency of SLN(2) (98.52%) was found to be more than that of SLN(1) (91.80%) at same lipid concentration (2%, w/v). Increasing of the solid lipid concentration from 2% (w/v) to 4% (w/v) resulted in increase in encapsulation efficiency and the particle size. SLN(2) shows faster release of eugenol than that of SLN(1) due to smaller size and presence of liquid lipid which provide less barriers to the diffusion of drug from matrix. TEM study reveals the spherical shape of SLN. FT-IR, DSC and XRD results indicate less crystallinity of SLN(2) than that of SLN(1). In vivo studies show no significant difference in log cfu value of all the groups at 0 day. At 8th day, log cfu value of group treated with saline (control), standard antifungal agent, eugenol solution, SLN(1) and SLN(2) was found to be 3.89±.032, 2.69, 3.39±.088, 3.19±.028 and 3.08±0.124, respectively. The in vivo study results indicate improvement in the antifungal activity of eugenol when

  4. Enhanced Antifungal Activity by Ab-Modified Amphotericin B-Loaded Nanoparticles Using a pH-Responsive Block Copolymer

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Dai, Jingjing; Xie, Jun; Zhu, Yongqiang; Zhu, Ming; Wang, Zhi; Xie, Chunmei; Yao, Aixia; Liu, Tingting; Wang, Xiaoyu; Chen, Li; Jiang, Qinglin; Wang, Shulei; Liang, Yong; Xu, Congjing

    2015-06-01

    Fungal infections are an important cause of morbidity and mortality in immunocompromised patients. Amphotericin B (AMB), with broad-spectrum antifungal activity, has long been recognized as a powerful fungicidal drug, but its clinical toxicities mainly nephrotoxicity and poor solubility limit its wide application in clinical practice. The fungal metabolism along with the host immune response usually generates acidity at sites of infection, resulting in loss of AMB activity in a pH-dependent manner. Herein, we developed pH-responsive AMB-loaded and surface charge-switching poly( d, l-lactic- co-glycolic acid)- b-poly( l-histidine)- b-poly(ethylene glycol) (PLGA-PLH-PEG) nanoparticles for resolving the localized acidity problem and enhance the antifungal efficacy of AMB. Moreover, we modified AMB-encapsulated PLGA-PLH-PEG nanoparticles with anti- Candida albicans antibody (CDA) (CDA-AMB-NPs) to increase the targetability. Then, CDA-AMB-NPs were characterized in terms of physical characteristics, in vitro drug release, stability, drug encapsulation efficiency, and toxicity. Finally, the targetability and antifungal activity of CDA-AMB-NPs were investigated in vitro /in vivo. The result demonstrated that CDA-AMB-NPs significantly improve the targetability and bioavailability of AMB and thus improve its antifungal activity and reduce its toxicity. These NPs may become a good drug carrier for antifungal treatment.

  5. In Vitro Antifungal Activity of Sertraline and Synergistic Effects in Combination with Antifungal Drugs against Planktonic Forms and Biofilms of Clinical Trichosporon asahii Isolates

    PubMed Central

    Cong, Lin; Liao, Yong; Yang, Suteng

    2016-01-01

    Trichosporon asahii (T. asahii) is the major pathogen of invasive trichosporonosis which occurred mostly in immunocompromised patients. The biofilms formation ability of T. asahii may account for resistance to antifungal drugs and results a high mortality rate. Sertraline, a commonly prescribed antidepressant, has been demonstrated to show in vitro and in vivo antifungal activities against many kinds of pathogenic fungi, especially Cryptococcus species. In the present study, the in vitro activities of sertraline alone or combined with fluconazole, voriconazole, itraconazole, caspofungin and amphotericin B against planktonic forms and biofilms of 21 clinical T. asahii isolates were evaluated using broth microdilution checkerboard method and XTT reduction assay, respectively. The fractional inhibitory concentration index (FICI) was used to interpret drug interactions. Sertraline alone exhibited antifungal activities against both T. asahii planktonic cells (MICs, 4–8 μg/ml) and T. asahii biofilms (SMICs, 16–32 μg/ml). Furthermore, SRT exhibited synergistic effects against T. asahii planktonic cells in combination with amphotericin B, caspofungin or fluconazole (FICI≤0.5) and exhibited synergistic effects against T. asahii biofilms in combination with amphotericin B (FICI≤0.5). SRT exhibited mostly indifferent interactions against T. asahii biofilms in combination with three azoles in this study. Sertraline-amphotericin B combination showed the highest percentage of synergistic effects against both T. asahii planktonic cells (90.5%) and T. asahii biofilms (81.0%). No antagonistic interaction was observed. Our study suggests the therapeutic potential of sertraline against invasive T. asahii infection, especially catheter-related T. asahii infection. Further in vivo studies are needed to validate our findings. PMID:27930704

  6. Chemical composition, cytotoxicity, antimicrobial and antifungal activity of several essential oils.

    PubMed

    Cannas, Sara; Usai, Donatella; Tardugno, Roberta; Benvenuti, Stefania; Pellati, Federica; Zanetti, Stefania; Molicotti, Paola

    2016-01-01

    Essential oils (EOs) are known and used for their biological, antibacterial, antifungal and antioxidant properties. Numerous studies have shown that EOs exhibit a large spectrum of biological activities in vitro. The incidence of drug-resistant pathogens and the toxicity of antibiotics have drawn attention to the antimicrobial activity of natural products, encouraging the development of alternative treatments. The aim of this study was to analyse the phytochemical and the cytotoxic characteristic of 36 EOs; we then evaluated the antimicrobial activity of the less-toxic EOs on Gram-positive, Gram-negative and fungi strains. The results showed low cytotoxicity in seven EOs and good activity against Gram-negative and Candida spp. strains. Based on our results, EOs could be proposed as a novel group of therapeutic agents. Further experiments are necessary to confirm their pharmacological effectiveness, and to determine potential toxic effects and the mechanism of their activity in in vivo models.

  7. Dimerization of Plant Defensin NaD1 Enhances Its Antifungal Activity*

    PubMed Central

    Lay, Fung T.; Mills, Grant D.; Poon, Ivan K. H.; Cowieson, Nathan P.; Kirby, Nigel; Baxter, Amy A.; van der Weerden, Nicole L.; Dogovski, Con; Perugini, Matthew A.; Anderson, Marilyn A.; Kvansakul, Marc; Hulett, Mark D.

    2012-01-01

    The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys4 as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys4 that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys4 mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens. PMID:22511788

  8. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens

    PubMed Central

    Mahmoud, D.A.; Hassanein, N.M.; Youssef, K.A.; Abou Zeid, M.A.

    2011-01-01

    This study was conducted to evaluate the effect of aqueous, ethanolic and ethyl acetate extracts from neem leaves on growth of some human pathogens (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Candida albicans and Microsporum gypseum) in vitro. Different concentrations (5, 10, 15 and 20%) prepared from these extracts inhibited the growth of the test pathogens and the effect gradually increased with concentration. The 20% ethyl acetate extract gave the strongest inhibition compared with the activity obtained by the same concentration of the other extracts. High Performance Liquid Chromatography (HPLC) analysis of ethyl acetate extract showed the presence of a main component (nimonol) which was purified and chemically confirmed by Nuclear Magnetic Resonance (NMR) spectroscopic analysis. The 20% ethyl acetate extract lost a part of its antifungal effect after pooling out the nimonol and this loss in activity was variable on test pathogens. The purified nimonol as a separate compound did not show any antifungal activity when assayed against all the six fungal pathogens. PMID:24031718

  9. Antifungal activity of the aqueous extract of Ilex paraguariensis against Malassezia furfur.

    PubMed

    Filip, Rosana; Davicino, Roberto; Anesini, Claudia

    2010-05-01

    Malassezia furfur is a lipodependent, dimorphic and saprophyte fungus which causes pityriasis versicolor, dandruff and seborrheic dermatitis in humans. The drugs available to treat this fungal infection are few. These drugs are highly toxic and are costly when used in prolonged treatments. For these reasons, it is necessary to find new compounds to treat these infections. Ilex paraguariensis St Hilaire is a plant that grows in Argentina, Brazil and Paraguay. The aim of this study was to evaluate the effect of the aqueous extract of Ilex paraguariensis on the growth of M. furfur. High performance liquid chromatography (HPLC) was employed to identify and isolate compounds of I. paraguariensis and the agar-well diffusion method was used to assess the antifungal activity of the extract. The fungicidal/fungistatic effect was evaluated by the modified Thompson assay. The results demonstrated that the aqueous extract of Ilex paraguariensis (1000 mg/ml) possesses inhibitory activity against M. furfur. This antimalassezial activity was equivalent to 2.7 microg/ml of ketoconazole. Therefore, the topical use of Ilex paraguariensis extract as alternative antifungal agent can be suggested.

  10. Assessment of antifungal activity of herbal and conventional toothpastes against clinical isolates of Candida albicans

    PubMed Central

    Adwan, Ghaleb; Salameh, Yousef; Adwan, Kamel; Barakat, Ali

    2012-01-01

    Objective To detect the anticandidal activity of nine toothpastes containing sodium fluoride, sodium monofluorophosphate and herbal extracts as an active ingredients against 45 oral and non oral Candida albicans (C. albicans) isolates. Methods The antifungal activity of these toothpaste formulations was determined using a standard agar well diffusion method. Statistical analysis was performed using a statistical package, SPSS windows version 15, by applying mean values using one-way ANOVA with post-hoc least square differences (LSD) method. A P value of less than 0.05 was considered significant. Results All toothpastes studied in our experiments were effective in inhibiting the growth of all C. albicans isolates. The highest anticandidal activity was obtained from toothpaste that containing both herbal extracts and sodium fluoride as active ingredients, while the lowest activity was obtained from toothpaste containing sodium monofluorophosphate as an active ingredient. Antifungal activity of Parodontax toothpaste showed a significant difference (P< 0.001) against C. albicans isolates compared to toothpastes containing sodium fluoride or herbal products. Conclusions In the present study, it has been demonstrated that toothpaste containing both herbal extracts and sodium fluoride as active ingredients are more effective in control of C. albicans, while toothpaste that containing monofluorophosphate as an active ingredient is less effective against C. albicans. Some herbal toothpaste formulations studied in our experiments, appear to be equally effective as the fluoride dental formulations and it can be used as an alternative to conventional formulations for individuals who have an interest in naturally-based products. Our results may provide invaluable information for dental professionals. PMID:23569933

  11. Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases.

    PubMed

    Bhalaria, M K; Naik, Sachin; Misra, A N

    2009-05-01

    Aim of this work was to prepare and characterize fluconazole (FLZ) encapsulated ethosomes, incorporate it in suitable dermatological base, and asses its comparative clinical efficacy in the treatment of Candidiasis patients against liposomal gel, marketed product and hydroethanolic solution of the drug. Drug encapsulated ethosomes and liposomes were prepared and optimized by "Hot" method technique and lipid film hydration technique. Vesicular carriers were characterized for % entrapment efficiency, particle size and shape, in vitro drug diffusion study, mean % reduction in dimension of Candidiasis lesion and stability study by using suitable analytical technique. Vesicle size and drug entrapment efficiency of the optimized ethosomes and liposomes were found to be 144 +/- 6.8 nm and 82.68% and 216 +/- 9.2 nm and 68.22% respectively. Microscopic examinations suggest ethosomes to be multilamellar spherical vesicles with a smooth surface. The differential scanning calorimetry results suggest high fluidity of the ethosomes than liposomes. In vitro drug diffusion studies demonstrated that % drug diffused from ethosomes was nearly twice than liposomes and three times higher than the hydroethanolic solution across rat skin. From the clinical evaluation, the developed novel delivery system demonstrated enhanced antifungal activity compared to liposomal formulation, marketed formulation and hydroethanolic solution of the drug.

  12. Antifungal activity against Candida albicans of starch Pickering emulsion with thymol or amphotericin B in suspension and calcium alginate films.

    PubMed

    Cossu, Andrea; Wang, Min S; Chaudhari, Amol; Nitin, Nitin

    2015-09-30

    Conventional antifungal treatments against Candida albicans in the oral cavity often result in increased cytotoxicity. The goal of this study was to determine the potential of starch Pickering emulsion as a delivery vehicle for an antifungal natural phenolic compound such as thymol in simulated saliva fluid (SSF) compared to amphotericin B. An oil-in-water (o/w) emulsion was stabilized using starch particles. Physical stability of the emulsion and disruption induced by α-amylase activity in SSF was evaluated. Encapsulated thymol in o/w emulsion was compared to encapsulated amphotericin B for antifungal activity against C. albicans in suspension using emulsions or zone inhibition assay on agar plates using emulsions dispersed in alginate films. Results showed that the emulsions were stable for at least three weeks. Digestion of the emulsion by α-amylase led to coalescence of emulsion droplets. The antifungal activity of thymol and amphotericin B in emulsion formulation was enhanced upon incubation with α-amylase. Results from the zone inhibition assay demonstrated efficacy of the emulsions dispersed in alginate films. Interestingly, addition of α-amylase to the alginate films resulted in a decreased inhibitory effect. Overall, this study showed that starch Pickering emulsions have a potential to deliver hydrophobic antifungal compounds to treat oral candidiasis.

  13. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens

    PubMed Central

    Fernandes, Kenya E.; Carter, Dee A.

    2017-01-01

    Lactoferrin is a multifunctional iron-binding glycoprotein belonging to the transferrin family. It is found abundantly in milk and is present as a major protein in human exocrine secretions where it plays a role in the innate immune response. Various antifungal functions of lactoferrin have been reported including a wide spectrum of activity across yeasts and molds and synergy with other antifungal drugs in combination therapy, and various modes of action have been proposed. Bioactive peptides derived from lactoferrin can also exhibit strong antifungal activity, with some surpassing the potency of the whole protein. This paper reviews current knowledge of the spectrum of activity, proposed mechanisms of action, and capacity for synergy of lactoferrin and its peptides, including the three most studied derivatives: lactoferricin, lactoferrampin, and Lf(1–11), as well as some lactoferrin-derived variants and modified peptides. PMID:28149293

  14. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens.

    PubMed

    Fernandes, Kenya E; Carter, Dee A

    2017-01-01

    Lactoferrin is a multifunctional iron-binding glycoprotein belonging to the transferrin family. It is found abundantly in milk and is present as a major protein in human exocrine secretions where it plays a role in the innate immune response. Various antifungal functions of lactoferrin have been reported including a wide spectrum of activity across yeasts and molds and synergy with other antifungal drugs in combination therapy, and various modes of action have been proposed. Bioactive peptides derived from lactoferrin can also exhibit strong antifungal activity, with some surpassing the potency of the whole protein. This paper reviews current knowledge of the spectrum of activity, proposed mechanisms of action, and capacity for synergy of lactoferrin and its peptides, including the three most studied derivatives: lactoferricin, lactoferrampin, and Lf(1-11), as well as some lactoferrin-derived variants and modified peptides.

  15. Synthesis and in vitro antifungal activity of isoniazid-derived hydrazones against Coccidioides posadasii.

    PubMed

    Cordeiro, Rossana de Aguiar; de Melo, Charlline Vládia Silva; Marques, Francisca Jakelyne de Farias; Serpa, Rosana; Evangelista, Antônio José de Jesus; Caetano, Erica Pacheco; Mafezoli, Jair; de Oliveira, Maria da Conceição Ferreira; da Silva, Marcos Reinaldo; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2016-09-01

    Coccidioidomycosis is a potentially severe infection caused by dimorphic fungi Coccidioides immitis and Coccidioides posadasii. Although guidelines are well established, refractory disease is a matter of concern in the clinical management of coccidioidomycosis. In the present study three isoniazid-derived hydrazones N'-[(E)-1-(4-methoxyphenyl)ethylidene]pyridine-4-carbohydrazide, N'-[(E)-1-(4-methylphenyl)ethylidene]pyridine-4-carbohydrazide, and N'-[(E)-1-(phenyl)ethylidene]pyridine-4-carbohydrazide were synthesized and evaluated for antifungal activity against C. posadasii. Susceptibility assays were performed by macrodilution testing. Interactions between the hydrazones and amphotericin B or itraconazole were evaluated by the checkerboard method. We also investigated the impairment of such compounds on cell ergosterol and membrane integrity. The synthesized molecules were able to inhibit C. posadasii in vitro with MIC values that ranged from 25 to 400 μg/mL. Drug interactions between synthesized molecules and amphotericin B proved synergistic for the majority of tested isolates; regarding itraconazole, synergism was observed only when strains were tested against N'-[(E)-1-(phenyl)ethylidene]pyridine-4-carbohydrazide. Reduction of cellular ergosterol was observed when strains were challenged with the hydrazones alone or combined with antifungals. Only N'-[(E)-1-(4-methylphenyl)ethylidene]pyridine-4-carbohydrazide altered membrane permeability of C. posadasii cells. Isoniazid-derived hydrazones were able to inhibit C. posadasii cells causing reduction of ergosterol content and alterations in the permeability of cell membrane. This study confirms the antifungal potential of hydrazones against pathogenic fungi.

  16. Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana.

    PubMed

    Lu, Dingding; Geng, Tao; Hou, Chengxiang; Huang, Yuxia; Qin, Guangxing; Guo, Xijie

    2016-05-25

    A cDNA encoding cecropin A (CecA) was cloned from the larvae of silkworm, Bombyx mori, using RT-PCR. It encodes a protein of 63 amino acids, containing a 22 amino acid signal peptide and a 37 amino acid mat peptide of functional domain. The CecA secondary structure contains two typical amphiphilic α-helices. Real-time qPCR analysis revealed that CecA was expressed in all the tissues tested, including cuticle, fat body, hemocytes, Malpighian tubule, midgut and silk gland in the silkworm larvae with the highest expression in the fat body and hemocytes. The gene expression of B. mori CecA was rapidly induced by Beauveria bassiana challenge and reached maximum levels at 36h after inoculation in third instar larvae. In the fifth instar larvae infected with B. bassiana, the relative expression level of CecA was upregulated in fat body and hemocytes, but not in cuticle, Malpighian tubule, midgut and silk gland. The cDNA segment of the CecA was inserted into the expression plasmid pET-30a(+) to construct a recombinant expression plasmid. Western blot results revealed that his-tagged fusion protein was successfully expressed and purified. Then the mat peptide of CecA was chemically synthesized with C-terminus amidation for in vivo antifungal assay and purity achieved 93.7%. Mass spectrometry and SDS-PAGE showed its molecular weight to be 4046.95Da. Antifungal assays indicated that the B. mori CecA had a high antifungal activity to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that the CecA is effective to inhibit B. bassiana inside the body of silkworm.

  17. Isolation of a New Mexican Strain of Bacillus subtilis with Antifungal and Antibacterial Activities

    PubMed Central

    Basurto-Cadena, M. G. L.; Vázquez-Arista, M.; García-Jiménez, J.; Salcedo-Hernández, R.; Bideshi, D. K.; Barboza-Corona, J. E.

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants. PMID:22593682

  18. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  19. Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities.

    PubMed

    Basurto-Cadena, M G L; Vázquez-Arista, M; García-Jiménez, J; Salcedo-Hernández, R; Bideshi, D K; Barboza-Corona, J E

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants.

  20. Antifungal Activity of Hydroalcoholic Extract of Chrysobalanus icaco Against Oral Clinical Isolates of Candida Species

    PubMed Central

    Silva, João Paulo Bastos; Peres, Ana Regina Maués Noronha; Paixão, Thiago Portal; Silva, Andressa Santa Brígida; Baetas, Ana Cristina; Barbosa, Wagner Luiz Ramos; Monteiro, Marta Chagas; Andrade, Marcieni Ataíde

    2017-01-01

    Background: Chrysobalanus icaco is a medicinal plant commonly used to treat fungal infections in Brazilian Amazonian region. Objective: This work aimed to evaluate the antifungal activity of the hydroalcoholic extract of C. icaco (HECi) against oral clinical isolates of Candida spp. and to determine the pharmacognostic parameters of the herbal drug and the phytochemical characteristics of HECi. Materials and Methods: The pharmacognostic characterization was performed using pharmacopoeial techniques. Phytochemical screening, total flavonoid content, and high-performance liquid chromatography (HPLC) analysis were used to investigate the chemical composition of the HECi. A broth microdilution method was used to determine the antifungal activity of the extract against 11 oral clinical isolates of Candida spp. Results: Herbal drug presented parameters which were within the limits set forth in current Brazilian legislation. A high amount of flavonoid content (132,959.33 ± 12,598.23 μg quercetin equivalent/g of extract) was found in HECi. Flavonoids such as myricetin and rutin were detected in the extract by HPLC analyses. HECi showed antifungal activity against oral isolates of Candida albicans and Candida parapsilosis (minimum inhibitory concentrations [MIC] 3.12 and 6.25 mg/mL, respectively), and C. albicans American American Type Culture Collection (MIC <1.56 mg/mL). Conclusion: HECi was shown to possess antifungal activity against Candida species with clinical importance in the development of oral candidiasis, and these activities may be related to its chemical composition. The antifungal activity detected for C. icaco against Candida species with clinical importance in the development of oral candidiasis can be attributed to the presence of flavonoids in HECi, characterized by chromatographic and spectroscopic techniques. SUMMARY Chrysobalanus icaco presents a high amount of flavonoids in its constitutionLC analysis was able to identify the flavonoids myricetin

  1. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene.

    PubMed

    Guo, Zhanyong; Li, Qing; Wang, Gang; Dong, Fang; Zhou, Haoyuan; Zhang, Jing

    2014-01-01

    A group of novel inulin derivatives containing benzene or chlorinated benzene were synthesized by reaction of chloracetyl inulin (CAIL) with the Schiff bases of 4-amino-pyridine, including (2-pyridyl)acetyl inulin chloride (PAIL), 2-[4-(2-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2CPAIL), 2-[4-(4-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (4CPAIL), and 2-[4-(2,4-dichlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2,4DCPAIL). Their antifungal activity against three kinds of phytopathogens was estimated by hypha measurement in vitro. Of all the synthesized chitosan derivatives, 2,4DCPAIL inhibited the growth of the tested phytopathogens with inhibitory indices of 67%, 47%, and 43% against Colletotrichum lagenarium (Pass) Ell.et halst, Phomopsis asparagi (Sacc.) Bubak and Fusarium oxysporum (schl.) F.sp. niveum (F. oxysporum) respectively at 1.0 mg/mL. The results indicate that all the inulin derivatives have better antifungal activity than inulin, and the inhibitory index is affected by the chlorine atom grafted to the inulin derivatives.

  2. Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses.

    PubMed

    Cruz, M C S; Santos, P O; Barbosa, A M; de Mélo, D L F M; Alviano, C S; Antoniolli, A R; Alviano, D S; Trindade, R C

    2007-05-04

    A survey of medicinal plants used to treat common mycoses was done in the Curituba district, Sergipe State, Brazil. One hundred inhabitants were interviewed by health agents and traditional healers. Four different plants were the most cited (more than 50% of the citations): Ziziphus joazeiro, Caesalpinia pyramidalis, Bumelia sartorum and Hymenea courbaril. The aqueous extracts obtained following traditional methods and using different parts of these plants, were submitted to drop agar diffusion tests for primary antimicrobial screening. Only the water infusion extract of Ziziphus joazeiro and Caesalpinea pyramidalis presented a significant antifungal activity against Trichophyton rubrum, Candida guilliermondii, Candida albicans, Cryptococcus neoformans and Fonsecaea pedrosoi, when compared to the antifungal agent amphotericin B. The minimal inhibitory concentration (MIC) of the bioactive extracts was evaluated by the microdilution method. Best activity with a MIC of 6.5 microg/ml for both extracts was observed against Trichophyton rubrum and Candida guilliermondii. Ziziphus joazeiro and Caesalpinea pyramidalis extracts presented also low acute toxicity in murine models. The present study validates the folk use of these plant extracts and indicates that they can be effective potential candidates for the development of new strategies to treat fungal infections.

  3. Metal based new triazoles: Their synthesis, characterization and antibacterial/antifungal activities

    NASA Astrophysics Data System (ADS)

    Sumrra, Sajjad H.; Chohan, Zahid H.

    2012-12-01

    A series of new triazoles and their oxovanadium(IV) complexes have been synthesized, characterized and evaluated for antibacterial/antifungal properties. The new Schiff bases ligands (L1)-(L5) were prepared by the condensation reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde, 2-acetyl pyridine and 2-methoxy benzaldehyde. The structures of the ligands have been established on the basis of their physical, spectral (IR, 1H and 13C NMR and mass spectrometry) and elemental analytical data. The prepared ligands were used to synthesize their oxovanadium(IV) complexes (1)-(5) which were also characterized by their physical, spectral and analytical data and proposed to have a square pyramidal geometry. The ligands and their complexes were screened for in vitro antibacterial activity against six bacterial species such as, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus, and Bacillus subtilis and for in vitro antifungal activity against six fungal strains, Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glabrata. Cytotoxic nature of the compounds was also reported using brine shrimp bioassay method against Artemia salina.

  4. Antifungal Activity of Essential Oil of Eucalyptus camaldulensis Dehnh. against Selected Fusarium spp.

    PubMed Central

    Maina, Angeline W.; Wagacha, John M.

