Sample records for systems corrective spatial

  1. Correction for spatial averaging in laser speckle contrast analysis

    PubMed Central

    Thompson, Oliver; Andrews, Michael; Hirst, Evan

    2011-01-01

    Practical laser speckle contrast analysis systems face a problem of spatial averaging of speckles, due to the pixel size in the cameras used. Existing practice is to use a system factor in speckle contrast analysis to account for spatial averaging. The linearity of the system factor correction has not previously been confirmed. The problem of spatial averaging is illustrated using computer simulation of time-integrated dynamic speckle, and the linearity of the correction confirmed using both computer simulation and experimental results. The valid linear correction allows various useful compromises in the system design. PMID:21483623

  2. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  3. Optimized algorithm for the spatial nonuniformity correction of an imaging system based on a charge-coupled device color camera.

    PubMed

    de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell

    2007-01-10

    We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.

  4. Fisheye camera method for spatial non-uniformity corrections in luminous flux measurements with integrating spheres

    NASA Astrophysics Data System (ADS)

    Kokka, Alexander; Pulli, Tomi; Poikonen, Tuomas; Askola, Janne; Ikonen, Erkki

    2017-08-01

    This paper presents a fisheye camera method for determining spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Using a fisheye camera installed into a port of an integrating sphere, the relative angular intensity distribution of the lamp under test is determined. This angular distribution is used for calculating the spatial non-uniformity correction for the lamp when combined with the spatial responsivity data of the sphere. The method was validated by comparing it to a traditional goniophotometric approach when determining spatial correction factors for 13 LED lamps with different angular spreads. The deviations between the spatial correction factors obtained using the two methods ranged from -0.15 % to 0.15%. The mean magnitude of the deviations was 0.06%. For a typical LED lamp, the expanded uncertainty (k = 2 ) for the spatial non-uniformity correction factor was evaluated to be 0.28%. The fisheye camera method removes the need for goniophotometric measurements in determining spatial non-uniformity corrections, thus resulting in considerable system simplification. Generally, no permanent modifications to existing integrating spheres are required.

  5. Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements.

    PubMed

    Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L

    2014-03-01

    Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.

  6. Analysis and correction of gradient nonlinearity bias in ADC measurements

    PubMed Central

    Malyarenko, Dariya I.; Ross, Brian D.; Chenevert, Thomas L.

    2013-01-01

    Purpose Gradient nonlinearity of MRI systems leads to spatially-dependent b-values and consequently high non-uniformity errors (10–20%) in ADC measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. Methods All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Results Spatial dependence of nonlinearity correction terms accounts for the bulk (75–95%) of ADC bias for FA = 0.3–0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. Conclusions The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. PMID:23794533

  7. Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels

    NASA Astrophysics Data System (ADS)

    Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo

    2017-01-01

    We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.

  8. Adaptive optics system performance approximations for atmospheric turbulence correction

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1990-10-01

    Analysis of adaptive optics system behavior often can be reduced to a few approximations and scaling laws. For atmospheric turbulence correction, the deformable mirror (DM) fitting error is most often used to determine a priori the interactuator spacing and the total number of correction zones required. This paper examines the mirror fitting error in terms of its most commonly used exponential form. The explicit constant in the error term is dependent on deformable mirror influence function shape and actuator geometry. The method of least squares fitting of discrete influence functions to the turbulent wavefront is compared to the linear spatial filtering approximation of system performance. It is found that the spatial filtering method overstimates the correctability of the adaptive optics system by a small amount. By evaluating fitting error for a number of DM configurations, actuator geometries, and influence functions, fitting error constants verify some earlier investigations.

  9. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    USGS Publications Warehouse

    Wagner, Chad R.; Mueller, David S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks.

  10. Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.

    2010-12-01

    Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.

  11. Comparison of vision through surface modulated and spatial light modulated multifocal optics.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-04-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.

  12. Comparison of vision through surface modulated and spatial light modulated multifocal optics

    PubMed Central

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-01-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near. PMID:28736655

  13. A multi-conjugate adaptive optics testbed using two MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2011-03-01

    Adaptive optics (AO) systems are well demonstrated in the literature with both laboratory and real-world systems being developed. Some of these systems have employed MEMS deformable mirrors as their active corrective element. More recent work in AO for astronomical applications has focused on providing correction in more than one conjugate plane. Additionally, horizontal path AO systems are exploring correction in multiple conjugate planes. This provides challenges for a laboratory system as the aberrations need to be generated and corrected in more than one plane in the optical system. Our work with compact AO systems employing MEMS technology in addition to liquid crystal spatial light modulator (SLM) driven aberration generators has been scaled up to a two conjugate plane testbed. Using two SLM based aberration generators and two separate wavefront sensors, the system can apply correction with two MEMS deformable mirrors. The challenges in such a system are to properly match non-identical components and weight the correction algorithm for correcting in two planes. This paper demonstrates preliminary results and analysis with this system with wavefront data and residual error measurements.

  14. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study.

    PubMed

    Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi

    2018-06-01

    Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p < 0.05). The count ratio error with TEW and CTAC was approximately 5% regardless of bone density. After adjustment of the spatial resolution in the SPECT images, the variability of the NDB decreased and was comparable to that of the NDB without correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.

  15. Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2010-02-01

    Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.

  16. Nonuniformity correction of imaging systems with a spatially nonhomogeneous radiation source.

    PubMed

    Gutschwager, Berndt; Hollandt, Jörg

    2015-12-20

    We present a novel method of nonuniformity correction of imaging systems in a wide optical spectral range by applying a radiation source with an unknown and spatially nonhomogeneous radiance or radiance temperature distribution. The benefit of this method is that it can be applied with radiation sources of arbitrary spatial radiance or radiance temperature distribution and only requires the sufficient temporal stability of this distribution during the measurement process. The method is based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogenous radiance distribution and a thermal imager of a predefined nonuniform focal plane array responsivity is presented.

  17. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  18. Geometric correction of synchronous scanned Operational Modular Imaging Spectrometer II hyperspectral remote sensing images using spatial positioning data of an inertial navigation system

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao

    2015-01-01

    The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.

  19. Data-driven sensitivity inference for Thomson scattering electron density measurement systems.

    PubMed

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  20. Correction of image drift and distortion in a scanning electron microscopy.

    PubMed

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. [Research on Residual Aberrations Correction with Adaptive Optics Technique in Patients Undergoing Orthokeratology].

    PubMed

    Gong, Rui; Yang, Bi; Liu, Longqian; Dai, Yun; Zhang, Yudong; Zhao, Haoxin

    2016-06-01

    We conducted this study to explore the influence of the ocular residual aberrations changes on contrast sensitivity(CS)function in eyes undergoing orthokeratology using adaptive optics technique.Nineteen subjects’ nineteen eyes were included in this study.The subjects were between 12 and 20years(14.27±2.23years)of age.An adaptive optics(AO)system was adopted to measure and compensate the residual aberrations through a 4-mm artificial pupil,and at the same time the contrast sensitivities were measured at five spatial frequencies(2,4,8,16,and 32 cycles per degree).The CS measurements with and without AO correction were completed.The sequence of the measurements with and without AO correction was randomly arranged without informing the observers.A two-interval forced-choice procedure was used for the CS measurements.The paired t-test was used to compare the contrast sensitivity with and without AO correction at each spatial frequency.The results revealed that the AO system decreased the mean total root mean square(RMS)from 0.356μm to 0.160μm(t=10.517,P<0.001),and the mean total higher-order RMS from 0.246μm to 0.095μm(t=10.113,P<0.001).The difference in log contrast sensitivity with and without AO correction was significant only at 8cpd(t=-2.51,P=0.02).Thereby we concluded that correcting the ocular residual aberrations using adaptive optics technique could improve the contrast sensitivity function at intermediate spatial frequency in patients undergoing orthokeratology.

  2. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    DOE PAGES

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less

  3. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  4. Fixed Pattern Noise pixel-wise linear correction for crime scene imaging CMOS sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Messinger, David W.; Dube, Roger R.; Ientilucci, Emmett J.

    2017-05-01

    Filtered multispectral imaging technique might be a potential method for crime scene documentation and evidence detection due to its abundant spectral information as well as non-contact and non-destructive nature. Low-cost and portable multispectral crime scene imaging device would be highly useful and efficient. The second generation crime scene imaging system uses CMOS imaging sensor to capture spatial scene and bandpass Interference Filters (IFs) to capture spectral information. Unfortunately CMOS sensors suffer from severe spatial non-uniformity compared to CCD sensors and the major cause is Fixed Pattern Noise (FPN). IFs suffer from "blue shift" effect and introduce spatial-spectral correlated errors. Therefore, Fixed Pattern Noise (FPN) correction is critical to enhance crime scene image quality and is also helpful for spatial-spectral noise de-correlation. In this paper, a pixel-wise linear radiance to Digital Count (DC) conversion model is constructed for crime scene imaging CMOS sensor. Pixel-wise conversion gain Gi,j and Dark Signal Non-Uniformity (DSNU) Zi,j are calculated. Also, conversion gain is divided into four components: FPN row component, FPN column component, defects component and effective photo response signal component. Conversion gain is then corrected to average FPN column and row components and defects component so that the sensor conversion gain is uniform. Based on corrected conversion gain and estimated image incident radiance from the reverse of pixel-wise linear radiance to DC model, corrected image spatial uniformity can be enhanced to 7 times as raw image, and the bigger the image DC value within its dynamic range, the better the enhancement.

  5. Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system.

    PubMed

    Huang, Hongxin; Inoue, Takashi; Tanaka, Hiroshi

    2011-08-01

    We studied the long-term optical performance of an adaptive optics scanning laser ophthalmoscope that uses a liquid crystal on silicon spatial light modulator to correct ocular aberrations. The system achieved good compensation of aberrations while acquiring images of fine retinal structures, excepting during sudden eye movements. The residual wavefront aberrations collected over several minutes in several situations were statistically analyzed. The mean values of the root-mean-square residual wavefront errors were 23-30 nm, and for around 91-94% of the effective time the errors were below the Marechal criterion for diffraction limited imaging. The ability to axially shift the imaging plane to different retinal depths was also demonstrated.

  6. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  7. A Portable Ground-Based Atmospheric Monitoring System (PGAMS) for the Calibration and Validation of Atmospheric Correction Algorithms Applied to Aircraft and Satellite Images

    NASA Technical Reports Server (NTRS)

    Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements

  8. System for photometric calibration of optoelectronic imaging devices especially streak cameras

    DOEpatents

    Boni, Robert; Jaanimagi, Paul

    2003-11-04

    A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.

  9. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.

    PubMed

    Song, H; Fraanje, R; Schitter, G; Kroese, H; Vdovin, G; Verhaegen, M

    2010-11-08

    In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification. This approach is validated in an experimental setup with 20 static aberrations having Kolmogorov spatial distributions. By correcting N=9 Zernike modes (N is the number of aberration modes), an intensity improvement from 49% of the maximum value to 89% has been achieved in average based on N+5=14 intensity measurements. With the worst initial intensity, an improvement from 17% of the maximum value to 86% has been achieved based on N+4=13 intensity measurements.

  10. Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-03-01

    A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.

  11. Automated aberration compensation in high numerical aperture systems for arbitrary laser modes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hering, Julian; Waller, Erik H.; von Freymann, Georg

    2017-02-01

    Since a large number of optical systems and devices are based on differently shaped focal intensity distributions (point-spread-functions, PSF), the PSF's quality is crucial for the application's performance. E.g., optical tweezers, optical potentials for trapping of ultracold atoms as well as stimulated-emission-depletion (STED) based microscopy and lithography rely on precisely controlled intensity distributions. However, especially in high numerical aperture (NA) systems, such complex laser modes are easily distorted by aberrations leading to performance losses. Although different approaches addressing phase retrieval algorithms have been recently presented[1-3], fast and automated aberration compensation for a broad variety of complex shaped PSFs in high NA systems is still missing. Here, we report on a Gerchberg-Saxton[4] based algorithm (GSA) for automated aberration correction of arbitrary PSFs, especially for high NA systems. Deviations between the desired target intensity distribution and the three-dimensionally (3D) scanned experimental focal intensity distribution are used to calculate a correction phase pattern. The target phase distribution plus the correction pattern are displayed on a phase-only spatial-light-modulator (SLM). Focused by a high NA objective, experimental 3D scans of several intensity distributions allow for characterization of the algorithms performance: aberrations are reliably identified and compensated within less than 10 iterations. References 1. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Phase-retrieved pupil functions in wide-field fluorescence microscopy," J. of Microscopy 216(1), 32-48 (2004). 2. A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15(9), 5801-5808 (2007). 3. A. Jesacher and M. J. Booth, "Parallel direct laser writing in three dimensions with spatially dependent aberration correction," Opt. Express 18(20), 21090-21099 (2010). 4. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35(2), 237-246 (1972).

  12. A coronagraph based on two spatial light modulators for active amplitude apodizing and phase corrections

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao

    2014-08-01

    Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. Recently, Ren and Zhu proposed for the first time a coronagraph that integrates a liquid crystal array (LCA) for the active pupil apodizing and a deformable mirror (DM) for the phase corrections. Here, for demonstration purpose, we present the initial test result of a coronagraphic system that is based on two liquid crystal spatial light modulators (SLM). In the system, one SLM is served as active pupil apodizing and amplitude correction to suppress the diffraction light; another SLM is used to correct the speckle noise that is caused by the wave-front distortions. In this way, both amplitude and phase error can be actively and efficiently compensated. In the test, we use the stochastic parallel gradient descent (SPGD) algorithm to control two SLMs, which is based on the point spread function (PSF) sensing and evaluation and optimized for a maximum contrast in the discovery area. Finally, it has demonstrated a contrast of 10-6 at an inner working angular distance of ~6.2 λ/D, which is a promising technique to be used for the direct imaging of young exoplanets on ground-based telescopes.

  13. Simple wavefront correction framework for two-photon microscopy of in-vivo brain

    PubMed Central

    Galwaduge, P. T.; Kim, S. H.; Grosberg, L. E.; Hillman, E. M. C.

    2015-01-01

    We present an easily implemented wavefront correction scheme that has been specifically designed for in-vivo brain imaging. The system can be implemented with a single liquid crystal spatial light modulator (LCSLM), which makes it compatible with existing patterned illumination setups, and provides measurable signal improvements even after a few seconds of optimization. The optimization scheme is signal-based and does not require exogenous guide-stars, repeated image acquisition or beam constraint. The unconstrained beam approach allows the use of Zernike functions for aberration correction and Hadamard functions for scattering correction. Low order corrections performed in mouse brain were found to be valid up to hundreds of microns away from the correction location. PMID:26309763

  14. Partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function

    PubMed Central

    Barbee, David L; Flynn, Ryan T; Holden, James E; Nickles, Robert J; Jeraj, Robert

    2010-01-01

    Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised of partial volume effects which may affect treatment prognosis, assessment, or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discover LS at positions of increasing radii from the scanner’s center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method’s correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom, and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated that similar results could be reached using both methods, but large differences result for the arbitrary selection of SINV-PVC parameters. The presented SV-PVC method was performed without user intervention, requiring only a tumor mask as input. Research involving PET-imaged tumor heterogeneity should include correcting for partial volume effects to improve the quantitative accuracy of results. PMID:20009194

  15. Conjugate adaptive optics with remote focusing in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Tao, Xiaodong; Lam, Tuwin; Zhu, Bingzhao; Li, Qinggele; Reinig, Marc R.; Kubby, Joel

    2018-02-01

    The small correction volume for conventional wavefront shaping methods limits their application in biological imaging through scattering media. In this paper, we take advantage of conjugate adaptive optics (CAO) and remote focusing (CAORF) to achieve three-dimensional (3D) scanning through a scattering layer with a single correction. Our results show that the proposed system can provide 10 times wider axial field of view compared with a conventional conjugate AO system when 16,384 segments are used on a spatial light modulator. We demonstrate two-photon imaging with CAORF through mouse skull. The fluorescent microspheres embedded under the scattering layers can be clearly observed after applying the correction.

  16. Remote Sensing of Vineyard FPAR, with Implications for Irrigation Scheduling

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Scholasch, Thibaut

    2004-01-01

    Normalized difference vegetation index (NDVI) data, acquired at two-meter resolution by an airborne ADAR System 5500, were compared with fraction of photosynthetically active radiation (FPAR) absorbed by commercial vineyards in Napa Valley, California. An empirical line correction was used to transform image digital counts to surface reflectance. "Apparent" NDVI (generated from digital counts) and "corrected" NDVI (from reflectance) were both strongly related to FPAR of range 0.14-0.50 (both r(sup 2) = 0.97, P < 0.01). By suppressing noise, corrected NDVI should form a more spatially and temporally stable relationship with FPAR, reducing the need for repeated field support. Study results suggest the possibility of using optical remote sensing to monitor the transpiration crop coefficient, thus providing an enhanced spatial resolution component to crop water budget calculations and irrigation management.

  17. Intercomparison of Downscaling Methods on Hydrological Impact for Earth System Model of NE United States

    NASA Astrophysics Data System (ADS)

    Yang, P.; Fekete, B. M.; Rosenzweig, B.; Lengyel, F.; Vorosmarty, C. J.

    2012-12-01

    Atmospheric dynamics are essential inputs to Regional-scale Earth System Models (RESMs). Variables including surface air temperature, total precipitation, solar radiation, wind speed and humidity must be downscaled from coarse-resolution, global General Circulation Models (GCMs) to the high temporal and spatial resolution required for regional modeling. However, this downscaling procedure can be challenging due to the need to correct for bias from the GCM and to capture the spatiotemporal heterogeneity of the regional dynamics. In this study, the results obtained using several downscaling techniques and observational datasets were compared for a RESM of the Northeast Corridor of the United States. Previous efforts have enhanced GCM model outputs through bias correction using novel techniques. For example, the Climate Impact Research at Potsdam Institute developed a series of bias-corrected GCMs towards the next generation climate change scenarios (Schiermeier, 2012; Moss et al., 2010). Techniques to better represent the heterogeneity of climate variables have also been improved using statistical approaches (Maurer, 2008; Abatzoglou, 2011). For this study, four downscaling approaches to transform bias-corrected HADGEM2-ES Model output (daily at .5 x .5 degree) to the 3'*3'(longitude*latitude) daily and monthly resolution required for the Northeast RESM were compared: 1) Bilinear Interpolation, 2) Daily bias-corrected spatial downscaling (D-BCSD) with Gridded Meteorological Datasets (developed by Abazoglou 2011), 3) Monthly bias-corrected spatial disaggregation (M-BCSD) with CRU(Climate Research Unit) and 4) Dynamic Downscaling based on Weather Research and Forecast (WRF) model. Spatio-temporal analysis of the variability in precipitation was conducted over the study domain. Validation of the variables of different downscaling methods against observational datasets was carried out for assessment of the downscaled climate model outputs. The effects of using the different approaches to downscale atmospheric variables (specifically air temperature and precipitation) for use as inputs to the Water Balance Model (WBMPlus, Vorosmarty et al., 1998;Wisser et al., 2008) for simulation of daily discharge and monthly stream flow in the Northeast US for a 100-year period in the 21st century were also assessed. Statistical techniques especially monthly bias-corrected spatial disaggregation (M-BCSD) showed potential advantage among other methods for the daily discharge and monthly stream flow simulation. However, Dynamic Downscaling will provide important complements to the statistical approaches tested.

  18. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronand; Russell, Jeff; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the foundation of any interoperability or change detection technique. Satellite intercomparisons and accurate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), require the generation of accurate reflectance maps (NDVI is used to describe or infer a wide variety of biophysical parameters and is defined in terms of near-infrared (NIR) and red band reflectances). Accurate reflectance-map generation from satellite imagery relies on the removal of solar and satellite geometry and of atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance has been widely applied to a few systems only. The ability to obtain atmospherically corrected imagery and products from various satellites is essential to enable widescale use of remotely sensed, multitemporal imagery for a variety of applications. An atmospheric correction approach derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that can be applied to high-spatial-resolution satellite imagery under many conditions was evaluated to demonstrate a reliable, effective reflectance map generation method. Additional information is included in the original extended abstract.

  19. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronald; Russell, Jeffrey A.; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the basis for many inter-sensor interoperability or change detection techniques. Satellite inter-comparisons and accurate vegetation indices such as the Normalized Difference Vegetation Index, which is used to describe or to imply a wide variety of biophysical parameters and is defined in terms of near-infrared and redband reflectance, require the generation of accurate reflectance maps. This generation relies upon the removal of solar illumination, satellite geometry, and atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance, however, has been widely applied to only a few systems. In this study, we atmospherically corrected commercially available, high spatial resolution IKONOS and QuickBird imagery using several methods to determine the accuracy of the resulting reflectance maps. We used extensive ground measurement datasets for nine IKONOS and QuickBird scenes acquired over a two-year period to establish reflectance map accuracies. A correction approach using atmospheric products derived from Moderate Resolution Imaging Spectrometer data created excellent reflectance maps and demonstrated a reliable, effective method for reflectance map generation.

  20. Roi-Orientated Sensor Correction Based on Virtual Steady Reimaging Model for Wide Swath High Resolution Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Jin, S.; Tian, Y.; Wang, M.

    2017-09-01

    To meet the requirement of high accuracy and high speed processing for wide swath high resolution optical satellite imagery under emergency situation in both ground processing system and on-board processing system. This paper proposed a ROI-orientated sensor correction algorithm based on virtual steady reimaging model for wide swath high resolution optical satellite imagery. Firstly, the imaging time and spatial window of the ROI is determined by a dynamic search method. Then, the dynamic ROI sensor correction model based on virtual steady reimaging model is constructed. Finally, the corrected image corresponding to the ROI is generated based on the coordinates mapping relationship which is established by the dynamic sensor correction model for corrected image and rigours imaging model for original image. Two experimental results show that the image registration between panchromatic and multispectral images can be well achieved and the image distortion caused by satellite jitter can be also corrected efficiently.

  1. Topographic correction realization based on the CBERS-02B image

    NASA Astrophysics Data System (ADS)

    Qin, Hui-ping; Yi, Wei-ning; Fang, Yong-hua

    2011-08-01

    The special topography of mountain terrain will induce the retrieval distortion in same species and surface spectral lines. In order to improve the research accuracy of topographic surface characteristic, many researchers have focused on topographic correction. Topographic correction methods can be statistical-empirical model or physical model, in which the methods based on the digital elevation model data are most popular. Restricted by spatial resolution, previous model mostly corrected topographic effect based on Landsat TM image, whose spatial resolution is 30 meter that can be easily achieved from internet or calculated from digital map. Some researchers have also done topographic correction based on high spatial resolution images, such as Quickbird and Ikonos, but there is little correlative research on the topographic correction of CBERS-02B image. In this study, liao-ning mountain terrain was taken as the objective. The digital elevation model data was interpolated to 2.36 meter by 15 meter original digital elevation model one meter by one meter. The C correction, SCS+C correction, Minnaert correction and Ekstrand-r were executed to correct the topographic effect. Then the corrected results were achieved and compared. The images corrected with C correction, SCS+C correction, Minnaert correction and Ekstrand-r were compared, and the scatter diagrams between image digital number and cosine of solar incidence angel with respect to surface normal were shown. The mean value, standard variance, slope of scatter diagram, and separation factor were statistically calculated. The analysed result shows that the shadow is weakened in corrected images than the original images, and the three-dimensional affect is removed. The absolute slope of fitting lines in scatter diagram is minished. Minnaert correction method has the most effective result. These demonstrate that the former correction methods can be successfully adapted to CBERS-02B images. The DEM data can be interpolated step by step to get the corresponding spatial resolution approximately for the condition that high spatial resolution elevation data is hard to get.

  2. Spatial filtering velocimeter for vehicle navigation with extended measurement range

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-05-01

    The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.

  3. Validating crash locations for quantitative spatial analysis: a GIS-based approach.

    PubMed

    Loo, Becky P Y

    2006-09-01

    In this paper, the spatial variables of the crash database in Hong Kong from 1993 to 2004 are validated. The proposed spatial data validation system makes use of three databases (the crash, road network and district board databases) and relies on GIS to carry out most of the validation steps so that the human resource required for manually checking the accuracy of the spatial data can be enormously reduced. With the GIS-based spatial data validation system, it was found that about 65-80% of the police crash records from 1993 to 2004 had correct road names and district board information. In 2004, the police crash database contained about 12.7% mistakes for road names and 9.7% mistakes for district boards. The situation was broadly comparable to the United Kingdom. However, the results also suggest that safety researchers should carefully validate spatial data in the crash database before scientific analysis.

  4. Multidimensional System Analysis of Electro-Optic Sensors with Sampled Deterministic Output.

    DTIC Science & Technology

    1987-12-18

    System descriptions of scanning and staring electro - optic sensors with sampled output are developed as follows. Functions representing image...to complete the system descriptions. The results should be useful for designing electro - optic sensor systems and correcting data for instrumental...effects and other experimental conditions. Keywords include: Electro - optic system analysis, Scanning sensors, Staring sensors, Spatial sampling, and Temporal sampling.

  5. Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.

    PubMed

    Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban

    2015-07-20

    In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.

  6. Observation-Corrected Precipitation Estimates in GEOS-5

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing

    2014-01-01

    Several GEOS-5 applications, including the GEOS-5 seasonal forecasting system and the MERRA-Land data product, rely on global precipitation data that have been corrected with satellite and or gauge-based precipitation observations. This document describes the methodology used to generate the corrected precipitation estimates and their use in GEOS-5 applications. The corrected precipitation estimates are derived by disaggregating publicly available, observationally based, global precipitation products from daily or pentad totals to hourly accumulations using background precipitation estimates from the GEOS-5 atmospheric data assimilation system. Depending on the specific combination of the observational precipitation product and the GEOS-5 background estimates, the observational product may also be downscaled in space. The resulting corrected precipitation data product is at the finer temporal and spatial resolution of the GEOS-5 background and matches the observed precipitation at the coarser scale of the observational product, separately for each day (or pentad) and each grid cell.

  7. Corrections to the geometrical interpretation of bosonization

    NASA Astrophysics Data System (ADS)

    Steiner, Manfred; Marston, Brad

    2012-02-01

    Bosonization is a powerful approach for understanding certain strongly-correlated fermion systems, especially in one spatial dimension but also in higher dimensionsootnotetextA.Houghton, H.-J. Kwon and J. B. Marston, Adv. in Phys. 49, 141 (2000).. The method may be interpreted geometrically in terms of deformations of the Fermi surface, and the quantum operator that effects the deformations may be expressed in terms of a bilinear combination of fermion creation and annihilation operators. Alternatively the deformation operator has an approximate representation in terms of coherent states of bosonic fieldsootnotetextA. H. Castro Neto and E. Fradkin, Phys. Rev. B 49, 10877 (1994).. Calculation of the inner product of deformed Fermi surfaces within the two representations reveals corrections to the bosonic picture both in one and higher spatial dimensions. We discuss the implications of the corrections for efforts to improve the usefulness of multidimensional bosonization.

  8. ARGOS: the laser guide star system for the LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Ageorges, N.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Hart, M. L.; Hubbard, P.; Kanneganti, S.; Masciadri, E.; Noenickx, J.; Orban de Xivry, G.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.

    2010-07-01

    ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.

  9. Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons

    NASA Astrophysics Data System (ADS)

    Gilpin, Shay; Rieckh, Therese; Anthes, Richard

    2018-05-01

    Radio occultation (RO) and radiosonde (RS) comparisons provide a means of analyzing errors associated with both observational systems. Since RO and RS observations are not taken at the exact same time or location, temporal and spatial sampling errors resulting from atmospheric variability can be significant and inhibit error analysis of the observational systems. In addition, the vertical resolutions of RO and RS profiles vary and vertical representativeness errors may also affect the comparison. In RO-RS comparisons, RO observations are co-located with RS profiles within a fixed time window and distance, i.e. within 3-6 h and circles of radii ranging between 100 and 500 km. In this study, we first show that vertical filtering of RO and RS profiles to a common vertical resolution reduces representativeness errors. We then test two methods of reducing horizontal sampling errors during RO-RS comparisons: restricting co-location pairs to within ellipses oriented along the direction of wind flow rather than circles and applying a spatial-temporal sampling correction based on model data. Using data from 2011 to 2014, we compare RO and RS differences at four GCOS Reference Upper-Air Network (GRUAN) RS stations in different climatic locations, in which co-location pairs were constrained to a large circle ( ˜ 666 km radius), small circle ( ˜ 300 km radius), and ellipse parallel to the wind direction ( ˜ 666 km semi-major axis, ˜ 133 km semi-minor axis). We also apply a spatial-temporal sampling correction using European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) gridded data. Restricting co-locations to within the ellipse reduces root mean square (RMS) refractivity, temperature, and water vapor pressure differences relative to RMS differences within the large circle and produces differences that are comparable to or less than the RMS differences within circles of similar area. Applying the sampling correction shows the most significant reduction in RMS differences, such that RMS differences are nearly identical to the sampling correction regardless of the geometric constraints. We conclude that implementing the spatial-temporal sampling correction using a reliable model will most effectively reduce sampling errors during RO-RS comparisons; however, if a reliable model is not available, restricting spatial comparisons to within an ellipse parallel to the wind flow will reduce sampling errors caused by horizontal atmospheric variability.

  10. Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan

    2018-04-01

    In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

  11. Entanglement renormalization, quantum error correction, and bulk causality

    NASA Astrophysics Data System (ADS)

    Kim, Isaac H.; Kastoryano, Michael J.

    2017-04-01

    Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progres-sively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.

  12. Use of localized performance-based functions for the specification and correction of hybrid imaging systems

    NASA Astrophysics Data System (ADS)

    Lisson, Jerold B.; Mounts, Darryl I.; Fehniger, Michael J.

    1992-08-01

    Localized wavefront performance analysis (LWPA) is a system that allows the full utilization of the system optical transfer function (OTF) for the specification and acceptance of hybrid imaging systems. We show that LWPA dictates the correction of wavefront errors with the greatest impact on critical imaging spatial frequencies. This is accomplished by the generation of an imaging performance map-analogous to a map of the optic pupil error-using a local OTF. The resulting performance map a function of transfer function spatial frequency is directly relatable to the primary viewing condition of the end-user. In addition to optimizing quality for the viewer it will be seen that the system has the potential for an improved matching of the optical and electronic bandpass of the imager and for the development of more realistic acceptance specifications. 1. LOCAL WAVEFRONT PERFORMANCE ANALYSIS The LWPA system generates a local optical quality factor (LOQF) in the form of a map analogous to that used for the presentation and evaluation of wavefront errors. In conjunction with the local phase transfer function (LPTF) it can be used for maximally efficient specification and correction of imaging system pupil errors. The LOQF and LPTF are respectively equivalent to the global modulation transfer function (MTF) and phase transfer function (PTF) parts of the OTF. The LPTF is related to difference of the average of the errors in separated regions of the pupil. Figure

  13. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.

    PubMed

    Pozzi, P; Wilding, D; Soloviev, O; Verstraete, H; Bliek, L; Vdovin, G; Verhaegen, M

    2017-01-23

    The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.

  14. Methods to achieve accurate projection of regional and global raster databases

    USGS Publications Warehouse

    Usery, E.L.; Seong, J.C.; Steinwand, D.R.; Finn, M.P.

    2002-01-01

    This research aims at building a decision support system (DSS) for selecting an optimum projection considering various factors, such as pixel size, areal extent, number of categories, spatial pattern of categories, resampling methods, and error correction methods. Specifically, this research will investigate three goals theoretically and empirically and, using the already developed empirical base of knowledge with these results, develop an expert system for map projection of raster data for regional and global database modeling. The three theoretical goals are as follows: (1) The development of a dynamic projection that adjusts projection formulas for latitude on the basis of raster cell size to maintain equal-sized cells. (2) The investigation of the relationships between the raster representation and the distortion of features, number of categories, and spatial pattern. (3) The development of an error correction and resampling procedure that is based on error analysis of raster projection.

  15. Ground mapping resolution accuracy of a scanning radiometer from a geostationary satellite.

    PubMed

    Stremler, F G; Khalil, M A; Parent, R J

    1977-06-01

    Measures of the spatial and spatial rate (frequency) mapping of scanned visual imagery from an earth reference system to a spin-scan geostationary satellite are examined. Mapping distortions and coordinate inversions to correct for these distortions are formulated in terms of geometric transformations between earth and satellite frames of reference. Probabilistic methods are used to develop relations for obtainable mapping resolution when coordinate inversions are employed.

  16. Addressing Spatial Dependence Bias in Climate Model Simulations—An Independent Component Analysis Approach

    NASA Astrophysics Data System (ADS)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2018-02-01

    Conventional bias correction is usually applied on a grid-by-grid basis, meaning that the resulting corrections cannot address biases in the spatial distribution of climate variables. To solve this problem, a two-step bias correction method is proposed here to correct time series at multiple locations conjointly. The first step transforms the data to a set of statistically independent univariate time series, using a technique known as independent component analysis (ICA). The mutually independent signals can then be bias corrected as univariate time series and back-transformed to improve the representation of spatial dependence in the data. The spatially corrected data are then bias corrected at the grid scale in the second step. The method has been applied to two CMIP5 General Circulation Model simulations for six different climate regions of Australia for two climate variables—temperature and precipitation. The results demonstrate that the ICA-based technique leads to considerable improvements in temperature simulations with more modest improvements in precipitation. Overall, the method results in current climate simulations that have greater equivalency in space and time with observational data.

  17. Carrier-phase multipath corrections for GPS-based satellite attitude determination

    NASA Technical Reports Server (NTRS)

    Axelrad, A.; Reichert, P.

    2001-01-01

    This paper demonstrates the high degree of spatial repeatability of these errors for a spacecraft environment and describes a correction technique, termed the sky map method, which exploits the spatial correlation to correct measurements and improve the accuracy of GPS-based attitude solutions.

  18. A simple method for correcting spatially resolved solar intensity oscillation observations for variations in scattered light

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Duvall, T. L., Jr.

    1991-01-01

    A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.

  19. Industrial implementation of spatial variability control by real-time SPC

    NASA Astrophysics Data System (ADS)

    Roule, O.; Pasqualini, F.; Borde, M.

    2016-10-01

    Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.

  20. Simultaneous multi-headed imager geometry calibration method

    DOEpatents

    Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  1. Automated aberration correction of arbitrary laser modes in high numerical aperture systems.

    PubMed

    Hering, Julian; Waller, Erik H; Von Freymann, Georg

    2016-12-12

    Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.

  2. Spatial Precision in Magnetic Resonance Imaging–Guided Radiation Therapy: The Role of Geometric Distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weygand, Joseph, E-mail: jw2899@columbia.edu; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas; Fuller, Clifton David

    2016-07-15

    Because magnetic resonance imaging–guided radiation therapy (MRIgRT) offers exquisite soft tissue contrast and the ability to image tissues in arbitrary planes, the interest in this technology has increased dramatically in recent years. However, intrinsic geometric distortion stemming from both the system hardware and the magnetic properties of the patient affects MR images and compromises the spatial integrity of MRI-based radiation treatment planning, given that for real-time MRIgRT, precision within 2 mm is desired. In this article, we discuss the causes of geometric distortion, describe some well-known distortion correction algorithms, and review geometric distortion measurements from 12 studies, while taking into accountmore » relevant imaging parameters. Eleven of the studies reported phantom measurements quantifying system-dependent geometric distortion, while 2 studies reported simulation data quantifying magnetic susceptibility–induced geometric distortion. Of the 11 studies investigating system-dependent geometric distortion, 5 reported maximum measurements less than 2 mm. The simulation studies demonstrated that magnetic susceptibility–induced distortion is typically smaller than system-dependent distortion but still nonnegligible, with maximum distortion ranging from 2.1 to 2.6 mm at a field strength of 1.5 T. As expected, anatomic landmarks containing interfaces between air and soft tissue had the largest distortions. The evidence indicates that geometric distortion reduces the spatial integrity of MRI-based radiation treatment planning and likely diminishes the efficacy of MRIgRT. Better phantom measurement techniques and more effective distortion correction algorithms are needed to achieve the desired spatial precision.« less

  3. Real-time endoscopic image orientation correction system using an accelerometer and gyrosensor.

    PubMed

    Lee, Hyung-Chul; Jung, Chul-Woo; Kim, Hee Chan

    2017-01-01

    The discrepancy between spatial orientations of an endoscopic image and a physician's working environment can make it difficult to interpret endoscopic images. In this study, we developed and evaluated a device that corrects the endoscopic image orientation using an accelerometer and gyrosensor. The acceleration of gravity and angular velocity were retrieved from the accelerometer and gyrosensor attached to the handle of the endoscope. The rotational angle of the endoscope handle was calculated using a Kalman filter with transmission delay compensation. Technical evaluation of the orientation correction system was performed using a camera by comparing the optical rotational angle from the captured image with the rotational angle calculated from the sensor outputs. For the clinical utility test, fifteen anesthesiology residents performed a video endoscopic examination of an airway model with and without using the orientation correction system. The participants reported numbers written on papers placed at the left main, right main, and right upper bronchi of the airway model. The correctness and the total time it took participants to report the numbers were recorded. During the technical evaluation, errors in the calculated rotational angle were less than 5 degrees. In the clinical utility test, there was a significant time reduction when using the orientation correction system compared with not using the system (median, 52 vs. 76 seconds; P = .012). In this study, we developed a real-time endoscopic image orientation correction system, which significantly improved physician performance during a video endoscopic exam.

  4. Implementing a combined polar-geostationary algorithm for smoke emissions estimation in near real time

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.

    2013-12-01

    Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.

  5. Ecological changes and local knowledge in a giant honey bee (Apis dorsata F.) hunting community in Palawan, Philippines.

    PubMed

    Matias, Denise Margaret S; Borgemeister, Christian; von Wehrden, Henrik

    2018-02-24

    One of the traditional livelihood practices of indigenous Tagbanuas in Palawan, Philippines is wild honey hunting and gathering from the giant honey bee (Apis dorsata F.). In order to analyze the linkages of the social and ecological systems involved in this indigenous practice, we conducted spatial, quantitative, and qualitative analyses on field data gathered through mapping of global positioning system coordinates, community surveys, and key informant interviews. We found that only 24% of the 251 local community members surveyed could correctly identify the giant honey bee. Inferential statistics showed that a lower level of formal education strongly correlates with correct identification of the giant honey bee. Spatial analysis revealed that mean NDVI of sampled nesting tree areas has dropped from 0.61 in the year 1988 to 0.41 in 2015. However, those who correctly identified the giant honey bee lived in areas with high vegetation cover. Decreasing vegetation cover limits the presence of wild honey bees and this may also be limiting direct experience of the community with wild honey bees. However, with causality yet to be established, we recommend conducting further studies to concretely model feedbacks between ecological changes and local knowledge.

  6. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    PubMed

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  7. WE-AB-204-10: Evaluation of a Novel Dedicated Breast PET System (Mammi-PET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Z; Swanson, T; O’Connor, M

    2015-06-15

    Purpose: To evaluate the performance characteristics of a novel dedicated breast PET system (Mammi-PET, Oncovision). The system has 2 detector rings giving axial/transaxial field of view of 8/17 cm. Each ring consists of 12 monolithic LYSO modules coupled to PSPMTs. Methods: Uniformity, sensitivity, energy and spatial resolution were measured according to NEMA standards. Count rate performance was investigated using a source of F-18 (1384uCi) decayed over 5 half-lives. A prototype PET phantom was imaged for 20 min to evaluate image quality, recovery coefficients and partial volume effects. Under an IRB-approved protocol, 11 patients who just underwent whole body PET/CT examsmore » were imaged prone with the breast pendulant at 5–10 minutes/breast. Image quality was assessed with and without scatter/attenuation correction and using different reconstruction algorithms. Results: Integral/differential uniformity were 9.8%/6.0% respectively. System sensitivity was 2.3% on axis, 2.2% and 2.8% at 3.8 cm and 7.8 cm off-axis. Mean energy resolution of all modules was 23.3%. Spatial resolution (FWHM) was 1.82 mm and 2.90 mm on axis and 5.8 cm off axis. Three cylinders (14 mm diameter) in the PET phantom were filled with activity concentration ratios of 4:1, 3:1, and 2:1 relative to the background. Measured cylinder to background ratios were 2.6, 1.8 and 1.5 (without corrections) and 3.6, 2.3 and 1.5 (with attenuation/scatter correction). Five cylinders (14, 10, 6, 4 and 2 mm diameter) each with an activity ratio of 4:1 were measured and showed recovery coefficients of 1, 0.66, 0.45, 0.18 and 0.18 (without corrections), and 1, 0.53, 0.30, 0.13 and 0 (with attenuation/scatter correction). Optimal phantom image quality was obtained with 3D MLEM algorithm, >20 iterations and without attenuation/scatter correction. Conclusion: The MAMMI system demonstrated good performance characteristics. Further work is needed to determine the optimal reconstruction parameters for qualitative and quantitative applications.« less

  8. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.

