Sample records for systems capability plan

  1. NASA's Human Planetary Landing Systems Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Mueller, Rob

    2005-01-01

    General Background and Introduction of Capability Roadmaps Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date)

  2. National Research Council Dialogue to Assess Progress on NASA's Advanced Modeling, Simulation and Analysis Capability and Systems Engineering Capability Roadmap Development

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  3. State/federal interaction of LANDSAT system and related technical assistance

    NASA Technical Reports Server (NTRS)

    Tesser, P. A.

    1981-01-01

    The history of state involvement in LANDSAT systems planning and related efforts is described. Currently 16 states have visual LANDSAT capabilities and 10 others are planning on developing such capabilities. The federal government's future plans for the LANDSAT system, the impacts of recent budget decisions on the systems, and the FY 82 budget process are examined.

  4. National Research Council Dialogue to Assess Progesss on NASA's Human Exploration Systems and Mobility Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Inman, Thomas

    2005-01-01

    General Background and Introduction of Capability Roadmaps: Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Technology and Capability Readiness Levels. Relationships Between Roadmaps. Purpose of NRC Review. Capability Roadmap Development (Team Progress to Date).

  5. National Research Council Dialogue to Assess Progress on NASA's Human Health & Support Systems Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  6. Systems test facilities existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Weaver, R.

    1981-01-01

    Systems test facilities (STFS) to test total photovoltaic systems and their interfaces are described. The systems development (SD) plan is compilation of existing and planned STFs, as well as subsystem and key component testing facilities. It is recommended that the existing capabilities compilation is annually updated to provide and assessment of the STF activity and to disseminate STF capabilities, status and availability to the photovoltaics program.

  7. Mixed-Initiative Planning in MAPGEN: Capabilities and Shortcomings

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna

    2005-01-01

    MAPGEN (Mixed-initiative Activity Plan GENerator) is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist the Mars Exploration Rover mission operations staff in generating the daily activity plans. This paper describes the mixed-initiative capabilities of MAPGEN, identifies shortcomings with the deployed system, and discusses ongoing work to address some of these shortcomings.

  8. Design and Implementation of the PMS Module for ’Argos’

    DTIC Science & Technology

    1989-12-01

    designing , and implementing a fully workable Planned Maintenance System (PMS). This implementation demonstrates both the capabilities and benefits such a...analyzing, designing , and implementing a fully workable Planned Maintenance System (PMS). This implementation demonstrates both the capabilities and... design and implementation. PMS is the system developed by the navy to provide each ship, department, and supervisor with the tools needed to plan

  9. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    NASA Technical Reports Server (NTRS)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  10. MAPGEN: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitchell; Bresina, John; Hsu, Jennifer; Jonsson, Ari; Kanefsky, Bob; McCurdy, Michael; Morris, Paul; Rajan, Kanna; Vera, Alonso; Yglesias, Jeffrey

    2004-01-01

    This document describes the Mixed initiative Activity Plan Generation system MAPGEN. This system is one of the critical tools in the Mars Exploration Rover mission surface operations, where it is used to build activity plans for each of the rovers, each Martian day. The MAPGEN system combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The constraint-based planning component provides active constraint and rule enforcement, automated planning capabilities, and a variety of tools and functions that are useful for building activity plans in an interactive fashion. In this demonstration, we will show the capabilities of the system and demonstrate how the system has been used in actual Mars rover operations. In contrast to the demonstration given at ICAPS 03, significant improvement have been made to the system. These include various additional capabilities that are based on automated reasoning and planning techniques, as well as a new Constraint Editor support tool. The Constraint Editor (CE) as part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to the effectiveness of the MAPGEN tool is an underlying constraint-based planning and reasoning engine.

  11. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  12. TH-D-BRB-04: Pinnacle Scripting: Improving Efficiency While Maintaining Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.

    2016-06-15

    Scripting capabilities and application programming interfaces (APIs) are becoming commonly available in modern treatment planning systems. These links to the treatment planning system (TPS) allow users to read data from the TPS, and in some cases use TPS functionality and write data back to the TPS. Such tools are powerful extensions, allowing automation of routine clinical tasks and supporting research, particularly research involving repetitive tasks on large patient populations. The data and functionality exposed by scripting/API capabilities is vendor dependent, as are the languages used by script/API engines, such as the Microsoft .NET framework or Python. Scripts deployed in amore » clinical environment must be commissioned and validated like any other software tool. This session will provide an overview of scripting applications and a discussion of best practices, followed by a practical introduction to the scripting capabilities of three commercial treatment planning systems. Learning Objectives: Understand the scripting capabilities available in several treatment planning systems Learn how to get started using scripting capabilities Understand the best practices for safe script deployment in a clinical environment R. Popple, Varian Medical Systems has provided research support unrelated to the topic of this session.R. Cardan, Varian Medical Systems for grant research, product evaluation, and teaching honorarium.« less

  13. MAPGEN Planner: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitch; Bresina, John; Charest, Leonard; Hsu, Jennifer; Jonsson, Ari K.; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey

    2003-01-01

    This document describes the Mixed-initiative Activity Plan Generation system MAPGEN. The system is be- ing developed as one of the tools to be used during surface operations of NASA's Mars Exploration Rover mission (MER). However, the core technology is general and can be adapted to different missions and applications. The motivation for the system is to better support users that need to rapidly build activity plans that have to satisfy complex rules and fit within resource limits. The system therefore combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The demonstration will show the key capabilities of the automated reasoning and planning component of the system, with emphasis on how these capabilities will be used during surface operations of the MER mission.

  14. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.

  15. NASCOM system development plan: System description, capabilities, and plans, FY 94-2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Nascom System Development Plan (NSDP) for FY 94-2 contains 17 sections. It is a management document containing the approved plan for maintaining the Nascom Network System. Topics covered include an overview of Nascom systems and services, major ground communication support systems, low-speed data system, voice system, high-speed data system, Nascom support for NASA networks, Nascom planning for NASA missions, and network upgrade and advanced systems developments and plans.

  16. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter confidence, ultimately improve the desired outcome.

  17. Real-Time Projection to Verify Plan Success During Execution

    NASA Technical Reports Server (NTRS)

    Wagner, David A.; Dvorak, Daniel L.; Rasmussen, Robert D.; Knight, Russell L.; Morris, John R.; Bennett, Matthew B.; Ingham, Michel D.

    2012-01-01

    The Mission Data System provides a framework for modeling complex systems in terms of system behaviors and goals that express intent. Complex activity plans can be represented as goal networks that express the coordination of goals on different state variables of the system. Real-time projection extends the ability of this system to verify plan achievability (all goals can be satisfied over the entire plan) into the execution domain so that the system is able to continuously re-verify a plan as it is executed, and as the states of the system change in response to goals and the environment. Previous versions were able to detect and respond to goal violations when they actually occur during execution. This new capability enables the prediction of future goal failures; specifically, goals that were previously found to be achievable but are no longer achievable due to unanticipated faults or environmental conditions. Early detection of such situations enables operators or an autonomous fault response capability to deal with the problem at a point that maximizes the available options. For example, this system has been applied to the problem of managing battery energy on a lunar rover as it is used to explore the Moon. Astronauts drive the rover to waypoints and conduct science observations according to a plan that is scheduled and verified to be achievable with the energy resources available. As the astronauts execute this plan, the system uses this new capability to continuously re-verify the plan as energy is consumed to ensure that the battery will never be depleted below safe levels across the entire plan.

  18. Plan Execution Interchange Language (PLEXIL)

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Jonsson, Ari; Pasareanu, Corina; Simmons, Reid; Tso, Kam; Verma, Vandi

    2006-01-01

    Plan execution is a cornerstone of spacecraft operations, irrespective of whether the plans to be executed are generated on board the spacecraft or on the ground. Plan execution frameworks vary greatly, due to both different capabilities of the execution systems, and relations to associated decision-making frameworks. The latter dependency has made the reuse of execution and planning frameworks more difficult, and has all but precluded information sharing between different execution and decision-making systems. As a step in the direction of addressing some of these issues, a general plan execution language, called the Plan Execution Interchange Language (PLEXIL), is being developed. PLEXIL is capable of expressing concepts used by many high-level automated planners and hence provides an interface to multiple planners. PLEXIL includes a domain description that specifies command types, expansions, constraints, etc., as well as feedback to the higher-level decision-making capabilities. This document describes the grammar and semantics of PLEXIL. It includes a graphical depiction of this grammar and illustrative rover scenarios. It also outlines ongoing work on implementing a universal execution system, based on PLEXIL, using state-of-the-art rover functional interfaces and planners as test cases.

  19. Helicopter precision approach capability using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1992-01-01

    The period between 1 July and 31 December, 1992, was spent developing a research plan as well as a navigation system document and flight test plan to investigate helicopter precision approach capability using the Global Positioning System (GPS). In addition, all hardware and software required for the research was acquired, developed, installed, and verified on both the test aircraft and the ground-based reference station.

  20. Study and development of techniques for automatic control of remote manipulators

    NASA Technical Reports Server (NTRS)

    Shaket, E.; Leal, A.

    1976-01-01

    An overall conceptual design for an autonomous control system of remote manipulators which utilizes feedback was constructed. The system consists of a description of the high-level capabilities of a model from which design algorithms are constructed. The autonomous capability is achieved through automatic planning and locally controlled execution of the plans. The operator gives his commands in high level task-oriented terms. The system transforms these commands into a plan. It uses built-in procedural knowledge of the problem domain and an internal model of the current state of the world.

  1. National Research Council Dialogue to Assess Progress on NASA's Systems Engineering Cost/Risk Analysis Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria

    2005-01-01

    Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  2. Space Station Mission Planning System (MPS) development study. Volume 2

    NASA Technical Reports Server (NTRS)

    Klus, W. J.

    1987-01-01

    The process and existing software used for Spacelab payload mission planning were studied. A complete baseline definition of the Spacelab payload mission planning process was established, along with a definition of existing software capabilities for potential extrapolation to the Space Station. This information was used as a basis for defining system requirements to support Space Station mission planning. The Space Station mission planning concept was reviewed for the purpose of identifying areas where artificial intelligence concepts might offer substantially improved capability. Three specific artificial intelligence concepts were to be investigated for applicability: natural language interfaces; expert systems; and automatic programming. The advantages and disadvantages of interfacing an artificial intelligence language with existing FORTRAN programs or of converting totally to a new programming language were identified.

  3. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  4. Utilizing an Intelligent Tutoring System in Tactical Action Officer Sandbox

    DTIC Science & Technology

    2014-06-01

    Office of Naval Research Future Naval Capabilities, the Defense Technology Area Plan from 2005 and the Department of Defense Science and Technology ...LEFT BLANK v ABSTRACT The Office of Naval Research Future Naval Capabilities, the Defense Technology Area Plan from 2005 and the Department...of Defense Science and Technology Priorities for FY13-17 all share a focus on systems to promote warfighter performance. The goal of these systems is

  5. Diverter AI based decision aid, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Sexton, George A.; Bayles, Scott J.; Patterson, Robert W.; Schulke, Duane A.; Williams, Deborah C.

    1989-01-01

    It was determined that a system to incorporate artificial intelligence (AI) into airborne flight management computers is feasible. The AI functions that would be most useful to the pilot are to perform situational assessment, evaluate outside influences on the contemplated rerouting, perform flight planning/replanning, and perform maneuver planning. A study of the software architecture and software tools capable of demonstrating Diverter was also made. A skeletal planner known as the Knowledge Acquisition Development Tool (KADET), which is a combination script-based and rule-based system, was used to implement the system. A prototype system was developed which demonstrates advanced in-flight planning/replanning capabilities.

  6. DFL, Canada's Space AIT Facilities - Current and Planned Capabilities

    NASA Astrophysics Data System (ADS)

    Singhal, R.; Mishra, S.; Choueiry, E.; Dumoulin, J.; Ahmed, S.

    2004-08-01

    The David Florida Laboratory (DFL) of the Canadian Space Agency is the Canadian national ISO 9001:2000 registered facility for the assembly, integration, and (environmental) testing of space hardware. This paper briefly describes the three main qualification facilities: Structural Qualification Facilities (SQF); Radio Frequency Qualification Facilities (RFQF); and Thermal Qualification Facilities (TQF). The paper also describes the planned/new upgrades/improvements to the DFL's existing capabilities. These include: cylindrical near-field antenna measurement system, current capabilities in multi-frequency multi-band passive intermodulation (PIM) measurement; combined thermal/vibration test facility, improvement in efficiency and performance of the photogrammetry capability, acquisition of an additional mass properties measurement system for small and micro-satellites; combined control and data acquisition system for all existing thermal vacuum facilities, plus a new automatic thermal control system and hypobaric chamber.

  7. Risk Unbound: Threat, Catastrophe, and the End of Homeland Security

    DTIC Science & Technology

    2015-09-01

    Defense (DOD) models ) is now the prevalent model for developing plans.63 Capabilities- based within the national preparedness system is defined as...capabilities- based planning is the accounting for scenarios through organizational capability development , and the search for commonality and structure...of providing perfect security, and demonstrate the limitations of risk- based security practices. This thesis presents an argument in three parts

  8. Risk Quantification of Systems Engineering Documents Improves Probability of DOD Project Success

    DTIC Science & Technology

    2009-09-01

    comprehensive risk model for DoD milestone review documentation as well as recommended changes to the Capability Maturity Model Integration ( CMMI ) Project...Milestone Documentation, Project Planning, Rational Frame, Political Frame, CMMI Project Planning Process Area, CMMI Risk Management Process Area...well as recommended changes to the Capability Maturity Model Integration ( CMMI ) Project Planning and Risk Management process areas. The intent is to

  9. The Automated Logistics Element Planning System (ALEPS)

    NASA Technical Reports Server (NTRS)

    Schwaab, Douglas G.

    1992-01-01

    ALEPS, which is being developed to provide the SSF program with a computer system to automate logistics resupply/return cargo load planning and verification, is presented. ALEPS will make it possible to simultaneously optimize both the resupply flight load plan and the return flight reload plan for any of the logistics carriers. In the verification mode ALEPS will support the carrier's flight readiness reviews and control proper execution of the approved plans. It will also support the SSF inventory management system by providing electronic block updates to the inventory database on the cargo arriving at or departing the station aboard a logistics carrier. A prototype drawer packing algorithm is described which is capable of generating solutions for 3D packing of cargo items into a logistics carrier storage accommodation. It is concluded that ALEPS will provide the capability to generate and modify optimized loading plans for the logistics elements fleet.

  10. Nascom System Development Plan: System Description, Capabilities and Plans

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Communications (Nascom) System Development Plan (NSDP), reissued annually, describes the organization of Nascom, how it obtains communication services, its current systems, its relationship with other NASA centers and International Partner Agencies, some major spaceflight projects which generate significant operational communication support requirements, and major Nascom projects in various stages of development or implementation.

  11. Creating virtual humans for simulation-based training and planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stansfield, S.; Sobel, A.

    1998-05-12

    Sandia National Laboratories has developed a distributed, high fidelity simulation system for training and planning small team Operations. The system provides an immersive environment populated by virtual objects and humans capable of displaying complex behaviors. The work has focused on developing the behaviors required to carry out complex tasks and decision making under stress. Central to this work are techniques for creating behaviors for virtual humans and for dynamically assigning behaviors to CGF to allow scenarios without fixed outcomes. Two prototype systems have been developed that illustrate these capabilities: MediSim, a trainer for battlefield medics and VRaptor, a system formore » planning, rehearsing and training assault operations.« less

  12. 12 CFR 618.8440 - Planning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... each Farm Credit System institution shall adopt an operational and strategic business plan for at least... the planning period. The review must include: (i) An assessment of management capabilities, (ii) An...

  13. VIPER: Virtual Intelligent Planetary Exploration Rover

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard

    2001-01-01

    Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.

  14. Recovering from execution errors in SIPE

    NASA Technical Reports Server (NTRS)

    Wilkins, D. E.

    1987-01-01

    In real-world domains (e.g., a mobile robot environment), things do not always proceed as planned, so it is important to develop better execution-monitoring techniques and replanning capabilities. These capabilities in the SIPE planning system are described. The motivation behind SIPE is to place enough limitations on the representation so that planning can be done efficiently, while retaining sufficient power to still be useful. This work assumes that new information given to the execution monitor is in the form of predicates, thus avoiding the difficult problem of how to generate these predicates from information provided by sensors. The replanning module presented here takes advantage of the rich structure of SIPE plans and is intimately connected with the planner, which can be called as a subroutine. This allows the use of SIPE's capabilities to determine efficiently how unexpected events affect the plan being executed and, in many cases, to retain most of the original plan by making changes in it to avoid problems caused by these unexpected events. SIPE is also capable of shortening the original plan when serendipitous events occur. A general set of replanning actions is presented along with a general replanning capability that has been implemented by using these actions.

  15. RELAP-7 Software Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less

  16. Computer-Assisted School Facility Planning with ONPASS.

    ERIC Educational Resources Information Center

    Urban Decision Systems, Inc., Los Angeles, CA.

    The analytical capabilities of ONPASS, an on-line computer-aided school facility planning system, are described by its developers. This report describes how, using the Canoga Park-Winnetka-Woodland Hills Planning Area as a test case, the Department of City Planning of the city of Los Angeles employed ONPASS to demonstrate how an on-line system can…

  17. Telecommunications systems evolution for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.

    2003-01-01

    This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).

  18. Servicer system demonstration plan and capability development

    NASA Technical Reports Server (NTRS)

    1987-01-01

    An orbital maneuvering vehicle (OMV) front end kit is defined which is capable of performing in-situ fluid resupply and modular maintenance of free flying spacecraft based on the integrated orbital servicing system (IOSS) concept. The compatibility of the IOSS to perform gas and fluid umbilical connect and disconnect functions utilizing connect systems currently available or in development is addressed. A series of tasks involving on-orbit servicing and the engineering test unit (ETU) of the on-orbit service were studied. The objective is the advancement of orbital servicing by expanding the Spacecraft Servicing Demonstration Plan (SSDP) to include detail demonstration planning using the Multimission Modular Spacecraft (MMS) and upgrading the ETU control.

  19. 75 FR 13091 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... automated, near real-time readiness reporting system that provides resource standards and current readiness... the Department of Defense to establish a capabilities-based, adaptive, near real-time readiness... capability to assess plans using real unit data. Routine uses of records maintained in the system, including...

  20. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  1. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  2. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  3. A Case Study of the United States Navy’s Enterprise Resource Planning System

    DTIC Science & Technology

    2006-06-01

    incarnations, MRP-II added the capabilities of shop-floor management and distribution management activities. Later versions included the ability to manage ... finances , human resources, engineering, and project management. Enterprise Resource Planning systems were then developed as an integrated system

  4. 75 FR 14449 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... and procedures, and provides direction, planning and evaluation for information technology systems and... development, monitoring and evaluation of public health capabilities, plans, infrastructure and systems to... and maintains a real-time management information system to monitor projects funded by the State and...

  5. AgRISTARS: Renewable resources inventory. Land information support system implementation plan and schedule. [San Juan National Forest pilot test

    NASA Technical Reports Server (NTRS)

    Yao, S. S. (Principal Investigator)

    1981-01-01

    The planning and scheduling of the use of remote sensing and computer technology to support the land management planning effort at the national forests level are outlined. The task planning and system capability development were reviewed. A user evaluation is presented along with technological transfer methodology. A land management planning pilot test of the San Juan National Forest is discussed.

  6. How Does a Multi-Site Institution Plan Effectively?

    ERIC Educational Resources Information Center

    Jefferson, Curtis F.

    A multi-site college plans effectively by having in place planning and evaluation systems that enhance its capability to respond effectively to changes in the environment in order to continue to provide high quality educational programs and services for the people in its service area. The effectiveness of these systems is dependent on clearly…

  7. Servicers system demonstration plan and capability development

    NASA Technical Reports Server (NTRS)

    Bulboaca, M. A.; Cuseo, J. A.; Derocher, W. L., Jr.; Maples, R. W.; Reynolds, P. C.; Sterrett, R. A.

    1985-01-01

    A plan for the demonstration of the exchange of Multi-Mission Modular Spacecraft (MMS) modules using the servicer mechanism Engineering Test Unit (ETU) was prepared and executed. The plan included: establishment of requirements, conceptual design, selection of MMS spacecraft mockup configuration, selection of MMS module mockup configuration, evaluation of adequacy of ETU load capability, and selection of a stowage rack arrangement. The MMS module exchange demonstration mockup equipment was designed, fabricated, checked out, shipped, installed, and demonstrated.

  8. Information System Development: Phase I, Management Planning.

    ERIC Educational Resources Information Center

    Woods, Bill M.

    Objectives of this study of the operations of Engineering Index were to: (1) determine the need for a planning capability, (2) blueprint a mechanism to accomplish planning, and (3) recommend priorities requiring planning attention. Topics considered in the study are planning, the role of the board of directors and trustees, organizational…

  9. Selection of a Development Methodology for the Acquisition of Command, Control and Communication Systems

    DTIC Science & Technology

    1991-09-01

    ref lect the of ficial policy or position of the Department of Defense or the U.S. Government. Accesion For NTIS CrA&,i By D, st ibtt:or~f 11--- ... Si...capability 3. A flexible, well-planned overall architecture 4. A plan for incremental achievement of full capability 5. Early definition, funding...2. a system architecture and design that will satisfy the requirements. 3. a development team that communicates effectively and have previous

  10. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (CoF) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design Of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  11. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (Car) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  12. Letter to the Editor on 'Single-Arc IMRT?'.

    PubMed

    Otto, Karl

    2009-04-21

    In the note 'Single Arc IMRT?' (Bortfeld and Webb 2009 Phys. Med. Biol. 54 N9-20), Bortfeld and Webb present a theoretical investigation of static gantry IMRT (S-IMRT), single-arc IMRT and tomotherapy. Based on their assumptions they conclude that single-arc IMRT is inherently limited in treating complex cases without compromising delivery efficiency. Here we present an expansion of their work based on the capabilities of the Varian RapidArc single-arc IMRT system. Using the same theoretical framework we derive clinically deliverable single-arc IMRT plans based on these specific capabilities. In particular, we consider the range of leaf motion, the ability to rapidly and continuously vary the dose rate and the choice of collimator angle used for delivery. In contrast to the results of Bortfeld and Webb, our results show that single-arc IMRT plans can be generated that closely match the theoretical optimum. The disparity in the results of each investigation emphasizes that the capabilities of the delivery system, along with the ability of the optimization algorithm to exploit those capabilities, are of particular importance in single-arc IMRT. We conclude that, given the capabilities available with the RapidArc system, single-arc IMRT can produce complex treatment plans that are delivered efficiently (in approximately 2 min).

  13. What we were asked to do

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Recommendations are made after 32 interviews, lesson identification, lesson analysis, and mission characteristics identification. The major recommendations are as follows: (1) to develop end-to-end planning and scheduling operations concepts by mission class and to ensure their consideration in system life cycle documentation; (2) to create an organizational infrastructure at the Code 500 level, supported by a Directorate level steering committee with project representation, responsible for systems engineering of end-to-end planning and scheduling systems; (3) to develop and refine mission capabilities to assess impacts of early mission design decisions on planning and scheduling; and (4) to emphasize operational flexibility in the development of the Advanced Space Network, other institutional resources, external (e.g., project) capabilities and resources, operational software and support tools.

  14. Next generation air transportation system : issues associated with midterm implementation of capabilities and full system transformation.

    DOT National Transportation Integrated Search

    2009-03-01

    To prepare for forecasted air traffic : growth, the Federal Aviation : Administration (FAA), including its : Joint Planning and Development : Office (JPDO) and Air Traffic : Organization (ATO), is planning for : and implementing the Next : Generation...

  15. Defining Medical Capabilities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hailey, M.; Antonsen, E.; Blue, R.; Reyes, D.; Mulcahy, R.; Kerstman, E.; Bayuse, T.

    2018-01-01

    Exploration-class missions to the moon, Mars and beyond will require a significant change in medical capability from today's low earth orbit centric paradigm. Significant increases in autonomy will be required due to differences in duration, distance and orbital mechanics. Aerospace medicine and systems engineering teams are working together within ExMC to meet these challenges. Identifying exploration medical system needs requires accounting for planned and unplanned medical care as defined in the concept of operations. In 2017, the ExMC Clinicians group identified medical capabilities to feed into the Systems Engineering process, including: determining what and how to address planned and preventive medical care; defining an Accepted Medical Condition List (AMCL) of conditions that may occur and a subset of those that can be treated effectively within the exploration environment; and listing the medical capabilities needed to treat those conditions in the AMCL. This presentation will discuss the team's approach to addressing these issues, as well as how the outputs of the clinical process impact the systems engineering effort.

  16. A Modernization Plan for the Technical Data Department of the Naval Ships Weapon Systems Engineering Station

    DTIC Science & Technology

    1976-09-01

    technology has made possible the deployment of very sophisticated and highly capable weapon systems. Taking advantage of this technology has carried...3) Ancillary Equipment 208 Types Numerous Notes : 1. Number of ships with this system 2. Includes Tartar used only for surface capability 3. These...maintains the Configuration Item Identification File (CIIF) . The CIIF provides storage and retrieval capability for technical and logistics data specified on

  17. U.S. Department of Energy Space and Defense Power Systems Program Ten-Year Strategic Plan, Volume 1 and Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwight, Carla

    The Department of Energy's Space and Defense Power Systems program provides a unique capability for supplying power systems that function in remote or hostile environments. This capability has been functioning since the early 1960s and counts the National Aeronautics and Space Administration as one of its most prominent customers. This enabling technology has assisted the exploration of our solar system including the planets Jupiter, Saturn, Mars, Neptune, and soon Pluto. This capability is one-of-kind in the world in terms of its experience (over five decades), breadth of power systems flown (over two dozen to date) and range of power levelsmore » (watts to hundreds of watts). This document describes the various components of that infrastructure, work scope, funding needs, and its strategic plans going forward.« less

  18. A user need study and system plan for an Arizona Natural Resources Information System report to the Arizona state legislature

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A survey instrument was developed and implemented in order to evaluate the current needs for natural resource information in Arizona and to determine which state agencies have information systems capable of coordinating, accessing and analyzing the data. Data and format requirements were determined for the following categories: air quality, animals, cultural resources, geology, land use, soils, water, vegetation, ownership, and social and economic aspects. Hardware and software capabilities were assessed and a data processing plan was developed. Possible future applications with the next generation LANDSAT were also identified.

  19. Intensity modulated neutron radiotherapy optimization by photon proxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning optimization algorithm, potentially allowing IMNRT to achieve similar conformality in treatment as photon IMRT. The only remaining requirements for the delivery of very highly modulated neutron treatments are incremental improvements upon already implemented hardware systems that should be readily achievable.« less

  20. Formulation of a parametric systems design framework for disaster response planning

    NASA Astrophysics Data System (ADS)

    Mma, Stephanie Weiya

    The occurrence of devastating natural disasters in the past several years have prompted communities, responding organizations, and governments to seek ways to improve disaster preparedness capabilities locally, regionally, nationally, and internationally. A holistic approach to design used in the aerospace and industrial engineering fields enables efficient allocation of resources through applied parametric changes within a particular design to improve performance metrics to selected standards. In this research, this methodology is applied to disaster preparedness, using a community's time to restoration after a disaster as the response metric. A review of the responses from Hurricane Katrina and the 2010 Haiti earthquake, among other prominent disasters, provides observations leading to some current capability benchmarking. A need for holistic assessment and planning exists for communities but the current response planning infrastructure lacks a standardized framework and standardized assessment metrics. Within the humanitarian logistics community, several different metrics exist, enabling quantification and measurement of a particular area's vulnerability. These metrics, combined with design and planning methodologies from related fields, such as engineering product design, military response planning, and business process redesign, provide insight and a framework from which to begin developing a methodology to enable holistic disaster response planning. The developed methodology was applied to the communities of Shelby County, TN and pre-Hurricane-Katrina Orleans Parish, LA. Available literature and reliable media sources provide information about the different values of system parameters within the decomposition of the community aspects and also about relationships among the parameters. The community was modeled as a system dynamics model and was tested in the implementation of two, five, and ten year improvement plans for Preparedness, Response, and Development capabilities, and combinations of these capabilities. For Shelby County and for Orleans Parish, the Response improvement plan reduced restoration time the most. For the combined capabilities, Shelby County experienced the greatest reduction in restoration time with the implementation of Development and Response capability improvements, and for Orleans Parish it was the Preparedness and Response capability improvements. Optimization of restoration time with community parameters was tested by using a Particle Swarm Optimization algorithm. Fifty different optimized restoration times were generated using the Particle Swarm Optimization algorithm and ranked using the Technique for Order Preference by Similarity to Ideal Solution. The optimization results indicate that the greatest reduction in restoration time for a community is achieved with a particular combination of different parameter values instead of the maximization of each parameter.

  1. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    NASA Technical Reports Server (NTRS)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  2. An efficient temporal logic for robotic task planning

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey M.

    1989-01-01

    Computations required for temporal reasoning can be prohibitively expensive if fully general representations are used. Overly simple representations, such as totally ordered sequence of time points, are inadequate for use in a nonlinear task planning system. A middle ground is identified which is general enough to support a capable nonlinear task planner, but specialized enough that the system can support online task planning in real time. A Temporal Logic System (TLS) was developed during the Intelligent Task Automation (ITA) project to support robotic task planning. TLS is also used within the ITA system to support plan execution, monitoring, and exception handling.

  3. A Common Foundation of Information and Analytical Capability for AFSPC Decision Making

    DTIC Science & Technology

    2005-06-23

    System Strategic Master Plan MAPs/MSP CRRAAF TASK FORCE CONOPS MUA Task Weights Engagement Analysis ASIIS Optimization ACEIT COST Analysis...Engangement Architecture Analysis Architecture MUA AFSPC POM S&T Planning Military Utility Analysis ACEIT COST Analysis Joint Capab Integ Develop System

  4. Clinical applications of advanced rotational radiation therapy

    NASA Astrophysics Data System (ADS)

    Nalichowski, Adrian

    Purpose: With a fast adoption of emerging technologies, it is critical to fully test and understand its limits and capabilities. In this work we investigate new graphic processing unit (GPU) based treatment planning algorithm and its applications in helical tomotherapy dose delivery. We explore the limits of the system by applying it to challenging clinical cases of total marrow irradiation (TMI) and stereotactic radiosurgery (SRS). We also analyze the feasibility of alternative fractionation schemes for total body irradiation (TBI) and TMI based on reported historical data on lung dose and interstitial pneumonitis (IP) incidence rates. Methods and Materials: An anthropomorphic phantom was used to create TMI plans using the new GPU based treatment planning system and the existing CPU cluster based system. Optimization parameters were selected based on clinically used values for field width, modulation factor and pitch. Treatment plans were also created on Eclipse treatment planning system (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) for dose delivery on IX treatment unit. A retrospective review was performed of 42 publications that reported IP rates along with lung dose, fractionation regimen, dose rate and chemotherapy. The analysis consisted of nearly thirty two hundred patients and 34 unique radiation regimens. Multivariate logistic regression was performed to determine parameters associated with IP and establish does response function. Results: The results showed very good dosimetric agreement between the GPU and CPU calculated plans. The results from SBRT study show that GPU planning system can maintain 90% target coverage while meeting all the constraints of RTOG 0631 protocol. Beam on time for Tomotherapy and flattening filter free RapidArc was much faster than for Vero or Cyberknife. Retrospective data analysis showed that lung dose and Cyclophosphomide (Cy) are both predictors of IP in TBI/TMI treatments. The dose rate was not found to be an independent risk factor for IP. The model failed to establish accurate dose response function, but the discrete data indicated a radiation dose threshold of 7.6Gy (EQD2_repair) and 120 mg/kg of Cy below which no IP cases were reported. Conclusion: The TomoTherapy GPU based dose engine is capable of calculating TMI treatment plans with plan quality nearly identical to plans calculated using the traditional CPU/cluster based system, while significantly reducing the time required for optimization and dose calculation. The new system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing when compared to Eclipse treatment planning system for VMAT delivery. The machine optimization parameters tested for TMI cases provide a comprehensive overview of the capabilities of the treatment planning station and associated helical delivery system. The new system also proved to be dosimetrically compatible with other leading modalities for treatments of small and complicated target volumes and was even superior when treatment delivery times were compared. These finding demonstrate that the advanced treatment planning and delivery system from TomoTherapy is well suitable for treatments of complicated cases such as TMI and SRS and it's often dosimetrically and/or logistically superior to other modalities. The new planning system can easily meet the constraint of threshold lung dose established in this study. The results presented here on the capabilities of Tomotherapy and on the identified lung dose threshold provide an opportunity to explore alternative fractionation schemes without sacrificing target coverage or lung toxicity. (Abstract shortened by ProQuest.).

  5. StarPlan: A model-based diagnostic system for spacecraft

    NASA Technical Reports Server (NTRS)

    Heher, Dennis; Pownall, Paul

    1990-01-01

    The Sunnyvale Division of Ford Aerospace created a model-based reasoning capability for diagnosing faults in space systems. The approach employs reasoning about a model of the domain (as it is designed to operate) to explain differences between expected and actual telemetry; i.e., to identify the root cause of the discrepancy (at an appropriate level of detail) and determine necessary corrective action. A development environment, named Paragon, was implemented to support both model-building and reasoning. The major benefit of the model-based approach is the capability for the intelligent system to handle faults that were not anticipated by a human expert. The feasibility of this approach for diagnosing problems in a spacecraft was demonstrated in a prototype system, named StarPlan. Reasoning modules within StarPlan detect anomalous telemetry, establish goals for returning the telemetry to nominal values, and create a command plan for attaining the goals. Before commands are implemented, their effects are simulated to assure convergence toward the goal. After the commands are issued, the telemetry is monitored to assure that the plan is successful. These features of StarPlan, along with associated concerns, issues and future directions, are discussed.