    2017-01-01

    The objective of this study was to evaluate the antifungal activity of essential oil (EO) of Eucalyptus camaldulensis Dehnh. against five Fusarium spp. commonly associated with maize. The essential oil had been extracted by steam distillation in a modified Clevenger-type apparatus from leaves of E. camaldulensis and their chemical composition characterized by gas chromatography mass spectrometry. Poisoned food technique was used to determine the percentage inhibition of mycelial growth, minimum inhibitory concentration, and minimum fungicidal concentration of the EO on the test pathogens. Antifungal activity of different concentrations of the EO was evaluated using disc diffusion method. The most abundant compounds identified in the EO were 1,8-cineole (16.2%), α-pinene (15.6%), α-phellandrene (10.0%), and p-cymene (8.1%). The EO produced complete mycelial growth inhibition in all the test pathogens at a concentration of 7-8 μL/mL after five days of incubation. The minimum inhibitory concentration and minimum fungicidal concentration of the EO on the test fungi were in the range of 7-8 μL/mL and 8–10 μL/mL, respectively. These findings confirm the fungicidal properties of E. camaldulensis essential oils and their potential use in the management of economically important Fusarium spp. and as possible alternatives to synthetic fungicides. PMID:28127308

  5. Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves.

    PubMed

    Kanwal, Qudsia; Hussain, Ishtiaq; Latif Siddiqui, Hamid; Javaid, Arshad

    2010-12-01

    Five flavonoids, namely (-)-epicatechin-3-O-β-glucopyranoside (1), 5-hydroxy-3-(4-hydroxylphenyl)pyrano[3,2-g]chromene-4(8H)-one (2), 6-(p-hydroxybenzyl)taxifolin-7-O-β-D-glucoside (tricuspid) (3), quercetin-3-O-α-glucopyranosyl-(1 → 2)-β-D-glucopyranoside (4) and (-)-epicatechin(2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol (5), were isolated from the leaves of mango (Mangifera indica L.). Antifungal activity of these compounds was evaluated against five fungal species, namely Alternaria alternata (Fr.) Keissler, Aspergillus fumigatus Fresenius, Aspergillus niger van Tieghem, Macrophomina phaseolina (Tassi) Goid. and Penicillium citrii. Six concentrations, namely 100, 300, 500, 700, 900 and 1000 ppm of each of the five flavonoids were employed by means of the poisoned medium technique. All concentrations of the five test flavonoids significantly suppressed fungal growth. However, the specificity of different test compounds was evident against different fungal species. In general, antifungal activity of the flavonoids was gradually increased by increasing their concentrations. The highest concentration (of 1000 ppm) of compounds 1-5 reduced the growth of different target fungal species by 63-97%, 56-96%, 76-99%, 76-98% and 82-96%, respectively.

  6. In Vitro Antifungal Activity of Nikkomycin Z in Combination with Fluconazole or Itraconazole

    PubMed Central

    Li, R. K.; Rinaldi, M. G.

    1999-01-01

    Nikkomycins are nucleoside-peptide antibiotics produced by Streptomyces species with antifungal activities through the inhibition of chitin synthesis. We investigated the antifungal activities of nikkomycin Z alone and in combination with fluconazole and itraconazole. Checkerboard synergy studies were carried out by a macrobroth dilution procedure with RPMI 1640 medium at pH 6.0. At least 10 strains of the following fungi were tested: Candida albicans, other Candida spp., Cryptococcus neoformans, Coccidioides immitis, Aspergillus spp., and dematiacious fungi (including Exophiala jeanselmei, Exophiala spinifera, Bipolaris spicifera, Wangiella dermatitidis, Ochroconis humicola, Phaeoannellomyces werneckii, and Cladophialophora bantiana), and 2 strains each of Fusarium, Scedosporium, Paecilomyces, Penicillium, and Trichoderma spp. A total of 110 isolates were examined. Inocula of fungal elements were standardized by hemacytometer counting or spectrophotometrically. MICs and minimum lethal concentrations (MLCs) were determined visually by comparison of growth in drug-treated tubes with growth in drug-free control tubes. Additive and synergistic interactions between nikkomycin and either fluconazole or itraconazole were observed against C. albicans, Candida parapsilosis, Cryptococcus neoformans, and Coccidioides immitis. Marked synergism was also observed between nikkomycin and itraconazole against Aspergillus fumigatus and Aspergillus flavus. No antagonistic interaction between the drugs was observed with any of the strains tested. PMID:10348760

  7. Antifungal activity of Rubus chingii extract combined with fluconazole against fluconazole-resistant Candida albicans.

    PubMed

    Han, Bing; Chen, Jia; Yu, Yi-qun; Cao, Yong-bing; Jiang, Yuan-ying

    2016-02-01

    This study aimed to investigate the antifungal activity of Rubus chingii extract in combination with fluconazole (FLC) against FLC-resistant Candida albicans 100 in vitro. A R. chingii extract and FLC-resistant C. albicans fungus suspension were prepared. The minimum inhibitory concentration and fractional inhibitory concentration index of R. chingii extract combined with FLC against C. albicans were determined, after which growth curves for C. albicans treated with R. chingii extract, FLC alone and a combination of these preparations were constructed. Additionally, the mechanisms of drug combination against C. albicans were explored by flow cytometry, gas chromatographic mass spectrometry and drug efflux pump function detection. R. chingii extract combined with FLC showed significant synergy. Flow cytometry suggested that C. albicans cells mainly arrest in G1 and S phases when they have been treated with the drug combination. The drug combination resulted in a marked decrease in the ergosterol content of the cell membrane. Additionally, efflux of Rhodamine 6G decreased with increasing concentrations of R. chingii extract. R. chingii extract combined with FLC has antifungal activity against FLC-resistant C. albicans.

  8. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    PubMed Central

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease. PMID:22016606

  9. Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

    PubMed Central

    Dota, Kelen Fátima Dalben; Consolaro, Marcia Edilaine Lopes; Svidzinski, Terezinha Inez Estivalet; Bruschi, Marcos Luciano

    2011-01-01

    Propolis, a resinous compound produced by Apis mellifera L. bees, is known to possess a variety of biological activities and is applied in the therapy of various infectious diseases. The aim of this study was to evaluate the in vitro antifungal activity of propolis ethanol extract (PE) and propolis microparticles (PMs) obtained from a sample of Brazilian propolis against clinical yeast isolates of importance in the vulvovaginal candidiasis (VVC). PE was used to prepare the microparticles. Yeast isolates (n = 89), obtained from vaginal exudates of patients with VVC, were exposed to the PE and the PMs. Moreover, the main antifungal drugs used in the treatment of VVC (Fluconazole, Voriconazole, Itraconazole, Ketoconazole, Miconazole and Amphotericin B) were also tested. Minimum inhibitory concentration (MIC) was determined according to the standard broth microdilution method. Some Candida albicans isolates showed resistance or dose-dependent susceptibility for the azolic drugs and Amphotericin B. Non-C. albicans isolates showed more resistance and dose-dependent susceptibility for the azolic drugs than C. albicans. However, all of them were sensitive or dose-dependent susceptible for Amphotericin B. All yeasts were inhibited by PE and PMs, with small variation, independent of the species of yeast. The overall results provided important information for the potential application of PMs in the therapy of VVC and the possible prevention of the occurrence of new symptomatic episodes. PMID:21607012

  10. Metal based new triazoles: their synthesis, characterization and antibacterial/antifungal activities.

    PubMed

    Sumrra, Sajjad H; Chohan, Zahid H

    2012-12-01

    A series of new triazoles and their oxovanadium(IV) complexes have been synthesized, characterized and evaluated for antibacterial/antifungal properties. The new Schiff bases ligands (L(1))-(L(5)) were prepared by the condensation reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde, 2-acetyl pyridine and 2-methoxy benzaldehyde. The structures of the ligands have been established on the basis of their physical, spectral (IR, (1)H and (13)C NMR and mass spectrometry) and elemental analytical data. The prepared ligands were used to synthesize their oxovanadium(IV) complexes (1)-(5) which were also characterized by their physical, spectral and analytical data and proposed to have a square pyramidal geometry. The ligands and their complexes were screened for in vitro antibacterial activity against six bacterial species such as, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus, and Bacillus subtilis and for in vitro antifungal activity against six fungal strains, Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glabrata. Cytotoxic nature of the compounds was also reported using brine shrimp bioassay method against Artemia salina.

  11. Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application.

    PubMed

    Lam, P-L; Gambari, R; Kok, S H-L; Lam, K-H; Tang, J C-O; Bian, Z-X; Lee, K K-H; Chui, C-H

    2015-02-01

    Aspergillus niger (A. niger) is a common species of Aspergillus molds. Cutaneous aspergillosis usually occurs in skin sites near intravenous injection and approximately 6% of cutaneous aspergillosis cases which do not involve burn or HIV-infected patients are caused by A. niger. Biomaterials and biopharmaceuticals produced from microparticle-based drug delivery systems have received much attention as microencapsulated drugs offer an improvement in therapeutic efficacy due to better human absorption. The frequently used crosslinker, glutaraldehyde, in gelatin-based microencapsulation systems is considered harmful to human beings. In order to tackle the potential risks, agarose has become an alternative polymer to be used with gelatin as wall matrix materials of microcapsules. In the present study, we report the eco-friendly use of an agarose/gelatin-based microencapsulation system to enhance the antifungal activity of gallic acid and reduce its potential cytotoxic effects towards human skin keratinocytes. We used optimal parameter combinations, such as an agarose/gelatin ratio of 1:1, a polymer/oil ratio of 1:60, a surfactant volume of 1% w/w and a stirring speed of 900 rpm. The minimum inhibitory concentration of microencapsulated gallic acid (62.5 µg/ml) was significantly improved when compared with that of the original drug (>750 µg/ml). The anti-A. niger activity of gallic acid -containing microcapsules was much stronger than that of the original drug. Following 48 h of treatment, skin cell survival was approximately 90% with agarose/gelatin microcapsules containing gallic acid, whereas cell viability was only 25-35% with free gallic acid. Our results demonstrate that agarose/gelatin-based microcapsules containing gallic acid may prove to be helpful in the treatment of A. niger-induced skin infections near intravenous injection sites.

  12. Antifungal and antioxidant activity of Crassocephalum bauchiense (Hutch.) Milne-Redh ethyl acetate extract and fractions (Asteraceae)

    PubMed Central

    2014-01-01

    Background Crassocephalum bauchiense is a flowering plant, found in the West Region of Cameroon. Previous studied has highlighted the antibacterial and the dermal toxicological safety as well as the immunomodulatory activities of the ethyl acetate extract of its dry leaves. As an extension of the previous researches, the current work has been undertaken to evaluate the in vitro antifungal and antioxidant activities of C. bauchiense dried leaves ethyl acetate extract and fractions. Methods The extract was obtained by maceration in ethyl acetate and further fractionated into six fractions labeled F1 to F6 by flash chromatography. The antifungal activity of the extract and fractions against yeasts and dermatophytes was evaluated using broth microdilution method. Antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and β-carotene - linoleic acid assays. Results The extract (MIC = 0.125 - 4 mg/ml) was found to be more active on dermatophytes and yeasts compared to the fractions. The ethyl acetate extract and fractions exhibited strong scavenging activity on DPPH (CI50 = 28.57 - 389.38 μg/ml). The fractions F3 and F6 expressed best antioxidant activity on DPPH radicals compared to the crude extract. Conclusion The results of these findings clearly showed that C. bauchiense ethyl acetate extract has a significant antifungal and antioxidant activity. It is therefore a source of active compounds that might be used as antifungal and antioxidant agents. PMID:24742210

  13. Antibacterial and antifungal activities of crude plant extracts from Colombian biodiversity.

    PubMed

    Niño, Jaime; Mosquera, Oscar M; Correa, Yaned M

    2012-12-01

    On a global scale, people have used plants to treat diseases and infections, and this has raised interest on the plant biodiversity potencial in the search of antimicrobial principles. In this work, 75 crude n-hexanes, dichloromethane and methanol extracts from the aerial parts of 25 plants belonging to four botanical families (Asteraceae, Euphorbiaceae, Rubiaceae and Solanaceae), collected at the Natural Regional Park Ucumari (Risaralda, Colombia), were evaluated for their antibacterial and antifungal activities by the agar well diffusion method. The antibacterial activities were assayed against two Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis, and three Gram-negative ones named, Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa. In addition, the same plant extracts were tested against the yeast Candida albicans and the fungi Aspergillus fumigatus and Fusarium solani. Overall, the plant extracts examined displayed better bactericide rather than fungicide activities. In general, the best antibacterial activity was showed by the plant extracts from the Rubiaceae family, followed in order by the extracts from the Euphorbiaceae and Solanaceae ones. It is important to emphasize the great activity displayed by the methanol extract of Alchornea coelophylla (Euphorbiaceae) that inhibited four out of five bacteria tested (B. Subtilis, P. aeruginosa, S. aureus and E. coli). Furthermore, the best Minimal Inhibitory Concentration for the extracts with antifungal activities were displayed by the dichloromethane extracts from Acalypha diversifolia and Euphorbia sp (Euphorbiaceae). The most susceptible fungus evaluated was F. Solani since 60% and 20% of the dichloromethane and methanol extracts evaluated inhibited the growth of this phytopathogenic fungus. The antimicrobial activity of the different plant extracts examined in this work could be related to the secondary metabolites contents and their interaction and susceptibility of

  14. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  15. [Seasonal and geographical variation range of antifungal activity of sponge extracts from the Moroccan Atlantic coasts].

    PubMed

    El-Wahidi, M; El-Amraoui, B; Biard, J-F; Uriz, M-J; Fassouane, A; Bamhaoud, T

    2011-03-01

    Currently, marine organisms have a very important source of new molecules in pharmacology and thus in the development of new bioactive products. The organic and aqueous extracts of two marine sponges, Cinachyrella tarentine collected during two different seasons, winter and summer, and Cliona viridis collected in two different zones on the coast of El Jadida (Morocco) were tested for their antifungal activity using the diffusion method. The C. tarentine sponge collected in January (winter) has a very important activity compared to that collected in August (summer). While the sponge C. viridis collected from Jorf Lasfar port (shallower and polluted area) has a very important activity compared to that collected from the coast of El Jadida (depth and unpolluted area).

  16. Antifungal activity of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on dermatophytes

    PubMed Central

    Balakumar, S; Rajan, S; Thirunalasundari, T; Jeeva, S

    2011-01-01

    Objective To evaluate the in vitro antifungal activity of Aegle marmelos leaf extracts and fractions on the clinical isolates of dermatophytic fungi like Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Methods The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of various extracts and fractions of the leaves of Aegle marmelos were measured using method of National Committee for Clinical Laboratory Standards (NCCLS). Results Aegle marmelos leaf extracts and fractions were found to have fungicidal activity against various clinical isolates of dermatophytic fungi. The MIC and MFC was found to be high in water and ethyl alcohol extracts and methanol fractions (200µg/mL) against dermatophytic fungi studied. Conclusions Aegle marmelos leaf extracts significantly inhibites the growth of all dermatophytic fungi studied. If this activity is confirmed by in vivo studies and if the compound is isolated and identified, it could be a remedy for dermatophytosis. PMID:23569781

  17. Streptomyces luozhongensis sp. nov., a novel actinomycete with antifungal activity and antibacterial activity.

    PubMed

    Zhang, Renwen; Han, Xiaoxue; Xia, Zhanfeng; Luo, Xiaoxia; Wan, Chuanxing; Zhang, Lili

    2017-02-01

    A novel actinomycete strain, designated TRM 49605(T), was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605(T) to the genus Streptomyces. Strain TRM 49605(T) shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815(T) (98.62 %), Streptomyces flavovariabilis NRRL B-16367(T) (98.45 %) and Streptomyces variegatus NRRL B-16380(T) (98.45 %). Whole cell hydrolysates of strain TRM 49605(T) were found to contain LL-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605(T) were identified as iso C16:0, anteiso C15:0, C16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H4), MK-9(H6), MK-9(H8) and MK-10(H6). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA-DNA relatedness between strain TRM 49605(T) and the phylogenetically related strain S. roseolilacinus NBRC 12815(T) was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605(T) (=CCTCC AA2015026(T) = KCTC 39666(T)) should be designated as the type strain of a novel species of the genus

  18. [In vitro susceptibility of isolates of Paracoccidioides spp complex to systemic antifungals using the microdilution method].

    PubMed

    Cermehol, Julman R; Alvarado, Primavera; Mendoza, Mireya; Herndndez, Isabel; Cuestal, De

    2015-09-01

    Broth microdilution, the reference method recommended by the Clinical Laboratory Standards Institute (CLSI), is not available for use with dimorphic fungi, such as those of the Paracoccidioides genus. In this work, in vitro susceptibility of the Paracoccidioides complex (n=19) to systemic antifungals: amphotericin B, 5-flucytosine, ketoconazole, itraconazole, fluconazole, voriconazole and caspofungin, was evaluated using the microdilution method (Document M27-A3, M27-S3), with some modifications such as: culture time in Sabouraud dextrose agar (7-10 days), RPMI 1640 medium supplemented with 2% glucose and the incubation time (7, 8 and 18 days). The sensitivity in vitro was variable; the majority of Paracoccidioides isolates was susceptible to ketoconazol (73.7%), followed by voriconazole (68.4%), itraconazole (63.1%), amphotericin B (52.6%), fluconazole (47.4%), 5-flucytosine (42.1%) and caspofungin (5%). The overall resistance was mainly to caspofungin (94.7%), followed by 5-flucytosine (52.6%) and amphotericin B (47.4%). Fifty-three percent of the isolates were susceptible-dose dependent to fluconazole followed by itraconazole (15.7%) and 5-fluorocytosine (5.3%). Amphotericin B, itraconazole and voriconazole were the most potent antifungal drugs against Paracoccidioides spp (CMI: 0.03-1 microg/mL). Based on these results, we tentatively propose a microdilution assay protocol for susceptibility testing of Paracoccidioides spp to antifungal drugs. This method may be clinically useful to predict resistance, even though further studies are needed.

  19. Surgical management of chronic hyperplastic candidiasis refractory to systemic antifungal treatment

    PubMed Central

    Shah, Neha; Ray, Jay Gopal; Kundu, Sanchita; Sardana, Divesh

    2017-01-01

    Chronic hyperplastic candidiasis (CHC), earlier known as candidal leukoplakia, is a variant of oral candidiasis that classically presents as a white patch on the commissures of the oral mucosa and it is mostly caused by Candida albicans. Clinically, the lesions are usually asymptomatic and regress after appropriate antifungal therapy and correction of the underlying cause. If the lesions are untreated, a small portion may develop dysplasia and later progress into carcinoma. The purpose of this article is to report a case of CHC in a 57-year-old male patient with a significant smoking habit, who presented with a thick, nonscrapable, brownish-white coating on the dorsum of the tongue for 9 years. This case is of particular importance and concern because of the high risk for malignant transformation in CHC. The role of biopsy and histopathology is also stressed through this case report in arriving at a definitive diagnosis and treatment planning. Further, this case is interesting because it was refractory to local and systemic antifungal treatment and so, surgery was chosen as an alternative treatment modality considering the side effects of the prolonged use of antifungal drugs. PMID:28367031

  20. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production.

    PubMed

    Cortés-Zavaleta, O; López-Malo, A; Hernández-Mendoza, A; García, H S

    2014-03-03

    In this study, 13 lactic acid bacteria (LAB) strains (including 5 Lactobacillus casei, 2 Lactobacillus rhamnosus, 2 Lactobacillus fermentum, 1 Lactobacillus acidophilus, 1 Lactobacillus plantarum, 1 Lactobacillus sakei, and 1 Lactobacillus reuteri species) were assessed for both their antifungal activity against four food spoilage molds (Colletotrichum gloeosporioides, Botrytis cinerea, Penicillium expansum, and Aspergillus flavus) and their capability to produce the novel antimicrobial compound 3-phenyllactic acid (PLA). Results demonstrated that all molds were sensitive to varying degrees to the cell-free supernatants (CFS) from LAB fermentations (p<0.05), with growth inhibitions ranging from 2.65% to 66.82%. The inhibition ability of CFS was not affected by a heating treatment (121°C, 20 min); however, it declined markedly when the pH of CFS was adjusted to 6.5. With the exception of L. plantarum NRRL B-4496 and L. acidophilus ATCC-4495, all other LAB strains produced PLA ranging from 0.021 to 0.275 mM. The high minimum inhibitory concentration for commercial PLA (3.01-36.10mM) suggests that it cannot be considered the only compound related with the antifungal potential of studied LAB and that synergistic effects may exist among other metabolism products.

  1. Development of topical hydrogels of terbinafine hydrochloride and evaluation of their antifungal activity.

    PubMed

    Çelebi, Nevin; Ermiş, Seda; Özkan, Semiha

    2015-04-01

    The purpose of this study was to prepare hydrogels and microemulsion (ME)-based gel formulations containing 1% terbinafine hydrochloride (TER-HCL) and to evaluate the use of these formulations for the antifungal treatment of fungal infections. Three different hydrogel formulations were prepared using chitosan, Carbopol® 974 and Natrosol® 250 polymers. A pseudo-ternary phase diagram was constructed, and starting from ME formulation, a ME gel form containing 1% Carbopol 974 was prepared. We also examined the characteristic properties of the prepared hyrogels. The physical stability of hydrogels and the ME -based gels were evaluated after storage at different temperatures for a period of 3 months. The release of TER-HCL from the gels and the commercial product (Lamisil®) was carried out by using a standard dialysis membrane in phosphate buffer (pH 5.2) at 32 °C. The results of the in vitro release study showed that the Natrosol gel released the highest amount of drug, followed by Carbopol gel, chitosan gel, commercial product, and the microoemulsion-based gel in that order. In vitro examination of antifungal activity revealed that all the prepared and commercial products were effective against Candida parapsilosis, Penicillium, Aspergillus niger and Microsporum. These results indicate that the Natrosol®-based hydrogel is a good candidate for the topical delivery of TER-HCL.

  2. An antifungal peptide with antiproliferative activity toward tumor cells from red kidney beans.

    PubMed

    Li, Miao; Wang, Hexiang; Ng, Tzi Bun

    2011-06-01

    A 7.3-kDa antifungal peptide was purified from dried red kidney beans. The purification procedure entailed ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose, followed by fast protein liquid chromatography-gel filtration on Superdex 75. The peptide was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. It exhibited a molecular mass of 7.3 kDa in gel filtration and also in SDS-polyacrylamide gel electrophoresis, indicating that it is a single-chained protein. The N-terminal sequence of the peptide was DGVCFGGLANGDRT. The peptide exerted an antifungal action on Fusarium oxysporum with an IC₅₀ of 3.8±0.4 µM (mean±SD, n=3). It also inhibited mycelial growth in Mycosphaerella arachidicola. It suppressed growth of lymphoma MBL2 cells and leukemia L1210 cells with an IC₅₀ of 5.2±0.4 µM and 7.6±0.6 µM, respectively. HIV-1 reverse transcriptase was inhibited with an IC₅₀ of 40±3.2 µM. However, no activity was demonstrated toward other viral enzymes.

  3. Medium optimization of antifungal activity production by Bacillus amyloliquefaciens using statistical experimental design.

    PubMed

    Mezghanni, Héla; Khedher, Saoussen Ben; Tounsi, Slim; Zouari, Nabil

    2012-01-01

    In order to overproduce biofungicides agents by Bacillus amyloliquefaciens BLB371, a suitable culture medium was optimized using response surface methodology. Plackett-Burman design and central composite design were employed for experimental design and analysis of the results. Peptone, sucrose, and yeast extract were found to significantly influence antifungal activity production and their optimal concentrations were, respectively, 20 g/L, 25 g/L, and 4.5 g/L. The corresponding biofungicide production was 250 AU/mL, corresponding to 56% improvement in antifungal components production over a previously used medium (160 AU/mL). Moreover, our results indicated that a deficiency of the minerals CuSO(4), FeCl(3) · 6H(2)O, Na(2)MoO(4), KI, ZnSO(4) · 7H(2)O, H(3)BO(3), and C(6)H(8)O(7) in the optimized culture medium was not crucial for biofungicides production by Bacillus amyloliquefaciens BLB371, which is interesting from a practical point of view, particularly for low-cost production and use of the biofungicide for the control of agricultural fungal pests.

  4. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum.

    PubMed

    Flores, F C; de Lima, J A; Ribeiro, R F; Alves, S H; Rolim, C M B; Beck, R C R; da Silva, Cristiane Bona

    2013-04-01

    The aim of this study was to evaluate, for the first time, the antifungal efficacy of nanocapsules and nanoemulsions containing Melaleuca alternifolia essential oil (tea tree oil) in an onychomycosis model. The antifungal activity of nanostructured formulations was evaluated against Trichophyton rubrum in two different in vitro models of dermatophyte nail infection. First, nail powder was infected with T. rubrum in a 96-well plate and then treated with the formulations. After 7 and 14 days, cell viability was verified. The plate counts for the samples were 2.37, 1.45 and 1.0 log CFU mL(-1) (emulsion, nanoemulsion containing tea tree oil and nanocapsules containing tea tree oil, respectively). A second model employed nails fragments which were infected with the microorganism and treated with the formulations. The diameter of fungal colony was measured. The areas obtained were 2.88 ± 2.08 mm(2), 14.59 ± 2.01 mm(2), 40.98 ± 2.76 mm(2) and 38.72 ± 1.22 mm(2) for the nanocapsules containing tea tree oil, nanoemulsion containing tea tree oil, emulsion and untreated nail, respectively. Nail infection models demonstrated the ability of the formulations to reduce T. rubrum growth, with the inclusion of oil in nanocapsules being most efficient.