  9. Deterministic error correction for nonlocal spatial-polarization hyperentanglement

    PubMed Central

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-01-01

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681

  10. Deterministic error correction for nonlocal spatial-polarization hyperentanglement.

    PubMed

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-02-10

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.

  11. A parametric multiclass Bayes error estimator for the multispectral scanner spatial model performance evaluation

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.; Anuta, P. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The probability of correct classification of various populations in data was defined as the primary performance index. The multispectral data being of multiclass nature as well, required a Bayes error estimation procedure that was dependent on a set of class statistics alone. The classification error was expressed in terms of an N dimensional integral, where N was the dimensionality of the feature space. The multispectral scanner spatial model was represented by a linear shift, invariant multiple, port system where the N spectral bands comprised the input processes. The scanner characteristic function, the relationship governing the transformation of the input spatial, and hence, spectral correlation matrices through the systems, was developed.

  12. Real-time distortion correction for visual inspection systems based on FPGA

    NASA Astrophysics Data System (ADS)

    Liang, Danhua; Zhang, Zhaoxia; Chen, Xiaodong; Yu, Daoyin

    2008-03-01

    Visual inspection is a kind of new technology based on the research of computer vision, which focuses on the measurement of the object's geometry and location. It can be widely used in online measurement, and other real-time measurement process. Because of the defects of the traditional visual inspection, a new visual detection mode -all-digital intelligent acquisition and transmission is presented. The image processing, including filtering, image compression, binarization, edge detection and distortion correction, can be completed in the programmable devices -FPGA. As the wide-field angle lens is adopted in the system, the output images have serious distortion. Limited by the calculating speed of computer, software can only correct the distortion of static images but not the distortion of dynamic images. To reach the real-time need, we design a distortion correction system based on FPGA. The method of hardware distortion correction is that the spatial correction data are calculated first under software circumstance, then converted into the address of hardware storage and stored in the hardware look-up table, through which data can be read out to correct gray level. The major benefit using FPGA is that the same circuit can be used for other circularly symmetric wide-angle lenses without being modified.

  13. Laser-only Adaptive Optics Achieves Significant Image Quality Gains Compared to Seeing-limited Observations over the Entire Sky

    NASA Astrophysics Data System (ADS)

    Howard, Ward S.; Law, Nicholas M.; Ziegler, Carl A.; Baranec, Christoph; Riddle, Reed

    2018-02-01

    Adaptive optics laser guide-star systems perform atmospheric correction of stellar wavefronts in two parts: stellar tip-tilt and high-spatial-order laser correction. The requirement of a sufficiently bright guide star in the field-of-view to correct tip-tilt limits sky coverage. In this paper, we show an improvement to effective seeing without the need for nearby bright stars, enabling full sky coverage by performing only laser-assisted wavefront correction. We used Robo-AO, the first robotic AO system, to comprehensively demonstrate this laser-only correction. We analyze observations from four years of efficient robotic operation covering 15000 targets and 42000 observations, each realizing different seeing conditions. Using an autoguider (or a post-processing software equivalent) and the laser to improve effective seeing independent of the brightness of a target, Robo-AO observations show a 39% ± 19% improvement to effective FWHM, without any tip-tilt correction. We also demonstrate that 50% encircled energy performance without tip-tilt correction remains comparable to diffraction-limited, standard Robo-AO performance. Faint-target science programs primarily limited by 50% encircled energy (e.g., those employing integral field spectrographs placed behind the AO system) may see significant benefits to sky coverage from employing laser-only AO.

  14. Inferring collective dynamical states from widely unobserved systems.

    PubMed

    Wilting, Jens; Priesemann, Viola

    2018-06-13

    When assessing spatially extended complex systems, one can rarely sample the states of all components. We show that this spatial subsampling typically leads to severe underestimation of the risk of instability in systems with propagating events. We derive a subsampling-invariant estimator, and demonstrate that it correctly infers the infectiousness of various diseases under subsampling, making it particularly useful in countries with unreliable case reports. In neuroscience, recordings are strongly limited by subsampling. Here, the subsampling-invariant estimator allows to revisit two prominent hypotheses about the brain's collective spiking dynamics: asynchronous-irregular or critical. We identify consistently for rat, cat, and monkey a state that combines features of both and allows input to reverberate in the network for hundreds of milliseconds. Overall, owing to its ready applicability, the novel estimator paves the way to novel insight for the study of spatially extended dynamical systems.

  15. Relational Algebra in Spatial Decision Support Systems Ontologies.

    PubMed

    Diomidous, Marianna; Chardalias, Kostis; Koutonias, Panagiotis; Magnita, Adrianna; Andrianopoulos, Charalampos; Zimeras, Stelios; Mechili, Enkeleint Aggelos

    2017-01-01

    Decision Support Systems (DSS) is a powerful tool, for facilitates researchers to choose the correct decision based on their final results. Especially in medical cases where doctors could use these systems, to overcome the problem with the clinical misunderstanding. Based on these systems, queries must be constructed based on the particular questions that doctors must answer. In this work, combination between questions and queries would be presented via relational algebra.

  16. Automated support tool for variable rate irrigation prescriptions

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) enables center pivot management to better meet non-uniform water and fertility needs. This is accomplished through correctly matching system water application with spatial and temporal variability within the field. A computer program was modified to accommodate GIS dat...

  17. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    PubMed

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  18. Spatial reconstruction of single-cell gene expression data.

    PubMed

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  19. Spatial reconstruction of single-cell gene expression

    PubMed Central

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  20. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head

    PubMed Central

    Marsac, Laurent; Chauvet, Dorian; Larrat, Benoît; Pernot, Mathieu; Robert, B.; Fink, Mathias; Boch, Anne-Laure; Aubry, Jean-François; Tanter, Mickaël

    2012-01-01

    Purpose This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity Focused Ultrasound (HIFU) therapy. Methods Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on X-ray computed tomography (CT) scans. Conclusion The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications. PMID:22320825

  1. Calibration of a spatial light modulator containing dual frequency liquid crystal

    NASA Astrophysics Data System (ADS)

    Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank

    2005-08-01

    Characterization and calibration process for a liquid crystal (LC) spatial light modulator (SLM) containing dual frequency liquid crystal is described. Special care was taken when dealing with LC cell gap non-uniformity and defect pixels. The calibration results were fed into a closed loop control algorithm to demonstrate correction of wavefront distortions. The performance characteristics of the device were reported. Substantial improvements were made in speed (bandwidth), resolution, power consumption and system weight/volume.

  2. Subaperture correlation based digital adaptive optics for full field optical coherence tomography.

    PubMed

    Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A

    2013-05-06

    This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full field swept source OCT (FF SSOCT) system to show the working principle of the algorithm. Experimental results are presented for a technical and biological sample to demonstrate the proof of the principle.

  3. Image-based gradient non-linearity characterization to determine higher-order spherical harmonic coefficients for improved spatial position accuracy in magnetic resonance imaging.

    PubMed

    Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Tryggestad, Erik J; Gunter, Jeffrey L; McGee, Kiaran P; Litwiller, Daniel V; Hwang, Ken-Pin; Bernstein, Matt A

    2017-05-01

    Spatial position accuracy in magnetic resonance imaging (MRI) is an important concern for a variety of applications, including radiation therapy planning, surgical planning, and longitudinal studies of morphologic changes to study neurodegenerative diseases. Spatial accuracy is strongly influenced by gradient linearity. This work presents a method for characterizing the gradient non-linearity fields on a per-system basis, and using this information to provide improved and higher-order (9th vs. 5th) spherical harmonic coefficients for better spatial accuracy in MRI. A large fiducial phantom containing 5229 water-filled spheres in a grid pattern is scanned with the MR system, and the positions all the fiducials are measured and compared to the corresponding ground truth fiducial positions as reported from a computed tomography (CT) scan of the object. Systematic errors from off-resonance (i.e., B0) effects are minimized with the use of increased receiver bandwidth (±125kHz) and two acquisitions with reversed readout gradient polarity. The spherical harmonic coefficients are estimated using an iterative process, and can be subsequently used to correct for gradient non-linearity. Test-retest stability was assessed with five repeated measurements on a single scanner, and cross-scanner variation on four different, identically-configured 3T wide-bore systems. A decrease in the root-mean-square error (RMSE) over a 50cm diameter spherical volume from 1.80mm to 0.77mm is reported here in the case of replacing the vendor's standard 5th order spherical harmonic coefficients with custom fitted 9th order coefficients, and from 1.5mm to 1mm by extending custom fitted 5th order correction to the 9th order. Minimum RMSE varied between scanners, but was stable with repeated measurements in the same scanner. The results suggest that the proposed methods may be used on a per-system basis to more accurately calibrate MR gradient non-linearity coefficients when compared to vendor standard corrections. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie

    2018-07-01

    A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.

  5. Research on the liquid crystal adaptive optics system for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tong, Shoufeng; Song, Yansong; Zhao, Xin

    2013-12-01

    The blood vessels only in Human eye retinal can be observed directly. Many diseases that are not obvious in their early symptom can be diagnosed through observing the changes of distal micro blood vessel. In order to obtain the high resolution human retinal images,an adaptive optical system for correcting the aberration of the human eye was designed by using the Shack-Hartmann wavefront sensor and the Liquid Crystal Spatial Light Modulator(LCLSM) .For a subject eye with 8m-1 (8D)myopia, the wavefront error is reduced to 0.084 λ PV and 0.12 λRMS after adaptive optics(AO) correction ,which has reached diffraction limit.The results show that the LCLSM based AO system has the ability of correcting the aberration of the human eye efficiently,and making the blurred photoreceptor cell to clearly image on a CCD camera.

  6. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    PubMed

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  7. Simple, Fast and Effective Correction for Irradiance Spatial Nonuniformity in Measurement of IVs of Large Area Cells at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Tom

    The NREL cell measurement lab measures the IV parameters of cells of multiple sizes and configurations. A large contributing factor to errors and uncertainty in Jsc, Imax, Pmax and efficiency can be the irradiance spatial nonuniformity. Correcting for this nonuniformity through its precise and frequent measurement can be very time consuming. This paper explains a simple, fast and effective method based on bicubic interpolation for determining and correcting for spatial nonuniformity and verification of the method's efficacy.

  8. Active optics - The NTT and the future

    NASA Astrophysics Data System (ADS)

    Wilson, R. N.; Franza, F.; Giordano, P.; Noethe, L.; Tarenghi, M.

    1988-09-01

    An account is given of the essential design features and advantages of the ESO's NTT system optics, constituting an active telescope in which the optical correction process exhibited in histograms can be performed at will, on-line, so that the intrinsic quality of the telescope can be fully realized. This technology allows the relaxation of low spatial frequency (long-wave) manufacturing tolerances, and accomplishes automatic maintenance with respect to errors due to optics' maladjustment. Linearity, convergence, and orthogonality laws are used by the optical correction process algorithm.

  9. Shutterless solution for simultaneous focal plane array temperature estimation and nonuniformity correction in uncooled long-wave infrared camera.

    PubMed

    Cao, Yanpeng; Tisse, Christel-Loic

    2013-09-01

    In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.

  10. The influence of CT based attenuation correction on PET/CT registration: an evaluation study

    NASA Astrophysics Data System (ADS)

    Yaniv, Ziv; Wong, Kenneth H.; Banovac, Filip; Levy, Elliot; Cleary, Kevin

    2007-03-01

    We are currently developing a PET/CT based navigation system for guidance of biopsies and radiofrequency ablation (RFA) of early stage hepatic tumors. For these procedures, combined PET/CT data can potentially improve current interventions. The diagnostic efficacy of biopsies can potentially be improved by accurately targeting the region within the tumor that exhibits the highest metabolic activity. For RFA procedures the system can potentially enable treatment of early stage tumors, targeting tumors before structural abnormalities are clearly visible on CT. In both cases target definition is based on the metabolic data (PET), and navigation is based on the spatial data (CT), making the system highly dependent upon accurate spatial alignment between these data sets. In our institute all clinical data sets include three image volumes: one CT, and two PET volumes, with and without CT-based attenuation correction. This paper studies the effect of the CT-based attenuation correction on the registration process. From comparing the pairs of registrations from five data sets we observe that the point motion magnitude difference between registrations is on the same scale as the point motion magnitude in each one of the registrations, and that visual inspection cannot identify this discrepancy. We conclude that using non-rigid registration to align the PET and CT data sets is too variable, and most likely does not provide sufficient accuracy for interventional procedures.

  11. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-03-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.

  12. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.

  13. 47 CFR 101.521 - Spectrum utilization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... applicants for DEMS frequencies in the 10.6 GHz band must submit as part of the original application a... contain detailed descriptions of the modulation method, the channel time sharing method, any error detecting and/or correcting codes, any spatial frequency reuse system and the total data throughput capacity...

  14. Feasibility of self-correcting quantum memory and thermal stability of topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Beni, E-mail: rouge@mit.edu

    2011-10-15

    Recently, it has become apparent that the thermal stability of topologically ordered systems at finite temperature, as discussed in condensed matter physics, can be studied by addressing the feasibility of self-correcting quantum memory, as discussed in quantum information science. Here, with this correspondence in mind, we propose a model of quantum codes that may cover a large class of physically realizable quantum memory. The model is supported by a certain class of gapped spin Hamiltonians, called stabilizer Hamiltonians, with translation symmetries and a small number of ground states that does not grow with the system size. We show that themore » model does not work as self-correcting quantum memory due to a certain topological constraint on geometric shapes of its logical operators. This quantum coding theoretical result implies that systems covered or approximated by the model cannot have thermally stable topological order, meaning that systems cannot be stable against both thermal fluctuations and local perturbations simultaneously in two and three spatial dimensions. - Highlights: > We define a class of physically realizable quantum codes. > We determine their coding and physical properties completely. > We establish the connection between topological order and self-correcting memory. > We find they do not work as self-correcting quantum memory. > We find they do not have thermally stable topological order.« less

  15. Evaluate error correction ability of magnetorheological finishing by smoothing spectral function

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Fan, Bin; Wan, Yongjian; Shi, Chunyan; Zhuo, Bin

    2014-08-01

    Power Spectral Density (PSD) has been entrenched in optics design and manufacturing as a characterization of mid-high spatial frequency (MHSF) errors. Smoothing Spectral Function (SSF) is a newly proposed parameter that based on PSD to evaluate error correction ability of computer controlled optical surfacing (CCOS) technologies. As a typical deterministic and sub-aperture finishing technology based on CCOS, magnetorheological finishing (MRF) leads to MHSF errors inevitably. SSF is employed to research different spatial frequency error correction ability of MRF process. The surface figures and PSD curves of work-piece machined by MRF are presented. By calculating SSF curve, the correction ability of MRF for different spatial frequency errors will be indicated as a normalized numerical value.

  16. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  17. Parallel transmission RF pulse design for eddy current correction at ultra high field.

    PubMed

    Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando

    2012-08-01

    Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.

  18. Large scale Wyoming transportation data: a resource planning tool

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.; Freeman, Aaron T.; Ziegler, Abra E.; Bowen, Zachary H.; Aldridge, Cameron L.

    2014-01-01

    The U.S. Geological Survey Fort Collins Science Center created statewide roads data for the Bureau of Land Management Wyoming State Office using 2009 aerial photography from the National Agriculture Imagery Program. The updated roads data resolves known concerns of omission, commission, and inconsistent representation of map scale, attribution, and ground reference dates which were present in the original source data. To ensure a systematic and repeatable approach of capturing roads on the landscape using on-screen digitizing from true color National Agriculture Imagery Program imagery, we developed a photogrammetry key and quality assurance/quality control protocols. Therefore, the updated statewide roads data will support the Bureau of Land Management’s resource management requirements with a standardized map product representing 2009 ground conditions. The updated Geographic Information System roads data set product, represented at 1:4,000 and +/- 10 meters spatial accuracy, contains 425,275 kilometers within eight attribute classes. The quality control of these products indicated a 97.7 percent accuracy of aspatial information and 98.0 percent accuracy of spatial locations. Approximately 48 percent of the updated roads data was corrected for spatial errors of greater than 1 meter relative to the pre-existing road data. Twenty-six percent of the updated roads involved correcting spatial errors of greater than 5 meters and 17 percent of the updated roads involved correcting spatial errors of greater than 9 meters. The Bureau of Land Management, other land managers, and researchers can use these new statewide roads data set products to support important studies and management decisions regarding land use changes, transportation and planning needs, transportation safety, wildlife applications, and other studies.

  19. Spatial cues more salient than color cues in cotton-top tamarins (Saguinus oedipus) reversal learning.

    PubMed

    Gaudio, Jennifer L; Snowdon, Charles T

    2008-11-01

    Animals living in stable home ranges have many potential cues to locate food. Spatial and color cues are important for wild Callitrichids (marmosets and tamarins). Field studies have assigned the highest priority to distal spatial cues for determining the location of food resources with color cues serving as a secondary cue to assess relative ripeness, once a food source is located. We tested two hypotheses with captive cotton-top tamarins: (a) Tamarins will demonstrate higher rates of initial learning when rewarded for attending to spatial cues versus color cues. (b) Tamarins will show higher rates of correct responses when transferred from color cues to spatial cues than from spatial cues to color cues. The results supported both hypotheses. Tamarins rewarded based on spatial location made significantly more correct choices and fewer errors than tamarins rewarded based on color cues during initial learning. Furthermore, tamarins trained on color cues showed significantly increased correct responses and decreased errors when cues were reversed to reward spatial cues. Subsequent reversal to color cues induced a regression in performance. For tamarins spatial cues appear more salient than color cues in a foraging task. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  20. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence

    PubMed Central

    Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2015-01-01

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772

  1. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  2. Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture.

    PubMed

    Narayanan, Balaji; Hardie, Russell C; Muse, Robert A

    2005-06-10

    Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.

  3. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

    PubMed Central

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

  4. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system.

    PubMed

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-21

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer's Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients.

  5. A rank-based approach for correcting systematic biases in spatial disaggregation of coarse-scale climate simulations

    NASA Astrophysics Data System (ADS)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2017-07-01

    Use of General Circulation Model (GCM) precipitation and evapotranspiration sequences for hydrologic modelling can result in unrealistic simulations due to the coarse scales at which GCMs operate and the systematic biases they contain. The Bias Correction Spatial Disaggregation (BCSD) method is a popular statistical downscaling and bias correction method developed to address this issue. The advantage of BCSD is its ability to reduce biases in the distribution of precipitation totals at the GCM scale and then introduce more realistic variability at finer scales than simpler spatial interpolation schemes. Although BCSD corrects biases at the GCM scale before disaggregation; at finer spatial scales biases are re-introduced by the assumptions made in the spatial disaggregation process. Our study focuses on this limitation of BCSD and proposes a rank-based approach that aims to reduce the spatial disaggregation bias especially for both low and high precipitation extremes. BCSD requires the specification of a multiplicative bias correction anomaly field that represents the ratio of the fine scale precipitation to the disaggregated precipitation. It is shown that there is significant temporal variation in the anomalies, which is masked when a mean anomaly field is used. This can be improved by modelling the anomalies in rank-space. Results from the application of the rank-BCSD procedure improve the match between the distributions of observed and downscaled precipitation at the fine scale compared to the original BCSD approach. Further improvements in the distribution are identified when a scaling correction to preserve mass in the disaggregation process is implemented. An assessment of the approach using a single GCM over Australia shows clear advantages especially in the simulation of particularly low and high downscaled precipitation amounts.

  6. Spherical Harmonic Inductive Detection Coils and their use In Dynamic Pre-emphasis for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Edler, Karl T.

    The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field -- an inverse curl operation -- and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI. Keywords: magnetic resonance imaging, eddy currents, dynamic shimming, negative feedback, quasi-static fields, vector potential, inverse curl

  7. Cone-beam CT image contrast and attenuation-map linearity improvement (CALI) for brain stereotactic radiosurgery procedures

    NASA Astrophysics Data System (ADS)

    Hashemi, Sayed Masoud; Lee, Young; Eriksson, Markus; Nordström, Hâkan; Mainprize, James; Grouza, Vladimir; Huynh, Christopher; Sahgal, Arjun; Song, William Y.; Ruschin, Mark

    2017-03-01

    A Contrast and Attenuation-map (CT-number) Linearity Improvement (CALI) framework is proposed for cone-beam CT (CBCT) images used for brain stereotactic radiosurgery (SRS). The proposed framework is used together with our high spatial resolution iterative reconstruction algorithm and is tailored for the Leksell Gamma Knife ICON (Elekta, Stockholm, Sweden). The incorporated CBCT system in ICON facilitates frameless SRS planning and treatment delivery. The ICON employs a half-cone geometry to accommodate the existing treatment couch. This geometry increases the amount of artifacts and together with other physical imperfections causes image inhomogeneity and contrast reduction. Our proposed framework includes a preprocessing step, involving a shading and beam-hardening artifact correction, and a post-processing step to correct the dome/capping artifact caused by the spatial variations in x-ray energy generated by bowtie-filter. Our shading correction algorithm relies solely on the acquired projection images (i.e. no prior information required) and utilizes filtered-back-projection (FBP) reconstructed images to generate a segmented bone and soft-tissue map. Ideal projections are estimated from the segmented images and a smoothed version of the difference between the ideal and measured projections is used in correction. The proposed beam-hardening and dome artifact corrections are segmentation free. The CALI was tested on CatPhan, as well as patient images acquired on the ICON system. The resulting clinical brain images show substantial improvements in soft contrast visibility, revealing structures such as ventricles and lesions which were otherwise un-detectable in FBP-reconstructed images. The linearity of the reconstructed attenuation-map was also improved, resulting in more accurate CT#.

  8. Performance evaluation of spatial compounding in the presence of aberration and adaptive imaging

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Guenther, Drake; Trahey, Gregg E.

    2003-05-01

    Spatial compounding has been used for years to reduce speckle in ultrasonic images and to resolve anatomical features hidden behind the grainy appearance of speckle. Adaptive imaging restores image contrast and resolution by compensating for beamforming errors caused by tissue-induced phase errors. Spatial compounding represents a form of incoherent imaging, whereas adaptive imaging attempts to maintain a coherent, diffraction-limited aperture in the presence of aberration. Using a Siemens Antares scanner, we acquired single channel RF data on a commercially available 1-D probe. Individual channel RF data was acquired on a cyst phantom in the presence of a near field electronic phase screen. Simulated data was also acquired for both a 1-D and a custom built 8x96, 1.75-D probe (Tetrad Corp.). The data was compounded using a receive spatial compounding algorithm; a widely used algorithm because it takes advantage of parallel beamforming to avoid reductions in frame rate. Phase correction was also performed by using a least mean squares algorithm to estimate the arrival time errors. We present simulation and experimental data comparing the performance of spatial compounding to phase correction in contrast and resolution tasks. We evaluate spatial compounding and phase correction, and combinations of the two methods, under varying aperture sizes, aperture overlaps, and aberrator strength to examine the optimum configuration and conditions in which spatial compounding will provide a similar or better result than adaptive imaging. We find that, in general, phase correction is hindered at high aberration strengths and spatial frequencies, whereas spatial compounding is helped by these aberrators.

  9. Universal thermal corrections to single interval entanglement entropy for two dimensional conformal field theories.

    PubMed

    Cardy, John; Herzog, Christopher P

    2014-05-02

    We consider single interval Rényi and entanglement entropies for a two dimensional conformal field theory on a circle at nonzero temperature. Assuming that the finite size of the system introduces a unique ground state with a nonzero mass gap, we calculate the leading corrections to the Rényi and entanglement entropy in a low temperature expansion. These corrections have a universal form for any two dimensional conformal field theory that depends only on the size of the mass gap and its degeneracy. We analyze the limits where the size of the interval becomes small and where it becomes close to the size of the spatial circle.

  10. Generation of Unbiased Ionospheric Corrections in Brazilian Region for GNSS positioning based on SSR concept

    NASA Astrophysics Data System (ADS)

    Monico, J. F. G.; De Oliveira, P. S., Jr.; Morel, L.; Fund, F.; Durand, S.; Durand, F.

    2017-12-01

    Mitigation of ionospheric effects on GNSS (Global Navigation Satellite System) signals is very challenging, especially for GNSS positioning applications based on SSR (State Space Representation) concept, which requires the knowledge of spatial correlated errors with considerable accuracy level (centimeter). The presence of satellite and receiver hardware biases on GNSS measurements difficult the proper estimation of ionospheric corrections, reducing their physical meaning. This problematic can lead to ionospheric corrections biased of several meters and often presenting negative values, which is physically not possible. In this contribution, we discuss a strategy to obtain SSR ionospheric corrections based on GNSS measurements from CORS (Continuous Operation Reference Stations) Networks with minimal presence of hardware biases and consequently physical meaning. Preliminary results are presented on generation and application of such corrections for simulated users located in Brazilian region under high level of ionospheric activity.

  11. Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.

    PubMed

    Scrimgeour, Jan; Curtis, Jennifer E

    2012-06-18

    We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.

  12. Prototype pre-clinical PET scanner with depth-of-interaction measurements using single-layer crystal array and single-ended readout

    NASA Astrophysics Data System (ADS)

    Lee, Min Sun; Kim, Kyeong Yun; Ko, Guen Bae; Lee, Jae Sung

    2017-05-01

    In this study, we developed a proof-of-concept prototype PET system using a pair of depth-of-interaction (DOI) PET detectors based on the proposed DOI-encoding method and digital silicon photomultiplier (dSiPM). Our novel cost-effective DOI measurement method is based on a triangular-shaped reflector that requires only a single-layer pixelated crystal and single-ended signal readout. The DOI detector consisted of an 18  ×  18 array of unpolished LYSO crystal (1.47  ×  1.47  ×  15 mm3) wrapped with triangular-shaped reflectors. The DOI information was encoded by depth-dependent light distribution tailored by the reflector geometry and DOI correction was performed using four-step depth calibration data and maximum-likelihood (ML) estimation. The detector pair and the object were placed on two motorized rotation stages to demonstrate 12-block ring PET geometry with 11.15 cm diameter. Spatial resolution was measured and phantom and animal imaging studies were performed to investigate imaging performance. All images were reconstructed with and without the DOI correction to examine the impact of our DOI measurement. The pair of dSiPM-based DOI PET detectors showed good physical performances respectively: 2.82 and 3.09 peak-to-valley ratios, 14.30% and 18.95% energy resolution, and 4.28 and 4.24 mm DOI resolution averaged over all crystals and all depths. A sub-millimeter spatial resolution was achieved at the center of the field of view (FOV). After applying ML-based DOI correction, maximum 36.92% improvement was achieved in the radial spatial resolution and a uniform resolution was observed within 5 cm of transverse PET FOV. We successfully acquired phantom and animal images with improved spatial resolution and contrast by using the DOI measurement. The proposed DOI-encoding method was successfully demonstrated in the system level and exhibited good performance, showing its feasibility for animal PET applications with high spatial resolution and sensitivity.

  13. Spatial Data Quality Control Procedure applied to the Okavango Basin Information System

    NASA Astrophysics Data System (ADS)

    Butchart-Kuhlmann, Daniel

    2014-05-01

    Spatial data is a powerful form of information, capable of providing information of great interest and tremendous use to a variety of users. However, much like other data representing the 'real world', precision and accuracy must be high for the results of data analysis to be deemed reliable and thus applicable to real world projects and undertakings. The spatial data quality control (QC) procedure presented here was developed as the topic of a Master's thesis, in the sphere of and using data from the Okavango Basin Information System (OBIS), itself a part of The Future Okavango (TFO) project. The aim of the QC procedure was to form the basis of a method through which to determine the quality of spatial data relevant for application to hydrological, solute, and erosion transport modelling using the Jena Adaptable Modelling System (JAMS). As such, the quality of all data present in OBIS classified under the topics of elevation, geoscientific information, or inland waters, was evaluated. Since the initial data quality has been evaluated, efforts are underway to correct the errors found, thus improving the quality of the dataset.

  14. InSAR Tropospheric Correction Methods: A Statistical Comparison over Different Regions

    NASA Astrophysics Data System (ADS)

    Bekaert, D. P.; Walters, R. J.; Wright, T. J.; Hooper, A. J.; Parker, D. J.

    2015-12-01

    Observing small magnitude surface displacements through InSAR is highly challenging, and requires advanced correction techniques to reduce noise. In fact, one of the largest obstacles facing the InSAR community is related to tropospheric noise correction. Spatial and temporal variations in temperature, pressure, and relative humidity result in a spatially-variable InSAR tropospheric signal, which masks smaller surface displacements due to tectonic or volcanic deformation. Correction methods applied today include those relying on weather model data, GNSS and/or spectrometer data. Unfortunately, these methods are often limited by the spatial and temporal resolution of the auxiliary data. Alternatively a correction can be estimated from the high-resolution interferometric phase by assuming a linear or a power-law relationship between the phase and topography. For these methods, the challenge lies in separating deformation from tropospheric signals. We will present results of a statistical comparison of the state-of-the-art tropospheric corrections estimated from spectrometer products (MERIS and MODIS), a low and high spatial-resolution weather model (ERA-I and WRF), and both the conventional linear and power-law empirical methods. We evaluate the correction capability over Southern Mexico, Italy, and El Hierro, and investigate the impact of increasing cloud cover on the accuracy of the tropospheric delay estimation. We find that each method has its strengths and weaknesses, and suggest that further developments should aim to combine different correction methods. All the presented methods are included into our new open source software package called TRAIN - Toolbox for Reducing Atmospheric InSAR Noise (Bekaert et al., in review), which is available to the community Bekaert, D., R. Walters, T. Wright, A. Hooper, and D. Parker (in review), Statistical comparison of InSAR tropospheric correction techniques, Remote Sensing of Environment

  15. Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.

    PubMed

    Chapman, Heidi L; Eramudugolla, Ranmalee; Gavrilescu, Maria; Strudwick, Mark W; Loftus, Andrea; Cunnington, Ross; Mattingley, Jason B

    2010-07-01

    Visuomotor adaptation to a shift in visual input produced by prismatic lenses is an example of dynamic sensory-motor plasticity within the brain. Prism adaptation is readily induced in healthy individuals, and is thought to reflect the brain's ability to compensate for drifts in spatial calibration between different sensory systems. The neural correlate of this form of functional plasticity is largely unknown, although current models predict the involvement of parieto-cerebellar circuits. Recent studies that have employed event-related functional magnetic resonance imaging (fMRI) to identify brain regions associated with prism adaptation have discovered patterns of parietal and cerebellar modulation as participants corrected their visuomotor errors during the early part of adaptation. However, the role of these regions in the later stage of adaptation, when 'spatial realignment' or true adaptation is predicted to occur, remains unclear. Here, we used fMRI to quantify the distinctive patterns of parieto-cerebellar activity as visuomotor adaptation develops. We directly contrasted activation patterns during the initial error correction phase of visuomotor adaptation with that during the later spatial realignment phase, and found significant recruitment of the parieto-cerebellar network--with activations in the right inferior parietal lobe and the right posterior cerebellum. These findings provide the first evidence of both cerebellar and parietal involvement during the spatial realignment phase of prism adaptation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Corrections to the Eckhaus' stability criterion for one-dimensional stationary structures

    NASA Astrophysics Data System (ADS)

    Malomed, B. A.; Staroselsky, I. E.; Konstantinov, A. B.

    1989-01-01

    Two amendments to the well-known Eckhaus' stability criterion for small-amplitude non-linear structures generated by weak instability of a spatially uniform state of a non-equilibrium one-dimensional system against small perturbations with finite wavelengths are obtained. Firstly, we evaluate small corrections to the main Eckhaus' term which, on the contrary so that term, do not have a universal form. Comparison of those non-universal corrections with experimental or numerical results gives a possibility to select a more relevant form of an effective nonlinear evolution equation. In particular, the comparison with such results for convective rolls and Taylor vortices gives arguments in favor of the Swift-Hohenberg equation. Secondly, we derive an analog of the Eckhaus criterion for systems degenerate in the sense that in an expansion of their non-linear parts in powers of dynamical variables, the second and third degree terms are absent.

  17. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    PubMed Central

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision. PMID:27892454

  18. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-11-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.

  19. Analysis of Correlation between Ionospheric Spatial Gradients and Space Weather Intensity under Nominal Conditions for Ground-Based Augmentation Systems

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2013-12-01

    Ground-Based Augmentation Systems (GBAS) support aircraft precision approach and landing by providing differential GPS corrections to aviation users. For GBAS applications, most of ionospheric errors are removed by applying the differential corrections. However, ionospheric correction errors may exist due to ionosphere spatial decorrelation between GBAS ground facility and users. Thus, the standard deviation of ionosphere spatial decorrelation (σvig) is estimated and included in the computation of error bounds on user position solution. The σvig of 4mm/km, derived for the Conterminous United States (CONUS), bounds one-sigma ionospheric spatial gradients under nominal conditions (including active, but not stormy condition) with an adequate safety margin [1]. The conservatism residing in the current σvig by fixing it to a constant value for all non-stormy conditions could be mitigated by subdividing ionospheric conditions into several classes and using different σvig for each class. This new concept, real-time σvig adaptation, will be possible if the level of ionospheric activity can be well classified based on space weather intensity. This paper studies correlation between the statistics of nominal ionospheric spatial gradients and space weather indices. The analysis was carried out using two sets of data collected from Continuous Operating Reference Station (CORS) Network; 9 consecutive (nominal and ionospherically active) days in 2004 and 19 consecutive (relatively 'quiet') days in 2010. Precise ionospheric delay estimates are obtained using the simplified truth processing method and vertical ionospheric gradients are computed using the well-known 'station pair method' [2]. The remaining biases which include carrier-phase leveling errors and Inter-frequency Bias (IFB) calibration errors are reduced by applying linear slip detection thresholds. The σvig was inflated to overbound the distribution of vertical ionospheric gradients with the required confidence level. Using the daily maximum values of σvig, day-to-day variations of spatial gradients are compared to those of two space weather indices; Disturbance, Storm Time (Dst) index and Interplanetary Magnetic Field Bz (IMF Bz). The day-to-day variations of both space weather indices showed a good agreement with those of daily maximum σvig. The results demonstrate that ionospheric gradient statistics are highly correlated with space weather indices on nominal and off-nominal days. Further investigation on this relationship would facilitate prediction of upcoming ionospheric behavior based on space weather information and adjusting σvig in real time. Consequently it will improve GBAS availability by adding external information to operation. [1] Lee, J., S. Pullen, S. Datta-Barua, and P. Enge (2007), Assessment of ionosphere spatial decorrelation for GPS-based aircraft landing systems, J. Aircraft, 44(5), 1662-1669, doi:10.2514/1.28199. [2] Jung, S., and J. Lee (2012), Long-term ionospheric anomaly monitoring for ground based augmentation systems, Radio Sci., 47, RS4006, doi:10.1029/2012RS005016.

  20. Large Area Crop Inventory Experiment (LACIE). Development of procedure M for multicrop inventory, with tests of a spring-wheat configuration

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R.; Crist, E.; Kauth, R. J.; Lambeck, P.; Malila, W. A.; Richardson, W.

    1979-01-01

    The author has identified the following significant results. An outgrowth of research and development activities in support of LACIE was a multicrop area estimation procedure, Procedure M. This procedure was a flexible, modular system that could be operated within the LACIE framework. Its distinctive features were refined preprocessing (including spatially varying correction for atmospheric haze), definition of field like spatial features for labeling, spectral stratification, and unbiased selection of samples to label and crop area estimation without conventional maximum likelihood classification.

  1. Frequency correction method for improved spatial correlation of hyperpolarized 13C metabolites and anatomy.

    PubMed

    Cunningham, Charles H; Dominguez Viqueira, William; Hurd, Ralph E; Chen, Albert P

    2014-02-01

    Blip-reversed echo-planar imaging (EPI) is investigated as a method for measuring and correcting the spatial shifts that occur due to bulk frequency offsets in (13)C metabolic imaging in vivo. By reversing the k-space trajectory for every other time point, the direction of the spatial shift for a given frequency is reversed. Here, mutual information is used to find the 'best' alignment between images and thereby measure the frequency offset. Time-resolved 3D images of pyruvate/lactate/urea were acquired with 5 s temporal resolution over a 1 min duration in rats (N = 6). For each rat, a second injection was performed with the demodulation frequency purposely mis-set by +35 Hz, to test the correction for erroneous shifts in the images. Overall, the shift induced by the 35 Hz frequency offset was 5.9 ± 0.6 mm (mean ± standard deviation). This agrees well with the expected 5.7 mm shift based on the 2.02 ms delay between k-space lines (giving 30.9 Hz per pixel). The 0.6 mm standard deviation in the correction corresponds to a frequency-detection accuracy of 4 Hz. A method was presented for ensuring the spatial registration between (13)C metabolic images and conventional anatomical images when long echo-planar readouts are used. The frequency correction method was shown to have an accuracy of 4 Hz. Summing the spatially corrected frames gave a signal-to-noise ratio (SNR) improvement factor of 2 or greater, compared with the highest single frame. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    NASA Astrophysics Data System (ADS)

    Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2012-03-01

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  3. Spatial filtering self-velocimeter for vehicle application using a CMOS linear image sensor

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-03-01

    The idea of using a spatial filtering velocimeter (SFV) to measure the velocity of a vehicle for an inertial navigation system is put forward. The presented SFV is based on a CMOS linear image sensor with a high-speed data rate, large pixel size, and built-in timing generator. These advantages make the image sensor suitable to measure vehicle velocity. The power spectrum of the output signal is obtained by fast Fourier transform and is corrected by a frequency spectrum correction algorithm. This velocimeter was used to measure the velocity of a conveyor belt driven by a rotary table and the measurement uncertainty is ˜0.54%. Furthermore, it was also installed on a vehicle together with a laser Doppler velocimeter (LDV) to measure self-velocity. The measurement result of the designed SFV is compared with that of the LDV. It is shown that the measurement result of the SFV is coincident with that of the LDV. Therefore, the designed SFV is suitable for a vehicle self-contained inertial navigation system.

  4. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield

    PubMed Central

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-01-01

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale. PMID:28621723

  5. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield.

    PubMed

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-06-16

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale.

  6. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  7. Research on presentation and query service of geo-spatial data based on ontology

    NASA Astrophysics Data System (ADS)

    Li, Hong-wei; Li, Qin-chao; Cai, Chang

    2008-10-01

    The paper analyzed the deficiency on presentation and query of geo-spatial data existed in current GIS, discussed the advantages that ontology possessed in formalization of geo-spatial data and the presentation of semantic granularity, taken land-use classification system as an example to construct domain ontology, and described it by OWL; realized the grade level and category presentation of land-use data benefited from the thoughts of vertical and horizontal navigation; and then discussed query mode of geo-spatial data based on ontology, including data query based on types and grade levels, instances and spatial relation, and synthetic query based on types and instances; these methods enriched query mode of current GIS, and is a useful attempt; point out that the key point of the presentation and query of spatial data based on ontology is to construct domain ontology that can correctly reflect geo-concept and its spatial relation and realize its fine formalization description.