  6. Cost Benefit Analysis of Enterprise Resource Planning System for the Naval Postgraduate School

    DTIC Science & Technology

    2002-06-01

    Department-wide introduction and use of appropriate commercial financial practices and reporting • Develop a strategic plan for implementing a business... Development of a process innovation approach given the current capabilities of the system, recommend possible alternatives to close gaps. E

  7. Intelligent Planning and Scheduling for Controlled Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leon, V. Jorge

    1996-01-01

    Planning in Controlled Ecological Life Support Systems (CELSS) requires special look ahead capabilities due to the complex and long-term dynamic behavior of biological systems. This project characterizes the behavior of CELSS, identifies the requirements of intelligent planning systems for CELSS, proposes the decomposition of the planning task into short-term and long-term planning, and studies the crop scheduling problem as an initial approach to long-term planning. CELSS is studied in the realm of Chaos. The amount of biomass in the system is modeled using a bounded quadratic iterator. The results suggests that closed ecological systems can exhibit periodic behavior when imposed external or artificial control. The main characteristics of CELSS from the planning and scheduling perspective are discussed and requirements for planning systems are given. Crop scheduling problem is identified as an important component of the required long-term lookahead capabilities of a CELSS planner. The main characteristics of crop scheduling are described and a model is proposed to represent the problem. A surrogate measure of the probability of survival is developed. The measure reflects the absolute deviation of the vital reservoir levels from their nominal values. The solution space is generated using a probability distribution which captures both knowledge about the system and the current state of affairs at each decision epoch. This probability distribution is used in the context of an evolution paradigm. The concepts developed serve as the basis for the development of a simple crop scheduling tool which is used to demonstrate its usefulness in the design and operation of CELSS.

  8. 44 CFR 334.5 - GMR system description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... more levels as suits its needs. (a) Stage 3, Planning and Preparation. During the planning and preparation stage, Federal departments and agencies develop their GMR plans and maintain capability to carry... departments and agencies may need to gather additional data on selected resources or increase their...

  9. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  10. The Capabilities of the Graphical Observation Scheduling System (GROSS) as Used by the Astro-2 Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Phillips, Shaun

    1996-01-01

    The Graphical Observation Scheduling System (GROSS) and its functionality and editing capabilities are reported on. The GROSS system was developed as a replacement for a suite of existing programs and associated processes with the aim of: providing a software tool that combines the functionality of several of the existing programs, and provides a Graphical User Interface (GUI) that gives greater data visibility and editing capabilities. It is considered that the improved editing capability provided by this approach enhanced the efficiency of the second astronomical Spacelab mission's (ASTRO-2) mission planning.

  11. Wood transportation systems-a spin-off of a computerized information and mapping technique

    Treesearch

    William W. Phillips; Thomas J. Corcoran

    1978-01-01

    A computerized mapping system originally developed for planning the control of the spruce budworm in Maine has been extended into a tool for planning road net-work development and optimizing transportation costs. A budgetary process and a mathematical linear programming routine are used interactively with the mapping and information retrieval capabilities of the system...

  12. The Federal Aviation Administration Plan for Research, Engineering and Development, 1994

    DTIC Science & Technology

    1994-05-01

    Aeronautical Data Link Communications and (COTS) runway incursion system software will Applications, and 051-130 Airport Safety be demonstrated as a... airport departure and ar- efforts rival scheduling plans that optimize daily traffic flows for long-range flights between major city- * OTFP System to...Expanded HARS planning capabilities to in- aviation dispatchers to develop optimized high clude enhanced communications software for altitude flight

  13. 78 FR 14722 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... capability on one engine, and in-flight shutdown of the engine. This action revises that NPRM by proposing to... maintenance planning data (MPD) document. We are proposing this supplemental NPRM to detect and correct... feed system, followed by loss of fuel system suction feed capability on one engine, and in-flight...

  14. WetLab-2: Wet Lab RNA SmartCycler Providing PCR Capability on ISS

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Schonfeld, Julie

    2015-01-01

    The WetLab-2 system will provide sample preparation and qRT-PCR analysis on-board the ISS, a capability to enable using the ISS as a real laboratory. The system will be validated on SpX-7, and is planned for its first PI use on SpX-9.

  15. Satellite laser ranging work at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcgunigal, T. E.; Carrion, W. J.; Caudill, L. O.; Grant, C. R.; Johnson, T. S.; Premo, D. A.; Spadin, P. L.; Winston, G. C.

    1975-01-01

    Laser ranging systems, their range and accuracy capabilities, and planned improvements for future systems are discussed, the systems include one fixed and two mobile lasers ranging systems. They have demonstrated better than 10 cm accuracy both on a carefully surveyed ground range and in regular satellite ranging operations. They are capable of ranging to all currently launched retroreflector equipped satellites with the exception of Timation III. A third mobile system is discussed which will be accurate to better than 5 cm and will be capable of ranging to distant satellites such as Timation III and LAGEOS.

  16. Matrix evaluation of science objectives

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.

    1994-01-01

    The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.

  17. Bioterrorism Preparedness for Infectious Disease

    DTIC Science & Technology

    2005-01-01

    outbreak. The PDC was asked to use its Geographical Information System (GIS) and Global Positioning System (GPS) technology and capabilities to perform data...improvements in the health system . For example, on May 10, 2002, the Hawaii State Department of Health unveiled plans for its long-term dengue fever...management strategy. The plan included a long-term dengue surveillance system statewide, a statewide mosquito population survey, and ongoing vector control

  18. Strategic Planning Techniques: Matching External Assessment with Internal Audit.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    The literature on strategic planning, and the capabilities of Massachusetts system of public postsecondary education were assessed, as part of a 1981 leadership seminar. Teams from all public postsecondary education institutions in the state reviewed the basic concepts of strategic planning; critically analyzed the environment external to their…

  19. Challenges of Communications and Tracking for Solar System Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Rush, John J.; Lichten, Stephen M.; Srinivasan, Jeffrey M.

    2011-01-01

    This presentation will address: (1) Communications capabilities that will be needed for space missions for Small Planetary Body exploration (2) Utilization of large ground-based radar capabilities for Small Body remote sensing and mission planning

  20. Strategic Plan 2011 to 2016

    DTIC Science & Technology

    2011-02-01

    search capability for Air Force Research Information Management System (AFRIMS) data as a part of federated search under DTIC Online Access...provide vetted requests to dataset owners. • Develop a federated search capability for databases containing limited distribution material. • Deploy

  1. Integrating deliberative planning in a robot architecture

    NASA Technical Reports Server (NTRS)

    Elsaesser, Chris; Slack, Marc G.

    1994-01-01

    The role of planning and reactive control in an architecture for autonomous agents is discussed. The postulated architecture seperates the general robot intelligence problem into three interacting pieces: (1) robot reactive skills, i.e., grasping, object tracking, etc.; (2) a sequencing capability to differentially ativate the reactive skills; and (3) a delibrative planning capability to reason in depth about goals, preconditions, resources, and timing constraints. Within the sequencing module, caching techniques are used for handling routine activities. The planning system then builds on these cached solutions to routine tasks to build larger grain sized primitives. This eliminates large numbers of essentially linear planning problems. The architecture will be used in the future to incorporate in robots cognitive capabilites normally associated with intelligent behavior.

  2. Large shipyard enlists EMS control capabilities. [Energy management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-10-01

    The energy management plan of the Ingalls Shipbuilding in Pascagoula, Mississippi, featuring computer technology, is described. An integral component of the plan is a plus 300-point energy management system with Phase II expansion envisaging to bring additional points under control Within the first ten months of operation, the system saved more than /89,763 in electricity costs alone.

  3. Project Planning and Reporting

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Project Planning Analysis and Reporting System (PPARS) is automated aid in monitoring and scheduling of activities within project. PPARS system consists of PPARS Batch Program, five preprocessor programs, and two post-processor programs. PPARS Batch program is full CPM (Critical Path Method) scheduling program with resource capabilities. Can process networks with up to 10,000 activities.

  4. Chief of Naval Air Training Resource Planning System (RPS).

    ERIC Educational Resources Information Center

    Hodak, Gary W.; And Others

    The Resource Planning System (RPS) provides the Chief of Naval Air Training (CNATRA) with the capability to determine the resources required to produce a specified number of Naval Aviators and Naval Flight Officers (NAs/NFOs) quickly and efficiently. The training of NAs and NFOs is extremely time consuming and complex. It requires extensive…

  5. Multicentre analysis of treatment planning information: technical requirements, possible applications and a proposal.

    PubMed

    Ebert, M A; Blight, J; Price, S; Haworth, A; Hamilton, C; Cornes, D; Joseph, D J

    2004-09-01

    Digital data from 3-D treatment planning computers is generally used for patient planning and then never considered again. However, such data contains enormous quantities of information regarding patient geometries, tissue outlining, treatment approaches and dose distributions. Were such data accessible from planning systems from multiple manufacturers, there would be substantial opportunities for undertaking quality assurance of radiotherapy clinical trials, prospective assessment of trial outcomes and basic treatment planning research and development. The technicalities of data exchange between planning systems are outlined, and previous attempts at producing systems capable of viewing and/or manipulating imaging and radiotherapy digital data reviewed. Development of a software system for enhancing the quality of Australasian clinical trials is proposed.

  6. Emergency Preparedness and Response Systems

    DTIC Science & Technology

    2006-09-01

    over time. Preparedness plans include program initiatives for planning, training, equipping, exercising, and evaluating capability to ensure sustainable ... performance in order to prevent, prepare for and respond to incidents. 4. Response Response refers to the activities necessary to address the

  7. The Drivers of ERP Implementation and Its Impact on Organizational Capabilities and Performance and Customer Value

    ERIC Educational Resources Information Center

    Hwang, Woosang

    2011-01-01

    In a constantly changing global business environment, firms have no other choice but to continually expand their capabilities and sharpen their competitive edge. Toward this goal, an increasing number of organizations are turning to Enterprise Resource Planning (ERP) systems. An ERP system utilizes various kinds of information processing…

  8. Defence Capability Plan 2009

    DTIC Science & Technology

    2009-01-01

    components or systems to prevent the unauthorised opening of the system, access to the internal workings or Intellectual Property . > Armoured vehicles. This...This is the ability to repair specialist alloys and composite materials, to develop new repair techniques and to undertake precision machining of...Selected ballistic munitions and explosives. This capability relates to the manufacture of some high usage munitions, ammunition components

  9. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of the Space Launch System, a new, unmatched capability for deep space exploration with launch readiness planned for 2019. Since program start in 2011, SLS has passed several major formal design milestones, and every major element of the vehicle has produced test and flight hardware. The SLS approach to systems engineering has been key to the program's success. Key aspects of the SLS SE&I approach include: 1) minimizing the number of requirements, 2) elimination of explicit verification requirements, 3) use of certified models of subsystem capability in lieu of requirements when appropriate and 4) certification of capability beyond minimum required capability.

  10. Model compilation for real-time planning and diagnosis with feedback

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2005-01-01

    This paper describes MEXEC, an implemented micro executive that compiles a device model that can have feedback into a structure for subsequent evaluation. This system computes both the most likely current device mode from n sets of sensor measurements and the n-1 step reconfiguration plan that is most likely to result in reaching a target mode - if such a plan exists. A user tunes the system by increasing n to improve system capability at the cost of real-time performance.

  11. National Institute for Rocket Propulsion Systems (NIRPS): Solutions Facilitator

    NASA Technical Reports Server (NTRS)

    Brown, Tom

    2011-01-01

    National Institute for Rocket Propulsion Systems (NIRPS) "Solutions" plans to enable our nation's future in rocket propulsion systems by leveraging existing skills and capabilities to support industry's future needs

  12. A Forest Fire Sensor Web Concept with UAVSAR

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  13. A knowledge-based approach to improving optimization techniques in system planning

    NASA Technical Reports Server (NTRS)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A knowledge-based (KB) approach to improve mathematical programming techniques used in the system planning environment is presented. The KB system assists in selecting appropriate optimization algorithms, objective functions, constraints and parameters. The scheme is implemented by integrating symbolic computation of rules derived from operator and planner's experience and is used for generalized optimization packages. The KB optimization software package is capable of improving the overall planning process which includes correction of given violations. The method was demonstrated on a large scale power system discussed in the paper.

  14. Expert systems tools for Hubble Space Telescope observation scheduling

    NASA Technical Reports Server (NTRS)

    Miller, Glenn; Rosenthal, Don; Cohen, William; Johnston, Mark

    1987-01-01

    The utility of expert systems techniques for the Hubble Space Telescope (HST) planning and scheduling is discussed and a plan for development of expert system tools which will augment the existing ground system is described. Additional capabilities provided by these tools will include graphics-oriented plan evaluation, long-range analysis of the observation pool, analysis of optimal scheduling time intervals, constructing sequences of spacecraft activities which minimize operational overhead, and optimization of linkages between observations. Initial prototyping of a scheduler used the Automated Reasoning Tool running on a LISP workstation.

  15. Army Networks: Opportunities Exist to Better Utilize Results from Network Integration Evaluations

    DTIC Science & Technology

    2013-08-01

    monitor operations; a touch screen-based mission command planning tool; and an antenna mast . The Army will field only one of these systems in capability...Office JTRS Joint Tactical Radio System NIE Network Integration Evaluation OSD Office of the Secretary of Defense SUE System under Evaluation...command systems . A robust transport layer capable of delivering voice, data, imagery, and video to the tactical edge (i.e., the forward battle lines

  16. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  17. Program status

    NASA Technical Reports Server (NTRS)

    Smith, P.

    1986-01-01

    The Pilot Climate Data System (PCDS) was designed to support a variety of users that have been arbitrarily categorized into four groups: researchers, data producers, occasional users, and management. The expanding capabilities of the system are attracting the attention of both academic and other scientific institutions worldwide. Highlighted by progress in networking capabilities, hardware acquisitions, software developments, data set additions, and tutorial developments, exciting advances have taken place since the First PCDS Workshop. In the plans for the 1986 fiscal year, recommendations from an ad hoc users' group meeting in May 1985 and from the First PCDS workshop are apparent. This year's plans are listed, along with comments made at the users' group meeting. Although the PCDS is presently considered to be in a developmental phase, plans for making the transition to an operational phase are being implemented.

  18. Weather data dissemination to aircraft

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.; Parker, Craig B.

    1990-01-01

    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels.

  19. Operational Focused Simulation

    DTIC Science & Technology

    2009-12-01

    selected technologies. In order to build the scenario to fit the vignette, the Theater Battle Management Core System ( TBMCS ) databases were adjusted... TBMCS program provided an automated and integrated capability to plan and execute the air battle plan for the modeling and simulation efforts. TBMCS ...is the operational system of record for the Air and Space Operations Center Weapons System (AOC WS). TBMCS provides the Joint/Combined Forces Air

  20. NASA'S Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  1. NASA's Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  2. A new technology for manufacturing scheduling derived from space system operations

    NASA Technical Reports Server (NTRS)

    Hornstein, R. S.; Willoughby, J. K.

    1993-01-01

    A new technology for producing finite capacity schedules has been developed in response to complex requirements for operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications. This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques associated with Materials Resources Planning (MRPII) and with factory simulation are not adequate for shop-floor work planning and control. The technology has three components. The first is a set of data structures that accommodate an extremely general description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of each factory. Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows work-in-process (WIP) to be generated and used; it permits constraints to be imposed or intermediate as well as finished goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule. Applications have been successful in both discrete and process manufacturing environments. The availability of a high-quality finite capacity production planning capability enhances the data management capabilities of MRP II systems. These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent functional capabilities and/or extensibility.

  3. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  4. The FAA Plans and Programs for the Future Airport and Air Traffic control System.

    DTIC Science & Technology

    1980-11-13

    for system improvements and innovation so as to permit evolution to new capabilities in a timely fashion. o To reduce negative impacts of aviation on...demand pattern which tends to bunch arrivals and departures in blocks providing the capability to interchange connecting passengers in a high level of...phased in over the next 5 to 7 years. It will introduce a number of new capabilities which will utltimately provide specialists with rapid access to

  5. Using AI/expert system technology to automate planning and replanning for the HST servicing missions

    NASA Technical Reports Server (NTRS)

    Bogovich, L.; Johnson, J; Tuchman, A.; Mclean, D.; Page, B.; Kispert, A.; Burkhardt, C.; Littlefield, R.; Potter, W.

    1993-01-01

    This paper describes a knowledge-based system that has been developed to automate planning and scheduling for the Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART has been delivered to the HST Flight Operations Team (FOT) at Goddard Space Flight Center (GSFC) where it is being used to build integrated time lines and command plans to control the activities of the HST, Shuttle, Crew and ground systems for the next HST Servicing Mission. SM/PART reuses and extends AI/expert system technology from Interactive Experimenter Planning System (IEPS) systems to build or rebuild time lines and command plans more rapidly than was possible for previous missions where they were built manually. This capability provides an important safety factor for the HST, Shuttle and Crew in case unexpected events occur during the mission.

  6. Final Report Program Plan for Search and Rescue Electronics Alerting and Locating System

    DOT National Transportation Integrated Search

    1974-02-01

    This study investigates the requirements that exist for electronic devices for alerting and locating distress incidents and presents a plan for acquiring an adequate capability. Data are provided that bound the problem. Possible alternatives are exam...

  7. Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.

    2012-01-01

    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.

  8. Development of the joint munitions planning system - a planning tool for the ammunition community.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummel, J. R.; Winiecki, A. L.; Fowler, R. S.

    2004-10-01

    The United States Army Joint Munitions Command (JMC) is the executive agent for the Single Manager for Conventional Ammunition (SMCA). As such the JMC is responsible for the storage and transportation of all Service's SMCA as well as non-SMCA munitions. Part of the JMC mission requires that complex depot capacity studies, transportation capabilities analyses, peacetime re-allocations/ redistribution plans and time-phased deployment distribution plans be developed. Beginning in 1999 the Joint Munitions Planning System (JMPS) was developed to provide sourcing and movement solutions of ammunition for military planners.

  9. Representing Geospatial Environment Observation Capability Information: A Case Study of Managing Flood Monitoring Sensors in the Jinsha River Basin

    PubMed Central

    Hu, Chuli; Guan, Qingfeng; Li, Jie; Wang, Ke; Chen, Nengcheng

    2016-01-01

    Sensor inquirers cannot understand comprehensive or accurate observation capability information because current observation capability modeling does not consider the union of multiple sensors nor the effect of geospatial environmental features on the observation capability of sensors. These limitations result in a failure to discover credible sensors or plan for their collaboration for environmental monitoring. The Geospatial Environmental Observation Capability (GEOC) is proposed in this study and can be used as an information basis for the reliable discovery and collaborative planning of multiple environmental sensors. A field-based GEOC (GEOCF) information representation model is built. Quintuple GEOCF feature components and two GEOCF operations are formulated based on the geospatial field conceptual framework. The proposed GEOCF markup language is used to formalize the proposed GEOCF. A prototype system called GEOCapabilityManager is developed, and a case study is conducted for flood observation in the lower reaches of the Jinsha River Basin. The applicability of the GEOCF is verified through the reliable discovery of flood monitoring sensors and planning for the collaboration of these sensors. PMID:27999247

  10. Representing Geospatial Environment Observation Capability Information: A Case Study of Managing Flood Monitoring Sensors in the Jinsha River Basin.

    PubMed

    Hu, Chuli; Guan, Qingfeng; Li, Jie; Wang, Ke; Chen, Nengcheng

    2016-12-16

    Sensor inquirers cannot understand comprehensive or accurate observation capability information because current observation capability modeling does not consider the union of multiple sensors nor the effect of geospatial environmental features on the observation capability of sensors. These limitations result in a failure to discover credible sensors or plan for their collaboration for environmental monitoring. The Geospatial Environmental Observation Capability (GEOC) is proposed in this study and can be used as an information basis for the reliable discovery and collaborative planning of multiple environmental sensors. A field-based GEOC (GEOCF) information representation model is built. Quintuple GEOCF feature components and two GEOCF operations are formulated based on the geospatial field conceptual framework. The proposed GEOCF markup language is used to formalize the proposed GEOCF. A prototype system called GEOCapabilityManager is developed, and a case study is conducted for flood observation in the lower reaches of the Jinsha River Basin. The applicability of the GEOCF is verified through the reliable discovery of flood monitoring sensors and planning for the collaboration of these sensors.

  11. The space shuttle payload planning working groups. Volume 6: Communications and navigation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Communications and Navigation working group of the space shuttle payload planning activity are presented. The basic goals to be accomplished are to increase the use of space systems and to develop new space capabilities for providing communication and navigation services to the user community in the 1980 time period. Specific experiments to be conducted for improving space communication and navigation capabilities are defined. The characteristics of the experimental equipment required to accomplish the mission are discussed.

  12. Cargo launch vehicles to low earth orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.

    1990-01-01

    There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.

  13. Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator

    PubMed Central

    Katzschmann, Robert K.; Marchese, Andrew D.

    2015-01-01

    Abstract This article presents the development of an autonomous motion planning algorithm for a soft planar grasping manipulator capable of grasp-and-place operations by encapsulation with uncertainty in the position and shape of the object. The end effector of the soft manipulator is fabricated in one piece without weakening seams using lost-wax casting instead of the commonly used multilayer lamination process. The soft manipulation system can grasp randomly positioned objects within its reachable envelope and move them to a desired location without human intervention. The autonomous planning system leverages the compliance and continuum bending of the soft grasping manipulator to achieve repeatable grasps in the presence of uncertainty. A suite of experiments is presented that demonstrates the system's capabilities. PMID:27625916

  14. When the bells toll: engaging healthcare providers in catastrophic disaster response planning.

    PubMed

    Hanfling, Dan

    2013-01-01

    Catastrophic disaster planning and response have been impeded by the inability to better coordinate the many components of the emergency response system. Healthcare providers in particular have remained on the periphery of such planning because of a variety of real or perceived barriers. Although hospitals and healthcare systems have worked successfully to develop surge capacity and capability, less successful have been the attempts to inculcate such planning in the private practice medical community. Implementation of a systems approach to catastrophic disaster planning that incorporates healthcare provider participation and engagement as one of the first steps toward such efforts will be of significant importance in ensuring that a comprehensive and successful emergency response will ensue.

  15. Manned orbital systems concepts study. Book 2: Requirements for extended-duration missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    In order to provide essential data needed in long-range program planning, the Manned Orbital Systems Concepts (MOSC) study attempted to define, evaluate, and compare concepts for manned orbital systems that provide extended experiment mission capabilities in space, flexibility of operation, and growth potential. Specific areas discussed include roles and requirements for man in future space missions, requirements for extended capability, mission/payload concepts, and preliminary design and operational requirements.

  16. 12 CFR 615.5200 - Capital planning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the capital adequacy plan: (1) Capability of management and the board of directors; (2) Quality of... of Directors of each Farm Credit System institution shall determine the amount of total capital, core surplus, total surplus, and unallocated surplus needed to assure the institution's continued financial...

  17. 12 CFR 615.5200 - Capital planning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the capital adequacy plan: (1) Capability of management and the board of directors; (2) Quality of... of Directors of each Farm Credit System institution shall determine the amount of total capital, core surplus, total surplus, and unallocated surplus needed to assure the institution's continued financial...

  18. Next generation air transportation system : status of transformation and issues associated with midterm implementation of capabilities.

    DOT National Transportation Integrated Search

    2009-03-01

    "To prepare for forecasted air traffic growth, the Federal Aviation Administration (FAA), including its Joint Planning and Development Office (JPDO) and Air Traffic Organization (ATO), is planning for and implementing the Next Generation Air Transpor...

  19. The NASA automation and robotics technology program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.; Montemerlo, Melvin D.

    1986-01-01

    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  20. Kaiser Permanente's performance improvement system, Part 1: From benchmarking to executing on strategic priorities.

    PubMed

    Schilling, Lisa; Chase, Alide; Kehrli, Sommer; Liu, Amy Y; Stiefel, Matt; Brentari, Ruth

    2010-11-01

    By 2004, senior leaders at Kaiser Permanente, the largest not-for-profit health plan in the United States, recognizing variations across service areas in quality, safety, service, and efficiency, began developing a performance improvement (PI) system to realizing best-in-class quality performance across all 35 medical centers. MEASURING SYSTEMWIDE PERFORMANCE: In 2005, a Web-based data dashboard, "Big Q," which tracks the performance of each medical center and service area against external benchmarks and internal goals, was created. PLANNING FOR PI AND BENCHMARKING PERFORMANCE: In 2006, Kaiser Permanente national and regional continued planning the PI system, and in 2007, quality, medical group, operations, and information technology leaders benchmarked five high-performing organizations to identify capabilities required to achieve consistent best-in-class organizational performance. THE PI SYSTEM: The PI system addresses the six capabilities: leadership priority setting, a systems approach to improvement, measurement capability, a learning organization, improvement capacity, and a culture of improvement. PI "deep experts" (mentors) consult with national, regional, and local leaders, and more than 500 improvement advisors are trained to manage portfolios of 90-120 day improvement initiatives at medical centers. Between the second quarter of 2008 and the first quarter of 2009, performance across all Kaiser Permanente medical centers improved on the Big Q metrics. The lessons learned in implementing and sustaining PI as it becomes fully integrated into all levels of Kaiser Permanente can be generalized to other health care systems, hospitals, and other health care organizations.

  1. Issues in knowledge representation to support maintainability: A case study in scientific data preparation

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Kandt, R. Kirk; Roden, Joseph; Burleigh, Scott; King, Todd; Joy, Steve

    1992-01-01

    Scientific data preparation is the process of extracting usable scientific data from raw instrument data. This task involves noise detection (and subsequent noise classification and flagging or removal), extracting data from compressed forms, and construction of derivative or aggregate data (e.g. spectral densities or running averages). A software system called PIPE provides intelligent assistance to users developing scientific data preparation plans using a programming language called Master Plumber. PIPE provides this assistance capability by using a process description to create a dependency model of the scientific data preparation plan. This dependency model can then be used to verify syntactic and semantic constraints on processing steps to perform limited plan validation. PIPE also provides capabilities for using this model to assist in debugging faulty data preparation plans. In this case, the process model is used to focus the developer's attention upon those processing steps and data elements that were used in computing the faulty output values. Finally, the dependency model of a plan can be used to perform plan optimization and runtime estimation. These capabilities allow scientists to spend less time developing data preparation procedures and more time on scientific analysis tasks. Because the scientific data processing modules (called fittings) evolve to match scientists' needs, issues regarding maintainability are of prime importance in PIPE. This paper describes the PIPE system and describes how issues in maintainability affected the knowledge representation used in PIPE to capture knowledge about the behavior of fittings.

  2. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package, 2005: Composite Report on FAA Flight Plan and Operational Evaluation Plan. Version 7.0

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to present the findings that resulted from a high-level analysis and evaluation of the following documents: (1) The OEP (Operational Evolution Plan) Version 7 -- a 10-year plan for operational improvements to increase capacity and efficiency in U.S. air travel and transport and other use of domestic airspace. The OEP is the FAA commitment to operational improvements. It is outcome driven, with clear lines of accountability within FAA organizations. The OEP concentrates on operational solutions and integrates safety, certification, procedures, staffing, equipment, avionics and research; (2) The Draft Flight Plan 2006 through 2010 -- a multi-year strategic effort, setting a course for the FAA through 2001, to provide the safest and most efficient air transportation system in the world; (3) The NAS System Architecture Version 5 -- a blueprint for modernizing the NAS and improving NAS services and capabilities through the year 2015; and (4) The NAS-SR-1000 System Requirements Specification (NASSRS) -- a compilation of requirements which describe the operational capabilities for the NAS. The analysis is particularly focused on examining the documents for relevance to existing and/or planned future UAV operations. The evaluation specifically focuses on potential factors that could materially affect the development of a commercial ROA industry, such as: (1) Design limitations of the CNS/ATM system, (2) Human limitations, The information presented was taken from program specifications or program office lead personnel.

  3. Task Analysis and Descriptions of Required Job Competencies for Robotics/Automated Systems Technicians. Final Report. Volume 2. Curriculum Planning Guide.

    ERIC Educational Resources Information Center

    Hull, Daniel M.; Lovett, James E.

    This volume of the final report for the Robotics/Automated Systems Technician (RAST) curriculum project is a curriculum planning guide intended for school administrators, faculty, and student counselors/advisors. It includes step-by-step procedures to help institutions evaluate their community's needs and their capabilities to meet these needs in…

  4. Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

    NASA Technical Reports Server (NTRS)

    Culley, Dennis

    2010-01-01

    Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

  5. Aviation System Analysis Capability Quick Response System Report

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Ritter, Paul

    1998-01-01

    The purpose of this document is to present the additions and modifications made to the Aviation System Analysis Capability (ASAC) Quick Response System (QRS) in FY 1997 in support of the ASAC ORS development effort. This document contains an overview of the project background and scope and defines the QRS. The document also presents an overview of the Logistics Management Institute (LMI) facility that supports the QRS, and it includes a summary of the planned additions to the QRS in FY 1998. The document has five appendices.

  6. A Study of the Communication Capabilities of the OPARS Flight Planning System for Various Levels of Demand.

    DTIC Science & Technology

    1980-03-01

    Oceanography Center (FNOC) is currently testing and evaluating a computerized flight plan system, referred to, for short, as OPARS. This sytem , developed to...replace the Lockheed Jetplan flight plan sytem , provides users at remote sites with direct access to the FNOC computer via 11 telephone lines. The...validity, but only for format. For example, an entry of ABCE , as the four- letter identification code for the destination airfield, would be accepted

  7. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  8. Extending NASA's SPICE ancillary information system to meet future mission needs

    NASA Technical Reports Server (NTRS)

    Acton, C.; Bachman, N.; Elson, L.; Semenov, B.; Turner, F.; Wright, E.

    2002-01-01

    This paper summarizes the architecture, capabilities, characteristics and uses of the current SPICE ancillary information system, and then outlines plans and ideas for how this system can be extended to meet future space mission requirements.

  9. Communication satellite applications

    NASA Astrophysics Data System (ADS)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  10. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  11. Adversarial reasoning: challenges and approaches

    NASA Astrophysics Data System (ADS)

    Kott, Alexander; Ownby, Michael

    2005-05-01

    This paper defines adversarial reasoning as computational approaches to inferring and anticipating an enemy's perceptions, intents and actions. It argues that adversarial reasoning transcends the boundaries of game theory and must also leverage such disciplines as cognitive modeling, control theory, AI planning and others. To illustrate the challenges of applying adversarial reasoning to real-world problems, the paper explores the lessons learned in the CADET -- a battle planning system that focuses on brigade-level ground operations and involves adversarial reasoning. From this example of current capabilities, the paper proceeds to describe RAID -- a DARPA program that aims to build capabilities in adversarial reasoning, and how such capabilities would address practical requirements in Defense and other application areas.

  12. A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Basdekas, L.; Stewart, N.; Triana, E.

    2013-12-01

    Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU evaluate tradeoffs in a continually changing world.

  13. Identifying Executable Plans

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Jonsson, Ari K.; Frank, Jeremy D.; McGann, Conor

    2003-01-01

    Generating plans for execution imposes a different set of requirements on the planning process than those imposed by planning alone. In highly unpredictable execution environments, a fully-grounded plan may become inconsistent frequently when the world fails to behave as expected. Intelligent execution permits making decisions when the most up-to-date information is available, ensuring fewer failures. Planning should acknowledge the capabilities of the execution system, both to ensure robust execution in the face of uncertainty, which also relieves the planner of the burden of making premature commitments. We present Plan Identification Functions (PIFs), which formalize what it means for a plan to be executable, md are used in conjunction with a complete model of system behavior to halt the planning process when an executable plan is found. We describe the implementation of plan identification functions for a temporal, constraint-based planner. This particular implementation allows the description of many different plan identification functions. characteristics crf the xectieonfvii rnm-enft,h e best plan to hand to the execution system will contain more or less commitment and information.

  14. Flexible Coordination in Resource-Constrained Domains

    DTIC Science & Technology

    1994-07-01

    Experiments (TIEs) with planning technologies developed at both BBN (FMERG) and SRI ( SOCAP ). We have also exported scheduling support capabilities provided by...SRI’s SOCAP course of action (COA) plan generator. "* Development and demonstration of distributed, multi-level deployment scheduling - Through analysis...scheduler was adapted for integration with the SOCAP planning system to provide feedback on transportation feasibility during generation of the

  15. Exploration Medical System Trade Study Tools Overview

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Myers, J.; Latorella, K.; Cerro, J.; Hanson, A.; Hailey, M.; Middour, C.

    2018-01-01

    ExMC is creating an ecosystem of tools to enable well-informed medical system trade studies. The suite of tools address important system implementation aspects of the space medical capabilities trade space and are being built using knowledge from the medical community regarding the unique aspects of space flight. Two integrating models, a systems engineering model and a medical risk analysis model, tie the tools together to produce an integrated assessment of the medical system and its ability to achieve medical system target requirements. This presentation will provide an overview of the various tools that are a part of the tool ecosystem. Initially, the presentation's focus will address the tools that supply the foundational information to the ecosystem. Specifically, the talk will describe how information that describes how medicine will be practiced is captured and categorized for efficient utilization in the tool suite. For example, the talk will include capturing what conditions will be planned for in-mission treatment, planned medical activities (e.g., periodic physical exam), required medical capabilities (e.g., provide imaging), and options to implement the capabilities (e.g., an ultrasound device). Database storage and configuration management will also be discussed. The presentation will include an overview of how these information tools will be tied to parameters in a Systems Modeling Language (SysML) model, allowing traceability to system behavioral, structural, and requirements content. The discussion will also describe an HRP-led enhanced risk assessment model developed to provide quantitative insight into each capability's contribution to mission success. Key outputs from these various tools, to be shared with the space medical and exploration mission development communities, will be assessments of medical system implementation option satisfaction of requirements and per-capability contributions toward achieving requirements.

  16. Capability of Using Clinical Care Classification System to Represent Nursing Practice in Acute Setting in Taiwan

    PubMed Central

    Feng, Rung-Chuang; Tseng, Kuan-Jui; Yan, Hsiu-Fang; Huang, Hsiu-Ya; Chang, Polun

    2012-01-01

    This study examines the capability of the Clinical Care Classification (CCC) system to represent nursing record data in a medical center in Taiwan. Nursing care records were analyzed using the process of knowledge discovery in data sets. The study data set included all the nursing care plan records from December 1998 to October 2008, totaling 2,060,214 care plan documentation entries. Results show that 75.42% of the documented diagnosis terms could be mapped using the CCC system. A total of 21 established nursing diagnoses were recommended to be added into the CCC system. Results show that one-third of the assessment and care tasks were provided by nursing professionals. This study shows that the CCC system is useful for identifying patterns in nursing practices and can be used to construct a nursing database in the acute setting. PMID:24199066

  17. Prototype Flight Management Capabilities to Explore Temporal RNP Concepts

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Williams, David H.; Allen, Bonnie Danette; Palmer, Michael T.