  5. Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities

    PubMed Central

    2012-01-01

    Background Diseases caused by microorganisms and parasites remain a major challenge globally and particularly in sub-Saharan Africa to man and livestock. Resistance to available antimicrobials and the high cost or unavailability of antimicrobials complicates matters. Many rural people use plants to treat these infections. Because some anthelmintics e.g. benzimidazoles also have good antifungal activity we examined the antifungal activity of extracts of 13 plant species used in southern Africa to treat gastrointestinal helminth infections in livestock and in man. Methods Antifungal activity of acetone leaf extracts was determined by serial microdilution with tetrazolium violet as growth indicator against Aspergillus fumigatus, Cryptococcus neoformans and Candida albicans. These pathogens play an important role in opportunistic infections of immune compromised patients. Cytotoxicity was determined by MTT cellular assay. Therapeutic indices were calculated and selectivity for different pathogens determined. We proposed a method to calculate the relation between microbicidal and microbistatic activities. Total activities for different plant species were calculated. Results On the whole, all 13 extracts had good antifungal activities with MIC values as low as 0.02 mg/mL for extracts of Clausena anisata against Aspergillus fumigatus and 0.04 mg/mL for extracts of Zanthoxylum capense, Clerodendrum glabrum, and Milletia grandis, against A. fumigatus. Clausena anisata extracts had the lowest cytotoxicity (LC50) of 0.17 mg/mL, a reasonable therapeutic index (2.65) against A. fumigatus. It also had selective activity against A. fumigatus, an overall fungicidal activity of 98% and a total activity of 3395 mL/g against A. fumigatus. This means that 1 g of acetone leaf extract can be diluted to 3.4 litres and it would still inhibit the growth. Clerodendrum glabrum, Zanthoxylum capense and Milletia grandis extracts also yielded promising results. Conclusions Some plant extracts

  6. Antifungal Activity of the Essential Oils of Callitris neocaledonica and C. sulcata Heartwood (Cupressaceae).

    PubMed

    Waikedre, Jean; Vitturo, Carmen I; Molina, Ana; Theodoro, Phellipe Norato Estrela Terra; do Rosário Rodrigues Silva, Maria; Espindola, Laila Salmen; Maciuk, Alexandre; Fournet, Alain

    2012-03-01

    Mortality due to fungal infections has increased substantially, becoming a worldwide problem in public health. As a contribution to the discovery of new antifungal agents, the properties of the heartwood essential oils of two trees growing in New Caledonia, Callitris neocaledonica and C. sulcata (Cupressaceae) were investigated. The essential oils extracted by hydrodistillation were characterized by GC-FID and GC/MS analyses. From C. neocaledonica oil, 31 constituents were identified, representing 97.0% of the total oil composition, which was mainly constituted by oxygenated sesquiterpenes (88%). Among them, guaiol (1; 30.2%), bulnesol (2; 12.5%), α-eudesmol (3; 10.5%), β-eudesmol (4; 10.5%), γ-eudesmol (10.2%), and elemol (4.9%) predominated. The chemical composition of C. sulcata oil, from which 39 constituents were identified (96.8% of the total oil composition), showed some similarities with that of C. neocaledonica oil. The major constituents were also oxygenated sesquiterpenes, accounting for 78.5% of the oil, amongst them, mainly compounds 1 (16.1%), 3 and 4 (9.7% each), as well as 2 (7.4%). The antifungal activity of the oils against clinical isolates of four dermatophytic fungi (Trichophyton mentagrophytes, T. rubrum, Microsporum canis, and M. gypseum) and six yeasts (Candida albicans, C. parapsilosis, C. glabrata, C. krusei, Cryptococcus neoformans, and Cryptococcus gattii) was tested by determining minimum inhibitory concentrations (MICs) using the microdilution method. The best antifungal activities of the C. neocaledonica and C. sulcata oils were obtained against C. krusei (MICs of 3.9 and 0.975 μg/ml, resp.). These MIC values were similar to those of the reference drugs itraconazole and fluconazole (1.0 and 0.5 mg/ml, resp.). The oils were also subjected to a screening for their possible DPPH(.) (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging activity. C. neocaledonica essential oil was more active than C. sulcata oil (93.3 vs. 32.2% DPPH

  7. Sparfloxacin-metal complexes as antifungal agents - Their synthesis, characterization and antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Sultana, Najma; Arayne, M. Saeed; Gul, Somia; Shamim, Sana

    2010-06-01

    Metal complexes with the third-generation quinolone antibacterial agent sparfloxacin (SPFX) or 5-amino-1-cyclopropyl-7-(cis-3,5-dimethyl-1-piperazinyl)-6,8,di-fluoro-1-4-dihydro-4-oxo-3-quinocarboxylic acid have been synthesized and characterized with physicochemical and spectroscopic techniques such as TLC, IR, NMR and elemental analyses. In these complexes, sparfloxacin acts as bidentate deprotonated ligands bound to the metal through the pyridone oxygen and one carboxylate oxygen. The antimicrobial activity of these complexes has been evaluated against four Gram-positive and seven Gram-negative bacteria. Antifungal activity against five different fungi has been evaluated and compared with reference drug sparfloxacin. Fe 2+-SPFX and Cd 2+-SPFX complexes showed remarkable potency as compared to the parent drug.

  8. Relation between lipophilicity of alkyl gallates and antifungal activity against yeasts and filamentous fungi.

    PubMed

    Leal, P C; Mascarello, A; Derita, M; Zuljan, F; Nunes, R J; Zacchino, S; Yunes, R A

    2009-03-15

    The antifungal activity of a complete series of 15 n-alkyl gallates and six analogues acting against a representative panel of opportunistic pathogenic fungi was studied in order to analyze their role in: the importance of the fungi tested, the importance of the hydroxyls, the influence of the chain length and the hydrophobicity of the compounds. It was demonstrated that dermatophytes were the most susceptible species and that hydroxyls appear to be necessary but not sufficient for the activity. When the logP of each gallate was calculated and related to the different values of MIC against Microsporum gypseum it was observed that hexyl, heptyl, octyl and nonyl gallates exhibit a significant positive deviation from the curve corresponding to a polynomial equation obtained for the other gallates. This suggests that these compounds have a further mode of action besides their hydrophobicity, possibly the inhibition of some enzyme involved in ergosterol biosynthesis.

  9. Syntheses, characterization and antifungal activity of novel dimethylbis(N-R-sulfonyldithiocarbimato)stannate(IV) complexes

    NASA Astrophysics Data System (ADS)

    Bomfim Filho, Lucius F. O.; Oliveira, Marcelo R. L.; Miranda, Liany D. L.; Vidigal, Antonio E. C.; Guilardi, Silvana; Souza, Rafael A. C.; Ellena, Javier; Ardisson, José D.; Zambolim, Laércio; Rubinger, Mayura M. M.

    2017-02-01

    Four new complexes of the general formula: (Ph4P)2[Sn(CH3)2(RSO2Ndbnd CS2)2], where Ph4P = tetraphenylphosphonium cation and R = CH3, (1), CH3CH2 (2), C6H5 (3), 4-FC6H4 (4), were prepared by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimates, K2(RSO2Ndbnd CS2), and tetraphenylphosphonium chloride with dimethyltin dichloride. The compounds 1-4 were characterized by 1H, 13C and 119Sn NMR, 119Sn Mössbauer, vibrational spectroscopy and by elemental analyses of C, H, N and Sn. The crystal structure of 1 was determined by X-ray diffraction techniques. The in vitro antifungal activity of the tin(IV) complexes were evaluated against the fungi Rhizoctonia solani and Botrytis cinerea by the Poisoned food test. The new compounds showed comparable activities to the fungicides manzate and ziram.

  10. ANTIFUNGAL ACTIVITY OF Cymbopogon nardus (L.) Rendle (CITRONELLA) AGAINST Microsporum canis FROM ANIMALS AND HOME ENVIRONMENT

    PubMed Central

    CAPOCI, Isis Regina Grenier; da CUNHA, Michele Milano; BONFIM-MENDONÇA, Patricia de Souza; GHIRALDI-LOPES, Luciana Dias; BAEZA, Lilian Cristiane; KIOSHIMA, Erika Seki; SVIDZINSKI, Terezinha Inez Estivalet

    2015-01-01

    Dermatophytosis is a common zoonosis in urban centers. Dogs and cats have played an important role as its disseminators. Environmental decontamination is essential for the prevention of its propagation to humans and animals. However, sanitizers or disinfectants with antifungal activity, currently available, have high toxicity. The present study evaluated the in vitro effects of an extract of citronella (Cymbopogon nardus) on 31 Microsporum canis isolates from animals and home environments. Susceptibility tests were performed based on document M38-A2 (2008) of the Clinical and Laboratory Standards Institute with modifications for natural products. Although susceptibility variation was observed between the fungus tested, the concentrations that inhibited the growth of 50 and 90% of the microorganisms were low (19.5 and 78 µg/mL, respectively). Thus, this citronella extract showed potent fungistatic and fungicide activities against M. canis isolated from animals and home environments. Therefore, it could be an alternative for dermatophytosis prophylaxis in the home environment. PMID:27049705

  11. ANTIFUNGAL ACTIVITY OF Cymbopogon nardus (L.) Rendle (CITRONELLA) AGAINST Microsporum canis FROM ANIMALS AND HOME ENVIRONMENT.

    PubMed

    Capoci, Isis Regina Grenier; Cunha, Michele Milano da; Bonfim-Mendonça, Patricia de Souza; Ghiraldi-Lopes, Luciana Dias; Baeza, Lilian Cristiane; Kioshima, Erika Seki; Svidzinski, Terezinha Inez Estivalet

    2015-12-01

    Dermatophytosis is a common zoonosis in urban centers. Dogs and cats have played an important role as its disseminators. Environmental decontamination is essential for the prevention of its propagation to humans and animals. However, sanitizers or disinfectants with antifungal activity, currently available, have high toxicity. The present study evaluated the in vitro effects of an extract of citronella (Cymbopogon nardus) on 31 Microsporum canis isolates from animals and home environments. Susceptibility tests were performed based on document M38-A2 (2008) of the Clinical and Laboratory Standards Institute with modifications for natural products. Although susceptibility variation was observed between the fungus tested, the concentrations that inhibited the growth of 50 and 90% of the microorganisms were low (19.5 and 78 µg/mL, respectively). Thus, this citronella extract showed potent fungistatic and fungicide activities against M. canis isolated from animals and home environments. Therefore, it could be an alternative for dermatophytosis prophylaxis in the home environment.

  12. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522).

    PubMed

    Sasidharan, Anju; Sasidharan, Nishanth Kumar; Amma, Dileepkumar Bhaskaran Nair Saraswathy; Vasu, Radhakrishnan Kokkuvayil; Nataraja, Anupama Vijaya; Bhaskaran, Krishnakumar

    2015-10-01

    A novel strain of Chromobacterium sp. NIIST (MTCC 5522) producing high level of purple blue bioactive compound violacein was isolated from clay mine acidic sediment. During 24 h aerobic incubation in modified Luria Bertani medium, around 0.6 g crude violacein was produced per gram of dry weight biomass. An inexpensive method for preparing crystalline, pure violacein from crude pigment was developed (12.8 mg violacein/L) and the pure compound was characterized by different spectrometric methods. The violacein prepared was found effective against a number of plant and human pathogenic fungi and yeast species such as Cryptococcus gastricus, Trichophyton rubrum, Fusarium oxysporum, Rhizoctonia solani, Aspergillus flavus, Penicillium expansum, and Candida albicans. The best activity was recorded against Trichophyton rubrum (2 -g/ml), a human pathogen responsible for causing athlete-s foot infection. This is the first report of antifungal activity of purified violacein against pathogenic fungi and yeast.

  13. Identification and characterization of a novel chitinase with antifungal activity from 'Baozhu' pear (Pyrus ussuriensis Maxim.).

    PubMed

    Han, Peng; Yang, Chengcheng; Liang, Xiaobo; Li, Lirong

    2016-04-01

    A novel chitinase from the 'Baozhu' pear was found, purified, and characterized in this report. This chitinase was a monomer with a molecular mass of 28.9 kDa. Results of the internal peptide sequence analyses classify this chitinase as a class III chitinase. In the enzymatic hydrolytic assay, this chitinase could hydrolyze chitin derivatives into di-N-acetylchitobiose (GlcNAc2) as a major product in the initial phase, as well as hydrolyze GlcNAc2 into N-acetylglucosamine (GlcNAc), which represents both chitobiosidase and β-N-acetylglucosaminase activity. Biological analyses showed that this chitinase exhibits strong antifungal activity toward agricultural pathogenic fungi. In total, chitinase from 'Baozhu' pear is a novel bifunctional chitinase that could be a potential fungicide in the biological control of plant diseases.

  14. The antifungal caspofungin increases fluoroquinolone activity against Staphylococcus aureus biofilms by inhibiting N-acetylglucosamine transferase

    PubMed Central

    Siala, Wafi; Kucharíková, Soňa; Braem, Annabel; Vleugels, Jef; Tulkens, Paul M; Mingeot-Leclercq, Marie-Paule; Van Dijck, Patrick; Van Bambeke, Françoise

    2016-01-01

    Biofilms play a major role in Staphylococcus aureus pathogenicity but respond poorly to antibiotics. Here, we show that the antifungal caspofungin improves the activity of fluoroquinolones (moxifloxacin, delafloxacin) against S. aureus biofilms grown in vitro (96-well plates or catheters) and in vivo (murine model of implanted catheters). The degree of synergy among different clinical isolates is inversely proportional to the expression level of ica operon, the products of which synthesize poly-N-acetyl-glucosamine polymers, a major constituent of biofilm matrix. In vitro, caspofungin inhibits the activity of IcaA, which shares homology with β-1-3-glucan synthase (caspofungin's pharmacological target in fungi). This inhibition destructures the matrix, reduces the concentration and polymerization of exopolysaccharides in biofilms, and increases fluoroquinolone penetration inside biofilms. Our study identifies a bacterial target for caspofungin and indicates that IcaA inhibitors could potentially be useful in the treatment of biofilm-related infections. PMID:27808087

  15. Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength.

    PubMed

    Taira, Toki; Ohdomari, Atsuko; Nakama, Naoya; Shimoji, Makiko; Ishihara, Masanobu

    2005-04-01

    Three chitinases, designated gazyumaru latex chitinase (GLx Chi)-A, -B, and -C, were purified from the latex of gazyumaru (Ficus microcarpa). GLx Chi-A,-B, and -C are an acidic class III (33 kDa, pI 4.0), a basic class I (32 kDa, pI 9.3), and a basic class II chitinase (27 kDa, pI > 10) respectively. GLx Chi-A did not exhibit any antifungal activity. At low ionic strength, GLx Chi-C exhibited strong antifungal activity, to a similar extent as GLx Chi-B. The antifungal activity of GLx Chi-C became weaker with increasing ionic strength, whereas that of GLx Chi-B became slightly stronger. GLx Chi-B and -C bound to the fungal cell-walls at low ionic strength, and then GLx Chi-C was dissociated from them by an escalation of ionic strength, but this was not the case for GLx Chi-B. The chitin-binding activity of GLx Chi-B was enhanced by increasing ionic strength. These results suggest that the chitin-binding domain of basic class I chitinase binds to the chitin in fungal cell walls by hydrophobic interaction and assists the antifungal action of the chitinase.

  16. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives

    NASA Astrophysics Data System (ADS)

    Mirjalili, BiBi Fatemeh; Zamani, Leila; Zomorodian, Kamiar; Khabnadideh, Soghra; Haghighijoo, Zahra; Malakotikhah, Zahra; Ayatollahi Mousavi, Seyyed Amin; Khojasteh, Shaghayegh

    2016-07-01

    Pathogenic fungi are associated with diseases ranging from simple dermatosis to life-threatening infections, particularly in immunocompromised patients. During the past two decades, resistance to established antifungal drugs has increased dramatically and has made it crucial to identify novel antimicrobial compounds. Here, we selected 12 new compounds of 2-amino-4H-benzochromene-3-carbonitrile drivetives (C1-C12) for synthesis by using nano-TiCl4.SiO2 as efficient and green catalyst, then nine of synthetic compounds were evaluated against different species of fungi, positive gram and negative gram of bacteria. Standard and clinical strains of antibiotics sensitive and resistant fungi and bacteria were cultured in appropriate media. Biological activity of the 2-amino-4H-benzochromene-3-carbonitrile derivatives against fungi and bacteries were estimated by the broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI). In addition minimal fangicidal and bactericial concenteration of the compounds were also determined. Considering our results showed that compound 2-amino-4-(4-methyl benzoate)-4H-benzo[f]chromen-3-carbonitrile (C9) had the most antifungal activity against Aspergillus clavatus, Candida glabarata, Candida dubliniensis, Candida albicans and Candida tropicalis at concentrations ranging from 8 to ≤128 μg/mL. Also compounds 2-amino-4-(3,4-dimethoxyphenyl)-4H-benzo[f]chromen-3-carbonitrile (C4) and 2-amino-4-(4-isopropylphenyl)-4H-benzo[f]chromen-3-carbonitrile (C3) had significant inhibitory activities against Epidermophyton floccosum following 2-amino-4-(4-methylbenzoate)-4H-benzo[f]chromen-3-carbonitrile (C9), respectively. Docking simulation was performed to insert compounds C3, C4 and C9 in to CYP51 active site to determine the probable binding model.

  17. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment.

    PubMed

    Shahnawaz Khan, M; Abdelhamid, Hani Nasser; Wu, Hui-Fen

    2015-03-01

    Photothermal treatment of graphene oxide (GO) for antibacterial, antifungal and controlling the wound infection treatment using near infrared laser (NIR, Nd-YAG (λ=1064 nm) were reported. Various pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus) and fungi (Saccharomyces cerevisiae and Candida utilis) were investigated. The cytotoxicity was measured using the proteomic analysis by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), optical density (OD600), standard microdilution procedures, transmission electron microscopy (TEM) and epifluorescence microscopy. The laser mediated the surface activation of GO offer high efficiency for antifungal and antibacterial. Wide broad cells with various instruments approved that graphene oxide is promising material for nanomedicine in the near future.

  18. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms.

    PubMed

    Monteiro, Douglas R; Silva, Sónia; Negri, Melyssa; Gorup, Luiz F; de Camargo, Emerson R; Oliveira, Rosário; Barbosa, Debora B; Henriques, Mariana

    2013-11-01

    Although silver nanoparticles (SN) have been investigated as an alternative to conventional antifungal drugs in the control of Candida-associated denture stomatitis, the antifungal activity of SN in combination with antifungal drugs against Candida biofilms remains unknown. Therefore, the aim of this study was to evaluate the antifungal efficacy of SN in combination with nystatin (NYT) or chlorhexidine digluconate (CHG) against Candida albicans and Candida glabrata biofilms. The drugs alone or combined with SN were applied on mature Candida biofilms (48 h), and after 24 h of treatment their antibiofilm activities were assessed by total biomass quantification (by crystal violet staining) and colony forming units enumeration. The structure of Candida biofilms was analysed by scanning electron microscopy (SEM) images. The data indicated that SN combined with either NYT or CHG demonstrated synergistic antibiofilm activity, and this activity was dependent on the species and on the drug concentrations used. SEM images showed that some drug combinations were able to disrupt Candida biofilms. The results of this study suggest that the combination of SN with NYT or CHG may have clinical implications in the treatment of denture stomatitis. However, further studies are needed before recommending the use of these drugs safely in clinical situations.

  19. Sugar-mediated ‘green’ synthesis of copper nanoparticles with high antifungal activity

    NASA Astrophysics Data System (ADS)

    Ray, Debajyoti; Pramanik, Satadru; Prasad Mandal, Ranju; Chaudhuri, Sujata; De, Swati

    2015-10-01

    Herein we present a novel and facile approach to effectively synthesize and stabilize copper nanoparticles (CuNPs) using the sugars dextrose, dextrin and β-cyclodextrin. This approach adopts the fundamental principles of ‘green chemistry’ by usage of nontoxic, renewable chemicals and use of ambient temperature, normal pH and other mild conditions. This work shows that the amphiphilicity presented by the sugars determines the CuNP characteristics. One very important aspect of this work is that these CuNPs show significant antifungal activity towards a potent rice pathogen whose action is wide spread and difficult to control. Thus this work provides a biocompatible method to arrest the growth of a potent rice pathogen. This has widespread implications in areas where rice is the main food crop.

  20. Antifungal activity of extracts of Rosmarinus officinalis and Thymus vulgaris against Aspergillus flavus and A. ochraceus.

    PubMed

    Centeno, S; Calvo, M A; Adelantado, C; Figueroa, S

    2010-05-01

    The antifungal activity of ethanolic extracts of Rosmarinus officinalis and Thymus vulgaris were tested against strains of Aspergillus flavus and A. ochraceus, since these two species are common contaminants of cereals and grains and are able to produce and accumulate mycotoxins. The methodology used is based on measuring the inhibition halos produced by discs impregnated with the extracts and establishing their Minimum Inhibitory Concentration (MIC) as well as the Minimum Fungicide Concentration (MFC). The results obtained suggest that the assayed extracts affect the proper development of A. flavus and A. ochraceus; leading to a lower MIC (1200 ppm) and MFC (2400 ppm) for T. vulgaris extract against A. ochraceus than against A. flavus. The results show, that the extracts of Rosmarinus officinalis and Thymus vulgaris used at low concentrations could have significant potential for the biological control of fungi in foodstuffs.

  1. In vitro activity of carvacrol and thymol combined with antifungals or antibacterials against Pythium insidiosum.

    PubMed

    Jesus, F P K; Ferreiro, L; Bizzi, K S; Loreto, É S; Pilotto, M B; Ludwig, A; Alves, S H; Zanette, R A; Santurio, J M

    2015-06-01

    We describe the in vitro activities of the combinations of carvacrol and thymol with antibiotics (azithromycin, clarithromycin, minocycline and tigecycline) and antifungal agents (amphotericin B, caspofungin, itraconazole and terbinafine) against 23 isolates of the oomycete Pythium insidiosum. The assays were based on the M38-A2 technique and checkerboard microdilution. Based on the mean FICI values, the main synergies observed were combinations of carvacrol+itraconazole and thymol+itraconazole (96%), thymol+clarithromycin (92%), carvacrol+clarithromycin (88%), thymol+minocycline (84%), carvacrol+minocycline (80%), carvacrol+azithromycin (76%), thymol+azithromycin (68%), carvacrol+tigecycline (64%) and thymol+tigecycline (60%). In conclusion, we found that combinations of carvacrol or thymol with these antimicrobial agents might provide effective alternative treatments for cutaneous pythiosis due to their synergistic interactions. Future in vivo experiments are needed to elucidate the safety and therapeutic potential of these combinations.

  2. Antibacterial and antifungal activities of Otanthus maritimus (L.) Hoffmanns. & Link essential oil from Sicily.

    PubMed

    Basile, Adriana; Rigano, Daniela; Sorbo, Sergio; Conte, Barbara; Rosselli, Sergio; Bruno, Maurizio; Senatore, Felice

    2013-01-01

    The chemical composition of the essential oil obtained from the flowers of Otanthus maritimus L., a perennial plant growing wild in maritime sands in the Mediterranean region, was investigated by GC and GC-MS analyses. Totally 66 were identified. The oil was dominated by the high content of monoterpene compounds, especially oxygenated monoterpenes which accounted for 73.1%. The most abundant components were yomogi alcohol (20.8%), camphor (15.8%), artemisyl acetate (15.3%) and artemisia alcohol (13.7%). The oil was tested against two Gram (+) and six Gram (-) bacterial strains, both American Type Culture Collection standard strains and clinically isolated (CI), one potentially pathogenic yeast (Candida albicans CI) and two filamentous phytopathogenic fungi (Botrytis cinerea and Rhizoctonia solani). The results show that the oil from O. maritimus exerts strong antibacterial and antifungal activities.

  3. In-vitro antifungal activities of sulfa drugs against clinical isolates of Aspergillus and Cryptococcus species.

    PubMed

    Hanafy, Ahmed; Uno, Jun; Mitani, Hiroki; Kang, Yingqian; Mikami, Yuzuru

    2007-01-01

    In vitro susceptibilities of ten clinical isolates, including five strains of Cryptococcus neoformans var. grubii and five strains of Aspergillus fumigatus, were determined against nine sulfa drugs using a microdilution method. Among the five tested media, minimum inhibitory concentration (MIC) values were observed only in YNB medium: no detectable level MIC value of less than 125 microg/ml was observed in the four remaining media against Cryptococcus species. Of the nine sulfa drugs, of which sulfaphenazole showed the highest antifungal activity, the MIC values for A. fumigatus and C. neoformans var. grubii were, respectively, 64 microg/ml and 4-8 microg/ml, suggesting high susceptibility of C. neoformans to sulfa drugs.