  8. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    PubMed

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.

  9. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    PubMed Central

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760

  10. QIN DAWG Validation of Gradient Nonlinearity Bias Correction Workflow for Quantitative Diffusion-Weighted Imaging in Multicenter Trials.

    PubMed

    Malyarenko, Dariya I; Wilmes, Lisa J; Arlinghaus, Lori R; Jacobs, Michael A; Huang, Wei; Helmer, Karl G; Taouli, Bachir; Yankeelov, Thomas E; Newitt, David; Chenevert, Thomas L

    2016-12-01

    Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, -35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI.

  11. QIN DAWG Validation of Gradient Nonlinearity Bias Correction Workflow for Quantitative Diffusion-Weighted Imaging in Multicenter Trials

    PubMed Central

    Malyarenko, Dariya I.; Wilmes, Lisa J.; Arlinghaus, Lori R.; Jacobs, Michael A.; Huang, Wei; Helmer, Karl G.; Taouli, Bachir; Yankeelov, Thomas E.; Newitt, David; Chenevert, Thomas L.

    2017-01-01

    Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, −35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI. PMID:28105469

  12. A potential means of improving the evaluation of deformity corrections with Taylor spatial frames over time by using volumetric imaging: preliminary results.

    PubMed

    Starr, Vanessa; Olivecrona, H; Noz, M E; Maguire, G Q; Zeleznik, M P; Jannsson, Karl-åke

    2009-01-01

    In this study we explore the possibility of accurately and cost-effectively monitoring tibial deformation induced by Taylor Spatial Frames (TSFs), using time-separated computed tomography (CT) scans and a volume fusion technique to determine tibial rotation and translation. Serial CT examinations (designated CT-A and CT-B, separated by a time interval of several months) of two patients were investigated using a previously described and validated volume fusion technique, in which user-defined landmarks drive the 3D registration of the two CT volumes. Both patients had undergone dual osteotomies to correct for tibial length and rotational deformity. For each registration, 10 or more landmarks were selected, and the quality of the fused volume was assessed both quantitatively and via 2D and 3D visualization tools. First, the proximal frame segment and tibia in CT-A and CT-B were brought into alignment (registered) by selecting landmarks on the frame and/or tibia. In the resulting "fused" volume, the proximal frame segment and tibia from CT-A and CT-B were aligned, while the distal frame segment and tibia from CT-A and CT-B were likely not aligned as a result of tibial deformation or frame adjustment having occurred between the CT scans. Using the proximal fused volume, the distal frame segment and tibia were then registered by selecting landmarks on the frame and/or tibia. The difference between the centroids of the final distal landmarks was used to evaluate the lengthening of the tibia, and the Euler angles from the registration were used to evaluate the rotation. Both the frame and bone could be effectively registered (based on visual interpretation). Movement between the proximal frame and proximal bone could be visualized in both cases. The spatial effect on the tibia could be both visually assessed and measured: 34 mm, 10 degrees in one case; 5 mm, 1 degrees in the other. This retrospective analysis of spatial correction of the tibia using Taylor Spatial Frames shows that CT offers an interesting potential means of quantitatively monitoring the patient's treatment. Compared with traditional techniques, modern CT scans in conjunction with image processing provide a high-resolution, spatially correct, and three-dimensional measurement system which can be used to quickly and easily assess the patient's treatment at low cost to the patient and hospital.

  13. MRI intensity nonuniformity correction using simultaneously spatial and gray-level histogram information.

    PubMed

    Milles, Julien; Zhu, Yue Min; Gimenez, Gérard; Guttmann, Charles R G; Magnin, Isabelle E

    2007-03-01

    A novel approach for correcting intensity nonuniformity in magnetic resonance imaging (MRI) is presented. This approach is based on the simultaneous use of spatial and gray-level histogram information. Spatial information about intensity nonuniformity is obtained using cubic B-spline smoothing. Gray-level histogram information of the image corrupted by intensity nonuniformity is exploited from a frequential point of view. The proposed correction method is illustrated using both physical phantom and human brain images. The results are consistent with theoretical prediction, and demonstrate a new way of dealing with intensity nonuniformity problems. They are all the more significant as the ground truth on intensity nonuniformity is unknown in clinical images.

  14. Correction of mid-spatial-frequency errors by smoothing in spin motion for CCOS

    NASA Astrophysics Data System (ADS)

    Zhang, Yizhong; Wei, Chaoyang; Shao, Jianda; Xu, Xueke; Liu, Shijie; Hu, Chen; Zhang, Haichao; Gu, Haojin

    2015-08-01

    Smoothing is a convenient and efficient way to correct mid-spatial-frequency errors. Quantifying the smoothing effect allows improvements in efficiency for finishing precision optics. A series experiments in spin motion are performed to study the smoothing effects about correcting mid-spatial-frequency errors. Some of them use a same pitch tool at different spinning speed, and others at a same spinning speed with different tools. Introduced and improved Shu's model to describe and compare the smoothing efficiency with different spinning speed and different tools. From the experimental results, the mid-spatial-frequency errors on the initial surface were nearly smoothed out after the process in spin motion and the number of smoothing times can be estimated by the model before the process. Meanwhile this method was also applied to smooth the aspherical component, which has an obvious mid-spatial-frequency error after Magnetorheological Finishing processing. As a result, a high precision aspheric optical component was obtained with PV=0.1λ and RMS=0.01λ.

  15. A new approach to cosmogenic corrections in 40Ar/ 39Ar chronometry: Implications for the ages of Martian meteorites

    DOE PAGES

    Cassata, W. S.; Borg, L. E.

    2016-05-04

    Anomalously old 40Ar/ 39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wisemore » production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188 ± 17 and 184 ± 17 Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. In conclusion, the trapped 40Ar/ 36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components.« less

  16. Bias correction of temperature produced by the Community Climate System Model using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Moghim, S.; Hsu, K.; Bras, R. L.

    2013-12-01

    General Circulation Models (GCMs) are used to predict circulation and energy transfers between the atmosphere and the land. It is known that these models produce biased results that will have impact on their uses. This work proposes a new method for bias correction: the equidistant cumulative distribution function-artificial neural network (EDCDFANN) procedure. The method uses artificial neural networks (ANNs) as a surrogate model to estimate bias-corrected temperature, given an identification of the system derived from GCM models output variables. A two-layer feed forward neural network is trained with observations during a historical period and then the adjusted network can be used to predict bias-corrected temperature for future periods. To capture the extreme values this method is combined with the equidistant CDF matching method (EDCDF, Li et al. 2010). The proposed method is tested with the Community Climate System Model (CCSM3) outputs using air and skin temperature, specific humidity, shortwave and longwave radiation as inputs to the ANN. This method decreases the mean square error and increases the spatial correlation between the modeled temperature and the observed one. The results indicate the EDCDFANN has potential to remove the biases of the model outputs.

  17. Spatially coupled low-density parity-check error correction for holographic data storage

    NASA Astrophysics Data System (ADS)

    Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro

    2017-09-01

    The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.

  18. Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control

    PubMed Central

    2014-01-01

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633

  19. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing.

    PubMed

    Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Cao, Yinwen; Liu, Cong; Liao, Peicheng; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Willner, Asher; Ashrafi, Nima; Ashrafi, Solyman; Linquist, Roger D; Bock, Robert; Tur, Moshe; Molisch, Andreas F; Willner, Alan E

    2015-09-15

    We explore the potential of combining the advantages of multiple-input multiple-output (MIMO)-based spatial multiplexing with those of orbital angular momentum (OAM) multiplexing to increase the capacity of free-space optical (FSO) communications. We experimentally demonstrate an 80 Gbit/s FSO system with a 2×2 aperture architecture, in which each transmitter aperture contains two multiplexed data-carrying OAM modes. Inter-channel crosstalk effects are minimized by the OAM beams' inherent orthogonality and by the use of 4×4 MIMO signal processing. Our experimental results show that the bit-error rates can reach below the forward error correction limit of 3.8×10(-3) and the power penalties are less than 3.6 dB for all channels after MIMO processing. This indicates that OAM and MIMO-based spatial multiplexing could be simultaneously utilized, thereby providing the potential to enhance system performance.

  20. The spatial accuracy of geographic ecological momentary assessment (GEMA): Error and bias due to subject and environmental characteristics.

    PubMed

    Mennis, Jeremy; Mason, Michael; Ambrus, Andreea; Way, Thomas; Henry, Kevin

    2017-09-01

    Geographic ecological momentary assessment (GEMA) combines ecological momentary assessment (EMA) with global positioning systems (GPS) and geographic information systems (GIS). This study evaluates the spatial accuracy of GEMA location data and bias due to subject and environmental data characteristics. Using data for 72 subjects enrolled in a study of urban adolescent substance use, we compared the GPS-based location of EMA responses in which the subject indicated they were at home to the geocoded home address. We calculated the percentage of EMA locations within a sixteenth, eighth, quarter, and half miles from the home, and the percentage within the same tract and block group as the home. We investigated if the accuracy measures were associated with subject demographics, substance use, and emotional dysregulation, as well as environmental characteristics of the home neighborhood. Half of all subjects had more than 88% of their EMA locations within a half mile, 72% within a quarter mile, 55% within an eighth mile, 50% within a sixteenth of a mile, 83% in the correct tract, and 71% in the correct block group. There were no significant associations with subject or environmental characteristics. Results support the use of GEMA for analyzing subjects' exposures to urban environments. Researchers should be aware of the issue of spatial accuracy inherent in GEMA, and interpret results accordingly. Understanding spatial accuracy is particularly relevant for the development of 'ecological momentary interventions' (EMI), which may depend on accurate location information, though issues of privacy protection remain a concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Constraint Embedding Technique for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with closure-constraints into an equivalent tree-topology system, and thus allows one to take advantage of the host of techniques available to the latter class of systems. This technology is highly suitable for the class of multibody systems where the closure-constraints are local, i.e., where they are confined to small groupings of bodies within the system. Important examples of such local closure-constraints are constraints associated with four-bar linkages, geared motors, differential suspensions, etc. One can eliminate these closure-constraints and convert the system into a tree-topology system by embedding the constraints directly into the system dynamics and effectively replacing the body groupings with virtual aggregate bodies. Once eliminated, one can apply the well-known results and algorithms for tree-topology systems to solve the dynamics of such closed-chain system.

  2. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry.

    PubMed

    Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun

    2017-08-01

    The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.

  3. YALINA-booster subcritical assembly pulsed-neutron e xperiments: detector dead time and apatial corrections.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    In almost every detector counting system, a minimal dead time is required to record two successive events as two separated pulses. Due to the random nature of neutron interactions in the subcritical assembly, there is always some probability that a true neutron event will not be recorded because it occurs too close to the preceding event. These losses may become rather severe for counting systems with high counting rates, and should be corrected before any utilization of the experimental data. This report examines the dead time effects for the pulsed neutron experiments of the YALINA-Booster subcritical assembly. The nonparalyzable modelmore » is utilized to correct the experimental data due to dead time. Overall, the reactivity values are increased by 0.19$ and 0.32$ after the spatial corrections for the YALINA-Booster 36% and 21% configurations respectively. The differences of the reactivities obtained with He-3 long or short detectors at the same detector channel diminish after the dead time corrections of the experimental data for the 36% YALINA-Booster configuration. In addition, better agreements between reactivities obtained from different experimental data sets are also observed after the dead time corrections for the 21% YALINA-Booster configuration.« less

  4. A Large-Telescope Natural Guide Star AO System

    NASA Technical Reports Server (NTRS)

    Redding, David; Milman, Mark; Needels, Laura

    1994-01-01

    None given. From overview and conclusion:Keck Telescope case study. Objectives-low cost, good sky coverage. Approach--natural guide star at 0.8um, correcting at 2.2um.Concl- Good performance is possible for Keck with natural guide star AO system (SR>0.2 to mag 17+).AO-optimized CCD should b every effective. Optimizing td is very effective.Spatial Coadding is not effective except perhaps at extreme low light levels.

  5. Head-mounted spatial instruments II: Synthetic reality or impossible dream

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Grunwald, Arthur

    1989-01-01

    A spatial instrument is defined as a spatial display which has been either geometrically or symbolically enhanced to enable a user to accomplish a particular task. Research conducted over the past several years on 3-D spatial instruments has shown that perspective displays, even when viewed from the correct viewpoint, are subject to systematic viewer biases. These biases interfere with correct spatial judgements of the presented pictorial information. The design of spatial instruments may not only require the introduction of compensatory distortions to remove the naturally occurring biases but also may significantly benefit from the introduction of artificial distortions which enhance performance. However, these image manipulations can cause a loss of visual-vestibular coordination and induce motion sickness. Consequently, the design of head-mounted spatial instruments will require an understanding of the tolerable limits of visual-vestibular discord.

  6. caCORRECT2: Improving the accuracy and reliability of microarray data in the presence of artifacts

    PubMed Central

    2011-01-01

    Background In previous work, we reported the development of caCORRECT, a novel microarray quality control system built to identify and correct spatial artifacts commonly found on Affymetrix arrays. We have made recent improvements to caCORRECT, including the development of a model-based data-replacement strategy and integration with typical microarray workflows via caCORRECT's web portal and caBIG grid services. In this report, we demonstrate that caCORRECT improves the reproducibility and reliability of experimental results across several common Affymetrix microarray platforms. caCORRECT represents an advance over state-of-art quality control methods such as Harshlighting, and acts to improve gene expression calculation techniques such as PLIER, RMA and MAS5.0, because it incorporates spatial information into outlier detection as well as outlier information into probe normalization. The ability of caCORRECT to recover accurate gene expressions from low quality probe intensity data is assessed using a combination of real and synthetic artifacts with PCR follow-up confirmation and the affycomp spike in data. The caCORRECT tool can be accessed at the website: http://cacorrect.bme.gatech.edu. Results We demonstrate that (1) caCORRECT's artifact-aware normalization avoids the undesirable global data warping that happens when any damaged chips are processed without caCORRECT; (2) When used upstream of RMA, PLIER, or MAS5.0, the data imputation of caCORRECT generally improves the accuracy of microarray gene expression in the presence of artifacts more than using Harshlighting or not using any quality control; (3) Biomarkers selected from artifactual microarray data which have undergone the quality control procedures of caCORRECT are more likely to be reliable, as shown by both spike in and PCR validation experiments. Finally, we present a case study of the use of caCORRECT to reliably identify biomarkers for renal cell carcinoma, yielding two diagnostic biomarkers with potential clinical utility, PRKAB1 and NNMT. Conclusions caCORRECT is shown to improve the accuracy of gene expression, and the reproducibility of experimental results in clinical application. This study suggests that caCORRECT will be useful to clean up possible artifacts in new as well as archived microarray data. PMID:21957981

  7. Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul

    2016-07-01

    Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF fluid, called C30, has been developed to finish surfaces to ultra-low roughness (ULR) and has been used as the low removal rate fluid required for fine figure correction of mid-spatial frequency errors. This novel MRF fluid is able to achieve <4Å RMS on Nickel-plated Aluminum and even <1.5Å RMS roughness on Silicon, Fused Silica and other materials. C30 fluid is best utilized within a fine figure correction process to target mid-spatial frequency errors as well as smooth surface roughness 'for free' all in one step. In this paper we will discuss recent advancements in MRF technology and the ability to meet requirements for precision optics in low, mid and high spatial frequency regimes and how improved MRF performance addresses the need for achieving tight specifications required for astronomical optics.

  8. Detecting and removing multiplicative spatial bias in high-throughput screening technologies.

    PubMed

    Caraus, Iurie; Mazoure, Bogdan; Nadon, Robert; Makarenkov, Vladimir

    2017-10-15

    Considerable attention has been paid recently to improve data quality in high-throughput screening (HTS) and high-content screening (HCS) technologies widely used in drug development and chemical toxicity research. However, several environmentally- and procedurally-induced spatial biases in experimental HTS and HCS screens decrease measurement accuracy, leading to increased numbers of false positives and false negatives in hit selection. Although effective bias correction methods and software have been developed over the past decades, almost all of these tools have been designed to reduce the effect of additive bias only. Here, we address the case of multiplicative spatial bias. We introduce three new statistical methods meant to reduce multiplicative spatial bias in screening technologies. We assess the performance of the methods with synthetic and real data affected by multiplicative spatial bias, including comparisons with current bias correction methods. We also describe a wider data correction protocol that integrates methods for removing both assay and plate-specific spatial biases, which can be either additive or multiplicative. The methods for removing multiplicative spatial bias and the data correction protocol are effective in detecting and cleaning experimental data generated by screening technologies. As our protocol is of a general nature, it can be used by researchers analyzing current or next-generation high-throughput screens. The AssayCorrector program, implemented in R, is available on CRAN. makarenkov.vladimir@uqam.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Optical communication for space missions

    NASA Technical Reports Server (NTRS)

    Firtmaurice, M.

    1991-01-01

    Activities performed at NASA/GSFC (Goddard Space Flight Center) related to direct detection optical communications for space applications are discussed. The following subject areas are covered: (1) requirements for optical communication systems (data rates and channel quality; spatial acquisition; fine tracking and pointing; and transmit point-ahead correction); (2) component testing and development (laser diodes performance characterization and life testing; and laser diode power combining); (3) system development and simulations (The GSFC pointing, acquisition and tracking system; hardware description; preliminary performance analysis; and high data rate transmitter/receiver systems); and (4) proposed flight demonstration of optical communications.

  10. Testing for a slope-based decoupling algorithm in a woofer-tweeter adaptive optics system.

    PubMed

    Cheng, Tao; Liu, WenJin; Yang, KangJian; He, Xin; Yang, Ping; Xu, Bing

    2018-05-01

    It is well known that using two or more deformable mirrors (DMs) can improve the compensation ability of an adaptive optics (AO) system. However, to keep the stability of an AO system, the correlation between the multiple DMs must be suppressed during the correction. In this paper, we proposed a slope-based decoupling algorithm to simultaneous control the multiple DMs. In order to examine the validity and practicality of this algorithm, a typical woofer-tweeter (W-T) AO system was set up. For the W-T system, a theory model was simulated and the results indicated in theory that the algorithm we presented can selectively make woofer and tweeter correct different spatial frequency aberration and suppress the cross coupling between the dual DMs. At the same time, the experimental results for the W-T AO system were consistent with the results of the simulation, which demonstrated in practice that this algorithm is practical for the AO system with dual DMs.

  11. High-resolution retinal imaging through open-loop adaptive optics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li

    2010-07-01

    Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.

  12. An algebraic algorithm for nonuniformity correction in focal-plane arrays.

    PubMed

    Ratliff, Bradley M; Hayat, Majeed M; Hardie, Russell C

    2002-09-01

    A scene-based algorithm is developed to compensate for bias nonuniformity in focal-plane arrays. Nonuniformity can be extremely problematic, especially for mid- to far-infrared imaging systems. The technique is based on use of estimates of interframe subpixel shifts in an image sequence, in conjunction with a linear-interpolation model for the motion, to extract information on the bias nonuniformity algebraically. The performance of the proposed algorithm is analyzed by using real infrared and simulated data. One advantage of this technique is its simplicity; it requires relatively few frames to generate an effective correction matrix, thereby permitting the execution of frequent on-the-fly nonuniformity correction as drift occurs. Additionally, the performance is shown to exhibit considerable robustness with respect to lack of the common types of temporal and spatial irradiance diversity that are typically required by statistical scene-based nonuniformity correction techniques.

  13. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    NASA Technical Reports Server (NTRS)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with 500 m resolution, and small, but significant, differences were found between peak and nadir river flow periods in terms of optimal resolution and resolvable proportion of variability.

  14. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marre, O.; El Boustani, S.; Fregnac, Y.

    We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogatesmore » that reproduce the spatial and temporal correlations of a given data set.« less

  15. Sound source tracking device for telematic spatial sound field reproduction

    NASA Astrophysics Data System (ADS)

    Cardenas, Bruno

    This research describes an algorithm that localizes sound sources for use in telematic applications. The localization algorithm is based on amplitude differences between various channels of a microphone array of directional shotgun microphones. The amplitude differences will be used to locate multiple performers and reproduce their voices, which were recorded at close distance with lavalier microphones, spatially corrected using a loudspeaker rendering system. In order to track multiple sound sources in parallel the information gained from the lavalier microphones will be utilized to estimate the signal-to-noise ratio between each performer and the concurrent performers.

  16. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    NASA Technical Reports Server (NTRS)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  17. Identification and Correction of Additive and Multiplicative Spatial Biases in Experimental High-Throughput Screening.

    PubMed

    Mazoure, Bogdan; Caraus, Iurie; Nadon, Robert; Makarenkov, Vladimir

    2018-06-01

    Data generated by high-throughput screening (HTS) technologies are prone to spatial bias. Traditionally, bias correction methods used in HTS assume either a simple additive or, more recently, a simple multiplicative spatial bias model. These models do not, however, always provide an accurate correction of measurements in wells located at the intersection of rows and columns affected by spatial bias. The measurements in these wells depend on the nature of interaction between the involved biases. Here, we propose two novel additive and two novel multiplicative spatial bias models accounting for different types of bias interactions. We describe a statistical procedure that allows for detecting and removing different types of additive and multiplicative spatial biases from multiwell plates. We show how this procedure can be applied by analyzing data generated by the four HTS technologies (homogeneous, microorganism, cell-based, and gene expression HTS), the three high-content screening (HCS) technologies (area, intensity, and cell-count HCS), and the only small-molecule microarray technology available in the ChemBank small-molecule screening database. The proposed methods are included in the AssayCorrector program, implemented in R, and available on CRAN.

  18. Technical note: suppression of artifacts arising from simultaneous cone-beam imaging and RF transponder tracking in prostate radiotherapy.

    PubMed

    Poludniowski, Gavin; Webb, Steve; Evans, Philip M

    2012-03-01

    Artifacts in treatment-room cone-beam reconstructions have been observed at the authors' center when cone-beam acquisition is simultaneous with radio frequency (RF) transponder tracking using the Calypso 4D system (Calypso Medical, Seattle, WA). These artifacts manifest as CT-number modulations and increased CT-noise. The authors present a method for the suppression of the artifacts. The authors propose a three-stage postprocessing technique that can be applied to image volumes previously reconstructed by a cone-beam system. The stages are (1) segmentation of voxels into air, soft-tissue, and bone; (2) application of a 2D spatial-filter in the axial plane to the soft-tissue voxels; and (3) normalization to remove streaking along the axial-direction. The algorithm was tested on patient data acquired with Synergy XVI cone-beam CT systems (Elekta, Crawley, United Kingdom). The computational demands of the suggested correction are small, taking less than 15 s per cone-beam reconstruction on a desktop PC. For a moderate loss of spatial-resolution, the artifacts are strongly suppressed and low-contrast visibility is improved. The correction technique proposed is fast and effective in removing the artifacts caused by simultaneous cone-beam imaging and RF-transponder tracking.

  19. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  20. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.

    PubMed

    Lim, Sukbin; Goldman, Mark S

    2014-05-14

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.

  1. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)

    PubMed Central

    Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.

    2013-01-01

    Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063

  2. Practical estimate of gradient nonlinearity for implementation of apparent diffusion coefficient bias correction.

    PubMed

    Malkyarenko, Dariya I; Chenevert, Thomas L

    2014-12-01

    To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.

  3. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

    PubMed Central

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-01

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26-cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients. PMID:28033119

  4. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    NASA Astrophysics Data System (ADS)

    Lange, Stefan

    2018-05-01

    Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  5. Effect of the corrected ionization potential and spatial distribution on the angular and energy distribution in tunnel ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrović, V. M.; Miladinović, T. B., E-mail: tanja.miladinovic@gmail.com

    2016-05-15

    Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.

  6. Fuzzy Similarity and Fuzzy Inclusion Measures in Polyline Matching: A Case Study of Potential Streams Identification for Archaeological Modelling in GIS

    NASA Astrophysics Data System (ADS)

    Ďuračiová, Renata; Rášová, Alexandra; Lieskovský, Tibor

    2017-12-01

    When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.

  7. Advanced corrections for InSAR using GPS and numerical weather models

    NASA Astrophysics Data System (ADS)

    Foster, J. H.; Cossu, F.; Amelung, F.; Businger, S.; Cherubini, T.

    2016-12-01

    The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting Interferometric Synthetic Aperture Radar's (InSAR) potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We present preliminary results from an investigation into the application of GPS and numerical weather models for generating tropospheric correction fields. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric model covering the Big Island of Hawaii and an even higher, 300 m resolution grid over Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate information on atmospheric heterogeneity from the GPS data into the models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.

  8. A technique for enhancing and matching the resolution of microwave measurements from the SSM/I instrument

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne D.; Kummerrow, Christian; Olson, William S.

    1992-01-01

    A correction technique is presented for matching the resolution of all the frequencies of the satelliteborne Special Sensor Microwave/Imager (SSM/I) to the about-25-km spatial resolution of the 37-GHz channel. This entails, on the one hand, the enhancement of the spatial resolution of the 19- and 22-GHz channels, and on the other, the degrading of that of the 85-GHz channel. The Backus and Gilbert (1970) approach is found to yield sufficient spatial resolution to render such a correction worthwhile.

  9. An analytical SMASH procedure (ASP) for sensitivity-encoded MRI.

    PubMed

    Lee, R F; Westgate, C R; Weiss, R G; Bottomley, P A

    2000-05-01

    The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system. Copyright 2000 Wiley-Liss, Inc.

  10. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2018-04-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p < 0.01) in WSI rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p < 0.05) correlated with R n, air temperature ( T a), and air vapor pressure deficit ( D), and its partial correlation coefficients to R n and T a were slightly greater than D. Thus, R n, T a and D are important variables for understanding the spatial scale effect of rice ET in WSI fields, and for its cross scale conversion.

  11. Spatially unresolved SED fitting can underestimate galaxy masses: a solution to the missing mass problem

    NASA Astrophysics Data System (ADS)

    Sorba, Robert; Sawicki, Marcin

    2018-05-01

    We perform spatially resolved, pixel-by-pixel Spectral Energy Distribution (SED) fitting on galaxies up to z ˜ 2.5 in the Hubble eXtreme Deep Field (XDF). Comparing stellar mass estimates from spatially resolved and spatially unresolved photometry we find that unresolved masses can be systematically underestimated by factors of up to 5. The ratio of the unresolved to resolved mass measurement depends on the galaxy's specific star formation rate (sSFR): at low sSFRs the bias is small, but above sSFR ˜ 10-9.5 yr-1 the discrepancy increases rapidly such that galaxies with sSFRs ˜ 10-8 yr-1 have unresolved mass estimates of only one-half to one-fifth of the resolved value. This result indicates that stellar masses estimated from spatially unresolved data sets need to be systematically corrected, in some cases by large amounts, and we provide an analytic prescription for applying this correction. We show that correcting stellar mass measurements for this bias changes the normalization and slope of the star-forming main sequence and reduces its intrinsic width; most dramatically, correcting for the mass bias increases the stellar mass density of the Universe at high redshift and can resolve the long-standing discrepancy between the directly measured cosmic SFR density at z ≳ 1 and that inferred from stellar mass densities (`the missing mass problem').

  12. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    DOE PAGES

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; ...

    2016-11-28

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° ×more » 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.« less

  13. Astigmatism correction of a non-imaging double spectrometer fitted with a 2D array detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaney, P.P.; Ernst, S.L.; Blackshire, J.

    1992-12-01

    A SPEX 1401 double spectrometer was adapted for a liquid nitrogen cooled CCD detector to permit both spectral and spatial analysis of ceramic specimens in a laser Raman microprobe system. The exit image of the spectrometer suffers from astigmatism due to off-axis spherical mirrors. A cylindrical lens was added before the CCD to correct for the astigmatism. The spectrometer and several lenses were modeled using an optical ray tracing program to characterize the astigmatism and to optimize the locations of the lens and the detector. The astigmatism and the spot pattern sizes determined by the model were in good agreementmore » with he observed performance of the modified spectrometer-detector system. Typical spot patterns fell within the 23 {mu}m square pixel size.« less

  14. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    NASA Technical Reports Server (NTRS)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  15. [Study on phase correction method of spatial heterodyne spectrometer].

    PubMed

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  16. A small terminal for satellite communication systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Wu, Dong; Jin, Min

    1994-01-01

    A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization.

  17. Ophthalmic applications of the digital micromirror device (DMD)

    NASA Astrophysics Data System (ADS)

    Reiley, Daniel J.; Sandstedt, Chris

    2009-02-01

    Cataract surgery with IOL implantation is performed on millions of patients every year. Despite 25 years of technological innovation, post-surgical refractive errors have remained a problem. Now these errors can be corrected using Calhoun Vision, Inc's light adjustable lens (LAL). The correction is accomplished by implanting a light-sensitive lens, then illuminating it with a spatially varying irradiance profile during a postoperative treatment. This irradiance profile is provided by a Light Delivery Device (LDD), which projects an image of a Texas Instruments DMD onto the implanted lens. Commercial sales of this system began in the summer of 2008 in Europe; US clinical trials began in January 2009.

  18. Compact energy dispersive X-ray microdiffractometer for diagnosis of neoplastic tissues

    NASA Astrophysics Data System (ADS)

    Sosa, C.; Malezan, A.; Poletti, M. E.; Perez, R. D.

    2017-08-01

    An energy dispersive X-ray microdiffractometer with capillary optics has been developed for characterizing breast cancer. The employment of low divergence capillary optics helps to reduce the setup size to a few centimeters, while providing a lateral spatial resolution of 100 μm. The system angular calibration and momentum transfer resolution were assessed by a detailed study of a polycrystalline reference material. The performance of the system was tested by means of the analysis of tissue-equivalent samples previously characterized by conventional X-ray diffraction. In addition, a simplified correction model for an appropriate comparison of the diffraction spectra was developed and validated. Finally, the system was employed to evaluate normal and neoplastic human breast samples, in order to determine their X-ray scatter signatures. The initial results indicate that the use of this compact energy dispersive X-ray microdiffractometer combined with a simplified correction procedure is able to provide additional information to breast cancer diagnosis.

  19. Initial Investigation of preclinical integrated SPECT and MR imaging.

    PubMed

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  20. Initial Investigation of Preclinical Integrated SPECT and MR Imaging

    PubMed Central

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2014-01-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527

  1. Measurement of ocean temperature and salinity via microwave radiometry

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1978-01-01

    Sea-surface temperature with an accuracy of 1 C and salinity with an accuracy of 1% were measured with a 1.43 and 2.65 GHz radiometer system after correcting for the influence of cosmic radiation, intervening atmosphere, sea-surface roughness, and antenna beamwidth. The radiometers are a third-generation system using null-balancing and feedback noise injection. Flight measurements from aircraft over bay regions and coastal areas of the Atlantic resulted in contour maps with spatial resolution of 0.5 km.

  2. Nonmechanical Multizoom Telescope Design Using A Liquid Crystal Spatial Light Modulator and Focus-Correction Algorithm

    DTIC Science & Technology

    2008-03-27

    nonmechanical zoom system. 2.2.2 Increasing Field of Regard. In general, telescope systems cannot increase their field of regard (FoR) without some form of...automatically for solar tele- scopes. [7] Guidelines for the algorithm have been clearly defined for over a decade. [20] The process is based on the idea...Matlabr contains an interative form of this type of deconvolution that is capable of taking into account additive noise. All that is needed is the

  3. Environmental boundaries as a mechanism for correcting and anchoring spatial maps

    PubMed Central

    2016-01-01

    Abstract Ubiquitous throughout the animal kingdom, path integration‐based navigation allows an animal to take a circuitous route out from a home base and using only self‐motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place‐specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration‐based spatial navigation. Supporting this idea, grid cells appear to provide an environment‐independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark‐driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations. PMID:26563618

  4. A Novel Multi-Digital Camera System Based on Tilt-Shift Photography Technology

    PubMed Central

    Sun, Tao; Fang, Jun-yong; Zhao, Dong; Liu, Xue; Tong, Qing-xi

    2015-01-01

    Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product. PMID:25835187

  5. A novel multi-digital camera system based on tilt-shift photography technology.

    PubMed

    Sun, Tao; Fang, Jun-Yong; Zhao, Dong; Liu, Xue; Tong, Qing-Xi

    2015-03-31

    Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product.

  6. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.

    PubMed

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-07-14

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.

  7. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    PubMed Central

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  8. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    PubMed

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.

  9. Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data

    NASA Technical Reports Server (NTRS)

    Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.; hide

    2013-01-01

    Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data

  10. A scientific theory of Ars Memoriae: Spatial view cells in a continuous attractor network with linked items.

    PubMed

    Rolls, Edmund T

    2017-05-01

    The art of memory (ars memoriae) used since classical times includes using a well-known scene to associate each view or part of the scene with a different item in a speech. This memory technique is also known as the "method of loci." The new theory is proposed that this type of memory is implemented in the CA3 region of the hippocampus where there are spatial view cells in primates that allow a particular view to be associated with a particular object in an event or episodic memory. Given that the CA3 cells with their extensive recurrent collateral system connecting different CA3 cells, and associative synaptic modifiability, form an autoassociation or attractor network, the spatial view cells with their approximately Gaussian view fields become linked in a continuous attractor network. As the view space is traversed continuously (e.g., by self-motion or imagined self-motion across the scene), the views are therefore successively recalled in the correct order, with no view missing, and with low interference between the items to be recalled. Given that each spatial view has been associated with a different discrete item, the items are recalled in the correct order, with none missing. This is the first neuroscience theory of ars memoriae. The theory provides a foundation for understanding how a key feature of ars memoriae, the ability to use a spatial scene to encode a sequence of items to be remembered, is implemented. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Occlusion therapy improves phase-alignment of the cortical response in amblyopia.

    PubMed

    Kelly, John P; Tarczy-Hornoch, Kristina; Herlihy, Erin; Weiss, Avery H

    2015-09-01

    The visual evoked potential (VEP) generated by the amblyopic visual system demonstrates reduced amplitude, prolonged latency, and increased variation in response timing (phase-misalignment). This study examined VEPs before and after occlusion therapy (OT) and whether phase-misalignment can account for the amblyopic VEP deficits. VEPs were recorded to 0.5-4cycles/degree gratings in 10 amblyopic children (2-6years age) before and after OT. Phase-misalignment was measured by Fourier analysis across a limited bandwidth. Signal-to-noise ratios (SNRs) were estimated from amplitude and phase synchrony in the Fourier domain. Responses were compared to VEPs corrected for phase-misalignment (individual epochs shifted in time to correct for the misalignment). Before OT, amblyopic eyes (AE) had significantly more phase-misalignment, latency prolongation, and lower SNR relative to the fellow eye. Phase-misalignment contributed significantly to low SNR but less so to latency delay in the AE. After OT, phase-alignment improved, SNR improved and latency shortened in the AE. Raw averaged waveforms from the AE improved after OT, primarily at higher spatial frequencies. Correcting for phase-misalignment in the AE sharpened VEP peak responses primarily at low spatial frequencies, but could not account for VEP waveform improvements in the AE after OT at higher spatial frequencies. In summary, VEP abnormalities from the AE are associated with phase-misalignment and reduced SNR possibly related to desynchronization of neuronal activity. The effect of OT on VEP responses is greater than that accounted for by phase-misalignment and SNR alone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Stochastic transport in the presence of spatial disorder: Fluctuation-induced corrections to homogenization

    NASA Astrophysics Data System (ADS)

    Russell, Matthew J.; Jensen, Oliver E.; Galla, Tobias

    2016-10-01

    Motivated by uncertainty quantification in natural transport systems, we investigate an individual-based transport process involving particles undergoing a random walk along a line of point sinks whose strengths are themselves independent random variables. We assume particles are removed from the system via first-order kinetics. We analyze the system using a hierarchy of approaches when the sinks are sparsely distributed, including a stochastic homogenization approximation that yields explicit predictions for the extrinsic disorder in the stationary state due to sink strength fluctuations. The extrinsic noise induces long-range spatial correlations in the particle concentration, unlike fluctuations due to the intrinsic noise alone. Additionally, the mean concentration profile, averaged over both intrinsic and extrinsic noise, is elevated compared with the corresponding profile from a uniform sink distribution, showing that the classical homogenization approximation can be a biased estimator of the true mean.

  13. Implication of the first decision on visual information-sampling in the spatial frequency domain in pulmonary nodule recognition

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Manning, David; Donovan, Tim; Dix, Alan

    2010-02-01

    Aim: To investigate the impact on visual sampling strategy and pulmonary nodule recognition of image-based properties of background locations in dwelled regions where the first overt decision was made. . Background: Recent studies in mammography show that the first overt decision (TP or FP) has an influence on further image reading including the correctness of the following decisions. Furthermore, the correlation between the spatial frequency properties of the local background following decision sites and the first decision correctness has been reported. Methods: Subjects with different radiological experience were eye tracked during detection of pulmonary nodules from PA chest radiographs. Number of outcomes and the overall quality of performance are analysed in terms of the cases where correct or incorrect decisions were made. JAFROC methodology is applied. The spatial frequency properties of selected local backgrounds related to a certain decisions were studied. ANOVA was used to compare the logarithmic values of energy carried by non redundant stationary wavelet packet coefficients. Results: A strong correlation has been found between the number of TP as a first decision and the JAFROC score (r = 0.74). The number of FP as a first decision was found negatively correlated with JAFROC (r = -0.75). Moreover, the differential spatial frequency profiles outcomes depend on the first choice correctness.

  14. Texture-based measurement of spatial frequency response using the dead leaves target: extensions, and application to real camera systems

    NASA Astrophysics Data System (ADS)

    McElvain, Jon; Campbell, Scott P.; Miller, Jonathan; Jin, Elaine W.

    2010-01-01

    The dead leaves model was recently introduced as a method for measuring the spatial frequency response (SFR) of camera systems. The target consists of a series of overlapping opaque circles with a uniform gray level distribution and radii distributed as r-3. Unlike the traditional knife-edge target, the SFR derived from the dead leaves target will be penalized for systems that employ aggressive noise reduction. Initial studies have shown that the dead leaves SFR correlates well with sharpness/texture blur preference, and thus the target can potentially be used as a surrogate for more expensive subjective image quality evaluations. In this paper, the dead leaves target is analyzed for measurement of camera system spatial frequency response. It was determined that the power spectral density (PSD) of the ideal dead leaves target does not exhibit simple power law dependence, and scale invariance is only loosely obeyed. An extension to the ideal dead leaves PSD model is proposed, including a correction term to account for system noise. With this extended model, the SFR of several camera systems with a variety of formats was measured, ranging from 3 to 10 megapixels; the effects of handshake motion blur are also analyzed via the dead leaves target.