    2008-01-01

    Next Generation Air Transportation System (NextGen) concepts of operation may require aircraft to fly planned trajectories in four dimensions three spatial dimensions and time. A prototype 4D flight management capability is being developed by NASA to facilitate the development of these concepts. New trajectory generation functions extend today's flight management system (FMS) capabilities that meet a single Required Time of Arrival (RTA) to trajectory solutions that comply with multiple RTA constraints. When a solution is not possible, a constraint management capability relaxes constraints to achieve a trajectory solution that meets the most important constraints as specified by candidate NextGen concepts. New flight guidance functions provide continuous guidance to the aircraft s flight control system to enable it to fly specified 4D trajectories. Guidance options developed for research investigations include a moving time window with varying tolerances that are a function of proximity to imposed constraints, and guidance that recalculates the aircraft s planned trajectory as a function of the estimation of current compliance. Compliance tolerances are related to required navigation performance (RNP) through the extension of existing RNP concepts for lateral containment. A conceptual temporal RNP implementation and prototype display symbology are proposed.

  18. Integrated analysis of large space systems

    NASA Technical Reports Server (NTRS)

    Young, J. P.

    1980-01-01

    Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.

  19. Technology & School Design: Creating Spaces for Learning.

    ERIC Educational Resources Information Center

    Hardt, Richard W.; Wisniewski, John, Ed.; Horner, Kirk C.; Ficklen, Ellen, Ed.; Ward, Anne W.

    Schools facing deteriorating conditions, high costs, and outdated building designs are tapping into the special capabilities of information technology to address the learning needs of their students. This book guides school leaders through school facility planning and technology systems planning, describing the importance of long-range planning…

  20. Sensing, Measurement, and Forecasting | Grid Modernization | NREL

    Science.gov Websites

    into operational intelligence to support grid operations and planning. Photo of solar resource monitoring equipment Grid operations involve assessing the grid's health in real time, predicting its to hours and days-to support advances in power system operations and planning. Capabilities Solar

  1. Inspection planning development: An evolutionary approach using reliability engineering as a tool

    NASA Technical Reports Server (NTRS)

    Graf, David A.; Huang, Zhaofeng

    1994-01-01

    This paper proposes an evolutionary approach for inspection planning which introduces various reliability engineering tools into the process and assess system trade-offs among reliability, engineering requirement, manufacturing capability and inspection cost to establish an optimal inspection plan. The examples presented in the paper illustrate some advantages and benefits of the new approach. Through the analysis, reliability and engineering impacts due to manufacturing process capability and inspection uncertainty are clearly understood; the most cost effective and efficient inspection plan can be established and associated risks are well controlled; some inspection reductions and relaxations are well justified; and design feedbacks and changes may be initiated from the analysis conclusion to further enhance reliability and reduce cost. The approach is particularly promising as global competitions and customer quality improvement expectations are rapidly increasing.

  2. Implementing Information Assurance - Beyond Process

    DTIC Science & Technology

    2009-01-01

    disabled or properly configured. Tools and scripts are available to expedite the configuration process on some platforms, For example, approved Windows...in the System Security Plan (SSP) or Information Security Plan (lSP). Any PPSs not required for operation by the system must be disabled , This...Services must be disabled , Implementing an 1M capability within the boundary carries many policy and documentation requirements. Usemame and passwords

  3. A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji

    Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.

  4. Streamlining Collaborative Planning in Spacecraft Mission Architectures

    NASA Technical Reports Server (NTRS)

    Misra, Dhariti; Bopf, Michel; Fishman, Mark; Jones, Jeremy; Kerbel, Uri; Pell, Vince

    2000-01-01

    During the past two decades, the planning and scheduling community has substantially increased the capability and efficiency of individual planning and scheduling systems. Relatively recently, research work to streamline collaboration between planning systems is gaining attention. Spacecraft missions stand to benefit substantially from this work as they require the coordination of multiple planning organizations and planning systems. Up to the present time this coordination has demanded a great deal of human intervention and/or extensive custom software development efforts. This problem will become acute with increased requirements for cross-mission plan coordination and multi -spacecraft mission planning. The Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center is taking innovative steps to define collaborative planning architectures, and to identify coordinated planning tools for Cross-Mission Campaigns. Prototypes are being developed to validate these architectures and assess the usefulness of the coordination tools by the planning community. This presentation will focus on one such planning coordination too], named Visual Observation Layout Tool (VOLT), which is currently being developed to streamline the coordination between astronomical missions

  5. STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Law, E. S.; Day, B. H.

    2018-01-01

    This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.

  6. Safe Operations of Unmanned Systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO)

    DTIC Science & Technology

    2011-04-25

    must adapt its planning to vehicle size, shape, wheelbase, wheel and axle configuration, the specific obstacle-crossing capabilities of the vehicle...scalability of the ANS is a consequence of making each sensing modality capable of performing reasonable perception tasks while allowing a wider...autonomous system design achieves flexibility by exploiting redundant sensing modalities where possible, and by a decision-making process that

  7. Strategic Mobility 21 Transition Plan: From Research Federation to Business Enterprise

    DTIC Science & Technology

    2010-12-31

    Transportation Management System (GTMS), Service Oriented Architecture (SOA), Service -as-a- Software ( SaaS ), Joint Capability Technolgoy Demonstration...the Software -as-a- Service ( SaaS ) format, whereby users access the application with the appropriate Internet authorizations. Security is provided by...integrating best-of-breed dual-use systems deployed in the software as a service ( SaaS ) environment. It includes single sign-on capabilities and was

  8. An approach to knowledge engineering to support knowledge-based simulation of payload ground processing at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Mcmanus, Shawn; Mcdaniel, Michael

    1989-01-01

    Planning for processing payloads was always difficult and time-consuming. With the advent of Space Station Freedom and its capability to support a myriad of complex payloads, the planning to support this ground processing maze involves thousands of man-hours of often tedious data manipulation. To provide the capability to analyze various processing schedules, an object oriented knowledge-based simulation environment called the Advanced Generic Accomodations Planning Environment (AGAPE) is being developed. Having nearly completed the baseline system, the emphasis in this paper is directed toward rule definition and its relation to model development and simulation. The focus is specifically on the methodologies implemented during knowledge acquisition, analysis, and representation within the AGAPE rule structure. A model is provided to illustrate the concepts presented. The approach demonstrates a framework for AGAPE rule development to assist expert system development.

  9. Collaborative environments for capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2005-05-01

    Distributed collaboration is an emerging technology for the 21st century that will significantly change how business is conducted in the defense and commercial sectors. Collaboration involves two or more geographically dispersed entities working together to create a "product" by sharing and exchanging data, information, and knowledge. A product is defined broadly to include, for example, writing a report, creating software, designing hardware, or implementing robust systems engineering and capability planning processes in an organization. Collaborative environments provide the framework and integrate models, simulations, domain specific tools, and virtual test beds to facilitate collaboration between the multiple disciplines needed in the enterprise. The Air Force Research Laboratory (AFRL) is conducting a leading edge program in developing distributed collaborative technologies targeted to the Air Force's implementation of systems engineering for a simulation-aided acquisition and capability-based planning. The research is focusing on the open systems agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. In past four years, two live assessment events have been conducted to demonstrate the technology in support of research for the Air Force Agile Acquisition initiatives. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities conduct business.

  10. Local Government GIS and Geospatial Capabilities : Suitability for Integrated Transportation & Land Use Planning (California SB 375)

    DOT National Transportation Integrated Search

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates.

  11. MR Imaging Based Treatment Planning for Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    Radiotherapy, MR-based treatment planning, dosimetry, Monte Carlo dose verification, Prostate Cancer, MRI -based DRRs 16. SECURITY CLASSIFICATION...AcQPlan system Version 5 was used for the study , which is capable of performing dose calculation on both CT and MRI . A four field 3D conformal planning...prostate motion studies for 3DCRT and IMRT of prostate cancer; (2) to investigate and improve the accuracy of MRI -based treatment planning dose calculation

  12. Planning and Execution: The Spirit of Opportunity for Robust Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola

    2004-01-01

    One of the most exciting endeavors pursued by human kind is the search for life in the Solar System and the Universe at large. NASA is leading this effort by designing, deploying and operating robotic systems that will reach planets, planet moons, asteroids and comets searching for water, organic building blocks and signs of past or present microbial life. None of these missions will be achievable without substantial advances in.the design, implementation and validation of autonomous control agents. These agents must be capable of robustly controlling a robotic explorer in a hostile environment with very limited or no communication with Earth. The talk focuses on work pursued at the NASA Ames Research center ranging from basic research on algorithm to deployed mission support systems. We will start by discussing how planning and scheduling technology derived from the Remote Agent experiment is being used daily in the operations of the Spirit and Opportunity rovers. Planning and scheduling is also used as the fundamental paradigm at the core of our research in real-time autonomous agents. In particular, we will describe our efforts in the Intelligent Distributed Execution Architecture (IDEA), a multi-agent real-time architecture that exploits artificial intelligence planning as the core reasoning engine of an autonomous agent. We will also describe how the issue of plan robustness at execution can be addressed by novel constraint propagation algorithms capable of giving the tightest exact bounds on resource consumption or all possible executions of a flexible plan.

  13. APGEN Scheduling: 15 Years of Experience in Planning Automation

    NASA Technical Reports Server (NTRS)

    Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel

    2014-01-01

    In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.

  14. End-of-Life Care Planning in Accountable Care Organizations: Associations with Organizational Characteristics and Capabilities.

    PubMed

    Ahluwalia, Sangeeta C; Harris, Benjamin J; Lewis, Valerie A; Colla, Carrie H

    2018-06-01

    To measure the extent to which accountable care organizations (ACOs) have adopted end-of-life (EOL) care planning processes and characterize those ACOs that have established processes related to EOL. This study uses data from three waves (2012-2015) of the National Survey of ACOs. Respondents were 397 ACOs participating in Medicare, Medicaid, and commercial ACO contracts. This is a cross-sectional survey study using multivariate ordered logit regression models. We measured the extent to which the ACO had adopted EOL care planning processes as well as organizational characteristics, including care management, utilization management, health informatics, and shared decision-making capabilities, palliative care, and patient-centered medical home experience. Twenty-one percent of ACOs had few or no EOL care planning processes, 60 percent had some processes, and 19.6 percent had advanced processes. ACOs with a hospital in their system (OR: 3.07; p = .01), and ACOs with advanced care management (OR: 1.43; p = .02), utilization management (OR: 1.58, p = .00), and shared decision-making capabilities (OR: 16.3, p = .000) were more likely to have EOL care planning processes than those with no hospital or few to no capabilities. There remains considerable room for today's ACOs to increase uptake of EOL care planning, possibly by leveraging existing care management, utilization management, and shared decision-making processes. © Health Research and Educational Trust.

  15. Programs for skyline planning.

    Treesearch

    Ward W. Carson

    1975-01-01

    This paper describes four computer programs for the logging engineer's use in planning log harvesting by skyline systems. One program prepares terrain profile plots from maps mounted on a digitizer; the other programs prepare load-carrying capability and other information for single and multispan standing skylines and single span running skylines. In general, the...

  16. Projecting Program Cost Over an Adequate Time Horizon.

    ERIC Educational Resources Information Center

    Spencer, Milton

    Planning Programming Budgeting Systems involve the introduction of three major operational concepts. First, the development of an analytical capability to examine in depth both agency objectives and the various programs to meet these objectives. Second, the formation of a five-year planning and programming process combined with a sophisticated…

  17. Ground Systems Development Environment (GSDE) interface requirements and prototyping plan

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Philips, John; Bassman, Mitchell; Williams, C.

    1990-01-01

    This report describes the data collection and requirements analysis effort of the Ground System Development Environment (GSDE) Interface Requirements study. It identifies potential problems in the interfaces among applications and processors in the heterogeneous systems that comprises the GSDE. It describes possible strategies for addressing those problems. It also identifies areas for further research and prototyping to demonstrate the capabilities and feasibility of those strategies and defines a plan for building the necessary software prototypes.

  18. A Web-based Tool for Transparent, Collaborative Urban Water System Planning for Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    Rheinheimer, D. E.; Medellin-Azuara, J.; Garza Díaz, L. E.; Ramírez, A. I.

    2017-12-01

    Recent rapid advances in web technologies and cloud computing show great promise for facilitating collaboration and transparency in water planning efforts. Water resources planning is increasingly in the context of a rapidly urbanizing world, particularly in developing countries. In such countries with democratic traditions, the degree of transparency and collaboration in water planning can mean the difference between success and failure of water planning efforts. This is exemplified in the city of Monterrey, Mexico, where an effort to build a new long-distance aqueduct to increase water supply to the city dramatically failed due to lack of transparency and top-down planning. To help address, we used a new, web-based water system modeling platform, called OpenAgua, to develop a prototype decision support system for water planning in Monterrey. OpenAgua is designed to promote transparency and collaboration, as well as provide strong, cloud-based, water system modeling capabilities. We developed and assessed five water management options intended to increase water supply yield and/or reliability, a dominant water management concern in Latin America generally: 1) a new long-distance source (the previously-rejected project), 2) a new nearby reservoir, 3) expansion/re-operation of an existing major canal, 4) desalination, and 5) industrial water reuse. Using the integrated modeling and analytic capabilities of OpenAgua, and some customization, we assessed the performance of these options for water supply yield and reliability to help identify the most promising ones. In presenting this assessment, we demonstrate the viability of using online, cloud-based modeling systems for improving transparency and collaboration in decision making, reducing the gap between citizens, policy makers and water managers, and future directions.

  19. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew; Robinson, Kimberly F.; Hitt, David

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 t to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 t to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.

  20. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Schorr, Andrew

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 metric tons to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 metric tons to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.

  1. Local government GIS and geospatial capabilities : suitability for integrated transportation and land use planning (California SB 375).

    DOT National Transportation Integrated Search

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates. The particular examples ...

  2. Fuzzy logic based expert system for the treatment of mobile tooth.

    PubMed

    Mago, Vijay Kumar; Mago, Anjali; Sharma, Poonam; Mago, Jagmohan

    2011-01-01

    The aim of this research work is to design an expert system to assist dentist in treating the mobile tooth. There is lack of consistency among dentists in choosing the treatment plan. Moreover, there is no expert system currently available to verify and support such decision making in dentistry. A Fuzzy Logic based expert system has been designed to accept imprecise and vague values of dental sign-symptoms related to mobile tooth and the system suggests treatment plan(s). The comparison of predictions made by the system with those of the dentist is conducted. Chi-square Test of homogeneity is conducted and it is found that the system is capable of predicting accurate results. With this system, dentist feels more confident while planning the treatment of mobile tooth as he can verify his decision with the expert system. The authors also argue that Fuzzy Logic provides an appropriate mechanism to handle imprecise values of dental domain.

  3. Joint Planning and Development Office Work Plan FY10

    DTIC Science & Technology

    2010-01-01

    IPSA ) Division will make refinements to the NextGen Portfolio Analysis. In addition, IPSA will work with the Department of Defense (DoD) to define and...Submitted Interagency Portfolio and Systems Analysis ( IPSA ) DRAFT DoD Portfolio Analysis Criteria BASELINE DoD Portfolio Analysis Criteria DRAFT...WG Work Plan Review Prototype Capability Selected and Defined CHAs Complete Safety Metrics for IPSA Complete FINAL Prototype Report FINAL

  4. Current Capabilities and Planned Enhancements of SUSTAIN

    EPA Science Inventory

    Efforts have been under way by the U.S. Environmental Protection Agency (EPA) since 2003 to develop a decision-support system for placement of BMPs at strategic locations in urban watersheds. This system is call the System for Urban Stormwater Treatment and Analysis INtergration...

  5. Planning for a data base system to support satellite conceptual design

    NASA Technical Reports Server (NTRS)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  6. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  7. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  8. Future Interagency Range and Spaceport Technologies (FIRST) Formulation Products: 1. Transformational Spaceport and Range Concept of Operations. 2. F.I.R.S.T. Business Case Analysis

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Baseline Report captures range and spaceport capabilities at five sites: KSC, CCAFS, VAFB, Wallops, and Kodiak. The Baseline depicts a future state that relies on existing technology, planned upgrades, and straight-line recapitalization at these sites projected through 2030. The report presents an inventory of current spaceport and range capabilities at these five sites. The baseline is the first part of analyzing a business case for a set of capabilities designed to transform U.S. ground and space launch operations toward a single, integrated national "system" of space transportation systems. The second part of the business case compares current capabilities with technologies needed to support the integrated national "system". The final part, a return on investment analysis, identifies the technologies that best lead to the integrated national system and reduce recurring costs..Numerous data sources were used to define and describe the baseline spaceport and range by identifying major systems and elements and describing capabilities, limitations, and capabilities

  9. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  10. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    NASA Technical Reports Server (NTRS)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  11. 10 Steps to Building an Architecture for Space Surveillance Projects

    NASA Astrophysics Data System (ADS)

    Gyorko, E.; Barnhart, E.; Gans, H.

    Space surveillance is an increasingly complex task, requiring the coordination of a multitude of organizations and systems, while dealing with competing capabilities, proprietary processes, differing standards, and compliance issues. In order to fully understand space surveillance operations, analysts and engineers need to analyze and break down their operations and systems using what are essentially enterprise architecture processes and techniques. These techniques can be daunting to the first- time architect. This paper provides a summary of simplified steps to analyze a space surveillance system at the enterprise level in order to determine capabilities, services, and systems. These steps form the core of an initial Model-Based Architecting process. For new systems, a well defined, or well architected, space surveillance enterprise leads to an easier transition from model-based architecture to model-based design and provides a greater likelihood that requirements are fulfilled the first time. Both new and existing systems benefit from being easier to manage, and can be sustained more easily using portfolio management techniques, based around capabilities documented in the model repository. The resulting enterprise model helps an architect avoid 1) costly, faulty portfolio decisions; 2) wasteful technology refresh efforts; 3) upgrade and transition nightmares; and 4) non-compliance with DoDAF directives. The Model-Based Architecting steps are based on a process that Harris Corporation has developed from practical experience architecting space surveillance systems and ground systems. Examples are drawn from current work on documenting space situational awareness enterprises. The process is centered on DoDAF 2 and its corresponding meta-model so that terminology is standardized and communicable across any disciplines that know DoDAF architecting, including acquisition, engineering and sustainment disciplines. Each step provides a guideline for the type of data to collect, and also the appropriate views to generate. The steps include 1) determining the context of the enterprise, including active elements and high level capabilities or goals; 2) determining the desired effects of the capabilities and mapping capabilities against the project plan; 3) determining operational performers and their inter-relationships; 4) building information and data dictionaries; 5) defining resources associated with capabilities; 6) determining the operational behavior necessary to achieve each capability; 7) analyzing existing or planned implementations to determine systems, services and software; 8) cross-referencing system behavior to operational behavioral; 9) documenting system threads and functional implementations; and 10) creating any required textual documentation from the model.

  12. SU-E-J-199: A Software Tool for Quality Assurance of Online Replanning with MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Ahunbay, E; Li, X

    2015-06-15

    Purpose: To develop a quality assurance software tool, ArtQA, capable of automatically checking radiation treatment plan parameters, verifying plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary MU calculation considering the effect of magnetic field from MR-Linac, and verifying the delivery and plan consistency, for online replanning. Methods: ArtQA was developed by creating interfaces to TPS (e.g., Monaco, Elekta), R&V system (Mosaiq, Elekta), and secondary MU calculation system. The tool obtains plan parameters from the TPS via direct file reading, and retrieves plan data both transferred from TPS and recorded during themore » actual delivery in the R&V system database via open database connectivity and structured query language. By comparing beam/plan datasets in different systems, ArtQA detects and outputs discrepancies between TPS, R&V system and secondary MU calculation system, and delivery. To consider the effect of 1.5T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. Results: ArtQA is capable of automatically checking plan integrity and logic consistency, detecting plan data transfer errors, performing secondary MU calculations with or without a transverse magnetic field, and verifying treatment delivery. The tool is efficient and effective for pre- and post-treatment QA checks of all available treatment parameters that may be impractical with the commonly-used visual inspection. Conclusion: The software tool ArtQA can be used for quick and automatic pre- and post-treatment QA check, eliminating human error associated with visual inspection. While this tool is developed for online replanning to be used on MR-Linac, where the QA needs to be performed rapidly as the patient is lying on the table waiting for the treatment, ArtQA can be used as a general QA tool in radiation oncology practice. This work is partially supported by Elekta Inc.« less

  13. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  14. Delta Advanced Reusable Transport (DART): An alternative manned spacecraft

    NASA Astrophysics Data System (ADS)

    Lewerenz, T.; Kosha, M.; Magazu, H.

    Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.

  15. Delta Advanced Reusable Transport (DART): An alternative manned spacecraft

    NASA Technical Reports Server (NTRS)

    Lewerenz, T.; Kosha, M.; Magazu, H.

    1991-01-01

    Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.

  16. Mars Sample Return Using Commercial Capabilities: Propulsive Entry, Descent and Landing

    NASA Technical Reports Server (NTRS)

    Lemke, Lawrence G.; Gonzales, Andrew A.; Huynh, Loc C.

    2014-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. The objective of the study was to determine whether emerging commercial capabilities can be integrated into to such a mission. The premise of the study is that commercial capabilities can be more efficient than previously described systems, and by using fewer systems and fewer or less extensive launches, overall mission cost can be reduced. This presentation describes an EDL technique using planned upgrades to the Dragon capsule to perform a Supersonic Retropulsion Entry - Red Dragon concept. Landed Payload capability meets mission requirements for a MSR Architecture that reduces complexity.

  17. Upgrade of Irradiation Test Capability of the Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Sekine, Takashi; Aoyama, Takafumi; Suzuki, Soju; Yamashita, Yoshioki

    2003-06-01

    The JOYO MK-II core was operated from 1983 to 2000 as fast neutron irradiation bed. In order to meet various requirements for irradiation tests for development of FBRs, the JOYO upgrading project named MK-III program was initiated. The irradiation capability in the MK-III core will be about four times larger than that of the MK-II core. Advanced irradiation test subassemblies such as capsule type subassembly and on-line instrumentation rig are planned. As an innovative reactor safety system, the irradiation test of Self-Actuated Shutdown System (SASS) will be conducted. In order to improve the accuracy of neutron fluence, the core management code system was upgraded, and the Monte Carlo code and Helium Accumulation Fluence Monitor (HAFM) were applied. The MK-III core is planned to achieve initial criticality in July 2003.

  18. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  19. Assessment of capabilities in persons with advanced stage of dementia: Validation of The Montessori Assessment System (MAS).

    PubMed

    Erkes, Jérôme; Camp, Cameron J; Raffard, Stéphane; Gély-Nargeot And, Marie-Christine; Bayard, Sophie

    2017-01-01

    This study evaluated the validity and reliability of the Montessori Assessment System. The Montessori Assessment System assesses preserved abilities in persons with moderate to severe dementia. In this respect, this instrument provides crucial information for the development of effective person-centered care plans. A total of 196 persons with a diagnosis of dementia in the moderate to severe stages of dementia were recruited in 10 long-term care facilities in France. All participants completed the Montessori Assessment System, the Clinical Dementia Rating Scale and/or the Mini Mental State Examination and the Severe Impairment Battery-short form. The internal consistency and temporal stability of the Montessori Assessment System were high. Additionally, good construct and divergent validity were demonstrated. Factor analysis showed a one-factor structure. The Montessori Assessment System demonstrated satisfactory psychometric properties while being a useful instrument to assess capabilities in persons with advanced stages of dementia and hence to develop person-centered plans of care.

  20. Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided Tri-60Co unit, MR-guided LINAC, and conventional LINAC-based plans.

    PubMed

    Ramey, Stephen James; Padgett, Kyle R; Lamichhane, Narottam; Neboori, Hanmath J; Kwon, Deukwoo; Mellon, Eric A; Brown, Karen; Duffy, Melissa; Victoria, James; Dogan, Nesrin; Portelance, Lorraine

    2018-03-01

    This study aims to perform a dosimetric comparison of 2 magnetic resonance (MR)-guided radiation therapy systems capable of performing online adaptive radiation therapy versus a conventional radiation therapy system for pancreas stereotactic body radiation therapy. Ten cases of patients with pancreatic adenocarcinoma previously treated in our institution were used for this analysis. MR-guided tri-cobalt 60 therapy (MR-cobalt) and MR-LINAC plans were generated and compared with conventional LINAC (volumetric modulated arc therapy) plans. The prescription dose was 40 Gy in 5 fractions covering 95% of the planning tumor volume for the 30 plans. The same organs at risk (OARs) dose constraints were used in all plans. Dose-volume-based indices were used to compare PTV coverage and OAR sparing. The conformity index of 40 Gy in 5 fractions covering 95% of the planning tumor volume demonstrated higher conformity in both LINAC-based plans compared with MR-cobalt plans. Although there was no difference in mean conformity index between LINAC and MR-LINAC plans (1.08 in both), there was a large difference between LINAC and MR-cobalt plans (1.08 vs 1.52). Overall, 79%, 72%, and 78% of critical structure dosimetric constraints were met with LINAC, MR-cobalt, and MR-LINAC plans, respectively. The MR-cobalt plans delivered more doses to all OARs compared with the LINAC plans. In contrast, the doses to the OARs of the MR-LINAC plans were similar to LINAC plans except in 2 cases: liver mean dose (MR-LINAC, 2 .8 Gy vs LINAC, 2.1 Gy) and volume of duodenum receiving at least 15 Gy (MR-LINAC, 13.2 mL vs LINAC, 15.4 mL). Both differences are likely not clinically significant. This study demonstrates that dosimetrically similar plans were achieved with conventional LINAC and MR-LINAC, whereas doses to OARs were statistically higher for MR-cobalt compared with conventional LINAC plans because of low-dose spillage. Given the improved tumor-tracking capabilities of MR-LINAC, further studies should evaluate potential benefits of adaptive radiation therapy-capable MR-guided LINAC treatment. Copyright © 2018. Published by Elsevier Inc.

  1. Algorithm for decision support as the tool for control system of industries with variable assortment of products

    NASA Astrophysics Data System (ADS)

    Ladaniuk, Anatolii; Ivashchuk, Viacheslav; Kisała, Piotr; Askarova, Nursanat; Sagymbekova, Azhar

    2015-12-01

    Conditions of diversification of enterprise products are involving for changes of higher levels of management hierarchy, so it's leading by tasks correcting and changing schedule for operating of production plans. Ordinary solve by combination of enterprise resource are planning and management execution system often has exclusively statistical content. So, the development of decision support system, that helps to use knowledge about subject for capabilities estimating and order of operation of production object is relevant in this time.

  2. Automating Small Libraries.

    ERIC Educational Resources Information Center

    Swan, James

    1996-01-01

    Presents a four-phase plan for small libraries strategizing for automation: inventory and weeding, data conversion, implementation, and enhancements. Other topics include selecting a system, MARC records, compatibility, ease of use, industry standards, searching capabilities, support services, system security, screen displays, circulation modules,…

  3. Capability 9.4 Servicing

    NASA Technical Reports Server (NTRS)

    Moe, Rud

    2005-01-01

    This paper presents viewgraphs on capability structure 9.4 servicing. The topics include: 1) Servicing Description; 2) Benefits of Servicing; 3) Drivers & Assumptions for Servicing; 4) Capability Breakdown Structure 9.4 Servicing; 5) Roadmap for Servicing; 6) 9.4 Servicing Critical Gaps; 7) Capability 9.4 Servicing; 8) Capability 9.4.1 Inspection; 9) State-of-the-Art /Maturity Level /Capabilities for 9.4.1 Inspection; 10) Capability 9.4.2 Diagnostics; 11) State-of-the-Art/Maturity Level /Capabilities for 9.4.2 Diagnostics; 12) Capability 9.4.3 Perform Planned Maintenance; 13) State-of-the-Art /Maturity Level /Capabilities for 9.4.3 Perform Planned Maintenance; 14) Capability 9.4.4 Perform Unplanned Repair; 15) State-of-the-Art /Maturity Level /Capabilities for 9.4.4 Perform Unplanned Repair; 16) Capability 9.4.5 Install Upgrade; 17) Capability 9.4.5 Install Upgrade; 18) State-of-the-Art /Maturity Level /Capabilities for 9.4.5 Install Upgrade; 19) Capability 9.4.6 Planning, Logistics, Training; and 20) State-of-the-Art /Maturity Level /Capabilities for 9.4.6 Planning, Logistics, & Training;

  4. Federal Plan for Cyber Security and Information Assurance Research and Development

    DTIC Science & Technology

    2006-04-01

    Security Systems 103 varieties of the BB84 scheme have been developed, and other forms of quantum key distribution have been proposed. Rapid progress has led... key . Capability Gaps Existing quantum cryptographic protocols may also have weaknesses. Although BB84 is generally regarded as secure , researchers...complement agency-specific prioritization and R&D planning efforts in cyber security and information assurance. The Plan also describes the key Federal

  5. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  6. Implementation Strategy

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Meeting the identified needs of Earth science requires approaching EOS as an information system and not simply as one or more satellites with instruments. Six elements of strategy are outlined as follows: implementation of the individual discipline missions as currently planned; use of sustained observational capabilities offered by operational satellites without waiting for the launch of new mission; put first priority on the data system; deploy an Advanced Data Collection and Location System; put a substantial new observing capability in a low Earth orbit in such a way as to provide for sustained measurements; and group instruments to exploit their capabilities for synergism; maximize the scientific utility of the mission; and minimize the costs of implementation where possible.

  7. The U.S. Federal Radionavigation Plan

    NASA Astrophysics Data System (ADS)

    Shirer, Heywood O.

    The author presents an overview of the 1990 Federal Radionavigation Plan (FRP) policy and a discussion of the status of GPS (Global Positioning System), Loran-C, Omega, VOR/DME (VHF omnidirectional range/distance measuring equipment), VORTAC, TACAN, MLS (Microwave Landing System), ILS (instrument landing systems), Transit, and radiobeacons. The 1990 FRP contains significant changes regarding several of the radionavigation systems. It is concluded that it is difficult at best to ascertain the post-GPS final systems mix of federally provided radionavigation systems. The phase-out dates of other systems in favor of GPS still remain soft. Many uncertainties remain until the capabilities of GPS are verified for all classes of users. The federal radionavigation planning process accommodates such uncertainties, keeping pace with the constantly changing radionavigation user profile and rapid advancements in system technology.

  8. Designing an Alternate Mission Operations Control Room

    NASA Technical Reports Server (NTRS)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a serviceoriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building. This paper presents the HPOC architecture and lessons learned during testing and the planned maiden operational commissioning. Additionally, this paper documents the necessity of an HPOC capability given the unplanned HOSC Facility power outage on April 27th, 2011, as a result of the tornado outbreak that damaged the electrical grid to such a degree that significantly inhibited the Tennessee Valley Authority's ability to transmit electricity throughout the North Alabama region.

  9. Operations planning for Space Station Freedom - And beyond

    NASA Technical Reports Server (NTRS)

    Gibson, Stephen S.; Martin, Thomas E.; Durham, H. J.

    1992-01-01

    The potential of automated planning and electronic execution systems for enhancing operations on board Space Station Freedom (SSF) are discussed. To exploit this potential the Operations Planning and Scheduling Subsystem is being developed at the NASA Johnson Space Center. Such systems may also make valuable contributions to the operation of resource-constrained, long-duration space habitats of the future. Points that should be considered during the design of future long-duration manned space missions are discussed. Early development of a detailed operations concept as an end-to-end mission description offers a basis for iterative design evaluation, refinement, and option comparison, particularly when used with an advanced operations planning system capable of modeling the operations and resource constraints of the proposed designs.

  10. NASTRAN interfacing modules within the Integrated Analysis Capability (IAC) Program

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1986-01-01

    The IAC program provides the framework required for the development of an extensive multidisciplinary analysis capability. Several NASTRAN related capabilities were developed which can all be expanded in a routine manner to meet in-house unique needs. Plans are to complete the work discussed herein and to provide it to the engineering community through COSMIC. Release is to be after the current IAC Level 2 contract work on the IAC executive system is completed and meshed with the interfacing modules and analysis capabilities under development at the GSFC.

  11. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  12. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  13. OAST system technology planning

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1978-01-01

    The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.

  14. Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system

    NASA Astrophysics Data System (ADS)

    Petric, Martin Peter

    This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.

  15. Trajectory planning and optimal tracking for an industrial mobile robot

    NASA Astrophysics Data System (ADS)

    Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.

    1994-02-01

    This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.

  16. Manufacturing Methods and Technology Program Plan, CY 1980.

    DTIC Science & Technology

    1980-09-01

    AD-A092 2Ii3 &RMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND IL FIG 1346 ..ANIJPACTRItd METH4OS AND TECNOLOGY PROGRAM PLAN. CY 1960. (U) %EP 60... innovative solutions. For example, material handling, process tools and inspection systems must be computerized to achieve the desired operating economics and...to decrease expensive direct labor; however, the new systems must also be capable of economic layaway for periods of ten years or more, a situation

  17. Analytical Approaches to Guide SLS Fault Management (FM) Development

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    2012-01-01

    Extensive analysis is needed to determine the right set of FM capabilities to provide the most coverage without significantly increasing the cost, reliability (FP/FN), and complexity of the overall vehicle systems. Strong collaboration with the stakeholders is required to support the determination of the best triggers and response options. The SLS Fault Management process has been documented in the Space Launch System Program (SLSP) Fault Management Plan (SLS-PLAN-085).

  18. Trade study plan for Reusable Hydrogen Composite Tank System (RHCTS)

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1994-07-01

    This TA 1 document describes the trade study plan (with support from TA 2) that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The analysis uses information derived in the TA 2 study as identified within the study plan. In view of this, for convenience, the TA 2 study plan is included as an appendix to this document.

  19. Trade study plan for Reusable Hydrogen Composite Tank System (RHCTS)

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This TA 1 document describes the trade study plan (with support from TA 2) that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The analysis uses information derived in the TA 2 study as identified within the study plan. In view of this, for convenience, the TA 2 study plan is included as an appendix to this document.

  20. Extended System Operations Studies for Automated Guideway Transit Systems : Plan for Task 5--DPM Failure Management

    DOT National Transportation Integrated Search

    1981-06-01

    The purpose of Task 5 in the Extended System Operations Studies Project, DPM Failure Management, is to enhance the capabilities of the Downtown People Mover Simulation (DPMS) and the Discrete Event Simulation Model (DESM) by increasing the failure mo...

  1. National Research Council Dialogue to Assess Progress on NASA's Title of CRM Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps "Title." Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  2. Space station automation: the role of robotics and artificial intelligence (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Park, W. T.; Firschein, O.