  4. Purification, characterization, and antifungal activity of chitinase from Streptomyces venezuelae P10.

    PubMed

    Mukherjee, G; Sen, S K

    2006-10-01

    Streptomyces venezuelae P(10) could produce extracellular chitinase in a medium containing 0.6% colloidal chitin that was fermented for 96 hours at 30 degrees C. The enzyme was purified to apparent homogeneity with 80% saturation of ammonium sulfate as shown by chitin affinity chromatography and DEAE-cellulose anion-exchange chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the enzyme showed a molecular weight of 66 kDa. The chitinase was characterized, and antifungal activity was observed against phytopathogens. Also, the first 15 N-terminal amino-acid residues of the chitinase were determined. The chitin hydrolysed products were N-acetylglucosamine and N, N'-diacetylchitobiose.

  5. Antifungal activity of ionic liquids based on (-)-menthol: a mechanism study.

    PubMed

    Suchodolski, Jakub; Feder-Kubis, Joanna; Krasowska, Anna

    2017-04-01

    The mechanism of toxicity of chiral ionic liquids with (1R,2S,5R)-(-)-menthol [Cn-Am-Men][Cl] (n=10, 11 or 12) in the fungus Candida albicans is reported here. Ionic liquids were more toxic towards Candida strain lacking all identified multidrug resistance efflux pumps. Moreover, the compounds tested inhibited C. albicans filamentation at the concentration at which detached fungal cells also adhered to the plastic surface. Our results showed the high activity of all the tested chiral ionic liquids in the permeabilization of C. albicans' membranes and in the digestion and interruption of the cell wall. The investigated ionic liquids thus have potential as disinfectants because besides their antifungal and antiadhesive action these compounds do not cause hemolysis.

  6. Essential oil of Juniperus communis subsp. alpina (Suter) Čelak needles: chemical composition, antifungal activity and cytotoxicity.

    PubMed

    Cabral, C; Francisco, V; Cavaleiro, C; Gonçalves, M J; Cruz, M T; Sales, F; Batista, M T; Salgueiro, L

    2012-09-01

    Essential oils are known to possess antimicrobial activity against a wide spectrum of bacteria and fungi. In the present work the composition and the antifungal activity of the oils of Juniperus communis subsp. alpina (Suter) Čelak were evaluated. Moreover, the skin cytotoxicity, at concentrations showing significant antifungal activity, was also evaluated. The oils were isolated by hydrodistillation and analysed by gas chromatography and gas chromatography-mass spectrometry. Minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were used to evaluate the antifungal activity of the oil against dermatophytes (Epidermophyton floccosum, Microsporum canis, M. gypseum, Trichophyton mentagrophytes, T. mentagrophytes var. interdigitale, T. rubrum, T. verrucosum), yeasts (Candida albicans, C. guillermondii, C. krusei, C. parapsilosis, C. tropicalis, Cryptococcus neoformans) and Aspergillus species (Aspergillus flavus, A. fumigatus, A. niger). Cytotoxicity was tested in HaCaT keratinocytes through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Essential oil of J. communis subsp. alpina needles was predominantly composed of monoterpene hydrocarbons (78.4%), with the main compounds being sabinene (26.2%), α-pinene (12-9%) and limonene (10.4%). Results concerning the antifungal activity demonstrated the potential of needle oil against dermatophytes, particularly for Microsporum canis and Trichophyton rubrum with MIC and MLC of 0.32 μL/mL. Furthermore, evaluation of cell viability showed no significant cytotoxicity in HaCaT keratinocytes at concentrations between 0.32 and 0.64 μL/mL. These results show that it is possible to find appropriate doses of J. communis subsp. alpina oil with both antifungal activity and a very low detrimental effect on keratinocytes.

  7. Triazole antifungals: a review.

    PubMed

    Peyton, L R; Gallagher, S; Hashemzadeh, M

    2015-12-01

    Invasive fungal infections and systemic mycosis, whether from nosocomial infection or immunodeficiency, have been on an upward trend for numerous years. Despite advancements in antifungal medication, treatment in certain patients can still be difficult for reasons such as impaired organ function, limited administration routes or poor safety profiles of the available antifungal medications. The growing number of invasive fungal species becoming resistant to current antifungal medications is of appreciable concern. Triazole compounds containing one or more 1,2,4-triazole rings have been shown to contain some of the most potent antifungal properties. Itracon-azole and fluconazole were some of the first triazoles synthesized, but had limitations associated with their use. Second-generation triazoles such as voriconazole, posa-conazole, albaconazole, efinaconazole, ravuconazole and isavuconazole are all derivatives of either itraconazole or fluconazole, and designed to overcome the deficiencies of their parent drugs. The goal of this manuscript is to review antifungal agents derived from triazole.

  8. Extraction, Chemical Composition, and Antifungal Activity of Essential Oil of Bitter Almond.

    PubMed

    Geng, Huiling; Yu, Xinchi; Lu, Ailin; Cao, Haoqiang; Zhou, Bohang; Zhou, Le; Zhao, Zhong

    2016-08-29

    The essential oil from the powder residual of dried bitter almond, a novel and environmentally-friendly fungicide, was successfully extracted in a 0.7% yield by hydro-distillation under optimized conditions. The chemical composition of bitter almond essential oil (BAEO) was analyzed by gas chromatography-mass spectrometry (GC-MS). Twenty-one different components representing 99.90% of the total essential oil were identified, of which benzaldehyde (62.52%), benzoic acid (14.80%), and hexadecane (3.97%) were the most abundant components. Furthermore, the in vitro and in vivo antifungal activities of BAEO against common plant pathogenic fungi were evaluated by the mycelium linear growth rate method and pot test, respectively. It was documented that 1 mg/mL of BAEO could variously inhibit all tested pathogenic fungi with the inhibition rates of 44.8%~100%. Among the tested 19 strains of fungi, the median effective concentration (EC50) values of BAEO against Alternaria brassicae and Alternaria solani were only 50.2 and 103.2 μg/mL, respectively, which were higher than those of other fungi. The in vivo antifungal activity of BAEO against Gloeosporium orbiculare was much higher than Blumeria graminis. The protective efficacy for the former was up to 98.07% at 10 mg/mL and the treatment efficacy was 93.41% at 12 mg/mL. The above results indicated that BAEO has the great potential to be developed as a botanical and agricultural fungicide.

  9. Extraction, Chemical Composition, and Antifungal Activity of Essential Oil of Bitter Almond

    PubMed Central

    Geng, Huiling; Yu, Xinchi; Lu, Ailin; Cao, Haoqiang; Zhou, Bohang; Zhou, Le; Zhao, Zhong

    2016-01-01

    The essential oil from the powder residual of dried bitter almond, a novel and environmentally-friendly fungicide, was successfully extracted in a 0.7% yield by hydro-distillation under optimized conditions. The chemical composition of bitter almond essential oil (BAEO) was analyzed by gas chromatography–mass spectrometry (GC–MS). Twenty-one different components representing 99.90% of the total essential oil were identified, of which benzaldehyde (62.52%), benzoic acid (14.80%), and hexadecane (3.97%) were the most abundant components. Furthermore, the in vitro and in vivo antifungal activities of BAEO against common plant pathogenic fungi were evaluated by the mycelium linear growth rate method and pot test, respectively. It was documented that 1 mg/mL of BAEO could variously inhibit all tested pathogenic fungi with the inhibition rates of 44.8%~100%. Among the tested 19 strains of fungi, the median effective concentration (EC50) values of BAEO against Alternaria brassicae and Alternaria solani were only 50.2 and 103.2 μg/mL, respectively, which were higher than those of other fungi. The in vivo antifungal activity of BAEO against Gloeosporium orbiculare was much higher than Blumeria graminis. The protective efficacy for the former was up to 98.07% at 10 mg/mL and the treatment efficacy was 93.41% at 12 mg/mL. The above results indicated that BAEO has the great potential to be developed as a botanical and agricultural fungicide. PMID:27589723

  10. Chemical composition and antifungal activity of essential oils from medicinal plants of Kazakhstan.

    PubMed

    Sampietro, Diego A; Gomez, Analía de Los A; Jimenez, Cristina M; Lizarraga, Emilio F; Ibatayev, Zharkyn A; Suleimen, Yerlan M; Catalán, Cesar A

    2017-06-01

    The composition of essential oils from leaves of Kazakhstan medicinal plants was analysed by GC-MS. The major compounds identified were 1,8-cineole (34.2%), myrcene (19.1%) and α-pinene (9.4%) in Ajania fruticulosa; 1,8-cineole (21.0%), β-thujone (11.0%), camphor (8.5%), borneol (7.3%) and α-thujone (6.5%), in Achillea nobilis; camphor (47.3%), 1,8-cineole (23.9%), camphene (9.8%) and β-thujone (6.0%) in Artemisia terrae-albae; 1,8-cineole(55.8%) and β-pinene (6.2%) in Hyssopus ambiguus; α-thuyene(46.3%) and δ-cadinene(6.3%) in Juniperus sibirica; sabinene (64%) in Juniperus sabina; and α-pinene (51.5%), β-phellandrene (11.2%) and δ-cadinene (6.3%) in Pinus sibirica. The essential oils did not show antifungal effect (MIC > 1.20 mg/mL) on Aspergillus carbonarius and Aspergillus niger, while the oils from A. nobilis, A. terrae-albae, H. ambiguus and J. sabina exhibited moderate and moderate to weak antimicrobial activities on Fusarium verticillioides (MIC = 0.60 mg/mL) and Fusarium graminearum (MIC = 0.60-1.20 mg/mL), respectively. A principal component analysis associated the antifungal activity (r(2) > 0.80, p = 0.05) with the presence of borneol, camphor, camphene, 1,8-cineole,α- and β-thujone, and of the oxygenated monoterpenes.

  11. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  12. Effects of antifungal agents in sap activity of Candida albicans isolates.

    PubMed

    Costa, Carolina Rodrigues; Jesuíno, Rosália Santos Amorim; de Aquino Lemos, Janine; de Fátima Lisboa Fernandes, Orionalda; Hasimoto e Souza, Lúcia Kioko; Passos, Xisto Sena; do Rosário Rodrigues Silva, Maria

    2010-02-01

    Some antifungal agents have shown to exert effects on expression of virulent factors of Candida as the production of secretory aspartyl proteinase (Sap). In this study, we sought to determine and to compare the influence of fluconazole and voriconazole in proteinase activity of this microorganism. Thirty-one isolates obtained from oral mucosa of human immunodeficiency virus positive (HIV) patients were used in this study. The minimal inhibitory concentrations (MIC) of fluconazole and voriconazole were determined using the broth microdilution method with RPMI 1640 medium and with yeast carbon base-bovine serum albumin (YCB-BSA) medium. The Sap activity following by digestion of BSA as substrate was determined for four Candida albicans strains arbitrarily chosen according to susceptibility (susceptible or resistant) to fluconazole or voriconazole. Besides, the SAP1 to SAP7 genes were screened by PCR for the same isolates that were determined by the Sap activity. In vitro susceptibility testing using the two media presented similar MIC values. Increased Sap activity was observed in resistant isolates on presence of drugs, but the Sap activity by susceptible isolates to azoles showed different behavior on the presence of drug. We detected the presence of SAP1 to SAP7 genes from all susceptible or resistant C. albicans isolates. The present study provides important data about the proteinase activity and the presence of genes of SAP family in fluconazole and voriconazole susceptible or resistant C. albicans isolates.

  13. Antifungal agents. Part 4: Synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro.

    PubMed

    Xu, Hui; Fan, Ling-Ling

    2011-01-01

    A series of novel indole[1,2-c]-1,2,4-benzotriazine derivatives were obtained by a modified Sandmeyer reaction in the presence of tert-butylnitrite (t-BuONO). As compared with hymexazol, a commercially available agricultural fungicide, at the concentration of 50 μg/mL, two indole[1,2-c]-1,2,4-benzotriazines, 5h and 5k, exhibited the more promising and pronounced antifungal activities in vitro against five phytopathogenic fungi. It clearly demonstrated that introduction of appropriate substituents on the indolyl ring of indole[1,2-c]-1,2,4-benzotriazine (5a) would lead to the more potent derivatives.

  14. Fungicidal activities of commonly used disinfectants and antifungal pharmaceutical spray preparations against clinical strains of Aspergillus and Candida species.

    PubMed

    Gupta, A K; Ahmad, I; Summerbell, R C

    2002-04-01

    The antifungal efficacy of commercial chemical disinfectants and pharmaceutical antifungal agents against medically important moulds and yeast species was investigated. Chlorine, phenol, sodium dodecyl sulfate and quaternary ammonium salts were the chemical disinfectants, and bifonazole and terbinafine were the antifungal pharmaceutical products tested against clinical isolates of Aspergillus and Candida species. Fungal inocula were obtained from conidial preparations of two A. ochraceus strains and yeast cells of C. albicans, C. krusei and C. parapsilosis. The antifungal activities were evaluated either by determining the kill rate in a cell suspension media at different contact periods, or by examining the viability and growth on plates sprayed with the active ingredient. Chlorine (1%) was the only disinfectant with the ability to cause a rapid inactivation of all five strains. Phenol (5%) was equally effective against Candida species; however, a number of A. ochraceus conidia were able to survive this treatment for up to 1 h. Benzalkonium chloride (0.5%) and cetrimide (0.5%) were also able to disinfect the three Candida species rapidly; however, these two quaternary ammonium compounds were relatively ineffective against A. ochraceus. In spray experiments, quaternary ammonium compounds had a fungicidal activity against Candida species and were fungistatic against A. ochraceus conidia. All five fungal strains were able to resist 0.5% sodium dodecyl sulfate, present either in the suspension solution or on the sprayed plate. Of the two pharmaceutical antifungal products tested, bifonazole (1%) were essentially ineffective against all five strains. Terbinafine (1%) had a fungicidal activity against A. ochraceus and C. parapsilosis. In suspension experiments, an exposure to 0.01% terbinafine required a contact period of 1 h for a complete inactivation of A. ochraceus conidia and an onset of fungicidal effect on C. parapsilosis yeast cells. Terbinafine was only

  15. Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films.

    PubMed

    Avila-Sosa, Raúl; Palou, Enrique; Jiménez Munguía, María Teresa; Nevárez-Moorillón, Guadalupe Virginia; Navarro Cruz, Addí Rhode; López-Malo, Aurelio

    2012-02-01

    Antimicrobial agents can be incorporated into edible films to provide microbiological stability, since films can be used as carriers of a variety of additives to extend product shelf life and reduce the risk of microbial growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of small antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition by vapor contact of Aspergillus niger and Penicillium digitatum by selected concentrations of Mexican oregano (Lippia berlandieri Schauer), cinnamon (Cinnamomum verum) or lemongrass (Cymbopogon citratus) essential oils (EOs) added to amaranth, chitosan, or starch edible films. Essential oils were characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan and starch edible films were formulated with essential oil concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 2.00, or 4.00%. Antifungal activity was evaluated by determining the mold radial growth on agar media inoculated with A. niger and P. digitatum after exposure to vapors arising from essential oils added to amaranth, chitosan or starch films using the inverted lid technique. The modified Gompertz model adequately described mold growth curves (mean coefficient of determination 0.991 ± 0.05). Chitosan films exhibited better antifungal effectiveness (inhibition of A. niger with 0.25% of Mexican oregano and cinnamon EO; inhibition of P. digitatum with 0.50% EOs) than amaranth films (2.00 and 4.00% of cinnamon and Mexican oregano EO were needed to inhibit the studied molds, respectively). For chitosan and amaranth films a significant increase (p<0.05) of lag phase was observed among film concentrations while a significant decrease (p<0.05) of maximum specific growth was determined. Chitosan edible films incorporating Mexican oregano or cinnamon essential oil could improve the quality of foods by the action of the volatile compounds on surface growth

  16. Unnatural amino acid-mediated synthesis of silver nanoparticles and their antifungal activity against Candida species

    NASA Astrophysics Data System (ADS)

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-08-01

    In this study, the biocompatible unnatural amino acid, 3,4-dihydroxy- l-phenylalanine ( l-dopa), which is used in protein engineering, was employed in the facile synthesis of silver nanoparticles (AgNPs). The surface plasmon resonance (SPR) band of the UV-Vis spectrum at 406 nm demonstrates the possibility of formation of smaller nanoparticles; the symmetrical shape of the band demonstrates a narrow size distribution of AgNPs, the formation of AgNPs, and the face-centered cubic (fcc) crystalline structure of nanoparticles was confirmed by X-ray diffraction (XRD). Additionally, transmission electron microscopic (TEM) images revealed that these particles were spherical in shape with diameters of 2.7-12.2 nm (average = 8.7 nm). These nanoparticles exhibited antifungal activity against both planktonic and biofilm yeast cells of Candida albicans and C. dubliniensis. The minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were determined by microdilution assays. C. albicans were shown to be less susceptible than C. dubliniensis to AgNPs based on the MIC (ranging from 7.8 to 15.6 µg ml-1) and MFC (ranging from 31.2 to 62.5 µg ml-1). With regard to biomass quantification, AgNPs did not induce a significant reduction of the biomass of Candida species; however, treatment of biofilm with 500 µg/ml of AgNPs induced a 2.99-log10 ( P < 0.001) and 3.53-log10 ( P < 0.001) significant reduction in the number of culturable cells of CFUs when compared to control samples of C. albicans and C. dubliniensis, respectively. Thus, AgNPs-based antifungal agents would be an effective alternative to conventional drugs to overcome drug resistance in Candida-associated infections.

  17. Antifungal activity of 4% chlorhexidine and 2% sodium hypochlorite against Candida albicans biofilms.

    PubMed

    Gama, Maria Clara Maneira; de Oliveira, Denise Gusmao; da Silva, Paulo Mauricio Batista; Ordinola-Zapata, Ronald; Duarte, Marco Hungaro; Porto, Vinicius Carvalho

    2015-01-01

    The purpose of this study was to determine the antifungal efficacy of 4% chlorhexidine (CHX) and 2% sodium hypochlorite (NaOCl) on 24-hour Candida albicans biofilms. Candida albicans biofilms were developed on acrylic resin specimens, which were randomly assigned to 1 of 5 groups (n = 3 per group) exposed to 1 mL of 4% CHX for 2, 4, 6, 8, or 10 minutes. Biofilms in contact with 1 mL of distilled water or 2% NaOCl for 10 minutes were used as positive and negative controls (n = 3 per group), respectively. Specimens were analyzed with confocal laser scanning microscopy and a cell viability assay technique. The biovolume of the live subpopulation of the biofilm was calculated with biofilm image analysis software. Statistically significant differences (P < 0.05) in the biovolume of surviving cells were found among the positive control group and the 4-, 6-, 8-, and 10-minute experimental periods. The biovolumes found after 6-10 minutes of exposure to chlorhexidine were significantly different (P < 0.05) from the biovolume after 2 minutes of exposure. The most effective decrease of the biovolume was found after the use of the negative control (sodium hypochlorite) solution. Exposure to 10 minutes of 2% NaOCl removed fungal cells more effectively than all the experimental groups (P < 0.05). The 4% CHX solution showed an antifungal activity against C albicans biofilms but failed to decrease the biovolume to the levels of 2% NaOCl, which eliminated viable cells more effectively and appeared to be more effective in disrupting the attached biofilms.

  18. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol.

    PubMed

    de Lira Mota, Kelly Samara; de Oliveira Pereira, Fillipe; de Oliveira, Wylly Araújo; Lima, Igara Oliveira; de Oliveira Lima, Edeltrudes

    2012-12-05

    Mucormycoses are emerging infections that have high rates of morbidity and mortality. They show high resistance to antifungal agents, and there is a limited therapeutic arsenal currently available, therefore, there is a great need to give priority to testing therapeutic agents for the treatment of mucormycosis. Along this line, the use of essential oils and phytoconstituents has been emphasized as a new therapeutic approach. The objective of this work was to investigate the antifungal activity of the essential oil (EO) of Thymus vulgaris, and its constituents thymol and p-cymene against Rhizopus oryzae, through microbiological screening, determination of minimal inhibitory concentration (MICs) and minimal fungicidal concentration (MFCs), effects on mycelial growth and germination of sporangiospores and interaction with ergosterol. The MIC of EO and thymol varied 128-512 µg/mL, but the MFC of EO and thymol varied 512-1024 µg/mL and 128-1024 µg/mL, respectively. The results also showed that EO and thymol significantly inhibited mycelial development and germination of sporangiospores. Investigation of the mechanism of antifungal action showed that EO and thymol interact with ergosterol. These data indicate that EO of T. vulgaris and thymol possess strong antifungal activity, which can be related to their interaction with ergosterol, supporting the possible use of these products in the treatment of mucormycosis.

  19. Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway.

    PubMed

    Tadesse, Margey; Gulliksen, Bjørn; Strøm, Morten B; Styrvold, Olaf B; Haug, Tor

    2008-11-01

    Benthic marine invertebrates collected from sub-Arctic regions of northern Norway, were found to be a promising source of novel bioactive compounds against human and fish pathogenic bacteria and fungi. Lyophilized material from seven species of ascidians, six sponges and one soft alcyonid coral were extracted with 60% acidified acetonitrile (ACN). After separation into an ACN-rich phase (ACN-extract) and an aqueous phase, and subsequent solid-phase extraction of the aqueous phase, fractions differing in polarity were obtained and screened for antibacterial and antifungal activities, along with the more lipophilic ACN-extracts. Antimicrobial activity was determined against two gram-negative, two gram-positive bacteria, and two strains of fungi. Notably, all the invertebrate species in the study showed activity against all four strains of bacteria and the two strains of fungi. In general, the aqueous fractions displayed highest antimicrobial activity, and the most potent extracts were obtained from the colonial ascidian Synoicum pulmonaria which displayed activity against bacteria and fungi at a concentration of 0.02 mg/ml; the lowest concentration tested.

  20. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq

    PubMed Central

    Al-Bayati, Firas A.; Al-Mola, Hassan F.

    2008-01-01

    Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against 11 species of pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Proteus vulgaris, Serratia marcescens, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans using microdilution method in 96 multiwell microtiter plates. All the extracts from the different parts of the plant showed antimicrobial activity against most tested microorganisms. The most active extract against both Gram-negative and Gram-positive bacteria was ethanol extract from the fruits with a minimal inhibitory concentration (MIC) value of 0.15 mg/ml against B. subtilis, B. cereus, P. vulgaris and C. diphtheriae. In addition, the same extract from the same plant part demonstrated the strongest antifungal activity against C. albicans with an MIC value of 0.15 mg/ml. PMID:18257138

  1. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin

    PubMed Central

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944

  2. Antifungal activity of the extracts and saponins from Sapindus saponaria L.

    PubMed

    Tsuzuki, Joyce K; Svidzinski, Terezinha I E; Shinobu, Cristiane S; Silva, Luiz F A; Rodrigues-Filho, Edson; Cortez, Diógenes A G; Ferreira, Izabel C P

    2007-12-01

    Extracts from the dried pericarp of Sapindus saponaria L. (Sapindaceae) fruits were investigated for their antifungal activity against clinical isolates of yeasts Candida albicans and C. non-albicans from vaginal secretions of women with Vulvovaginal Candidiasis. Four clinical isolates of C. albicans, a single clinical isolated of each of the species C. parapsilosis, C. glabrata, C. tropicalis, and the strain of C. albicans ATCC 90028 were used. The hydroalcoholic extract was bioactivity-directed against a clinical isolate of C. parapsilosis, and showed strong activity. The n-BuOH extract and one fraction showed strong activity against all isolates tested. Further column-chromatography on silica gel separation of this fraction afforded two pure triterpene acetylated saponins: 3-O-(4-acetyl-beta-D-xylopyranosyl)-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranosyl-hederagenin (1) and 3-O-(3,4-di-acetyl-beta-D-xylopyranosyl)-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabynopyranosyl-hederagenin (2). The structures of the compounds were based on spectral data ((1)H and 13C NMR, HSQC, HMBC and MS), and on with literature. The saponins isolated showed strong activity against C. parapsilosis.

  3. Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite.

    PubMed

    Sharma, Anshu; Prakash, Prem; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-09-01

    In the present study, the antimicrobial properties of modified biopolymers such as gelatin and agar have been investigated. These biopolymers (agar and gelatin) are modified by dissolving in ionic liquid (IL) [1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-octyl-3-methyl imidazolium chloride ([C8mim][Cl])] solutions. It was noticed that agar-ionogel (Ag-IL), gelatin-ionogel (GB-IL), and gelatin organogel (gelatin-glycerol solution along with laponite, nanoclay) nanocomposite (GA-NC) formed are highly stable, optically clear, and transparent without any air bubbles. The antimicrobial activity of these (Ag-IL), (GB-IL), and GA-NC were analyzed for both gram-negative (Escherichia coli, Klebsiella pneumoniae) and gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus pyogenes) and fungus A. niger, C. albicans. Antibacterial and antifungal activity studies were carried out at different dilutions such as 100, 99, and 90 % (v/v). It was found that Ag-IL, GB-IL, and individual IL ([C8mim][Cl]) exhibited superior antimicrobial activities, indicating that longer IL chain enhance the cell membrane permeability of S. aureus, S. pyogenes, and E. coli cells. However, GA-NC nanocomposite and [C2mim][Cl]-based composites does not exhibit any bacterial inhibition activity for all bacterial strains.