  15. Nonuniform fluids in the grand canonical ensemble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percus, J.K.

    1982-01-01

    Nonuniform simple classical fluids are considered quite generally. The grand canonical ensemble is particularly suitable, conceptually, in the leading approximation of local thermodynamics, which figuratively divides the system into approximately uniform spatial subsystems. The procedure is reviewed by which this approach is systematically corrected for slowly varying density profiles, and a model is suggested that carries the correction into the domain of local fluctuations. The latter is assessed for substrate bounded fluids, as well as for two-phase interfaces. The peculiarities of the grand ensemble in a two-phase region stem from the inherent very large number fluctuations. A primitive model showsmore » how these are quenched in the canonical ensemble. This is taken advantage of by applying the Kac-Siegert representation of the van der Waals decomposition with petit canonical corrections, to the two-phase regime.« less

  16. Correction and evaluation of thermal infrared data acquired with two different airborne systems at the Elbe estuary

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn; Jenal, Alexander; Kneer, Caspar; Weber, Immanuel; Bongartz, Jens; Wyrwa, Jens; Schöl, Andreas

    2016-10-01

    This study presents the results from a combined aerial survey performed with a hexacopter and a gyrocopter over a part of the Elbe estuary near Hamburg, Germany. The survey was conducted by the Federal Institute of Hydrology, Germany, and the Fraunhofer Application Center for Multimodal and Airborne Sensors as well as by a contracted engineering company with the aim to acquire spatial thermal infrared (TIR) data of the Hahnöfer Nebenelbe, a branch of the Elbe estuary. Additionally, RGB and NIR data was captured to facilitate the identification of water surfaces and intertidal mudflats. The temperature distribution of the Elbe estuary affects all biological processes and in consequence the oxygen content, which is a key parameter in water quality. The oxygen levels vary in space between the main fairway and side channels. So far, only point measurements are available for monitoring and calibration/validation of water quality models. To better represent this highly dynamic system with a high spatial and temporal variability, tidal streams, heating and cooling, diffusion and mixing processes, spatially distributed data from several points of time within the tidal cycle are necessary. The data acquisition took place during two tidal cycles over two subsequent days in the summer of 2015. While the piloted gyrocopter covered the whole Hahnöfer Nebenelbe seven times, the unmanned hexacopter covered a smaller section of the branch and tidal mudflats with a higher spatial and temporal resolution (16 coverages of the subarea). The gyrocopter data was acquired with a thermal imaging system and processed and georeferenced using the structure from motion algorithm with GPS information from the gyrocopter and optional ground control points. The hexacopter data was referenced based on ground control points and the GPS and position information of the acquisition system. Both datasets from the gyrocopter and the hexacopter are corrected for the effects of the atmosphere and emissivity of the water surface and compared to in situ measurements, taken during the data acquisition. Of particular interest is the effect of the observation angle on the brightness temperature acquired by the wide angle lenses on the platforms, which is up to 40° at the margins of the imagery. Here, both datasets show deviating temperatures, which are probably not due to actual temperature differences. We will discuss the position accuracy achieved over the water areas, the adaptation of atmospheric and emissivity correction to the observation angle and subsequent improvement of the temperature data. With two datasets of the same research area at different resolutions we will investigate the effects of the acquisition platforms, acquisition system and resolutions on the accuracy of the remotely sensed temperatures as well as their ability to represent temperature patterns of tidal currents and mixing processes.

  17. Pediatric and adolescent applications of the Taylor Spatial Frame.

    PubMed

    Paloski, Michael; Taylor, Benjamin C; Iobst, Christopher; Pugh, Kevin J

    2012-06-01

    Limb deformity can occur in the pediatric and adolescent populations from multiple etiologies: congenital, traumatic, posttraumatic sequelae, oncologic, and infection. Correcting these deformities is important for many reasons. Ilizarov popularized external fixation to accomplish this task. Taylor expanded on this by designing an external fixator in 1994 with 6 telescoping struts that can be sequentially manipulated to achieve multiaxial correction of deformity without the need for hinges or operative frame alterations. This frame can be used to correct deformities in children and has shown good anatomic correction with minimal morbidity. The nature of the construct and length of treatment affects psychosocial factors that the surgeon and family must be aware of prior to treatment. An understanding of applications of the Taylor Spatial Frame gives orthopedic surgeons an extra tool to correct simple and complex deformities in pediatric and adolescent patients. Copyright 2012, SLACK Incorporated.

  18. Do large-scale inhomogeneities explain away dark energy?

    NASA Astrophysics Data System (ADS)

    Geshnizjani, Ghazal; Chung, Daniel J.; Afshordi, Niayesh

    2005-07-01

    Recently, new arguments [E. Barausse, S. Matarrese, and A. Riotto, Phys. Rev. D 71, 063537 (2005)., PRVDAQ, 0556-2821, 10.1103/PhysRevD.71.063537][E. W. Kolb, S. Matarrese, A. Notari, and A. Riotto, hep-th/0503117 [Phys. Rev. Lett. (to be published)]., PRLTAO, 0031-9007] for how corrections from super-Hubble modes can explain the present-day acceleration of the universe have appeared in the literature. However, in this paper, we argue that, to second order in spatial gradients, these corrections only amount to a renormalization of local spatial curvature, and thus cannot account for the negative deceleration. Moreover, cosmological observations already put severe bounds on such corrections, at the level of a few percent, while in the context of inflationary models, these corrections are typically limited to ˜10-5. Currently there is no general constraint on the possible correction from higher order gradient terms, but we argue that such corrections are even more constrained in the context of inflationary models.

  19. The management of the neglected congenital foot deformity in the older child with the Taylor spatial frame.

    PubMed

    Hassan, Atef; Letts, Merv

    2012-01-01

    Neglected or inadequately treated rigid congenitally deformed feet in older children are a nightmarish challenge for the child, the parents, and the orthopaedic surgeon. Because of the multiplicity of spatial deformities exhibited by these feet and legs, it was hypothesized that correction using the Taylor spatial frame (TSF) would decrease morbidity, facilitate correction, and minimize treatment time in children from remote regions with extremely rigid deformed feet. Recent experience with the management of 11 such feet (Dimeglio type IV) in 9 children with an average age of 9.2 years using the TSF has been gratifying. Six children had associated leg length discrepancy, which was corrected by concomitant tibial lengthening. All feet underwent soft tissue releases, whereas forefoot and/or hindfoot osteotomies were performed in 7 feet. All children attained plantigrade, functional feet, and were fully ambulatory and capable of wearing normal footwear. Complications were minor consisting of pin tract infections, residual metatarsus varus in 3, and wound dehiscence in 1. There were no neurovascular events. This was attributed to the slower 3 plane correction using the TSF technique as well as the elimination of the need for plaster immobilization thus allowing direct monitoring of the foot and limb. The rigid foot deformity in the older child can be safely and effectively corrected with the aid of the TSF, which facilitates a 3 plane correction and concomitant limb lengthening.

  20. Modeling astronomical adaptive optics performance with temporally filtered Wiener reconstruction of slope data

    NASA Astrophysics Data System (ADS)

    Correia, Carlos M.; Bond, Charlotte Z.; Sauvage, Jean-François; Fusco, Thierry; Conan, Rodolphe; Wizinowich, Peter L.

    2017-10-01

    We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors whilst minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that $\\sim$60 nm rms error reduction can be achieved with the distributed Kalman filter embodying anti- aliasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few ${\\lambda}/D$ separations ($\\sim1-5{\\lambda}/D$) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.

  1. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    PubMed

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  2. Characterization and correction of eddy-current artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring.

    PubMed

    Chan, Rachel W; von Deuster, Constantin; Giese, Daniel; Stoeck, Christian T; Harmer, Jack; Aitken, Andrew P; Atkinson, David; Kozerke, Sebastian

    2014-07-01

    Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar and bipolar sequences, respectively) after second-order eddy-current correction. Results demonstrate the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of eddy-currents. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. On the capacity of MIMO-OFDM based diversity and spatial multiplexing in Radio-over-Fiber system

    NASA Astrophysics Data System (ADS)

    El Yahyaoui, Moussa; El Moussati, Ali; El Zein, Ghaïs

    2017-11-01

    This paper proposes a realistic and global simulation to predict the behavior of a Radio over Fiber (RoF) system before its realization. In this work we consider a 2 × 2 Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) RoF system at 60 GHz. This system is based on Spatial Diversity (SD) which increases reliability (decreases probability of error) and Spatial Multiplexing (SMX) which increases data rate, but not necessarily reliability. The 60 GHz MIMO channel model employed in this work based on a lot of measured data and statistical analysis named Triple-S and Valenzuela (TSV) model. To the authors best knowledge; it is the first time that this type of TSV channel model has been employed for 60 GHz MIMO-RoF system. We have evaluated and compared the performance of this system according to the diversity technique, modulation schemes, and channel coding rate for Line-Of-Sight (LOS) desktop environment. The SMX coded is proposed as an intermediate system to improve the Signal to Noise Ratio (SNR) and the data rate. The resulting 2 × 2 MIMO-OFDM SMX system achieves a higher data rate up to 70 Gb/s with 64QAM and Forward Error Correction (FEC) limit of 10-3 over 25-km fiber transmission followed by 3-m wireless transmission using 7 GHz bandwidth of millimeter wave band.

  4. Towards more accurate isoscapes encouraging results from wine, water and marijuana data/model and model/model comparisons.

    NASA Astrophysics Data System (ADS)

    West, J. B.; Ehleringer, J. R.; Cerling, T.

    2006-12-01

    Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across landscapes.

  5. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  6. Evaluation of a spatially-distributed Thornthwaite water-balance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lough, J.A.

    1993-03-01

    A small watershed of low relief in coastal New Hampshire was divided into hydrologic sub-areas in a geographic information system on the basis of soils, sub-basins and remotely-sensed landcover. Three variables were spatially modeled for input to 49 individual water-balances: available water content of the root zone, water input and potential evapotranspiration (PET). The individual balances were weight-summed to generate the aggregate watershed-balance, which saw 9% (48--50 mm) less annual actual-evapotranspiration (AET) compared to a lumped approach. Analysis of streamflow coefficients suggests that the spatially-distributed approach is more representative of the basin dynamics. Variation of PET by landcover accounted formore » the majority of the 9% AET reduction. Variation of soils played a near-negligible role. As a consequence of the above points, estimates of landcover proportions and annual PET by landcover are sufficient to correct a lumped water-balance in the Northeast. If remote sensing is used to estimate the landcover area, a sensor with a high spatial resolution is required. Finally, while the lower Thornthwaite model has conceptual limitations for distributed application, the upper Thornthwaite model is highly adaptable to distributed problems and may prove useful in many earth-system models.« less

  7. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer

    PubMed Central

    Zong, Y.; Datla, R. U.

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364

  8. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  9. High spatial resolution diffusion weighted imaging on clinical 3 T MRI scanners using multislab spiral acquisitions

    PubMed Central

    Holtrop, Joseph L.; Sutton, Bradley P.

    2016-01-01

    Abstract. A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems. PMID:27088107

  10. Spatial and Temporal Variation of PATMOS-x AVHRR Lake Surface Temperatures in the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    White, C.; Heidinger, A. K.; Ackerman, S. A.; McIntyre, P. B.

    2017-12-01

    A thirty-four year lake surface water temperature (LSWT) time series over the North American Great Lakes was extracted from NOAA's Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC). The time series was cloud-cleared using the NOAA Pathfinder Atmospheres Extended (PATMOS-x) climate dataset and the Clouds from AVHRR Extended System (CLAVR-x) processing system, and was subsampled to a regular 0.05° grid. LSWT coefficients for each AVHRR platform were fit to NOAA National Data Buoy Center buoys with historical records spanning 1982 to 2016. Satellite to buoy matchups indicate an RMSE of 0.72 K for the entire time series across all five lakes. An empirically fit diurnal correction was applied to correct for orbital drift and varying observation times of NOAA-7,9,11,12,14-19, Metop-1 and Metop-2. Ordinary linear regression slopes on monthly mean LSWT show strong spatial heterogeneity in the long-term LSWT trends both within each lake and between lakes. Differences in long-term trends using nighttime only, daytime only, and both day and night are examined. Additionally, a coastal upwelling signal can be identified from the time series along with the indication of an earlier onset of spring stratification.

  11. Real-time control system for adaptive resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flath, L; An, J; Brase, J

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  12. Tract-Based Spatial Statistics in Preterm-Born Neonates Predicts Cognitive and Motor Outcomes at 18 Months.

    PubMed

    Duerden, E G; Foong, J; Chau, V; Branson, H; Poskitt, K J; Grunau, R E; Synnes, A; Zwicker, J G; Miller, S P

    2015-08-01

    Adverse neurodevelopmental outcome is common in children born preterm. Early sensitive predictors of neurodevelopmental outcome such as MR imaging are needed. Tract-based spatial statistics, a diffusion MR imaging analysis method, performed at term-equivalent age (40 weeks) is a promising predictor of neurodevelopmental outcomes in children born very preterm. We sought to determine the association of tract-based spatial statistics findings before term-equivalent age with neurodevelopmental outcome at 18-months corrected age. Of 180 neonates (born at 24-32-weeks' gestation) enrolled, 153 had DTI acquired early at 32 weeks' postmenstrual age and 105 had DTI acquired later at 39.6 weeks' postmenstrual age. Voxelwise statistics were calculated by performing tract-based spatial statistics on DTI that was aligned to age-appropriate templates. At 18-month corrected age, 166 neonates underwent neurodevelopmental assessment by using the Bayley Scales of Infant Development, 3rd ed, and the Peabody Developmental Motor Scales, 2nd ed. Tract-based spatial statistics analysis applied to early-acquired scans (postmenstrual age of 30-33 weeks) indicated a limited significant positive association between motor skills and axial diffusivity and radial diffusivity values in the corpus callosum, internal and external/extreme capsules, and midbrain (P < .05, corrected). In contrast, for term scans (postmenstrual age of 37-41 weeks), tract-based spatial statistics analysis showed a significant relationship between both motor and cognitive scores with fractional anisotropy in the corpus callosum and corticospinal tracts (P < .05, corrected). Tract-based spatial statistics in a limited subset of neonates (n = 22) scanned at <30 weeks did not significantly predict neurodevelopmental outcomes. The strength of the association between fractional anisotropy values and neurodevelopmental outcome scores increased from early-to-late-acquired scans in preterm-born neonates, consistent with brain dysmaturation in this population. © 2015 by American Journal of Neuroradiology.

  13. Large Spatial and Temporal Separations of Cause and Effect in Policy Making - Dealing with Non-linear Effects

    NASA Astrophysics Data System (ADS)

    McCaskill, John

    There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.

  14. Tensor perturbations during inflation in a spatially closed Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu

    2017-05-01

    In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited tomore » the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.« less

  15. First Retrieval of Surface Lambert Albedos From Mars Reconnaissance Orbiter CRISM Data

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Arvidson, R. E.; Murchie, S. L.; Wolff, M. J.; Smith, M. D.; Martin, T. Z.; Milliken, R. E.; Mustard, J. F.; Pelkey, S. M.; Lichtenberg, K. A.; Cavender, P. J.; Humm, D. C.; Titus, T. N.; Malaret, E. R.

    2006-12-01

    We have developed a pipeline-processing software system to convert radiance-on-sensor for each of 72 out of 544 CRISM spectral bands used in global mapping to the corresponding surface Lambert albedo, accounting for atmospheric, thermal, and photoclinometric effects. We will present and interpret first results from this software system for the retrieval of Lambert albedos from CRISM data. For the multispectral mapping modes, these pipeline-processed 72 spectral bands constitute all of the available bands, for wavelengths from 0.362-3.920 μm, at 100-200 m/pixel spatial resolution, and ~ 0.006\\spaceμm spectral resolution. For the hyperspectral targeted modes, these pipeline-processed 72 spectral bands are only a selection of all of the 544 spectral bands, but at a resolution of 15-38 m/pixel. The pipeline processing for both types of observing modes (multispectral and hyperspectral) will use climatology, based on data from MGS/TES, in order to estimate ice- and dust-aerosol optical depths, prior to the atmospheric correction with lookup tables based upon radiative-transport calculations via DISORT. There is one DISORT atmospheric-correction lookup table for converting radiance-on-sensor to Lambert albedo for each of the 72 spectral bands. The measurements of the Emission Phase Function (EPF) during targeting will not be employed in this pipeline processing system. We are developing a separate system for extracting more accurate aerosol optical depths and surface scattering properties. This separate system will use direct calls (instead of lookup tables) to the DISORT code for all 544 bands, and it will use the EPF data directly, bootstrapping from the climatology data for the aerosol optical depths. The pipeline processing will thermally correct the albedos for the spectral bands above ~ 2.6 μm, by a choice between 4 different techniques for determining surface temperature: 1) climatology, 2) empirical estimation of the albedo at 3.9 μm from the measured albedo at 2.5 μm, 3) a physical thermal model (PTM) based upon maps of thermal inertia from TES and coarse-resolution surface slopes (SS) from MOLA, and 4) a photoclinometric extension to the PTM that uses CRISM albedos at 0.41 μm to compute the SS at CRISM spatial resolution. For the thermal correction, we expect that each of these 4 different techniques will be valuable for some fraction of the observations.

  16. Dealing with ocular artifacts on lateralized ERPs in studies of visual-spatial attention and memory: ICA correction versus epoch rejection.

    PubMed

    Drisdelle, Brandi Lee; Aubin, Sébrina; Jolicoeur, Pierre

    2017-01-01

    The objective of the present study was to assess the robustness and reliability of independent component analysis (ICA) as a method for ocular artifact correction in electrophysiological studies of visual-spatial attention and memory. The N2pc and sustained posterior contralateral negativity (SPCN), electrophysiological markers of visual-spatial attention and memory, respectively, are lateralized posterior ERPs typically observed following the presentation of lateral stimuli (targets and distractors) along with instructions to maintain fixation on the center of the visual search for the entire trial. Traditionally, trials in which subjects may have displaced their gaze are rejected based on a cutoff threshold, minimizing electrophysiological contamination by saccades. Given the loss of data resulting from rejection, we examined ocular correction by comparing results using standard fixation instructions against a condition where subjects were instructed to shift their gaze toward possible targets. Both conditions were analyzed using a rejection threshold and ICA correction for saccade activity management. Results demonstrate that ICA conserves data that would have otherwise been removed and leaves the underlying neural activity intact, as demonstrated by experimental manipulations previously shown to modulate the N2pc and the SPCN. Not only does ICA salvage and not distort data, but also large eye movements had only subtle effects. Overall, the findings provide convincing evidence for ICA correction for not only special cases (e.g., subjects did not follow fixation instruction) but also as a candidate for standard ocular artifact management in electrophysiological studies interested in visual-spatial attention and memory. © 2016 Society for Psychophysiological Research.

  17. Application study of monthly precipitation forecast in Northeast China based on the cold vortex persistence activity index

    NASA Astrophysics Data System (ADS)

    Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng

    2018-03-01

    This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.

  18. Estimation and correction of different flavors of surface observation biases in ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Lorente-Plazas, Raquel; Hacker, Josua P.; Collins, Nancy; Lee, Jared A.

    2017-04-01

    The impact of assimilating surface observations has been shown in several publications, for improving weather prediction inside of the boundary layer as well as the flow aloft. However, the assimilation of surface observations is often far from optimal due to the presence of both model and observation biases. The sources of these biases can be diverse: an instrumental offset, errors associated to the comparison of point-based observations and grid-cell average, etc. To overcome this challenge, a method was developed using the ensemble Kalman filter. The approach consists on representing each observation bias as a parameter. These bias parameters are added to the forward operator and they extend the state vector. As opposed to the observation bias estimation approaches most common in operational systems (e.g. for satellite radiances), the state vector and parameters are simultaneously updated by applying the Kalman filter equations to the augmented state. The method to estimate and correct the observation bias is evaluated using observing system simulation experiments (OSSEs) with the Weather Research and Forecasting (WRF) model. OSSEs are constructed for the conventional observation network including radiosondes, aircraft observations, atmospheric motion vectors, and surface observations. Three different kinds of biases are added to 2-meter temperature for synthetic METARs. From the simplest to more sophisticated, imposed biases are: (1) a spatially invariant bias, (2) a spatially varying bias proportional to topographic height differences between the model and the observations, and (3) bias that is proportional to the temperature. The target region characterized by complex terrain is the western U.S. on a domain with 30-km grid spacing. Observations are assimilated every 3 hours using an 80-member ensemble during September 2012. Results demonstrate that the approach is able to estimate and correct the bias when it is spatially invariant (experiment 1). More complex bias structure in experiments (2) and (3) are more difficult to estimate, but still possible. Estimated the parameter in experiments with unbiased observations results in spatial and temporal parameter variability about zero, and establishes a threshold on the accuracy of the parameter in further experiments. When the observations are biased, the mean parameter value is close to the true bias, but temporal and spatial variability in the parameter estimates is similar to the parameters used when estimating a zero bias in the observations. The distributions are related to other errors in the forecasts, indicating that the parameters are absorbing some of the forecast error from other sources. In this presentation we elucidate the reasons for the resulting parameter estimates, and their variability.

  19. Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes

    NASA Astrophysics Data System (ADS)

    Liao, H.; Meyer, F. J.

    2016-12-01

    Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a set of system (range bandwidth, temporal and spatial baseline) and processing parameters (e.g., filtering strength and sub-band configuration). A case study in Greenland is attached below.

  20. An investigation into the performance of real-time GPS+GLONASS Precise Point Positioning (PPP) in New Zealand

    NASA Astrophysics Data System (ADS)

    Harima, Ken; Choy, Suelynn; Rizos, Chris; Kogure, Satoshi

    2017-09-01

    This paper presents an investigation into the performance of real-time Global Navigation Satellite Systems (GNSS) Precise Point Positioning (PPP) in New Zealand. The motivation of the research is to evaluate the feasibility of using PPP technique and a satellite based augmentation system such as the Japanese Quasi-Zenith Satellite System (QZSS) to deliver a real-time precise positioning solution in support of a nation-wide high accuracy GNSS positioning coverage in New Zealand. Two IGS real-time correction streams are evaluated alongside with the PPP correction messages transmitted by the QZSS satellite known as MDC1. MDC1 corrections stream is generated by Japan Aerospace Exploration Agency (JAXA) using the Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA) software and are currently transmitted in test mode by the QZSS satellite. The IGS real-time streams are the CLK9B real-time corrections stream generated by the French Centre National D'études Spatiales (CNES) using the PPP-Wizard software, and the CLK81 real-time corrections stream produced by GMV using their MagicGNSS software. GNSS data is collected from six New Zealand CORS stations operated by Land Information New Zealand (LINZ) over a one-week period in 2015. GPS and GLONASS measurements are processed in a real-time PPP mode using the satellite orbit and clock corrections from the real-time streams. The results show that positioning accuracies of 6 cm in horizontal component and 15 cm in vertical component can be achieved in real-time PPP. The real-time GPS+GLONASS PPP solution required 30 minutes to converge to within 10 cm horizontal positioning accuracy.

  1. Development of a 3D remote dosimetry protocol compatible with MRgIMRT.

    PubMed

    Mein, Stewart; Rankine, Leith; Adamovics, John; Li, Harold; Oldham, Mark

    2017-11-01

    To develop a novel remote 3D dosimetry protocol to verify Magnetic Resonance-guided Radiation Therapy (MRgRT) treatments. The protocol was applied to investigate the accuracy of TG-119 IMRT irradiations delivered by the MRIdian ® system (ViewRay ® , Oakwood Village, OH, USA) allowing for a 48-hour delay between irradiation at a field institution and subsequent readout at a base institution. The 3D dosimetry protocol utilizes a novel formulation of PRESAGE ® radiochromic dosimeters developed for high postirradiation stability and compatibility with optical-CT readout. Optical-CT readout was performed with an in-house system utilizing telecentric lenses affording high-resolution scanning. The protocol was developed from preparatory experiments to characterize PRESAGE ® response in relevant conditions. First, linearity and sensitivity of PRESAGE ® dose-response in the presence of a magnetic field was evaluated in a small volume study (4 ml cuvettes) conducted under MRgRT conditions and irradiated with doses 0-15 Gy. Temporal and spatial stability of the dose-response were investigated in large volume studies utilizing large field-of-view (FOV) 2 kg cylindrical PRESAGE ® dosimeters. Dosimeters were imaged at t = 1 hr and t = 48 hrs enabling the development of correction terms to model any observed spatial and temporal changes postirradiation. Polynomial correction factors for temporal and spatial changes in PRESAGE ® dosimeters (C T and C R respectively) were obtained by numerical fitting to time-point data acquired in six irradiated dosimeters. A remote dosimetry protocol was developed where PRESAGE ® change in optical-density (ΔOD) readings at time t = X (the irradiation to return shipment time interval) were corrected back to a convenient standard time t = 1 hr using the C T and C R corrections. This refined protocol was then applied to TG-119 (American Association of Physicists in Medicine, Task Group 119) plan deliveries on the MRIdian ® system to evaluate the accuracy of MRgRT in these conditions. In the small volume study, in the presence of a 0.35 T magnetic field, PRESAGE ® was observed to respond linearly (R 2  = 0.9996) to Co-60 irradiation at t = 48 hrs postirradiation, within the dose ranges of 0 to 15 Gy, with a sensitivity of 0.0305(±0.003) ΔOD cm -1  Gy -1 . In the large volume studies, at t = 1 hr postirradiation, consistent linear response was observed, with average sensitivity of 0.0930 ± 0.002 ΔOD cm -1  Gy -1 . However, dosimeters gradually darkened with time (OD< 5% per day). A small radial dependence to the dosimeter sensitivity was measured (< 3% of maximum dose), which is attributed to a spherically symmetric dosimeter artifact arising from exothermic heating legacy in the PRESAGE ® polyurethane substrate during curing. When applied to the TG-119 IMRT irradiations, the remote dosimetry protocol (including correction terms) yielded excellent line-profile and 3D gamma agreement for 3%/3 mm, 10% threshold (mean passing rate = 96.6% ± 4.0%). A novel 3D remote dosimetry protocol is introduced for validating off-site dosimetrically complex radiotherapy systems, including MRgRT. The protocol involves correcting for temporal and spatially dependent changes in PRESAGE ® radiochromic dosimeters readout by optical-CT. Application of the protocol to TG-119 irradiations enabled verification of MRgRT dose distributions with high resolution. © 2017 American Association of Physicists in Medicine.

  2. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning

    PubMed Central

    Nelson, A. J. D.; Hindley, E. L.; Pearce, J. M.; Vann, S. D.; Aggleton, J. P.

    2015-01-01

    The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient visual cues (black vs. white walls). In Experiment 3, less salient visual cues (striped vs. white walls) led to a robust lesion impairment, as the retrosplenial lesioned rats showed no preference for the correct corner. When subsequently trained actively to swim to the correct corner over successive trials, retrosplenial lesions spared performance on all three discriminations. The findings not only reveal the importance of the retrosplenial cortex for processing various classes of visuospatial information but also highlight a broader role in the incidental learning of the features of a spatial array, consistent with the translation of scene information. PMID:25705182

  3. Correction of Spatial Bias in Oligonucleotide Array Data

    PubMed Central

    Lemieux, Sébastien

    2013-01-01

    Background. Oligonucleotide microarrays allow for high-throughput gene expression profiling assays. The technology relies on the fundamental assumption that observed hybridization signal intensities (HSIs) for each intended target, on average, correlate with their target's true concentration in the sample. However, systematic, nonbiological variation from several sources undermines this hypothesis. Background hybridization signal has been previously identified as one such important source, one manifestation of which appears in the form of spatial autocorrelation. Results. We propose an algorithm, pyn, for the elimination of spatial autocorrelation in HSIs, exploiting the duality of desirable mutual information shared by probes in a common probe set and undesirable mutual information shared by spatially proximate probes. We show that this correction procedure reduces spatial autocorrelation in HSIs; increases HSI reproducibility across replicate arrays; increases differentially expressed gene detection power; and performs better than previously published methods. Conclusions. The proposed algorithm increases both precision and accuracy, while requiring virtually no changes to users' current analysis pipelines: the correction consists merely of a transformation of raw HSIs (e.g., CEL files for Affymetrix arrays). A free, open-source implementation is provided as an R package, compatible with standard Bioconductor tools. The approach may also be tailored to other platform types and other sources of bias. PMID:23573083

  4. Development of an algorithm for corneal reshaping with a scanning laser beam

    NASA Astrophysics Data System (ADS)

    Shen, Jin-Hui; Söderberg, Per; Matsui, Takaaki; Manns, Fabrice; Parel, Jean-Marie

    1995-07-01

    The corneal-ablation rate, the beam-intensity distribution, and the initial and the desired corneal topographies are used to calculate a spatial distribution map of laser pulses. The optimal values of the parameters are determined with a computer model, for a system that produces 213-nm radiation with a Gaussian beam-intensity distribution and a peak radiant exposure of 400 mJ/cm2. The model shows that with a beam diameter of 0.5 mm, an overlap of 80%, and a 5-mm treatment zone, the roughness is less than 6% of the central ablation depth, the refractive error after correction is less than 0.1 D for corrections of myopia of 1, 3, and 6 D and less than 0.4 D for a correction of myopia of 10 D, and the number of pulses per diopter of

  5. Computer-Aided-Design of the Hydraulic System of Three-Dimensional Cartridge Valve Blocks (Selected Articles)

    DTIC Science & Technology

    1991-03-21

    sectional representation of the spatial figure can be correctly determined. 6 The AutoLisp language system in the AutoCAD software provides the most...softwares are developed on the 32-bit machines and little progress has been reported for the 16-bit machines. Even the AutoCAD is a two-ard-a-half... AutoCAD software as the basis, developed the design package of 3-D cartridge valve blocks on IM PC/AT. To realize the 3-D displaying of cartridge valves

  6. Genetic and epigenetic mechanisms in the early development of the vascular system

    PubMed Central

    Ribatti, Domenico

    2006-01-01

    The cardiovascular system plays a critical role in vertebrate development and homeostasis. Vascular development is a highly organized sequence of events that requires the correct spatial and temporal expression of specific sets of genes leading to the development of a primary vascular network. There have been intensive efforts to determine the molecular mechanisms regulating vascular growth and development, and much of the rationale for this has stemmed from the increasing clinical importance and therapeutic potential of modulating vascular formation during various disease states. PMID:16441559

  7. Solving for the Surface: An Automated Approach to THEMIS Atmospheric Correction

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Salvatore, M. R.; Smith, R.; Edwards, C. S.; Christensen, P. R.

    2013-12-01

    Here we present the initial results of an automated atmospheric correction algorithm for the Thermal Emission Imaging System (THEMIS) instrument, whereby high spectral resolution Thermal Emission Spectrometer (TES) data are queried to generate numerous atmospheric opacity values for each THEMIS infrared image. While the pioneering methods of Bandfield et al. [2004] also used TES spectra to atmospherically correct THEMIS data, the algorithm presented here is a significant improvement because of the reduced dependency on user-defined inputs for individual images. Additionally, this technique is particularly useful for correcting THEMIS images that have captured a range of atmospheric conditions and/or surface elevations, issues that have been difficult to correct for using previous techniques. Thermal infrared observations of the Martian surface can be used to determine the spatial distribution and relative abundance of many common rock-forming minerals. This information is essential to understanding the planet's geologic and climatic history. However, the Martian atmosphere also has absorptions in the thermal infrared which complicate the interpretation of infrared measurements obtained from orbit. TES has sufficient spectral resolution (143 bands at 10 cm-1 sampling) to linearly unmix and remove atmospheric spectral end-members from the acquired spectra. THEMIS has the benefit of higher spatial resolution (~100 m/pixel vs. 3x5 km/TES-pixel) but has lower spectral resolution (8 surface sensitive spectral bands). As such, it is not possible to isolate the surface component by unmixing the atmospheric contribution from the THEMIS spectra, as is done with TES. Bandfield et al. [2004] developed a technique using atmospherically corrected TES spectra as tie-points for constant radiance offset correction and surface emissivity retrieval. This technique is the primary method used to correct THEMIS but is highly susceptible to inconsistent results if great care in the selection of TES spectra is not exercised. Our algorithm implements a newly populated TES database that was created using PostgreSQL/PostGIS geospatial database. TES pixels that meet user-defined quality criteria and that intersect a THEMIS observation of interest may be quickly retrieved using this new database. The THEMIS correction process [Bandfield et al. 2004] is then run using all TES pixels that pass an additional set of TES-THEMIS relational quality checks. The result is a spatially correlated set of atmospheric opacity values, determined from the difference between each atmospherically corrected TES pixel and the overlapping portion of the THEMIS image. The dust and ice contributions to the atmospheric opacity are estimated using known dust and ice spectral dependencies [Smith et al. 2003]. These opacity values may be used to determine atmospheric variation across the scene, from which topography- and temperature-scaled atmospheric contribution may be calculated and removed. References: Bandfield, JL et al. [2004], JGR 109, E10008. Smith, MD et al. [2003], JGR 108, E11, 5115.

  8. Spatio-temporal correlations in the Manna model in one, three and five dimensions

    NASA Astrophysics Data System (ADS)

    Willis, Gary; Pruessner, Gunnar

    2018-02-01

    Although the paradigm of criticality is centered around spatial correlations and their anomalous scaling, not many studies of self-organized criticality (SOC) focus on spatial correlations. Often, integrated observables, such as avalanche size and duration, are used, not least as to avoid complications due to the unavoidable lack of translational invariance. The present work is a survey of spatio-temporal correlation functions in the Manna Model of SOC, measured numerically in detail in d = 1,3 and 5 dimensions and compared to theoretical results, in particular relating them to “integrated” observables such as avalanche size and duration scaling, that measure them indirectly. Contrary to the notion held by some of SOC models organizing into a critical state by re-arranging their spatial structure avalanche by avalanche, which may be expected to result in large, nontrivial, system-spanning spatial correlations in the quiescent state (between avalanches), correlations of inactive particles in the quiescent state have a small amplitude that does not and cannot increase with the system size, although they display (noisy) power law scaling over a range linear in the system size. Self-organization, however, does take place as the (one-point) density of inactive particles organizes into a particular profile that is asymptotically independent of the driving location, also demonstrated analytically in one dimension. Activity and its correlations, on the other hand, display nontrivial long-ranged spatio-temporal scaling with exponents that can be related to established results, in particular avalanche size and duration exponents. The correlation length and amplitude are set by the system size (confirmed analytically for some observables), as expected in systems displaying finite size scaling. In one dimension, we find some surprising inconsistencies of the dynamical exponent. A (spatially extended) mean field theory (MFT) is recovered, with some corrections, in five dimensions.

  9. Evaluation of Statistical Downscaling Skill at Reproducing Extreme Events

    NASA Astrophysics Data System (ADS)

    McGinnis, S. A.; Tye, M. R.; Nychka, D. W.; Mearns, L. O.

    2015-12-01

    Climate model outputs usually have much coarser spatial resolution than is needed by impacts models. Although higher resolution can be achieved using regional climate models for dynamical downscaling, further downscaling is often required. The final resolution gap is often closed with a combination of spatial interpolation and bias correction, which constitutes a form of statistical downscaling. We use this technique to downscale regional climate model data and evaluate its skill in reproducing extreme events. We downscale output from the North American Regional Climate Change Assessment Program (NARCCAP) dataset from its native 50-km spatial resolution to the 4-km resolution of University of Idaho's METDATA gridded surface meterological dataset, which derives from the PRISM and NLDAS-2 observational datasets. We operate on the major variables used in impacts analysis at a daily timescale: daily minimum and maximum temperature, precipitation, humidity, pressure, solar radiation, and winds. To interpolate the data, we use the patch recovery method from the Earth System Modeling Framework (ESMF) regridding package. We then bias correct the data using Kernel Density Distribution Mapping (KDDM), which has been shown to exhibit superior overall performance across multiple metrics. Finally, we evaluate the skill of this technique in reproducing extreme events by comparing raw and downscaled output with meterological station data in different bioclimatic regions according to the the skill scores defined by Perkins et al in 2013 for evaluation of AR4 climate models. We also investigate techniques for improving bias correction of values in the tails of the distributions. These techniques include binned kernel density estimation, logspline kernel density estimation, and transfer functions constructed by fitting the tails with a generalized pareto distribution.

  10. Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.

    2015-01-01

    Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.

  11. The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.

    2014-07-01

    The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C.

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a referencemore » beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise in CR. The use of the quantum noise correction factor reduced the difference from the model to the real NPS to generally within 4%. The use of the quantum noise correction improved the conversion of ASEh image to CRc image but had no difference for the conversion to CSI images. Conclusions: A practical method for estimating the NPS at any dose and over a range of beam qualities for mammography has been demonstrated. The noise model was incorporated into a methodology for converting an image to appear as if acquired on a different detector. The method can now be extended to work for a wide range of beam qualities and can be applied to the conversion of mammograms.« less

  13. Advanced Corrections for InSAR Using GPS and Numerical Weather Models

    NASA Astrophysics Data System (ADS)

    Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.

    2017-12-01

    We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale meteorological processes allows us to assess under what conditions the technique works most effectively. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.

  14. Scatter correction for x-ray conebeam CT using one-dimensional primary modulation

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Gao, Hewei; Bennett, N. Robert; Xing, Lei; Fahrig, Rebecca

    2009-02-01

    Recently, we developed an efficient scatter correction method for x-ray imaging using primary modulation. A two-dimensional (2D) primary modulator with spatially variant attenuating materials is inserted between the x-ray source and the object to separate primary and scatter signals in the Fourier domain. Due to the high modulation frequency in both directions, the 2D primary modulator has a strong scatter correction capability for objects with arbitrary geometries. However, signal processing on the modulated projection data requires knowledge of the modulator position and attenuation. In practical systems, mainly due to system gantry vibration, beam hardening effects and the ramp-filtering in the reconstruction, the insertion of the 2D primary modulator results in artifacts such as rings in the CT images, if no post-processing is applied. In this work, we eliminate the source of artifacts in the primary modulation method by using a one-dimensional (1D) modulator. The modulator is aligned parallel to the ramp-filtering direction to avoid error magnification, while sufficient primary modulation is still achieved for scatter correction on a quasicylindrical object, such as a human body. The scatter correction algorithm is also greatly simplified for the convenience and stability in practical implementations. The method is evaluated on a clinical CBCT system using the Catphan© 600 phantom. The result shows effective scatter suppression without introducing additional artifacts. In the selected regions of interest, the reconstruction error is reduced from 187.2HU to 10.0HU if the proposed method is used.

  15. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    PubMed Central

    Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco

    2014-01-01

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° ×more » 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.« less

  17. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system.

    PubMed

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D; Levin, Craig S

    2016-09-21

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve [Formula: see text] mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel's comparators, were performed. 68 Ge and 137 Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be [Formula: see text]% FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  18. Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation

    NASA Astrophysics Data System (ADS)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    Beta-Barium Borate (β-BBO) crystal is commonly used in nonlinear frequency conversion from visible to deep ultraviolet (DUV). However, in a single crystal BBO, its large spatial walk-off effect will reduce spatial overlap of ordinary and extraordinary beam, and thus degrade the conversion efficiency. To overcome the restrictions in current DUV conversion systems, Onyx applies adhesive-free bonding technique to replace the single crystal BBO with a spatial Walk-off Compensated (WOC) BBO stack, which is capable of correcting the spatial walk-off while retaining a constant nonlinear coefficient in the adjacent bonding layers. As a result, the β-BBO stack will provide good beam quality, high conversion efficiency, and broader acceptance angle and spectral linewidth, when compared with a single crystal of BBO. In this work, we report on performance of a spatial walk-off compensated β-BBO stack with adhesive-free bonding technique, for efficiently converting from the visible to DUV range. The physics behind the WOC BBO stack are demonstrated, followed by simulation of DUV conversion efficiency in an external resonance cavity. We also demonstrate experimentally the beam quality improvement in a 4-layer WOC BBO stack over a single BBO crystal.

  19. A technique to calibrate spatial light modulator for varying phase response over its spatial regions

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak K.; Tata, B. V. R.; Ravindran, T. R.

    2018-05-01

    Holographic Optical Tweezers (HOTs) employ the technique of beam shaping and holography in an optical manipulation system to create a multitude of focal spots for simultaneous trapping and manipulation of sub-microscopic particles. The beam shaping is accomplished by the use of a phase only liquid crystal spatial light modulator (SLM). The efficiency and the uniformity in the generated traps greatly depend on the phase response behavior of SLMs. In addition the SLMs are found to show different phase response over its different spatial regions, due to non-flat structure of SLMs. Also the phase responses are found to vary over different spatial regions due to non-uniform illumination (Gaussian profile of incident laser). There are various techniques to calibrate for the varying phase response by characterizing the phase modulation at various sub-sections. We present a simple and fast technique to calibrate the SLM suffering with spatially varying phase response. We divide the SLM into many sub-sections and optimize the brightness and gamma of each sub-section for maximum diffraction efficiency. This correction is incorporated in the Weighted Gerchberg Saxton (WGS) algorithm for generation of holograms.

  20. Hippocampal SWR Activity Predicts Correct Decisions during the Initial Learning of an Alternation Task

    PubMed Central

    Singer, Annabelle C.; Carr, Margaret F.; Karlsson, Mattias P.; Frank, Loren M.