    1985-12-01

    Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.

  3. High Energy Power and Propulsion Capability Roadmap: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Bankston, Perry

    2005-01-01

    Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  4. Procurement procedures and specifications for performance measure capable traffic infrastructure data collection systems.

    DOT National Transportation Integrated Search

    2012-01-01

    Traffic signal systems represent a substantial component of the highway transportation network in the United : States. It is challenging for most agencies to find engineering resources to properly update signal policies and : timing plans to accommod...

  5. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Carl J.

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  6. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  7. Work Package 5: Contingency Management. Mission Planning Requirements Document: Preliminary Version. Revision A

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to identify the general flight/mission planning requirements for same-day file-and-fly access to the NAS for both civil and military High-Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS). Currently the scope of this document is limited to Step 1, operations above flight level 43,000 feet (FL430). This document describes the current applicable mission planning requirements and procedures for both manned and unmanned aircraft and addresses HALE UAS flight planning considerations in the future National Airspace System (NAS). It also discusses the unique performance and operational capabilities of HALE UAS associated with the Access 5 Project, presents some of the projected performance characteristics and conceptual missions for future systems, and provides detailed analysis of the recommended mission planning elements for operating HALE UAS in the NAS.

  8. An integrated system for interactive continuous learning of categorical knowledge

    NASA Astrophysics Data System (ADS)

    Skočaj, Danijel; Vrečko, Alen; Mahnič, Marko; Janíček, Miroslav; Kruijff, Geert-Jan M.; Hanheide, Marc; Hawes, Nick; Wyatt, Jeremy L.; Keller, Thomas; Zhou, Kai; Zillich, Michael; Kristan, Matej

    2016-09-01

    This article presents an integrated robot system capable of interactive learning in dialogue with a human. Such a system needs to have several competencies and must be able to process different types of representations. In this article, we describe a collection of mechanisms that enable integration of heterogeneous competencies in a principled way. Central to our design is the creation of beliefs from visual and linguistic information, and the use of these beliefs for planning system behaviour to satisfy internal drives. The system is able to detect gaps in its knowledge and to plan and execute actions that provide information needed to fill these gaps. We propose a hierarchy of mechanisms which are capable of engaging in different kinds of learning interactions, e.g. those initiated by a tutor or by the system itself. We present the theory these mechanisms are build upon and an instantiation of this theory in the form of an integrated robot system. We demonstrate the operation of the system in the case of learning conceptual models of objects and their visual properties.

  9. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  10. Systems design and comparative analysis of large antenna concepts

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Ferebee, M. J., Jr.

    1983-01-01

    Conceptual designs are evaluated and comparative analyses conducted for several large antenna spacecraft for Land Mobile Satellite System (LMSS) communications missions. Structural configurations include trusses, hoop and column and radial rib. The study was conducted using the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. The current capabilities, development status, and near-term plans for the IDEAS system are reviewed. Overall capabilities are highlighted. IDEAS is an integrated system of computer-aided design and analysis software used to rapidly evaluate system concepts and technology needs for future advanced spacecraft such as large antennas, platforms, and space stations. The system was developed at Langley to meet a need for rapid, cost-effective, labor-saving approaches to the design and analysis of numerous missions and total spacecraft system options under consideration. IDEAS consists of about 40 technical modules efficient executive, data-base and file management software, and interactive graphics display capabilities.

  11. EPS analysis of nominal STS-1 flight

    NASA Technical Reports Server (NTRS)

    Wolfgram, D. F.; Pipher, M. D.

    1980-01-01

    The results of electrical power system (EPS) analysis of the planned Shuttle Transportation System Flight 1 mission are presented. The capability of the orbiter EPS to support the planned flight and to provide program tape information and supplementary data specifically requested by the flight operations directorate was assessed. The analysis was accomplished using the orbiter version of the spacecraft electrical power simulator program, operating from a modified version of orbiter electrical equipment utilization baseline revision four. The results indicate that the nominal flight, as analyzed, is within the capabilities of the orbiter power generation system, but that a brief, and minimal, current overload may exist between main distributor 1 and mid power controlled 1, and that inverter 9 may the overloaded for extended periods of time. A comparison of results with launch commit criteria also indicated that some of the presently existing launch redlines may be violated during the terminal countdown.

  12. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 2: Program plans

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.

  13. Advanced Telescopes and Observatories and Scientific Instruments and Sensors Capability Roadmaps: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Coulter, Dan; Bankston, Perry

    2005-01-01

    Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  14. Autonomous mission management for UAVs using soar intelligent agents

    NASA Astrophysics Data System (ADS)

    Gunetti, Paolo; Thompson, Haydn; Dodd, Tony

    2013-05-01

    State-of-the-art unmanned aerial vehicles (UAVs) are typically able to autonomously execute a pre-planned mission. However, UAVs usually fly in a very dynamic environment which requires dynamic changes to the flight plan; this mission management activity is usually tasked to human supervision. Within this article, a software system that autonomously accomplishes the mission management task for a UAV will be proposed. The system is based on a set of theoretical concepts which allow the description of a flight plan and implemented using a combination of Soar intelligent agents and traditional control techniques. The system is capable of automatically generating and then executing an entire flight plan after being assigned a set of objectives. This article thoroughly describes all system components and then presents the results of tests that were executed using a realistic simulation environment.

  15. Design requirements for SRB production control system. Volume 3: Package evaluation, modification and hardware

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software package evaluation was designed to analyze commercially available, field-proven, production control or manufacturing resource planning management technology and software package. The analysis was conducted by comparing SRB production control software requirements and conceptual system design to software package capabilities. The methodology of evaluation and the findings at each stage of evaluation are described. Topics covered include: vendor listing; request for information (RFI) document; RFI response rate and quality; RFI evaluation process; and capabilities versus requirements.

  16. Mission planning for large microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schartel, W. A.

    1984-01-01

    Earth orbiting, remote sensing platforms that use microwave radiometers as sensors are susceptible to data interpretation difficulties. The capability of the large microwave radiometer (LMR) was augmented with the inclusion of auxillary sensors that expand and enhance the LMR capability. The final system configuration demonstrates a holistic approach in the design of future orbiting remote sensing platforms that use a LMR as the core instrument.

  17. Army Personnel Management System Study (PMS2). Volume II. Appendices.

    DTIC Science & Technology

    1979-11-06

    demonstrated desirability, some functions would be facilitated, costs need further study, and mobilization capabilities should be emphasized. PMS2 is basis for current reorganization planning within ODCSPER.

  18. Mobile User Objective System (MUOS) Multi-Service Operational Test and Evaluation-2 Report (with Classified Annex)

    DTIC Science & Technology

    2016-06-01

    an effective system monitoring and display capability. The SOM, C-SSE, and resource managers access MUOS via a web portal called the MUOS Planning...and Provisioning Application (PlanProvApp). This web portal is their window into MUOS and is designed to provide them with a shared understanding of...including page loading errors, partially loaded web pages, incomplete reports, and inaccurate reports. For example, MUOS reported that there were

  19. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  20. Intelligent robotic tracker

    NASA Technical Reports Server (NTRS)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  1. Patient accounting systems: needs and capabilities.

    PubMed

    Kennedy, O G; Collignon, S

    1987-09-01

    In the first article of this series, it was stated that most finance executives are not very satisfied with the performance of their current patient accounting systems. What steps can a patient accounting system planner take to help ensure the system selected will garner high ratings from managers and users? Two primarily steps need to be taken. First, the planner needs to perform a thorough evaluation of both near- and long-term patient accounting requirements. He should determine which features and functions are most critical and ensure they are incorporated as selection criteria. The planner should also incorporate institutional planning into that process, such as planned expansion of facilities or services, to ensure that the system selected has the growth potential, interfacing capabilities, and flexibility to respond to the changing environment. Then, once system needs are fully charted, the planner should educate himself about the range of patient accounting system solutions available. The data show that most financial managers lack knowledge about most of the major patient accounting system vendors in the marketplace. Once vendors that offer systems that seemingly could meet needs are identified, the wise system planner will also want to obtain information from users about those vendors, to determine whether the systems perform as described and whether the vendor has been responsive to the needs of its customers. This step is a particularly important part of the planning process, because the data also show that users of some systems are significantly more satisfied than users of other patient accounting systems.

  2. A US History of Airbreathing/Rocket Combined-Cycle (RBCC) Propulsion for Powering Future Aerospace Transports, with a Look Ahead to the Year 2020

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1999-01-01

    A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.

  3. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  4. SPAR improved structure/fluid dynamic analysis capability

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Pearson, M. L.

    1983-01-01

    The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.

  5. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  6. Development of Shanghai satellite laser ranging station

    NASA Technical Reports Server (NTRS)

    Yang, Fu-Min; Tan, De-Tong; Xiao, Chi-Kun; Chen, Wan-Zhen; Zhang, J.-H.; Zhang, Z.-P.; Lu, Wen-Hu; Hu, Z.-Q.; Tang, W.-F.; Chen, J.-P.

    1993-01-01

    The topics covered include the following: improvement of the system hardware; upgrading of the software; the observation status; preliminary daylight tracking capability; testing the new type of laser; and future plans.

  7. Army Personnel Management System Study (PMS2). Volume I. Main Report.

    DTIC Science & Technology

    1979-11-06

    demonstrated desirability, some functions would be facilitated, costs need further study, and mobilization capabilities should be emphasized. PMS2 is basis for current reorganization planning within ODCSPER.

  8. Commercialization of the Stone and Webster/Conoco SCB technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, R.C.; Johnson, W.B.; Ratliff, B.D.

    1982-06-01

    Stone and Webster have developed a second generation recirculating fluidized bed boiler system, named Solids Circulation Boiler (SCB). The heart of the system is the recirculating fluidized bed, which is schematized, and explained. In November 1981 Conoco announced plans to construct an SCB at Lake Charles LA. Preliminary plot plan and elevation drawings are provided. The advantages of SCB are its rapid and controlled turn on and turn down capability, high carbon efficiency, simple coal and limestone feed system, high sulphur capture, compact design, and low NOx emission.

  9. Nasa Program Plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  10. APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, G.K.

    1997-01-01

    Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is tomore » provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria.« less

  11. Control Architecture for Robotic Agent Command and Sensing

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel

    2008-01-01

    Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to be accomplished by the vehicle(s).

  12. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin

    PubMed Central

    Hu, Chuli; Li, Jie; Lin, Xin

    2018-01-01

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors. PMID:29883425

  13. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin.

    PubMed

    Hu, Chuli; Li, Jie; Lin, Xin; Chen, Nengcheng; Yang, Chao

    2018-05-21

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors.

  14. FY 1987 current fiscal year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Current Year Work Plan presents a detailed description of the activities to be performed by the Joint Integration Office during FY87. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance, task monitoring, informationmore » gathering and task reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of program status reports for DOE. Program Analysis is performed by the JIO to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. This work plan includes: system analyses, requirements analyses, interim and procedure development, legislative and regulatory analyses, dispatch and traffic analyses, and data bases.« less

  15. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  16. Washington Community Colleges Factbook. Addendum B: A Description of the Community College Management Information System.

    ERIC Educational Resources Information Center

    Meier, Terre; Bundy, Larry

    The Management Information System (MIS) of the Washington State system of community colleges was designed to be responsive to legislative and district requests for information and to enhance the State Board's capabilities to manage the community college system and integrate its budgeting and planning processes. The MIS consists of seven…

  17. Project USHER (Uniting Science and Humanness for Educational Redesign): A Proposal for Implementing a Humanistic Management System in Community Colleges.

    ERIC Educational Resources Information Center

    League for Innovation in the Community Coll., Los Angeles, CA.

    Project USHER is designed to help community colleges implement a humanistic management system. This objective is to be achieved by giving each participating college the capability to redesign its own educational system through implementing a planning, programming, budgeting, and evaluation system (PPBE) within the context of participative…

  18. MOS 2.0: The Next Generation in Mission Operations Systems

    NASA Technical Reports Server (NTRS)

    Bindschadler, Duane L.; Boyles, Carole A.; Carrion, Carlos; Delp, Chris L.

    2010-01-01

    A Mission Operations System (MOS) or Ground System constitutes that portion of an overall space mission Enterprise that resides here on Earth. Over the past two decades, technological innovations in computing and software technologies have allowed an MOS to support ever more complex missions while consuming a decreasing fraction of Project development budgets. Despite (or perhaps, because of) such successes, it is routine to hear concerns about the cost of MOS development. At the same time, demand continues for Ground Systems which will plan more spacecraft activities with fewer commanding errors, provide scientists and engineers with more autonomous functionality, process and manage larger and more complex data more quickly, all while requiring fewer people to develop, deploy, operate and maintain them. One successful approach to such concerns over this period is a multimission approach, based on the reuse of portions (most often software) developed and used in previous missions. The Advanced Multi-Mission Operations System (AMMOS), developed for deep-space science missions, is one successful example of such an approach. Like many computing-intensive systems, it has grown up in a near-organic fashion from a relatively simple set of tools into a complexly interrelated set of capabilities. Such systems, like a city lacking any concept of urban planning, can and will grow in ways that are neither efficient nor particularly easy to sustain. To meet the growing demands and unyielding constraints placed on ground systems, a new approach is necessary. Under the aegis of a multi-year effort to revitalize the AMMOS's multimission operations capabilities, we are utilizing modern practices in systems architecting and model-based engineering to create the next step in Ground Systems: MOS 2.0. In this paper we outline our work (ongoing and planned) to architect and design a multimission MOS 2.0, describe our goals and measureable objectives, and discuss some of the benefits that this top-down, architectural approach holds for creating a more flexible and capable MOS for Missions while holding the line on cost.

  19. NASA's Space Launch System (SLS) Program: Mars Program Utilization

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.

  20. Self-Aware Vehicles: Mission and Performance Adaptation to System Health

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Leonard, Charles; Scotti, Stephen J.

    2016-01-01

    Advances in sensing (miniaturization, distributed sensor networks) combined with improvements in computational power leading to significant gains in perception, real-time decision making/reasoning and dynamic planning under uncertainty as well as big data predictive analysis have set the stage for realization of autonomous system capability. These advances open the design and operating space for self-aware vehicles that are able to assess their own capabilities and adjust their behavior to either complete the assigned mission or to modify the mission to reflect their current capabilities. This paper discusses the self-aware vehicle concept and associated technologies necessary for full exploitation of the concept. A self-aware aircraft, spacecraft or system is one that is aware of its internal state, has situational awareness of its environment, can assess its capabilities currently and project them into the future, understands its mission objectives, and can make decisions under uncertainty regarding its ability to achieve its mission objectives.

  1. Computer graphics for management: An abstract of capabilities and applications of the EIS system

    NASA Technical Reports Server (NTRS)

    Solem, B. J.

    1975-01-01

    The Executive Information Services (EIS) system, developed as a computer-based, time-sharing tool for making and implementing management decisions, and including computer graphics capabilities, was described. The following resources are available through the EIS languages: centralized corporate/gov't data base, customized and working data bases, report writing, general computational capability, specialized routines, modeling/programming capability, and graphics. Nearly all EIS graphs can be created by a single, on-line instruction. A large number of options are available, such as selection of graphic form, line control, shading, placement on the page, multiple images on a page, control of scaling and labeling, plotting of cum data sets, optical grid lines, and stack charts. The following are examples of areas in which the EIS system may be used: research, estimating services, planning, budgeting, and performance measurement, national computer hook-up negotiations.

  2. A Clinical Information Display System

    PubMed Central

    Blum, Bruce J.; Lenhard, Raymond E.; Braine, Hayden; Kammer, Anne

    1977-01-01

    A clinical information display system has been implemented as part of a prototype Oncology Clinical Information System for the Johns Hopkins Oncology Center. The information system has been developed to support the management of patient therapy. Capabilities in the prototype include a patient data system, a patient abstract, a tumor registry, an appointment system, a census system, and a clinical information display system. This paper describes the clinical information display component of the prototype. It has the capability of supporting up to 10,000 patient records with online data entry and editing. At the present time, the system is being used only in the Oncology Center. There are plans, however, for trial use by other departments, and the system represents a tool with a potential for more general application.

  3. Space Station Mission Planning Study (MPS) development study. Volume 3: Software development plan

    NASA Technical Reports Server (NTRS)

    Klus, W. L.

    1987-01-01

    A software development plan is presented for the definition, design, and implementation of the Space Station (SS) Payload Mission Planning System (MPS). This plan is an evolving document and must be updated periodically as the SS design and operations concepts as well as the SS MPS concept evolve. The major segments of this plan are as follows: an overview of the SS MPS and a description of its required capabilities including the computer programs identified as configurable items with an explanation of the place and function of each within the system; an overview of the project plan and a detailed description of each development project activity breaking each into lower level tasks where applicable; identification of the resources required and recommendations for the manner in which they should be utilized including recommended schedules and estimated manpower requirements; and a description of the practices, standards, and techniques recommended for the SS MPS Software (SW) development.

  4. Target Capabilities List: A Companion to the National Preparedness Guidelines

    DTIC Science & Technology

    2007-09-01

    lowest possible geographic, organizational, and jurisdictional level using the principles in the National Incident Management System (NIMS). The...Response Plan. U.S. Department of Homeland Security. December 2004. 3. Biological Incident Annex. In the National Response Plan. U.S. Department of...elements of the continuum and improve interoperability, public safety and service agency practitioners should observe the following principles : Gain

  5. Diagnosis and Prognosis of Weapon Systems

    NASA Technical Reports Server (NTRS)

    Nolan, Mary; Catania, Rebecca; deMare, Gregory

    2005-01-01

    The Prognostics Framework is a set of software tools with an open architecture that affords a capability to integrate various prognostic software mechanisms and to provide information for operational and battlefield decision-making and logistical planning pertaining to weapon systems. The Prognostics NASA Tech Briefs, February 2005 17 Framework is also a system-level health -management software system that (1) receives data from performance- monitoring and built-in-test sensors and from other prognostic software and (2) processes the received data to derive a diagnosis and a prognosis for a weapon system. This software relates the diagnostic and prognostic information to the overall health of the system, to the ability of the system to perform specific missions, and to needed maintenance actions and maintenance resources. In the development of the Prognostics Framework, effort was focused primarily on extending previously developed model-based diagnostic-reasoning software to add prognostic reasoning capabilities, including capabilities to perform statistical analyses and to utilize information pertaining to deterioration of parts, failure modes, time sensitivity of measured values, mission criticality, historical data, and trends in measurement data. As thus extended, the software offers an overall health-monitoring capability.

  6. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Duda, R. O.; Fikes, R. E.; Hart, P. E.; Nilsson, N. J.; Thorndyke, P. W.; Wilber, B. M.

    1971-01-01

    Research in the field of artificial intelligence is discussed. The focus of recent work has been the design, implementation, and integration of a completely new system for the control of a robot that plans, learns, and carries out tasks autonomously in a real laboratory environment. The computer implementation of low-level and intermediate-level actions; routines for automated vision; and the planning, generalization, and execution mechanisms are reported. A scenario that demonstrates the approximate capabilities of the current version of the entire robot system is presented.

  7. Rough-Cut Capacity Planning in Multimodal Freight Transportation Networks

    DTIC Science & Technology

    2012-09-30

    transportation system to losses in es - tablished routes or assets? That is, what is the nature and length of system capability degradation due to these...Multimodal Rough-Cut Capacity Planning is mod- eled using the Resource Constrained Shortest Path Problem. We demonstrate how this approach supports...of non-zero ele - ments and the 0 entries depict appropriately dimensioned blocks of 0 entries.∣∣∣∣∑ k Ck ∣∣∣∣ Σ 0 0 0 0 Σ 0 0

  8. Satellite power system (SPS) concept definition study. Volume 3: Experimental verification definition

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    An evolutionary Satellite Power Systems development plan was prepared. Planning analysis was directed toward the evolution of a scenario that met the stated objectives, was technically possible and economically attractive, and took into account constraining considerations, such as requirements for very large scale end-to-end demonstration in a compressed time frame, the relative cost/technical merits of ground testing versus space testing, and the need for large mass flow capability to low Earth orbit and geosynchronous orbit at reasonable cost per pound.

  9. Machine translation project alternatives analysis

    NASA Technical Reports Server (NTRS)

    Bajis, Catherine J.; Bedford, Denise A. D.

    1993-01-01

    The Machine Translation Project consists of several components, two of which, the Project Plan and the Requirements Analysis, have already been delivered. The Project Plan details the overall rationale, objectives and time-table for the project as a whole. The Requirements Analysis compares a number of available machine translation systems, their capabilities, possible configurations, and costs. The Alternatives Analysis has resulted in a number of conclusions and recommendations to the NASA STI program concerning the acquisition of specific MT systems and related hardware and software.

  10. Marshall Space Flight Center Propulsion Systems Department (PSD) KM Initiative

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul; Varnadoe, Tom; McCarter, Mike

    2006-01-01

    NASA Marshall Space Flight Center s Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities with in the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center Of Excellence (AISCE), Intergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KM implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to support the planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have been performed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural/KM surveys and practitioner interviews include: executive and senior management sponsorship, KM awareness, promotion and training, cultural change management, process improvement, leveraging existing resources and new innovative technologies to align with other NASA KM initiatives (convergence: the big picture). To enable results based incremental implementation and future growth of the KM initiative, key performance measures have been identified including stakeholder value, system utility, learning and growth (knowledge capture, sharing, reduced anomaly recurrence), cultural change, process improvement and return-on-investment. The next steps for the initial implementation spiral (focused on SSME Turbomachinery) have been identified, largely based on the organization and compilation of summary level engineering process models, data capture matrices, functional models and conceptual-level systems architecture. Key elements include detailed KM requirements definition, KM technology architecture assessment, evaluation and selection, deployable KM Pilot design, development, implementation and evaluation, and justifying full implementation (estimated Return-on-Investment). Features identified for the notional system architecture include the knowledge presentation layer (and its components), knowledge network layer (and its components), knowledge storage layer (and its components), User Interface and capabilities. This paper provides a snapshot of the progress to date, the near term planning for deploying the KM pilot project and a forward look at results based growth of KM capabilities with-in the MSFC PSD.

  11. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  12. Defence Capability Plan 2006-2016

    DTIC Science & Technology

    2006-06-14

    and supply chain management ; and • developing strategies focussing on critical industry capabilities and Defence’s ability to manage supply and... managers undertake pre-approval study activity and prepare the necessary departmental documentation. More formal industry solicitation would continue...Defence Management Systems Improvement Less than $10m JP 2085 Phase 1B Explosive Ordnance Warstock $150m to $200m JP 2090 Phase 1B Combined Information

  13. Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.

  14. Exploring our outer solar system - The Giant Planet System Observers

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sittler, E. C., Jr.; Sturner, S. J.; Pitman, J. T.

    As space-faring peoples now work together to plan and implement future missions that robotically prepare for landing humans to explore the Moon, and later Mars, the time is right to develop evolutionary approaches for extending this next generation of exploration beyond Earth's terrestrial planet neighbors to the realm of the giant planets. And while initial fly-by missions have been hugely successful in providing exploratory surveys of what lies beyond Mars, we need to consider now what robotic precursor mission capabilities we need to emplace that prepare us properly, and comprehensively, for long-term robotic exploration, and eventual human habitation, beyond Mars to the outer reaches of our solar system. To develop practical strategies that can establish prioritized capabilities, and then develop a means for achieving those capabilities within realistic budget and technology considerations, and in reasonable timeframes, is our challenge. We suggest one component of such an approach to future outer planets exploration is a series of Giant Planets System Observer (GPSO) missions that provide for long- duration observations, monitoring, and relay functions to help advance our understanding of the outer planets and thereby enable a sound basis for planning their eventual exploration by humans. We envision these missions as being comparable to taking Hubble-class remote-sensing facilities, along with the space physics capabilities of long-lived geospace and heliospheric missions, to the giant planet systems and dedicating long observing lifetimes (HST, 16 yr.; Voyagers, 29 yr.) to the exhaustive study and characterization of those systems. GPSO missions could feature 20-yr+ extended mission lifetimes, direct inject trajectories to maximize useful lifetime on target, placement strategies that take advantage of natural environment shielding (e.g., Ganymede magnetic field) where possible, orbit designs having favorable planetary system viewing geometries, comprehensive broadband remote sensing capabilities, a complementary and redundant science instrument suite, fully autonomous operations, high bandwidth science data downlink, advanced solar power technologies (supplemented where necessary), functional interfaces that are compatible with future small fly-by missions, and fail-safe features for mission operations and planetary protection, 1 among other considerations. We describe in this paper one example of a GPSO-type mission our team has been formulating as a practical approach that addresses many of the most highly-rated future science exploration needs in the Jovian system, including the exploration of Europa, observation of Io and Ganymede, and characterization of the Jovian atmosphere. We call this mission concept the Ganymede Exploration Observer with Probes (GEOP), and describe its architecture, mission design, system features, science capabilities, key trades, and notional development plan for implementation within the next decade. 2

  15. CNPq/INPE-LANDSAT system report of activities

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Barbosa, M. N.

    1982-01-01

    The status of the Brazilian LANDSAT facilities and the results achieved are presented. In addition, a LANDSAT product sales/distribution analysis is provided. Data recording and processing capabilities and planned products are addressed.

  16. Development of a remote sensing network for time-sensitive detection of fine scale damage to transportation infrastructure : [final report].

    DOT National Transportation Integrated Search

    2015-09-23

    This research project aimed to develop a remote sensing system capable of rapidly identifying fine-scale damage to critical transportation infrastructure following hazard events. Such a system must be pre-planned for rapid deployment, automate proces...

  17. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  18. Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    NASA Technical Reports Server (NTRS)

    Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.

  19. Water resources planning based on complex system dynamics: A case study of Tianjin city

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Zhang, H. W.; Chen, B.; Chen, G. Q.; Zhao, X. H.

    2008-12-01

    A complex system dynamic (SD) model focusing on water resources, termed as TianjinSD, is developed for the integrated and scientific management of the water resources of Tianjin, which contains information feedback that governs interactions in the system and is capable of synthesizing component-level knowledge into system behavior simulation at an integrated level, thus presenting reasonable predictive results for policy-making on water resources allocation and management. As for the Tianjin city, interactions among 96 components for 12 years are explored and four planning alternatives are chosen, one of which is based on the conventional mode assuming that the existing pattern of human activities will be prevailed, while the others are alternative planning designs based on the interaction of local authorities and planning researchers. Optimal mode is therefore obtained according to different scenarios when compared the simulation results for evaluation of different decisions and dynamic consequences.

  20. NASA's Space Launch System: Progress Toward the Proving Ground

    NASA Technical Reports Server (NTRS)

    Jackman, Angie

    2017-01-01

    Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle. center dot Payload fairings of up to 10-meter diameter are planned. Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t. center dot Evolved version of SLS will offer greatest-ever capability of greater than 130 t to LEO. SLS offers reduced transit times to the outer solar system by half or greater. center dot Higher characteristic energy (C3) also enables larger payloads to destination.

  1. EVA Systems Technology Gaps and Priorities 2017

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Buffington, Jesse A.

    2017-01-01

    Performance of Extra-Vehicular Activities (EVA) has been and will continue to be a critical capability for human space flight. Human exploration missions beyond LEO will require EVA capability for either contingency or nominal activities to support mission objectives and reduce mission risk. EVA systems encompass a wide array of products across pressure suits, life support systems, EVA tools and unique spacecraft interface hardware (i.e. EVA Translation Paths and EVA Worksites). In a fiscally limited environment with evolving transportation and habitation options, it is paramount that the EVA community's strategic planning and architecture integration products be reviewed and vetted for traceability between the mission needs far into the future to the known technology and knowledge gaps to the current investments across EVA systems. To ascertain EVA technology and knowledge gaps many things need to be brought together, assessed and analyzed. This includes an understanding of the destination environments, various mission concept of operations, current state of the art of EVA systems, EVA operational lessons learned, and reference advanced capabilities. A combined assessment of these inputs should result in well-defined list of gaps. This list can then be prioritized depending on the mission need dates and time scale of the technology or knowledge gap closure plan. This paper will summarize the current state of EVA related technology and knowledge gaps derived from NASA's Exploration EVA Reference Architecture and Operations Concept products. By linking these products and articulating NASA's approach to strategic development for EVA across all credible destinations an EVA could be done in, the identification of these gaps is then used to illustrate the tactical and strategic planning for the EVA technology development portfolio. Finally, this paper illustrates the various "touch points" with other human exploration risk identification areas including human health and performance.

  2. NASA's Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human spaceflight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Making its first uncrewed test flight in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, capable of supporting human missions into deep space and to Mars. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130 t lift capability. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and recordbreaking engine testing, to life-cycle milestones such as the vehicle's Preliminary Design Review in the summer of 2013. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. In addition, this paper will demonstrate how the Space Launch System is being designed to enable or enhance not only human exploration missions, but robotic scientific missions as well. Because of its unique launch capabilities, SLS will support simplifying spacecraft complexity, provide improved mass margins and radiation mitigation, and reduce mission durations. These capabilities offer attractive advantages for ambitious science missions by reducing infrastructure requirements, cost, and schedule. A traditional baseline approach for a mission to investigate the Jovian system would require a complicated trajectory with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, offering significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, providing scientific results sooner and at lower operational cost. The SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure, and will revolutionize science mission planning and design for years to come. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  3. 2006 Pacific Northwest Loads and Resources Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    2006-03-01

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determiningmore » BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of both the Federal system and the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This surplus energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These energy deficits will be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. This study incorporates information on Pacific Northwest (PNW) regional retail loads, contract obligations, and contract resources. This loads and resources analysis simulates the operation of the power system in the PNW. The simulated hydro operation incorporates plant characteristics, streamflows, and non-power requirements from the current Pacific Northwest Coordination Agreement (PNCA). Additional resource capability estimates were provided by BPA, PNW Federal agency, public agency, cooperative, U.S. Bureau of Reclamation (USBR), and investor-owned utility (IOU) customers furnished through annual PNUCC data submittals for 2005 and/or direct submittals to BPA. The 2006 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2006 White Book analysis updates the 2004 White Book. This analysis shows projections of the Federal system and region's yearly average annual energy consumption and resource availability for the study period, OY 2007-2016. The study also presents projections of Federal system and region expected 1-hour monthly peak demand, monthly energy demand, monthly 1-hour peak generating capability, and monthly energy generation for OY 2007, 2011, and 2016. BPA is investigating a new approach in capacity planning depicting the monthly Federal system 120-hour peak generating capability and 120-hour peak surplus/deficit for OY 2007, 2011, and 2016. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.« less

  4. Safe teleoperation based on flexible intraoperative planning for robot-assisted laser microsurgery.

    PubMed

    Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new intraoperative planning system created to improve precision and safety in teleoperated laser microsurgeries. It addresses major safety issues related to real-time control of a surgical laser during teleoperated procedures, which are related to the reliability and robustness of the telecommunication channels. Here, a safe solution is presented, consisting in a new planning system architecture that maintains the flexibility and benefits of real-time teleoperation and keeps the surgeon in control of all surgical actions. The developed system is based on our virtual scalpel system for robot-assisted laser microsurgery, and allows the intuitive use of stylus to create surgical plans directly over live video of the surgical field. In this case, surgical plans are defined as graphic objects overlaid on the live video, which can be easily modified or replaced as needed, and which are transmitted to the main surgical system controller for subsequent safe execution. In the process of improving safety, this new planning system also resulted in improved laser aiming precision and improved capability for higher quality laser procedures, both due to the new surgical plan execution module, which allows very fast and precise laser aiming control. Experimental results presented herein show that, in addition to the safety improvements, the new planning system resulted in a 48% improvement in laser aiming precision when compared to the previous virtual scalpel system.

  5. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  6. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  7. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden listens to a reporter’s question after he announced the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  8. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Astronaut Mike Fincke, a former commander of the International Space Station, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  9. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  10. Terrestrial Planet Finder: Technology Development Plans

    NASA Technical Reports Server (NTRS)

    Lindensmith, Chris

    2004-01-01

    One of humanity's oldest questions is whether life exists elsewhere in the universe. The Terrestrial Planet Finder (TPF) mission will survey stars in our stellar neighborhood to search for planets and perform spectroscopic measurements to identify potential biomarkers in their atmospheres. In response to the recently published President's Plan for Space Exploration, TPF has plans to launch a visible-light coronagraph in 2014, and a separated-spacecraft infrared interferometer in 2016. Substantial funding has been committed to the development of the key technologies that are required to meet these goals for launch in the next decade. Efforts underway through industry and university contracts and at JPL include a number of system and subsystem testbeds, as well as components and numerical modeling capabilities. The science, technology, and design efforts are closely coupled to ensure that requirements and capabilities will be consistent and meet the science goals.

  11. Workshop Proceedings: Sensor Systems for Space Astrophysics in the 21st Century, Volume 2

    NASA Technical Reports Server (NTRS)

    Wilson, Barbara A. (Editor)

    1991-01-01

    In 1989, the Astrophysics Division of the Office of Space Science and Applications initiated the planning of a technology development program, Astrotech 21, to develop the technological base for the Astrophysics missions developed in the period 1995 to 2015. The Sensor Systems for Space Astrophysics in the 21st Century Workshop was one of three Integrated Technology Planning workshops. Its objectives were to develop an understanding of the future comprehensive development program to achieve the required capabilities. Program plans and recommendations were prepared in four areas: x ray and gamma ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.

  12. A planning and scheduling lexicon

    NASA Technical Reports Server (NTRS)

    Cruz, Jennifer W.; Eggemeyer, William C.

    1989-01-01

    A lexicon related to mission planning and scheduling for spacecraft is presented. Planning and scheduling work is known as sequencing. Sequencing is a multistage process of merging requests from both the science and engineering arenas to accomplish the objectives defined in the requests. The multistage process begins with the creation of science and engineering goals, continues through their integration into the sequence, and eventually concludes with command execution onboard the spacecraft. The objective of this publication is to introduce some formalism into the field of spacecraft sequencing-system technology. This formalism will make it possible for researchers and potential customers to communicate about system requirements and capabilities in a common language.

  13. Integrated System Health Management (ISHM) and Autonomy

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Walker, Mark G.

    2018-01-01

    Systems capabilities on ISHM (Integrated System Health Management) and autonomy have traditionally been addressed separately. This means that ISHM functions, such as anomaly detection, diagnostics, prognostics, and comprehensive system awareness have not been considered traditionally in the context of autonomy functions such as planning, scheduling, and mission execution. One key reason is that although they address systems capabilities, both ISHM and autonomy have traditionally individually been approached as independent strategies and models for analysis. Additionally, to some degree, a unified paradigm for ISHM and autonomy has been difficult to implement due to limitations of hardware and software. This paper explores a unified treatment of ISHM and autonomy in the context of distributed hierarchical autonomous operations.