  4. Chemical composition and antioxidant, antimicrobial, and antifungal activities of the essential oil of Achillea ligustica all.

    PubMed

    Tuberoso, Carlo I G; Kowalczyk, Adam; Coroneo, Valentina; Russo, Maria Teresa; Dessì, Sandro; Cabras, Paolo

    2005-12-28

    The chemical composition of the essential oil from flowering tops of Achillea ligustica All. was studied. Samples were collected in different localities of Sardinia (Italy) and hydrodistilled both with Clevenger-type and with simultaneous distillation-extraction apparatus. The yields ranged between 0.88 +/- 0.06 and 0.43 +/- 0.02% (vol/dry wt). The essential oils were analyzed by GC-MS, and a total of 96 components were detected. From a qualitative point of view, irrelevant differences between samples were observed. Strong chemical variability depending on the origin of the samples was observed. The major compounds found were santolina alcohol (6.7-21.8%, for the first time detected in A. ligustica), borneol (3.4-20.8%), sabinol (2.1-15.5%), trans-sabinyl acetate (0.9-17.6%), alpha-thujone (0.4-25.8%), and, among sesquiterpenes, viridiflorol (0.7-3.6%). No significant differences were detected between essential oils extracted by hydrodistillation and simultaneous distillation-extraction with CH2Cl2 and n-hexane. Antioxidant activity as DPPH radical scavenging activity was expressed in TEAC and ranged between 0.40 and 0.88 mmol/L. The antimicrobial and antifungal activities were investigated on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Penicillium commune, Fusarium oxysporum, Rizoctonia solani, and Aspergillus flavus, showing low activity.

  5. The behavior of active bactericidal and antifungal coating under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Xiao, Gang; Zhang, Xiaodong; Zhao, Yan; Su, Haijia; Tan, Tianwei

    2014-02-01

    In the present paper, the novel active bactericidal and antifungal coatings (ABAC) have been prepared through the immobilization of Fe-doped TiO2 (anatase) with chitosan. The characterization of ABAC using optical microscope imaging, SEM, AFM and FTIR shows that the Fe doped TiO2 is embedded into the chitosan coating with favorable dispersion through the hydrogen bonds interaction between chitosan molecules and TiO2. The contact angle measurement demonstrated the hydrophilicity of ABAC (θ = 34.5 ± 4.1°). The bactericidal activity of ABAC has been evaluated by inactivating three different test strains: Escherichia coli, Candida albicans and Aspergillus niger which illustrates the apparently higher bactericidal ability than chitosan, Fe-TiO2 and chitosan/TiO2 (pure) under visible light irradiation and its bactericidal activity is lasting for at least 24 h. ABAC showed rapid and efficient antibacterial ability for the three tested strains and its antibacterial ratio in 2 h for E. coli, C. albicans and A. niger was 99.9%, 97.0% and 95.0%, respectively. The prepared chitosan/TiO2 composite emulsion shows favorable storage stability and can be stored up to 1 year without losing its bactericidal activity. ABAC is a low-cost and eco-friendly antibacterial coating products and promising for domestic, medical and industrial applications.

  6. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin.

    PubMed

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-04-09

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.

  7. Semisynthesis and antifungal activity of novel oxime ester derivatives of carabrone modified at C(4) against Botrytis cinerea.

    PubMed

    Wang, Delong; Ren, Shuangxi; Wang, Hao; Yan, He; Feng, Juntao; Zhang, Xing

    2014-06-01

    To continuously improve the potential utility of the natural lead compound of carabrone in agrochemistry, carabrone oxime and 36 novel oxime ester derivatives of carabrone modified at C(4) were synthesized, and evaluated for their antifungal activities against Botrytis cinerea in vitro and in vivo. Of these 36 oxime ester derivatives, some compounds exhibited antifungal activities in vitro or in vivo. It was found that compounds with a pyridinyl residue can either efficiently inhibit spore germination or efficiently inhibit hyphal growth of B. cinerea, and compound 9 exhibited the highest activity in vitro and in vivo with IC50 and EC50 values of 1.17 and 12.9 μg/ml, respectively. Further, the structure-activity relationships are also discussed.

  8. Combinatorial effect of mutagenesis and medium component optimization on Bacillus amyloliquefaciens antifungal activity and efficacy in eradicating Botrytis cinerea.

    PubMed

    Masmoudi, Fatma; Ben Khedher, Saoussen; Kamoun, Amel; Zouari, Nabil; Tounsi, Slim; Trigui, Mohamed

    2017-04-01

    This work is directed towards Bacillus amyloliquefaciens strain BLB371 metabolite production for biocontrol of fungal phytopathogens. In order to maximise antifungal metabolite production by this strain, two approaches were combined: random mutagenesis and medium component optimization. After three rounds of mutagenesis, a hyper active mutant, named M3-7, was obtained. It produces 7 fold more antifungal metabolites (1800AU/mL) than the wild strain in MC medium. A hybrid design was applied to optimise a new medium to enhance antifungal metabolite production by M3-7. The new optimized medium (35g/L of peptone, 32.5g/L of sucrose, 10.5g/L of yeast extract, 2.4g/L of KH2PO4, 1.3g/L of MgSO4 and 23mg/L of MnSO4) achieved 1.62 fold enhancement in antifungal compound production (3000AU/mL) by this mutant, compared to that achieved in MC medium. Therefore, combinatory effect of these two approaches (mutagenesis and medium component optimization) allowed 12 fold improvement in antifungal activity (from 250UA/mL to 3000UA/mL). This improvement was confirmed against several phytopathogenic fungi with an increase of MIC and MFC over than 50%. More interestingly, a total eradication of gray mold was obtained on tomato fruits infected by Botrytis cinerea and treated by M3-7, compared to those treated by BLB371. From the practical point of view, combining random mutagenesis and medium optimization could be considered as an excellent tool for obtaining promising biological products useful against phytopathogenic fungi.

  9. In Vitro Activities of 10 Antifungal Drugs against 508 Dermatophyte Strains

    PubMed Central

    Fernández-Torres, B.; Carrillo, A. J.; Martín, E.; Del Palacio, A.; Moore, M. K.; Valverde, A.; Serrano, M.; Guarro, J.

    2001-01-01

    We have tested 508 strains belonging to 24 species of dermatophytes against 10 antifungal drugs following mainly the NCCLS (M38-P) standard for filamentous fungi. However, several important factors, such as the temperature (28 versus 35°C) and time of incubation (4 to 10 days versus 21 to 74 h), have been modified. The antifungals used were itraconazole, ketoconazole, miconazole, clotrimazole, voriconazole, terbinafine, amphotericin B, fluconazole, UR-9825, and G-1. In general, with the exception of fluconazole and G-1, all antifungals were shown to be highly effective. PMID:11502524

  10. Facile preparation of surface N-halamine chitin nanofiber to endow antibacterial and antifungal activities.

    PubMed

    Dutta, A K; Egusa, M; Kaminaka, H; Izawa, H; Morimoto, M; Saimoto, H; Ifuku, S

    2015-01-22

    N-halamine chitin nanofiber (NF) film was prepared by the reaction of chitin NF film with sodium hypochlorite solution to endow the film with antibacterial and antifungal activities. The amount of active chlorine content loaded on the chitin NF film depended on the sodium hypochlorite concentration and reaction time. FT-IR, UV-vis, XRD, and TG analyses showed that the N-H bond was substituted to the N-Cl bond and that the reaction took place at the chitin NF surface. After chlorination, the characteristic nanochitin morphology was maintained. Although the active chlorine content of the film gradually decreased by disassociation of the N-Cl bond, chlorine was rechargeable into chitin NF by another sodium hypochlorite solution treatment. The chlorinated chitin NF film showed strong efficacies against Gram-negative and -positive bacteria of Escherichia coli and Staphylococcus aureus, respectively. Moreover, the films showed 100% and 80% inhibition of spore germination when faced against Alternaria alternata and Penicillium digitatum fungi, respectively.

  11. Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida.

    PubMed

    Wani, Irshad A; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    A simple and economical sonochemical approach was employed for the synthesis of gold nanoparticles. The effect of the reducing agents has been studied on the particle size, morphology and properties at the same ultrasonic frequency under ambient conditions. Gold nanodiscs of average diameter of 25 nm were obtained using tinchloride (SnCl(2)) as a reducing agent, while sodium borohydride (NaBH(4)) produced polyhedral structures of the average size of 30 nm. The time evolution of the UV-visible absorption spectra of the gold nanostructures shows the origin of peaks due to higher order quadrupolar modes apart from the peaks of the in plane and out plane dipolar surface plasmon modes. Surface area studies reveal the much higher surface area of the gold nanodiscs (179.5 m(2)/g), than the gold nanoparticles (150.5m(2)/g) prepared by the sodium borohydride as the reducing agent. The gold nanoparticles exhibit excellent antifungal activity against the fungus, Candida. We investigated the effect of the gold nanoparticles on the H(+)-ATPase mediated H(+) pumping by various Candida species. Gold nanodiscs displayed the stronger fungicidal activity compared to the gold polyhedral nanoparticles. The two types of gold nanoparticles inhibit H(+)-ATPase activity at their respective MIC values.

  12. Chemical variability, antifungal and antioxidant activity of Eucalyptus camaldulensis essential oil from Sardinia.

    PubMed

    Barra, Andrea; Coroneo, Valentina; Dessi, Sandro; Cabras, Paolo; Angioni, Alberto

    2010-02-01

    Essential oil (EO) from aerial parts of Eucalyptus camaldulensis Dehnh., growing wild in different localities of Sardinia (Italy), was extracted by steam distillation and analyzed by gas chromatography (GC) FID and GC-ion trap mass spectrometry (ITMS). The yields of EO (v/dry wt) ranged between 0.2-0.5%. Samples were harvested between April and December to study the seasonal chemical variability of the EO. The chemical composition varied depending on the different origins and showed strong fluctuation during the vegetative stage. Thirty-seven compounds, accounting for at least 97.7% of the total EOs were identified, the major components being p-cymene (27.8-42.7%), 1,8-cineole (4.1-39.5%), beta-phellandrene (3.9-23.8%), spathulenol (2.1-15.5%) and cryptone (3.2-10.2%). The oils possessed moderate amounts (1.4-4.7%) of two uncommon aldehydes, cuminal and phellandral. The essential oils were screened for their antifungal activities against common phytopathogenic fungi using the paper disk diffusion method and they showed activity at low doses against the fungi tested. The antioxidant activity, assessed by DPPH-test and expressed as Trolox equivalent antioxidant capacity, showed values ranging between 0.5 and 5.8 mmol/L.

  13. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    PubMed Central

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-01-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes. PMID:26273250

  14. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw.

    PubMed

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-06-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  15. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic

    PubMed Central

    Shentu, Xuping; Zhan, Xiaohuan; Ma, Zheng; Yu, Xiaoping; Zhang, Chuanxi

    2014-01-01

    The endophytic fungus strain 0248, isolated from garlic, was identified as Trichoderma brevicompactum based on morphological characteristics and the nucleotide sequences of ITS1-5.8S- ITS2 and tef1. The bioactive compound T2 was isolated from the culture extracts of this fungus by bioactivity-guided fractionation and identified as 4β-acetoxy-12,13- epoxy-Δ9-trichothecene (trichodermin) by spectral analysis and mass spectrometry. Trichodermin has a marked inhibitory activity on Rhizoctonia solani, with an EC50 of 0.25 μgmL−1. Strong inhibition by trichodermin was also found for Botrytis cinerea, with an EC50 of 2.02 μgmL−1. However, a relatively poor inhibitory effect was observed for trichodermin against Colletotrichum lindemuthianum (EC50 = 25.60 μgmL−1). Compared with the positive control Carbendazim, trichodermin showed a strong antifungal activity on the above phytopathogens. There is little known about endophytes from garlic. This paper studied in detail the identification of endophytic T. brevicompactum from garlic and the characterization of its active metabolite trichodermin. PMID:24948941

  16. Antifungal and Antioxidant Activities of the Essential Oil from Angelica koreana Nakai

    PubMed Central

    Roh, Junghyun; Shin, Seungwon

    2014-01-01

    Purpose. The purpose of this study is to determine the antifungal and antioxidant activities of the essential oil from Angelica koreana. Methods. Essential oil was obtained from the dried roots of A. koreana by steam distillation, and its composition was identified by gas chromatography and mass spectrometry (GC-MS). The minimal inhibitory concentrations (MICs) of the oil fraction and its main components were determined by broth dilution assay using common pathogenic Aspergillus and Trichophyton species. The combined effects of the oils with itraconazole were evaluated using a checkerboard titer test. In addition, 1,1-diphenyl-2-picryl-hydrazil (DPPH) free radical scavenging, nitrite inhibition, and reducing power were determined to assess the antioxidant activity of this oil. Results. The essential oil fraction and its main components showed inhibitory activity against all of the tested fungi, with minimal inhibitory concentrations (MICs) of 250–1000 μg/mL. Furthermore, this oil exhibited synergism when combined with itraconazole. Conclusion. In the treatment of infections caused by Aspergillus and Trichophyton species, combining itraconazole with either A. koreana essential oil or its main components may reduce the minimum effective dose of itraconazole required and, thus, minimize its side effects. In addition, this oil is a promising source of natural antioxidant agents. PMID:25197308

  17. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr.

    PubMed

    Bouchra, Chebli; Achouri, Mohamed; Idrissi Hassani, L M; Hmamouchi, Mohamed

    2003-11-01

    Essential oils of seven Moroccan Labiatae were chemically analysed by GC-MS and evaluated for their in vitro antifungal activity against Botrytis cinerea. Among them, Origanum compactum and Thymus glandulosus greatly inhibited the growth of the mycelium. The inhibition of Botrytis cinerea was 100% for both oils at 100 ppm, while the IC(50)s were 35.1 and 79.2 ppm, respectively. Mentha pulegium exhibited moderate activity at 250 ppm since the inhibition of the mycelial growth was 58.5% and the IC(50) was 233.5 ppm. The main constituents of the studied oils were also examined. Thymol and carvacrol that are the two main constituents of Thymus glandulosus and Origanum compactum exhibited the strongest antifungal activity with 100% of inhibition at 100 ppm, respectively.

  18. Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum.

    PubMed

    Gopal, Ramamourthy; Na, Hyungjong; Seo, Chang Ho; Park, Yoonkyung

    2012-11-15

    The presence of lysine (Lys) or arginine (Arg) and tryptophan (Trp) are important for the antimicrobial effects of cationic peptides. Therefore, we designed and synthesized a series of antimicrobial peptides with various numbers of Lys (or Arg) and Trp repeats [(KW and RW)(n)-NH(2), where n equals 2, 3, 4, or 5]. Antifungal activities of these peptides increased with chain length. Light microscopy demonstrated that longer peptides (n = 4, 5) strongly inhibited in vitro growth of Fusarium solani, and Fusarium oxysporum, at 4-32 μM. Furthermore, longer peptides displayed potent fungicidal activities against a variety of agronomical important filamentous fungi, including F. solani and F. oxysporum, at their minimal inhibitory concentrations (MICs). However, RW series peptides showed slightly higher fungicidal activities than KW peptides against the two strains. Taken together, the results of this study indicate that these short peptides would be good candidates for use as synthetic or transgenic antifungal agents.

  19. Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta).

    PubMed

    Wang, Ke-Ming; Kumar, Senthil; Cheng, Yi-Sheng; Venkatagiri, Shripathi; Yang, Ai-Hwa; Yeh, Kai-Wun

    2008-10-01

    Tarocystatin from Colocasia esculenta, a group-2 phytocystatin, is a defense protein against phytopathogenic nematodes and fungi. It is composed of a highly conserved N-terminal region, which is homological to group-1 cystatin, and a repetitive peptide at the C-terminus. The purified recombinant proteins of tarocystatin, such as full-length (FL), N-terminus (Nt) and C-terminus (Ct) peptides, were produced and their inhibitory activities against papain as well as their antifungal effects were investigated. Kinetic analysis revealed that FL peptide exhibited mixed type inhibition (K(ia) = 0.098 microM and K(ib) = 0.252 microM) and Nt peptide showed competitive inhibition (K(i) = 0.057 microM), whereas Ct peptide possessed weak papain activation properties. A shift in the inhibitory pattern from competitive inhibition of Nt peptide alone to mixed type inhibition of FL peptide implied that the Ct peptide has an regulatory effect on the function of FL peptide. Based on the inhibitory kinetics of FL (group-2) and Nt (group-1) peptides on papain activity, an inhibitory mechanism of group-2 phytocystatins and a regulatory mechanism of extended Ct peptide have each been proposed. By contrast, the antifungal activity of Nt peptide appeared to be greater than that of FL peptide, and the Ct peptide showed no effect on antifungal activity, indicating that the antifungal effect is not related to proteinase inhibitory activity. The results are valid for most phytocystatins with respect to the inhibitory mechanism against cysteine proteinase.

  20. In vitro evaluation of dill seed essential oil antifungal activities to control Zymoseptoria tritici.

    PubMed

    Deweer, C; Yaguiyan, A; Muchembled, J; Sahmer, K; Dermont, C; Halama, P

    2013-01-01

    Zymoseptoria tritici (teleomorph: Mycosphaerella graminicola) is the causal agent of Septoria Leaf Blotch of wheat (up to 40% yield loss). The study aims to evaluate the antifungal activities of dill seed Essential Oil (EO) on this pathogen to investigate an alternative solution to decrease the use of synthetic fungicides in the context of sustainable agriculture. Thus, two strains of Zymoseptoria tritici in relation to their sensitivity to DOMIs were tested in microplates (S6, sensitive strain; R1187, resistant strain). The essays were repeatedly carried out with dill seed EO crude, with Tween 80 (5% v/v) or with DMSO (1% v/v). A range of nine EO dilutions were tried out in comparison to two fungicides: a DMI (metconazole) and a SDHI (Boscalid). A Gas Chromatography - Mass Spectrometry (GC-MS) analysis reveals that dill seed EO is mostly composed of Carvone (45%) and Limonene (25%). Consequently, D-Carvone/L-Carvone and D-Limonene/L-Limonene were tested as well to determine the origins of the EO effectiveness observed. The IC50 (half maximal inhibitory concentration) are calculated and then statistically analysed to find significant differences between each product tested. The comparison of the IC50 shows that S6 is more sensitive to metconazole than R1187 but they both have the same sensitivity to Boscalid. Dill seed EO, D-Carvone/L-Carvone have the same effectiveness on S6 whatever the preparation tested. D-Limonene/L-Limonene are less efficient unless they are supplemented with Tween 80. On R1187, Dill seed EO is more efficient when it is prepared with Tween 80. This efficiency is also observed for D-Carvone/L-Carvone whatever the preparation tested. D-Limonene/L-Limonene are generally less efficient than Carvone even if L-limonene is as efficient as L-Carvone when these products are prepared with Tween 80. Dill seed EO used crude or with DMSO is more efficient on S6 (350 mg/L) than on R1187 (1000 mg/L) but with Tween 80, the EO effectiveness is the same on

  1. Antibacterial and antifungal activities of acetonic extract from Paullinia cupana Mart. seeds.

    PubMed

    Basile, Adriana; Rigano, Daniela; Conte, Barbara; Bruno, Maurizio; Rosselli, Sergio; Sorbo, Sergio

    2013-01-01

    The antibacterial and antifungal activities of the acetone extract from Paullinia cupana var. sorbilis Mart. (Sapindaceae) seeds, commonly called guarana, were assessed against selected bacterial and fungal strains. We tested the extract against both standard American Type Culture Collection (ATCC) and clinically isolated (CI) bacterial strains and three fungal strains. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for bacteria and MIC and minimum fungicidal concentration for fungi were determined. The extract showed an activity against the nine bacterial strains tested, both CI and ATCC strains (MIC comprised between 32 and 128 μm/mL and MBC between 128 and 512 μm/mL), showing a significant antibacterial effect against both Gram-negative and Gram-positive bacteria. Also, the tested fungi were sensitive to the extract (MIC between 125 and 250 μm/mL). The contemporaneous presence of different bioactivities in the extract from guarana suggests this plant as a source of bioactive substances.

  2. Impurities contained in antifungal drug ketoconazole are potent activators of human aryl hydrocarbon receptor.

    PubMed

    Grycová, Aneta; Dořičáková, Aneta; Dvořák, Zdeněk

    2015-12-03

    Antifungal drug ketoconazole is a mixture of (+)/(-) cis-enantiomers, which also contains several impurities. Ketoconazole was identified as an activator of aryl hydrocarbon receptor AhR by three independent research teams. In the current paper we demonstrate that impurities contained in ketoconazole preparations are strong activators of human AhR and inducers of CYP1A1. Impurity IMP-C had similar potency (EC50), but 10-15 times higher efficacy (magnitude of induction) towards AhR, comparing to (+)-ketoconazole, as revealed by gene reporter assay in AZ-AHR stably transfected cells. Impurities IMP-B and IMP-C, and in lesser extent IMP-E, induced a formation of AhR-DNA complex, as demonstrated by electromobility shift assay EMSA. Impurities IMP-C and IMP-E dose-dependently induced CYP1A1 mRNA after 24 h, and their effects were comparable to those by (+)-ketoconazole. The level of CYP1A1 protein in HepG2 cells was strongly increased by IMP-C after 48h. In conclusion, our data further elucidated molecular effects of ketoconazole towards AhR signaling pathway, with possible implications in ketoconazole role in skin chemoprevention and/or damage, involving AhR.

  3. [Induction, purification and antifungal activity of beta-1, 3-glucanase from wheat leaves].

    PubMed

    Sun, Bin; Li, Duo-Chuan; Ci, Xiao-Yan; Guo, Run-Fang; Wang, Ying

    2004-08-01

    Treatment with mercuric chloride (0.01%), salicylic acid (10.0 mg/mL) or riboflavin (1 mmol/L) induced the beta-1, 3-glucanase activity in all the three wheat varieties i.e. 331, Kangdao 680 and Lumai 23 tested, with the strongest inductive effect on variety 331 by treatment with mercuric chloride (0.01%) for 24 h. From leaves of variety 331 treated with mercuric chloride (0.01%) for 24 h, a kind of beta-1, 3-glucanase was purified by fractional precipitation with ammonium sulphate, Phenyl-Sepharose chromatography (Phenyl-Sepharose Fast Flow), ion-exchange chromatography (DEAE-Sepharose Fast Flow) and gel-filtration chromatography (Sephacryl S-100). Through SDS-PAGE and gel filtration, the molecular weight of the purified beta-1, 3-glucanase was determined to be about 52.0-53.6 kD. The purified beta-1, 3-glucanase showed antifungal activity against both Alternaria longipes and Rhizoctonia cerealis on tested plates, and inhibited the germ tube elongation and spore germination of Verticillium dahliae and Fusarium omysporum f.sp cucumerinum.

  4. Novel synthesized 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology.

    PubMed

    Gong, Liang; Tan, Haibo; Chen, Feng; Li, Taotao; Zhu, Jianyu; Jian, Qijie; Yuan, Debao; Xu, Liangxiong; Hu, Wenzhong; Jiang, Yueming; Duan, Xuewu

    2016-08-26

    2, 4-Diacetylphloroglucinol (2,4-DAPG), a natural phenolic compound, has been investigated in light of its biological activities against plant pathogens. To improve its potential application, fourteen 2,4-DAPG analogous were synthesized through the Friedel-Crafts reaction using acyl chlorides and phloroglucinol. Of the 2,4-DAPG derivatives, MP4 exhibited much higher antifungal activity against Penicillium digitatum and P. italicum, the major pathogenic fungi in citrus fruit, than 2, 4-DAPG in vitro, and significantly inhibited the development of decay in harvested mandarin (Citrus reticulata Blanco cv. Shatang.) fruit in vivo. It was found that MP4 resulted in the wrinkle of the hyphae in both fungi with serious folds and breakage. In addition, the expression of several cytochrome P450 (CYP) genes were also modified in both fungi by MP4, which might be associated with the disorder of cell membrane formation. Furthermore, the toxicology of MP4 by evaluating the cell proliferation effect on human normal lung epithelial (16HBE) and kidney 293 (HEK293) cells, was significantly lower than that of albesilate, a widely used fungicide in harvested citrus fruit. In summary, the synthesized MP4 has shown a great potential as a novel fungicide that might be useful for control of postharvest decay in citrus fruit.

  5. Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani.

    PubMed

    Elkahoui, Salem; Djébali, Naceur; Yaich, Najeh; Azaiez, Sana; Hammami, Majdi; Essid, Rym; Limam, Ferid

    2015-01-01

    Several volatile organic compounds (VOCs) producing endophyte bacteria were isolated from the leaves of olive trees and tested for their antifungal activity against several pathogenic fungi. An antagonistic strain called P2 showed 97 % of homology with Pseudomonas sp. strains on the basis of its 16S rDNA sequence and biochemical properties. P2 strain drastically inhibited the growth of Rhizoctonia solani mycelia (86 %) at 5 day-post-confrontation (dpc) and strongly reduced fungi infection on potato slices at 10(7) bacteria ml(-1) for 3 and 7 dpc. P2 strain was also positive for protease activity as well as siderophore production. Light microscopy analysis showed that treatment of R. solani mycelia with P2 strain induced thickening of the cell-wall, vesiculation of protoplasm and blockage of fungal hyphae branching. VOCs analysis using GC-MS allowed the detection of two major products with m/z of 93.9910 and 125.9630 corresponding to dimethyl disulfide and dimethyl trisulfide respectively. VOCs-producing P2 strain could be a promising agent in the protection of tuber crops against fungal diseases.