    2013-01-01

    SUMMARY The hippocampus frequently replays memories of past experiences during sharp-wave ripple (SWR) events. These events can represent spatial trajectories extending from the animal’s current location to distant locations, suggesting a role in the evaluation of upcoming choices. While SWRs have been linked to learning and memory, the specific role of awake replay remains unclear. Here we show that there is greater coordinated neural activity during SWRs preceding correct, as compared to incorrect, trials in a spatial alternation task. As a result, the proportion of cell pairs coactive during SWRs was predictive of subsequent correct or incorrect responses on a trial-by-trial basis. This effect was seen specifically during early learning, when the hippocampus is essential for task performance. SWR activity preceding correct trials represented multiple trajectories that included both correct and incorrect options. These results suggest that reactivation during awake SWRs contributes to the evaluation of possible choices during memory-guided decision making. PMID:23522050

  1. Evaluation of Sun Glint Correction Algorithms for High-Spatial Resolution Hyperspectral Imagery

    DTIC Science & Technology

    2012-09-01

    ACRONYMS AND ABBREVIATIONS AISA Airborne Imaging Spectrometer for Applications AVIRIS Airborne Visible/Infrared Imaging Spectrometer BIL Band...sensor bracket mount combining Airborne Imaging Spectrometer for Applications ( AISA ) Eagle and Hawk sensors into a single imaging system (SpecTIR 2011...The AISA Eagle is a VNIR sensor with a wavelength range of approximately 400–970 nm and the AISA Hawk sensor is a SWIR sensor with a wavelength

  2. Fast Magnetotail Reconnection: Challenge to Global MHD Modeling

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; de Zeeuw, D.; Gombosi, T.

    2005-05-01

    Representation of fast magnetotail reconnection rates during substorm onset is one of the major challenges to global MHD modeling. Our previous comparative study of collisionless magnetic reconnection in GEM Challenge geometry demonstrated that the reconnection rate is controlled by ion nongyrotropic behavior near the reconnection site and that it can be described in terms of nongyrotropic corrections to the magnetic induction equation. To further test the approach we performed MHD simulations with nongyrotropic corrections of forced reconnection for the Newton Challenge setup. As a next step we employ the global MHD code BATSRUS and test different methods to model fast magnetotail reconnection rates by introducing non-ideal corrections to the induction equation in terms of nongyrotropic corrections, spatially localized resistivity, or current dependent resistivity. The BATSRUS adaptive grid structure allows to perform global simulations with spatial resolution near the reconnection site comparable with spatial resolution of local MHD simulations for the Newton Challenge. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at the Community Coordinated Modeling Center.

  3. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques.

    PubMed

    Eugenio, Francisco; Marcello, Javier; Martin, Javier; Rodríguez-Esparragón, Dionisio

    2017-11-16

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  4. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    PubMed Central

    Eugenio, Francisco; Marcello, Javier; Martin, Javier

    2017-01-01

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones. PMID:29144444

  5. Improvement in the Characterization of MODIS Subframe Difference

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Angal, Amit; Chen, Na; Geng, Xu; Link, Daniel; Wang, Zhipeng; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    MODIS is a key instrument of NASA's Earth Observing System. It has successfully operated for 16+ years on the Terra satellite and 14+ years on the Aqua satellite, respectively. MODIS has 36 spectral bands at three different nadir spatial resolutions, 250m (bands 1-2), 500m (bands 3-7), and 1km (bands 8-36). MODIS subframe measurement is designed for bands 1-7 to match their spatial resolution in the scan direction to that of the track direction. Within each 1 km frame, the MODIS 250 m resolution bands sample four subframes and the 500 m resolution bands sample two subframes. The detector gains are calibrated at a subframe level. Due to calibration differences between subframes, noticeable subframe striping is observed in the Level 1B (L1B) products, which exhibit a predominant radiance-level dependence. This paper presents results of subframe differences from various onboard and earth-view data sources (e.g. solar diffuser, electronic calibration, spectro-radiometric calibration assembly, Earth view, etc.). A subframe bias correction algorithm is proposed to minimize the subframe striping in MODIS L1B image. The algorithm has been tested using sample L1B images and the vertical striping at lower radiance value is mitigated after applying the corrections. The subframe bias correction approach will be considered for implementation in future versions of the calibration algorithm.

  6. Investigation of Ionospheric Spatial Gradients for Gagan Error Correction

    NASA Astrophysics Data System (ADS)

    Chandra, K. Ravi

    In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.

  7. Experimental determination of the correlation properties of plasma turbulence using 2D BES systems

    NASA Astrophysics Data System (ADS)

    Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team

    2017-04-01

    A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.

  8. Solid state instrumentation concepts for earth resource observation

    NASA Technical Reports Server (NTRS)

    Richard, H. L.

    1982-01-01

    Late in 1980, specifications were prepared for detail design definition of a six band solid state multispectral instrument having three visible (VIS), one near infrared (NIR), and two short wave infrared (SWIR) bands. This instrument concept, known as the Multispectral Linear Array (MLA), also offered increased spatial resolution, on board gain and offset correction, and additional operational modes which would allow for cross track and stereoscopic viewing as well as a multialtitude operational capability. A description is presented of a summary of some of the salient features of four different MLA design concepts, as developed by four American companies. The designs ranged from the use of multiple refractive telescopes utilizing three groups of focal plane detectors electronic correlation processing for achieving spatial registration, and incorporating palladium silicide (PdSi) SWIR detectors, to a four-mirror all-reflective telecentric system utilizing a beam splitter for spatial registration.

  9. A restraint-free small animal SPECT imaging system with motion tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.« less

  10. Solid state temperature-dependent NUC (non-uniformity correction) in uncooled LWIR (long-wave infrared) imaging system

    NASA Astrophysics Data System (ADS)

    Cao, Yanpeng; Tisse, Christel-Loic

    2013-06-01

    In uncooled LWIR microbolometer imaging systems, temperature fluctuations of FPA (Focal Plane Array) as well as lens and mechanical components placed along the optical path result in thermal drift and spatial non-uniformity. These non-idealities generate undesirable FPN (Fixed-Pattern-Noise) that is difficult to remove using traditional, individual shutterless and TEC-less (Thermo-Electric Cooling) techniques. In this paper we introduce a novel single-image based processing approach that marries the benefits of both statistical scene-based and calibration-based NUC algorithms, without relying neither on extra temperature reference nor accurate motion estimation, to compensate the resulting temperature-dependent non-uniformities. Our method includes two subsequent image processing steps. Firstly, an empirical behavioral model is derived by calibrations to characterize the spatio-temporal response of the microbolometric FPA to environmental and scene temperature fluctuations. Secondly, we experimentally establish that the FPN component caused by the optics creates a spatio-temporally continuous, low frequency, low-magnitude variation of the image intensity. We propose to make use of this property and learn a prior on the spatial distribution of natural image gradients to infer the correction function for the entire image. The performance and robustness of the proposed temperature-adaptive NUC method are demonstrated by showing results obtained from a 640×512 pixels uncooled LWIR microbolometer imaging system operating over a broad range of temperature and with rapid environmental temperature changes (i.e. from -5°C to 65°C within 10 minutes).

  11. B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.

    PubMed

    Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A

    2018-03-01

    Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B 0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B 0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Capability of Hyperspectral data in Spatial Variability Distribution of Chlorophyll and Water Stress in Rice Agriculture System

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2016-12-01

    Abstract : The mapping and analysis of spatial variability within the field is a challenging task. However, field variability of a single vegetation cover does not give satisfactory results mainly due to low spectral resolution and non-availability of remote sensing data. From the NASA Earth Observing-1 (EO-1) satellite data, spatial distribution of biophysical parameters like chlorophyll and relative water content in a rice agriculture system is carried out in the present study. Hyperion L1R product composed of 242 spectral bands with 30m spatial resolution was acquired for Assam, India. This high dimensional data is allowed for pre-processing to get an atmospherically corrected imagery. Moreover, ground based hyperspectral measurements are collected from experimental rice fields from the study site using hand held ASD spectroradiometer (350-1050 nm). Published indices specifically designed for chlorophyll (OASVI, mSR, and MTCI indices) and water content (WI and WBI indices) are selected based on stastical performance of the in-situ hyperspectral data. Index models are established for the respective biophysical parameters and observed that the aforementioned indices followed different linear and nonlinear relationships which are completely different from the published indices. By employing the presently developed relationships, spatial variation of total chlorophyll and water stress are mapped for a rice agriculture system from Hyperion imagery. The findings showed that, the variation of chlorophyll and water content ranged from 1.77-10.61mg/g and 40-90% respectively for the studied rice agriculture system. The spatial distribution of these parameters resulted from presently developed index models are well captured from Hyperion imagery and they have good agreement with observed field based chlorophyll (1.14-7.26 mg/g) and water content (60-95%) of paddy crop. This study can be useful in providing essential information to assess the paddy field heterogeneity in an agriculture system. Keywords: Paddy crop, vegetation index, hyperspectral data, chlorophyll, water content

  13. GMTIFS: challenging optical design problems and their solutions for the GMT integral-field spectrograph

    NASA Astrophysics Data System (ADS)

    Hart, John; Bloxham, Gabe; Boz, Robert; Espeland, Brady; Sharp, Robert

    2016-08-01

    GMTIFS is a first generation instrument for the Giant Magellan Telescope (GMT). It is a combined Imager and Integral Field Spectrograph (IFS) designed to work with the Adaptive Optics (AO) Systems of the GMT. Working at the diffraction limit of the GMT and satisfying the challenging AO interface requirements and constraints results in unique optical challenges. We describe two of these challenges and how we have addressed them. The GMT has a direct feed architecture that maximizes transmission and reduces emissivity. This means that the cryostat window is tilted to reflect visual wavelengths to the external Visual Wave Front Subsystem (VWS). For a plane-parallel window, this tilt causes astigmatism in the transmitted beam that must be corrected. A corrective system using two plates, tilted and slightly wedged in opposite directions, is used. Geometry and performance of the system is described. Another challenging problem is the optical design of the anamorphic field projector. The Integral Field Unit of GMTIFS requires that a small field delivered to it be projected onto an Image Slicer at much larger scale, with the magnification in the spectral direction being twice that in the spatial direction so that the spaxels are square when referred to the sky. Output images must be coincident in the spectral and spatial projections in both the field and pupil domains. Additionally, field and pupil image locations must be independently controllable so that they can be made coincident for interchangeable units that provide a range of output field scales. A two-mirror system that satisfies these requirements is described.

  14. System optimization on coded aperture spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Ding, Quanxin; Wang, Helong; Chen, Hongliang; Guo, Chunjie; Zhou, Liwei

    2017-10-01

    For aim to find a simple multiple configuration solution and achieve higher refractive efficiency, and based on to reduce the situation disturbed by FOV change, especially in a two-dimensional spatial expansion. Coded aperture system is designed by these special structure, which includes an objective a coded component a prism reflex system components, a compensatory plate and an imaging lens Correlative algorithms and perfect imaging methods are available to ensure this system can be corrected and optimized adequately. Simulation results show that the system can meet the application requirements in MTF, REA, RMS and other related criteria. Compared with the conventional design, the system has reduced in volume and weight significantly. Therefore, the determining factors are the prototype selection and the system configuration.

  15. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    PubMed

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Remarks upon the term stereotaxy: a linguistic and historical note.

    PubMed

    Grunert, Peter; Keiner, Doerthe; Oertel, Joachim

    2015-01-01

    The correct explanation of the term 'stereotaxy' is linguistically not self-evident because the Greek term stereon means not spatial but 'hard' or 'solid'. The aim of our study was to clarify the term stereotaxy historically and linguistically. We carried out our study by reviewing the neurosurgical and ancient Greek literature. The term stereotaxy is composed of two ancient Greek words: stereon and taxis. Stereon was used in particular as a technical term for geometrical solids in Greek mathematics. This term can be traced back to Platon and Euclid in the 4th and 3rd century BC, respectively. Only in this sense of the word does stereon in stereotaxy actually mean 'spatial' or '3-dimensional'. Taxis is derived from the verb tattein(τάττειν) with the meaning 'to position'. The terms 'stereotaxis' and 'stereotaxic apparatus' were introduced by Clarke and Horsley in 1908 to denote a method for the precise positioning of electrodes into the deep cerebellar nuclei of apes. The target in space was defined by 3 distances in relation to 3 orthogonal planes. Although this concept corresponded exactly to x-, y- and z-coordinates in a cartesian coordinate system, Clarke never used the concept of coordinates. The intuitive explanation of the term stereotaxy as spatial positioning is correct, but linguistically more complex than would be expected. © 2015 S. Karger AG, Basel.

  17. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS.

    PubMed

    Li, Zhongyu; Wu, Junjie; Huang, Yulin; Yang, Haiguang; Yang, Jianyu

    2017-01-23

    Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  18. Development of the atmospheric correction algorithm for the next generation geostationary ocean color sensor data

    NASA Astrophysics Data System (ADS)

    Lee, Kwon-Ho; Kim, Wonkook

    2017-04-01

    The geostationary ocean color imager-II (GOCI-II), designed to be focused on the ocean environmental monitoring with better spatial (250m for local and 1km for full disk) and spectral resolution (13 bands) then the current operational mission of the GOCI-I. GOCI-II will be launched in 2018. This study presents currently developing algorithm for atmospheric correction and retrieval of surface reflectance over land to be optimized with the sensor's characteristics. We first derived the top-of-atmosphere radiances as the proxy data derived from the parameterized radiative transfer code in the 13 bands of GOCI-II. Based on the proxy data, the algorithm has been made with cloud masking, gas absorption correction, aerosol inversion, computation of aerosol extinction correction. The retrieved surface reflectances are evaluated by the MODIS level 2 surface reflectance products (MOD09). For the initial test period, the algorithm gave error of within 0.05 compared to MOD09. Further work will be progressed to fully implement the GOCI-II Ground Segment system (G2GS) algorithm development environment. These atmospherically corrected surface reflectance product will be the standard GOCI-II product after launch.

  19. CSAMT Data Processing with Source Effect and Static Corrections, Application of Occam's Inversion, and Its Application in Geothermal System

    NASA Astrophysics Data System (ADS)

    Hamdi, H.; Qausar, A. M.; Srigutomo, W.

    2016-08-01

    Controlled source audio-frequency magnetotellurics (CSAMT) is a frequency-domain electromagnetic sounding technique which uses a fixed grounded dipole as an artificial signal source. Measurement of CSAMT with finite distance between transmitter and receiver caused a complex wave. The shifted of the electric field due to the static effect caused elevated resistivity curve up or down and affects the result of measurement. The objective of this study was to obtain data that have been corrected for source and static effects as to have the same characteristic as MT data which are assumed to exhibit plane wave properties. Corrected CSAMT data were inverted to reveal subsurface resistivity model. Source effect correction method was applied to eliminate the effect of the signal source and static effect was corrected by using spatial filtering technique. Inversion method that used in this study is the Occam's 2D Inversion. The results of inversion produces smooth models with a small misfit value, it means the model can describe subsurface conditions well. Based on the result of inversion was predicted measurement area is rock that has high permeability values with rich hot fluid.

  20. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    PubMed

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  1. larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.

    PubMed

    Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit

    2018-01-01

    The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

  2. A model that integrates eye velocity commands to keep track of smooth eye displacements.

    PubMed

    Blohm, Gunnar; Optican, Lance M; Lefèvre, Philippe

    2006-08-01

    Past results have reported conflicting findings on the oculomotor system's ability to keep track of smooth eye movements in darkness. Whereas some results indicate that saccades cannot compensate for smooth eye displacements, others report that memory-guided saccades during smooth pursuit are spatially correct. Recently, it was shown that the amount of time before the saccade made a difference: short-latency saccades were retinotopically coded, whereas long-latency saccades were spatially coded. Here, we propose a model of the saccadic system that can explain the available experimental data. The novel part of this model consists of a delayed integration of efferent smooth eye velocity commands. Two alternative physiologically realistic neural mechanisms for this integration stage are proposed. Model simulations accurately reproduced prior findings. Thus, this model reconciles the earlier contradictory reports from the literature about compensation for smooth eye movements before saccades because it involves a slow integration process.

  3. The LAM space active optics facility

    NASA Astrophysics Data System (ADS)

    Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.

    2017-11-01

    The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.

  4. Correction of elevation offsets in multiple co-located lidar datasets

    USGS Publications Warehouse

    Thompson, David M.; Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.

    2017-04-07

    IntroductionTopographic elevation data collected with airborne light detection and ranging (lidar) can be used to analyze short- and long-term changes to beach and dune systems. Analysis of multiple lidar datasets at Dauphin Island, Alabama, revealed systematic, island-wide elevation differences on the order of 10s of centimeters (cm) that were not attributable to real-world change and, therefore, were likely to represent systematic sampling offsets. These offsets vary between the datasets, but appear spatially consistent within a given survey. This report describes a method that was developed to identify and correct offsets between lidar datasets collected over the same site at different times so that true elevation changes over time, associated with sediment accumulation or erosion, can be analyzed.

  5. High-Resolution Adaptive Optics Test-Bed for Vision Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Thomspon, C A; Olivier, S S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less

  6. Cone-beam CT of traumatic brain injury using statistical reconstruction with a post-artifact-correction noise model

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. The current front-line imaging modality for TBI detection is CT, which reliably detects intracranial hemorrhage (fresh blood contrast 30-50 HU, size down to 1 mm) in non-contrast-enhanced exams. Compared to CT, flat-panel detector (FPD) cone-beam CT (CBCT) systems offer lower cost, greater portability, and smaller footprint suitable for point-of-care deployment. We are developing FPD-CBCT to facilitate TBI detection at the point-of-care such as in emergent, ambulance, sports, and military applications. However, current FPD-CBCT systems generally face challenges in low-contrast, soft-tissue imaging. Model-based reconstruction can improve image quality in soft-tissue imaging compared to conventional filtered back-projection (FBP) by leveraging high-fidelity forward model and sophisticated regularization. In FPD-CBCT TBI imaging, measurement noise characteristics undergo substantial change following artifact correction, resulting in non-negligible noise amplification. In this work, we extend the penalized weighted least-squares (PWLS) image reconstruction to include the two dominant artifact corrections (scatter and beam hardening) in FPD-CBCT TBI imaging by correctly modeling the variance change following each correction. Experiments were performed on a CBCT test-bench using an anthropomorphic phantom emulating intra-parenchymal hemorrhage in acute TBI, and the proposed method demonstrated an improvement in blood-brain contrast-to-noise ratio (CNR = 14.2) compared to FBP (CNR = 9.6) and PWLS using conventional weights (CNR = 11.6) at fixed spatial resolution (1 mm edge-spread width at the target contrast). The results support the hypothesis that FPD-CBCT can fulfill the image quality requirements for reliable TBI detection, using high-fidelity artifact correction and statistical reconstruction with accurate post-artifact-correction noise models.

  7. ICESat laser altimetry over small mountain glaciers

    NASA Astrophysics Data System (ADS)

    Treichler, Désirée; Kääb, Andreas

    2016-09-01

    Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003-2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs - a result of spatio-temporal merging - has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around -0.36 ± 0.07 m ice per year. This regional estimate agrees well with the heterogeneous but overall negative in situ glacier mass balance observed in the area.

  8. Demonstration of Airborne Wide Area Assessment Technologies at Pueblo Precision Bombing Ranges, Colorado. Hyperspectral Imaging, Version 2.0

    DTIC Science & Technology

    2007-09-27

    the spatial and spectral resolution ...variety of geological and vegetation mapping efforts, the Hymap sensor offered the best available combination of spectral and spatial resolution , signal... The limitations of the technology currently relate to spatial and spectral resolution and geo- correction accuracy. Secondly, HSI datasets

  9. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    USDA-ARS?s Scientific Manuscript database

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

  10. Head-mounted spatial instruments: Synthetic reality or impossible dream

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Grunwald, Arthur; Velger, Mordekhai

    1988-01-01

    A spatial instrument is defined as a display device which has been either geometrically or symbolically enhanced to better enable a user to accomplish a particular task. Research conducted over the past several years on 3-D spatial instruments has shown that perspective displays, even when viewed from the correct viewpoint, are subject to systematic viewer biases. These biases interfere with correct spatial judgements of the presented pictorial information. It is also found that deliberate, appropriate geometric distortion of the perspective projection of an image can improve user performance. These two findings raise intriguing questions concerning the design of head-mounted spatial instruments. The design of such instruments may not only require the introduction of compensatory distortions to remove the neutrally occurring biases but also may significantly benefit from the introduction of artificial distortions which enhance performance. These image manipulations, however, can cause a loss of visual-vestibular coordination and induce motion sickness. Additionally, adaptation to these manipulations is apt to be impaired by computational delays in the image display. Consequently, the design of head-mounted spatial instruments will require an understanding of the tolerable limits of visual-vestibular discord.

  11. Grids in topographic maps reduce distortions in the recall of learned object locations.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2014-01-01

    To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.

  12. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  13. Identification of robust statistical downscaling methods based on a comprehensive suite of performance metrics for South Korea

    NASA Astrophysics Data System (ADS)

    Eum, H. I.; Cannon, A. J.

    2015-12-01

    Climate models are a key provider to investigate impacts of projected future climate conditions on regional hydrologic systems. However, there is a considerable mismatch of spatial resolution between GCMs and regional applications, in particular a region characterized by complex terrain such as Korean peninsula. Therefore, a downscaling procedure is an essential to assess regional impacts of climate change. Numerous statistical downscaling methods have been used mainly due to the computational efficiency and simplicity. In this study, four statistical downscaling methods [Bias-Correction/Spatial Disaggregation (BCSD), Bias-Correction/Constructed Analogue (BCCA), Multivariate Adaptive Constructed Analogs (MACA), and Bias-Correction/Climate Imprint (BCCI)] are applied to downscale the latest Climate Forecast System Reanalysis data to stations for precipitation, maximum temperature, and minimum temperature over South Korea. By split sampling scheme, all methods are calibrated with observational station data for 19 years from 1973 to 1991 are and tested for the recent 19 years from 1992 to 2010. To assess skill of the downscaling methods, we construct a comprehensive suite of performance metrics that measure an ability of reproducing temporal correlation, distribution, spatial correlation, and extreme events. In addition, we employ Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to identify robust statistical downscaling methods based on the performance metrics for each season. The results show that downscaling skill is considerably affected by the skill of CFSR and all methods lead to large improvements in representing all performance metrics. According to seasonal performance metrics evaluated, when TOPSIS is applied, MACA is identified as the most reliable and robust method for all variables and seasons. Note that such result is derived from CFSR output which is recognized as near perfect climate data in climate studies. Therefore, the ranking of this study may be changed when various GCMs are downscaled and evaluated. Nevertheless, it may be informative for end-users (i.e. modelers or water resources managers) to understand and select more suitable downscaling methods corresponding to priorities on regional applications.

  14. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  15. Gaussian Process Kalman Filter for Focal Plane Wavefront Correction and Exoplanet Signal Extraction

    NASA Astrophysics Data System (ADS)

    Sun, He; Kasdin, N. Jeremy

    2018-01-01

    Currently, the ultimate limitation of space-based coronagraphy is the ability to subtract the residual PSF after wavefront correction to reveal the planet. Called reference difference imaging (RDI), the technique consists of conducting wavefront control to collect the reference point spread function (PSF) by observing a bright star, and then extracting target planet signals by subtracting a weighted sum of reference PSFs. Unfortunately, this technique is inherently inefficient because it spends a significant fraction of the observing time on the reference star rather than the target star with the planet. Recent progress in model based wavefront estimation suggests an alternative approach. A Kalman filter can be used to estimate the stellar PSF for correction by the wavefront control system while simultaneously estimating the planet signal. Without observing the reference star, the (extended) Kalman filter directly utilizes the wavefront correction data and combines the time series observations and model predictions to estimate the stellar PSF and planet signals. Because wavefront correction is used during the entire observation with no slewing, the system has inherently better stability. In this poster we show our results aimed at further improving our Kalman filter estimation accuracy by including not only temporal correlations but also spatial correlations among neighboring pixels in the images. This technique is known as a Gaussian process Kalman filter (GPKF). We also demonstrate the advantages of using a Kalman filter rather than RDI by simulating a real space exoplanet detection mission.

  16. SU-E-T-223: Computed Radiography Dose Measurements of External Radiotherapy Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aberle, C; Kapsch, R

    2015-06-15

    Purpose: To obtain quantitative, two-dimensional dose measurements of external radiotherapy beams with a computed radiography (CR) system and to derive volume correction factors for ionization chambers in small fields. Methods: A commercial Kodak ACR2000i CR system with Kodak Flexible Phosphor Screen HR storage foils was used. Suitable measurement conditions and procedures were established. Several corrections were derived, including image fading, length-scale corrections and long-term stability corrections. Dose calibration curves were obtained for cobalt, 4 MV, 8 MV and 25 MV photons, and for 10 MeV, 15 MeV and 18 MeV electrons in a water phantom. Inherent measurement inhomogeneities were studiedmore » as well as directional dependence of the response. Finally, 2D scans with ionization chambers were directly compared to CR measurements, and volume correction factors were derived. Results: Dose calibration curves (0.01 Gy to 7 Gy) were obtained for multiple photon and electron beam qualities. For each beam quality, the calibration curves can be described by a single fit equation over the whole dose range. The energy dependence of the dose response was determined. The length scale on the images was adjusted scan-by-scan, typically by 2 percent horizontally and by 3 percent vertically. The remaining inhomogeneities after the system’s standard calibration procedure were corrected for. After correction, the homogeneity is on the order of a few percent. The storage foils can be rotated by up to 30 degrees without a significant effect on the measured signal. First results on the determination of volume correction factors were obtained. Conclusion: With CR, quantitative, two-dimensional dose measurements with a high spatial resolution (sub-mm) can be obtained over a large dose range. In order to make use of these advantages, several calibrations, corrections and supporting measurements are needed. This work was funded by the European Metrology Research Programme (EMRP) project HLT09 MetrExtRT Metrology for Radiotherapy using Complex Radiation Fields.« less

  17. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).

  18. Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system.

    PubMed

    Wang, Shengqian; Rao, Changhui; Xian, Hao; Zhang, Jianlin; Wang, Jianxin; Liu, Zheng

    2011-04-25

    The feasibility and performance of the pyramid wavefront sensor without modulation used in closed-loop adaptive optics system is investigated in this paper. The theory concepts and some simulation results are given to describe the detection trend and the linearity range of such a sensor with the aim to better understand its properties, and then a laboratory setup of the adaptive optics system based on this sensor and the liquid-crystal spatial light modulator is built. The correction results for the individual Zernike aberrations and the Kolmogorov phase screens are presented to demonstrate that the pyramid wavefront sensor without modulation can work as expected for closed-loop adaptive optics system.

  19. Deficient Activity in the Neural Systems That Mediate Self-regulatory Control in Bulimia Nervosa

    PubMed Central

    Marsh, Rachel; Steinglass, Joanna E.; Gerber, Andrew J.; O’Leary, Kara Graziano; Wang, Zhishun; Murphy, David; Walsh, B. Timothy; Peterson, Bradley S.

    2009-01-01

    Context Disturbances in neural systems that mediate voluntary self-regulatory processes may contribute to bulimia nervosa (BN) by releasing feeding behaviors from regulatory control. Objective To study the functional activity in neural circuits that subserve self-regulatory control in women with BN. Design We compared functional magnetic resonance imaging blood oxygenation level–dependent responses in patients with BN with healthy controls during performance of the Simon Spatial Incompatibility task. Setting University research institute. Participants Forty women: 20 patients with BN and 20 healthy control participants. Main Outcome Measure We used general linear modeling of Simon Spatial Incompatibility task–related activations to compare groups on their patterns of brain activation associated with the successful or unsuccessful engagement of self-regulatory control. Results Patients with BN responded more impulsively and made more errors on the task than did healthy controls; patients with the most severe symptoms made the most errors. During correct responding on incongruent trials, patients failed to activate frontostriatal circuits to the same degree as healthy controls in the left inferolateral prefrontal cortex (Brodmann area [BA] 45), bilateral inferior frontal gyrus (BA 44), lenticular and caudate nuclei, and anterior cingulate cortex (BA 24/32). Patients activated the dorsal anterior cingulate cortex (BA 32) more when making errors than when responding correctly. In contrast, healthy participants activated the anterior cingulate cortex more during correct than incorrect responses, and they activated the striatum more when responding incorrectly, likely reflecting an automatic response tendency that, in the absence of concomitant anterior cingulate cortex activity, produced incorrect responses. Conclusions Self-regulatory processes are impaired in women with BN, likely because of their failure to engage frontostriatal circuits appropriately. These findings enhance our understanding of the pathogenesis of BN by pointing to functional abnormalities within a neural system that subserves self-regulatory control, which may contribute to binge eating and other impulsive behaviors in women with BN. PMID:19124688

  20. Design and laboratory calibration of the compact pushbroom hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin

    2009-11-01

    The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.

  1. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE PAGES

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  2. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  3. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    NASA Astrophysics Data System (ADS)

    Yang, He; Ma, Ben; Du, Qian; Yang, Chenghai

    2010-08-01

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified class pairs, such as roof and trail, road and roof. These classes may be difficult to be separated because they may have similar spectral signatures and their spatial features are not distinct enough to help their discrimination. In addition, misclassification incurred from within-class trivial spectral variation can be corrected by using pixel connectivity information in a local window so that spectrally homogeneous regions can be well preserved. Our experimental results demonstrate the efficiency of the proposed approaches in classification accuracy improvement. The overall performance is competitive to the object-based SVM classification.

  4. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    NASA Astrophysics Data System (ADS)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  5. Spatiotemporal canards in neural field equations

    NASA Astrophysics Data System (ADS)

    Avitabile, D.; Desroches, M.; Knobloch, E.

    2017-04-01

    Canards are special solutions to ordinary differential equations that follow invariant repelling slow manifolds for long time intervals. In realistic biophysical single-cell models, canards are responsible for several complex neural rhythms observed experimentally, but their existence and role in spatially extended systems is largely unexplored. We identify and describe a type of coherent structure in which a spatial pattern displays temporal canard behavior. Using interfacial dynamics and geometric singular perturbation theory, we classify spatiotemporal canards and give conditions for the existence of folded-saddle and folded-node canards. We find that spatiotemporal canards are robust to changes in the synaptic connectivity and firing rate. The theory correctly predicts the existence of spatiotemporal canards with octahedral symmetry in a neural field model posed on the unit sphere.

  6. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp; Institute of Transformative Bio-Molecules

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  7. Status of the DKIST system for solar adaptive optics

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2016-07-01

    When the Daniel K. Inouye Solar Telescope (DKIST) achieves first light in 2019, it will deliver the highest spatial resolution images of the solar atmosphere ever recorded. Additionally, the DKIST will observe the Sun with unprecedented polarimetric sensitivity and spectral resolution, spurring a leap forward in our understanding of the physical processes occurring on the Sun. The DKIST wavefront correction system will provide active alignment control and jitter compensation for all six of the DKIST science instruments. Five of the instruments will also be fed by a conventional adaptive optics (AO) system, which corrects for high frequency jitter and atmospheric wavefront disturbances. The AO system is built around an extended-source correlating Shack-Hartmann wavefront sensor, a Physik Instrumente fast tip-tilt mirror (FTTM) and a Xinetics 1600-actuator deformable mirror (DM), which are controlled by an FPGA-based real-time system running at 1975 Hz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). The DKIST wavefront correction team has completed the design phase and is well into the fabrication phase. The FTTM and DM have both been delivered to the DKIST laboratory in Boulder, CO. The real-time controller has been completed and is able to read out the camera and deliver commands to the DM with a total latency of approximately 750 μs. All optics and optomechanics, including many high-precision custom optics, mounts, and stages, are completed or nearing the end of the fabrication process and will soon undergo rigorous acceptance testing. Before installing the wavefront correction system at the telescope, it will be assembled as a testbed in the laboratory. In the lab, performance tests beginning with component-level testing and continuing to full system testing will ensure that the wavefront correction system meets all performance requirements. Further work in the lab will focus on fine-tuning our alignment and calibration procedures so that installation and alignment on the summit will proceed as efficiently as possible.

  8. Infrared Imagery of Shuttle (IRIS). Task 1, summary report

    NASA Technical Reports Server (NTRS)

    Chocol, C. J.

    1977-01-01

    The feasibility of remote, high-resolution infrared imagery of the Shuttle Orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer was demonstrated. Using available technology, such images can be taken from an existing aircraft/telescope system (the C141 AIRO) with minimum modification or addition of systems. Images with a spatial resolution of 1 m or better and a temperature resolution of 2.5% between temperatures of 800 and 1900 K can be obtained. Data reconstruction techniques can provide a geometrically and radiometrically corrected array on addressable magnetic tape ready for display by NASA.

  9. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    NASA Astrophysics Data System (ADS)

    Zong, Zhanguo; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-01

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption.

  10. Generation of future potential scenarios in an Alpine Catchment by applying bias-correction techniques, delta-change approaches and stochastic Weather Generators at different spatial scale. Analysis of their influence on basic and drought statistics.

    NASA Astrophysics Data System (ADS)

    Collados-Lara, Antonio-Juan; Pulido-Velazquez, David; Pardo-Iguzquiza, Eulogio

    2017-04-01

    Assessing impacts of potential future climate change scenarios in precipitation and temperature is essential to design adaptive strategies in water resources systems. The objective of this work is to analyze the possibilities of different statistical downscaling methods to generate future potential scenarios in an Alpine Catchment from historical data and the available climate models simulations performed in the frame of the CORDEX EU project. The initial information employed to define these downscaling approaches are the historical climatic data (taken from the Spain02 project for the period 1971-2000 with a spatial resolution of 12.5 Km) and the future series provided by climatic models in the horizon period 2071-2100 . We have used information coming from nine climate model simulations (obtained from five different Regional climate models (RCM) nested to four different Global Climate Models (GCM)) from the European CORDEX project. In our application we have focused on the Representative Concentration Pathways (RCP) 8.5 emissions scenario, which is the most unfavorable scenario considered in the fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). For each RCM we have generated future climate series for the period 2071-2100 by applying two different approaches, bias correction and delta change, and five different transformation techniques (first moment correction, first and second moment correction, regression functions, quantile mapping using distribution derived transformation and quantile mapping using empirical quantiles) for both of them. Ensembles of the obtained series were proposed to obtain more representative potential future climate scenarios to be employed to study potential impacts. In this work we propose a non-equifeaseble combination of the future series giving more weight to those coming from models (delta change approaches) or combination of models and techniques that provides better approximation to the basic and drought statistic of the historical data. A multi-objective analysis using basic statistics (mean, standard deviation and asymmetry coefficient) and droughts statistics (duration, magnitude and intensity) has been performed to identify which models are better in terms of goodness of fit to reproduce the historical series. The drought statistics have been obtained from the Standard Precipitation index (SPI) series using the Theory of Runs. This analysis allows discriminate the best RCM and the best combination of model and correction technique in the bias-correction method. We have also analyzed the possibilities of using different Stochastic Weather Generators to approximate the basic and droughts statistics of the historical series. These analyses have been performed in our case study in a lumped and in a distributed way in order to assess its sensibility to the spatial scale. The statistic of the future temperature series obtained with different ensemble options are quite homogeneous, but the precipitation shows a higher sensibility to the adopted method and spatial scale. The global increment in the mean temperature values are 31.79 %, 31.79 %, 31.03 % and 31.74 % for the distributed bias-correction, distributed delta-change, lumped bias-correction and lumped delta-change ensembles respectively and in the precipitation they are -25.48 %, -28.49 %, -26.42 % and -27.35% respectively. Acknowledgments: This research work has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank Spain02 and CORDEX projects for the data provided for this study and the R package qmap.

  11. Clinical accuracy of ExacTrac intracranial frameless stereotactic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerly, T.; Lancaster, C. M.; Geso, M.

    2011-09-15

    Purpose: In this paper, the authors assess the accuracy of the Brainlab ExacTrac system for frameless intracranial stereotactic treatments in clinical practice. Methods: They recorded couch angle and image fusion results (comprising lateral, longitudinal, and vertical shifts, and rotation corrections about these axes) for 109 stereotactic radiosurgery and 166 stereotactic radiotherapy patient treatments. Frameless stereotactic treatments involve iterative 6D image fusion corrections applied until the results conform to customizable pass criteria, theirs being 0.7 mm and 0.5 deg. for each axis. The planning CT slice thickness was 1.25 mm. It has been reported in the literature that the CT slices'more » thickness impacts the accuracy of localization to bony anatomy. The principle of invariance with respect to patient orientation was used to determine spatial accuracy. Results: The data for radiosurgery comprised 927 image pairs, of which 532 passed (pass ratio of 57.4%). The data for radiotherapy comprised 15983 image pairs, of which 10 050 passed (pass ratio of 62.9%). For stereotactic radiotherapy, the combined uncertainty of ExacTrac calibration, image fusion, and intrafraction motion was (95% confidence interval) 0.290-0.302 and 0.306-0.319 mm in the longitudinal and lateral axes, respectively. The combined uncertainty of image fusion and intrafraction motion in the anterior-posterior coordinates was 0.174-0.182 mm. For stereotactic radiosurgery, the equivalent ranges are 0.323-0.393, 0.337-0.409, and 0.231-0.281 mm. The overall spatial accuracy was 1.24 mm for stereotactic radiotherapy (SRT) and 1.35 mm for stereotactic radiosurgery (SRS). Conclusions: The ExacTrac intracranial frameless stereotactic system spatial accuracy is adequate for clinical practice, and with the same pass criteria, SRT is more accurate than SRS. They now use frameless stereotaxy exclusively at their center.« less

  12. A PET system based on 2-18FDG production with a low energy electrostatic proton accelerator and a dual headed PET scanner.

    PubMed

    Sandell, A; Ohlsson, T; Erlandsson, K; Hellborg, R; Strand, S E

    1992-01-01

    We have developed a comparatively inexpensive PET system, based on a rotating scanner with two scintillation camera heads, and a nearby low energy electrostatic proton accelerator for production of short-lived radionuclides. Using a 6 MeV proton beam of 5 microA, and by optimization of the target geometry for the 18O(p,n)18F reaction, 750 MBq of 2-18FDG can be obtained. The PET scanner shows a spatial resolution of 6 mm (FWHM) and a sensitivity of 80 s-1kBq-1ml-1 (3 kcps/microCi/ml). Various corrections are included in the imaging process, to compensate for spatial and temporal response variations in the detector system. Both filtered backprojection and iterative reconstruction methods are employed. Clinical studies have been performed with acquisition times of 30-40 min. The system will be used for clinical experimental research with short- as well as long-lived positron emitters. Also the possibility of true 3D reconstruction is under evaluation.

  13. Automated processing of shoeprint images based on the Fourier transform for use in forensic science.

    PubMed

    de Chazal, Philip; Flynn, John; Reilly, Richard B

    2005-03-01

    The development of a system for automatically sorting a database of shoeprint images based on the outsole pattern in response to a reference shoeprint image is presented. The database images are sorted so that those from the same pattern group as the reference shoeprint are likely to be at the start of the list. A database of 476 complete shoeprint images belonging to 140 pattern groups was established with each group containing two or more examples. A panel of human observers performed the grouping of the images into pattern categories. Tests of the system using the database showed that the first-ranked database image belongs to the same pattern category as the reference image 65 percent of the time and that a correct match appears within the first 5 percent of the sorted images 87 percent of the time. The system has translational and rotational invariance so that the spatial positioning of the reference shoeprint images does not have to correspond with the spatial positioning of the shoeprint images of the database. The performance of the system for matching partial-prints was also determined.

  14. Volume dependence of N-body bound states

    NASA Astrophysics Data System (ADS)

    König, Sebastian; Lee, Dean

    2018-04-01

    We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.

  15. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion.

    PubMed

    Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L

    2015-12-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.