  14. Integrated system for single leg walking

    NASA Astrophysics Data System (ADS)

    Simmons, Reid; Krotkov, Eric; Roston, Gerry

    1990-07-01

    The Carnegie Mellon University Planetary Rover project is developing a six-legged walking robot capable of autonomously navigating, exploring, and acquiring samples in rugged, unknown environments. This report describes an integrated software system capable of navigating a single leg of the robot over rugged terrain. The leg, based on an early design of the Ambler Planetary Rover, is suspended below a carriage that slides along rails. To walk, the system creates an elevation map of the terrain from laser scanner images, plans an appropriate foothold based on terrain and geometric constraints, weaves the leg through the terrain to position it above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced obstacles, and sand hills. The implemented system consists of a number of task-specific processes (two for planning, two for perception, one for real-time control) and a central control process that directs the flow of communication between processes.

  15. Technology Development and Deployment | Energy Analysis | NREL

    Science.gov Websites

    nexus. Example Projects Making Biofuel from Microalgae The Energy-Water-Food Nexus through the Lens of Algal Systems Planning for Algal Systems: An Energy-Water-Food Nexus Perspective (a strategic framework ) Core Capabilities Field Test Laboratory Building Sample Publications "Energy-Water-Food Nexus

  16. The SIRTF Science Center enters the home stretch

    NASA Technical Reports Server (NTRS)

    Green, W.

    2001-01-01

    This paper describes the top level architecture of the SOS, the current status of the evolution of the SSC systems and capabilities, and an overview of plans for remaining development and testing prior to launch.

  17. FY 1986 current fiscal year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office/RI during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, taskmore » monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. System models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  18. Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Salinas, Michael J.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  19. The key to successful management of STS operations: An integrated production planning system

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Thomasen, C. T.

    1985-01-01

    Space Transportation System operations managers are being confronted with a unique set of challenges as a result of increasing flight rates, the demand for flight manifest/production schedule flexibility and an emphasis on continued cost reduction. These challenges have created the need for an integrated production planning system that provides managers with the capability to plan, schedule, status and account for an orderly flow of products and services across a large, multi-discipline organization. With increased visibility into the end-to-end production flow for individual and parallel missions in process, managers can assess the integrated impact of changes, identify and measure the interrelationships of resource, schedule, and technical performance requirements and prioritize productivity enhancements.

  20. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 6: IPAD system development and operation

    NASA Technical Reports Server (NTRS)

    Redhed, D. D.; Tripp, L. L.; Kawaguchi, A. S.; Miller, R. E., Jr.

    1973-01-01

    The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered.

  1. Definition of technology development missions for early space station satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  2. Mission Data System Java Edition Version 7

    NASA Technical Reports Server (NTRS)

    Reinholtz, William K.; Wagner, David A.

    2013-01-01

    The Mission Data System framework defines closed-loop control system abstractions from State Analysis including interfaces for state variables, goals, estimators, and controllers that can be adapted to implement a goal-oriented control system. The framework further provides an execution environment that includes a goal scheduler, execution engine, and fault monitor that support the expression of goal network activity plans. Using these frameworks, adapters can build a goal-oriented control system where activity coordination is verified before execution begins (plan time), and continually during execution. Plan failures including violations of safety constraints expressed in the plan can be handled through automatic re-planning. This version optimizes a number of key interfaces and features to minimize dependencies, performance overhead, and improve reliability. Fault diagnosis and real-time projection capabilities are incorporated. This version enhances earlier versions primarily through optimizations and quality improvements that raise the technology readiness level. Goals explicitly constrain system states over explicit time intervals to eliminate ambiguity about intent, as compared to command-oriented control that only implies persistent intent until another command is sent. A goal network scheduling and verification process ensures that all goals in the plan are achievable before starting execution. Goal failures at runtime can be detected (including predicted failures) and handled by adapted response logic. Responses can include plan repairs (try an alternate tactic to achieve the same goal), goal shedding, ignoring the fault, cancelling the plan, or safing the system.

  3. Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis

    NASA Technical Reports Server (NTRS)

    Kopp, H.; Trettau, R.; Zolotar, B.

    1984-01-01

    The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.

  4. Marshall Space Flight Center Propulsion Systems Department (PSD) Knowledge Management (KM) Initiative

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard

    2006-01-01

    NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include: executive and senior management sponsorship, KM awareness, promotion and training, cultural change management, process improvement, leveraging existing resources and new innovative technologies to align with other NASA KM initiatives (convergence: the big picture). To enable results based incremental implementation and future growth of the KM initiative, key performance measures have been identified including stakeholder value, system utility, learning and growth (knowledge capture, sharing, reduced anomaly recurrence), cultural change, process improvement and return-on-investment. The next steps for the initial implementation spiral (focused on SSME Turbomachinery) have been identified, largely based on the organization and compilation of summary level engineering process models, data capture matrices, functional models and conceptual-level svstems architecture. Key elements include detailed KM requirements definition, KM technology architecture assessment, - evaluation and selection, deployable KM Pilot design, development, implementation and evaluation, and justifying full implementation (estimated Return-on-Investment). Features identified for the notional system architecture include the knowledge presentation layer (and its components), knowledge network layer (and its components), knowledge storage layer (and its components), User Interface and capabilities. This paper provides a snapshot of the progress to date, the near term planning for deploying the KM pilot project and a forward look at results based growth of KM capabilities with-in the MSFC PSD.

  5. Beyond Enterprise Resource Planning (ERP): The Next Generation Enterprise Resource Planning Environment

    DTIC Science & Technology

    2012-02-01

    Software as a Service ( SaaS )— SaaS solutions involve conforming an organization’s...consumer of the utilized service . Service Models Software as a Service ( SaaS ) The capability provided to the consumer is to use the provider’s...operating system, platforms, and software installed. In contrast, Software as a Service ( SaaS ) abstracts the entire stack except for a few

  6. Mission Operations Planning and Scheduling System (MOPSS)

    NASA Technical Reports Server (NTRS)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  7. Design of a low cost earth resources system

    NASA Technical Reports Server (NTRS)

    Faust, N. L.; Furman, M. D.; Spann, G. W. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Survey results indicated that users of remote sensing data in the Southeastern U.S. were increasingly turning to digital processing techniques. All the states surveyed have had some involvement in projects using digitally processed data. Even those states which do not yet have in-house capabilities for digital processing were extremely interested in and were planning to develop such capabilities.

  8. Incorporating operational flexibility into electric generation planning Impacts and methods for system design and policy analysis

    NASA Astrophysics Data System (ADS)

    Palmintier, Bryan S.

    This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or strict carbon policies. Operational flexibility describes a power system's ability to respond to predictable and unexpected changes in generation or demand. Planning and policy models have traditionally not directly captured the technical operating constraints that determine operational flexibility. However, as demonstrated in this dissertation, this capability becomes increasingly important with the greater flexibility required by significant renewables (>= 20%) and the decreased flexibility inherent in some low-carbon generation technologies. Incorporating flexibility can significantly change optimal generation and energy mixes, lower system costs, improve policy impact estimates, and enable system designs capable of meeting strict regulatory targets. Methodologically, this work presents a new clustered formulation that tractably combines a range of normally distinct power system models, from hourly unit-commitment operations to long-term generation planning. This formulation groups similar generators into clusters to reduce problem size, while still retaining the individual unit constraints required to accurately capture operating reserves and other flexibility drivers. In comparisons against traditional unit commitment formulations, errors were generally less than 1% while run times decreased by several orders of magnitude (e.g., 5000x). Extensive numerical simulations, using a realistic Texas-based power system show that ignoring flexibility can underestimate carbon emissions by 50% or result in significant load and wind shedding to meet environmental regulations. Contributions of this dissertation include: 1. Demonstrating that operational flexibility can have an important impact on power system planning, and describing when and how these impacts occur; 2. Demonstrating that a failure to account for operational flexibility can result in undesirable outcomes for both utility planners and policy analysts; and 3. Extending the state of the art for electric power system models by introducing a tractable method for incorporating unit commitment based operational flexibility at full 876o hourly resolution directly into planning optimization. Together these results encourage and offer a new flexibility-aware approach for capacity planning and accompanying policy design that can enable cleaner, less expensive electric power systems for the future. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  9. Demonstrating High-Accuracy Orbital Access Using Open-Source Tools

    NASA Technical Reports Server (NTRS)

    Gilbertson, Christian; Welch, Bryan

    2017-01-01

    Orbit propagation is fundamental to almost every space-based analysis. Currently, many system analysts use commercial software to predict the future positions of orbiting satellites. This is one of many capabilities that can replicated, with great accuracy, without using expensive, proprietary software. NASAs SCaN (Space Communication and Navigation) Center for Engineering, Networks, Integration, and Communications (SCENIC) project plans to provide its analysis capabilities using a combination of internal and open-source software, allowing for a much greater measure of customization and flexibility, while reducing recurring software license costs. MATLAB and the open-source Orbit Determination Toolbox created by Goddard Space Flight Center (GSFC) were utilized to develop tools with the capability to propagate orbits, perform line-of-sight (LOS) availability analyses, and visualize the results. The developed programs are modular and can be applied for mission planning and viability analysis in a variety of Solar System applications. The tools can perform 2 and N-body orbit propagation, find inter-satellite and satellite to ground station LOS access (accounting for intermediate oblate spheroid body blocking, geometric restrictions of the antenna field-of-view (FOV), and relativistic corrections), and create animations of planetary movement, satellite orbits, and LOS accesses. The code is the basis for SCENICs broad analysis capabilities including dynamic link analysis, dilution-of-precision navigation analysis, and orbital availability calculations.

  10. Development of methodologies and procedures for identifying STS users and uses

    NASA Technical Reports Server (NTRS)

    Archer, J. L.; Beauchamp, N. A.; Macmichael, D. C.

    1974-01-01

    A study was conducted to identify new uses and users of the new Space Transporation System (STS) within the domestic government sector. The study develops a series of analytical techniques and well-defined functions structured as an integrated planning process to assure efficient and meaningful use of the STS. The purpose of the study is to provide NASA with the following functions: (1) to realize efficient and economic use of the STS and other NASA capabilities, (2) to identify new users and uses of the STS, (3) to contribute to organized planning activities for both current and future programs, and (4) to air in analyzing uses of NASA's overall capabilities.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brouillette, Greg A.

    These are slides for various presentations on C41SR and urban disasters disasters response and recovery tools. These are all mainly charts and images of disaster response and recovery tools. Slides included have headings such as the following: vignette of a disaster response, situational awareness and common operating picture available to EOC, plume modeling capability, Program ASPECT Chemical Response Products, EPA ASPECT - Hurricane RITA Response 9/25/2005, Angel Fire Imagery, incident commander's view/police chief's view/ EMS' view, common situational awareness and collaborative planning, exercise, training capability, systems diagram, Austere Challenge 06 Sim/C4 Requirements, common situational awareness and collaborative planning, exercise, trainingmore » environment, common situational awareness, real world, crisis response, and consequence management.« less

  12. Space Technology 5: Changing the Mission Design without Changing the Hardware

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.

    2005-01-01

    The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. The validation objectives are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop, test and flight-validate three capable micro-satellites with new technologies. A three-month flight demonstration phase is planned, beginning in March 2006. This year, the mission was re-planned for a Pegasus XL dedicated launch into an elliptical polar orbit (instead of the Originally-planned Geosynchronous Transfer Orbit.) The re-plan allows the mission to achieve the same high-level technology validation objectives with a different launch vehicle. The new mission design involves a revised science validation strategy, a new orbit and different communication strategy, while minimizing changes to the ST-5 spacecraft itself. The constellation operations concepts have also been refined. While the system engineers, orbit analysts, and operations teams were re-planning the mission, the implementation team continued to make progress on the flight hardware. Most components have been delivered, and the first spacecraft is well into integration and test.

  13. Evaluation of Candidate Materials for a High-Temperature Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Bowman, Randy; Ritzert, Frank; Freedman, Marc

    2003-01-01

    The Department of Energy (DOE) and NASA have identified Stirling Radioisotope Generators (SRG) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel base superalloy 718. This temperature is at the limit of Alloy 718's capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, an assessment of material candidates was performed assuming a range of heater head temperatures. The chosen alternative material candidates will be discussed, along with the development efforts needed to ensure that these materials can meet the demanding system requirements of long-duration operation in hostile environments.

  14. Remote sensing as a source of data for outdoor recreation planning

    NASA Technical Reports Server (NTRS)

    Reed, W. E.; Goodell, H. G.; Emmitt, G. D.

    1972-01-01

    Specific data needs for outdoor recreation planning and the ability of tested remote sensors to provide sources for these data are examined. Data needs, remote sensor capabilities, availability of imagery, and advantages and problems of incorporating remote sensing data sources into ongoing planning data collection programs are discussed in detail. Examples of the use of imagery to derive data for a range of common planning analyses are provided. A selected bibliography indicates specific uses of data in planning, basic background materials on remote sensing technology, and sources of information on environmental information systems expected to use remote sensing to provide new environmental data of use in outdoor recreation planning.

  15. An intelligent planning and scheduling system for the HST servicing missions

    NASA Technical Reports Server (NTRS)

    Johnson, Jay; Bogovich, Lynn; Tuchman, Alan; Kispert, Andrew; Page, Brenda; Burkhardt, Christian; Littlefield, Ronald; Mclean, David; Potter, William; Ochs, William

    1993-01-01

    A new, intelligent planning and scheduling system has been delivered to NASA-Goddard Space Flight Center (GSFC) to provide support for the up-coming Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART is written in C and runs on a UNlX-based workstation (IBM RS/6000) under Motif. SM/PART effectively automates the complex task of building or rebuilding integrated timelines and command plans which are required by HST Servicing Mission personnel at their consoles during the missions. SM/PART is able to quickly build or rebuild timelines based on information stored in a Knowledge Base (KB) by using an Artificial Intelligence (AI) tool called the Planning And Resource Reasoning (PARR) shell. After a timeline has been built in the batch mode, it can be displayed and edited in an interactive mode with help from the PARR shell. Finally a detailed command plan is generated. The capability to quickly build or rebuild timelines and command plans provides an additional safety factor for the HST, Shuttle and Crew.

  16. NAVSTAR GPS Simulation and Analysis Program (Interim Report)

    DOT National Transportation Integrated Search

    1983-10-01

    This study assesses the capability of the planned NAVSTAR Global Positioning System (GPS) to meet civil navigation requirements. When it becomes operational in about 1983, NAVSTAR GPS will provide accurate two-dimensional and three-dimensional servic...

  17. Minnesota Land Management Information Center

    NASA Technical Reports Server (NTRS)

    Nordstrand, E. A.

    1981-01-01

    A brief history of the Minnesota Land Management Information Center is given and the present operational status and plans for future development are described. The incorporation of LANDSAT data into the system, hardware and software capabilities, and funding are addressed.

  18. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Sekerak, Michael J.

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA'a future beyond-low-Earth-orbit, human-crewed exploration plans. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. This paper presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  19. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.

  20. High Misalignment Carbon Seals for the Fan Drive Gear System Technologies

    NASA Technical Reports Server (NTRS)

    Shaughnessy, Dennis; Dobek, Lou

    2006-01-01

    Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.

  1. A public health hazard mitigation planning process.

    PubMed

    Griffith, Jennifer M; Kay Carpender, S; Crouch, Jill Artzberger; Quiram, Barbara J

    2014-01-01

    The Texas A&M Health Science Center School of Rural Public Health, a member of the Training and Education Collaborative System Preparedness and Emergency Response Learning Center (TECS-PERLC), has long-standing partnerships with 2 Health Service Regions (Regions) in Texas. TECS-PERLC was contracted by these Regions to address 2 challenges identified in meeting requirements outlined by the Risk-Based Funding Project. First, within Metropolitan Statistical Areas, there is not a formal authoritative structure. Second, preexisting tools and processes did not adequately satisfy requirements to assess public health, medical, and mental health needs and link mitigation strategies to the Public Health Preparedness Capabilities, which provide guidance to prepare for, respond to, and recover from public health incidents. TECS-PERLC, with its partners, developed a framework to interpret and apply results from the Texas Public Health Risk Assessment Tool (TxPHRAT). The 3-phase community engagement-based TxPHRAT Mitigation Planning Process (Mitigation Planning Process) and associated tools facilitated the development of mitigation plans. Tools included (1) profiles interpreting TxPHRAT results and identifying, ranking, and prioritizing hazards and capability gaps; (2) a catalog of intervention strategies and activities linked to hazards and capabilities; and (3) a template to plan, evaluate, and report mitigation planning efforts. The Mitigation Planning Process provided a framework for Regions to successfully address all funding requirements. TECS-PERLC developed more than 60 profiles, cataloged and linked 195 intervention strategies, and developed a template resulting in 20 submitted mitigation plans. A public health-focused, community engagement-based mitigation planning process was developed by TECS-PERLC and successfully implemented by the Regions. The outcomes met all requirements and reinforce the effectiveness of academic practice partnerships and importance of community engagement in mitigation planning. Additional funding has been approved to expand the Mitigation Planning Process to all counties in Texas with local health departments.

  2. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    PubMed

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  4. National Research Council Dialogue to Assess Progress on NASA's Transformational Spaceport and Range Technologies Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Skelly, Darin M.

    2005-01-01

    Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.

  5. Designing an Alternate Mission Operations Control Room

    NASA Technical Reports Server (NTRS)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.

  6. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  7. NASA Capability Roadmaps Executive Summary

    NASA Technical Reports Server (NTRS)

    Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan

    2005-01-01

    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.

  8. Study to define an approach for developing a computer-based system capable of automatic, unattended assembly/disassembly of spacecraft, phase 1

    NASA Technical Reports Server (NTRS)

    Nevins, J. L.; Defazio, T. L.; Seltzer, D. S.; Whitney, D. E.

    1981-01-01

    The initial set of requirements for additional studies necessary to implement a space-borne, computer-based work system capable of achieving assembly, disassembly, repair, or maintenance in space were developed. The specific functions required of a work system to perform repair and maintenance were discussed. Tasks and relevant technologies were identified and delineated. The interaction of spacecraft design and technology options, including a consideration of the strategic issues of repair versus retrieval-replacement or destruction by removal were considered along with the design tradeoffs for accomplishing each of the options. A concept system design and its accompanying experiment or test plan were discussed.

  9. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  10. Spectrum orbit utilization program technical manual SOUP5 Version 3.8

    NASA Technical Reports Server (NTRS)

    Davidson, J.; Ottey, H. R.; Sawitz, P.; Zusman, F. S.

    1984-01-01

    The underlying engineering and mathematical models as well as the computational methods used by the SOUP5 analysis programs, which are part of the R2BCSAT-83 Broadcast Satellite Computational System, are described. Included are the algorithms used to calculate the technical parameters and references to the relevant technical literature. The system provides the following capabilities: requirements file maintenance, data base maintenance, elliptical satellite beam fitting to service areas, plan synthesis from specified requirements, plan analysis, and report generation/query. Each of these functions are briefly described.

  11. New Earth Observation Capabilities For The Commercial Sector

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2017-01-01

    Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.

  12. A Review of the Capability Options Development and Analysis System and the Role of Risk Management

    DTIC Science & Technology

    2006-08-01

    Development Plan OF Objective Force SME Subject Matter Expertise S&T Science & Technology SWOT strengths, weaknesses, opportunities and threats...aircraft, or armoured vehicles. Rather it is the combination of people, organisation, equipment, systems and facilities to achieve a desired...Defence policy or Joint Service implications. They include ships, tanks, missile systems, armoured personnel carriers, major electronic systems, and

  13. Practical Applications of Space Systems, Supporting Paper 3: Land Use Planning.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…

  14. FEES: design of a Fire Economics Evaluation System

    Treesearch

    Thomas J. Mills; Frederick W. Bratten

    1982-01-01

    The Fire Economics Evaluation System (FEES)--a simulation model--is being designed for long-term planning application by all public agencies with wildland fire management responsibilities. A fully operational version of FEES will be capable of estimating the economic efficiency, fire-induced changes in resource outputs, and risk characteristics of a range of fire...

  15. Virtual Simulation Capability for Deployable Force Protection Analysis (VSCDFP) FY 15 Plan

    DTIC Science & Technology

    2014-07-30

    Unmanned Aircraft Systems ( SUAS ) outfitted with a baseline two-axis steerable “Infini-spin” electro- optic/infrared (EO/IR) sensor payload. The current...Payload (EPRP) enhanced sensor system to the Puma SUAS will be beneficial for Soldiers executing RCP mission sets. • Develop the RCP EPRP Concept of

  16. Kansas Public Television Network (KPTN).

    ERIC Educational Resources Information Center

    Lemen, Jack A.

    The plans of the Kansas Public Television Board (KPTB) for development of the Kansas Television Network are detailed for the period extending from FY 1979 to FY 1983; the proposed system is designed to serve the needs of the communities by extending existing capabilities and resources, sharing common resources, and enriching the total system.…

  17. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden, left, announces the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida looks on at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  18. Space Assembly of Large Structural System Architectures (SALSSA)

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    Developing a robust capability for Space Assembly of Large Spacecraft Structural System Architectures (SALSSA) has the potential to drastically increase the capabilities and performance of future space missions and spacecraft while significantly reducing their cost. Currently, NASA architecture studies and space science decadal surveys identify new missions that would benefit from SALSSA capabilities, and the technologies that support SALSSA are interspersed throughout the fourteen NASA Technology Roadmaps. However, a major impediment to the strategic development of cross-cutting SALSSA technologies is the lack of an integrated and comprehensive compilation of the necessary information. This paper summarizes the results of a small study that used an integrated approach to formulate a SALSSA roadmap and associated plan for developing key SALSSA technologies.

  19. Space Tug systems study. Volume 2: Compendium

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Possible storable propellant configurations and program plans are evaluated for the space tug. Alternatives examined include: use of existing expendable stages modified for use with shuttle, followed by a space tug at a later date; use of a modified growth version of existing expendable stages for greater performance and potential reuse, followed by a space tug at a later date; use of a low development cost, reusable, interim space tug available at shuttle initial operational capability (IOC) that could be evolved to greater system capabilities at a later date; and use a direct developed tug with maximum potential to be available at some specified time after space shuttle IOC. The capability options were narrowed down to three final options for detailed program definition.

  20. Development of a Minimum Data Set (MDS) for C-Section Anesthesia Information Management System (AIMS)

    PubMed Central

    Sheykhotayefeh, Mostafa; Safdari, Reza; Ghazisaeedi, Marjan; Khademi, Seyed Hossein; Seyed Farajolah, Seyedeh Sedigheh; Maserat, Elham; Jebraeily, Mohamad; Torabi, Vahid

    2017-01-01

    Background Caesarean section, also known as C-section, is a very common procedure in the world. Minimum data set (MDS) is defined as a set of data elements holding information regarding a series of target entities to provide a basis for planning, management, and performance evaluation. MDS has found a great use in health care information systems. Also, it can be considered as a basis for medical information management and has shown a great potential for contributing to the provision of high quality care and disease control measures. Objectives The principal aim of this research was to determine MDS and required capabilities for Anesthesia information management system (AIMS) in C-section in Iran. Methods Data items collected from several selected AIMS were studied to establish an initial set of data. The population of this study composed of 115 anesthesiologists was asked to review the proposed data elements and score them in order of importance by using a five-point Likert scale. The items scored as important or highly important by at least 75% of the experts were included in the final list of minimum data set. Results Overall 8 classes of data (consisted of 81 key data elements) were determined as final set. Also, the most important required capabilities were related to airway management and hypertension and hypotension management. Conclusions In the development of information system (IS) based on MDS and identification, because of the broad involvement of users, IS capabilities must focus on the users’ needs to form a successful system. Therefore, it is essential to assess MDS watchfully by considering the planned uses of data. Also, IS should have essential capabilities to meet the needs of its users. PMID:28824861

  1. Development of a Minimum Data Set (MDS) for C-Section Anesthesia Information Management System (AIMS).

    PubMed

    Sheykhotayefeh, Mostafa; Safdari, Reza; Ghazisaeedi, Marjan; Khademi, Seyed Hossein; Seyed Farajolah, Seyedeh Sedigheh; Maserat, Elham; Jebraeily, Mohamad; Torabi, Vahid

    2017-04-01

    Caesarean section, also known as C-section, is a very common procedure in the world. Minimum data set (MDS) is defined as a set of data elements holding information regarding a series of target entities to provide a basis for planning, management, and performance evaluation. MDS has found a great use in health care information systems. Also, it can be considered as a basis for medical information management and has shown a great potential for contributing to the provision of high quality care and disease control measures. The principal aim of this research was to determine MDS and required capabilities for Anesthesia information management system (AIMS) in C-section in Iran. Data items collected from several selected AIMS were studied to establish an initial set of data. The population of this study composed of 115 anesthesiologists was asked to review the proposed data elements and score them in order of importance by using a five-point Likert scale. The items scored as important or highly important by at least 75% of the experts were included in the final list of minimum data set. Overall 8 classes of data (consisted of 81 key data elements) were determined as final set. Also, the most important required capabilities were related to airway management and hypertension and hypotension management. In the development of information system (IS) based on MDS and identification, because of the broad involvement of users, IS capabilities must focus on the users' needs to form a successful system. Therefore, it is essential to assess MDS watchfully by considering the planned uses of data. Also, IS should have essential capabilities to meet the needs of its users.

  2. Space Launch System Co-Manifested Payload Options for Habitation

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2015-01-01

    The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the launch vehicle matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and its service module. The co-manifested payload is located below the Orion and its service module in a 10 m high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. Various approaches that utilize this comanifested payload capability to build up infrastructure in deep space have been explored in support of future asteroid, lunar, and Mars mission scenarios. This paper reports on the findings of the Advanced Concepts Office study team at NASA Marshall Space Flight Center (MSFC) working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume of the SLS. Findings include a set of module designs that can be developed in 10 mt increments to support these co-manifested payload missions along with a comparison of this approach to a large-module payload flight configuration for the SLS.

  3. Revolutionary Aerospace Systems Concepts - Planning for the Future of Technology Investments

    NASA Technical Reports Server (NTRS)

    Ferebee, Melvin J., Jr.; Breckenridge, Roger A.; Hall, John B., Jr.

    2002-01-01

    In January, 2000, the NASA Administrator gave the following directions to Langley: "We will create a new role for Langley as a leader for the assessment of revolutionary aerospace system concepts and architectures, and provide resources needed to assure technology breakthroughs will be there to support these advanced concepts. This is critical in determining how NASA can best invest its resources to enable future missions." The key objective of the RASC team is to look beyond current research and technology (R&T) programs and missions and evolutionary technology development approaches with a "top-down" perspective to explore possible new mission capabilities. The accomplishment of this objective will allow NASA to provide the ability to go anywhere, anytime - safely, and affordably- to meet its strategic goals for exploration, science, and commercialization. The RASC Team will seek to maximize the cross-Enterprise benefits of these revolutionary capabilities as it defines the revolutionary enabling technology areas and performance levels needed. The product of the RASC Team studies will be revolutionary systems concepts along with enabling technologies and payoffs in new mission capabilities, which these concepts can provide. These results will be delivered to the NASA Enterprises and the NASA Chief Technologist for use in planning revolutionary future NASA R&T program investments.

  4. A knowledge based expert system for propellant system monitoring at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Jamieson, J. R.; Delaune, C.; Scarl, E.

    1985-01-01

    The Lox Expert System (LES) is the first attempt to build a realtime expert system capable of simulating the thought processes of NASA system engineers, with regard to fluids systems analysis and troubleshooting. An overview of the hardware and software describes the techniques used, and possible applications to other process control systems. LES is now in the advanced development stage, with a full implementation planned for late 1985.

  5. Identification of high-level functional/system requirements for future civil transports

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In order to accommodate the rapid growth in commercial aviation throughout the remainder of this century, the Federal Aviation Administration (FAA) is faced with a formidable challenge to upgrade and/or modernize the National Airspace System (NAS) without compromising safety or efficiency. A recurring theme in both the Aviation System Capital Investment Plan (CIP), which has replaced the NAS Plan, and the new FAA Plan for Research, Engineering, and Development (RE&D) rely on the application of new technologies and a greater use of automation. Identifying the high-level functional and system impacts of such modernization efforts on future civil transport operational requirements, particularly in terms of cockpit functionality and information transfer, was the primary objective of this project. The FAA planning documents for the NAS of the 2005 era and beyond were surveyed; major aircraft functional capabilities and system components required for such an operating environment were identified. A hierarchical structured analysis of the information processing and flows emanating from such functional/system components were conducted and the results documented in graphical form depicting the relationships between functions and systems.

  6. Developing the Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap

    DTIC Science & Technology

    2012-10-24

    system attributes. These metrics track non-requirements performance, typically relate to production cost per unit, maintenance costs, training costs...immediately implement lessons learned from the training experience to the job, assuming the culture allows this. 1.3 MANAGEMENT PLAN/TECHNICAL OVERVIEW...resolving potential conflicts as they arise. Incrementally implement and continuously integrate capability in priority order, to ensure that final system

  7. Applications for Micrographics in Large Scale Information Systems of the Future. Volume I: Part I. Summary. Part II. Five-Year Plan for DDC Micrographic Development Actions.

    ERIC Educational Resources Information Center

    Information Dynamics Corp., Reading, MA.

    A study intended to provide the Defense Documentation Center (DDC) with a five-year plan for the development of improved and new microfiche products, services, and production capabilities is summarized in this report. In addition, the major findings, conclusions, and recommendations developed during the study are noted. The results of the research…

  8. Defense Science Board Task Force Report: The Role of Autonomy in DoD Systems

    DTIC Science & Technology

    2012-07-01

    ASD(R&E) and the Military Services should schedule periodic, on-site collaborations that bring together academia, government and not-for-profit labs...expressing UxV activities, increased problem solving, planning and scheduling capabilities to enable dynamic tasking of distributed UxVs and tools for...industrial, governmental and military. Manufacturing has long exploited planning for logistics and matching product demand to production schedules

  9. Bidding-based autonomous process planning and scheduling

    NASA Astrophysics Data System (ADS)

    Gu, Peihua; Balasubramanian, Sivaram; Norrie, Douglas H.

    1995-08-01

    Improving productivity through computer integrated manufacturing systems (CIMS) and concurrent engineering requires that the islands of automation in an enterprise be completely integrated. The first step in this direction is to integrate design, process planning, and scheduling. This can be achieved through a bidding-based process planning approach. The product is represented in a STEP model with detailed design and administrative information including design specifications, batch size, and due dates. Upon arrival at the manufacturing facility, the product registered in the shop floor manager which is essentially a coordinating agent. The shop floor manager broadcasts the product's requirements to the machines. The shop contains autonomous machines that have knowledge about their functionality, capabilities, tooling, and schedule. Each machine has its own process planner and responds to the product's request in a different way that is consistent with its capabilities and capacities. When more than one machine offers certain process(es) for the same requirements, they enter into negotiation. Based on processing time, due date, and cost, one of the machines wins the contract. The successful machine updates its schedule and advises the product to request raw material for processing. The concept was implemented using a multi-agent system with the task decomposition and planning achieved through contract nets. The examples are included to illustrate the approach.

  10. 2006 DoD Diminishing Manufacturing Sources and Material Shortages (DMSMS) Conference, Exhibition and Workshop

    DTIC Science & Technology

    2006-07-13

    echnology T ervicesS Integrated Systems & Solutions Integrated yste s S olutionsS • 30,000 Employees • 5 Principal Businesses Organized Into 3 Major...Solutions -Data Sources -Search Engine -Notification Policy -DSCC/IST Lead -Industry Capabilities - Organic Capabilities -Pro-active upgrades -DMEA Lead...needs to TLCSM EC. Cathi Crabtree Voting Members Accomplishments WG Organization we can build on DAU Distance Leaning Modules WG Strategic Plan Re

  11. BNSF San Bernardino case study : positive train control risk assessment.

    DOT National Transportation Integrated Search

    2014-09-01

    The Federal Railroad Administration funded the BNSF San Bernardino Case Study to verify its Generalized Train Movement : Simulator (GTMS) risk assessment capabilities on a planned implementation of the I-ETMS PTC system. The analysis explicitly : sim...

  12. Development of guidelines for accommodating safe and desirable pedestrian activity within the highway environment.

    DOT National Transportation Integrated Search

    1975-01-01

    This study develops general guidelines for planning and evaluating suburban pedestrian systems. Pedestrian characteristics and capabilities which affect walking demand are summarized using the results of previous research. Reported research results a...

  13. The Apple III.

    ERIC Educational Resources Information Center

    Ditlea, Steve

    1982-01-01

    Describes and evaluates the features, performance, peripheral devices, available software, and capabilities of the Apple III microcomputer. The computer's operating system, its hardware, and the commercially produced software it accepts are discussed. Specific applications programs for financial planning, accounting, and word processing are…

  14. Contributions of speech science to the technology of man-machine voice interactions

    NASA Technical Reports Server (NTRS)

    Lea, Wayne A.

    1977-01-01

    Research in speech understanding was reviewed. Plans which include prosodics research, phonological rules for speech understanding systems, and continued interdisciplinary phonetics research are discussed. Improved acoustic phonetic analysis capabilities in speech recognizers are suggested.

  15. Safety and fitness electronic records system (SAFER) : master test plan

    DOT National Transportation Integrated Search

    2000-01-01

    This report contains highway design informaiton that will help accomodate the needs and capability of older road users. Specifically, it contains the recommendaitons section of a larger report titled: Older Driver Highway Design Handbook (FHWA-RD-97-...

  16. An Overview of Future NASA Missions, Concepts, and Technologies Related to Imaging of the World's Land Areas

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1999-01-01

    In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce spacecraft and subsystem resource requirements. The efforts in information systems will include better approaches for linking multiple data sets, extracting and visualizing information, and improvements in collecting, compressing, transmitting, processing, distributing and archiving data from multiple platforms. Overall concepts such as sensor webs, constellations of observing systems, and rapid and tailored data availability and delivery to multiple users comprise and notions Earth Science Vision for the future.

  17. Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki

    2009-10-01

    Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.