  6. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus

    PubMed Central

    Ghazvini, Roshanak Daie; Kouhsari, Ebrahim; Zibafar, Ensieh; Hashemi, Seyed Jamal; Amini, Abolfazl; Niknejad, Farhad

    2016-01-01

    Food and feedstuff contamination with aflatoxins (AFTs) is a serious health problem for humans and animals, especially in developing countries. The present study evaluated antifungal activities of two lactic acid bacteria (LAB) against growth and aflatoxin production of toxigenic Aspergillus parasiticus. The mycelial growth inhibition rate of A. parasiticus PTCC 5286 was investigated in the presence of Bifidobacterium bifidum PTCC 1644 and Lactobacillus fermentum PTCC 1744 by the pour plate method. After seven days incubation in yeast extract sucrose broth at 30°C, the mycelial mass was weighed after drying. The inhibitory activity of LAB metabolites against aflatoxin production by A. parasiticus was evaluated using HPLC method. B. bifidum and L. fermentum significantly reduced aflatoxin production and growth rate of A. parasiticus in comparison with the controls (p≤0.05). LAB reduced total aflatoxins and B1, B2, G1 and G2 fractions by more than 99%. Moreover, LAB metabolites reduced the level of standard AFB1, B2, G1 and G2 from 88.8% to 99.8% (p≤0.05). Based on these findings, B. bifidum and L. fermentum are recommended as suitable biocontrol agents against the growth and aflatoxin production by aflatoxigenic Aspergillus species. PMID:28077976

  7. Novel synthesized 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology

    PubMed Central

    Gong, Liang; Tan, Haibo; Chen, Feng; Li, Taotao; Zhu, Jianyu; Jian, Qijie; Yuan, Debao; Xu, Liangxiong; Hu, Wenzhong; Jiang, Yueming; Duan, Xuewu

    2016-01-01

    2, 4-Diacetylphloroglucinol (2,4-DAPG), a natural phenolic compound, has been investigated in light of its biological activities against plant pathogens. To improve its potential application, fourteen 2,4-DAPG analogous were synthesized through the Friedel-Crafts reaction using acyl chlorides and phloroglucinol. Of the 2,4-DAPG derivatives, MP4 exhibited much higher antifungal activity against Penicillium digitatum and P. italicum, the major pathogenic fungi in citrus fruit, than 2, 4-DAPG in vitro, and significantly inhibited the development of decay in harvested mandarin (Citrus reticulata Blanco cv. Shatang.) fruit in vivo. It was found that MP4 resulted in the wrinkle of the hyphae in both fungi with serious folds and breakage. In addition, the expression of several cytochrome P450 (CYP) genes were also modified in both fungi by MP4, which might be associated with the disorder of cell membrane formation. Furthermore, the toxicology of MP4 by evaluating the cell proliferation effect on human normal lung epithelial (16HBE) and kidney 293 (HEK293) cells, was significantly lower than that of albesilate, a widely used fungicide in harvested citrus fruit. In summary, the synthesized MP4 has shown a great potential as a novel fungicide that might be useful for control of postharvest decay in citrus fruit. PMID:27562341

  8. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B.

    PubMed

    Silva, Filomena; Ferreira, Susana; Duarte, Andreia; Mendonça, Dina I; Domingues, Fernanda C

    2011-12-15

    The increasing incidence of drug-resistant pathogens and toxicity of existing antifungal compounds has drawn attention towards the antimicrobial activity of natural products. The aim of the present study was to evaluate the antifungal activity of coriander essential oil according to classical bacteriological techniques, as well as with flow cytometry. The effect of the essential oil upon germ tube formation, seen as an important virulence factor, and potential synergism with amphotericin B were also studied. Coriander essential oil has a fungicidal activity against the Candida strains tested with MLC values equal to the MIC value and ranging from 0.05 to 0.4% (v/v). Flow cytometric evaluation of BOX, PI and DRAQ5 staining indicates that the fungicidal effect is a result of cytoplasmic membrane damage and subsequent leakage of intracellular components such as DNA. Also, concentrations bellow the MIC value caused a marked reduction in the percentage of germ tube formation for C. albicans strains. A synergetic effect between coriander oil and amphotericin B was also obtained for C. albicans strains, while for C. tropicalis strain only an additive effect was observed. This study describes the antifungal activity of coriander essential oil on Candida spp., which could be useful in designing new formulations for candidosis treatment.

  9. Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger.

    PubMed

    Salaberria, Asier M; Fernandes, Susana C M; Diaz, Rene Herrera; Labidi, Jalel

    2015-02-13

    Chitin nano-objects become more interesting and attractive material than native chitin because of their usable form, low density, high surface area and promising mechanical properties. This work suggests a straightforward and environmentally friendly method for processing chitin nanofibers using dynamic high pressure homogenization. This technique proved to be a remarkably simple way to get α-chitin into α-chitin nanofibers from yellow lobster wastes with a uniform width (bellow 100 nm) and high aspect ratio; and may contributes to a major breakthrough in chitin applications. Moreover, the resulting α-chitin nanofibers were characterized and compared with native α-chitin in terms of chemical and crystal structure, thermal degradation and antifungal activity. The biological assays highlighted that the nano nature of chitin nanofibers plays an important role in the antifungal activity against Aspergillus niger.

  10. Antifungal activity of storage 2S albumins from seeds of the invasive weed dandelion Taraxacum officinale Wigg.

    PubMed

    Odintsova, T I; Rogozhin, E A; Sklyar, I V; Musolyamov, A K; Kudryavtsev, A M; Pukhalsky, V A; Smirnov, A N; Grishin, E V; Egorov, T A

    2010-04-01

    In this work, we isolated and characterized novel antifungal proteins from seeds of dandelion (Taraxacum officinale Wigg.). We showed that they are represented by five isoforms, each consisting of two disulphide-bonded large and small subunits. One of them, To-A1 was studied in detail, including N-terminal amino acid sequencing of both subunits, and shown to display sequence homology with the sunflower 2S albumin. Using different assays we demonstrated that dandelion 2S albumins possess inhibitory activity against phytopathogenic fungi and the oomycete Phytophtora infestans at micromolar concentrations with various isoforms differing in their antifungal activity. Thus, 2S albumins of dandelion seeds represent a novel example of storage proteins with defense functions.

  11. A comparative in vitro study on antifungal and antioxidant activities of Nervilia aragoana and Atlantia monophylla.

    PubMed

    Reddy, K Himakar; Sharma, P V G K; Reddy, O V S

    2010-05-01

    Ethyl acetate extract of the whole plant of Nervilia aragoana Gaud. (Orchidaceae) and ethanol extract of the leaves of Atlantia monophylla Linn. (Rutaceae) were evaluated for antifungal and antioxidant activities. At 5 mg/mL concentration of the extracts, the former exhibited more inhibitory activity than the latter against fungi. The order of MIC values for Nervilia aragoana were Saccharomyces cerevisiae (1.4 mg/mL) > Aspergillus niger (1.2 mg/mL) > Aspergillus fumigatus (0.95 mg/mL) > Cryptococcus neoformans (0.75 mg/mL). In the case of Atlantia monophylla values were Cryptococcus neoformans (1 mg/mL) > Candida albicans (0.95 mg/mL) > Aspergillus niger (0.65 mg/mL). TLC-DPPH method assay was carried out to evaluate the antioxidant potential. Further DPPH radical, superoxide, nitric oxide, H(2)O(2) scavenging, and reducing power activities were carried out. N. aragoana (85%) extract exhibited more scavenging activity than that of A. monophylla (66%) by DPPH free radical scavenging method. A. monophylla extract exhibited more superoxide, nitric oxide, H(2)O(2) scavenging activities than that of N. aragoana. The acute toxicity studies of both extracts have shown no mortality rate even up to 3 g/kg body weight in albino rats. Screening for secondary metabolites showed the presence of carbohydrates in both extracts. Flavonoids were found only in the ethyl acetate extract of N. aragoana. Tannins, alkaloids, triterpenoids and steroids were present in A. monophylla. Total phenols present in N. aragoana and A. monophylla were 340 and 560 mg/g extract of gallic acid equivalents, respectively.

  12. Antifungal Activity of Isolated Bacillus amyloliquefaciens SYBC H47 for the Biocontrol of Peach Gummosis

    PubMed Central

    Zhang, Yanzhou; Wei, Zhiwen; Guan, Zhengbing; Cai, Yujie; Liao, Xiangru

    2016-01-01

    The gummosis disease is caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., and it is one of the most important diseases of stone fruits worldwide. The use of biocontrol as an alternative approach to synthetic chemical fungicides has aroused general concern about how to control plant diseases that are caused by phytopathogens. The aim of this study is to isolate Bacillus strains from raw honeys with the capacity to inhibit B. dothidea and to explore the mechanisms by which they could be used in the biocontrol of peach gummosis. Bacillus amyloliquefaciens SYBC H47 was isolated and identified on the basis of its physiological and biochemical characteristics and its 16S rRNA and gyrB gene sequences. The cell suspension and the cell-free supernatant of its culture showed significant antifungal activity against Aspergillus niger, Mucor racemosus, Fusarium oxysporum, Penicillium citrinum, and Candida albicans by agar-diffusion assays. The primary antifungal substances were bacillomycin L, fengycin, and surfactin, which were analyzed by HPLC LC/ESI-MS/MS. Bacillomycin L showed the best inhibitory effect against conidial germination of B. dothidea, followed by fengycin and surfactin. Surfactin had limited effects on mycelial growth, contrary to those of bacillomycin L and fengycin. However, a mixture of the three lipopeptides had a synergistic effect that disrupted the structure of the conidia and mycelia. In order to reduce the production cost, the use of waste frying peanut oil and soy oil as the sole carbon source increased the lipopeptide yield levels by approximately 17% (2.42 g/L) and 110% (4.35 g/L), respectively. In a field trial, the decreases in the infected gummosis rate (IGR) and the disease severity index (DSI) through cell suspension treatments were 20% and 57.5% (in 2014), respectively, and 40% and 57.5% (in 2015), respectively, in comparison with the control. In conclusion, B. amyloliquefaciens SYBC H47 could inhibit the germination of conidia

  13. Antifungal activity change of Streptomyces rimosus MY02 mediated by confront culture with other microorganism.

    PubMed

    Yu, Jicheng; Liu, Qiu; Chen, Chao; Qi, Xiaohui

    2017-03-01

    Streptomyces rimosus can produce antibacterial and antifungal antibiotics, which have important applications in medicine and agriculture. Seventy-nine microbial strains were employed to assay interaction between S. rimosus MY02 and different fungi, actinomyces, and bacteria when confront cultured on solid media. The results showed that the presence of a microorganism might affect the activity of another one. When S. rimosus MY02 confront cultured with other microorganisms, the inductive effect might be positive or negative. In this study, fungi showed to be effective elicitors, with a highest inductivity rate of 90.1%, and all of fungi showed positive induction behavior. Followed by bacteria with 59.6% of the tested bacterial strains showing positive inductivity, and the highest inductivity was 54.9%. Only six actinomyces (counting for 40% of the tested actinomyces strains) showed positive inductivity, and the highest induction rate of the strain NK413 was 34.1%. We also found that growth of most of bacteria or actinomyces which showed negative inductivity were similar or better than that of the strain MY02. However, the growth status of the strains was not positive related to inducing ability directly.

  14. Synthesis and antifungal activity of 2-allylphenol derivatives against fungal plant pathogens.

    PubMed

    Qu, Tianli; Gao, Shumei; Li, Jianqiang; Hao, Jianjun J; Ji, Pingsheng

    2017-01-01

    2-Allylphenol (2-AP) is an effective fungicide against a number of plant pathogens, which can be metabolized and bio-transformed to four chemical compounds by Rhizoctonia cerealis. To determine if its degradation affects antifungal activity, two major metabolites derived from 2-AP including 2-(2-hydroxypropyl) phenol and 2-(3-hydroxypropyl) phenol were synthesized. Inhibition of mycelial growth of several plant pathogens by the metabolites was evaluated, and structures of two metabolites were determined by hydrogen nuclear magnetic resonance ((1)H NMR). Among these metabolites, only 2-(2-hydroxypropyl) phenol inhibited test pathogens effectively. EC50 values of 2-(2-hydroxypropyl) phenol for inhibition of mycelial growth of R. cerealis, Pythium aphanidermatum, Valsa mali and Botrytis cinerea ranged from 1.0 to 23.5μg/ml, which were lower than the parental fungicide 2-AP that ranged from 8.2 to 48.8μg/ml. Hyphae of R. cerealis and P. aphanidermatum treated with 2-(2-hydroxypropyl) phenol were twisted. Newly developed hyphae were slender, twisted and swollen on the tip, while old hyphae were hollow and ruptured. This is the first report indicating the formation of 2-(2-hydroxypropyl) phenol may have contributed to toxicity of 2-allylphenol in control of plant pathogens.

  15. Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans

    NASA Astrophysics Data System (ADS)

    Weitz, Iris S.; Maoz, Michal; Panitz, Daniel; Eichler, Sigal; Segal, Ester

    2015-08-01

    Combination therapy becomes an important strategy in the management of invasive fungal infections and emergence of resistant fungi mutants. In this work, we examine the combination of copper oxide (CuO) nanoparticles (NPs) with fluconazole as potential treatment against the pathogenic fungi, Candida albicans. CuO NPs ( 7 nm in size) were synthesized with acetate ligands assembled on their surface, as shown by both thermal gravimetric analysis and FTIR spectroscopy. Unlike the commercial CuO (both bulk and 50 nm particles), that are poorly dispersed in water, the interaction with water allows the fine dispersion of the coated CuO NPs and their excellent colloidal stability. The addition of fluconazole to the aqueous CuO dispersion induced spontaneous self-assembly of the NPs into linear pearl-like chains network, shown by cryogenic transmission electron microscopy (cryo-TEM). The antifungal activity of the CuO NPs and their combination with fluconazole (fluconazole-CuO NPs) was studied against C. albicans. The best MIC values were obtained at concentrations as low as 0.2 and 0.3 mg/mL, respectively. The results suggest that fluconazole-CuO NPs can provide a potential alternative treatment for C. albicans infections.

  16. Streptomyces gamaensis sp. nov., a novel actinomycete with antifungal activity isolated from soil in Gama, Chad.

    PubMed

    Zhao, Shanshan; Ye, Lan; Liu, Chongxi; Abagana, Adam Yacoub; Zheng, Weiwei; Sun, Pengyu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2017-04-01

    During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11(T), was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11(T) belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098(T) (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA-DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098(T). Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11(T) (=CGMCC 4.7304(T)=DSM 101531(T)).

  17. The supernatant of Bacillus pumilus SQR-N43 has antifungal activity towards Rhizoctonia solani.

    PubMed

    Huang, Xinqi; Yong, Xiaoyu; Zhang, Ruifu; Shen, Qirong; Yang, Xingming

    2013-08-01

    For clarification of the antagonistic mechanism of Bacillus pumilus SQR-N43 (N43) against Rhizoctonia solani Q1, production of antibiotics by N43 was determined, and the effect of the antibiotics on the pathogen mycelium was microscopically observed. Further more, the control efficiencies of the antifungal compounds on damping-off disease were investigated. The results obtained are listed as follows: N43 produced antibiotic substances towards R. solani Q1 at logarithmic growth phase. The antibiotics caused hyphal deformation and enlargement of cytoplasmic vacuoles in R. solani Q1 mycelia. 70% saturation of ammonium sulfate made a complete precipitation of the antibiotics in culture broth. When treated with protease K and trypsase, the activities of antibiotics were decreased by 79% and 53%, respectively, compared with control. The antibiotics were sensitive to high temperature and were alkaline stable. The molecular weights of the substances were about 500-1000 Da. The bio-control efficiencies of the antibiotics had no significant difference with that of N43 cell suspension. It is a first report that B. pumilus strain produced oligopeptides which had inhibitory effect on R. solani Q1 at logarithmic growth phase.

  18. Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola.

    PubMed

    Pimenta, Raphael Sanzio; da Silva, Juliana F Moreira; Buyer, Jeffrey S; Janisiewicz, Wojciech J

    2012-10-01

    Enophytic fungi were isolated from plum (Prunus domestica) leaves, identified with ITS1 and ITS4 primers, and their antagonistic activity was tested against Monilinia fructicola, which causes brown rot, blossom blight, and twig blight of stone fruits, and Colletotrichum gloeosporioides, which causes anthracnose on a variety of fruit crops. The production of antifungal compounds was determined in agar-diffusion and volatile inverted-plate tests. A total of 163 fungi were recovered from 30 plum trees, representing 22 cultivars. Twenty-nine morphotypes were detected, but only 14 species were identified genetically. The most frequently isolated species was Phaeosphaeria nodorum, constituting 86.5% of the total isolates. Four isolates produced inhibitory volatiles to M. fructicola; however, no isolate produced volatiles inhibitory to C. gloeosporioides. The volatiles produced by these fungi were identified as ethyl acetate, 3-methyl-1-butanol, acetic acid, 2-propyn-1-ol, and 2-propenenitrile. The fungal volatiles inhibited growth and reduced width of the hyphae, and caused disintegration of the hyphal content. This is the first study describing fungal endophytes in stone fruits. The P. nodorum strains producing inhibitory volatiles could play a significant role in reduction of M. fructicola expansion in plum tissues. Potential of these strains for biological control of this pathogen on stone fruits warrants further investigation.

  19. Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak.

    PubMed

    Tian, Jun; Ban, Xiaoquan; Zeng, Hong; He, Jingsheng; Huang, Bo; Wang, Youwei

    2011-02-28

    The essential oil extracted from the fruits of Cicuta virosa L. var. latisecta Celak was tested in vitro and in vivo against four foodborne fungi, Aspergillus flavus, Aspergillus oryzae, Aspergillus niger, and Alternaria alternata. Forty-five different components accounting for 98.4% of the total oil composition were identified by gas chromatography-mass spectrometry. The major components were γ-terpinene (40.92%), p-cymene (27.93%), and cumin aldehyde (21.20%). Antifungal activity was tested by the poisoned food technique against the four fungi. Minimum inhibitory concentration against the fungi was 5 μL/mL and percentage inhibition of mycelial growth was determined at day 9. The essential oil had a strong inhibitory effect on spore production and germination in all tested fungi proportional to concentration. The oil exhibited noticeable inhibition on dry mycelium weight and synthesis of aflatoxin B₁ (AFB₁) by A. flavus, completely inhibiting AFB(1) production at 4 μL/mL. The effect of the essential oil on inhibition of decay development in cherry tomatoes was tested in vivo by exposing inoculated and control fruit to essential oil vapor at a concentration of 200 μL/mL. Results indicated that the essential oil from C. virosa var. latisecta (CVEO) has potential as a preservative to control food spoilage.

  20. Antifungal activity of a liposomal itraconazole formulation in experimental Aspergillus flavus keratitis with endophthalmitis.

    PubMed

    Leal, André Ferraz Goiana; Leite, Melyna Chaves; Medeiros, Caroline Sanuzi Quirino; Cavalcanti, Isabella Macário Ferro; Wanderley, Almir Gonçalves; Magalhães, Nereide Stela Santos; Neves, Rejane Pereira

    2015-04-01

    The aim of this study was to assess the efficacy of topical application of a liposomal formulation of itraconazole for the treatment of experimental keratitis with endophthalmitis caused by Aspergillus flavus. The liposomes were obtained by the lipid film hydration method followed by sonication. Adult female Wistar rats (weighing 200-220 g) were immunosuppressed by intraperitoneal injection of 150 mg/kg of cyclophosphamide 3 days before infection by exposure to the fungus A. flavus (10(7) spores/ml). Forty-eight hours later, the animals were treated with the liposomal formulation. For comparison, one group of animals (n = 6) was treated with the same drug not encapsulated. At the end of the experiment, the animals were evaluated for clinical signs and number of colony forming units (CFU/g), along with direct microscopic examination. The results indicated that the liposomal formulation of itraconazole has better antifungal activity than the unencapsulated drug in the treatment of fungal keratitis with endophthalmitis caused experimentally by A. flavus in Wistar rats.

  1. Synthesis and Antifungal Activity In Vitro of Isoniazid Derivatives against Histoplasma capsulatum var. capsulatum

    PubMed Central

    de Farias Marques, Francisca Jakelyne; de Aguiar Cordeiro, Rebecca; da Silva, Marcos Reinaldo; Donato Maia Malaquias, Angela; Silva de Melo, Charlline Vládia; Mafezoli, Jair; Ferreira de Oliveira, Maria da Conceição; Nogueira Brilhante, Raimunda Sâmia; Gadelha Rocha, Marcos Fábio; Pinheiro Gomes Bandeira, Tereza de Jesus; Costa Sidrim, José Júlio

    2014-01-01

    Histoplasmosis is a severe infection that affects millions of patients worldwide and is endemic in the Americas. Amphotericin B (AMB) and itraconazole are highly effective for the treatment of severe and milder forms of the disease, but AMB is toxic, and the bioavailability of itraconazole is erratic. Therefore, it is important to investigate new classes of drugs for histoplasmosis treatment. In this study, a series of nine isoniazid hydrazone derivatives were synthesized and evaluated for their antifungal activities in vitro against the dimorphic fungus Histoplasma capsulatum var. capsulatum. The drugs were tested by microdilution in accordance with CLSI guidelines. The compound N′-(1-phenylethylidene)isonicotinohydrazide had the lowest MIC range of all the compounds for the yeast and filamentous forms of H. capsulatum. The in vitro synergy of this compound with AMB against the planktonic and biofilm forms of H. capsulatum cells was assessed by the checkerboard method. The effects of this hydrazone on cellular ergosterol content and membrane integrity were also investigated. The study showed that the compound alone is able to reduce the ergosterol content of planktonic cells and can alter the membrane permeability of the fungus. Furthermore, the compound alone or in combination with AMB showed inhibitory effects against mature biofilms of H. capsulatum. N′-(1-Phenylethylidene)isonicotinohydrazide alone or combined with AMB might be of interest in the management of histoplasmosis. PMID:24514090

  2. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans

    PubMed Central

    Li, Wen-Ru; Shi, Qing-Shan; Dai, Huan-Qin; Liang, Qing; Xie, Xiao-Bao; Huang, Xiao-Mo; Zhao, Guang-Ze; Zhang, Li-Xin

    2016-01-01

    The antifungal activity, kinetics, and molecular mechanism of action of garlic oil against Candida albicans were investigated in this study using multiple methods. Using the poisoned food technique, we determined that the minimum inhibitory concentration of garlic oil was 0.35 μg/mL. Observation by transmission electron microscopy indicated that garlic oil could penetrate the cellular membrane of C. albicans as well as the membranes of organelles such as the mitochondria, resulting in organelle destruction and ultimately cell death. RNA sequencing analysis showed that garlic oil induced differential expression of critical genes including those involved in oxidation-reduction processes, pathogenesis, and cellular response to drugs and starvation. Moreover, the differentially expressed genes were mainly clustered in 19 KEGG pathways, representing vital cellular processes such as oxidative phosphorylation, the spliceosome, the cell cycle, and protein processing in the endoplasmic reticulum. In addition, four upregulated proteins selected after two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) analysis were identified with high probability by mass spectrometry as putative cytoplasmic adenylate kinase, pyruvate decarboxylase, hexokinase, and heat shock proteins. This is suggestive of a C. albicans stress responses to garlic oil treatment. On the other hand, a large number of proteins were downregulated, leading to significant disruption of the normal metabolism and physical functions of C. albicans. PMID:26948845

  3. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil.

    PubMed

    Zuzarte, M; Vale-Silva, L; Gonçalves, M J; Cavaleiro, C; Vaz, S; Canhoto, J; Pinto, E; Salgueiro, L

    2012-07-01

    This study evaluates the antifungal activity and mechanism of action of a new chemotype of Lavandula multifida from Portugal. The essential oil was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), and the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of the oil and its major compounds were determined against several pathogenic fungi responsible for candidosis, meningitis, dermatophytosis, and aspergillosis. The influence of the oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide (PI) and FUN-1 staining of C. albicans cells by flow cytometry. The essential oil was characterized by high contents of monoterpenes, with carvacrol and cis-β-ocimene being the main constituents. The oil was more effective against dermatophytes and Cryptococcus neoformans, with MIC and MLC values of 0.16 μL/mL and 0.32 μL/mL, respectively. The oil was further shown to completely inhibit filamentation in C. albicans at concentrations below the respective MIC (0.08 μL/mL), with cis-β-ocimene being the main compound responsible for this inhibition (0.02 μL/mL). The flow cytometry results suggest a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. L. multifida essential oil may be useful in complementary therapy to treat disseminated candidosis, since the inhibition of filamentation alone appears to be sufficient to treat this type of infection.