  16. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion

    PubMed Central

    Malyarenko, Dariya I.; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K.; Ross, Brian D.; Chenevert, Thomas L.

    2015-01-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b-maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction. PMID:26811845

  17. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    PubMed

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  18. A groundwater data assimilation application study in the Heihe mid-reach

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Marti, B. S.; Wolfgang, K.; Li, N.

    2017-12-01

    The present work focuses on modelling of the groundwater flow in the mid-reach of the endorheic river Heihe in the Zhangye oasis (Gansu province) in arid north-west China. In order to optimise the water resources management in the oasis, reliable forecasts of groundwater level development under different management options and environmental boundary conditions have to be produced. For this means, groundwater flow is modelled with Modflow and coupled to an Ensemble Kalman Filter programmed in Matlab. The model is updated with monthly time steps, featuring perturbed boundary conditions to account for uncertainty in model forcing. Constant biases between model and observations have been corrected prior to updating and compared to model runs without bias correction. Different options for data assimilation (states and/or parameters), updating frequency, and measures against filter inbreeding (damping factor, covariance inflation, spatial localization) have been tested against each other. Results show a high dependency of the Ensemble Kalman filter performance on the selection of observations for data assimilation. For the present regional model, bias correction is necessary for a good filter performance. A combination of spatial localization and covariance inflation is further advisable to reduce filter inbreeding problems. Best performance is achieved if parameter updates are not large, an indication for good prior model calibration. Asynchronous updating of parameter values once every five years (with data of the past five years) and synchronous updating of the groundwater levels is better suited for this groundwater system with not or slow changing parameter values than synchronous updating of both groundwater levels and parameters at every time step applying a damping factor. The filter is not able to correct time lags of signals.

  19. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  20. Extra-articular deformity correction using Taylor spatial frame prior to total knee arthroplasty.

    PubMed

    Tawari, Gautam J K; Maheshwari, Rajan; Madan, Sanjeev S

    2018-03-20

    A good long-term outcome following a total knee arthroplasty relies on restoration of the mechanical axis and effective soft tissue balancing of the prosthetic knee. Arthroplasty surgery in patients with secondary osteoarthritis of the knee with an extra-articular tibial deformity is a complex and challenging procedure. The correction of mal-alignment of the mechanical axis is associated with unpredictable result and with higher revision rates. Single-staged deformity correction and replacement surgery often result in the use of constraint implants. We describe our experience with staged correction of deformity using a Taylor Spatial Frame (TSF) followed by total knee arthroplasty in these patients and highlight the advantage of staged approach. The use of TSF fixator for deformity correction prior to a primary total knee arthroplasty has not been described in the literature. We describe three cases of secondary osteoarthritis of the knee associated with multiplanar tibial deformity treated effectively with a total knee arthroplasty following deformity correction and union using a TSF. All patients had an improved Knee Society score and Oxford Knee score postoperatively and were satisfied with their replacement outcome. Staged deformity correction followed by arthroplasty allows the use of standard primary arthroplasty implants with predicable results and flexible aftercare. This approach may also provide significant improvement of patient symptoms following correction of deformity resulting in deferment of the arthroplasty surgery.

  1. Development and demonstration of 2D dosimetry using optically stimulated luminescence from new Al2O3 films for radiotherapy applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Md Foiez

    Scope and Method of Study: The goal of this work was to develop and demonstrate a 2D dosimetry system based on the optically stimulated luminescence (OSL) from new Al2O3 films for radiotherapy applications. A 2D laser-scanning system was developed for the readout and two OSL films (Al2O3:C and Al2O3:C,Mg) were tested. A dose reconstruction algorithm addressing corrections required for the characteristic material properties and the properties related to the system design was developed. The dosimetric properties of the system were tested using clinical X-ray (6 MV) beam. The feasibility of small field dosimetry was tested using heavy ion beams (221 MeV proton and 430 MeV 12C beam). For comparison, clinical tests were performed with ionization chamber, diode arrays and the commercial radiochromic films (Gafchromic EBT3) when applicable. Findings and Conclusions: The results demonstrate that the developed image reconstruction algorithm enabled > 300x faster laser-scanning readout of the Al2O3 films, eliminating the restriction imposed by its slow luminescence decay. The algorithm facilitates submillimeter spatial resolution, reduces the scanner position dependence (of light collection efficiency) and removes the inherent galvo geometric distortion, among other corrections. The system has a background signal < 1 mGy, linearity correction factor of < 10% up to ˜4.0 Gy and < 2% dose uncertainty over the clinically relevant dose range of 0.1 - 30 Gy. The system has a dynamic range of 4 - 5 orders, only limited by PMT linearity. The absolute response from Al2O2:C films is higher than Al2O 2:C,Mg films, but with lower image signal-to-noise ratio due to lower concentration of fast F+-center emission. As a result, Al2O2:C,Mg films are better suited than Al2O3:C films for small field dosimetry, which requires precise dosimetry with sub-millimeter spatial resolution. The dose uncertainty associated with OSL film dosimetry is lower than that associated with EBT3 film dosimetry due to lower background, simpler calibration and wider dynamic range. In conclusion, this work demonstrates excellent potentials of the 2D OSL dosimetry system for both relative and absolute dosimetry in radiotherapy applications, with especial emphasis on small fields.

  2. Deterministic ion beam material adding technology for high-precision optical surfaces.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2013-02-20

    Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.

  3. Integrated interpretation of overlapping AEM datasets achieved through standardisation

    NASA Astrophysics Data System (ADS)

    Sørensen, Camilla C.; Munday, Tim; Heinson, Graham

    2015-12-01

    Numerous airborne electromagnetic surveys have been acquired in Australia using a variety of systems. It is not uncommon to find two or more surveys covering the same ground, but acquired using different systems and at different times. Being able to combine overlapping datasets and get a spatially coherent resistivity-depth image of the ground can assist geological interpretation, particularly when more subtle geophysical responses are important. Combining resistivity-depth models obtained from the inversion of airborne electromagnetic (AEM) data can be challenging, given differences in system configuration, geometry, flying height and preservation or monitoring of system acquisition parameters such as waveform. In this study, we define and apply an approach to overlapping AEM surveys, acquired by fixed wing and helicopter time domain electromagnetic (EM) systems flown in the vicinity of the Goulds Dam uranium deposit in the Frome Embayment, South Australia, with the aim of mapping the basement geometry and the extent of the Billeroo palaeovalley. Ground EM soundings were used to standardise the AEM data, although results indicated that only data from the REPTEM system needed to be corrected to bring the two surveys into agreement and to achieve coherent spatial resistivity-depth intervals.

  4. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    NASA Astrophysics Data System (ADS)

    Uzun Ozsahin, D.; Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  5. Scene-based nonuniformity correction using local constant statistics.

    PubMed

    Zhang, Chao; Zhao, Wenyi

    2008-06-01

    In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts.

  6. The Effect of Concomitant Fields in Fast Spin Echo Acquisition on Asymmetric MRI Gradient Systems

    PubMed Central

    Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Huston, John; Shu, Yunhong; Gray, Erin M.; Foo, Thomas K.F.; Bernstein, Matt A.

    2017-01-01

    Purpose To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. Methods After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. Results It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. Conclusions We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. PMID:28643408

  7. Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction

    PubMed Central

    Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver

    2015-01-01

    High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146

  8. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  9. Mapping the Spread of Methamphetamine Abuse in California From 1995 to 2008

    PubMed Central

    Ponicki, William R.; Remer, Lillian G.; Waller, Lance A.; Zhu, Li; Gorman, Dennis M.

    2013-01-01

    Objectives. From 1983 to 2008, the incidence of methamphetamine abuse and dependence (MA) presenting at hospitals in California increased 13-fold. We assessed whether this growth could be characterized as a drug epidemic. Methods. We geocoded MA discharges to residential zip codes from 1995 through 2008. We related discharges to population and environmental characteristics using Bayesian Poisson conditional autoregressive models, correcting for small area effects and spatial misalignment and enabling an assessment of contagion between areas. Results. MA incidence increased exponentially in 3 phases interrupted by implementation of laws limiting access to methamphetamine precursors. MA growth from 1999 through 2008 was 17% per year. MA was greatest in areas with larger White or Hispanic low-income populations, small household sizes, and good connections to highway systems. Spatial misalignment was a source of bias in estimated effects. Spatial autocorrelation was substantial, accounting for approximately 80% of error variance in the model. Conclusions. From 1995 through 2008, MA exhibited signs of growth and spatial spread characteristic of drug epidemics, spreading most rapidly through low-income White and Hispanic populations living outside dense urban areas. PMID:23078474

  10. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    PubMed

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  11. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  12. Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions.

    PubMed

    Roggemann, M C; Welsh, B M; Montera, D; Rhoadarmer, T A

    1995-07-10

    Simulating the effects of atmospheric turbulence on optical imaging systems is an important aspect of understanding the performance of these systems. Simulations are particularly important for understanding the statistics of some adaptive-optics system performance measures, such as the mean and variance of the compensated optical transfer function, and for understanding the statistics of estimators used to reconstruct intensity distributions from turbulence-corrupted image measurements. Current methods of simulating the performance of these systems typically make use of random phase screens placed in the system pupil. Methods exist for making random draws of phase screens that have the correct spatial statistics. However, simulating temporal effects and anisoplanatism requires one or more phase screens at different distances from the aperture, possibly moving with different velocities. We describe and demonstrate a method for creating random draws of phase screens with the correct space-time statistics for a bitrary turbulence and wind-velocity profiles, which can be placed in the telescope pupil in simulations. Results are provided for both the von Kármán and the Kolmogorov turbulence spectra. We also show how to simulate anisoplanatic effects with this technique.

  13. Aberration correction considering curved sample surface shape for non-contact two-photon excitation microscopy with spatial light modulator.

    PubMed

    Matsumoto, Naoya; Konno, Alu; Inoue, Takashi; Okazaki, Shigetoshi

    2018-06-18

    In this paper, excitation light wavefront modulation is performed considering the curved sample surface shape to demonstrate high-quality deep observation using two-photon excitation microscopy (TPM) with a dry objective lens. A large spherical aberration typically occurs when the refractive index (RI) interface between air and the sample is a plane perpendicular to the optical axis. Moreover, the curved sample surface shape and the RI mismatch cause various aberrations, including spherical ones. Consequently, the fluorescence intensity and resolution of the obtained image are degraded in the deep regions. To improve them, we designed a pre-distortion wavefront for correcting the aberration caused by the curved sample surface shape by using a novel, simple optical path length difference calculation method. The excitation light wavefront is modulated to the pre-distortion wavefront by a spatial light modulator incorporated in the TPM system before passing through the interface, where the RI mismatch occurs. Thus, the excitation light is condensed without aberrations. Blood vessels were thereby observed up to an optical depth of 2,000 μm in a cleared mouse brain by using a dry objective lens.

  14. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  15. Wavefront Control and Image Restoration with Less Computing

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2010-01-01

    PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial-frequency (Fourier-transform) domain to obtain measures of the piston, tip, and tilt errors over each segment or subaperture. Once these measures are known, they are fed back to the actuators to correct the errors. In addition, measures of errors that remain after correction by use of the actuators are further utilized in an algorithm in which the image is phase-corrected in the spatial-frequency domain and then transformed back to the spatial domain at each time step and summed with the images from all previous time steps to obtain a final image having a greater signal-to-noise ratio (and, hence, a visual quality) higher than would otherwise be attainable.

  16. Modelling the physics in iterative reconstruction for transmission computed tomography

    PubMed Central

    Nuyts, Johan; De Man, Bruno; Fessler, Jeffrey A.; Zbijewski, Wojciech; Beekman, Freek J.

    2013-01-01

    There is an increasing interest in iterative reconstruction (IR) as a key tool to improve quality and increase applicability of X-ray CT imaging. IR has the ability to significantly reduce patient dose, it provides the flexibility to reconstruct images from arbitrary X-ray system geometries and it allows to include detailed models of photon transport and detection physics, to accurately correct for a wide variety of image degrading effects. This paper reviews discretisation issues and modelling of finite spatial resolution, Compton scatter in the scanned object, data noise and the energy spectrum. Widespread implementation of IR with highly accurate model-based correction, however, still requires significant effort. In addition, new hardware will provide new opportunities and challenges to improve CT with new modelling. PMID:23739261

  17. Auditory rehabilitation after stroke: treatment of auditory processing disorders in stroke patients with personal frequency-modulated (FM) systems.

    PubMed

    Koohi, Nehzat; Vickers, Deborah; Chandrashekar, Hoskote; Tsang, Benjamin; Werring, David; Bamiou, Doris-Eva

    2017-03-01

    Auditory disability due to impaired auditory processing (AP) despite normal pure-tone thresholds is common after stroke, and it leads to isolation, reduced quality of life and physical decline. There are currently no proven remedial interventions for AP deficits in stroke patients. This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. Fifty stroke patients had baseline audiological assessments, AP tests and completed the (modified) Amsterdam Inventory for Auditory Disability and Hearing Handicap Inventory for Elderly questionnaires. Nine out of these 50 patients were diagnosed with disordered AP based on severe deficits in understanding speech in background noise but with normal pure-tone thresholds. These nine patients underwent spatial speech-in-noise testing in a sound-attenuating chamber (the "crescent of sound") with and without FM systems. The signal-to-noise ratio (SNR) for 50% correct speech recognition performance was measured with speech presented from 0° azimuth and competing babble from ±90° azimuth. Spatial release from masking (SRM) was defined as the difference between SNRs measured with co-located speech and babble and SNRs measured with spatially separated speech and babble. The SRM significantly improved when babble was spatially separated from target speech, while the patients had the FM systems in their ears compared to without the FM systems. Personal FM systems may substantially improve speech-in-noise deficits in stroke patients who are not eligible for conventional hearing aids. FMs are feasible in stroke patients and show promise to address impaired AP after stroke. Implications for Rehabilitation This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. All cases significantly improved speech perception in noise with the FM systems, when noise was spatially separated from the speech signal by 90° compared with unaided listening. Personal FM systems are feasible in stroke patients, and may be of benefit in just under 20% of this population, who are not eligible for conventional hearing aids.

  18. Blind deconvolution post-processing of images corrected by adaptive optics

    NASA Astrophysics Data System (ADS)

    Christou, Julian C.

    1995-08-01

    Experience with the adaptive optics system at the Starfire Optical Range has shown that the point spread function is non-uniform and varies both spatially and temporally as well as being object dependent. Because of this, the application of a standard linear and non-linear deconvolution algorithms make it difficult to deconvolve out the point spread function. In this paper we demonstrate the application of a blind deconvolution algorithm to adaptive optics compensated data where a separate point spread function is not needed.

  19. Nonlinear-Optical Correction of Aberrations in Imaging Telescopes Based on a Diffraction Structure on the Primary Mirror

    DTIC Science & Technology

    1998-01-01

    48 f) Metal and semiconductor thin- film systems ................ 48 3.3.2. Methods of formation of interference field for recording the hologram...in others - dynamic holograms [27,29,30,33] based either on photorefractive crystals [27,33], or on liquid -crystal spatial light modulators (SLM...variations of the primary mirror’s curvature, which can be caused, e.g., by thermal effects or by inaccuracy in adjustment of the elastic thin- film mirror

  20. An interactive Doppler velocity dealiasing scheme

    NASA Astrophysics Data System (ADS)

    Pan, Jiawen; Chen, Qi; Wei, Ming; Gao, Li

    2009-10-01

    Doppler weather radars are capable of providing high quality wind data at a high spatial and temporal resolution. However, operational application of Doppler velocity data from weather radars is hampered by the infamous limitation of the velocity ambiguity. This paper reviews the cause of velocity folding and presents the unfolding method recently implemented for the CINRAD systems. A simple interactive method for velocity data, which corrects de-aliasing errors, has been developed and tested. It is concluded that the algorithm is very efficient and produces high quality velocity data.

  1. Snow cover monitoring by machine processing of multitemporal LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Luther, S. G.; Bartolucci, L. A.; Hoffer, R. M.

    1975-01-01

    LANDSAT frames were geometrically corrected and data sets from six different dates were overlaid to produce a 24 channel (six dates and four wavelength bands) data tape. Changes in the extent of the snowpack could be accurately and easily determined using a change detection technique on data which had previously been classified by the LARSYS software system. A second phase of the analysis involved determination of the relationship between spatial resolution or data sampling frequency and accuracy of measuring the area of the snowpack.

  2. Solving constant-coefficient differential equations with dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Weixuan; Qu, Che; Zhang, Xiangdong

    2016-07-01

    Recently, the concept of metamaterial analog computing has been proposed (Silva et al 2014 Science 343 160-3). Some mathematical operations such as spatial differentiation, integration, and convolution, have been performed by using designed metamaterial blocks. Motivated by this work, we propose a practical approach based on dielectric metamaterial to solve differential equations. The ordinary differential equation can be solved accurately by the correctly designed metamaterial system. The numerical simulations using well-established numerical routines have been performed to successfully verify all theoretical analyses.

  3. Real-time fMRI processing with physiological noise correction - Comparison with off-line analysis.

    PubMed

    Misaki, Masaya; Barzigar, Nafise; Zotev, Vadim; Phillips, Raquel; Cheng, Samuel; Bodurka, Jerzy

    2015-12-30

    While applications of real-time functional magnetic resonance imaging (rtfMRI) are growing rapidly, there are still limitations in real-time data processing compared to off-line analysis. We developed a proof-of-concept real-time fMRI processing (rtfMRIp) system utilizing a personal computer (PC) with a dedicated graphic processing unit (GPU) to demonstrate that it is now possible to perform intensive whole-brain fMRI data processing in real-time. The rtfMRIp performs slice-timing correction, motion correction, spatial smoothing, signal scaling, and general linear model (GLM) analysis with multiple noise regressors including physiological noise modeled with cardiac (RETROICOR) and respiration volume per time (RVT). The whole-brain data analysis with more than 100,000voxels and more than 250volumes is completed in less than 300ms, much faster than the time required to acquire the fMRI volume. Real-time processing implementation cannot be identical to off-line analysis when time-course information is used, such as in slice-timing correction, signal scaling, and GLM. We verified that reduced slice-timing correction for real-time analysis had comparable output with off-line analysis. The real-time GLM analysis, however, showed over-fitting when the number of sampled volumes was small. Our system implemented real-time RETROICOR and RVT physiological noise corrections for the first time and it is capable of processing these steps on all available data at a given time, without need for recursive algorithms. Comprehensive data processing in rtfMRI is possible with a PC, while the number of samples should be considered in real-time GLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nonuniformity correction of infrared cameras by reading radiance temperatures with a spatially nonhomogeneous radiation source

    NASA Astrophysics Data System (ADS)

    Gutschwager, Berndt; Hollandt, Jörg

    2017-01-01

    We present a novel method of nonuniformity correction (NUC) of infrared cameras and focal plane arrays (FPA) in a wide optical spectral range by reading radiance temperatures and by applying a radiation source with an unknown and spatially nonhomogeneous radiance temperature distribution. The benefit of this novel method is that it works with the display and the calculation of radiance temperatures, it can be applied to radiation sources of arbitrary spatial radiance temperature distribution, and it only requires sufficient temporal stability of this distribution during the measurement process. In contrast to this method, an initially presented method described the calculation of NUC correction with the reading of monitored radiance values. Both methods are based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogeneous radiance temperature distribution and a thermal imager of a predefined nonuniform FPA responsivity is presented.

  5. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  6. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    PubMed

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Motor-mediated Cortical versus Astral Microtubule Organization in Lipid-monolayered Droplets

    PubMed Central

    Baumann, Hella; Surrey, Thomas

    2014-01-01

    The correct spatial organization of microtubules is of crucial importance for determining the internal architecture of eukaryotic cells. Microtubules are arranged in space by a multitude of biochemical activities and by spatial constraints imposed by the cell boundary. The principles underlying the establishment of distinct intracellular architectures are only poorly understood. Here, we studied the effect of spatial confinement on the self-organization of purified motors and microtubules that are encapsulated in lipid-monolayered droplets in oil, varying in diameter from 5–100 μm, which covers the size range of typical cell bodies. We found that droplet size alone had a major organizing influence. The presence of a microtubule-crosslinking motor protein decreased the number of accessible types of microtubule organizations. Depending on the degree of spatial confinement, the presence of the motor caused either the formation of a cortical array of bent microtubule bundles or the generation of single microtubule asters in the droplets. These are two of the most prominent forms of microtubule arrangements in plant and metazoan cells. Our results provide insights into the combined organizing influence of spatial constraints and cross-linking motor activities determining distinct microtubule architectures in a minimal biomimetic system. In the future, this simple lipid-monolayered droplet system characterized here can be expanded readily to include further biochemical activities or used as the starting point for the investigation of motor-mediated microtubule organization inside liposomes surrounded by a deformable lipid bilayer. PMID:24966327

  8. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  9. Separation of spatial-temporal patterns ('climatic modes') by combined analysis of really measured and generated numerically vector time series

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.

    2013-12-01

    The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/

  10. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    PubMed

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  11. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    NASA Astrophysics Data System (ADS)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  12. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5∘, and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems. PMID:24977504

  13. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation.

    PubMed

    Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei

    2014-06-16

    Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5° and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems.

  14. Effect of different thickness of material filter on Tc-99m spectra and performance parameters of gamma camera

    NASA Astrophysics Data System (ADS)

    Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.

    2014-11-01

    This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.

  15. Experimental verification of the minimum number of diffractive zones for effective chromatic correction in the LWIR

    NASA Astrophysics Data System (ADS)

    Ramsey, J. L.; Walsh, K. F.; Smith, M.; Deegan, J.

    2016-05-01

    With the move to smaller pixel sizes in the longwave IR region there has been a push for shorter focal length lenses that are smaller, cheaper and lighter and that resolve lower spatial frequencies. As a result lenses must have better correction for both chromatic and monochromatic aberrations. This leads to the increased use of aspheres and diffractive optical elements (kinoforms). With recent developments in the molding of chalcogenide materials these aspheres and kinoforms are more cost effective to manufacture. Without kinoforms the axial color can be on the order of 15 μm which degrades the performance of the lens at the Nyquist frequency. The kinoforms are now on smaller elements and are correcting chromatic aberration which is on the order of the design wavelength. This leads to kinoform structures that do not require large phase changes and therefore have 1.5 to just over 2 zones. The question becomes how many zones are required to correct small amounts of chromatic aberration in the system and are they functioning as predicted by the lens design software? We investigate both the design performance and the as-built performance of two designs that incorporate kinoforms for the correction of axial chromatic aberration.

  16. Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit.

    PubMed

    Dehairs, M; Bosmans, H; Desmet, W; Marshall, N W

    2017-07-31

    Current automatic dose rate controls (ADRCs) of dynamic x-ray imaging systems adjust their acquisition parameters in response to changes in patient thickness in order to achieve a constant signal level in the image receptor. This work compares a 3 parameter (3P) ADRC control to a more flexible 5-parameter (5P) method to meet this goal. A phantom composed of 15 composite poly(methyl) methacrylate (PMMA)/aluminium (Al) plates was imaged on a Siemens Artis Q dynamic system using standard 3P and 5P ADRC techniques. Phantom thickness covered a water equivalent thickness (WET) range of 2.5 cm to 37.5 cm. Acquisition parameter settings (tube potential, tube current, pulse length, copper filtration and focus size) and phantom entrance air kerma rate (EAKR) were recorded as the thickness changed. Signal difference to noise ratio (SDNR) was measured using a 0.3 mm iron insert centred in the PMMA stack, positioned at the system isocentre. SDNR was then multiplied by modulation transfer function (MTF) based correction factors for focal spot penumbral blurring and motion blurring, to give a spatial frequency dependent parameter, SDNR(u). These MTF correction factors were evaluated for an object motion of 25 mm s -1 and at a spatial frequency of 1.4 mm -1 in the object plane, typical for cardiac imaging. The figure of merit (FOM) was calculated as SDNR(u)²/EAKR for the two ADRC regimes. Using 5P versus 3P technique showed clear improvements over all thicknesses. Averaged over clinically relevant adult WET values (20 cm-37.5 cm), EAKR was reduced by 13% and 27% for fluoroscopy and acquisition modes, respectively, while the SDNR(u) based FOM increased by 16% and 34% for fluoroscopy and acquisition. In conclusion, the generalized FOM, taking into account the influence of focus size and object motion, showed benefit in terms of image quality and patient dose for the 5-parameter control over 3-parameter method for the ADRC programming of dynamic x-ray imaging systems.

  17. Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit

    NASA Astrophysics Data System (ADS)

    Dehairs, M.; Bosmans, H.; Desmet, W.; Marshall, N. W.

    2017-08-01

    Current automatic dose rate controls (ADRCs) of dynamic x-ray imaging systems adjust their acquisition parameters in response to changes in patient thickness in order to achieve a constant signal level in the image receptor. This work compares a 3 parameter (3P) ADRC control to a more flexible 5-parameter (5P) method to meet this goal. A phantom composed of 15 composite poly(methyl) methacrylate (PMMA)/aluminium (Al) plates was imaged on a Siemens Artis Q dynamic system using standard 3P and 5P ADRC techniques. Phantom thickness covered a water equivalent thickness (WET) range of 2.5 cm to 37.5 cm. Acquisition parameter settings (tube potential, tube current, pulse length, copper filtration and focus size) and phantom entrance air kerma rate (EAKR) were recorded as the thickness changed. Signal difference to noise ratio (SDNR) was measured using a 0.3 mm iron insert centred in the PMMA stack, positioned at the system isocentre. SDNR was then multiplied by modulation transfer function (MTF) based correction factors for focal spot penumbral blurring and motion blurring, to give a spatial frequency dependent parameter, SDNR(u). These MTF correction factors were evaluated for an object motion of 25 mm s-1 and at a spatial frequency of 1.4 mm-1 in the object plane, typical for cardiac imaging. The figure of merit (FOM) was calculated as SDNR(u)²/EAKR for the two ADRC regimes. Using 5P versus 3P technique showed clear improvements over all thicknesses. Averaged over clinically relevant adult WET values (20 cm-37.5 cm), EAKR was reduced by 13% and 27% for fluoroscopy and acquisition modes, respectively, while the SDNR(u) based FOM increased by 16% and 34% for fluoroscopy and acquisition. In conclusion, the generalized FOM, taking into account the influence of focus size and object motion, showed benefit in terms of image quality and patient dose for the 5-parameter control over 3-parameter method for the ADRC programming of dynamic x-ray imaging systems.

  18. Novel deformable mirror design for possible wavefront correction in CO2 laser fusion system

    NASA Astrophysics Data System (ADS)

    Gunn, S. V.; Heinz, T. A.; Henderson, W. D.; Massie, N. A.; Viswanathan, V. K.

    1980-11-01

    Analysis at Los Alamos and elsewhere has resulted in the conclusion that deformable mirrors can substantially improve the optical performance of laser fusion systems, as the errors are mostly static or quasi-static with mainly low spatial frequencies across the aperture resulting in low order Seidel aberrations in the beam. A novel deformable mirror assembly (Fig. 1) has been fabricated with 19 actuators capable of surface deflection of ±20 microns. The mirror surface deflections are produced by a unique differential ball screw that acts as both a force and position actuator. The screw is driven by a stepper motor giving a surface positioning resolution of 0.025 micron. No holding voltage potential is required, and a piezoceramic element in series with each ball screw provides a ±1 micron amplitude high-frequency surface dither to aid the correction process. Mirror performance in terms of individual actuator influence function, cross-coupling, figure attainment, long-term surface stability as well as optical performance characteristics will be discussed.

  19. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Bradley M.; Stuckelberger, Michael; Jeffries, April

    The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less

  20. Krylov Deferred Correction Accelerated Method of Lines Transpose for Parabolic Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jun; Jingfang, Huang

    2008-01-01

    In this paper, a new class of numerical methods for the accurate and efficient solutions of parabolic partial differential equations is presented. Unlike traditional method of lines (MoL), the new {\\bf \\it Krylov deferred correction (KDC) accelerated method of lines transpose (MoL^T)} first discretizes the temporal direction using Gaussian type nodes and spectral integration, and symbolically applies low-order time marching schemes to form a preconditioned elliptic system, which is then solved iteratively using Newton-Krylov techniques such as Newton-GMRES or Newton-BiCGStab method. Each function evaluation in the Newton-Krylov method is simply one low-order time-stepping approximation of the error by solving amore » decoupled system using available fast elliptic equation solvers. Preliminary numerical experiments show that the KDC accelerated MoL^T technique is unconditionally stable, can be spectrally accurate in both temporal and spatial directions, and allows optimal time-step sizes in long-time simulations.« less

  1. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study

    DOE PAGES

    West, Bradley M.; Stuckelberger, Michael; Jeffries, April; ...

    2017-01-01

    The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less

  2. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  3. Unilateral spatial neglect in the acute phase of ischemic stroke can predict long-term disability and functional capacity.

    PubMed

    Luvizutto, Gustavo José; Moliga, Augusta Fabiana; Rizzatti, Gabriela Rizzo Soares; Fogaroli, Marcelo Ortolani; Moura Neto, Eduardo de; Nunes, Hélio Rubens de Carvalho; Resende, Luiz Antônio de Lima; Bazan, Rodrigo

    2018-05-21

    The aim of this study was to assess the relationship between the degree of unilateral spatial neglect during the acute phase of stroke and long-term functional independence. This was a prospective study of right ischemic stroke patients in which the independent variable was the degree of spatial neglect and the outcome that was measured was functional independence. The potential confounding factors included sex, age, stroke severity, topography of the lesion, risk factors, glycemia and the treatment received. Unilateral spatial neglect was measured using the line cancellation test, the star cancellation test and the line bisection test within 48 hours of the onset of symptoms. Functional independence was measured using the modified Rankin and Barthel scales at 90 days after discharge. The relationship between unilateral spatial neglect and functional independence was analyzed using multiple logistic regression that was corrected for confounding factors. We studied 60 patients with a median age of 68 (34-89) years, 52% of whom were male and 74% of whom were Caucasian. The risk for moderate to severe disability increased with increasing star cancellation test scores (OR=1.14 [1.03-1.26], p=0.01) corrected for the stroke severity, which was a confounding factor that had a statistically positive association with disability (OR=1.63 [1.13-2.65], p=0.01). The best chance of functional independence decreased with increasing star cancellation test scores (OR=0.86 [0.78-0.96], p=0.006) corrected for the stroke severity, which was a confounding factor that had a statistically negative association with independence (OR=0.66 [0.48-0.92], p=0.017). The severity of unilateral spatial neglect in acute stroke worsens the degree of long-term disability and functional independence.

  4. A multi-source precipitation approach to fill gaps over a radar precipitation field

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  5. Thermodynamic and Differential Entropy under a Change of Variables

    PubMed Central

    Hnizdo, Vladimir; Gilson, Michael K.

    2013-01-01

    The differential Shannon entropy of information theory can change under a change of variables (coordinates), but the thermodynamic entropy of a physical system must be invariant under such a change. This difference is puzzling, because the Shannon and Gibbs entropies have the same functional form. We show that a canonical change of variables can, indeed, alter the spatial component of the thermodynamic entropy just as it alters the differential Shannon entropy. However, there is also a momentum part of the entropy, which turns out to undergo an equal and opposite change when the coordinates are transformed, so that the total thermodynamic entropy remains invariant. We furthermore show how one may correctly write the change in total entropy for an isothermal physical process in any set of spatial coordinates. PMID:24436633

  6. SU-G-JeP2-13: Spatial Accuracy Evaluation for Real-Time MR Guided Radiation Therapy Using a Novel Large-Field MRI Distortion Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolak, A; Bayouth, J; Bosca, R

    Purpose: Evaluate a large-field MRI phantom for assessment of geometric distortion in whole-body MRI for real-time MR guided radiation therapy. Methods: A prototype CIRS large-field MRI distortion phantom consisting of a PMMA cylinder (33 cm diameter, 30 cm length) containing a 3D-printed orthogonal grid (3 mm diameter rods, 20 mm apart), was filled with 6 mM NiCl{sub 2} and 30 mM NaCl solution. The phantom was scanned at 1.5T and 3.0T on a GE HDxt and Discovery MR750, respectively, and at 0.35T on a ViewRay system. Scans were obtained with and without 3D distortion correction to demonstrate the impact ofmore » such corrections. CT images were used as a reference standard for analysis of geometric distortion, as determined by a fully automated gradient-search method developed in Matlab. Results: 1,116 grid points distributed throughout a cylindrical volume 28 cm in diameter and 16 cm in length were identified and analyzed. With 3D distortion correction, average/maximum displacements for the 1.5, 3.0, and 0.35T systems were 0.84/2.91, 1.00/2.97, and 0.95/2.37 mm, respectively. The percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (73%, 92%, 97%), (54%, 85%, 97%), and (55%, 90%, 99%), respectively. A reduced scan volume of 20 × 20 × 10 cm{sup 3} (representative of a head and neck scan volume) consisting of 420 points was also analyzed. In this volume, the percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (90%, 99%, 100%), (63%, 95%, 100%), and (75%, 96%, 100%), respectively. Without 3D distortion correction, average/maximum displacements were 1.35/3.67, 1.67/4.46, and 1.51/3.89 mm, respectively. Conclusion: The prototype large-field MRI distortion phantom and developed software provide a thorough assessment of 3D spatial distortions in MRI. The distortions measured were acceptable for RT applications, both for the high field strengths and the system configuration developed by ViewRay.« less

  7. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more than two orders of magnitude greater than the best Deformable Mirrors currently made. Even with the increased spatial resolution, the cost of these devices is nearly two orders of magnitude less than the cost of the largest deformable mirror.« less

  8. Uncertainty management, spatial and temporal reasoning, and validation of intelligent environmental decision support systems

    USGS Publications Warehouse

    Sànchez-Marrè, Miquel; Gilbert, Karina; Sojda, Rick S.; Steyer, Jean Philippe; Struss, Peter; Rodríguez-Roda, Ignasi; Voinov, A.A.; Jakeman, A.J.; Rizzoli, A.E.

    2006-01-01

    There are inherent open problems arising when developing and running Intelligent Environmental Decision Support Systems (IEDSS). During daily operation of IEDSS several open challenge problems appear. The uncertainty of data being processed is intrinsic to the environmental system, which is being monitored by several on-line sensors and off-line data. Thus, anomalous data values at data gathering level or even uncertain reasoning process at later levels such as in diagnosis or decision support or planning can lead the environmental process to unsafe critical operation states. At diagnosis level or even at decision support level or planning level, spatial reasoning or temporal reasoning or both aspects can influence the reasoning processes undertaken by the IEDSS. Most of Environmental systems must take into account the spatial relationships between the environmental goal area and the nearby environmental areas and the temporal relationships between the current state and the past states of the environmental system to state accurate and reliable assertions to be used within the diagnosis process or decision support process or planning process. Finally, a related issue is a crucial point: are really reliable and safe the decisions proposed by the IEDSS? Are we sure about the goodness and performance of proposed solutions? How can we ensure a correct evaluation of the IEDSS? Main goal of this paper is to analyse these four issues, review some possible approaches and techniques to cope with them, and study new trends for future research within the IEDSS field.

  9. Contribution of self-motion perception to acoustic target localization.

    PubMed

    Pettorossi, V E; Brosch, M; Panichi, R; Botti, F; Grassi, S; Troiani, D

    2005-05-01

    The findings of this study suggest that acoustic spatial perception during head movement is achieved by the vestibular system, which is responsible for the correct dynamic of acoustic target pursuit. The ability to localize sounds in space during whole-body rotation relies on the auditory localization system, which recognizes the position of sound in a head-related frame, and on the sensory systems, namely the vestibular system, which perceive head and body movement. The aim of this study was to analyse the contribution of head motion cues to the spatial representation of acoustic targets in humans. Healthy subjects standing on a rotating platform in the dark were asked to pursue with a laser pointer an acoustic target which was horizontally rotated while the body was kept stationary or maintained stationary while the whole body was rotated. The contribution of head motion to the spatial acoustic representation could be inferred by comparing the gains and phases of the pursuit in the two experimental conditions when the frequency was varied. During acoustic target rotation there was a reduction in the gain and an increase in the phase lag, while during whole-body rotations the gain tended to increase and the phase remained constant. The different contributions of the vestibular and acoustic systems were confirmed by analysing the acoustic pursuit during asymmetric body rotation. In this particular condition, in which self-motion perception gradually diminished, an increasing delay in target pursuit was observed.

  10. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach.

    PubMed

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Lin, Yi-Ru; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-04-01

    This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts.

  11. Effect of Spatial Titration on Task Performance

    ERIC Educational Resources Information Center

    Glowacki, Lawrence

    1976-01-01

    A reinforcement schedule and spatial titration method were used to determine task-reinforcement area separation most preferred and effective in two third-grade boys. Errors in task performance decreased task-reinforcement area separation, while correct responses in task performance increased task-reinforcement area separation. (Author)

  12. Distortion correction and cross-talk compensation algorithm for use with an imaging spectrometer based spatially resolved diffuse reflectance system

    NASA Astrophysics Data System (ADS)

    Cappon, Derek J.; Farrell, Thomas J.; Fang, Qiyin; Hayward, Joseph E.

    2016-12-01

    Optical spectroscopy of human tissue has been widely applied within the field of biomedical optics to allow rapid, in vivo characterization and analysis of the tissue. When designing an instrument of this type, an imaging spectrometer is often employed to allow for simultaneous analysis of distinct signals. This is especially important when performing spatially resolved diffuse reflectance spectroscopy. In this article, an algorithm is presented that allows for the automated processing of 2-dimensional images acquired from an imaging spectrometer. The algorithm automatically defines distinct spectrometer tracks and adaptively compensates for distortion introduced by optical components in the imaging chain. Crosstalk resulting from the overlap of adjacent spectrometer tracks in the image is detected and subtracted from each signal. The algorithm's performance is demonstrated in the processing of spatially resolved diffuse reflectance spectra recovered from an Intralipid and ink liquid phantom and is shown to increase the range of wavelengths over which usable data can be recovered.

  13. Prefocused objective-pinhole unit for beam expanding and spatial filtering.

    PubMed

    Antes, G P

    1973-03-01

    A beam-expanding and spatial-filtering device, the prefocused objective-pinhole unit (POP unit), is presented. The design is primarily aimed at greater simplicity in handling and construction than the commercially available lens-pinhole spatial filters (LPSF), for once the pinhole is fixed in the correct position with respect to the objective, the alignment of the whole unit can be made an easy matter.

  14. Spatial heterogeneity of leaf area index across scales from simulation and remote sensing

    NASA Astrophysics Data System (ADS)

    Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl

    2016-04-01

    Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.

  15. Syzygies, Pluricanonical Maps, and the Birational Geometry of Varieties of Maximal Albanese Dimension

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, Kibrewossen B.

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products in mountainous regions. The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground-based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses a new ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar-gauge precipitation product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. In addition to biases, sometimes there is also spatial error between the radar and satellite precipitation estimates; one of them has to be geometrically corrected with reference to the other. A set of corresponding raining points between SPE and radar products are selected to apply linear registration using a regularized least square technique to minimize the dislocation error in SPEs with respect to available radar products. A weighted Successive Correction Method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial method for merging the rain gauges and climatological precipitation sources with radar and SPEs. We demonstrated the method using two satellite-based, CPC Morphing (CMORPH) and Hydro-Estimator (HE), two radar-gauge based, Stage-II and ST-IV, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over different geographical locations of the United States. Results show that: (a) the method of ensembles helped reduce biases in SPEs significantly; (b) the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements .The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the operational meteorology and hydrology community.

  16. Validation of the AMSU-B Bias Corrections Based on Satellite Measurements from SSM/T-2

    NASA Technical Reports Server (NTRS)

    Kolodner, Marc A.