  18. Development of an expert planning system for OSSA

    NASA Technical Reports Server (NTRS)

    Groundwater, B.; Lembeck, M. F.; Sarsfield, L.; Diaz, Alphonso

    1988-01-01

    This paper presents concepts related to preliminary work for the development of an expert planning system for NASA's Office for Space Science and Applications (OSSA). The expert system will function as a planner's decision aid in preparing mission plans encompassing sets of proposed OSSA space science initiatives. These plans in turn will be checked against budgetary and technical constraints and tested for constraint violations. Appropriate advice will be generated by the system for making modifications to the plans to bring them in line with the constraints. The OSSA Planning Expert System (OPES) has been designed to function as an integral part of the OSSA mission planning process. It will be able to suggest a best plan, be able to accept and check a user-suggested strawman plan, and should provide a quick response to user request and actions. OPES will be written in the C programming language and have a transparent user interface running under Windows 386 on a Compaq 386/20 machine. The system's sorted knowledge and inference procedures will model the expertise of human planners familiar with the OSSA planning domain. Given mission priorities and budget guidelines, the system first sets the launch dates for each mission. It will check to make sure that planetary launch windows and precursor mission relationships are not violated. Additional levels of constraints will then be considered, checking such things as the availability of a suitable launch vehicle, total mission launch mass required vs. the identified launch mass capability, and the total power required by the payload at its destination vs. the actual power available. System output will be in the form of Gantt charts, spreadsheet hardcopy, and other presentation quality materials detailing the resulting OSSA mission plan.

  19. A Contrast in Use of Metrics in Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Behnke, Jeanne; Hines-Watts, Tonjua

    2007-01-01

    In recent years there has been a surge in the number of systems for processing, archiving and distributing remotely sensed data. Such systems, working independently as well as in collaboration, have been contributing greatly to the advances in the scientific understanding of the Earth system, as well as utilization of the data for nationally and internationally important applications. Among such systems, we consider those that are developed by or under the sponsorship of NASA to fulfill one of its strategic objectives: "Study Earth from space to advance scientific understanding and meet societal needs." NASA's Earth science data systems are of varying size and complexity depending on the requirements they are intended to meet. Some data systems are regarded as NASA's "Core Capabilities" that provide the basic infrastructure for processing, archiving and distributing a set of data products to a large and diverse user community in a robust and reliable manner. Other data systems constitute "Community Capabilities". These provide specialized and innovative services to data users and/or research products offering new scientific insight. Such data systems are generally supported by NASA through peer reviewed competition. Examples of Core Capabilities are 1. Earth Observing Data and Information System (EOSDIS) with its Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems (SIPSs), and the EOS Clearing House (ECHO); 2. Tropical Rainfall Measurement Mission (TRMM) Science Data and Information System (TSDIS); 3. Ocean Data Processing System (ODPS); and 4. CloudSat Data Processing Center. Examples of Community Capabilities are projects under the Research, Education and Applications Solutions Network (REASON), and Advancing Collaborative Connections for Earth System Science (ACCESS) Programs. In managing these data system capabilities, it is necessary to have well-established goals and to measure progress relative to them. Progress is measured through "metrics", which can be a combination of quantitative as well as qualitative assessments. The specific metrics of interest depend on the user of the metrics as well as the type of data system. The users of metrics can be data system managers, program managers, funding agency or the public. Data system managers need metrics for assessing and improving the performance of the system and for future planning. Program managers need metrics to assess progress and the value of the data systems sponsored by them. Also, there is a difference in the metrics needed for core capabilities that tend to be more complex, larger and longer-term compared to community capabilities and the community capabilities that tend to be simpler, smaller and shorter-term. Even among community capabilities there are differences; hence the same set of metrics does not apply to all. Some provide data products to users, some provide services that enable better utilization of data or interoperability among other systems, and some are a part of a larger project where provision of data or services is only a minor activity. There is also a contrast between metrics used for internal and external purposes. Examples of internal purposes are: ensuring that the system meets its requirements, and planning for evolution and growth. Examples of external purposes are: providing to sponsors indicators of success of the systems, demonstrating the contributions of the system to overall program success, etc. This paper will consider EOSDIS, REASON and ACCESS programs to show the various types of metrics needed and how they need to be tailored to the types of data systems while maintaining the overall management goals of measuring progress and contributions made by the data systems.

  20. A Contrast in Use of Metrics in Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Behnke, J.; Hines-Watts, T. M.

    2007-12-01

    In recent years there has been a surge in the number of systems for processing, archiving and distributing remotely sensed data. Such systems, working independently as well as in collaboration, have been contributing greatly to the advances in the scientific understanding of the Earth system, as well as utilization of the data for nationally and internationally important applications. Among such systems, we consider those that are developed by or under the sponsorship of NASA to fulfill one of its strategic objectives: "Study Earth from space to advance scientific understanding and meet societal needs." NASA's Earth science data systems are of varying size and complexity depending on the requirements they are intended to meet. Some data systems are regarded as NASA's Core Capabilities that provide the basic infrastructure for processing, archiving and distributing a set of data products to a large and diverse user community in a robust and reliable manner. Other data systems constitute Community Capabilities. These provide specialized and innovative services to data users and/or research products offering new scientific insight. Such data systems are generally supported by NASA through peer reviewed competition. Examples of Core Capabilities are 1. Earth Observing Data and Information System (EOSDIS) with its Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems (SIPSs), and the EOS Clearing House (ECHO); 2. Tropical Rainfall Measurement Mission (TRMM) Science Data and Information System (TSDIS); 3. Ocean Data Processing System (ODPS); and 4. CloudSat Data Processing Center. Examples of Community Capabilities are projects under the Research, Education and Applications Solutions Network (REASoN), and Advancing Collaborative Connections for Earth System Science (ACCESS) Programs. In managing these data system capabilities, it is necessary to have well-established goals and to measure progress relative to them. Progress is measured through metrics, which can be a combination of quantitative as well as qualitative assessments. The specific metrics of interest depend on the user of the metrics as well as the type of data system. The users of metrics can be data system managers, program managers, funding agency or the public. Data system managers need metrics for assessing and improving the performance of the system and for future planning. Program managers need metrics to assess progress and the value of the data systems sponsored by them. Also, there is a difference in the metrics needed for core capabilities that tend to be more complex, larger and longer-term compared to community capabilities and the community capabilities that tend to be simpler, smaller and shorter-term. Even among community capabilities there are differences; hence the same set of metrics does not apply to all. Some provide data products to users, some provide services that enable better utilization of data or interoperability among other systems, and some are a part of a larger project where provision of data or services is only a minor activity. There is also a contrast between metrics used for internal and external purposes. Examples of internal purposes are: ensuring that the system meets its requirements, and planning for evolution and growth. Examples of external purposes are: providing to sponsors indicators of success of the systems, demonstrating the contributions of the system to overall program success, etc. This paper will consider EOSDIS, REASoN and ACCESS programs to show the various types of metrics needed and how they need to be tailored to the types of data systems while maintaining the overall management goals of measuring progress and contributions made by the data systems.

  1. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  2. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system

    NASA Astrophysics Data System (ADS)

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald

    2005-03-01

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of the drug pharmacokinetics in MTR can only be properly accounted for by image-based, patient-specific treatment planning, as has been common in external beam radiation therapy for many years. MINERVA offers 3D Monte Carlo-based MTR treatment planning as its first integrated operational capability. The new MINERVA system will ultimately incorporate capabilities for a comprehensive list of radiation therapies. In progress are modules for external beam photon-electron therapy and boron neutron capture therapy (BNCT). Brachytherapy and proton therapy are planned. Through the open application programming interface (API), other groups can add their own modules and share them with the community.

  3. 8-Meter UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    This slide presentation proposes using the unprecedented capability of the planned Ares V launch vehicle, to place a 8 meter monolithic space telescope at the Earth-Sun L2 point. This new capability enables a new design pardigm -- simplicity. The six to eight meter class telescope with a massive high Technical Readiness Level ground observatory class monolithic primary mirror has been determined feasible. The proposed design, structural analysis, spacecraft design and shroud integration, thermal analysis, propulsion system, guidance navigation and pointing control assumptions about the avionics, and power systems, operational lifetime, and the idea of in-space servicing are reviewed.

  4. Healthcare @ The Speed of Thought: A digital world needs successful transformative leaders.

    PubMed

    Tremblay, Ken

    2017-09-01

    In the wake of transformational change powered by the digital era, resultant leadership challenges and strategies essential for successful change, both tactical and cultural, are linked to defined capabilities within the Systems Transformation domain of the LEADS in a Caring Environment framework. Honed from experience, specific softer leadership behaviours supporting system transformation are both described and reinforced. Further, a matrix combining the LEADS framework capabilities with these more specific behaviours is offered as a planning tool that leaders may reflect upon and map out key activities associated with their sponsorship of significant change.

  5. Lunar base as a precursor to Mars exploration and settlement

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1991-01-01

    A well planned program of human exploration of the moon is suggested which would provide a base for increasing human capabilities and experience to levels required for Mars exploration. A strategy intended for immediate Mars exploration and settlement is considered to incur serious programmatic risks from current lack of knowledge on human performance on long-duration deep space missions and lack of experience in designing human space systems. The lunar program provides an opportunity to build up space capability in an evolutionary way and to broaden the participation of the educational system in the space exploration.

  6. Earth-orbit mission considerations and Space Tug requirements.

    NASA Technical Reports Server (NTRS)

    Huber, W. G.

    1973-01-01

    The reusable Space Tug is a major system planned to augment the Space Shuttle's capability to deliver, retrieve, and support automated payloads. The Space Tug will be designed to perform round-trip missions from low earth orbit to geosynchronous orbit. Space Tug goals and requirements are discussed together with the characteristics of the full capability Tug. The Tug is to be operated in an unmanned 'teleoperator' fashion. Details of potential teleoperator applications are considered, giving attention to related systems studies, candidate Tug mission applications, Tug 'end-effector' alternatives, technical issues associated with Tug payload retrieval, and Tug/payload accommodations.

  7. Development INTERDATA 8/32 computer system

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1983-01-01

    The capabilities of the Interdata 8/32 minicomputer were examined regarding data and word processing, editing, retrieval, and budgeting as well as data management demands of the user groups in the network. Based on four projected needs: (1) a hands on (open shop) computer for data analysis with large core and disc capability; (2) the expected requirements of the NASA data networks; (3) the need for intermittent large core capacity for theoretical modeling; (4) the ability to access data rapidly either directly from tape or from core onto hard copy, the system proved useful and adequate for the planned requirements.

  8. Development of 3-D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    A research plan is currently being implemented by NASA to develop and validate the use of a commercial laser scanner to record and archive fully three-dimensional (3-D) ice shapes from an icing wind tunnel. The plan focused specifically upon measuring ice accreted in the NASA Icing Research Tunnel (IRT). The plan was divided into two phases. The first phase was the identification and selection of the laser scanning system and the post-processing software to purchase and develop further. The second phase was the implementation and validation of the selected system through a series of icing and aerodynamic tests. Phase I of the research plan has been completed. It consisted of evaluating several scanning hardware and software systems against an established selection criteria through demonstrations in the IRT. The results of Phase I showed that all of the scanning systems that were evaluated were equally capable of scanning ice shapes. The factors that differentiated the scanners were ease of use and the ability to operate in a wide range of IRT environmental conditions.

  9. An integrated decision model for the application of airborne sensors for improved response to accidental and terrorist chemical vapor releases

    NASA Astrophysics Data System (ADS)

    Kapitan, Loginn

    This research created a new model which provides an integrated approach to planning the effective selection and employment of airborne sensor systems in response to accidental or intentional chemical vapor releases. The approach taken was to use systems engineering and decision analysis methods to construct a model architecture which produced a modular structure for integrating both new and existing components into a logical procedure to assess the application of airborne sensor systems to address chemical vapor hazards. The resulting integrated process model includes an internal aggregation model which allowed differentiation among alternative airborne sensor systems. Both models were developed and validated by experts and demonstrated using appropriate hazardous chemical release scenarios. The resultant prototype integrated process model or system fills a current gap in capability allowing improved planning, training and exercise for HAZMAT teams and first responders when considering the selection and employment of airborne sensor systems. Through the research process, insights into the current response structure and how current airborne capability may be most effectively used were generated. Furthermore, the resultant prototype system is tailorable for local, state, and federal application, and can potentially be modified to help evaluate investments in new airborne sensor technology and systems. Better planning, training and preparedness exercising holds the prospect for the effective application of airborne assets for improved response to large scale chemical release incidents. Improved response will result in fewer casualties and lives lost, reduced economic impact, and increased protection of critical infrastructure when faced with accidental and intentional terrorist release of hazardous industrial chemicals. With the prospect of more airborne sensor systems becoming available, this prototype system integrates existing and new tools into an effective process for the selection and employment of airborne sensors to better plan, train and exercise ahead of potential chemical release events.

  10. Achieving Space Shuttle Abort-to-Orbit Using the Five-Segment Booster

    NASA Technical Reports Server (NTRS)

    Craft, Joe; Ess, Robert; Sauvageau, Don

    2003-01-01

    The Five-Segment Booster design concept was evaluated by a team that determined the concept to be feasible and capable of achieving the desired abort-to-orbit capability when used in conjunction with increased Space Shuttle main engine throttle capability. The team (NASA Johnson Space Center, NASA Marshall Space Flight Center, ATK Thiokol Propulsion, United Space Alliance, Lockheed-Martin Space Systems, and Boeing) selected the concept that provided abort-to-orbit capability while: 1) minimizing Shuttle system impacts by maintaining the current interface requirements with the orbiter, external tank, and ground operation systems; 2) minimizing changes to the flight-proven design, materials, and processes of the current four-segment Shuttle booster; 3) maximizing use of existing booster hardware; and 4) taking advantage of demonstrated Shuttle main engine throttle capability. The added capability can also provide Shuttle mission planning flexibility. Additional performance could be used to: enable implementation of more desirable Shuttle safety improvements like crew escape, while maintaining current payload capability; compensate for off nominal performance in no-fail missions; and support missions to high altitudes and inclinations. This concept is a low-cost, low-risk approach to meeting Shuttle safety upgrade objectives. The Five-Segment Booster also has the potential to support future heavy-lift missions.

  11. Joint Enabling Capabilities Command

    Science.gov Websites

    Executive Director Chief of Staff Joint Planning Support Element Joint Communications Support Element mission Joint Enabling Capabilities Command provides decisive joint communications, planning and public and responsive support for joint communications, planning and public affairs. Priorities * Deliver

  12. Critical systems for public health management of floods, North Dakota.

    PubMed

    Wiedrich, Tim W; Sickler, Juli L; Vossler, Brenda L; Pickard, Stephen P

    2013-01-01

    Availability of emergency preparedness funding between 2002 and 2009 allowed the North Dakota Department of Health to build public health response capabilities. Five of the 15 public health preparedness capability areas identified by the Centers for Disease Control and Prevention in 2011 have been thoroughly tested by responses to flooding in North Dakota in 2009, 2010, and 2011; those capability areas are information sharing, emergency operations coordination, medical surge, material management and distribution, and volunteer management. Increasing response effectiveness has depended on planning, implementation of new information technology, changes to command and control procedures, containerized response materials, and rapid contract procedures. Continued improvement in response and maintenance of response capabilities is dependent on ongoing funding.

  13. Data Archive and Portal Thrust Area Strategy Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.

    2014-09-01

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture importantmore » characteristics of all data in the Wind Cloud.« less

  14. XML technology planning database : lessons learned

    NASA Technical Reports Server (NTRS)

    Some, Raphael R.; Neff, Jon M.

    2005-01-01

    A hierarchical Extensible Markup Language(XML) database called XCALIBR (XML Analysis LIBRary) has been developed by Millennium Program to assist in technology investment (ROI) analysis and technology Language Capability the New return on portfolio optimization. The database contains mission requirements and technology capabilities, which are related by use of an XML dictionary. The XML dictionary codifies a standardized taxonomy for space missions, systems, subsystems and technologies. In addition to being used for ROI analysis, the database is being examined for use in project planning, tracking and documentation. During the past year, the database has moved from development into alpha testing. This paper describes the lessons learned during construction and testing of the prototype database and the motivation for moving from an XML taxonomy to a standard XML-based ontology.

  15. PLAN-IT-2: The next generation planning and scheduling tool

    NASA Technical Reports Server (NTRS)

    Eggemeyer, William C.; Cruz, Jennifer W.

    1990-01-01

    PLAN-IT is a scheduling program which has been demonstrated and evaluated in a variety of scheduling domains. The capability enhancements being made for the next generation of PLAN-IT, called PLAN-IT-2 is discussed. PLAN-IT-2 represents a complete rewrite of the original PLAN-IT incorporating major changes as suggested by the application experiences with the original PLAN-IT. A few of the enhancements described are additional types of constraints, such as states and resettable-depletables (batteries), dependencies between constraints, multiple levels of activity planning during the scheduling process, pattern constraint searching for opportunities as opposed to just minimizing the amount of conflicts, additional customization construction features for display and handling of diverse multiple time systems, and reduction in both the size and the complexity for creating the knowledge-base to address the different problem domains.

  16. Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Newhouse, M.; Guffin, O. T.

    1994-01-01

    Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.

  17. Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen; hide

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant operations, and critical system capabilities that are needed for dormant operations. This paper will compare dormancy operations of past robotic missions to identify lessons that can be applied to planned human exploration missions. Finally, this paper will also identify future work and analysis planned to assess system performance metrics and integrated system operations.

  18. Final Technical Report: Development of Post-Installation Monitoring Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polagye, Brian

    2014-03-31

    The development of approaches to harness marine and hydrokinetic energy at large-scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under-developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6-meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington.more » The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger-scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with colonization of the subsea base support structure. In support of these plans, the project team developed and field tested a strobe-illuminated stereooptical camera system suitable for studying near-turbine interactions with marine animals. The camera system underwent short-term field testing at the proposed turbine deployment site and a multi-month endurance test in shallower water to evaluate the effectiveness of biofouling mitigation measures for the optical ports on camera and strobe pressure housings. These tests demonstrated that the camera system is likely to meet the objectives of the near-turbine monitoring plan and operate, without maintenance, for periods of at least three months. The project team also advanced monitoring capabilities related to passive acoustic monitoring of marine mammals and monitoring of tidal currents. These capabilities will be integrated in a recoverable monitoring package that has a single interface point with the OpenHydro turbines, connects to shore power and data via a wet-mate connector, and can be recovered to the surface for maintenance and reconfiguration independent of the turbine. A logical next step would be to integrate these instruments within the package, such that one instrument can trigger the operation of another.« less

  19. 1995 Pacific Northwest Loads and Resources Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    1995-12-01

    The study establishes the planning basis for supplying electricity to customers. The study presents projections of regional and Federal system load and resource capabilities, and serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts.

  20. Recommendation on transition from primary/secondary radar to secondary-only radar capability

    DOT National Transportation Integrated Search

    1994-10-01

    This recommendation has been prepared to support the FAA decision to deactivate primary Long-range radars and presents a : transition strategy and implementation plan for the transformation of the existing primary/secondary en route radar : system to...

  1. NASA's Earth Observing System Data and Information System - EOSDIS

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  2. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; hide

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  3. Increasing productivity of the McAuto CAD/CAE system by user-specific applications programming

    NASA Technical Reports Server (NTRS)

    Plotrowski, S. M.; Vu, T. H.

    1985-01-01

    Significant improvements in the productivity of the McAuto Computer-Aided Design/Computer-Aided Engineering (CAD/CAE) system were achieved by applications programming using the system's own Graphics Interactive Programming language (GRIP) and the interface capabilities with the main computer on which the system resides. The GRIP programs for creating springs, bar charts, finite element model representations and aiding management planning are presented as examples.

  4. Propulsion system tests on a full scale Centaur vehicle to investigate 3-burn mission capability of the D-lT configuration

    NASA Technical Reports Server (NTRS)

    Groesbeck, W. A.; Baud, K. M.; Lacovic, R. F.; Tabata, W. K.; Szabo, S. V., Jr.

    1974-01-01

    Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight.

  5. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2016 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2017. Specifically, the ERAP assures the Department of Energy Idahomore » Operations Office that stated emergency capabilities at INL are sufficient to implement PLN 114, “INL Emergency Plan/RCRA Contingency Plan.”« less

  6. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Shane

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2015. Specifically, the ERAP assures the Department of Energy Idahomore » Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.”« less

  7. Ground data systems resource allocation process

    NASA Technical Reports Server (NTRS)

    Berner, Carol A.; Durham, Ralph; Reilly, Norman B.

    1989-01-01

    The Ground Data Systems Resource Allocation Process at the Jet Propulsion Laboratory provides medium- and long-range planning for the use of Deep Space Network and Mission Control and Computing Center resources in support of NASA's deep space missions and Earth-based science. Resources consist of radio antenna complexes and associated data processing and control computer networks. A semi-automated system was developed that allows operations personnel to interactively generate, edit, and revise allocation plans spanning periods of up to ten years (as opposed to only two or three weeks under the manual system) based on the relative merit of mission events. It also enhances scientific data return. A software system known as the Resource Allocation and Planning Helper (RALPH) merges the conventional methods of operations research, rule-based knowledge engineering, and advanced data base structures. RALPH employs a generic, highly modular architecture capable of solving a wide variety of scheduling and resource sequencing problems. The rule-based RALPH system has saved significant labor in resource allocation. Its successful use affirms the importance of establishing and applying event priorities based on scientific merit, and the benefit of continuity in planning provided by knowledge-based engineering. The RALPH system exhibits a strong potential for minimizing development cycles of resource and payload planning systems throughout NASA and the private sector.

  8. Technology Readiness of the NEXT Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Patterson, Michael J.

    2008-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including: a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development. The next round of competed planetary science mission announcements of opportunity, and directed mission decisions, are anticipated to occur in 2008 and 2009. Progress to date, and the success of on-going technology validation, indicate that the NEXT ion propulsion system will be a primary candidate for mission consideration in these upcoming opportunities.

  9. Defense Logistics Agency Did Not Fully Implement the Business Enterprise Architecture Procure-to-Pay Business Process in the Enterprise Business System

    DTIC Science & Technology

    2014-10-28

    change. Enterprise Business System In August 2000, DLA began developing its Enterprise Resource Planning ( ERP ) system by initiating the Business...the EBS core system. EBS became the ERP system solution supporting DLA nonenergy commodity activities. DLA subsequently enhanced its EBS...capabilities by adding SAP software that supported DLA Enterprise Operational Accounting, real property, and inventory management functions. As part of the

  10. Exploration planning in the context of human exploration and development of the Moon

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Morrison, Donald A.

    1993-01-01

    It is widely believed that the next step beyond low Earth orbit in attaining the United States' stated goal of 'Expanding human presence beyond the Earth' should be to reestablish a lunar capability, building on the Apollo program, and preparing the way for eventual human missions to Mars. The Moon offers important questions in planetary and Earth science, can provide a unique platform for making astronomical observations of high resolution and sensitivity, and can be in the development path for unlocking resources of the inner solar system to support space activities and return benefits to Earth. NASA's Office of Exploration has undertaken the planning of future lunar exploration missions with the assistance of the Solar System Exploration Division in matters dealing with the quality of scientific data and the manner in which it will be made available to the scientific community. The initial elements of the proposed program include the Lunar Scout missions, which consist of two small identical spacecraft in polar orbit around the Moon, which can accomplish most of the objectives associated with previous proposals for Lunar Polar Orbiters. These missions would be followed by 'Artemis' landers, capable of emplacing up to 200 kg payloads anywhere on the Moon. In addition, the exploration program must incorporate data obtained from other missions, including the Galileo lunar flybys, the Clementine high orbital observations, and Japanese penetrator missions. In the past year, a rather detailed plan for a 'First Lunar Outpost (FLO)' which would place 4 astronauts on the lunar surface for 45 days has been developed as a possible initial step of a renewed human exploration program. In the coming year, the FLO concept will be reviewed and evolved to become more highly integrated with planning for the initial human exploration of Mars, which could come perhaps 5 years after the reestablishment of lunar capability. Both programs could benefit from the common development of systems and subsystems, where that is sensible from a performance perspective.

  11. The National Aerospace Initiative (NAI): Technologies For Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Culbertson, Andrew; Bhat, Biliyar N.

    2003-01-01

    The Secretary of Defense has set new goals for the Department of Defense (DOD) to transform our nation's military forces. The Director for Defense Research and Engineering (DDR&E) has responded to this challenge by defining and sponsoring a transformational initiative in Science and Technology (S&T) - the National Aerospace Initiative (NAI) - which will have a fundamental impact on our nation's military capabilities and on the aerospace industry in general. The NAI is planned as a joint effort among the tri-services, DOD agencies and National Aeronautics and Space Administration (NASA). It is comprised of three major focus areas or pillars: 1) High Speed Hypersonics (HSH), 2) Space Access (SA), and 3) Space Technology (ST). This paper addresses the Space Access pillar. The NAI-SA team has employed a unique approach to identifying critical technologies and demonstrations for satisfying both military and civilian space access capabilities needed in the future. For planning and implementation purposes the NAI-SA is divided into five technology subsystem areas: Airframe, Propulsion, Flight Subsystems, Operations and Payloads. Detailed technology roadmaps were developed under each subsystem area using a time-phased, goal oriented approach that provides critical space access capabilities in a timely manner and involves subsystem ground and flight demonstrations. This S&T plan addresses near-term (2009), mid-term (2016), and long-term (2025) goals and objectives for space access. In addition, system engineering and integration approach was used to make sure that the plan addresses the requirements of the end users. This paper describes in some detail the technologies in NAI-Space Access pillar. Some areas of emphasis are: high temperature materials, thermal protection systems, long life, lightweight, highly efficient airframes, metallic and composite cryotanks, advanced liquid rocket engines, integrated vehicle health monitoring and management, highly operable systems and payloads. Implementation strategies for NAI are also described.

  12. The Computerized Educational Guidance System. EDGUYD Manual.

    ERIC Educational Resources Information Center

    Cassel, Russell N.

    The Computerized Educational Guidance System (EDGUYD) permits one to narrow post high school educational planning where consideration is given to all 1,448 4-year colleges and universities in the United States. This, to be sure, is a feat no human counselor is capable of without a computer. The Educational Success Index (ESI) is the means used by…

  13. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1986-07-01

    Yuma Proving Ground in January 1985. The ARBAT system provides a unique real-time computer capability to identify all critical flight...cheaper tnaii the existing radar system. This prototype is expected to save over ^1 million per year at Yuma Proving Grounds . TECOM is planning to...purchase 4 production ballistic radar systems to be installed at Yuma Proving Grounds , Dugway Proving Grounds , and Jefferson Proving Grounds at a

  14. A Survey of Dual-Use Issues,

    DTIC Science & Technology

    1996-03-01

    positioning systems used for navigation, aircraft engines , and most medical and safety equipment used by DoD. Some modified commercial products are similar...supercomputers, commercial jet aircraft and aircraft engines , the global positioning system (GPS), and composite materials.13 In each of these...turbine engine technologies capable of delivering double the propulsion performance of current systems by the year 2000. The plan to reach this goal is

  15. An image-guided planning system for endosseous oral implants.

    PubMed

    Verstreken, K; Van Cleynenbreugel, J; Martens, K; Marchal, G; van Steenberghe, D; Suetens, P

    1998-10-01

    A preoperative planning system for oral implant surgery was developed which takes as input computed tomographies (CT's) of the jaws. Two-dimensional (2-D) reslices of these axial CT slices orthogonal to a curve following the jaw arch are computed and shown together with three-dimensional (3-D) surface rendered models of the bone and computer-aided design (CAD)-like implant models. A technique is developed for scanning and visualizing an eventual existing removable prosthesis together with the bone structures. Evaluation of the planning done with the system shows a difference between 2-D and 3-D planning methods. Validation studies measure the benefits of the 3-D approach by comparing plans made in 2-D mode only with those further adjusted using the full 3-D visualization capabilities of the system. The benefits of a 3-D approach are then evident where a prosthesis is involved in the planning. For the majority of the patients, clinically important adjustments and optimizations to the 2-D plans are made once the 3-D visualization is enabled, effectively resulting in a better plan. The alterations are related to bone quality and quantity (p < 0.05), biomechanics (p < 0.005), and esthetics (p < 0.005), and are so obvious that the 3-D plan stands out clearly (p < 0.005). The improvements often avoid complications such as mandibular nerve damage, sinus perforations, fenestrations, or dehiscences.

  16. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.

    NASA Astrophysics Data System (ADS)

    Coughlan, J. C.

    2005-12-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.

  17. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.

  18. Balloon concepts for scientific investigation of Mars and Jupiter

    NASA Technical Reports Server (NTRS)

    Ash, R. L.

    1979-01-01

    Opportunities for scientific investigation of the atmospheric planets using buoyant balloons have been explored. Mars and Jupiter were considered in this study because design requirements at those planets bracket nominally the requirements at Venus, and plans are already underway for a joint Russian-French balloon system at Venus. Viking data has provided quantitative information for definition of specific balloon systems at Mars. Free flying balloons appear capable of providing valuable scientific support for more sophisticated Martian surface probes, but tethered and powered aerostats are not attractive. The Jovian environment is so extreme, hot atmosphere balloons may be the only scientific platforms capable of extended operations there. However, the estimated system mass and thermal energy required are very large.

  19. Design of an intelligent information system for in-flight emergency assistance

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan; Karamouzis, Stamos

    1991-01-01

    The present research has as its goal the development of AI tools to help flight crews cope with in-flight malfunctions. The relevant tasks in such situations include diagnosis, prognosis, and recovery plan generation. Investigation of the information requirements of these tasks has shown that the determination of paths figures largely: what components or systems are connected to what others, how are they connected, whether connections satisfying certain criteria exist, and a number of related queries. The formulation of such queries frequently requires capabilities of the second-order predicate calculus. An information system is described that features second-order logic capabilities, and is oriented toward efficient formulation and execution of such queries.

  20. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  1. Experimenting with C2 Applications and Federated Infrastructures for Integrated Full-Spectrum Operational Environments in Support of Collaborative Planning and Interoperable Execution

    DTIC Science & Technology

    2004-06-01

    Situation Understanding) Common Operational Pictures Planning & Decision Support Capabilities Message & Order Processing Common Operational...Pictures Planning & Decision Support Capabilities Message & Order Processing Common Languages & Data Models Modeling & Simulation Domain

  2. Evaluation of Critical Care Monitor Technology During the US Navy Strong Angel Exercise

    NASA Technical Reports Server (NTRS)

    Johannesen, John; Rasbury, Jack

    2003-01-01

    The NASA critical path road map identifies "trauma and acute medical problems" as a clinical capability risk category (http://criticalDath.isc.nasa.gov). Specific risks include major trauma, organ laceration or contusion, hemoperitoneum, pulmonary failure, pneumo- and hemothorax, burn, open bone fracture, blunt head trauma, and penetrating injury. Mitigation of these risks includes the capability for critical care monitoring. Currently, the International Space Station (ISS) Crew Health Care System (CHeCS) does not provide such a capability. The Clinical Space Medicine Strategic Planning Forum (4/8/97), sponsored by NASA Medical Operations, identified the development of trauma care capabilities as one of the top priorities for space medicine. The Clinical Care Capability Development Project (CCCDP) subsequently undertook the task to address this need.

  3. TRU Waste Management Program. Cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, taskmore » guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  4. A vision system planner for increasing the autonomy of the Extravehicular Activity Helper/Retriever

    NASA Technical Reports Server (NTRS)

    Magee, Michael

    1993-01-01

    The Extravehicular Activity Retriever (EVAR) is a robotic device currently being developed by the Automation and Robotics Division at the NASA Johnson Space Center to support activities in the neighborhood of the Space Shuttle or Space Station Freedom. As the name implies, the Retriever's primary function will be to provide the capability to retrieve tools and equipment or other objects which have become detached from the spacecraft, but it will also be able to rescue a crew member who may have become inadvertently de-tethered. Later goals will include cooperative operations between a crew member and the Retriever such as fetching a tool that is required for servicing or maintenance operations. This paper documents a preliminary design for a Vision System Planner (VSP) for the EVAR that is capable of achieving visual objectives provided to it by a high level task planner. Typical commands which the task planner might issue to the VSP relate to object recognition, object location determination, and obstacle detection. Upon receiving a command from the task planner, the VSP then plans a sequence of actions to achieve the specified objective using a model-based reasoning approach. This sequence may involve choosing an appropriate sensor, selecting an algorithm to process the data, reorienting the sensor, adjusting the effective resolution of the image using lens zooming capability, and/or requesting the task planner to reposition the EVAR to obtain a different view of the object. An initial version of the Vision System Planner which realizes the above capabilities using simulated images has been implemented and tested. The remaining sections describe the architecture and capabilities of the VSP and its relationship to the high level task planner. In addition, typical plans that are generated to achieve visual goals for various scenarios are discussed. Specific topics to be addressed will include object search strategies, repositioning of the EVAR to improve the quality of information obtained from the sensors, and complementary usage of the sensors and redundant capabilities.

  5. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit (LEO). The SLS Program, managed at NASA s Marshall Space Flight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions-opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include Mars, Jupiter, Lagrange Points, and near-Earth asteroids (NEAs), among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the information they deliver, while creating a framework for further collaboration among domestic and international partners, and potentially spurring economic expansion into new markets.

  6. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen A.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the information they deliver, while creating a framework for further collaboration among domestic and international partners, and potentially spurring economic expansion into new markets.

  7. New Decision Support for Landslide and Other Disaster Events

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Keiser, K.; Wu, Y.; Kaulfus, A.; Srinivasan, K.; Anderson, E. R.; McEniry, M.