  4. Improvement of antifungal activity of 10-undecyn-1-ol by inclusion complexation with cyclodextrin derivatives.

    PubMed

    Neoh, Tze Loon; Tanimoto, Takahiro; Ikefuji, Shuichi; Yoshii, Hidefumi; Furuta, Takeshi

    2008-05-28

    The inclusion complexation behavior between 10-undecyn-1-ol and cyclodextrin (CD) derivatives, namely, randomly methylated beta-CD (RM-beta-CD) and hydroxypropyl-beta-CD (HP-beta-CD), was studied in terms of solubility improvement, apparent stability constant, and the inclusion ratios of the resultant inclusion complexes. The aqueous solubility of 10-undecyn-1-ol was greatly improved through complexation with the CD derivatives. RM-beta-CD is comparatively more efficient in solubilizing 10-undecyn-1-ol with an apparent stability constant outstripping that of HP-beta-CD by about an order of magnitude. Comparative in vitro evaluations of the growth inhibition effects of inclusion complex solutions toward Rosellinia necatrix, a phytopathogenic fungus, were performed. In comparison with the positive control, appreciable improvements of the antifungal activity of 10-undecyn-1-ol through the addition of CD derivatives were observed visually. The improvement was evaluated in terms of area covered by the mycelia of Rosellinia necatrix and their growth rate. RM-beta-CD was proven to be more effective compared to HP-beta-CD with regard to the reduction of both fungal mycelium-covered area and growth rate constant, presumably owing to greater solubility enhancement by RM-beta-CD and thus the bioavailability of 10-undecyn-1-ol. Inclusion complexation of 10-undecyn-1-ol with CD derivatives suggests a potential means for production of an environmentally friendly 10-undecyn-1-ol-based fungicide to counteract R. necatrix.

  5. Antifungal activity of the osthol derivative JS-B against Phytophthora capsici.

    PubMed

    Wang, Chun-Mei; Guan, Wei; Fang, Shu; Chen, Hao; Li, You-Qin; Cai, Chun; Fan, Yong-Jian; Shi, Zhi-Qi

    2010-08-01

    JS-B (C(12)H(10)O(3)) is a derivative compound of osthol. The antifungal properties of JS-B were tested against 10 economically important plant pathogens. JS-B was effective in inhibiting the mycelial growth of Phytophthora capsici, and its inhibition on different stages of the life cycle of P. capsici was observed. The 50% effective concentration (EC(50)) of JS-B on mycelial dry weight and zoospore germination of P. capsici was 43.74 and 86.03 microg/ml, respectively. The rupture of released zoospores induced by JS-B was reduced by the addition of 100 mM glucose. The ultrastructural study showed that JS-B caused destruction of most of the mitochondrions, the concentration of cell nuclear, and the existing vesicles. When compared with dimethomorph, the activity of JS-B on P. capsici was determined under pot conditions. The result showed that JS-B has a curative effect on pepper blight.

  6. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    PubMed Central

    Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima

    2012-01-01

    Objective To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Methods Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. Results The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7–23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09–93.48)% and (4.90–99.70)% v/v, respectively. Conclusions This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans. PMID:23569970

  7. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1.

    PubMed

    Zhang, Xiaoyun; Li, Baoqing; Wang, Ye; Guo, Qinggang; Lu, Xiuyun; Li, Shezeng; Ma, Ping

    2013-11-01

    Bacillus atrophaeus CAB-1 displays a high inhibitory activity against various fungal pathogens and suppresses cucumber powdery mildew and tomato gray mold. We extracted and identified lipopeptides and secreted proteins and volatile compounds produced by strain CAB-1 to investigate the mechanisms involved in its biocontrol performance. In vitro assays indicated all three types of products contributed to the antagonistic activity against the fungal pathogen Botrytis cinerea. Each of these components also effectively prevented the occurrence of the cucumber powdery mildew caused by Sphaerotheca fuliginea under greenhouse conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry revealed that the major bioactive lipopeptide was fengycin A (C15-C17). We isolated the crude-secreted proteins of CAB-1 and purified a fraction with antifungal activity. This protein sequence shared a high identity with a putative phage-related pre-neck appendage protein, which has not been reported as an antifungal factor. The volatile compounds produced by CAB-1 were complex, including a range of alcohols, phenols, amines, and alkane amides. O-anisaldehyde represented one of the most abundant volatiles with the highest inhibition on the mycelial growth of B. cinerea. To our knowledge, this is the first report on profiling three types of antifungal substances in Bacilli and demonstrating their contributions to plant disease control.

  8. Antifungal compounds from cyanobacteria.

    PubMed

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  9. Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3.

    PubMed

    Choi, Hyemin; Hwang, Jae-Sam; Kim, Ho; Lee, Dong Gun

    2013-10-11

    In our previous study, coprisin, a 43-mer defensin-like peptide, was derived from the dung beetle, Copris tripartitus, and a 9-mer CopA3 (monomer), truncated coprisin analog peptide, was designed. However, the antifungal effects of CopA3 are not known yet. In this study, the antifungal activity and mechanism of CopA3 were investigated and to develop a more effective antimicrobial peptide under physiological conditions, the enantiomeric d-CopA3 was designed. l- and d-CopA3 had a similar antifungal activity without chiral selectivity, and their activity was more potent than that of melittin used as a positive control. Furthermore, l- and d-CopA3 did not even show any hemolysis against human erythrocytes. Membrane studies using propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], suggested that the antifungal effect of l- and d-CopA3 was due to the membrane-active mechanism, by contrast with coprisin possessing apoptotic mechanism without membrane permeabilization. Finally, the proteolytic resistance and antifungal activity of l- and d-CopA3 against trypsin was analyzed by HPLC and colony count assay. The results showed that only d-CopA3 maintained a potent antifungal activity despite the proteolytic condition. Therefore, this study suggests that d-CopA3 has potential as a novel antimicrobial agent.

  10. Tin(IV) complexes of pyrrolidinedithiocarbamate: synthesis, characterisation and antifungal activity.

    PubMed

    Menezes, D C; Vieira, F T; de Lima, G M; Porto, A O; Cortés, M E; Ardisson, J D; Albrecht-Schmitt, T E

    2005-12-01

    The reaction of ammonium pyrrolidinedithiocarbamate, [NH4{S2CN(CH2)4}], with SnCl2, [Sn(C6H5)2Cl2], [Sn(C6H5)3Cl], [Sn(C4H9)2Cl2] and [Sn(C6H11)3Cl] produced in good yield the compounds [Sn{S2CN(CH2)4}2Cl2] (1), [Sn{S2CN(CH2)4}2Ph2] (2), [Sn{S2CN(CH2)4}Ph3] (3), [Sn{S2CN(CH2)4}2 n-Bu2] (4) and [Sn{S2CN(CH2)4}Cy3] (5). The complexes were characterised by infrared, multinuclear NMR (1H, 13C{1H} and 119Sn{1H}) and 119Sn Mössbauer spectroscopies. In addition, the crystal structure of 4 was determined by X-ray crystallography. The in vitro antifungal activity of the tin(IV) complexes as well of the ligand was performed on human pathogenic fungi, Candida albicans, in concentrations of 0.025; 0.050; 0.100; 0.200; 0.400; 0.800; 1.600 and 3.200 mM. The microorganism presented resistance to the dithiocarbamate ligand and all tin(IV) complexes tested were actives. The highest activity was found for compounds 1 and 4.

  11. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products.

    PubMed

    Valerio, Francesca; Favilla, Mara; De Bellis, Palmira; Sisto, Angelo; de Candia, Silvia; Lavermicocca, Paola

    2009-09-01

    Thirty samples of Italian durum wheat semolina and whole durum wheat semolina, generally used for the production of Southern Italy's traditional breads, were subjected to microbiological analysis in order to explore their lactic acid bacteria (LAB) diversity and to find strains with antifungal activity. A total of 125 presumptive LAB isolates (Gram-positive and catalase-negative) were characterized by repetitive extragenic palindromic-PCR (REP-PCR) and sequence analysis of the 16S rRNA gene, leading to the identification of the following species: Weissella confusa, Weissella cibaria, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus rossiae and Lactobacillus plantarum. The REP-PCR results delineated 17 different patterns whose cluster analysis clearly differentiated W. cibaria from W. confusa isolates. Seventeen strains, each characterized by a different REP-PCR pattern, were screened for their antifungal properties. They were grown in a flour-based medium, comparable to a real food system, and the resulting fermentation products (FPs) were tested against fungal species generally contaminating bakery products, Aspergillus niger, Penicillium roqueforti and Endomyces fibuliger. The results of the study indicated a strong inhibitory activity - comparable to that obtained with the common preservative calcium propionate (0.3% w/v) - of ten LAB strains against the most widespread contaminant of bakery products, P. roqueforti. The screening also highlighted the unexplored antifungal activity of L. citreum, L. rossiae and W. cibaria (1 strain), which inhibited all fungal strains to the same or a higher extent compared with calcium propionate. The fermentation products of these three strains were characterized by low pH values, and a high content of lactic and acetic acids.

  12. In Vitro Antifungal Activity of ME1111, a New Topical Agent for Onychomycosis, against Clinical Isolates of Dermatophytes

    PubMed Central

    Isham, N.; Long, L.

    2015-01-01

    The treatment of onychomycosis has improved considerably over the past several decades following the introduction of the oral antifungals terbinafine and itraconazole. However, these oral agents suffer from certain disadvantages, including drug interactions and potential liver toxicity. Thus, there is a need for new topical agents that are effective against onychomycosis. ME1111 is a novel selective inhibitor of succinate dehydrogenase (complex II) of dermatophyte species, whose small molecular weight enhances its ability to penetrate the nail plate. In this study, we determined the antifungal activity of ME1111 against dermatophyte strains, most of which are known to cause nail infections, as measured by the MIC (n = 400) and the minimum fungicidal concentration (MFC) (n = 300). Additionally, we examined the potential for resistance development in dermatophytes (n = 4) following repeated exposure to ME1111. Our data show that the MIC90 of ME1111 against dermatophyte strains was 0.25 μg/ml, which was equivalent to that of the comparators amorolfine and ciclopirox (0.25 and 0.5 μg/ml, respectively). ME1111 was fungicidal at clinically achievable concentrations against dermatophytes, and its MFC90s against Trichophyton rubrum and Trichophyton mentagrophytes were 8 μg/ml, comparable to those of ciclopirox. Furthermore, ME1111, as well as ciclopirox, did not induce resistance in 4 dermatophytes tested. Our studies show that ME1111 possesses potent antifungal activity and suggest that it has low potential for the development of resistance in dermatophytes. PMID:26055386

  13. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole.

    PubMed

    Huang, Yongfu; Zhao, Jianglin; Zhou, Ligang; Wang, Jihua; Gong, Youwen; Chen, Xujun; Guo, Zejian; Wang, Qi; Jiang, Weibo

    2010-10-27

    In order to identify natural products for plant disease control, the essential oil of star anise (Illicium verum Hook. f.) fruit was investigated for its antifungal activity on plant pathogenic fungi. The fruit essential oil obtained by hydro-distillation was analyzed for its chemical composition by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). trans-Anethole (89.5%), 2-(1-cyclopentenyl)-furan (0.9%) and cis-anethole (0.7%) were found to be the main components among 22 identified compounds, which accounted for 94.6% of the total oil. The antifungal activity of the oil and its main component trans-anethole against plant pathogenic fungi were determined. Both the essential oil and trans-anethole exhibited strong inhibitory effect against all test fungi indicating that most of the observed antifungal properties was due to the presence of trans-anethole in the oil, which could be developed as natural fungicides for plant disease control in fruit and vegetable preservation.

  14. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity

    PubMed Central

    Aljaeid, Bader Mubarak; Hosny, Khaled Mohamed

    2016-01-01

    Background and objective Miconazole is a broad-spectrum antifungal drug that has poor aqueous solubility (<1 µg/mL); as a result, a reduction in its therapeutic efficacy has been reported. The aim of this study was to formulate and evaluate miconazole-loaded solid lipid nanoparticles (MN-SLNs) for oral administration to find an innovative way to alleviate the disadvantages associated with commercially available capsules. Methods MN-SLNs were prepared by hot homogenization/ultrasonication. The solubility of miconazole in different solid lipids was measured. The effect of process variables, such as surfactant types, homogenization and ultrasonication times, and the charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release, antifungal activity against Candida albicans, and in vivo pharmacokinetics were studied in rabbits. Results The MN-SLN, consisting of 1.5% miconazole, 2% Precirol ATO5, 2.5% Cremophor RH40, 0.5% Lecinol, and 0.1% Dicetylphosphate, had an average diameter of 23 nm with a 90.2% entrapment efficiency. Furthermore, the formulation of MN-SLNs enhanced the antifungal activity compared with miconazole capsules. An in vivo pharmacokinetic study revealed that the bioavailability was enhanced by >2.5-fold. Conclusion MN-SLN was more efficient in the treatment of candidiasis with enhanced oral bioavailability and could be a promising carrier for the oral delivery of miconazole. PMID:26869787

  15. Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey.

    PubMed

    Yuce, E; Yildirim, N; Yildirim, N C; Paksoy, M Y; Bagci, E

    2014-06-15

    The essential oil composition and in vitro antioxidant and antifungal activity of the Salvia sclarea L. from Munzur Valley in Tunceli, Turkey were evaluated in this research. The in vitro antifungal activity of ethanol, hexane and aqueous extracts of S. sclarea against pathogen fungi Epicoccum nigrum and Colletotrichum coccodes were investigated. The essential oil of aerial parts of S. sclarea was obtained by hydrodistillation and was analysed by GC and GC—MS. Total antioxidant status was determined by using Rel assay diagnostics TAS assay kit (Lot.RL024) by Multiscan FC (Thermo). 33 compounds were identified representing the 85.0% of the total oil. The most abundant components (>5%) of the S. sclarea essential oils were caryophyllene oxide (24.1%), sclareol (11.5%), spathulenol (11.4%), 1H-naphtho (2,1,6) pyran (8.6%) and b—caryophyllene (5.1%). The best antifungal and antioxidant effect was seen in ethanolic S. sclarea extract. It can be said that Salvia sclerae could be used as natural antioxidant.

  16. A peptide with potent antifungal and antiproliferative activities from Nepalese large red beans.

    PubMed

    Ma, D Z; Wang, H X; Ng, T B

    2009-12-01

    An antifungal defensin-like peptide with a molecular mass of 7.1kDa was isolated from dried Nepalese large red beans (Phaseolus angularis). The purification protocol employed included ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. The antifungal peptide was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and SP-Sepharose. The antifungal peptide inhibited mycelial growth in Fusarium oxysporum and Mycosphaerella arachidicola with an IC(50) value of 1.4 and 1.8 microM, respectively. It did not inhibit HIV-1 reverse transcriptase when tested up to 200 microM. It exerted an antiproliferative action on L1210 leukemia cells and MBL2 lymphoma cells with an IC(50) of 15 and 60 microM, respectively.

  17. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction.

    PubMed

    Wang, TianMing; Shi, GaoXiang; Shao, Jing; Wu, DaQiang; Yan, YuanYuan; Zhang, MengXiang; Cui, YanYan; Wang, ChangZhong

    2015-10-01

    The aim of this study was to investigate the antifungal activity of baicalin and its potential mechanism of action against Candida albicans biofilms. The standard techniques including microdilution method and checkerboard assay were employed to evaluate the susceptibilities of baicalin alone and in combination with fluconazole against planktonic and biofilm cells of C. albicans. Transmission electron microscope (TEM), scanning electron microscope (SEM), fluorescent microscope and flow cytometry were used to assess the apoptotic incidences induced by baicalin in biofilm cells. The expressions of four genes (RAS1, CAP1, PDE2 and TPK1) related to Ras-cAMP-PKA pathway were also analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results showed that minimum inhibitory concentration (MIC) and sessile minimum inhibitory concentration (SMIC50) of baicalin were 500 and 2000 μg/mL with fractional inhibitory concentration indexs (FICIs) ranging from 0.28 to 0.75. A series of events related to apoptosis were observed in baicalin-treated C. albicans biofilms, including extensive chromatin condensation along the nuclear envelope, ROS accumulation, MMP reduction, PS externalization, nuclear fragmentation, chromatin condensation, metacaspase activation and Cyt C release. Additionally, the expressions of RAS1 and TPK1 were up-regulated by 3.2 and 2.9 folds respectively, while those of CAP1 and PDE2 were down-regulated by 3.3 and 6.6 folds respectively after exposure to baicalin in biofilm cells. In conclusion, baicalin can suppress the development of C. albicans biofilms most likely due to inducing cell death via apoptosis.

  18. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts.

    PubMed

    Leite, João Jaime Giffoni; Brito, Erika Helena Salles; Cordeiro, Rossana Aguiar; Brilhante, Raimunda Sâmia Nogueira; Sidrim, José Júlio Costa; Bertini, Luciana Medeiros; Morais, Selene Maia de; Rocha, Marcos Fábio Gadelha

    2009-01-01

    The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13 mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7 mg mL-1 for hexane extract and 8.87 mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-(1), from 0.312 to 0.625 mg mL-1 and from 0.031 to 0.625 mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625 mg mL-1, from 0.08 to 0.156 mg mL-1 and from 0.312 to 0.625 mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.

  19. Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones

    PubMed Central

    Pahontu, Elena; Julea, Felicia; Rosu, Tudor; Purcarea, Victor; Chumakov, Yurie; Petrenco, Petru; Gulea, Aurelian

    2015-01-01

    1-phenyl-3-methyl-4-benzoyl-5-pyrazolone 4-ethyl-thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·(1), [Cu(L)2]·H2O (2), [Cu(L)(Br)]·H2O·CH3OH (3), [Cu(L)(NO3)]·2C2H5OH (4), [VO2(L)]·2H2O (5), [Ni(L)2]·H2O (6), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico-chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) (2, 4), and vanadium(V) (5) complexes have been determined by single-crystal X-ray diffraction. The composition of the coordination polyhedron of the central atom in 2, 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4, it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL-60 cells was tested. PMID:25708540

  20. In Vitro Activities of Six Antifungal Drugs Against Candida glabrata Isolates: An Emerging Pathogen

    PubMed Central

    Amirrajab, Nasrin; Badali, Hamid; Didehdar, Mojtaba; Afsarian, Mohammad Hosein; Mohammadi, Rasoul; Lotfi, Nazanin; Shokohi, Tahereh

    2016-01-01

    Background Candida glabrata is a pathogenic yeast with several unique biological features and associated with an increased incidence rate of candidiasis. It exhibits a great degree of variation in its pathogenicity and antifungal susceptibility. Objectives The aim of the present study was to evaluate the in vitro antifungal susceptibilities of the following six antifungal drugs against clinical C. glabrata strains: amphotericin B (AmB), ketoconazole (KTZ), fluconazole (FCZ), itraconazole (ITZ), voriconazole (VCZ), and caspofungin (CASP). Materials and Methods Forty clinical C. glabrata strains were investigated using DNA sequencing. The in vitro antifungal susceptibility was determined as described in clinical laboratory standard institute (CLSI) documents (M27-A3 and M27-S4). Results The sequence analysis of the isolate confirmed as C. glabrata and deposited on NCBI GenBank under the accession number no. KT763084-KT763123. The geometric mean MICs against all the tested strains were as follows, in increasing order: CASP (0.17 g/mL), VCZ (0.67 g/mL), AmB (1.1 g/mL), ITZ (1.82 g/mL), KTZ (1.85 g/mL), and FCZ (6.7 g/mL). The resistance rates of the isolates to CASP, FCZ, ITZ, VZ, KTZ, and AmB were 5%, 10%, 72.5%, 37.5%, 47.5%, and 27.5%, respectively. Conclusions These findings confirm that CASP, compared to the other antifungals, is the potent agent for treating candidiasis caused by C. glabrata. However, the clinical efficacy of these novel antifungals remains to be determined. PMID:27540459

  1. Hybrid Molecules Containing a 7-Chloro-4-aminoquinoline Nucleus and a Substituted 2-Pyrazoline with Antiproliferative and Antifungal Activity.

    PubMed

    Montoya, Alba; Quiroga, Jairo; Abonia, Rodrigo; Derita, Marcos; Sortino, Maximiliano; Ornelas, Alfredo; Zacchino, Susana; Insuasty, Braulio

    2016-07-27

    Twenty-four new hybrid analogues (15-38) containing 7-chloro-4-aminoquinoline and 2-pyrazoline N-heterocyclic fragments were synthesized. Twelve of the new compounds were evaluated against 58 human cancer cell lines by the U.S. National Cancer Institute (NCI). Compounds 25, 30, 31, 36, and 37 showed significant cytostatic activity, with the most outstanding GI50 values ranging from 0.05 to 0.95 µM. The hybrid compounds (15-38) were also evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. From the obtained results some structure-activity relationships were outlined.

  2. Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of Aspergillus felis as a promising source of natural bioactive compounds.

    PubMed

    Mendes, Graziele; Gonçalves, Vívian N; Souza-Fagundes, Elaine M; Kohlhoff, Markus; Rosa, Carlos A; Zani, Carlos L; Cota, Betania B; Rosa, Luiz H; Johann, Susana

    2016-03-01

    Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values ≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.

  3. Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of Aspergillus felis as a promising source of natural bioactive compounds

    PubMed Central

    Mendes, Graziele; Gonçalves, Vívian N; Souza-Fagundes, Elaine M; Kohlhoff, Markus; Rosa, Carlos A; Zani, Carlos L; Cota, Betania B; Rosa, Luiz H; Johann, Susana

    2016-01-01

    Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity. PMID:27008375

  4. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus

    PubMed Central

    Abdelillah, Amrouche; Houcine, Benmehdi; Halima, Dalile; Meriem, Chabane sari; Imane, Zaaboub; Eddine, Smahi Djamal; Abdallah, Moussaoui; Daoudi, Chabane sari

    2013-01-01

    Objective The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). Methods The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. Results The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. Conclusions We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field. PMID:23730556

  5. Synthesis, structure-activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives.

    PubMed

    Mert, Samet; Kasımoğulları, Rahmi; İça, Tuba; Çolak, Ferdağ; Altun, Ahmet; Ok, Salim

    2014-05-06

    A series of pyrazole-3-carboxylic acid and pyrazole-3,4-dicarboxylic acid derivatives were synthesized, the structures were confirmed by their NMR ((1)H and (13)C) and FT-IR spectra, and elemental analyses. The antibacterial and antifungal activities of the compounds against five bacterial and five fungal pathogens were screened using modified agar well diffusion assay. Most of the molecules have inhibitory effects on both standard and clinical Candida albicans strains. However, only the molecules 8, 10, 21, and 22 demonstrate some inhibitory effects on Candida parapsilosis, Candida tropicalis, and Candida glabrata strains. The structure-antifungal activity relationships of the compounds on the C. albicans strains were investigated by electron-conformational method. The pharmacophores and antipharmacophores responsible for the inhibition and non-inhibition of the C. albicans strains were obtained by electronic and geometrical characteristics of the reactive fragments of the molecules. These fragments along with the associated parameters can be used in designing the future more potent antifungal agents. It has been shown that both the positions of electronegative atoms like F and O in the pyrazole substituents and the amount of the associated charges on such atoms are crucial in regulating the strength of antifungal activity for the C. albicans strain.

  6. In vitro activity of the protegrin IB-367 alone and in combination compared with conventional antifungal agents against dermatophytes.

    PubMed

    Simonetti, Oriana; Silvestri, Carmela; Arzeni, Daniela; Cirioni, Oscar; Kamysz, Wojciech; Conte, Irene; Staffolani, Silvia; Orsetti, Elena; Morciano, Angela; Castelli, Pamela; Scalise, Alessandro; Kamysz, Elzbieta; Offidani, Anna Maria; Giacometti, Andrea; Barchiesi, Francesco

    2014-04-01

    The occurrence of resistance or side effects in patients receiving antifungal agents leads to failure in the treatment of mycosis. The aim of this experimental study was to investigate the in vitro effects of IB-367 alone and in combination with three standard antifungal drugs, fluconazole (FLU), itraconazole (ITRA) and terbinafine (TERB), against 20 clinical isolates of dermatophytes belonging to three species. Minimum inhibitory concentrations (MICs), minimal fungicidal concentrations (MFCs), synergy test, time-kill curves, fungal biomass (FB) and hyphal damage using 2,3-bis-(2-methoxy-4-nitro-5-sulfenylamino carbonil)-2H-tetrazolium hydroxide assay (XTT) were performed to study the efficacy of IB-367. In this study, we observed that TERB and ITRA had MICs lower values for all the strains compared to IB-367 and FLU. Synergy was found in 35%, 30% and 25% of IB-367/FLU, IB-367/ITRA and IB-367/TERB interactions respectively. IB-367 exerted a fungicidal activity against Trichophyton mentagrophytes, T. rubrum and Microsporum canis at concentrations starting from 1x MIC. At a concentration of 5x MIC, IB-367 showed the highest rates of hyphae damage for M. canis 53% and T. mentagrophytes 50%; against the same isolates it caused a reduction of 1 log of the total viable count cell hyphae damage. We propose IB-367 as a promising candidate for the future design of antifungal drugs.

  7. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi.

    PubMed

    Ibrahim, Isam M; Ali, Iftikhar M; Dheeb, Batol Imran; Abas, Qayes A; Asmeit Ramizy; Eisa, M H; Aljameel, A I

    2017-04-01

    The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~2.73nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition.

  8. Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

    PubMed Central

    Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.

    2014-01-01

    The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186

  9. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.