    1999-01-01

    The NOAA-15 Advanced Microwave Sounding Unit-B (AMSU-B) was designed in the same spirit as the Special Sensor Microwave Water Vapor Profiler (SSM/T-2) on board the DMSP F11-14 satellites, to perform remote sensing of spatial and temporal variations in mid and upper troposphere humidity. While the SSM/T-2 instruments have a 48 km spatial resolution at nadir and 28 beam positions per scan, AMSU-B provides an improvement with a 16 km spatial resolution at nadir and 90 beam positions per scan. The AMSU-B instrument, though, has been experiencing radio frequency interference (RFI) contamination from the NOAA-15 transmitters whose effect is dependent upon channel, geographic location, and current spacecraft antenna configuration. This has lead to large cross-track biases reaching as high as 100 Kelvin for channel 17 (150 GHz) and 50 Kelvin for channel 19 (183 +/-3 GHz). NOAA-NESDIS has recently provided a series of bias corrections for AMSU-B data starting from March, 1999. These corrections are available for each of the five channels, for every third field of view, and for three cycles within an eight second period. There is also a quality indicator in each data record to indicate whether or not the bias corrections should be applied. As a precursor to performing retrievals of mid and upper troposphere humidity, a validation study is performed by statistically analyzing the differences between the F14 SSM/T-2 and the bias corrected AMSU-B brightness temperatures for three months in the spring of 1999.

  17. Harmonic Chain with Velocity Flips: Thermalization and Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia

    2016-12-01

    We consider the detailed structure of correlations in harmonic chains with pinning and a bulk velocity flip noise during the heat relaxation phase which occurs on diffusive time scales, for t=O(L^2) where L is the chain length. It has been shown earlier that for non-degenerate harmonic interactions these systems thermalize, and the dominant part of the correlations is given by local thermal equilibrium determined by a temperature profile which satisfies a linear heat equation. Here we are concerned with two new aspects about the thermalization process: the first order corrections in 1 / L to the local equilibrium correlations and the applicability of kinetic theory to study the relaxation process. Employing previously derived explicit uniform estimates for the temperature profile, we first derive an explicit form for the first order corrections to the particle position-momentum correlations. By suitably revising the definition of the Wigner transform and the kinetic scaling limit we derive a phonon Boltzmann equation whose predictions agree with the explicit computation. Comparing the two results, the corrections can be understood as arising from two different sources: a current-related term and a correction to the position-position correlations related to spatial changes in the phonon eigenbasis.

  18. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, A; Bauman, B; Gavel, D

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations havemore » been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.« less

  19. Application of Unmanned Aerial Systems in Spatial Downscaling of Landsat VIR imageries of Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Torres, A.; Hassan Esfahani, L.; Ebtehaj, A.; McKee, M.

    2016-12-01

    While coarse space-time resolution of satellite observations in visible to near infrared (VIR) is a serious limiting factor for applications in precision agriculture, high resolution remotes sensing observation by the Unmanned Aerial Systems (UAS) systems are also site-specific and still practically restrictive for widespread applications in precision agriculture. We present a modern spatial downscaling approach that relies on new sparse approximation techniques. The downscaling approach learns from a large set of coincident low- and high-resolution satellite and UAS observations to effectively downscale the satellite imageries in VIR bands. We focus on field experiments using the AggieAirTM platform and Landsat 7 ETM+ and Landsat 8 OLI observations obtained in an intensive field campaign in 2013 over an agriculture field in Scipio, Utah. The results show that the downscaling methods can effectively increase the resolution of Landsat VIR imageries by the order of 2 to 4 from 30 m to 15 and 7.5 m, respectively. Specifically, on average, the downscaling method reduces the root mean squared errors up to 26%, considering bias corrected AggieAir imageries as the reference.

  20. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  1. On the ionospheric impact of recent storm events on satellite-based augmentation systems in middle and low-latitude sectors

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Sparks, Lawrence; Mannucci, Anthony J.; Pi, Xiaoqing

    2003-01-01

    The Ionospheric correction algorithms have been characterized extensively for the mid-latitude region of the ionosphere where benign conditions usually exist. The United States Federal Aviation Administration's (FAA) Wide Area Augmentation System (WAAS) for civil aircraft navigation is focused primarily on the Conterminous United States (CONUS). Other Satellite-based Augmentation Systems (SBAS) include the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Global Navigation Satellite System (MSAS). Researchers are facing a more serious challenge in addressing the ionospheric impact on navigation using SBAS in other parts of the world such as the South American region on India. At equatorial latitudes, geophysical conditions lead to the so-called Appleton-Hartree (equatorial) anomaly phenomenon, which results in significantly larger ionospheric range delays and range delay spatial gradients than is observed in the CONUS or European sectors. In this paper, we use GPS measurements of geomagnetic storm days to perform a quantitative assessment of WAAS-type ionospheric correction algorithms in other parts of the world such as the low-latitude Brazil and mid-latitude Europe. For the study, we access a world-wide network of 400+ dual frequency GPS receivers.

  2. Algorithm for Stabilizing a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  3. The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme

    USGS Publications Warehouse

    Townshend, J.R.G.; Justice, C.O.; Skole, D.; Malingreau, J.-P.; Cihlar, J.; Teillet, P.; Sadowski, F.; Ruttenberg, S.

    1994-01-01

    Examination of the scientific priorities for the International Geosphere Biosphere Programme (IGBP) reveals a requirement for global land data sets in several of its Core Projects. These data sets need to be at several space and time scales. Requirements are demonstrated for the regular acquisition of data at spatial resolutions of 1 km and finer and at high temporal frequencies. Global daily data at a resolution of approximately 1 km are sensed by the Advanced Very High Resolution Radiometer (AVHRR), but they have not been available in a single archive. It is proposed, that a global data set of the land surface is created from remotely sensed data from the AVHRR to support a number of IGBP's projects. This data set should have a spatial resolution of 1 km and should be generated at least once every 10 days for the entire globe. The minimum length of record should be a year, and ideally a system should be put in place which leads to the continuous acquisition of 1 km data to provide a base line data set prior to the Earth Observing System (EOS) towards the end of the decade. Because of the high cloud cover in many parts of the world, it is necessary to plan for the collection of data from every orbit. Substantial effort will be required in the preprocessing of the data set involving radiometric calibration, atmospheric correction, geometric correction and temporal compositing, to make it suitable for the extraction of information.

  4. Using Climate Regionalization to Understand Climate Forecast System Version 2 (CFSv2) Precipitation Performance for the Conterminous United States (CONUS)

    NASA Technical Reports Server (NTRS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-01-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast SystemVersion 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  5. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.

    PubMed

    Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  6. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  7. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  8. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.

    2016-11-15

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advancedmore » optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.« less

  9. Structural response of existing spatial truss roof construction based on Cosserat rod theory

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Mikołaj

    2018-04-01

    Paper presents the application of the Cosserat rod theory and newly developed associated finite elements code as the tools that support in the expert-designing engineering practice. Mechanical principles of the 3D spatially curved rods, dynamics (statics) laws, principle of virtual work are discussed. Corresponding FEM approach with interpolation and accumulation techniques of state variables are shown that enable the formulation of the C0 Lagrangian rod elements with 6-degrees of freedom per node. Two test examples are shown proving the correctness and suitability of the proposed formulation. Next, the developed FEM code is applied to assess the structural response of the spatial truss roof of the "Olivia" Sports Arena Gdansk, Poland. The numerical results are compared with load test results. It is shown that the proposed FEM approach yields correct results.

  10. Potential of bias correction for downscaling passive microwave and soil moisture data

    USDA-ARS?s Scientific Manuscript database

    Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...

  11. A Novel Method of High Accuracy, Wavefront Phase and Amplitude Correction for Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.

    2003-01-01

    Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10(exp -4)lambda(rms) must be achieved over the critical range of spatial frequencies to produce the approx. 10(exp 10) contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (approx. 10(exp -4)) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.

  12. Geometric distortion correction in prostate diffusion-weighted MRI and its effect on quantitative apparent diffusion coefficient analysis.

    PubMed

    Nketiah, Gabriel; Selnaes, Kirsten M; Sandsmark, Elise; Teruel, Jose R; Krüger-Stokke, Brage; Bertilsson, Helena; Bathen, Tone F; Elschot, Mattijs

    2018-05-01

    To evaluate the effect of correction for B 0 inhomogeneity-induced geometric distortion in echo-planar diffusion-weighted imaging on quantitative apparent diffusion coefficient (ADC) analysis in multiparametric prostate MRI. Geometric distortion correction was performed in echo-planar diffusion-weighted images (b = 0, 50, 400, 800 s/mm 2 ) of 28 patients, using two b 0 scans with opposing phase-encoding polarities. Histology-matched tumor and healthy tissue volumes of interest delineated on T 2 -weighted images were mapped to the nondistortion-corrected and distortion-corrected data sets by resampling with and without spatial coregistration. The ADC values were calculated on the volume and voxel level. The effect of distortion correction on ADC quantification and tissue classification was evaluated using linear-mixed models and logistic regression, respectively. Without coregistration, the absolute differences in tumor ADC (range: 0.0002-0.189 mm 2 /s×10 -3 (volume level); 0.014-0.493 mm 2 /s×10 -3 (voxel level)) between the nondistortion-corrected and distortion-corrected were significantly associated (P < 0.05) with distortion distance (mean: 1.4 ± 1.3 mm; range: 0.3-5.3 mm). No significant associations were found upon coregistration; however, in patients with high rectal gas residue, distortion correction resulted in improved spatial representation and significantly better classification of healthy versus tumor voxels (P < 0.05). Geometric distortion correction in DWI could improve quantitative ADC analysis in multiparametric prostate MRI. Magn Reson Med 79:2524-2532, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.

    PubMed

    Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum

    2014-09-01

    Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.

  14. Ocean Color Inferred from Radiometers on Low-Flying Aircraft

    PubMed Central

    Churnside, James H.; Wilson, James J.

    2008-01-01

    The color of sunlight reflected from the ocean to orbiting visible radiometers has provided a great deal of information about the global ocean, after suitable corrections are made for atmospheric effects. Similar ocean-color measurements can be made from a low-flying aircraft to get higher spatial resolution and to obtain measurements under clouds. A different set of corrections is required in this case, and we describe algorithms to correct for clouds and sea-surface effects. An example is presented and errors in the corrections discussed. PMID:27879739

  15. Status of ARGOS - The Laser Guide Star System for the LBT

    NASA Astrophysics Data System (ADS)

    Raab, Walfried; Rabien, Sebastian; Gaessler, Wolfgang; Esposito, Simone; Antichi, Jacopo; Lloyd-Hart, Michael; Barl, Lothar; Beckmann, Udo; Bonaglia, Marco; Borelli, Jose; Brynnel, Joar; Buschkamp, Peter; Busoni, Lorenzo; Carbonaro, Luca; Christou, Julian; Connot, Claus; Davies, Richard; Deysenroth, Matthias; Durney, Olivier; Green, Richard; Gemperlein, Hans; Gasho, Victor; Haug, Marcus; Hubbard, Pete; Ihle, Sebastian; Kulas, Martin; Loose, Christina; Lehmitz, Michael; Noenickx, Jamison; Nussbaum, Edmund; Orban De Xivry, Gilles; Quirrenbach, Andreas; Peter, Diethard; Rahmer, Gustavo; Rademacher, Matt; Storm, Jesper; Schwab, Christian; Vaitheeswaran, Vidhya; Ziegleder, Julian

    2013-12-01

    ARGOS is an innovative multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT), designed to perform effective GLAO correction over a very wide field of view. The system is using high powered pulsed green (532 nm) lasers to generate a set of three guide stars above each of the LBT mirrors. The laser beams are launched through a 40 cm telescope and focused at an altitude of 12 km, creating laser beacons by means of Rayleigh scattering. The returning scattered light, primarily sensitive to the turbulences close to the ground, is detected by a gated wavefront sensor system. The derived ground layer correction signals are directly driving the adaptive secondary mirror of the LBT. ARGOS is especially designed for operation with the multiple object spectrograph Luci, which will benefit from both, the improved spatial resolution, as well as the strongly enhanced flux. In addition to the GLAO Rayleigh beacon system, ARGOS was also designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system has undergone extensive tests during Summer 2012 and is scheduled for installation at the LBT in Spring 2013. The remaining sub-systems will be installed during the course of 2013. We report on the overall status of the ARGOS system and the results of the sub-system characterizations carried out so far.

  16. Large-field-of-view imaging by multi-pupil adaptive optics.

    PubMed

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  17. Optimizing the Hydrological and Biogeochemical Simulations on a Hillslope with Stony Soil

    NASA Astrophysics Data System (ADS)

    Zhu, Q.

    2017-12-01

    Stony soils are widely distributed in the hilly area. However, traditional pedotransfer functions are not reliable in predicting the soil hydraulic parameters for these soils due to the impacts of rock fragments. Therefore, large uncertainties and errors may exist in the hillslope hydrological and biogeochemical simulations in stony soils due to poor estimations of soil hydraulic parameters. In addition, homogenous soil hydraulic parameters are usually used in traditional hillslope simulations. However, soil hydraulic parameters are spatially heterogeneous on the hillslope. This may also cause the unreliable simulations. In this study, we obtained soil hydraulic parameters using five different approaches on a tea hillslope in Taihu Lake basin, China. These five approaches included (1) Rossetta predicted and spatially homogenous, (2) Rossetta predicted and spatially heterogeneous), (3) Rossetta predicted, rock fragment corrected and spatially homogenous, (4) Rossetta predicted, rock fragment corrected and spatially heterogeneous, and (5) extracted from observed soil-water retention curves fitted by dual-pore function and spatially heterogeneous (observed). These five sets of soil hydraulic properties were then input into Hydrus-3D and DNDC to simulate the soil hydrological and biogeochemical processes. The aim of this study is testing two hypotheses. First, considering the spatial heterogeneity of soil hydraulic parameters will improve the simulations. Second, considering the impact of rock fragment on soil hydraulic parameters will improve the simulations.

  18. Characterization of spatial and spectral resolution of a rotating prism chromotomographic hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Bostick, Randall L.; Perram, Glen P.; Tuttle, Ronald

    2009-05-01

    The Air Force Institute of Technology (AFIT) has built a rotating prism chromotomographic hyperspectral imager (CTI) with the goal of extending the technology to exploit spatially extended sources with quickly varying (> 10 Hz) phenomenology, such as bomb detonations and muzzle flashes. This technology collects successive frames of 2-D data dispersed at different angles multiplexing spatial and spectral information which can then be used to reconstruct any arbitrary spectral plane(s). In this paper, the design of the AFIT instrument is described and then tested against a spectral target with near point source spatial characteristics to measure spectral and spatial resolution. It will be shown that, in theory, the spectral and spatial resolution in the 3-D spectral image cube is the nearly the same as a simple prism spectrograph with the same design. However, error in the knowledge of the prism linear dispersion at the detector array as a function of wavelength and projection angle will degrade resolution without further corrections. With minimal correction for error and use of a simple shift-and-add reconstruction algorithm, the CTI is able to produce a spatial resolution of about 2 mm in the object plane (234 μrad IFOV) and is limited by chromatic aberration. A spectral resolution of less than 1nm at shorter wavelengths is shown, limited primarily by prism dispersion.

  19. A simple enrichment correction factor for improving erosion estimation by rare earth oxide tracers

    USDA-ARS?s Scientific Manuscript database

    Spatially distributed soil erosion data are needed to better understanding soil erosion processes and validating distributed erosion models. Rare earth element (REE) oxides were used to generate spatial erosion data. However, a general concern on the accuracy of the technique arose due to selective ...

  20. Mechanisms of value-learning in the guidance of spatial attention.

    PubMed

    Anderson, Brian A; Kim, Haena

    2018-05-11

    The role of associative reward learning in the guidance of feature-based attention is well established. The extent to which reward learning can modulate spatial attention has been much more controversial. At least one demonstration of a persistent spatial attention bias following space-based associative reward learning has been reported. At the same time, multiple other experiments have been published failing to demonstrate enduring attentional biases towards locations at which a target, if found, yields high reward. This is in spite of evidence that participants use reward structures to inform their decisions where to search, leading some to suggest that, unlike feature-based attention, spatial attention may be impervious to the influence of learning from reward structures. Here, we demonstrate a robust bias towards regions of a scene that participants were previously rewarded for selecting. This spatial bias relies on representations that are anchored to the configuration of objects within a scene. The observed bias appears to be driven specifically by reinforcement learning, and can be observed with equal strength following non-reward corrective feedback. The time course of the bias is consistent with a transient shift of attention, rather than a strategic search pattern, and is evident in eye movement patterns during free viewing. Taken together, our findings reconcile previously conflicting reports and offer an integrative account of how learning from feedback shapes the spatial attention system. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Comparison of different spatial transformations applied to EEG data: A case study of error processing.

    PubMed

    Cohen, Michael X

    2015-09-01

    The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Comparison of lithological mapping results from airborne hyperspectral VNIR-SWIR, LWIR and combined data

    NASA Astrophysics Data System (ADS)

    Feng, Jilu; Rogge, Derek; Rivard, Benoit

    2018-02-01

    This study investigates using the Airborne Hyperspectral Imaging Systems (AISA) visible and short-wave infrared (SWIR) and Spatially Enhanced Broadband Array Spectrograph System (SEBASS) longwave infrared (LWIR) (2 and 4 m spatial resolution, respectively) imagery independently and in combination to produce detailed lithologic maps in a subarctic region (Cape Smith Belt, Nunavik, Canada) where regionally metamorphosed lower greenschist mafic, ultramafic and sedimentary rocks are exposed in the presence of lichen coatings. We make use of continuous wavelet analysis (CWA) to improve the radiometric quality of the imagery through the minimization of random noise and the enhancement of spectral features, the minimization of residual errors in the ISAC radiometric correction and target temperature estimation in the case of the LWIR data, the minimization of line to line residual calibration effects that lead to inconsistencies in data mosaics, and the reduction in variability of the spectral continuum introduced by variable illumination and topography. The use of CWA also provides a platform to directly combine the wavelet scale spectral profiles of the SWIR and LWIR after applying a scalar correction factor to the LWIR such that the dynamic range of two data sets have equal weight. This is possible using CWA as the datasets are normalized to a zero mean allowing spectra from different spectral regions to be adjoined. Lithologic maps are generated using an iterative spectral unmixing approach with image spectral endmembers extracted from the SWIR and LWIR imagery based on locations defined from previous work of the study area and field mapping information. Unmixing results of the independent SWIR and LWIR data, and the combined data show clear benefits to using the CWA combined imagery. The analysis showed SWIR and LWIR imagery highlight similar regions and spatial distributions for the three ultramafic units (dunite, peridotite, pyroxenite). However, significant differences are observed for quartz-rich sediments, with the SWIR overestimating the distribution of these rocks whereas the LWIR provided more consistent results compared with existing maps. Both SWIR and LWIR imagery were impacted by the pervasive lichen coatings on the mafic rocks (basalts and gabbros), although the SWIR provided better results than the LWIR. Limitations observed for the independent data sets were removed using the combined spectral data resulting in all geologically meaningful units mapped correctly in comparison with existing geological maps.

  3. Overview of LBTI: A Multipurpose Facility for High Spatial Resolution Observations

    NASA Technical Reports Server (NTRS)

    Hinz, P. M.; Defrere, D.; Skemer, A.; Bailey, V.; Stone, J.; Spalding, E.; Vaz, A.; Pinna, E.; Puglisi, A.; Esposito, S.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2x8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 micrometer camera (called LMIRCam), and an 8-13 micrometer camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20"x20"); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.

  4. Suppression of Speckles at High Adaptive Correction Using Speckle Symmetry

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2006-01-01

    Focal-plane speckles set important sensitivity limits on ground- or space-based imagers and coronagraphs that may be used to search for faint companions, perhaps ultimately including exoplanets, around stars. As speckles vary with atmospheric fluctuations or with drifting beamtrain aberrations, they contribute speckle noise proportional to their full amplitude. Schemes to suppress speckles are thus of great interest. At high adaptive correction, speckles organize into species, represented by algebraic terms in the expansion of the phase exponential, that have distinct spatial symmetry, even or odd, under spatial inversion. Filtering speckle patterns by symmetry may eliminate a disproportionate fraction of the speckle noise while blocking (only) half of the image signal from the off-axis companion being sought. The fraction of speckle power and hence of speckle noise in each term will vary with degree of correction, and so also will the net symmetry in the speckle pattern.

  5. Spatial downscaling and correction of precipitation and temperature time series to high resolution hydrological response units in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Kienzle, Stefan

    2015-04-01

    Precipitation is the central driving force of most hydrological processes, and is also the most variable element of the hydrological cycle. As the precipitation to runoff ratio is non-linear, errors in precipitation estimations are amplified in streamflow simulations. Therefore, the accurate estimate of areal precipitation is essential for watershed models and relevant impacts studies. A procedure is presented to demonstrate the spatial distribution of daily precipitation and temperature estimates across the Rocky Mountains within the framework of the ACRU agro-hydrological modelling system (ACRU). ACRU (Schulze, 1995) is a physical-conceptual, semi-distributed hydrological modelling system designed to be responsive to changes in land use and climate. The model has been updated to include specific high-mountain and cold climate routines and is applied to simulate impacts of land cover and climate change on the hydrological behaviour of numerous Rocky Mountain watersheds in Alberta, Canada. Both air temperature and precipitation time series need to be downscaled to hydrological response units (HRUs), as they are the spatial modelling units for the model. The estimation of accurate daily air temperatures is critical for the separation of rain and snow. The precipitation estimation procedure integrates a spatially distributed daily precipitation database for the period 1950 to 2010 at a scale of 10 by 10 km with a 1971-2000 climate normal database available at 2 by 2 km (PRISM). Resulting daily precipitation time series are further downscaled to the spatial resolution of hydrological response units, defined by 100 m elevation bands, land cover, and solar radiation, which have an average size of about 15 km2. As snow measurements are known to have a potential under-catch of up to 40%, further adjustment of snowfall may need to be increased using a procedure by Richter (1995). Finally, precipitation input to HRUs with slopes steeper than 10% need to be further corrected, because the true, sloped area, has a larger area than the planimetric area derived from a GIS. The omission of correcting for sloped areas would result in incorrect calculations of interception volumes, soil moisture storages, groundwater recharge rates, actual evapotranspiration volumes, and runoff coefficients. Daily minimum and maximum air temperatures are estimated for each HRU by downscaling the 10km time series to the HRUs by (a) applying monthly mean lapse rates, estimated either from surrounding climate stations or from the PRISM climate normal dataset in combination with a digital elevation model, (b) adjusting further for aspect of the HRU based on monthly mean incoming solar radiation, and (c) adjusting for canopy cover using the monthly mean leaf area indices. Precipitation estimates can be verified using independent snow water equivalent measurements derived from snow pillow or snow course observations, while temperature estimates are verified against either independent temperature measurements from climate stations, or from fire observation towers.

  6. A Comparison of Multisensor Precipitation Estimation Methods in Complex Terrain for Flash Flood Warning and Mitigation

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Chen, H.; Chandrasekar, C. V.; Willie, D.; Reynolds, D.; Campbell, C.; Zhang, Y.; Sukovich, E.

    2012-12-01

    Investigating the uncertainties and improving the accuracy of quantitative precipitation estimation (QPE) is a critical mission of the National Oceanic and Atmospheric Administration (NOAA). QPE is extremely challenging in regions of complex terrain like the western U.S. because of the sparse coverage of ground-based radar, complex orographic precipitation processes, and the effects of beam blockages (e.g., Westrick et al. 1999). In addition, the rain gauge density in complex terrain is often inadequate to capture spatial variability in the precipitation patterns. The NOAA Hydrometeorology Testbed (HMT) conducts research on precipitation and weather conditions that can lead to flooding, and fosters transition of scientific advances and new tools into forecasting operations (see hmt.noaa.gov). The HMT program consists of a series of demonstration projects in different geographical regions to enhance understanding of region specific processes related to precipitation, including QPE. There are a number of QPE systems that are widely used across NOAA for precipitation estimation (e.g., Cifelli et al. 2011; Chandrasekar et al. 2012). Two of these systems have been installed at the NOAA Earth System Research Laboratory: Multisensor Precipitation Estimator (MPE) and National Mosaic and Multi-sensor QPE (NMQ) developed by NWS and NSSL, respectively. Both provide gridded QPE products that include radar-only, gauge-only and gauge-radar-merged, etc; however, these systems often provide large differences in QPE (in terms of amounts and spatial patterns) due to differences in Z-R selection, vertical profile of reflectivity correction, and gauge interpolation procedures. Determining the appropriate QPE product and quantification of QPE uncertainty is critical for operational applications, including water management decisions and flood warnings. For example, hourly QPE is used to correct radar based rain rates used by the Flash Flood Monitoring and Prediction (FFMP) package in the NWS forecast offices for issuance of flash flood warnings. This study will evaluate the performance of MPE and NMQ QPE products using independent gauges, object identification techniques for spatial verification and impact on surface runoff using a distributed hydrologic model. The effort will consist of baseline evaluations of these QPE systems to determine which combination of algorithm features is appropriate as well as investigate new methods for combining the gage and radar data. The Russian River Basin in California is used to demonstrate the comparison methodology with data collected from several rainfall events in March 2012.

  7. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Mou, Xuanqin; Nishikawa, Robert M.

    Purpose: Small calcifications are often the earliest and the main indicator of breast cancer. Dual-energy digital mammography (DEDM) has been considered as a promising technique to improve the detectability of calcifications since it can be used to suppress the contrast between adipose and glandular tissues of the breast. X-ray scatter leads to erroneous calculations of the DEDM image. Although the pinhole-array interpolation method can estimate scattered radiations, it requires extra exposures to measure the scatter and apply the correction. The purpose of this work is to design an algorithmic method for scatter correction in DEDM without extra exposures.Methods: In thismore » paper, a scatter correction method for DEDM was developed based on the knowledge that scattered radiation has small spatial variation and that the majority of pixels in a mammogram are noncalcification pixels. The scatter fraction was estimated in the DEDM calculation and the measured scatter fraction was used to remove scatter from the image. The scatter correction method was implemented on a commercial full-field digital mammography system with breast tissue equivalent phantom and calcification phantom. The authors also implemented the pinhole-array interpolation scatter correction method on the system. Phantom results for both methods are presented and discussed. The authors compared the background DE calcification signals and the contrast-to-noise ratio (CNR) of calcifications in the three DE calcification images: image without scatter correction, image with scatter correction using pinhole-array interpolation method, and image with scatter correction using the authors' algorithmic method.Results: The authors' results show that the resultant background DE calcification signal can be reduced. The root-mean-square of background DE calcification signal of 1962 μm with scatter-uncorrected data was reduced to 194 μm after scatter correction using the authors' algorithmic method. The range of background DE calcification signals using scatter-uncorrected data was reduced by 58% with scatter-corrected data by algorithmic method. With the scatter-correction algorithm and denoising, the minimum visible calcification size can be reduced from 380 to 280 μm.Conclusions: When applying the proposed algorithmic scatter correction to images, the resultant background DE calcification signals can be reduced and the CNR of calcifications can be improved. This method has similar or even better performance than pinhole-array interpolation method in scatter correction for DEDM; moreover, this method is convenient and requires no extra exposure to the patient. Although the proposed scatter correction method is effective, it is validated by a 5-cm-thick phantom with calcifications and homogeneous background. The method should be tested on structured backgrounds to more accurately gauge effectiveness.« less

  9. Wavelet Monte Carlo dynamics: A new algorithm for simulating the hydrodynamics of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Dyer, Oliver T.; Ball, Robin C.

    2017-03-01

    We develop a new algorithm for the Brownian dynamics of soft matter systems that evolves time by spatially correlated Monte Carlo moves. The algorithm uses vector wavelets as its basic moves and produces hydrodynamics in the low Reynolds number regime propagated according to the Oseen tensor. When small moves are removed, the correlations closely approximate the Rotne-Prager tensor, itself widely used to correct for deficiencies in Oseen. We also include plane wave moves to provide the longest range correlations, which we detail for both infinite and periodic systems. The computational cost of the algorithm scales competitively with the number of particles simulated, N, scaling as N In N in homogeneous systems and as N in dilute systems. In comparisons to established lattice Boltzmann and Brownian dynamics algorithms, the wavelet method was found to be only a factor of order 1 times more expensive than the cheaper lattice Boltzmann algorithm in marginally semi-dilute simulations, while it is significantly faster than both algorithms at large N in dilute simulations. We also validate the algorithm by checking that it reproduces the correct dynamics and equilibrium properties of simple single polymer systems, as well as verifying the effect of periodicity on the mobility tensor.

  10. Detection of contaminated pixels based on the short-term continuity of NDVI and correction using spatio-temporal continuity

    NASA Astrophysics Data System (ADS)

    Cho, A.-Ra; Suh, Myoung-Seok

    2013-08-01

    The present study developed and assessed a correction technique (CSaTC: Correction based on Spatial and Temporal Continuity) for the detection and correction of contaminated Normalized Difference Vegetation Index (NDVI) time series data. Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data from 1982 to 2006 with a 15-day period and an 8-km spatial resolution was used. CSaTC utilizes short-term continuity of vegetation to detect contaminated pixels, and then, corrects the detected pixels using the spatio-temporal continuity of vegetation. CSaTC was applied to the NDVI data over the East Asian region, which exhibits diverse seasonal and interannual variations in vegetation activities. The correction skill of CSaTC was compared to two previously applied methods, IDR (iterative Interpolation for Data Reconstruction) and Park et al. (2011) using GIMMS NDVI data. CSaTC reasonably resolved the overcorrection and spreading phenomenon caused by excessive correction of Park et al. (2011). The validation using the simulated NDVI time series data showed that CSaTC shows a systematically better correction skill in bias and RMSE irrespective of phenology types of vegetation and noise levels. In general, CSaTC showed a good recovery of the contaminated data appearing over the short-term period on a level similar to that obtained using the IDR technique. In addition, it captured the multi-peak of NDVI, and the germination and defoliating patterns more accurately than that by IDR, which overly compensates for seasons with a high temporal variation and where NDVI data exhibit multi-peaks.

  11. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach

    PubMed Central

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-01-01

    Objective This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Materials and methods Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Results Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. Conclusions The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts. PMID:23630654

  12. Author Correction: Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands.

    PubMed

    Berdugo, Miguel; Kéfi, Sonia; Soliveres, Santiago; Maestre, Fernando T

    2018-03-01

    In the version of this Article originally published, the values of two of the functions used to calculate the multifunctionality index were incorrect, which affected Figs 3,4 of the main article and Supplementary Figs 3,4,5,6,9. Please see the correction notice for full details.

  13. Spatial Reasoning in Tenejapan Mayans

    PubMed Central

    Li, Peggy; Abarbanell, Linda; Gleitman, Lila; Papafragou, Anna

    2011-01-01

    Language communities differ in their stock of reference frames (coordinate systems for specifying locations and directions). English typically uses egocentrically defined axes (e.g., “left-right”), especially when describing small-scale relationships. Other languages such as Tseltal Mayan prefer to use geocentrically-defined axes (e.g., “north-south”) and do not use any type of projective body-defined axes. It has been argued that the availability of specific frames of reference in language determines the availability or salience of the corresponding spatial concepts. In four experiments, we explored this hypothesis by testing Tseltal speakers’ spatial reasoning skills. Whereas most prior tasks in this domain were open-ended (allowing several correct solutions), the present tasks required a unique solution that favored adopting a frame of reference that was either congruent or incongruent with what is habitually lexicalized in the participants’ language. In these tasks, Tseltal speakers easily solved the language-incongruent problems, and performance was generally more robust for these than for the language-congruent problems that favored geocentrically-defined coordinates. We suggest thatlisteners’ probabilistic inferences when instruction is open to more than one interpretation account for why there are greater cross-linguistic differences in the solutions to open-ended spatial problems than to less ambiguous ones. PMID:21481854

  14. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  15. Eigenvectors phase correction in inverse modal problem

    NASA Astrophysics Data System (ADS)

    Qiao, Guandong; Rahmatalla, Salam

    2017-12-01

    The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.

  16. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  17. Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market

    NASA Astrophysics Data System (ADS)

    Cui, Ling-xiao; Long, Wen

    2016-11-01

    Dynamic mode decomposition (DMD) is an effective method to capture the intrinsic dynamical modes of complex system. In this work, we adopt DMD method to discover the evolutionary patterns in stock market and apply it to Chinese A-share stock market. We design two strategies based on DMD algorithm. The strategy which considers only timing problem can make reliable profits in a choppy market with no prominent trend while fails to beat the benchmark moving-average strategy in bull market. After considering the spatial information from spatial-temporal coherent structure of DMD modes, we improved the trading strategy remarkably. Then the DMD strategies profitability is quantitatively evaluated by performing SPA test to correct the data-snooping effect. The results further prove that DMD algorithm can model the market patterns well in sideways market.

  18. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  19. High-resolution forest mapping for behavioural studies in the Nature Reserve ‘Les Nouragues’, French Guiana

    PubMed Central

    Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva

    2015-01-01

    For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943

  20. An improved non-uniformity correction algorithm and its GPU parallel implementation

    NASA Astrophysics Data System (ADS)

    Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui

    2018-05-01

    The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.

  1. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  2. Experimental Evaluation of Depth-of-Interaction Correction in a Small-Animal Positron Emission Tomography Scanner

    PubMed Central

    Green, Michael V.; Ostrow, Harold G.; Seidel, Jurgen; Pomper, Martin G.

    2013-01-01

    Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This “depth-of-interaction” (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination) implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling. PMID:21084028

  3. Experimental evaluation of depth-of-interaction correction in a small-animal positron emission tomography scanner.

    PubMed

    Green, Michael V; Ostrow, Harold G; Seidel, Jurgen; Pomper, Martin G

    2010-12-01

    Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This "depth-of-interaction" (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination) implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling.

  4. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.

    PubMed

    Robert, Clélia; Michau, Vincent; Fleury, Bruno; Magli, Serge; Vial, Laurent

    2012-07-02

    Adaptive optics provide real-time compensation for atmospheric turbulence. The correction quality relies on a key element: the wavefront sensor. We have designed an adaptive optics system in the mid-infrared range providing high spatial resolution for ground-to-air applications, integrating a Shack-Hartmann infrared wavefront sensor operating on an extended source. This paper describes and justifies the design of the infrared wavefront sensor, while defining and characterizing the Shack-Hartmann wavefront sensor camera. Performance and illustration of field tests are also reported.

  5. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    PubMed

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  6. The dynamic monitoring of warm-water discharge based on the airborne high-resolution thermal infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Shao, Honglan; Xie, Feng; Liu, Chengyu; Liu, Zhihui; Zhang, Changxing; Yang, Gui; Wang, Jianyu

    2016-04-01

    The cooling water discharged from the coastal plants flow into the sea continuously, whose temperature is higher than original sea surface temperature (SST). The fact will have non-negligible influence on the marine environment in and around where the plants site. Hence, it's significant to monitor the temporal and spatial variation of the warm-water discharge for the assessment of the effect of the plant on its surrounding marine environment. The paper describes an approach for the dynamic monitoring of the warm-water discharge of coastal plants based on the airborne high-resolution thermal infrared remote sensing technology. Firstly, the geometric correction was carried out for the thermal infrared remote sensing images acquired on the aircraft. Secondly, the atmospheric correction method was used to retrieve the sea surface temperature of the images. Thirdly, the temperature-rising districts caused by the warm-water discharge were extracted. Lastly, the temporal and spatial variations of the warm-water discharge were analyzed through the geographic information system (GIS) technology. The approach was applied to Qinshan nuclear power plant (NPP), in Zhejiang Province, China. In considering with the tide states, the diffusion, distribution and temperature-rising values of the warm-water discharged from the plant were calculated and analyzed, which are useful to the marine environment assessment.

  7. An evaluation of memory accuracy in food hoarding marsh tits Poecile palustris--how accurate are they compared to humans?

    PubMed

    Brodin, Anders; Urhan, A Utku

    2013-07-01

    Laboratory studies of scatter hoarding birds have become a model system for spatial memory studies. Considering that such birds are known to have a good spatial memory, recovery success in lab studies seems low. In parids (titmice and chickadees) typically ranging between 25 and 60% if five seeds are cached in 50-128 available caching sites. Since these birds store many thousands of food items in nature in one autumn one might expect that they should easily retrieve five seeds in a laboratory where they know the environment with its caching sites in detail. We designed a laboratory set up to be as similar as possible with previous studies and trained wild caught marsh tits Poecile palustris to store and retrieve in this set up. Our results agree closely with earlier studies, of the first ten looks around 40% were correct when the birds had stored five seeds in 100 available sites both 5 and 24h after storing. The cumulative success curve suggests high success during the first 15 looks where after it declines. Humans performed much better, in the first five looks most subjects were 100% correct. We discuss possible reasons for why the birds were not doing better. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Validation of a commercial inertial sensor system for spatiotemporal gait measurements in children.

    PubMed

    Lanovaz, Joel L; Oates, Alison R; Treen, Tanner T; Unger, Janelle; Musselman, Kristin E

    2017-01-01

    Although inertial sensor systems are becoming a popular tool for gait analysis in both healthy and pathological adult populations, there are currently no data on the validity of these systems for use with children. The purpose of this study was to validate spatiotemporal data from a commercial inertial sensor system (MobilityLab) in typically-developing children. Data from 10 children (5 males; 3.0-8.3 years, mean=5.1) were collected simultaneously from MobilityLab and 3D motion capture during gait at self-selected and fast walking speeds. Spatiotemporal parameters were compared between the two methods using a Bland-Altman method. The results indicate that, while the temporal gait measurements were similar between the two systems, MobilityLab demonstrated a consistent bias with respect to measurement of the spatial data (stride length). This error is likely due to differences in relative leg length and gait characteristics in children compared to the MobilityLab adult reference population used to develop the stride length algorithm. A regression-based equation was developed based on the current data to correct the MobilityLab stride length output. The correction was based on leg length, stride time, and shank range-of-motion, each of which were independently associated with stride length. Once the correction was applied, all of the spatiotemporal parameters evaluated showed good agreement. The results of this study indicate that MobilityLab is a valid tool for gait analysis in typically-developing children. Further research is needed to determine the efficacy of this system for use in children suffering from pathologies that impact gait mechanics. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was observed in different plot levels in the paddy fields from the two images. However, no such significant variation in rice genotypes at growth level was observed. Hence, the spectral information acquired from space platform can be linearly scaled to map the variation in field levels of rice crop which will be act as an informative system for rice agriculture practice.

  10. A merged surface reflectance product from the Landsat and Sentinel-2 Missions

    NASA Astrophysics Data System (ADS)

    Vermote, E.; Claverie, M.; Masek, J. G.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    This project is aimed at producing a merged surface product from the Landsat and Sentinel-2 missions to ultimately achieve high temporal coverage (~2 days repeat cycle) at high spatial resolution (20-60m). The goal is to achieve a seamless/consistent stream of surface reflectance data from the different sensors. The first part of this presentation discusses the basic requirements of such a product and the necessary processing steps: mainly calibration, atmospheric corrections, BRDF effect corrections, spectral band pass adjustments and gridding. We demonstrate the performance of those different corrections by using MODIS and VIIRS (Climate Modeling Grid at 0.05deg) data globally as well as Formosat-2 (8m spatial resolution) data (one crop site in South of France where 105 scenes were acquired during 2006-2010). The consistency of the surface reflectance product from MODIS and Formosat-2 ranges from 6 to 8% relative depending on the spectral bands (Green to NIR) with a bias between 2% (NIR) to 5% (green), which is acceptable given the cumulated limitation in cross-calibration, atmospheric correction and BRDF correction. The second part is devoted to the simulation of the merged Landsat and Sentinel-2 mission by using Landsat-7, LDCM (early) and SPOT-4 Take 5 dataset. SPOT-4 Take 5 dataset is a collection of 42 sites distributed globally and systematically acquired by SPOT-4 HRV every 5 days during the decommissioning phase of the SPOT4 mission (February-May 2013). Finally, the benefits of such a merged surface reflectance at high spatial and temporal resolution are discussed within the context of the agricultural monitoring, in particular in the perspective of the GEOGLAM (Global Earth Observation for Global Land Agriculture Monitoring) project.