    2013-12-01

    An Event-Driven Data delivery (ED3) framework has been created that provides reusable services and configurations to support better data preparedness for decision support of disasters and other events by rapidly providing pre-planned access to data, special processing, modeling and other capabilities, all executed in response to criteria-based events. ED3 facilitates decision makers to plan in advance of disasters and other types of events for the data necessary for decisions and response activities. A layer of services provided in the ED3 framework allows systems to support user definition of subscriptions for data plans that will be triggered when events matching specified criteria occur. Pre-planning for data in response to events lessens the burden on decision makers in the aftermath of an event and allows planners to think through the desired processing for specialized data products. Additionally the ED3 framework provides support for listening for event alerts and support for multiple workflow managers that provide data and processing functionality in response to events. Landslides are often costly and, at times, deadly disaster events. Whereas intense and/or sustained rainfall is often the primary trigger for landslides, soil type and slope are also important factors in determining the location and timing of slope failure. Accounting for the substantial spatial variability of these factors is one of the major difficulties when predicting the timing and location of slope failures. A wireless sensor network (WSN), developed by NASA SERVIR and USRA, with peer-to-peer communication capability and low power consumption, is ideal for high spatial in situ monitoring in remote locations. In collaboration with the University of Huntsville at Alabama, WSN equipped with accelerometer, rainfall and soil moisture sensors is being integrated into an end-to-end landslide warning system. The WSN is being tested to ascertain communication capabilities and the density of nodes required depending upon the nature of terrain and land cover. The performance of a water table model, to be utilized in the end-to-end system, is being evaluated by comparing against landslides that occurred during the 6th and 7th of May, 2003 and 20th and 21st of April, 2011. The model provides a deterministic assessment of slope stability by evaluating horizontal and vertical transport of underground water and associated weight bearing capacity. In the proposed end-to-end system, the model will be coupled to the WSN, and the in situ data collected will be used to drive the model. The output from the model could be communicated back to the WSN providing the capability of generating warning of possible events to the ED3 framework to trigger additional data retrieval or the processing of additional models based on decision maker's ED3 preparedness plans. NASA's Applied Science Program has funded a feasibility study of the ED3 technology and as a result the capability is on track be integrated into existing decision support systems, with an initial reference implementation hosted at the Global Hydrology Resource Center, a NASA distributed active archive center (DAAC).

  8. A Framework to Support S&T Planning for Royal Australian Navy Capability Acquisition

    DTIC Science & Technology

    2012-03-01

    for guiding policy and assisting with strategic planning innovation processes. At the commencement of a Foresight Planning exercise the...for many Australian Defence Force (ADF) capability projects . Specifically, the methodology could prove beneficial in the development of science and...27 6.4 Selecting Appropriate Foresight Planning Methods ....................................... 28 7. SCIENCE AND

  9. Resource Allocation Planning Helper (RALPH): Lessons learned

    NASA Technical Reports Server (NTRS)

    Durham, Ralph; Reilly, Norman B.; Springer, Joe B.

    1990-01-01

    The current task of Resource Allocation Process includes the planning and apportionment of JPL's Ground Data System composed of the Deep Space Network and Mission Control and Computing Center facilities. The addition of the data driven, rule based planning system, RALPH, has expanded the planning horizon from 8 weeks to 10 years and has resulted in large labor savings. Use of the system has also resulted in important improvements in science return through enhanced resource utilization. In addition, RALPH has been instrumental in supporting rapid turn around for an increased volume of special what if studies. The status of RALPH is briefly reviewed and important lessons learned from the creation of an highly functional design team are focused on through an evolutionary design and implementation period in which an AI shell was selected, prototyped, and ultimately abandoned, and through the fundamental changes to the very process that spawned the tool kit. Principal topics include proper integration of software tools within the planning environment, transition from prototype to delivered to delivered software, changes in the planning methodology as a result of evolving software capabilities and creation of the ability to develop and process generic requirements to allow planning flexibility.

  10. Operating the EOSDIS at the land processes DAAC managing expectations, requirements, and performance across agencies, missions, instruments, systems, and user communities

    USGS Publications Warehouse

    Kalvelage, T.A.; ,

    2002-01-01

    NASA developed the Earth Observing System (EOS) during the 1990'S. At the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS EROS Data Center, the EOS Data and Information System (EOSDIS) is required to support heritage missions as well as Landsat 7, Terra, and Aqua. The original system concept of the early 1990'S changed as each community had its say - first the managers, then engineers, scientists, developers, operators, and then finally the general public. The systems at the LP DAAC - particularly the largest single system, the EOSDIS Core System (ECS) - are changing as experience accumulates, technology changes, and each user group gains influence. The LP DAAC has adapted as contingencies were planned for, requirements and therefore plans were modified, and expectations changed faster than requirements could hope to be satisfied. Although not responsible for Quality Assurance of the science data, the LP DAAC works to ensure the data are accessible and useable by influencing systems, capabilities, and data formats where possible, and providing tools and user support as necessary. While supporting multiple missions and instruments, the LP DAAC also works with and learns from multiple management and oversight groups as they review mission requirements, system capabilities, and the overall operation of the LP DAAC. Stakeholders, including the Land Science community, are consulted regularly to ensure that the LP DAAC remains cognizant and responsive to the evolving needs of the user community. Today, the systems do not look or function as originally planned, but they do work, and they allow customers to search and order of an impressive amount of diverse data.

  11. Knowledge-based decision support for Space Station assembly sequence planning

    NASA Astrophysics Data System (ADS)

    1991-04-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  12. Knowledge-based decision support for Space Station assembly sequence planning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  13. SU-E-T-502: Initial Results of a Comparison of Treatment Plans Produced From Automated Prioritized Planning Method and a Commercial Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, P; Chen, Y; Hong, L

    2015-06-15

    Purpose We developed an automated treatment planning system based on a hierarchical goal programming approach. To demonstrate the feasibility of our method, we report the comparison of prostate treatment plans produced from the automated treatment planning system with those produced by a commercial treatment planning system. Methods In our approach, we prioritized the goals of the optimization, and solved one goal at a time. The purpose of prioritization is to ensure that higher priority dose-volume planning goals are not sacrificed to improve lower priority goals. The algorithm has four steps. The first step optimizes dose to the target structures, whilemore » sparing key sensitive organs from radiation. In the second step, the algorithm finds the best beamlet weight to reduce toxicity risks to normal tissue while holding the objective function achieved in the first step as a constraint, with a small amount of allowed slip. Likewise, the third and fourth steps introduce lower priority normal tissue goals and beam smoothing. We compared with prostate treatment plans from Memorial Sloan Kettering Cancer Center developed using Eclipse, with a prescription dose of 72 Gy. A combination of liear, quadratic, and gEUD objective functions were used with a modified open source solver code (IPOPT). Results Initial plan results on 3 different cases show that the automated planning system is capable of competing or improving on expert-driven eclipse plans. Compared to the Eclipse planning system, the automated system produced up to 26% less mean dose to rectum and 24% less mean dose to bladder while having the same D95 (after matching) to the target. Conclusion We have demonstrated that Pareto optimal treatment plans can be generated automatically without a trial-and-error process. The solver finds an optimal plan for the given patient, as opposed to database-driven approaches that set parameters based on geometry and population modeling.« less

  14. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  15. Rapid Acquisition of Army Command and Control Systems

    DTIC Science & Technology

    2014-01-01

    Research and Engineering (Plans and Programs). 63 Glenn Fogg , “How to Better Support the Need for Quick Reaction...Pocket,” Army Communicator, Summer 2005. Fogg , Glenn, “How to Better Support the Need for Quick Reaction Capabilities in an Irregular Warfare

  16. Integrated corridor management initiative : demonstration phase evaluation, San Diego technical capability analysis test plan.

    DOT National Transportation Integrated Search

    1998-11-01

    The purpose of this working paper is to present estimates of potential safety benefits resulting from full implementation of Intelligent Transportation Systems (ITS) in the United States. These estimates were derived by integrating results from a num...

  17. Propulsion Ground Testing: Planning for the Future

    NASA Technical Reports Server (NTRS)

    Bruce, Robert

    2003-01-01

    Advanced planners are constantly being asked to plan for the provision of future test capability. Historically, this capability is provided either by substantial investment in new test facility capabilities, or in the substantial investment in the modification of pre- existing test capabilities. The key words in the previous sentence are "substantial investment". In the evolving environment of increasingly constrained resources, how is an advanced planner to plan for the provisions of such capabilities? Additionally, the conundrum exists that program formulation decisions are being made based upon both life cycle cost decisions in an environment in which the more immediate challenge of "front-end" capital investment? Often times is the linch-pin upon which early decisions are made. In such an environment, how are plans and decisions made? This paper cites examples of decisions made in the past in the area of both major test facility upgrades, as well as major new test facility investment.

  18. MOORE: A prototype expert system for diagnosing spacecraft problems

    NASA Technical Reports Server (NTRS)

    Howlin, Katherine; Weissert, Jerry; Krantz, Kerry

    1988-01-01

    MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.

  19. A Near Real-time Decision Support System Improving Forest Management in the Tropics

    NASA Astrophysics Data System (ADS)

    Tabor, K.; Musinsky, J.; Ledezma, J.; Rasolohery, A.; Mendoza, E.; Kistler, H.; Steininger, M.; Morton, D. C.; Melton, F. S.; Manwell, J.; Koenig, K.

    2013-12-01

    Conservation International (CI) has a decade of experience developing near real-time fire and deforestation monitoring and forecasting systems that channel monitoring information from satellite observations directly to national and sub-national government agencies, Non-Government Organizations (NGOs), and local communities. These systems are used to strengthen forest surveillance and monitoring, fire management and prevention, protected areas management and sustainable land use planning. With support from a NASA Wildland Fires grant, in September 2013 CI will launch a brand new near real-time alert system (FIRECAST) to better meet the outstanding needs and challenges users face in addressing ecosystem degradation from wildland fire and illegal forest activities. Outreach efforts and user feedback have indicated the need for seasonal fire forecasts for effective land use planning, faster alert delivery to enhance response to illegal forest activities, and expanded forest monitoring capabilities that enable proactive responses and that strengthen forest conservation and sustainable development actions. The new FIRECAST system addresses these challenges by integrating the current fire alert and deforestation systems and adding improved ecological forecasting of fire risk; expanding data exchange capabilities with mobile technologies; and delivering a deforestation alert product that can inform policies related to land use management and Reduced Emissions from Deforestation and forest Degradation (REDD+). In addition to demonstrating the capabilities of this new real-time alert system, we also highlight how coordination with host-country institutions enhances the system's capacity to address the implementation needs of REDD+ forest carbon projects, improve tropical forest management, strengthen environmental law enforcement, and facilitate the uptake of near real-time satellite monitoring data into business practices of these national/sub-national institutions.

  20. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 6: Implementation schedule, development costs, operational costs, benefit assessment, impact on company organization, spin-off assessment, phase 1, tasks 3 to 8

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.; Dublin, M.

    1973-01-01

    A baseline implementation plan, including alternative implementation approaches for critical software elements and variants to the plan, was developed. The basic philosophy was aimed at: (1) a progressive release of capability for three major computing systems, (2) an end product that was a working tool, (3) giving participation to industry, government agencies, and universities, and (4) emphasizing the development of critical elements of the IPAD framework software. The results of these tasks indicate an IPAD first release capability 45 months after go-ahead, a five year total implementation schedule, and a total developmental cost of 2027 man-months and 1074 computer hours. Several areas of operational cost increases were identified mainly due to the impact of additional equipment needed and additional computer overhead. The benefits of an IPAD system were related mainly to potential savings in engineering man-hours, reduction of design-cycle calendar time, and indirect upgrading of product quality and performance.

  1. Candidate Materials Evaluated for a High-Temperature Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Bowman, Randy R.; Ritzert, Frank J.

    2005-01-01

    The Department of Energy and NASA have identified Stirling Radioisotope Generators (SRGs) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel-base superalloy 718. The current operating temperature is at the limit of alloy 718 s capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, personnel at the NASA Glenn Research Center are evaluating advanced materials for a high-temperature heater head to allow a higher convertor temperature ratio and, thus, increase the system efficiency. A generic list of properties that were used to screen the candidate materials follows: (1) creep, (2) fabricability, (3) helium gas containment, (4) long-term stability and compatibility, (5) ability to form a hermetical closeout seal, and (6) ductility and toughness.

  2. International Space Station USOS Waste and Hygiene Compartment Development

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven

    2007-01-01

    The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.

  3. Downtime procedures for the 21st century: using a fully integrated health record for uninterrupted electronic reporting of laboratory results during laboratory information system downtimes.

    PubMed

    Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander

    2015-01-01

    Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.

  4. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified.

  5. Robotic Access to Planetary Surfaces Capability Roadmap

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A set of robotic access to planetary surfaces capability developments and supporting infrastructure have been identified. Reference mission pulls derived from ongoing strategic planning. Capability pushes to enable broader mission considerations. Facility and flight test capability needs. Those developments have been described to the level of detail needed for high-level planning. Content and approach. Readiness and metrics. Rough schedule and cost. Connectivity to mission concepts.

  6. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced portfolio of aeronautics ground and flight test capabilities that advance U.S. leadership in aeronautics in the short and long term. Key to the ATP vision is the concept of availability, not necessarily ownership; that is, NASA does not have to own and operate all facilities that are envisioned for future aeronautics testing. However, ATP will enable access to capabilities which are needed but not owned by NASA through strategic partnerships and reliance agreements. This paper will outline the major aspects of the ATP strategic plan for achieving its mission.

  7. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    PubMed Central

    Saenz, Daniel L.; Paliwal, Bhudatt R.; Bayouth, John E.

    2014-01-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving <20% of prescription dose (DRx) were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95) had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system. PMID:24872603

  8. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans.

    PubMed

    Saenz, Daniel L; Paliwal, Bhudatt R; Bayouth, John E

    2014-04-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving <20% of prescription dose (DRx) were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95) had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

  9. MANPRINT Methods Monograph: Aiding the Development of Manned System Performance Criteria

    DTIC Science & Technology

    1989-06-01

    the need for the new system. It may be necessary co derive these requirements from combat models. By modeling the capabilities of the current force ...FORMAT The O&O Plan describes how a system will be integrated into the force structure, deployed, operated, and supported in peacetime and wartime...for evaluation during OT I. 9. MANPOWER/ FORCE STRUCTURE ASSESSMENT. Estimate manpower require- ments per system, using unit, and total Army by

  10. Automated Cooperative Trajectories for a More Efficient and Responsive Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2015-01-01

    The NASA Automated Cooperative Trajectories project is developing a prototype avionics system that enables multi-vehicle cooperative control by integrating 1090 MHz ES ADS-B digital communications with onboard autopilot systems. This cooperative control capability will enable meta-aircraft operations for enhanced airspace utilization, as well as improved vehicle efficiency through wake surfing. This briefing describes the objectives and approach to a flight evaluation of this system planned for 2016.

  11. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated bymore » attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.« less

  12. Training Community Modeling and Simulation Business Plan, 2007 Edition. Volume 1: Review of Training Capabilities

    DTIC Science & Technology

    2009-02-01

    Simulation Business Plan, 2007 Edition Volume I: Review of Training Capabilities J.D. Fletcher, IDA Frederick E. Hartman , IDA Robert Halayko, Addx Corp...Community Modeling and Simulation Business Plan, 2007 Edition Volume I: Review of Training Capabilities J.D. Fletcher, IDA Frederick E. Hartman , IDA...Steering Committee for the training community led by the Office of the Under Secretary of Defense (Personnel and Readiness), OUSD( P &R). The task was

  13. The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Smith, Thomas B.

    2007-01-01

    As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.

  14. Space Launch System Co-Manifested Payload Options for Habitation

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2015-01-01

    The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the rocket matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and the service module. The co-manifested payload is located below the Orion and its service module in a 10-meter high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. A variety of approaches have been explored that utilizes this co-manifested payload capability to build up infrastructure in deep space in support of future asteroid, lunar, and Mars mission scenarios. This paper is a report on the findings from the Advanced Concepts Office study team at the NASA Marshall Space Flight Center, working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume on SLS. Findings include module designs that can be developed in 10mt increments to support these missions, including overall conceptual layouts, mass properties, and approaches for integration into various scenarios for near-term support of deep space habitat research and technology development, support to asteroid exploration, and long range support for Mars transfer flights.

  15. Space Shuttle capabilities, constraints, and cost

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1980-01-01

    The capabilities, constraints, and costs of the Space Transportation System (STS), which combines reusable and expendable components, are reviewed, and an overview of the current planning activities for operating the STS in an efficient and cost-effective manner is presented. Traffic forecasts, performance constraints and enhancements, and potential new applications are discussed. Attention is given to operating costs, pricing policies, and the steps involved in 'getting on board', which includes all the interfaces between NASA and the users necessary to come to launch service agreements.

  16. Continuity of Operations Plans: Policy and Strategy for K-12 Schools in the State of Florida

    DTIC Science & Technology

    2011-12-01

    issue that has emerged, as it concerns COOP, involves the need for Florida K-12 school systems to develop these plans. Florida neither requires, as is...test COOPs to ensure functional and recovery capabilities. Issues , such as alternate facilities, computer and informational services, as well as human...policy and strategy components for K-12 schools. D. HYPOTHESIS Within the communities of government, universities and businesses , a COOP has

  17. Current Capabilities and Planned Enhancements of SUSTAIN - Paper

    EPA Science Inventory

    Efforts have been under way by the U.S. Environmental Protection Agency (EPA) since 2003 to develop a decision-support tool for placement of best management practices (BMPs) at strategic locations in urban watersheds. The tool is called the System for Urban Stormwater Treatment ...

  18. Vocational Training and Rural Development in Algeria

    ERIC Educational Resources Information Center

    Boumaza, S.; Gara, A.

    1973-01-01

    Better organization of the agricultural sector, expansion of production capabilities, increased employment, satisfaction of the country's needs, and improved productivity are the guidelines considered in the planning and development of the agricultural vocational training system in Algeria. Charts illustrate and clarify the organization of this…

  19. Evaluation of an Expert System for the Generation of Speech and Language Therapy Plans.

    PubMed

    Robles-Bykbaev, Vladimir; López-Nores, Martín; García-Duque, Jorge; Pazos-Arias, José J; Arévalo-Lucero, Daysi

    2016-07-01

    Speech and language pathologists (SLPs) deal with a wide spectrum of disorders, arising from many different conditions, that affect voice, speech, language, and swallowing capabilities in different ways. Therefore, the outcomes of Speech and Language Therapy (SLT) are highly dependent on the accurate, consistent, and complete design of personalized therapy plans. However, SLPs often have very limited time to work with their patients and to browse the large (and growing) catalogue of activities and specific exercises that can be put into therapy plans. As a consequence, many plans are suboptimal and fail to address the specific needs of each patient. We aimed to evaluate an expert system that automatically generates plans for speech and language therapy, containing semiannual activities in the five areas of hearing, oral structure and function, linguistic formulation, expressive language and articulation, and receptive language. The goal was to assess whether the expert system speeds up the SLPs' work and leads to more accurate, consistent, and complete therapy plans for their patients. We examined the evaluation results of the SPELTA expert system in supporting the decision making of 4 SLPs treating children in three special education institutions in Ecuador. The expert system was first trained with data from 117 cases, including medical data; diagnosis for voice, speech, language and swallowing capabilities; and therapy plans created manually by the SLPs. It was then used to automatically generate new therapy plans for 13 new patients. The SLPs were finally asked to evaluate the accuracy, consistency, and completeness of those plans. A four-fold cross-validation experiment was also run on the original corpus of 117 cases in order to assess the significance of the results. The evaluation showed that 87% of the outputs provided by the SPELTA expert system were considered valid therapy plans for the different areas. The SLPs rated the overall accuracy, consistency, and completeness of the proposed activities with 4.65, 4.6, and 4.6 points (to a maximum of 5), respectively. The ratings for the subplans generated for the areas of hearing, oral structure and function, and linguistic formulation were nearly perfect, whereas the subplans for expressive language and articulation and for receptive language failed to deal properly with some of the subject cases. Overall, the SLPs indicated that over 90% of the subplans generated automatically were "better than" or "as good as" what the SLPs would have created manually if given the average time they can devote to the task. The cross-validation experiment yielded very similar results. The results show that the SPELTA expert system provides valuable input for SLPs to design proper therapy plans for their patients, in a shorter time and considering a larger set of activities than proceeding manually. The algorithms worked well even in the presence of a sparse corpus, and the evidence suggests that the system will become more reliable as it is trained with more subjects.

  20. Evaluation of an Expert System for the Generation of Speech and Language Therapy Plans

    PubMed Central

    López-Nores, Martín; García-Duque, Jorge; Pazos-Arias, José J; Arévalo-Lucero, Daysi

    2016-01-01

    Background Speech and language pathologists (SLPs) deal with a wide spectrum of disorders, arising from many different conditions, that affect voice, speech, language, and swallowing capabilities in different ways. Therefore, the outcomes of Speech and Language Therapy (SLT) are highly dependent on the accurate, consistent, and complete design of personalized therapy plans. However, SLPs often have very limited time to work with their patients and to browse the large (and growing) catalogue of activities and specific exercises that can be put into therapy plans. As a consequence, many plans are suboptimal and fail to address the specific needs of each patient. Objective We aimed to evaluate an expert system that automatically generates plans for speech and language therapy, containing semiannual activities in the five areas of hearing, oral structure and function, linguistic formulation, expressive language and articulation, and receptive language. The goal was to assess whether the expert system speeds up the SLPs’ work and leads to more accurate, consistent, and complete therapy plans for their patients. Methods We examined the evaluation results of the SPELTA expert system in supporting the decision making of 4 SLPs treating children in three special education institutions in Ecuador. The expert system was first trained with data from 117 cases, including medical data; diagnosis for voice, speech, language and swallowing capabilities; and therapy plans created manually by the SLPs. It was then used to automatically generate new therapy plans for 13 new patients. The SLPs were finally asked to evaluate the accuracy, consistency, and completeness of those plans. A four-fold cross-validation experiment was also run on the original corpus of 117 cases in order to assess the significance of the results. Results The evaluation showed that 87% of the outputs provided by the SPELTA expert system were considered valid therapy plans for the different areas. The SLPs rated the overall accuracy, consistency, and completeness of the proposed activities with 4.65, 4.6, and 4.6 points (to a maximum of 5), respectively. The ratings for the subplans generated for the areas of hearing, oral structure and function, and linguistic formulation were nearly perfect, whereas the subplans for expressive language and articulation and for receptive language failed to deal properly with some of the subject cases. Overall, the SLPs indicated that over 90% of the subplans generated automatically were “better than” or “as good as” what the SLPs would have created manually if given the average time they can devote to the task. The cross-validation experiment yielded very similar results. Conclusions The results show that the SPELTA expert system provides valuable input for SLPs to design proper therapy plans for their patients, in a shorter time and considering a larger set of activities than proceeding manually. The algorithms worked well even in the presence of a sparse corpus, and the evidence suggests that the system will become more reliable as it is trained with more subjects. PMID:27370070

  1. A Further Look at Technologies and Capabilities for Stabilization and Reconstruction Operations

    DTIC Science & Technology

    2007-09-01

    in current S&R operations in Iraq and Afghanistan due to the infrequency of major combat operations. However, other ABCS sub- systems are vital to S&R...complex environments. In terms of the need for an integrated S&R operational planning and execution C2 system , there continues to be a challenge in ... systems (which speaks to the over-reliance on cell phones as a means of

  2. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  3. Development of Availability and Sustainability Spares Optimization Models for Aircraft Reparables

    DTIC Science & Technology

    2013-09-01

    the integrated SAP ® Enterprise Resource Planning ( ERP ) information system of the RSAF. A more in-depth review of OPUS10 capabilities will be provided...Dynamic Multi-Echelon Technique for Recoverable Item Control EBO: Expected Backorder EOQ: Economic Order Quantity ERP : Enterprise Resource...particular, the propulsion sub-system was expanded to include SSRUs. Spares information are extracted from the RSAF ERP system and include: 22

  4. Systems engineering considerations for operational support systems

    NASA Technical Reports Server (NTRS)

    Aller, Robert O.

    1993-01-01

    Operations support as considered here is the infrastructure of people, procedures, facilities and systems that provide NASA with the capability to conduct space missions. This infrastructure involves most of the Centers but is concentrated principally at the Johnson Space Center, the Kennedy Space Center, the Goddard Space Flight Center, and the Jet Propulsion Laboratory. It includes mission training and planning, launch and recovery, mission control, tracking, communications, data retrieval and data processing.

  5. Comprehensive evaluation index system of total supply capability in distribution network

    NASA Astrophysics Data System (ADS)

    Zhang, Linyao; Wu, Guilian; Yang, Jingyuan; Jia, Shuangrui; Zhang, Wei; Sun, Weiqing

    2018-01-01

    Aiming at the lack of a comprehensive evaluation of the distribution network, based on the existing distribution network evaluation index system, combined with the basic principles of constructing the evaluation index, put forward a new evaluation index system of distribution network capacity. This paper is mainly based on the total supply capability of the distribution network, combining single index and various factors, into a multi-evaluation index of the distribution network, thus forming a reasonable index system, and various indicators of rational quantification make the evaluation results more intuitive. In order to have a comprehensive judgment of distribution network, this paper uses weights to analyse the importance of each index, verify the rationality of the index system through the example, it is proved that the rationality of the index system, so as to guide the direction of distribution network planning.

  6. DSB Task Force on Cyber Supply Chain

    DTIC Science & Technology

    2017-04-01

    seeking to exploit a maliciously inserted vulnerability must execute each step in the kill chain:  Intelligence and planning: gathering...are intended to take a comprehensive approach in considering all aspects of system security, including cybersecurity , and address initial steps to...specific integrated circuits (ASICs). That need is likely to grow for systems that support intelligent or autonomous capabilities. The current

  7. Evaluation of the Trajectory Operations Applications Software Task (TOAST)

    NASA Technical Reports Server (NTRS)

    Perkins, Sharon; Martin, Andrea; Bavinger, Bill

    1990-01-01

    The Trajectory Operations Applications Software Task (TOAST) is a software development project under the auspices of the Mission Operations Directorate. Its purpose is to provide trajectory operation pre-mission and real-time support for the Space Shuttle program. As an Application Manager, TOAST provides an isolation layer between the underlying Unix operating system and the series of user programs. It provides two main services: a common interface to operating system functions with semantics appropriate for C or FORTRAN, and a structured input and output package that can be utilized by user application programs. In order to evaluate TOAST as an Application Manager, the task was to assess current and planned capabilities, compare capabilities to functions available in commercially-available off the shelf (COTS) and Flight Analysis Design System (FADS) users for TOAST implementation. As a result of the investigation, it was found that the current version of TOAST is well implemented and meets the needs of the real-time users. The plans for migrating TOAST to the X Window System are essentially sound; the Executive will port with minor changes, while Menu Handler will require a total rewrite. A series of recommendations for future TOAST directions are included.

  8. FY16 Analysis report: Financial systems dependency on communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyeler, Walter E.

    Within the Department of Homeland Security (DHS), the Office of Cyber and Infrastructure Analysis (OCIA)'s National Infrastructure Simulation and Analysis Center (NISAC) develops capabilities to support the DHS mission and the resilience of the Nation’s critical infrastructure. At Sandia National Laboratories, under DHS/OCIA direction, NISAC is developing models of financial sector dependence on communications. This capability is designed to improve DHS's ability to assess potential impacts of communication disruptions to major financial services and the effectiveness of possible mitigations. This report summarizes findings and recommendations from the application of that capability as part of the FY2016 NISAC program plan.

  9. Adaptive Planning: Understanding Organizational Workload to Capability/ Capacity through Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Hase, Chris

    2010-01-01

    In August 2003, the Secretary of Defense (SECDEF) established the Adaptive Planning (AP) initiative [1] with an objective of reducing the time necessary to develop and revise Combatant Commander (COCOM) contingency plans and increase SECDEF plan visibility. In addition to reducing the traditional plan development timeline from twenty-four months to less than twelve months (with a goal of six months)[2], AP increased plan visibility to Department of Defense (DoD) leadership through In-Progress Reviews (IPRs). The IPR process, as well as the increased number of campaign and contingency plans COCOMs had to develop, increased the workload while the number of planners remained fixed. Several efforts from collaborative planning tools to streamlined processes were initiated to compensate for the increased workload enabling COCOMS to better meet shorter planning timelines. This paper examines the Joint Strategic Capabilities Plan (JSCP) directed contingency planning and staffing requirements assigned to a combatant commander staff through the lens of modeling and simulation. The dynamics of developing a COCOM plan are captured with an ExtendSim [3] simulation. The resulting analysis provides a quantifiable means by which to measure a combatant commander staffs workload associated with development and staffing JSCP [4] directed contingency plans with COCOM capability/capacity. Modeling and simulation bring significant opportunities in measuring the sensitivity of key variables in the assessment of workload to capability/capacity analysis. Gaining an understanding of the relationship between plan complexity, number of plans, planning processes, and number of planners with time required for plan development provides valuable information to DoD leadership. Through modeling and simulation AP leadership can gain greater insight in making key decisions on knowing where to best allocate scarce resources in an effort to meet DoD planning objectives.

  10. NATO initial common operational picture capability project

    NASA Astrophysics Data System (ADS)

    Fanti, Laura; Beach, David

    2002-08-01

    The Common Operational Picture (COP) capability can be defined as the ability to display on a single screen integrated views of the Recognized Maritime, Air and Ground Pictures, enriched by other tactical data, such as theater plans, assets, intelligence and logistics information. The purpose of the COP capability is to provide military forces a comprehensive view of the battle space, thereby enhancing situational awareness and the decision-making process across the military command and control spectrum. The availability of a COP capability throughout the command structure is a high priority operational requirement in NATO. A COP capability for NATO is being procured and implemented in an incremental way within the NATO Automated Information System (Bi-SC AIS) Functional Services programme under the coordination of the NATO Consultation, Command and Control Agency (NC3A) Integrated Programme Team 5 (IPT5). The NATO Initial COP (iCOP) capability project, first step of this evolutionary procurement, will provide an initial COP capability to NATO in a highly pragmatic and low-risk fashion, by using existing operational communications infrastructure and NATO systems, i.e. the NATO-Wide Integrated Command and Control Software for Air Operations (ICC), the Maritime Command and Control Information System (MCCIS), and the Joint Operations and Intelligence Information System (JOIIS), which will provide respectively the Recognized Air, Maritime and Ground Pictures. This paper gives an overview of the NATO Initial COP capability project, including its evolutionary implementation approach, and describes the technical solution selected to satisfy the urgent operational requirement in a timely and cost effective manner.

  11. Challenges in building intelligent systems for space mission operations

    NASA Technical Reports Server (NTRS)

    Hartman, Wayne

    1991-01-01

    The purpose here is to provide a top-level look at the stewardship functions performed in space operations, and to identify the major issues and challenges that must be addressed to build intelligent systems that can realistically support operations functions. The focus is on decision support activities involving monitoring, state assessment, goal generation, plan generation, and plan execution. The bottom line is that problem solving in the space operations domain is a very complex process. A variety of knowledge constructs, representations, and reasoning processes are necessary to support effective human problem solving. Emulating these kinds of capabilities in intelligent systems offers major technical challenges that the artificial intelligence community is only beginning to address.

  12. Interval Management: Development and Implementation of an Airborne Spacing Concept

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Penhallegon, William J.; Weitz, Lesley A.; Bone, Randall S.; Levitt, Ian; Flores Kriegsfeld, Julia A.; Arbuckle, Doug; Johnson, William C.

    2016-01-01

    Interval Management is a suite of ADS-B-enabled applications that allows the air traffic controller to instruct a flight crew to achieve and maintain a desired spacing relative to another aircraft. The flight crew, assisted by automation, manages the speed of their aircraft to deliver more precise inter-aircraft spacing than is otherwise possible, which increases traffic throughput at the same or higher levels of safety. Interval Management has evolved from a long history of research and is now seen as a core NextGen capability. With avionics standards recently published, completion of an Investment Analysis Readiness Decision by the FAA, and multiple flight tests planned, Interval Management will soon be part of everyday use in the National Airspace System. Second generation, Advanced Interval Management capabilities are being planned to provide a wider range of operations and improved performance and benefits. This paper briefly reviews the evolution of Interval Management and describes current development and deployment plans. It also reviews concepts under development as the next generation of applications.

  13. Graphical Visualization of Human Exploration Capabilities

    NASA Technical Reports Server (NTRS)

    Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex

    2016-01-01

    NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description of planned future work to modify the computer program to include additional data and of alternate capability roadmap formats currently under consideration.

  14. Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.

    1999-01-01

    As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

  15. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  16. Introduction and Progress of APOSOS Project

    NASA Astrophysics Data System (ADS)

    Zhao, You; Gao, P. Q.; Shen, Ming; Chaudhry, Maqbool A.; Guo, Xiaozhong; Teng, D. P.; Yang, Datao; Yu, Huanhuan; Zhao, Zhe

    Asia-Pacific Ground-Based Optical Satellite Observation System (APOSOS) project is based on members of Asia-Pacific Space Cooperation Organization (APSCO). Its aim is to develop a regional or even global satellite tracking network basically composed of optical trackers. The system will be used to track objects of interest or space-debris for the safety of spacecraft launch mission or the intactness of operational satellites. The system will benefit from the distribution of APSCO members and multi-national fund support or technical cooperation. Thus APOSOS will have a potential capability to observe all the satellites orbiting earth with high precision but relatively low cost. This paper will present the introduction, progress and current status of APOSOS project, including: System Requirements Definition, System Main Mission, System Goal, System design, Services and Clients, Organization Framework of Observation Center, Major Function of Observation Center, Establishment of Observation Plan, Format Standard for Exchanging Data, Data Policy, Implementation Schedule, etc.. APOSOS will build a unified surveillance network from observational facilities of member states involved, to utilize the wide geographical distribution advantage of multi-country. It will be operated under the coordination of APSCO observation mission management department. (1)APOSOS should conduct observation missions of specific satellites, space-debris or other space objects of interest, based on requirements of member states. APOSOS should fulfill the basic requirement for satellites observation and tracking missions. And it should also have the potential ability of small debris detection to support collision avoidance planning, which can protect the members high valued space assets. (2)In some particular application, APOSOS would be able to be used for long-term tracking of specific space object of interest, and have the ability of data processing and analysis, so as to provide conjunction assessment, collision probability calculation and avoidance planning for space assets. (3)APOSOS should have the capability of publishing information and sharing data among member states, with the ability to deal with user’s requests for data and mange the data in different levels. (4)APOSOS should have the capability of providing services such as technical consultation, training and science popularization.

  17. NASA's Space Launch System: Deep-Space Delivery for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). Planning is underway for smallsat accomodations on future configurations of the vehicle, which will present additional opportunities. This paper will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the current and future opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.