    PubMed

    Li, Xiao-Jun; Zhang, Qiang; Zhang, An-Ling; Gao, Jin-Ming

    2012-04-04

    Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed.

  10. Antifungal Activity of Selenium Nanoparticles Synthesized by Bacillus species Msh-1 Against Aspergillus fumigatus and Candida albicans

    PubMed Central

    Shakibaie, Mojtaba; Salari Mohazab, Naser; Ayatollahi Mousavi, Seyyed Amin

    2015-01-01

    Background: Fungal infections affect various parts of the body and can be difficult to treat. Aspergillus infection causes a spectrum of diverse diseases particularly in lung according to host immunity. The two major entities are invasive pulmonary aspergillosis and chronic pulmonary aspergillosis. Candida infections can be superficial or invasive. Superficial infections often affect the skin or mucous membranes. However, invasive fungal infections are often life-threatening. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs. Objectives: In the present study, the antifungal activity of biogenic selenium nanoparticles (Se NPs) against Aspergillus fumigatus and Candida albicans was investigated. Materials and Methods: Se-reducing bacteria previously identified as Bacillus sp. MSh-1 were used for the intracellular biosynthesis of elemental Se NPs. The shape, size, and purity of the extracted NPs were determined with various instrumental techniques. The nanoparticles antifungal characterization mainly derives from the following pathways: (i) to generate sustained flux of nano-ions from the compounds that deposited on special substrates or imbedded in colloidal or semisolid matrices. (ii) To transport active those ions to sensitive targets on plasma membrane of fungi. Results: The results of energy-dispersive X-ray demonstrated that the purified NPs consisted of only Se. In addition, transmission electron micrographs showed that 120- to 140-nm spherical Se NPs were the most common. An antifungal assay was performed with a standard Clinical and Laboratory Standards Institute broth microdilution method. Minimum inhibitory concentration (MIC) measurements of the antifungal activity of the Se NPs against C. albicans (70 μg/mL) and A. fumigatus (100

  11. Systemic mycoses in the immunocompromised host: an update in antifungal therapy.

    PubMed

    Kontoyiannis, D P; Mantadakis, E; Samonis, G

    2003-04-01

    Despite significant advances in the management of immunosuppressed patients, invasive fungal infections remain an important life-threatening complication. In the last decade several new antifungal agents, including compounds in pre-existing classes (new generation of triazoles, polyenes in lipid formulations) and novel classes of antifungals with a unique mechanism of action (echinocandins), have been introduced in clinical practice. Ongoing and future studies will determine their exact role in the management of different mycoses. The acceleration of antifungal drug discovery offers promise for the management of these difficult to treat opportunistic infections.

  12. Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom.

    PubMed

    Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo; Lee, Tae Soo

    2007-12-01

    Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied 5~300 mg/ml concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi.

  13. Antifungal and antibacterial activities of Streptomyces polymachus sp. nov. isolated from soil.

    PubMed

    Nguyen, Tuan Manh; Kim, Jaisoo

    2015-08-01

    Strain T258T was isolated from forest soil at Bongnae Falls, South Korea. The strain exhibited antimicrobial and antifungal activity against the following strains: Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Paenibacillus larvae, Escherichia coli, Candida albicans and Aspergillus niger. Growth occurred on all ISP media tested (2, 3, 4, 5, 6 and 7), Czapek-Dox agar, potato dextrose agar, trypticase soy agar, Bennett's modified agar and nutrient agar at 28 °C. Aerial spores were produced solely on ISP Medium 4; the colour of the aerial mycelium was white and the substrate mycelium was ivory. Melanin production was negative on peptone-yeast extract iron agar (ISP Medium 6). The cell-wall peptidoglycan contained ll-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates contained glucose, ribose and galactose. The predominant menaquinones were MK-9(H6) and MK-9(H8) while the minor menaquinone was MK-10(H2). The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids (>10%) were C16 : 0 (29.8%), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (15.1%), anteiso-C15 : 0 (13.5%) and iso-C15 : 0 (10.3%). DNA-DNA similarity with other strains ranged between 37.84 ± 1.15% and 50.25 ± 1.91 %. On the basis of these data, we suggest that strain T258T represents a novel species that belong to the genus Streptomyces, for which we propose a name Streptomyces polymachus sp. nov. The type strain is T258T ( = KACC 18247T = KEMB 9005-212T = NBRC 110905T).

  14. Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom

    PubMed Central

    Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo

    2007-01-01

    Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied 5~300 mg/ml concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi. PMID:24015099

  15. In Vitro Activity of the Antifungal Azoles Itraconazole and Posaconazole against Leishmania amazonensis

    PubMed Central

    de Macedo-Silva, Sara Teixeira; Urbina, Julio A.; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent

  16. Composition and antifungal activity of the essential oil of the Brazilian Chenopodium ambrosioides L.

    PubMed

    Jardim, Carolina Marangon; Jham, Gulab Newandram; Dhingra, Onkar Dev; Freire, Marcelo Moreira

    2008-09-01

    The antifungal activity of essential oil (EO) from the Brazilian epazote (Chenopodium ambrosioides L.) was evaluated by the poison food assay at concentrations of 0.3%, 0.1%, and 0.05% with eight postharvest deteriorating fungi (Aspergillus flavus, Aspergillus glaucus, Aspergillus niger, Aspergillus ochraceous, Colletotrichum gloesporioides, Colletotrichum musae, Fusarium oxysporum, and Fusarium semitectum). EO components were tentatively identified by Kováts retention indices (RIs) using gas chromatography and gas chromatography combined with mass spectrometry (GC-MS). Growth of all fungi was completely inhibited at 0.3% concentration, and by 90% to 100% at 0.1% concentration. The following 13 tentatively identified compounds (relative percent) accounted for 90.4% of the total volatile oil: alpha-terpinene (0.9), p-cymene (2.0), benzyl alcohol (0.3), p-cresol (0.3), p-mentha-1,3,8-triene (0.2), p-cimen-8-ol (0.6), alpha-terpineol (0.5), (Z)-ascaridole (61.4), piperitone (0.9), carvacrol (3.9), (E)-ascaridole (18.6), (E)-piperitol acetate (0.5), and (Z)-carvyl acetate (0.3). Autobiographic thin layer chromatography of the EO to separate the principal fungitoxic fraction yielded only one fraction that completely inhibited the growth of all test fungi at a concentration of 0.1%. This fraction was characterized by RIs and GC-MS presenting a composition (%) of p-cymene (25.4), (Z)-ascaridole (44.4), and (E)-ascaridole (30.2). The results suggest ascaridoles were the principal fungitoxic components of the EO.

  17. Synergistic antifungal activity of sodium hypochlorite, hydrogen peroxide, and cupric sulfate against Penicillium digitatum.

    PubMed

    Cerioni, Luciana; Rapisarda, Viviana Andrea; Hilal, Mirna; Prado, Fernando Eduardo; Rodríguez-Montelongo, Luisa

    2009-08-01

    Oxidizing compounds such as sodium hypochlorite (NaCIO) and hydrogen peroxide (H2O2) are widely used in food sanitization because of their antimicrobial effects. We applied these compounds and metals to analyze their antifungal activity against Penicillium digitatum, the causal agent of citrus green mold. The MICs were 300 ppm for NaClO and 300 mM for H2O2 when these compounds were individually applied for 2 min to conidia suspensions. To minimize the concentration of these compounds, we developed and standardized a sequential treatment for conidia that resulted in loss of viability on growth plates and loss of infectivity on lemons. The in vitro treatment consists of preincubation with 10 ppm of NaClO followed by incubation with 100 mM H2O2 and 6 mM CuSO4 (cupric sulfate). The combination of NaClO and H2O2 in the presence of CuSO4 produces a synergistic effect (fractional inhibitory concentration index of 0.36). The sequential treatment applied in situ on lemon peel 24 h after the fruit was inoculated with conidia produced a significant delay in the fungal infection. The in vitro treatment was effective on both imazalil-sensitive and imazalil-resistant strains of P. digitatum and Geotrichum candidum, the causal agent of citrus sour rot. However, this treatment inhibited 90% of mycelial growth for Penicillium italicum (citrus blue mold). These results indicate that sequential treatment may be useful for postharvest control of citrus fruit diseases.

  18. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Her.

    PubMed

    Zuzarte, Mónica; Gonçalves, Maria José; Cavaleiro, Carlos; Canhoto, Jorge; Vale-Silva, Luís; Silva, Maria João; Pinto, Eugénia; Salgueiro, Lígia

    2011-05-01

    In the present work we report for what we believe to be the first time the antifungal activity and mechanism of action of the essential oils of Lavandula viridis from Portugal. The essential oils were isolated by hydrodistillation and analysed by GC and GC/MS. The MIC and the minimal lethal concentration (MLC) of the essential oil and its major compounds were determined against several pathogenic fungi. The influence of subinhibitory concentrations of the essential oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide and FUN-1 staining of Candida albicans cells by flow cytometry following short treatments with the essential oil. The oils were characterized by a high content of oxygen-containing monoterpenes, with 1,8-cineole being the main constituent. Monoterpene hydrocarbons were present at lower concentrations. According to the determined MIC and MLC values, the dermatophytes and Cryptococcus neoformans were the most sensitive fungi (MIC and MLC values ranging from 0.32 to 0.64 µl ml⁻¹), followed by Candida species (at 0.64-2.5 µl ml⁻¹). For most of these strains, MICs were equivalent to MLCs, indicating a fungicidal effect of the essential oil. The oil was further shown to completely inhibit filamentation in Candida albicans at concentrations well below the respective MICs (as low as MIC/16). Flow cytometry results suggested a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. Our results show that L. viridis essential oils may be useful in the clinical treatment of fungal diseases, particularly dermatophytosis and candidosis, although clinical trials are required to evaluate the practical relevance of our in vitro research.

  19. PGP potential, abiotic stress tolerance and antifungal activity of Azotobacter strains isolated from paddy soils.

    PubMed

    Chennappa, G; Naik, M K; Adkar-Purushothama, C R; Amaresh, Y S; Sreenivasa, M Y

    2016-05-01

    Azotobacter strains were isolated by serial dilution method and colonies were viscous, smooth, glistening, and brown to black colour on Jenson's N-free agar. Morphological and biochemical tests showed characteristic features of Azotobacter. Further, molecular analyses revealed the presence of different Azotobacter species viz., A. armeniacus, A. chroococcum, A. salinestris, A. tropicalis and A. vinelandii. The isolates were tested for their ability of nitrogen fixation, indole acetic acid (IAA), gibberllic acid production and phosphate solubilization. Four isolates (GVT-1, GVT-2 KOP-11 and SND-4) were efficient in fixation of highest amount of N2 (29.21 μg NmL(-1) day(-1)), produced IAA (25.50 μg mL(-1)), gibberllic acid (17.25 μg 25 mL(-1)) and formed larger P solubilizing zone (13.4 mm). Some of the Azotobacter strains were produced siderophores, hydrogen cyanide and were positive for ammonia production with respect to antifungal activity of Azotobacter was tested with dual culture method and A. tropicalis inhibited the growth of Fusarium, Aspergillus and Alternaria species. Azotobacter isolates were tested against salt (0-10%), temperature (4-55 degrees C), pH (5.0-10) and insecticide chloropyrifos (0-3%) tolerance study. Among them, A. chroococcum was found tolerant to a maximum of 6% NaCl with a temperature of 35-45 degrees C and to a pH up to 8. All the 4 strains showed effective growth against 3% chloropyrifos concentration. The studies revealed that the Azotobacter strains not only produced plant growth promoting substances but are also tolerant to abiotic stresses such as temperature, pH and insecticides.

  20. An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense.

    PubMed

    Angel, Lee Pei Lee; Yusof, Mohd Termizi; Ismail, Intan Safinar; Ping, Bonnie Tay Yen; Mohamed Azni, Intan Nur Ainni; Kamarudin, Norman Hj; Sundram, Shamala

    2016-11-01

    Ganoderma boninense is the causal agent of a devastating disease affecting oil palm in Southeast Asian countries. Basal stem rot (BSR) disease slowly rots the base of palms, which radically reduces productive lifespan of this lucrative crop. Previous reports have indicated the successful use of Trichoderma as biological control agent (BCA) against G. boninense and isolate T. virens 7b was selected based on its initial screening. This study attempts to decipher the mechanisms responsible for the inhibition of G. boninense by identifying and characterizing the chemical compounds as well as the physical mechanisms by T. virens 7b. Hexane extract of the isolate gave 62.60% ± 6.41 inhibition against G. boninense and observation under scanning electron microscope (SEM) detected severe mycelial deformation of the pathogen at the region of inhibition. Similar mycelia deformation of G. boninense was observed with a fungicide treatment, Benlate(®) indicating comparable fungicidal effect by T. virens 7b. Fraction 4 and 5 of hexane active fractions through preparative thin layer chromatography (P-TLC) was identified giving the best inhibition of the pathogen. These fractions comprised of ketones, alcohols, aldehydes, lactones, sesquiterpenes, monoterpenes, sulphides, and free fatty acids profiled through gas chromatography mass spectrometry detector (GC/MSD). A novel antifungal compound discovery of phenylethyl alcohol (PEA) by T. virens 7b is reported through this study. T. virens 7b also proved to be an active siderophore producer through chrome azurol S (CAS) agar assay. The study demonstrated the possible mechanisms involved and responsible in the successful inhibition of G. boninense.

  1. [Derivatization of berberine based on its synergistic antifungal activity with fluconazole against fluconazole-resistant Candida albicans].

    PubMed

    Tian, Shu-Juan; Gao, Yue; Zang, Cheng-Xu; Cai, Zhan; Ni, Ting-jun-hong; Tan, Shan-Lun; Cao, Yong-Bing; Jiang, Yuan-Ying; Zhang, Da-Zhi

    2014-11-01

    Abstract: Our previous work revealed berberine can significantly enhance the susceptibility of fluconazole against fluconazole-resistant Candida albicans, which suggested that berberine has synergistic antifungal activity with fluconazole. Preliminary SAR of berberine needs to be studied for the possibility of investigating its target and SAR, improving its drug-likeness, and exploring new scaffold. In this work, 13-substitutited benzyl berberine derivatives and N-benzyl isoquinoline analogues were synthesized and characterized by 1H NMR and MS. Their synergetic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The 13-substitutited benzyl berberine derivatives 1a-1e exhibited comparable activity to berberine, which suggested that the introduction of functional groups to C-13 can maintain its activity. The N-benzyl isoquinolines, which were designed as analogues of berberine with its D ring opened, exhibited lower activity than berberine. However, compound 2b, 2c, and 4b showed moderate activity, which indicated that berberine may be deconstructed to new scaffold with synergistic antifungal activity with fluconazole. The results of our research may be helpful to the SAR studies on its other biological activities.

  2. Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Candidiasis and cryptococcosis are diseases of widening global incidence as a result of increasing immunosuppressive disorders, such as AIDS. An enduring problem for treatment of these mycoses is recurrent development of resistance to introduced antifungal drugs. We examined the potential for enhan...

  3. Ascalin, a new anti-fungal peptide with human immunodeficiency virus type 1 reverse transcriptase-inhibiting activity from shallot bulbs.

    PubMed

    Wang, H X; Ng, T B

    2002-06-01

    An isolation procedure comprising ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose and gel filtration on Superdex 75 was used to isolate an anti-fungal peptide from the bulbs of the shallot Allium ascalonicum. The peptide demonstrated a molecular weight of 9.5kDa, and possessed an N-terminal sequence YQCGQGG somewhat similar to chitinases from other Allium species which are however much larger in molecular weight. The peptide designated ascalin manifested a unique specific anti-fungal activity. It inhibited mycelial growth in the fungus Botrytis cinerea but not in the fungi Mycosphaerella arachidicola and Fusarium oxysporum. Ascalin inhibited HIV-1 reverse transcriptase with an IC(50) of 10 microM, much more potently than Allium tuberosum anti-fungal protein and other anti-fungal proteins.

  4. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms.

    PubMed

    DiDone, Louis; Oga, Duana; Krysan, Damian J

    2011-08-01

    The ability of Candida albicans to form drug-resistant biofilms is an important factor in its contribution to human disease. Assays to identify and characterize molecules with activity against fungal biofilms are crucial for the development of drugs with improved anti-biofilm activity. Here we report the application of an adenylate kinase (AK)-based cytotoxicity assay of fungal cell lysis to the characterization of agents active against C. albicans biofilms. We have developed three protocols for the AK assay. The first measures AK activity in the supernatants of biofilms treated with antifungal drugs and can be performed in parallel with a standard 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-caboxanilide-based biofilm susceptibility assay; a second, more sensitive protocol measures the AK activity present within the biofilm matrix; and a third procedure allows the direct visualization of lytic activity toward biofilms formed on catheter material. Amphotericin B and caspofungin, the two most effective anti-biofilm drugs currently used to treat fungal infections, both directly lyse planktonic C. albicans cells in vitro, leading to the release of AK into the culture medium. These studies serve to validate the AK-based lysis assay as a useful addition to the methods for the characterization of antifungal agents active toward biofilms and provide insights into the mode of action of amphotericin B and caspofungin against C. albicans biofilms.

  5. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products.

    PubMed

    Russo, Pasquale; Arena, Mattia Pia; Fiocco, Daniela; Capozzi, Vittorio; Drider, Djamel; Spano, Giuseppe

    2016-05-06

    Cereal-based fermented products are worldwide diffused staple food resources and cereal-based beverages represent a promising innovative field in the food market. Contamination and development of spoilage filamentous fungi can result in loss of cereal-based food products and it is a critical safety concern due to their potential ability to produce mycotoxins. Lactic Acid Bacteria (LAB) have been proposed as green strategy for the control of the moulds in the food industry due to their ability to produce antifungal metabolites. In this work, eighty-eight Lactobacillus plantarum strains were screened for their antifungal activity against Aspergillus niger, Aspergillus flavus, Fusarium culmorum, Penicillium roqueforti, Penicillium expansum, Penicillium chrysogenum, and Cladosporium spp. The overlayed method was used for a preliminary discrimination of the strains as no, mild and strong inhibitors. L. plantarum isolates that displayed broad antifungal spectrum activity were further screened based on the antifungal properties of their cell-free supernatant (CFS). CFSs from L. plantarum UFG 108 and L. plantarum UFG 121, in reason of their antifungal potential, were characterized and analyzed by HPLC. Results indicated that lactic acid was produced at high concentration during the growth phase, suggesting that this metabolic aptitude, associated with the low pH, contributed to explain the highlighted antifungal phenotype. Production of phenyllactic acid was also observed. Finally, a new oat-based beverage was obtained by fermentation with the strongest antifungal strain L. plantarum UFG 121. This product was submitted or not to a thermal stabilization and artificially contaminated with F. culmorum. Samples containing L. plantarum UFG 121 showed the best biopreservative effects, since that no differences were observed in terms of some qualitative features between not or contaminated samples with F. culmorum. Here we demonstrate, for the first time, the suitability of LAB

  6. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Wilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 μM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  7. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Vilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  8. Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach.

    PubMed

    Manjumeena, R; Duraibabu, D; Sudha, J; Kalaichelvan, P T

    2014-01-01

    Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles(AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

  9. Antifungal activity of Glycyrrhiza glabra extracts and its active constituent glabridin.

    PubMed

    Fatima, Atiya; Gupta, Vivek K; Luqman, Suaib; Negi, Arvind S; Kumar, J K; Shanker, Karuna; Saikia, Dharmendra; Srivastava, Suchita; Darokar, M P; Khanuja, Suman P S

    2009-08-01

    Glabridin, an active constituent of Glycyrrhiza glabra roots, was found to be active against both yeast and filamentous fungi. Glabridin also showed resistance modifying activity against drug resistant mutants of Candida albicans at a minimum inhibitory concentration of 31.25-250 microg/mL. Although the compound was reported earlier to be active against Candida albicans, but this is the first report of its activity against drug resistant mutants.

  10. Genes Required for the Anti-fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC

    PubMed Central

    Shehata, Hanan R.; Ettinger, Cassandra L.; Eisen, Jonathan A.; Raizada, Manish N.

    2016-01-01

    Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize) landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming toward its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defense for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host–microbe mutualistic interactions. PMID:27757101

  11. Genes Required for the Anti-fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC.

    PubMed

    Shehata, Hanan R; Ettinger, Cassandra L; Eisen, Jonathan A; Raizada, Manish N

    2016-01-01

    Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize) landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming toward its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defense for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host-microbe mutualistic interactions.

  12. Structure-activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans.

    PubMed

    Liu, Runhui; Chen, Xinyu; Falk, Shaun P; Mowery, Brendan P; Karlsson, Amy J; Weisblum, Bernard; Palecek, Sean P; Masters, Kristyn S; Gellman, Samuel H

    2014-03-19

    Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-β-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure-activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic-hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus.

  13. In vitro antileukemia, antibacterial and antifungal activities of some 3d metal complexes: chemical synthesis and structure - activity relationships.

    PubMed

    Gulea, Aurelian; Poirier, Donald; Roy, Jenny; Stavila, Vitalie; Bulimestru, Ion; Tapcov, Victor; Birca, Maria; Popovschi, Lilia

    2008-12-01

    The present paper describes the synthesis, characterization and in vitro biological evaluation screening of different classes (ammoniacates, dioximates, carboxylates, semi- and thiosemicarbazidates) of Co(II), Co(III), Cu(II), Ni(II), Mn(II), Zn(II) and Fe(III) complexes. Schiff bases were obtained from the reaction of some salicyl aldehydes with, respectively, furoylhydrazine, benzoylhydrazine, semicarbazide, thiosemicarbazide and S-methylthiosemicarbazide to give tridentate ligands containing ONO, ONS or ONN as donor atoms. The synthetic metal complexes are of various geometrical and electronic structures, thermodynamic and thermal stabilities, and magnetic and conductance properties. All complexes, except those of Cu, are octahedral. Some Cu, Co and Mn compounds have a dimeric or a polymeric structure. The composition and structure of complexes were analysed by elemental analysis, IR and (1)H NMR and (13)C NMR spectroscopies, and magnetochemical, thermoanalytical and molar conductance measurements. All ligands and metal complexes were tested as inhibitors of human leukemia (HL-60) cells growth, and the most potent, the Cu(II) complexes, have been also tested for their in vitro antibacterial and antifungal activities. Structure-activity relationships were carried out.

  14. Comprehensive approach for the detection of antifungal compounds using a susceptible strain of Candida albicans and confirmation of in vivo activity with the Galleria mellonella model.

    PubMed

    Favre-Godal, Quentin; Dorsaz, Stéphane; Queiroz, Emerson Ferreira; Conan, Céline; Marcourt, Laurence; Wardojo, Bambang Prajogo Eko; Voinesco, Francine; Buchwalder, Aurélie; Gindro, Katia; Sanglard, Dominique; Wolfender, Jean-Luc

    2014-09-01

    An efficient screening strategy for the identification of potentially interesting low-abundance antifungal natural products in crude extracts that combines both a sensitive bioautography assay and high performance liquid chromatography (HPLC) microfractionation was developed. This method relies on high performance thin layer chromatography (HPTLC) bioautography with a hypersusceptible engineered strain of Candida albicans (DSY2621) for bioactivity detection, followed by the evaluation of wild type strains in standard microdilution antifungal assays. Active extracts were microfractionated by HPLC in 96-well plates, and the fractions were subsequently submitted to the bioassay. This procedure enabled precise localisation of the antifungal compounds directly in the HPLC chromatograms of the crude extracts. HPLC-PDA-mass spectrometry (MS) data obtained in parallel to the HPLC antifungal profiles provided a first chemical screening about the bioactive constituents. Transposition of the HPLC analytical conditions to medium-pressure liquid chromatography (MPLC) allowed the efficient isolation of the active constituents in mg amounts for structure confirmation and more extensive characterisation of their biological activities. The antifungal properties of the isolated natural products were evaluated by their minimum inhibitory concentration (MIC) in a dilution assay against both wild type and engineered strains of C. albicans. The biological activity of the most promising agents was further evaluated in vitro by electron microscopy and in vivo in a Galleria mellonella model of C. albicans infection. The overall procedure represents a rational and comprehensive means of evaluating antifungal activity from various perspectives for the selection of initial hits that can be explored in more in-depth mode-of-action studies. This strategy is illustrated by the identification and bioactivity evaluation of a series of antifungal compounds from the methanolic extract of a Rubiaceae

  15. Vegetable Peel Waste for the Production of ZnO Nanoparticles and its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities.

    PubMed

    Surendra, T V; Roopan, Selvaraj Mohana; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Sarkar, Gargi; Suthindhiran, K

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera (M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40-45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction -k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.

  16. Vegetable Peel Waste for the Production of ZnO Nanoparticles and its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities

    NASA Astrophysics Data System (ADS)

    Surendra, T. V.; Roopan, Selvaraj Mohana; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Sarkar, Gargi; Suthindhiran, K.

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera ( M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40-45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction -k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.

  17. Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere.

    PubMed

    Martinez-Absalon, S C; del C Orozco-Mosqueda, Ma; Martinez-Pacheco, M M; Farias-Rodriguez, R; Govindappa, M; Santoyo, G

    2012-08-16

    We looked for bacterial strains with antifungal activity in the sorghum rhizosphere. A prescreening procedure to search for hemolytic activity a