  18. Computer aided system engineering for space construction

    NASA Technical Reports Server (NTRS)

    Racheli, Ugo

    1989-01-01

    This viewgraph presentation covers the following topics. Construction activities envisioned for the assembly of large platforms in space (as well as interplanetary spacecraft and bases on extraterrestrial surfaces) require computational tools that exceed the capability of conventional construction management programs. The Center for Space Construction is investigating the requirements for new computational tools and, at the same time, suggesting the expansion of graduate and undergraduate curricula to include proficiency in Computer Aided Engineering (CAE) though design courses and individual or team projects in advanced space systems design. In the center's research, special emphasis is placed on problems of constructability and of the interruptability of planned activity sequences to be carried out by crews operating under hostile environmental conditions. The departure point for the planned work is the acquisition of the MCAE I-DEAS software, developed by the Structural Dynamics Research Corporation (SDRC), and its expansion to the level of capability denoted by the acronym IDEAS**2 currently used for configuration maintenance on Space Station Freedom. In addition to improving proficiency in the use of I-DEAS and IDEAS**2, it is contemplated that new software modules will be developed to expand the architecture of IDEAS**2. Such modules will deal with those analyses that require the integration of a space platform's configuration with a breakdown of planned construction activities and with a failure modes analysis to support computer aided system engineering (CASE) applied to space construction.

  19. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  20. NASA's Space Launch System Advanced Booster Engineering Demonstration and/or Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Dumbacher, Daniel L.; May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, with a stated intent to reduce risks leading to an affordable advanced booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the advanced boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit (BEO), opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable advanced booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned advanced booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.

  1. NASA's Space Launch System Advanced Booster Engineering Demonstration and Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd; Dumbacher, Daniel

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, and its stated intent was to reduce risks leading to an affordable Advanced Booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the Advanced Boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the Advanced Boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit, opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable Advanced Booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an Advanced Booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned Advanced Booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.

  2. Geometric reasoning

    NASA Technical Reports Server (NTRS)

    Woodbury, R. F.; Oppenheim, I. J.

    1987-01-01

    Cognitive robot systems are ones in which sensing and representation occur, from which task plans and tactics are determined. Such a robot system accomplishes a task after being told what to do, but determines for itself how to do it. Cognition is required when the work environment is uncontrolled, when contingencies are prevalent, or when task complexity is large; it is useful in any robotic mission. A number of distinguishing features can be associated with cognitive robotics, and one emphasized here is the role of artificial intelligence in knowledge representation and in planning. While space telerobotics may elude some of the problems driving cognitive robotics, it shares many of the same demands, and it can be assumed that capabilities developed for cognitive robotics can be employed advantageously for telerobotics in general. The top level problem is task planning, and it is appropriate to introduce a hierarchical view of control. Presented with certain mission objectives, the system must generate plans (typically) at the strategic, tactical, and reflexive levels. The structure by which knowledge is used to construct and update these plans endows the system with its cognitive attributes, and with the ability to deal with contingencies, changes, unknowns, and so on. Issues of representation and reasoning which are absolutely fundamental to robot manipulation, decisions based upon geometry, are discussed here, not AI task planning per se.

  3. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  4. The JPL telerobotic Manipulator Control and Mechanization (MCM) subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Lee, Thomas S.; Tso, Kam; Backes, Paul; Kan, Edwin; Lloyd, J.

    1989-01-01

    The Manipulator Control and Mechanization (MCM) subsystem of the telerobot system provides the real-time control of the robot manipulators in autonomous and teleoperated modes and real time input/output for a variety of sensors and actuators. Substantial hardware and software are included in this subsystem which interfaces in the hierarchy of the telerobot system with the other subsystems. The other subsystems are: run time control, task planning and reasoning, sensing and perception, and operator control subsystem. The architecture of the MCM subsystem, its capabilities, and details of various hardware and software elements are described. Important improvements in the MCM subsystem over the first version are: dual arm coordinated trajectory generation and control, addition of integrated teleoperation, shared control capability, replacement of the ultimate controllers with motor controllers, and substantial increase in real time processing capability.

  5. Development of the Spacecraft Materials Selector Expert System

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.

    2000-01-01

    A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft is being developed under contract to the NASA SEE program. An artificial intelligence software package, the Boeing Expert System Tool (BEST), contains an inference engine used to operate knowledge bases constructed to selectively recall and distribute information about materials performance in space applications. This same system is used to make estimates of the environmental exposures expected for a given space flight. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described in this paper. A case history for a planned flight experiment on ISS is shown as an example of the use of the SMS, and capabilities and limitations of the knowledge base are discussed.

  6. Attitude and articulation control system testing for Project Galileo

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.

    1981-01-01

    A type of facility required to integrate and test a complex autonomous spacecraft subsystem is presented, using the attitude and articulation control subsystem (AACS) of Project Galileo as an example. The equipment created for testing the AACS at both the subsystem and spacecraft system levels is described, including a description of the support equipment (SE) architecture in its two main configurations, closed loop simulation techniques, the user interface to the SE, and plans for the use of the facility beyond the test period. This system is capable of providing a flight-like functional environment through the use of accurate real-time models and carefully chosen points of interaction, and flexible control capability and high visibility to the test operator.

  7. Preparing a health care delivery system for Space Station

    NASA Technical Reports Server (NTRS)

    Logan, J. S.; Stewart, G. R.

    1985-01-01

    NASA's Space Station is viewed as the beginning of man's permanent presence in space. This paper presents the guidelines being developed by NASA's medical community in preparing a quality, permanent health care delivery system for Space Station. The guidelines will be driven by unique Space Station requirements such as mission duration, crew size, orbit altitude and inclination, EVA frequency and rescue capability. The approach will emphasize developing a health care system that is modular and flexible. It will also incorporate NASA's requirements for growth capability, commonality, maintainability, and advanced technology development. Goals include preventing unnecessary rescue attempts, as well as maintaining the health and safety of the crew. Proper planning will determine the levels of prevention, diagnosis, and treatment necessary to achieve these goals.

  8. SU-E-I-97: Smart Auto-Planning Framework in An EMR Environment (SAFEE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B; Chen, S; Mutaf, Y

    2014-06-01

    Purpose: Our Radiation Oncology Department uses clinical practice guidelines for patient treatment, including normal tissue sparing and other dosimetric constraints. These practice guidelines were adapted from national guidelines, clinical trials, literature reviews, and practitioner's own experience. Modern treatment planning systems (TPS) have the capability of incorporating these practice guidelines to automatically create radiation therapy treatment plans with little human intervention. We are developing a software infrastructure to integrate clinical practice guidelines and radiation oncology electronic medical record (EMR) system into radiation therapy treatment planning system (TPS) for auto planning. Methods: Our Smart Auto-Planning Framework in an EMR environment (SAFEE) usesmore » a software pipeline framework to integrate practice guidelines,EMR, and TPS together. The SAFEE system starts with retrieving diagnosis information and physician's prescription from the EMR system. After approval of contouring, SAFEE will automatically create plans according to our guidelines. Based on clinical objectives, SAFEE will automatically select treatment delivery techniques (such as, 3DRT/IMRT/VMAT) and optimize plans. When necessary, SAFEE will create multiple treatment plans with different combinations of parameters. SAFEE's pipeline structure makes it very flexible to integrate various techniques, such as, Model-Base Segmentation (MBS) and plan optimization algorithms, e.g., Multi-Criteria Optimization (MCO). In addition, SAFEE uses machine learning, data mining techniques, and an integrated database to create clinical knowledgebase and then answer clinical questions, such as, how to score plan quality or how volume overlap affects physicians' decision in beam and treatment technique selection. Results: In our institution, we use Varian Aria EMR system and RayStation TPS from RaySearch, whose ScriptService API allows control by external programs. These applications are the building blocks of our SAFEE system. Conclusion: SAFEE is a feasible method of integrating clinical information to develop an auto-planning paradigm to improve clinical workflow in cancer patient care.« less

  9. Computer Programs For Automated Welding System

    NASA Technical Reports Server (NTRS)

    Agapakis, John E.

    1993-01-01

    Computer programs developed for use in controlling automated welding system described in MFS-28578. Together with control computer, computer input and output devices and control sensors and actuators, provide flexible capability for planning and implementation of schemes for automated welding of specific workpieces. Developed according to macro- and task-level programming schemes, which increases productivity and consistency by reducing amount of "teaching" of system by technician. System provides for three-dimensional mathematical modeling of workpieces, work cells, robots, and positioners.

  10. Visions of tomorrow: A focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1987-01-01

    The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.

  11. The VLBI Data Analysis Software νSolve: Development Progress and Plans for the Future

    NASA Astrophysics Data System (ADS)

    Bolotin, S.; Baver, K.; Gipson, J.; Gordon, D.; MacMillan, D.

    2014-12-01

    The program νSolve is a part of the CALC/SOLVE VLBI data analysis system. It is a replacement for interactive SOLVE, the part of CALC/SOLVE that is used for preliminary data analysis of new VLBI sessions. νSolve is completely new software. It is written in C++ and has a modern graphical user interface. In this article we present the capabilities of the software, its current status, and our plans for future development.

  12. Building the IOOS data management subsystem

    USGS Publications Warehouse

    de La Beaujardière, J.; Mendelssohn, R.; Ortiz, C.; Signell, R.

    2010-01-01

    We discuss progress to date and plans for the Integrated Ocean Observing System (IOOS??) Data Management and Communications (DMAC) subsystem. We begin by presenting a conceptual architecture of IOOS DMAC. We describe work done as part of a 3-year pilot project known as the Data Integration Framework and the subsequent assessment of lessons learned. We present work that has been accomplished as part of the initial version of the IOOS Data Catalog. Finally, we discuss near-term plans for augmenting IOOS DMAC capabilities.

  13. A Self Contained Method for Safe and Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald

    2008-01-01

    The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.

  14. A DICOM based radiotherapy plan database for research collaboration and reporting

    NASA Astrophysics Data System (ADS)

    Westberg, J.; Krogh, S.; Brink, C.; Vogelius, I. R.

    2014-03-01

    Purpose: To create a central radiotherapy (RT) plan database for dose analysis and reporting, capable of calculating and presenting statistics on user defined patient groups. The goal is to facilitate multi-center research studies with easy and secure access to RT plans and statistics on protocol compliance. Methods: RT institutions are able to send data to the central database using DICOM communications on a secure computer network. The central system is composed of a number of DICOM servers, an SQL database and in-house developed software services to process the incoming data. A web site within the secure network allows the user to manage their submitted data. Results: The RT plan database has been developed in Microsoft .NET and users are able to send DICOM data between RT centers in Denmark. Dose-volume histogram (DVH) calculations performed by the system are comparable to those of conventional RT software. A permission system was implemented to ensure access control and easy, yet secure, data sharing across centers. The reports contain DVH statistics for structures in user defined patient groups. The system currently contains over 2200 patients in 14 collaborations. Conclusions: A central RT plan repository for use in multi-center trials and quality assurance was created. The system provides an attractive alternative to dummy runs by enabling continuous monitoring of protocol conformity and plan metrics in a trial.

  15. Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Kraft, C. C., Jr.

    1977-01-01

    A satellite based energy concept is described, including the advantages of the basic concept, system characteristics, cost, and environmental considerations. An outline of a plan for the further evaluation and implementation of the system is given. It is concluded that the satellite concept is competitive with other advanced power generation systems when a variety of factors are considered, including technical feasibility, cost, safety, natural resources, environment, baseload capability, location flexibility, land use, and existing industrial base for implementation.

  16. Behavioral and Organizational Considerations in the Design of Information Systems and Processes for Planning and Decision Support,

    DTIC Science & Technology

    1981-06-01

    analysis and display capability provided by management information systems to include interpretation and aggregation of information and values such as...accomplishment of these) 2. analysis of the issue d) systems analysis and modeling (determination of the structure of the decision situation, the...existingltrtie2) Surveying lsata i situation’ alternatives I altraivDsad Is this alternative -" altrnav acceptable? ANALYSIS o NOYES SHave a sufficient

  17. Aerospace Expeditionary Force Implementation and the Effect on Team Cohesion

    DTIC Science & Technology

    2002-03-01

    quickly load UTCs during real world conflicts, deployments, or exercises. The TPFDD is the Joint Operation Planning and Execution System data base... system in mission capable status in an efficeint manner. Time is saved by not having to establish work/personal relationships and new work peocesses...there wasn’t enough time for the system to process backfills for shortfalls that were, in reality, not shortfalls at all but a rainbow package. While

  18. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.

  19. Designing a Graphical Decision Support Tool to Improve System Acquisition Decisions

    DTIC Science & Technology

    2009-06-01

    relationships within the data [9]. Displaying acquisition data in a graphical manner was chosen because graphical formats, in general, have been...acquisition plan which includes information pertaining to the acquisition objectives, the required capability of the system, design trade-off, budgeting...which introduce artificial neural networks to approximate the real world experience of an acquisition manager [8]. However, these strategies lack a

  20. Vanguard/PLACE experiment system design and test plan

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.

    1973-01-01

    The design, development, and testing of the NASA-GFSC Position Location and Aircraft Communications Equipment (PLACE) at C band frequency are discussed. The equipment was installed on the USNS Vanguard. The tests involved a sea test to evalute the position-location, 2-way voice, and 2-way data communications capability of PLACE and a trilateration test to position-fix the ATS-5 satellite using the PLACE system.

  1. The Professional Development Plan of a Health Care Workforce as a Qualitative Indicator of the Health Care System's Well-Being

    ERIC Educational Resources Information Center

    Saiti, Anna; Mylona, Vasiliki

    2015-01-01

    The quality of a health care system is heavily dependent on a capable and skillful health care workforce so as to guarantee the delivery of quality health care services to its user groups. Hence, only through continuous training and development can the health care workforce follow rapid scientific progress while equitably balancing investment…

  2. Life Support and Environmental Monitoring International System Maturation Team Considerations.

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies. Different specific parameters may important to define or explore possible ranges depending on the system concepts. Early coordination between technology developers can create new possibilities for collaboration, and provide input to determine what combined options may provide the best overall system architecture.

  3. Life Support and Environmental Monitoring International System Maturation Team Considerations

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies. Different specific parameters may important to define or explore possible ranges depending on the system concepts. Early coordination between technology developers can create new possibilities for collaboration, and provide input to determine what combined options may provide the best overall system architecture.

  4. Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-07-01

    This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation.more » Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve/ensure accuracy, providing information on normally estimated values such as underground conductor impedance, and characterization of complex loads. Although the input of high-fidelity data to existing tools will be challenging, µPMU data on phase angle (as well as other data from advanced sensors) will be useful for basic operational decisions that are based on a trend of changing data.« less

  5. Computational Planning in Facial Surgery.

    PubMed

    Zachow, Stefan

    2015-10-01

    This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. 76 FR 30202 - National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    .... ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act (Pub. L. 92-463... Positioning System (GPS) modernization. Explore opportunities for enhancing the interoperability of GPS with.... Prioritize current and planned GPS capabilities and services while assessing future PNT architecture options...

  7. The US Public Sector and Its Adoption of Service Oriented Technology

    ERIC Educational Resources Information Center

    Coleman, David W.

    2012-01-01

    Information Technology (IT) provides public sector organizations the capability to provide real increases in organizational effectiveness by aiding in the efficient exchange of information. Adoption of advanced IT such as service oriented environments, Web 2.0, and bespoke systems such as Enterprise Resource Planning (ERP) promises to markedly…

  8. Microwave Sintering of Ceramic Materials for Industrial Application Final Report CRADA No. TC-1116-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caplan, M.; Tandon, R.; Callis, R.

    The goal of this project was to develop the commercial capability in the US to sinter alumina oxide ceramic parts for the semiconductor manufacturing equipment industry. We planned to use the millimeter microwave (30 GHz) sintering system first developed by IAP in Russia.

  9. Distance Education: A Program and Facility Study.

    ERIC Educational Resources Information Center

    Holt, Malcolm; And Others

    This publication provides both a review of the different technology modes that may be used for distance education and a set of guidelines for planning and developing conceptual designs for educational facilities capable of supporting technologically enhanced educational delivery systems in a variety of settings. The Distance Learning in Small…

  10. Processes and Planning Structure Required for Implementing a Collegewide Area Network.

    ERIC Educational Resources Information Center

    Lapenta, Susan; Lutz, Todd

    Since 1984, Arizona's Mohave Community College (MCC) has implemented innovative educational technology to better serve students, including an instructional television system to serve remote locations and a distance learning program. In 1993, the college initiated a project to upgrade its technological capabilities through the establishment of a…

  11. CD-I and Full Motion Video.

    ERIC Educational Resources Information Center

    Chen, Ching-chih

    1991-01-01

    Describes compact disc interactive (CD-I) as a multimedia home entertainment system that combines audio, visual, text, graphic, and interactive capabilities. Full-screen video and full-motion video (FMV) are explained, hardware for FMV decoding is described, software is briefly discussed, and CD-I titles planned for future production are listed.…

  12. 78 FR 52838 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Maintenance Planning Data (MPD) Document. Repeat the test thereafter at intervals not to exceed 7,500 flight... by loss of fuel system suction feed capability on one engine, and in-flight shutdown of the engine...-101, before further flight, perform all related testing and corrective actions, and repeat the...

  13. Schools + GHPs = Savings and Efficiency.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The geothermal heat pump (GHP) is winning praise for its ability to help schools reduce energy costs while providing a clean, comfortable, quiet, and aesthetically pleasing heating and cooling capability. This pamphlet examines the benefits of installing a GHP system in new and existing school facilities, suggests the type of planning and…

  14. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  15. Strategic bombers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This paper reports on the questions: should Congress provide more funds for the Air Force's current plan---the CORE program---to upgrade the B-1B defense avionics system In GAO's view, more testing of the system is not necessary to determine whether to implement the CORE program. Flight testing has shown that the CORE modifications would provide similar operational capabilities to, and offer some survivability improvements over, the existing defense avionics system. The only reason for additional testing would be to prove that some problems with the maintenance diagnostic system has been resolved. Initial testing revealed that while some improvements were achieved, usermore » requirements were not met for such things as low false alarm rates and cannot duplicate rates. Even if the maintenance diagnostic capabilities were fully demonstrated, however, the CORE system should not be implemented until it is known whether the defense avionics system design can support the B-1B's new role as a conventional bomber.« less

  16. Feasibility of satellite interferometry for surveillance, navigation, and traffic control

    NASA Technical Reports Server (NTRS)

    Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.

    1976-01-01

    The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.

  17. An innovative approach to capability-based emergency operations planning

    PubMed Central

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology. PMID:28228987

  18. An innovative approach to capability-based emergency operations planning.

    PubMed

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology.

  19. Synergistic Development, Test, and Qualification Approaches for the Ares I and V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E.; Taylor, James L.; Patterson, Alan; Stephens, Samuel E.; Tuma, Margaret; Bartolotta, Paul; Huetter, Uwe; Kaderback, Don; Goggin, David

    2009-01-01

    The U.S. National Aeronautics and Space Administration (NASA) initiated plans to develop the Ares I and Ares V launch vehicles in 2005 to meet the mission objectives for future human exploration of space. Ares I is designed to provide the capability to deliver the Orion crew exploration vehicle (CEV) to low-Earth orbit (LEO), either for docking to the International Space Station (ISS) or docking with an Earth departure stage (EDS) and lunar lander for transit to the Moon. Ares V provides the heavy-lift capability to deliver the EDS and lunar lander to orbit. An integrated test plan was developed for Ares I that includes un-crewed flight validation testing and ground testing to qualify structural components and propulsion systems prior to operational deployment. The overall test program also includes a single development test flight conducted prior to the Ares I critical design review (CDR). Since the Ares V concept was formulated to maximize hardware commonality between the Ares V and Ares I launch vehicles, initial test planning for Ares V has considered the extensibility of test approaches and facilities from Ares I. The Ares V test plan was part of a successful mission concept review (MCR) in 2008.

  20. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  1. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankinds understand of the universe and extending human presence into the solar system.

  2. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system.

  3. System-level planning, coordination, and communication: care of the critically ill and injured during pandemics and disasters: CHEST consensus statement.

    PubMed

    Dichter, Jeffrey R; Kanter, Robert K; Dries, David; Luyckx, Valerie; Lim, Matthew L; Wilgis, John; Anderson, Michael R; Sarani, Babak; Hupert, Nathaniel; Mutter, Ryan; Devereaux, Asha V; Christian, Michael D; Kissoon, Niranjan

    2014-10-01

    System-level planning involves uniting hospitals and health systems, local/regional government agencies, emergency medical services, and other health-care entities involved in coordinating and enabling care in a major disaster. We reviewed the literature and sought expert opinions concerning system-level planning and engagement for mass critical care due to disasters or pandemics and offer suggestions for system-planning, coordination, communication, and response. The suggestions in this chapter are important for all of those involved in a pandemic or disaster with multiple critically ill or injured patients, including front-line clinicians, hospital administrators, and public health or government officials. The American College of Chest Physicians (CHEST) consensus statement development process was followed in developing suggestions. Task Force members met in person to develop nine key questions believed to be most relevant for system-planning, coordination, and communication. A systematic literature review was then performed for relevant articles and documents, reports, and other publications reported since 1993. No studies of sufficient quality were identified upon which to make evidence-based recommendations. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. Suggestions were developed and grouped according to the following thematic elements: (1) national government support of health-care coalitions/regional health authorities (HC/RHAs), (2) teamwork within HC/RHAs, (3) system-level communication, (4) system-level surge capacity and capability, (5) pediatric patients and special populations, (6) HC/RHAs and networks, (7) models of advanced regional care systems, and (8) the use of simulation for preparedness and planning. System-level planning is essential to provide care for large numbers of critically ill patients because of disaster or pandemic. It also entails a departure from the routine, independent system and involves all levels from health-care institutions to regional health authorities. National government support is critical, as are robust communication systems and advanced planning supported by realistic exercises.

  4. System-Level Planning, Coordination, and Communication

    PubMed Central

    Kanter, Robert K.; Dries, David; Luyckx, Valerie; Lim, Matthew L.; Wilgis, John; Anderson, Michael R.; Sarani, Babak; Hupert, Nathaniel; Mutter, Ryan; Devereaux, Asha V.; Christian, Michael D.; Kissoon, Niranjan; Christian, Michael D.; Devereaux, Asha V.; Dichter, Jeffrey R.; Kissoon, Niranjan; Rubinson, Lewis; Amundson, Dennis; Anderson, Michael R.; Balk, Robert; Barfield, Wanda D.; Bartz, Martha; Benditt, Josh; Beninati, William; Berkowitz, Kenneth A.; Daugherty Biddison, Lee; Braner, Dana; Branson, Richard D; Burkle, Frederick M.; Cairns, Bruce A.; Carr, Brendan G.; Courtney, Brooke; DeDecker, Lisa D.; De Jong, Marla J.; Dominguez-Cherit, Guillermo; Dries, David; Einav, Sharon; Erstad, Brian L.; Etienne, Mill; Fagbuyi, Daniel B.; Fang, Ray; Feldman, Henry; Garzon, Hernando; Geiling, James; Gomersall, Charles D.; Grissom, Colin K.; Hanfling, Dan; Hick, John L.; Hodge, James G.; Hupert, Nathaniel; Ingbar, David; Kanter, Robert K.; King, Mary A.; Kuhnley, Robert N.; Lawler, James; Leung, Sharon; Levy, Deborah A.; Lim, Matthew L.; Livinski, Alicia; Luyckx, Valerie; Marcozzi, David; Medina, Justine; Miramontes, David A.; Mutter, Ryan; Niven, Alexander S.; Penn, Matthew S.; Pepe, Paul E.; Powell, Tia; Prezant, David; Reed, Mary Jane; Rich, Preston; Rodriquez, Dario; Roxland, Beth E.; Sarani, Babak; Shah, Umair A.; Skippen, Peter; Sprung, Charles L.; Subbarao, Italo; Talmor, Daniel; Toner, Eric S.; Tosh, Pritish K.; Upperman, Jeffrey S.; Uyeki, Timothy M.; Weireter, Leonard J.; West, T. Eoin; Wilgis, John; Ornelas, Joe; McBride, Deborah; Reid, David; Baez, Amado; Baldisseri, Marie; Blumenstock, James S.; Cooper, Art; Ellender, Tim; Helminiak, Clare; Jimenez, Edgar; Krug, Steve; Lamana, Joe; Masur, Henry; Mathivha, L. Rudo; Osterholm, Michael T.; Reynolds, H. Neal; Sandrock, Christian; Sprecher, Armand; Tillyard, Andrew; White, Douglas; Wise, Robert; Yeskey, Kevin

    2014-01-01

    BACKGROUND: System-level planning involves uniting hospitals and health systems, local/regional government agencies, emergency medical services, and other health-care entities involved in coordinating and enabling care in a major disaster. We reviewed the literature and sought expert opinions concerning system-level planning and engagement for mass critical care due to disasters or pandemics and offer suggestions for system-planning, coordination, communication, and response. The suggestions in this chapter are important for all of those involved in a pandemic or disaster with multiple critically ill or injured patients, including front-line clinicians, hospital administrators, and public health or government officials. METHODS: The American College of Chest Physicians (CHEST) consensus statement development process was followed in developing suggestions. Task Force members met in person to develop nine key questions believed to be most relevant for system-planning, coordination, and communication. A systematic literature review was then performed for relevant articles and documents, reports, and other publications reported since 1993. No studies of sufficient quality were identified upon which to make evidence-based recommendations. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. RESULTS: Suggestions were developed and grouped according to the following thematic elements: (1) national government support of health-care coalitions/regional health authorities (HC/RHAs), (2) teamwork within HC/RHAs, (3) system-level communication, (4) system-level surge capacity and capability, (5) pediatric patients and special populations, (6) HC/RHAs and networks, (7) models of advanced regional care systems, and (8) the use of simulation for preparedness and planning. CONCLUSIONS: System-level planning is essential to provide care for large numbers of critically ill patients because of disaster or pandemic. It also entails a departure from the routine, independent system and involves all levels from health-care institutions to regional health authorities. National government support is critical, as are robust communication systems and advanced planning supported by realistic exercises. PMID:25144713

  5. Dosimetric evaluation of total marrow irradiation using 2 different planning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalichowski, Adrian, E-mail: nalichoa@karmanos.org; Eagle, Don G.; Burmeister, Jay

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200 cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using themore » Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465 cGy for VoLO and 1284 and 1541 cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO's graphics processing unit (GPU)–based optimization and dose calculation algorithm also allowed much faster creation of TMI plans.« less

  6. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    NASA Technical Reports Server (NTRS)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; hide

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  7. Space station WP-04 power system preliminary analysis and design document, volume 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Rocketdyne plans to generate a system level specification for the Space Station Electric Power System (EPS) in order to facilitate the usage, accountability, and tracking of overall system level requirements. The origins and status of the verification planning effort are traced and an overview of the Space Station program interactions are provided. The work package level interfaces between the EPS and the other Space Station work packages are outlined. A trade study was performed to determine the peaking split between PV and SD, and specifically to compare the inherent total peaking capability with proportionally shared peaking. In order to determine EPS cost drivers for the previous submittal of DRO2, the life cycle cost (LCC) model was run to identify the more significant costs and the factors contributing to them.

  8. Electronic Systems Test Laboratory (ESTL) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Robinson, Neil

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. Communication Systems Simulation Laboratory (CSSL): Simulation Planning Guide

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam

    2012-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CSSL. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  10. Systems Engineering Simulator (SES) Simulator Planning Guide

    NASA Technical Reports Server (NTRS)

    McFarlane, Michael

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the SES. The Simulator Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  11. Research and Applications Modules (RAM), phase B study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research and applications modules (RAM) system is discussed. The RAM is a family of payload carrier modules that can be delivered to and retrieved from earth orbit by the space shuttle. The RAM's capability for implementing a wide range of manned and man-tended missions is described. The rams have evolved into three types; (1) pressurized RAMs, (2) unpressurized RAMs, and (3) pressurizable free-flying RAMs. A reference experiment plan for use as a baseline in the derivation and planning of the RAM project is reported. The plan describes the number and frequency of shuttle flights dedicated to RAM missions and the RAM payloads for the identified flights.

  12. Advancement of a 30K W Solar Electric Propulsion System Capability for NASA Human and Robotic Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.

    2012-01-01

    Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA

  13. Towards an Open, Distributed Software Architecture for UxS Operations

    NASA Technical Reports Server (NTRS)

    Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Allen, B. Danette

    2015-01-01

    To address the growing need to evaluate, test, and certify an ever expanding ecosystem of UxS platforms in preparation of cultural integration, NASA Langley Research Center's Autonomy Incubator (AI) has taken on the challenge of developing a software framework in which UxS platforms developed by third parties can be integrated into a single system which provides evaluation and testing, mission planning and operation, and out-of-the-box autonomy and data fusion capabilities. This software framework, named AEON (Autonomous Entity Operations Network), has two main goals. The first goal is the development of a cross-platform, extensible, onboard software system that provides autonomy at the mission execution and course-planning level, a highly configurable data fusion framework sensitive to the platform's available sensor hardware, and plug-and-play compatibility with a wide array of computer systems, sensors, software, and controls hardware. The second goal is the development of a ground control system that acts as a test-bed for integration of the proposed heterogeneous fleet, and allows for complex mission planning, tracking, and debugging capabilities. The ground control system should also be highly extensible and allow plug-and-play interoperability with third party software systems. In order to achieve these goals, this paper proposes an open, distributed software architecture which utilizes at its core the Data Distribution Service (DDS) standards, established by the Object Management Group (OMG), for inter-process communication and data flow. The design decisions proposed herein leverage the advantages of existing robotics software architectures and the DDS standards to develop software that is scalable, high-performance, fault tolerant, modular, and readily interoperable with external platforms and software.

  14. Identification of specific requirements for a NASA aerospace law information system and identification of the acquisition requirements for an aerospace law collection for the NASA law library

    NASA Technical Reports Server (NTRS)

    Morenoff, J.; Roth, D. L.; Singleton, J. W.

    1972-01-01

    The study to develop, implement, and maintain a space law library and information system is summarized. The survey plan; major interviews with individuals representative of potential sources, users and producers of information related to aerospace law; and system trade-off analyses are discussed along with the NASA/RECON system capability. The NASA publications of STAR and IAA are described, and the NASA legal micro-thesaurus is included.

  15. Aircraft laser sensing of sound velocity in water - Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.; Harding, John M.; Carnes, Michael; Pressman, AL; Kattawar, George W.; Fry, Edward S.

    1991-01-01

    A real-time data source for sound speed in the upper 100 m has been proposed for exploratory development. This data source is planned to be generated via a ship- or aircraft-mounted optical pulsed laser using the spontaneous Brillouin scattering technique. The system should be capable (from a single 10 ns 500 mJ pulse) of yielding range resolved sound speed profiles in water to depths of 75-100 m to an accuracy of 1 m/s. The 100 m profiles will provide the capability of rapidly monitoring the upper-ocean vertical structure. They will also provide an extensive, subsurface-data source for existing real-time, operational ocean nowcast/forecast systems.

  16. A Situation Awareness Assistant for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Platt, Donald

    2013-01-01

    This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckman, Todd J.; Hertzel, Ali K.; Lane, James J.

    In 2013, the U.S. Department of Energy's (DOE) Hanford Site, located in Washington State, funded an update to the critical network infrastructure supporting the Hanford Federal Cloud (HFC). The project, called ET-50, was the final step in a plan that was initiated five years ago called "Hanford's IT Vision, 2015 and Beyond." The ET-50 project upgraded Hanford's core data center switches and routers along with a majority of the distribution layer switches. The upgrades allowed HFC the network intelligence to provide Hanford with a more reliable and resilient network architecture. The culmination of the five year plan improved network intelligencemore » and high performance computing as well as helped to provide 10 Gbps capable links between core backbone devices (10 times the previous bandwidth). These improvements allow Hanford the ability to further support bandwidth intense applications, such as video teleconferencing. The ET-50 switch upgrade, along with other upgrades implemented from the five year plan, have prepared Hanford's network for the next evolution of technology in voice, video, and data. Hand-in-hand with ET-50's major data center outage, Mission Support Alliance's (MSA) Information Management (IM) organization executed a disaster recovery (DR) exercise to perform a true integration test and capability study. The DR scope was planned within the constraints of ET-50's 14 hour datacenter outage window. This DR exercise tested Hanford's Continuity of Operations (COOP) capability and failover plans for safety and business critical Hanford Federal Cloud applications. The planned suite of services to be tested was identified prior to the outage and plans were prepared to test the services ability to failover from the primary Hanford data center to the backup data center. The services tested were: Core Network (backbone, firewall, load balancers); Voicemail; Voice over IP (VoIP); Emergency Notification; Virtual desktops; and, Select set of production applications and data. The primary objective of the exercise was to test COOP around the emergency operations at Hanford to provide information on capabilities and dependencies of the current system to insure improved focus of emergency, safety and security capacity in a disaster situation. The integration of the DR test into the ET-50 project allowed the testing of COOP at Hanford and allowed the lessons learned to be defined. These lessons learned have helped improve the understanding of Hanford's COOP capabilities and will be critical for future planning. With the completion of the Hanford Federal Cloud network upgrades and the disaster recovery exercise, the MSA has a clearer path forward for future technology implementations as well as network improvements to help shape the usability and reliability of the Hanford network in support of the cleanup mission.« less

  18. Air Land Sea Bulletin

    DTIC Science & Technology

    2014-01-01

    targets. Recent upgrades to the JSTARS have provided a greatly en- hanced capability to conduct maritime surveillance over blue water (oceans and seas...erational plans (OPLANs) without leaving their home station. Cur- rent capabilities allow distributed training at multiple mission train- ing centers...capability allows USPACOM participants to plan from their home station while working directly with units around the world that will support a USPACOM

  19. Integrating planning, execution, and learning

    NASA Technical Reports Server (NTRS)

    Kuokka, Daniel R.

    1989-01-01

    To achieve the goal of building an autonomous agent, the usually disjoint capabilities of planning, execution, and learning must be used together. An architecture, called MAX, within which cognitive capabilities can be purposefully and intelligently integrated is described. The architecture supports the codification of capabilities as explicit knowledge that can be reasoned about. In addition, specific problem solving, learning, and integration knowledge is developed.

  20. Propulsion Ground Testing: Planning for the Future

    NASA Technical Reports Server (NTRS)

    Bruce, Robert

    2003-01-01

    Advanced planners are constantly being asked to plan for the provision of future test capability. Historically, this capability is provided either by substantial investment in new test facility capabilities, or in the substantial investment in the modification of pre-exiting test facilities. The key words in the previous sentence are 'substantial investment.' In the evolving environment of increasingly constrained resources, how is an advanced planner to plan for the provisions of such capabilities? Additionally, the conundrum exists that program formulation decisions are being made based on both life cycle cost decisions in an environment in which the more immediate challenge of front-end capital investment oftentimes is the linchpin upon which early decisions are made. In such an environment, how are plans and decisions made? This paper cites examples of decisions made in the past in the area of both major test facility upgrades, as well as major new test facility investment.

Top