  11. Atmospheric correction of AVIRIS data in ocean waters

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Arnone, Robert

    1992-01-01

    Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal Zone Color Scanner (CZCS) data to AVIRIS data. Quantitative measures of L(sub W) from AVIRIS are compared with ship ground truth data and input into bio-optical models.

  12. Comptonization of X-rays by low-temperature electrons. [photon wavelength redistribution in cosmic sources

    NASA Technical Reports Server (NTRS)

    Illarionov, A.; Kallman, T.; Mccray, R.; Ross, R.

    1979-01-01

    A method is described for calculating the spectrum that results from the Compton scattering of a monochromatic source of X-rays by low-temperature electrons, both for initial-value relaxation problems and for steady-state spatial diffusion problems. The method gives an exact solution of the inital-value problem for evolution of the spectrum in an infinite homogeneous medium if Klein-Nishina corrections to the Thomson cross section are neglected. This, together with approximate solutions for problems in which Klein-Nishina corrections are significant and/or spatial diffusion occurs, shows spectral structure near the original photon wavelength that may be used to infer physical conditions in cosmic X-ray sources. Explicit results, shown for examples of time relaxation in an infinite medium and spatial diffusion through a uniform sphere, are compared with results obtained by Monte Carlo calculations and by solving the appropriate Fokker-Planck equation.

  13. Optical phase aberration generation using a Liquid Crystal Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.

    In this dissertation, a Liquid Crystal Spatial Light Modulator is used to simulate optical aberrations in an optical system. Any optical aberration can be simulated through the use of software developed for this project. A new method of simulating atmospheric turbulence is also presented. The Earth's atmosphere is a large, non-linear, non-homogeneous medium that is constantly flowing in a random fashion that affects light as it propagates through it. The Kolmogorov model for atmospheric turbulence is a description of the nature of the wavefront perturbations introduced by the atmosphere and it is one of the most accepted models. It is supported by a variety of experimental measurements and research and is quite widely used in simulations for atmospheric imaging. This model provides a statistical description of how random fluctuations in humidity and temperature affect the refractive index of the atmosphere for imaging through atmospheric turbulence. These refractive index fluctuations in turn affect the propagation of light through the atmosphere. An adaptive optical system can be developed to correct these wavefront perturbations for an optical system. However, prior to deployment, an adaptive optical system requires calibration and full characterization in the laboratory. Creating realistic atmospheric simulations is often expensive and computationally intensive using common techniques. To combat some of these issues often the temporal properties in the simulation are neglected. This dissertation outlines a new method developed for generating atmospheric turbulence and a testbed that simulates its aberrations far more inexpensively and with greater fidelity using a Liquid Crystal Spatial Light Modulator. This system allows the simulation of atmospheric seeing conditions ranging from very poor to very good and different algorithms may be easily employed on the device for comparison. These simulations can be dynamically generated and modified very quickly and easily. Using a Liquid Crystal Spatial Light Modulator to induce aberrations in an imaging system is not limited to simulating atmospheric turbulence. Any turbulence model can be used either statically or dynamically for multiple applications.

  14. Lifting the Veil of Dust from NGC 0959: The Importance of a Pixel-based Two-dimensional Extinction Correction

    NASA Astrophysics Data System (ADS)

    Tamura, K.; Jansen, R. A.; Eskridge, P. B.; Cohen, S. H.; Windhorst, R. A.

    2010-06-01

    We present the results of a study of the late-type spiral galaxy NGC 0959, before and after application of the pixel-based dust extinction correction described in Tamura et al. (Paper I). Galaxy Evolution Explorer far-UV, and near-UV, ground-based Vatican Advanced Technology Telescope, UBVR, and Spitzer/Infrared Array Camera 3.6, 4.5, 5.8, and 8.0 μm images are studied through pixel color-magnitude diagrams and pixel color-color diagrams (pCCDs). We define groups of pixels based on their distribution in a pCCD of (B - 3.6 μm) versus (FUV - U) colors after extinction correction. In the same pCCD, we trace their locations before the extinction correction was applied. This shows that selecting pixel groups is not meaningful when using colors uncorrected for dust. We also trace the distribution of the pixel groups on a pixel coordinate map of the galaxy. We find that the pixel-based (two-dimensional) extinction correction is crucial for revealing the spatial variations in the dominant stellar population, averaged over each resolution element. Different types and mixtures of stellar populations, and galaxy structures such as a previously unrecognized bar, become readily discernible in the extinction-corrected pCCD and as coherent spatial structures in the pixel coordinate map.

  15. An analysis of the process and results of manual geocode correction

    PubMed Central

    McDonald, Yolanda J.; Schwind, Michael; Goldberg, Daniel W.; Lampley, Amanda; Wheeler, Cosette M.

    2018-01-01

    Geocoding is the science and process of assigning geographical coordinates (i.e. latitude, longitude) to a postal address. The quality of the geocode can vary dramatically depending on several variables, including incorrect input address data, missing address components, and spelling mistakes. A dataset with a considerable number of geocoding inaccuracies can potentially result in an imprecise analysis and invalid conclusions. There has been little quantitative analysis of the amount of effort (i.e. time) to perform geocoding correction, and how such correction could improve geocode quality type. This study used a low-cost and easy to implement method to improve geocode quality type of an input database (i.e. addresses to be matched) through the processes of manual geocode intervention, and it assessed the amount of effort to manually correct inaccurate geocodes, reported the resulting match rate improvement between the original and the corrected geocodes, and documented the corresponding spatial shift by geocode quality type resulting from the corrections. Findings demonstrated that manual intervention of geocoding resulted in a 90% improvement of geocode quality type, took 42 hours to process, and the spatial shift ranged from 0.02 to 151,368 m. This study provides evidence to inform research teams considering the application of manual geocoding intervention that it is a low-cost and relatively easy process to execute. PMID:28555477

  16. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric TRANsmittance) radiative transport software to separate out the atmospheric component of measured top of atmosphere radiance. Simulated water bodies across a variety of MODTRAN model atmospheres including desert, mid-latitude, tropical and sub-artic conditions provide test bed conditions. Atmospherically corrected radiance and surface temperature results were compared to those obtained using traditional radiosonde balloon data and models. In general, differences between the different techniques were less than 2 percent indicating the potential value satellite derived atmospheric profiles have to atmospherically correct thermal imagery.

  17. Analysis and optimization of surface profile correcting mechanism of the pitch lap in large-aperture annular polishing

    NASA Astrophysics Data System (ADS)

    Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda

    2017-10-01

    The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.

  18. Data Assimilation to Extract Soil Moisture Information From SMAP Observations

    NASA Technical Reports Server (NTRS)

    Kolassa, J.; Reichle, R. H.; Liu, Q.; Alemohammad, S. H.; Gentine, P.

    2017-01-01

    Statistical techniques permit the retrieval of soil moisture estimates in a model climatology while retaining the spatial and temporal signatures of the satellite observations. As a consequence, they can be used to reduce the need for localized bias correction techniques typically implemented in data assimilation (DA) systems that tend to remove some of the independent information provided by satellite observations. Here, we use a statistical neural network (NN) algorithm to retrieve SMAP (Soil Moisture Active Passive) surface soil moisture estimates in the climatology of the NASA Catchment land surface model. Assimilating these estimates without additional bias correction is found to significantly reduce the model error and increase the temporal correlation against SMAP CalVal in situ observations over the contiguous United States. A comparison with assimilation experiments using traditional bias correction techniques shows that the NN approach better retains the independent information provided by the SMAP observations and thus leads to larger model skill improvements during the assimilation. A comparison with the SMAP Level 4 product shows that the NN approach is able to provide comparable skill improvements and thus represents a viable assimilation approach.

  19. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  20. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

    PubMed Central

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-01-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  1. Advances in Spectral Electrical Impedance Tomography (EIT) for Near-Surface Geophysical Exploration

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Zimmermann, E.; Kelter, M.; Zhao, Y.; Bukhary, T. H.; Vereecken, H.

    2016-12-01

    Recent advances in spectral Electrical Impedance Tomography (EIT) now allow to obtain the complex electrical conductivity distribution in near-surface environments with a high accuracy for a broad range of frequencies (mHz - kHz). One of the key advances has been the development of correction methods to account for inductive coupling effects between wires used for current and potential measurements and capacitive coupling between cables and the subsurface environment. In this study, we first review these novel correction methods and then illustrate how the consideration of capacitive and inductive coupling improves spectral EIT results. For this, borehole EIT measurements were made in a shallow aquifer using a custom-made EIT system with two electrode chains each consisting of eight active electrodes with a separation of 1 m. The EIT measurements were inverted with and without consideration of inductive and capacitive coupling effects. The inversion results showed that spatially and spectrally consistent imaging results can only be obtained when inductive coupling effects are considered (phase accuracy of 1-2 mrad at 1 kHz). Capacitive coupling effects were found to be of secondary importance for the set-up used here, but its importance will increase when longer cables are used. Although these results are promising, the active electrode chains can only be used with our custom-made EIT system. Therefore, we also explored to what extent EIT measurements with passive electrode chains amenable to commercially available EIT measurement systems can be corrected for coupling effects. It was found that EIT measurements with passive unshielded cables could not be corrected above 100 Hz because of the strong but inaccurately known capacitive coupling between the electrical wires. However, it was possible to correct EIT measurements with passive shielded cables, and the final accuracy of the phase measurements was estimated to be 2-4 mrad at 1 kHz.

  2. Joint correction of Nyquist artifact and minuscule motion-induced aliasing artifact in interleaved diffusion weighted EPI data using a composite two-dimensional phase correction procedure

    PubMed Central

    Chang, Hing-Chiu; Chen, Nan-kuei

    2016-01-01

    Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI. PMID:27114342

  3. Assessing the Added Value of Dynamical Downscaling in the Context of Hydrologic Implication

    NASA Astrophysics Data System (ADS)

    Lu, M.; IM, E. S.; Lee, M. H.

    2017-12-01

    There is a scientific consensus that high-resolution climate simulations downscaled by Regional Climate Models (RCMs) can provide valuable refined information over the target region. However, a significant body of hydrologic impact assessment has been performing using the climate information provided by Global Climate Models (GCMs) in spite of a fundamental spatial scale gap. It is probably based on the assumption that the substantial biases and spatial scale gap from GCMs raw data can be simply removed by applying the statistical bias correction and spatial disaggregation. Indeed, many previous studies argue that the benefit of dynamical downscaling using RCMs is minimal when linking climate data with the hydrological model, from the comparison of the impact between bias-corrected GCMs and bias-corrected RCMs on hydrologic simulations. It may be true for long-term averaged climatological pattern, but it is not necessarily the case when looking into variability across various temporal spectrum. In this study, we investigate the added value of dynamical downscaling focusing on the performance in capturing climate variability. For doing this, we evaluate the performance of the distributed hydrological model over the Korean river basin using the raw output from GCM and RCM, and bias-corrected output from GCM and RCM. The impacts of climate input data on streamflow simulation are comprehensively analyzed. [Acknowledgements]This research is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 17AWMP-B083066-04).

  4. Laboratory evaluation of Fecker and Loral optical IR PWI systems

    NASA Technical Reports Server (NTRS)

    Gorstein, M.; Hallock, J. N.; Houten, M.; Mcwilliams, I. G.

    1971-01-01

    A previous flight test of two electro-optical pilot warning indicators, using a flashing xenon strobe and silicon detectors as cooperative elements, pointed out several design deficiencies. The present laboratory evaluation program corrected these faults and calibrated the sensitivity of both systems in azimuth elevation and range. The laboratory tests were performed on an optical bench and consisted of three basic components: (1) a xenon strobe lamp whose output is monitored at the indicator detector to give pulse to pulse information on energy content at the receiver; (2) a strobe light attenuating optical system which is calibrated photometrically to provide simulated range; and (3) a positioning table on which the indicator system under study is mounted and which provides spatial location coordinates for all data points. The test results for both systems are tabulated.

  5. Spatial Modulation Improves Performance in CTIS

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.

    2009-01-01

    Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of such scenes tend to approximate correct values to within acceptably small errors near the edges of the field of view but to be poor approximations away from the edges. The additional structure imposed on a scene according to the present method enables the CTIS algorithms to reconstruct acceptable approximations of the spectral data throughout the scene.

  6. An Archive of Downscaled WCRP CMIP3 Climate Projections for Planning Applications in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Pruitt, T.; Maurer, E. P.; Duffy, P. B.

    2007-12-01

    Incorporating climate change information into long-term evaluations of water and energy resources requires analysts to have access to climate projection data that have been spatially downscaled to "basin-relevant" resolution. This is necessary in order to develop system-specific hydrology and demand scenarios consistent with projected climate scenarios. Analysts currently have access to "climate model" resolution data (e.g., at LLNL PCMDI), but not spatially downscaled translations of these datasets. Motivated by a common interest in supporting regional and local assessments, the U.S. Bureau of Reclamation and LLNL (through support from the DOE National Energy Technology Laboratory) have teamed to develop an archive of downscaled climate projections (temperature and precipitation) with geographic coverage consistent with the North American Land Data Assimilation System domain, encompassing the contiguous United States. A web-based information service, hosted at LLNL Green Data Oasis, has been developed to provide Reclamation, LLNL, and other interested analysts free access to archive content. A contemporary statistical method was used to bias-correct and spatially disaggregate projection datasets, and was applied to 112 projections included in the WCRP CMIP3 multi-model dataset hosted by LLNL PCMDI (i.e. 16 GCMs and their multiple simulations of SRES A2, A1b, and B1 emissions pathways).

  7. A COMPARISON OF ILLUMINATION GEOMETRY-BASED METHODS FOR TOPOGRAPHIC CORRECTION OF QUICKBIRD IMAGES OF AN UNDULANT AREA

    USDA-ARS?s Scientific Manuscript database

    The high spatial resolution of QuickBird satellite images makes it possible to show spatial variability at fine details. However, the effect of topography-induced illumination variations become more evident, even in moderately sloped areas. Based on a high resolution (1 m) digital elevation model ge...

  8. Spatio-temporal colour correction of strongly degraded movies

    NASA Astrophysics Data System (ADS)

    Islam, A. B. M. Tariqul; Farup, Ivar

    2011-01-01

    The archives of motion pictures represent an important part of precious cultural heritage. Unfortunately, these cinematography collections are vulnerable to different distortions such as colour fading which is beyond the capability of photochemical restoration process. Spatial colour algorithms-Retinex and ACE provide helpful tool in restoring strongly degraded colour films but, there are some challenges associated with these algorithms. We present an automatic colour correction technique for digital colour restoration of strongly degraded movie material. The method is based upon the existing STRESS algorithm. In order to cope with the problem of highly correlated colour channels, we implemented a preprocessing step in which saturation enhancement is performed in a PCA space. Spatial colour algorithms tend to emphasize all details in the images, including dust and scratches. Surprisingly, we found that the presence of these defects does not affect the behaviour of the colour correction algorithm. Although the STRESS algorithm is already in itself more efficient than traditional spatial colour algorithms, it is still computationally expensive. To speed it up further, we went beyond the spatial domain of the frames and extended the algorithm to the temporal domain. This way, we were able to achieve an 80 percent reduction of the computational time compared to processing every single frame individually. We performed two user experiments and found that the visual quality of the resulting frames was significantly better than with existing methods. Thus, our method outperforms the existing ones in terms of both visual quality and computational efficiency.

  9. Modeling boundary measurements of scattered light using the corrected diffusion approximation

    PubMed Central

    Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.

    2012-01-01

    We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102

  10. The Aquarius Salinity Product: Intercomparison with SMOS and In-Situ Observations and Importance of the Ocean Surface Roughness Correction

    NASA Astrophysics Data System (ADS)

    Meissner, Thomas; Hilburn, Kyle; Wentz, Frank; Gentemann, Chelle

    2013-04-01

    The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This first part of the presentation gives an overview over the major features of the Version 2.1 Aquarius Level 2 salinity retrieval algorithm: 1. Antenna pattern correction: spillover and cross polarization contamination. 2. Correction for the drift of the Aquarius internal calibration system. 3. Correction for intruding celestial radiation, foremost from the galaxy. 4. Correction for effects of the wind roughened ocean surface. We then present a thorough validation study for the salinity product, which consists in a 3-way intercomparison between Aquarius, SMOS and in-situ buoy salinity measurements. The Aquarius - buy comparison shows that that the Aquarius Version 2.1 salinity product is very close to meet the aforementioned mission requirement of 0.2 psu. We demonstrate that in order to meet this accuracy it is crucial to use the L-band scatterometer for correcting effects from the wind roughened ocean surface, which turns out to be the major driver in the salinity retrieval uncertainty budget. A surface roughness correction algorithm that is based solely on auxiliary input of wind fields from numerical weather prediction models (e.g. NCEP, ECMWF) is not sufficient to meet the stringent Aquarius mission requirement, especially at wind speeds above 10 m/s. We show that presence of the Aquarius L-band scatterometer together with the L-band radiometer allows the retrieval of an Aquarius wind speed product whose accuracy matches or exceeds that of other common ocean wind speeds (WindSat, SSMIS). By comparing SMOS and Aquarius salinity fields with the in-situ observations we assess the importance of the roughness correction and the presence of the L-band scatterometer, which is a major difference between the two missions.

  11. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS)

    NASA Astrophysics Data System (ADS)

    Ryu, Joo-Hyung; Han, Hee-Jeong; Cho, Seongick; Park, Young-Je; Ahn, Yu-Hwan

    2012-09-01

    GOCI, the world's first geostationary ocean color satellite, provides images with a spatial resolution of 500 m at hourly intervals up to 8 times a day, allowing observations of short-term changes in the Northeast Asian region. The GOCI Data Processing System (GDPS), a specialized data processing software for GOCI, was developed for real-time generation of various products. This paper describes GOCI characteristics and GDPS workflow/products, so as to enable the efficient utilization of GOCI. To provide quality images and data, atmospheric correction and data analysis algorithms must be improved through continuous Cal/Val. GOCI-II will be developed by 2018 to facilitate in-depth studies on geostationary ocean color satellites.

  12. Biomechanically based simulation of brain deformations for intraoperative image correction: coupling of elastic and fluid models

    NASA Astrophysics Data System (ADS)

    Hagemann, Alexander; Rohr, Karl; Stiehl, H. Siegfried

    2000-06-01

    In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions significantly improves the prediction results in comparison to a pure linear elastic model.

  13. Phase correction and error estimation in InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Fattahi, H.; Amelung, F.

    2017-12-01

    During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same area, with a maximum of -3 +/- 0.9 cm (fig. 1c). Time-series displacement map (fig. 2) shows a highly non-linear deformation behavior, indicating the complicated magma propagation process during this eruption cycle.

  14. Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging

    PubMed Central

    Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.

    2013-01-01

    Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029

  15. Distortion Correction for a Brewster Angle Microscope Using an Optical Grating.

    PubMed

    Sun, Zhe; Zheng, Desheng; Baldelli, Steven

    2017-02-21

    A distortion-corrected Brewster angle microscope (DC-BAM) is designed, constructed, and tested based on the combination of an optical grating and a relay lens. Avoiding the drawbacks of most conventional BAM instruments, this configuration corrects the image propagation direction and consequently provides an image in focus over the entire field of view without any beam scanning or imaging reconstruction. This new BAM can be applied to both liquid and solid subphases with good spatial resolution in static and dynamic studies.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyzemore » theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.« less

  17. Dynamic coherent backscattering mirror

    NASA Astrophysics Data System (ADS)

    Zeylikovich, I.; Xu, M.

    2016-02-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  18. Self-consistent expansion for the molecular beam epitaxy equation

    NASA Astrophysics Data System (ADS)

    Katzav, Eytan

    2002-03-01

    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-->-r',t-t')=2D0\\|r-->- r'\\|2ρ-dδ(t-t'). I find a lower critical dimension dc(ρ)=4+2ρ, above which the linear MBE solution appears. Below the lower critical dimension a ρ-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.

  19. Self-consistent expansion for the molecular beam epitaxy equation.

    PubMed

    Katzav, Eytan

    2002-03-01

    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-r('),t-t('))=2D(0)[r-->-r(')](2rho-d)delta(t-t(')). I find a lower critical dimension d(c)(rho)=4+2rho, above which the linear MBE solution appears. Below the lower critical dimension a rho-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.

  20. Optimal spatial filtering and transfer function for SAR ocean wave spectra

    NASA Technical Reports Server (NTRS)

    Beal, R. C.; Tilley, D. G.

    1981-01-01

    The impulse response of the SAR system is not a delta function and the spectra represent the product of the underlying image spectrum with the transform of the impulse response which must be removed. A digitally computed spectrum of SEASAT imagery of the Atlantic Ocean east of Cape Hatteras was smoothed with a 5 x 5 convolution filter and the trend was sampled in a direction normal to the predominant wave direction. This yielded a transform of a noise-like process. The smoothed value of this trend is the transform of the impulse response. This trend is fit with either a second- or fourth-order polynomial which is then used to correct the entire spectrum. A 16 x 16 smoothing of the spectrum shows the presence of two distinct swells. Correction of the effects of speckle is effected by the subtraction of a bias from the spectrum.

  1. Doppler tracking in time-dependent cosmological spacetimes

    NASA Astrophysics Data System (ADS)

    Giulini, Domenico; Carrera, Matteo

    I will discuss the theoretical problems associated with Doppler tracking in time dependent background geometries, where ordinary Newtonian kinematics fails. A derivation of an exact general-relativistic formula for the two-way Doppler tracking of a spacecraft in homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is presented, as well as a controlled approximation in McVittie spacetimes representing an FLRW background with a single spherically-symmetric inhomogeneity (e.g. a single star or black hole). The leading-order corrections of the acceleration as compared to the Newtonian expression are calculated, which are due to retardation and cosmological expansion and which in the Solar System turn out to be significantly below the scale (nanometer per square-second) set by the Pioneer Anomaly. Last, but not least, I discuss kinematical ambiguities connected with notions of "simultaneity" and "spatial distance", which, in principle, also lead to tracking corrections.

  2. In situ wavefront correction and its application to micromanipulation

    NASA Astrophysics Data System (ADS)

    Čižmár, Tomáš; Mazilu, Michael; Dholakia, Kishan

    2010-06-01

    In any optical system, distortions to a propagating wavefront reduce the spatial coherence of a light field, making it increasingly difficult to obtain the theoretical diffraction-limited spot size. Such aberrations are severely detrimental to optimal performance in imaging, nanosurgery, nanofabrication and micromanipulation, as well as other techniques within modern microscopy. We present a generic method based on complex modulation for true in situ wavefront correction that allows compensation of all aberrations along the entire optical train. The power of the method is demonstrated for the field of micromanipulation, which is very sensitive to wavefront distortions. We present direct trapping with optimally focused laser light carrying power of a fraction of a milliwatt as well as the first trapping through highly turbid and diffusive media. This opens up new perspectives for optical micromanipulation in colloidal and biological physics and may be useful for various forms of advanced imaging.

  3. A spatial reference frame model of Beijing based on spatial cognitive experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Jing; Liu, Yu

    2006-10-01

    Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.

  4. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  5. Monitoring Method of Cow Anthrax Based on Gis and Spatial Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Li, Lin; Yang, Yong; Wang, Hongbin; Dong, Jing; Zhao, Yujun; He, Jianbin; Fan, Honggang

    Geographic information system (GIS) is a computer application system, which possesses the ability of manipulating spatial information and has been used in many fields related with the spatial information management. Many methods and models have been established for analyzing animal diseases distribution models and temporal-spatial transmission models. Great benefits have been gained from the application of GIS in animal disease epidemiology. GIS is now a very important tool in animal disease epidemiological research. Spatial analysis function of GIS can be widened and strengthened by using spatial statistical analysis, allowing for the deeper exploration, analysis, manipulation and interpretation of spatial pattern and spatial correlation of the animal disease. In this paper, we analyzed the cow anthrax spatial distribution characteristics in the target district A (due to the secret of epidemic data we call it district A) based on the established GIS of the cow anthrax in this district in combination of spatial statistical analysis and GIS. The Cow anthrax is biogeochemical disease, and its geographical distribution is related closely to the environmental factors of habitats and has some spatial characteristics, and therefore the correct analysis of the spatial distribution of anthrax cow for monitoring and the prevention and control of anthrax has a very important role. However, the application of classic statistical methods in some areas is very difficult because of the pastoral nomadic context. The high mobility of livestock and the lack of enough suitable sampling for the some of the difficulties in monitoring currently make it nearly impossible to apply rigorous random sampling methods. It is thus necessary to develop an alternative sampling method, which could overcome the lack of sampling and meet the requirements for randomness. The GIS computer application software ArcGIS9.1 was used to overcome the lack of data of sampling sites.Using ArcGIS 9.1 and GEODA to analyze the cow anthrax spatial distribution of district A. we gained some conclusions about cow anthrax' density: (1) there is a spatial clustering model. (2) there is an intensely spatial autocorrelation. We established a prediction model to estimate the anthrax distribution based on the spatial characteristic of the density of cow anthrax. Comparing with the true distribution, the prediction model has a well coincidence and is feasible to the application. The method using a GIS tool facilitates can be implemented significantly in the cow anthrax monitoring and investigation, and the space statistics - related prediction model provides a fundamental use for other study on space-related animal diseases.

  6. Enhanced Satellite Remote Sensing of Coastal Waters Using Spatially Improved Bio-Optical Products from SNPP-VIIRS

    DTIC Science & Technology

    2015-01-01

    a spatial resolution of 250-m. The Gumley et al. computation for MODIS sharpening is given as a ratio of high to low resolution top of the atmosphere...NIR) correction (Stumpf, Arnone, Gould, Martinolich, & Ransibrahamanakul, 2003). Standard flagswere used tomask interference from land, clouds , sun...technique This new approach expands on the methodology described by Gumley et al. (2010), with somemodifications. We will compute a sim- ilar spatial

  7. Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation

    PubMed Central

    Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong

    2017-01-01

    Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175

  8. Temporal dynamics of divided spatial attention

    PubMed Central

    Garcia, Javier O.; Serences, John T.

    2013-01-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function. PMID:23390315

  9. Temporal dynamics of divided spatial attention.

    PubMed

    Itthipuripat, Sirawaj; Garcia, Javier O; Serences, John T

    2013-05-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function.

  10. Expansion of the On-line Archive "Statistically Downscaled WCRP CMIP3 Climate Projections"

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Pruitt, T.; Maurer, E. P.; Das, T.; Duffy, P.; White, K.

    2009-12-01

    Presentation highlights status and plans for a public-access archive of downscaled CMIP3 climate projections. Incorporating climate projection information into long-term evaluations of water and energy resources requires analysts to have access to projections at "basin-relevant" resolution. Such projections would ideally be bias-corrected to account for climate model tendencies to systematically simulate historical conditions different than observed. In 2007, the U.S. Bureau of Reclamation, Santa Clara University and Lawrence Livermore National Laboratory (LLNL) collaborated to develop an archive of 112 bias-corrected and spatially disaggregated (BCSD) CMIP3 temperature and precipitation projections. These projections were generated using 16 CMIP3 models to simulate three emissions pathways (A2, A1b, and B1) from one or more initializations (runs). Projections are specified on a monthly time step from 1950-2099 and at 0.125 degree spatial resolution within the North American Land Data Assimilation System domain (i.e. contiguous U.S., southern Canada and northern Mexico). Archive data are freely accessible at LLNL Green Data Oasis (url). Since being launched, the archive has served over 3500 data requests by nearly 500 users in support of a range of planning, research and educational activities. Archive developers continue to look for ways to improve the archive and respond to user needs. One request has been to serve the intermediate datasets generated during the BCSD procedure, helping users to interpret the relative influences of the bias-correction and spatial disaggregation on the transformed CMIP3 output. This request has been addressed with intermediate datasets now posted at the archive web-site. Another request relates closely to studying hydrologic and ecological impacts under climate change, where users are asking for projected diurnal temperature information (e.g., projected daily minimum and maximum temperature) and daily time step resolution. In response, archive developers are adding content in 2010, teaming with Scripps Institution of Oceanography (through their NOAA-RISA California-Nevada Applications Program and the California Climate Change Center) to apply a new daily downscaling technique to a sub-ensemble of the archive’s CMIP3 projections. The new technique, Bias-Corrected Constructed Analogs, combines the BC part of BCSD with a recently developed technique that preserves the daily sequencing structure of CMIP3 projections (Constructed Analogs, or CA). Such data will more easily serve hydrologic and ecological impacts assessments, and offer an opportunity to evaluate projection uncertainty associated with downscaling technique. Looking ahead to the arrival CMIP5 projections, archive collaborators have plans apply both BCSD and BCCA over the contiguous U.S. consistent with CMIP3 applications above, and also apply BCSD globally at a 0.5 degree spatial resolution. The latter effort involves collaboration with U.S. Army Corps of Engineers (USACE) and Climate Central.

  11. Fast phase stabilization of a low frequency beat note for atom interferometry.

    PubMed

    Oh, E; Horne, R A; Sackett, C A

    2016-06-01

    Atom interferometry experiments rely on the ability to obtain a stable signal that corresponds to an atomic phase. For interferometers that use laser beams to manipulate the atoms, noise in the lasers can lead to errors in the atomic measurement. In particular, it is often necessary to actively stabilize the optical phase between two frequency components of the beams. Typically this is achieved using a time-domain measurement of a beat note between the two frequencies. This becomes challenging when the frequency difference is small and the phase measurement must be made quickly. The method presented here instead uses a spatial interference detection to rapidly measure the optical phase for arbitrary frequency differences. A feedback system operating at a bandwidth of about 10 MHz could then correct the phase in about 3 μs. This time is short enough that the phase correction could be applied at the start of a laser pulse without appreciably degrading the fidelity of the atom interferometer operation. The phase stabilization system was demonstrated in a simple atom interferometer measurement of the (87)Rb recoil frequency.

  12. Simulation of the impact of refractive surgery ablative laser pulses with a flying-spot laser beam on intrasurgery corneal temperature.

    PubMed

    Shraiki, Mario; Arba-Mosquera, Samuel

    2011-06-01

    To evaluate ablation algorithms and temperature changes in laser refractive surgery. The model (virtual laser system [VLS]) simulates different physical effects of an entire surgical process, simulating the shot-by-shot ablation process based on a modeled beam profile. The model is comprehensive and directly considers applied correction; corneal geometry, including astigmatism; laser beam characteristics; and ablative spot properties. Pulse lists collected from actual treatments were used to simulate the temperature increase during the ablation process. Ablation efficiency reduction in the periphery resulted in a lower peripheral temperature increase. Steep corneas had lesser temperature increases than flat ones. The maximum rise in temperature depends on the spatial density of the ablation pulses. For the same number of ablative pulses, myopic corrections showed the highest temperature increase, followed by myopic astigmatism, mixed astigmatism, phototherapeutic keratectomy (PTK), hyperopic astigmatism, and hyperopic treatments. The proposed model can be used, at relatively low cost, for calibration, verification, and validation of the laser systems used for ablation processes and would directly improve the quality of the results.

  13. A method to correct coordinate distortion in EBSD maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.

    2014-10-15

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less

  14. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states.

    PubMed

    Zhao, S M; Leach, J; Gong, L Y; Ding, J; Zheng, B Y

    2012-01-02

    The effect of atmosphere turbulence on light's spatial structure compromises the information capacity of photons carrying the Orbital Angular Momentum (OAM) in free-space optical (FSO) communications. In this paper, we study two aberration correction methods to mitigate this effect. The first one is the Shack-Hartmann wavefront correction method, which is based on the Zernike polynomials, and the second is a phase correction method specific to OAM states. Our numerical results show that the phase correction method for OAM states outperforms the Shark-Hartmann wavefront correction method, although both methods improve significantly purity of a single OAM state and the channel capacities of FSO communication link. At the same time, our experimental results show that the values of participation functions go down at the phase correction method for OAM states, i.e., the correction method ameliorates effectively the bad effect of atmosphere turbulence.

  15. Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2015-08-01

    Non-contrast CT reliably detects fresh blood in the brain and is the current front-line imaging modality for intracranial hemorrhage such as that occurring in acute traumatic brain injury (contrast ~40-80 HU, size  >  1 mm). We are developing flat-panel detector (FPD) cone-beam CT (CBCT) to facilitate such diagnosis in a low-cost, mobile platform suitable for point-of-care deployment. Such a system may offer benefits in the ICU, urgent care/concussion clinic, ambulance, and sports and military theatres. However, current FPD-CBCT systems face significant challenges that confound low-contrast, soft-tissue imaging. Artifact correction can overcome major sources of bias in FPD-CBCT but imparts noise amplification in filtered backprojection (FBP). Model-based reconstruction improves soft-tissue image quality compared to FBP by leveraging a high-fidelity forward model and image regularization. In this work, we develop a novel penalized weighted least-squares (PWLS) image reconstruction method with a noise model that includes accurate modeling of the noise characteristics associated with the two dominant artifact corrections (scatter and beam-hardening) in CBCT and utilizes modified weights to compensate for noise amplification imparted by each correction. Experiments included real data acquired on a FPD-CBCT test-bench and an anthropomorphic head phantom emulating intra-parenchymal hemorrhage. The proposed PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and PWLS with conventional weights (viz. at matched 0.50 mm spatial resolution, CNR = 11.9 compared to CNR = 5.6 and CNR = 9.9, respectively) and substantially reduced image noise especially in challenging regions such as skull base. The results support the hypothesis that with high-fidelity artifact correction and statistical reconstruction using an accurate post-artifact-correction noise model, FPD-CBCT can achieve image quality allowing reliable detection of intracranial hemorrhage.

  16. Two-Point Orientation Discrimination Versus the Traditional Two-Point Test for Tactile Spatial Acuity Assessment

    PubMed Central

    Tong, Jonathan; Mao, Oliver; Goldreich, Daniel

    2013-01-01

    Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677

  17. Context and hand posture modulate the neural dynamics of tool-object perception.

    PubMed

    Natraj, Nikhilesh; Poole, Victoria; Mizelle, J C; Flumini, Andrea; Borghi, Anna M; Wheaton, Lewis A

    2013-02-01

    Prior research has linked visual perception of tools with plausible motor strategies. Thus, observing a tool activates the putative action-stream, including the left posterior parietal cortex. Observing a hand functionally grasping a tool involves the inferior frontal cortex. However, tool-use movements are performed in a contextual and grasp specific manner, rather than relative isolation. Our prior behavioral data has demonstrated that the context of tool-use (by pairing the tool with different objects) and varying hand grasp postures of the tool can interact to modulate subjects' reaction times while evaluating tool-object content. Specifically, perceptual judgment was delayed in the evaluation of functional tool-object pairings (Correct context) when the tool was non-functionally (Manipulative) grasped. Here, we hypothesized that this behavioral interference seen with the Manipulative posture would be due to increased and extended left parietofrontal activity possibly underlying motor simulations when resolving action conflict due to this particular grasp at time scales relevant to the behavioral data. Further, we hypothesized that this neural effect will be restricted to the Correct tool-object context wherein action affordances are at a maximum. 64-channel electroencephalography (EEG) was recorded from 16 right-handed subjects while viewing images depicting three classes of tool-object contexts: functionally Correct (e.g. coffee pot-coffee mug), functionally Incorrect (e.g. coffee pot-marker) and Spatial (coffee pot-milk). The Spatial context pairs a tool and object that would not functionally match, but may commonly appear in the same scene. These three contexts were modified by hand interaction: No Hand, Static Hand near the tool, Functional Hand posture and Manipulative Hand posture. The Manipulative posture is convenient for relocating a tool but does not afford a functional engagement of the tool on the target object. Subjects were instructed to visually assess whether the pictures displayed correct tool-object associations. EEG data was analyzed in time-voltage and time-frequency domains. Overall, Static Hand, Functional and Manipulative postures cause early activation (100-400ms post image onset) of parietofrontal areas, to varying intensity in each context, when compared to the No Hand control condition. However, when context is Correct, only the Manipulative Posture significantly induces extended neural responses, predominantly over right parietal and right frontal areas [400-600ms post image onset]. Significant power increase was observed in the theta band [4-8Hz] over the right frontal area, [0-500ms]. In addition, when context is Spatial, Manipulative posture alone significantly induces extended neural responses, over bilateral parietofrontal and left motor areas [400-600ms]. Significant power decrease occurred primarily in beta bands [12-16, 20-25Hz] over the aforementioned brain areas [400-600ms]. Here, we demonstrate that the neural processing of tool-object perception is sensitive to several factors. While both Functional and Manipulative postures in Correct context engage predominantly an early left parietofrontal circuit, the Manipulative posture alone extends the neural response and transitions to a late right parietofrontal network. This suggests engagement of a right neural system to evaluate action affordances when hand posture does not support action (Manipulative). Additionally, when tool-use context is ambiguous (Spatial context), there is increased bilateral parietofrontal activation and, extended neural response for the Manipulative posture. These results point to the existence of other networks evaluating tool-object associations when motoric affordances are not readily apparent and underlie corresponding delayed perceptual judgment in our prior behavioral data wherein Manipulative postures had exclusively interfered in judging tool-object content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Longitudinal gradient coil optimization in the presence of transient eddy currents.

    PubMed

    Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S

    2007-06-01

    The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.

  19. A spectral-knowledge-based approach for urban land-cover discrimination

    NASA Technical Reports Server (NTRS)

    Wharton, Stephen W.

    1987-01-01

    A prototype expert system was developed to demonstrate the feasibility of classifying multispectral remotely sensed data on the basis of spectral knowledge. The spectral expert was developed and tested with Thematic Mapper Simulator (TMS) data having eight spectral bands and a spatial resolution of 5 m. A knowledge base was developed that describes the target categories in terms of characteristic spectral relationships. The knowledge base was developed under the following assumptions: the data are calibrated to ground reflectance, the area is well illuminated, the pixels are dominated by a single category, and the target categories can be recognized without the use of spatial knowledge. Classification decisions are made on the basis of convergent evidence as derived from applying the spectral rules to a multiple spatial resolution representation of the image. The spectral expert achieved an accuracy of 80-percent correct or higher in recognizing 11 spectral categories in TMS data for the washington, DC, area. Classification performance can be expected to decrease for data that do not satisfy the above assumptions as illustrated by the 63-percent accuracy for 30-m resolution Thematic Mapper data.

  20. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    PubMed

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  1. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    NASA Astrophysics Data System (ADS)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2017-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  2. Deformation field correction for spatial normalization of PET images

    PubMed Central

    Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.

    2015-01-01

    Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272

  3. Comparison of the Performance Evaluation of the MicroPET R4 Scanner According to NEMA Standards NU 4-2008 and NU 2-2001

    NASA Astrophysics Data System (ADS)

    Popota, Fotini D.; Aguiar, Pablo; Herance, J. Raúl; Pareto, Deborah; Rojas, Santiago; Ros, Domènec; Pavia, Javier; Gispert, Juan Domingo

    2012-10-01

    The purpose of this work was to evaluate the performance of the microPET R4 system for rodents according to the NU 4-2008 standards of the National Electrical Manufacturers Association (NEMA) for small-animal positron emission tomography (PET) systems and to compare it against its previous evaluation according the adapted clinical NEMA NU 2-2001. The performance parameters evaluated here were spatial resolution, sensitivity, scatter fraction, counting rates for rat- and mouse-sized phantoms, and image quality. Spatial resolution and sensitivity were measured with a 22Na point source, while scatter fraction and count rate performance were determined using a mouse and rat phantoms with an 18F line source. The image quality of the system was assessed using the NEMA image quality phantom. Assessment of attenuation correction was performed using γ-ray transmission and computed tomography (CT)-based attenuation correction methods. At the center of the field of view, a spatial resolution of 2.12 mm at full width at half maximum (FWHM) (radial), 2.66 mm FWHM (tangential), and 2.23 mm FWHM (axial) was measured. The absolute sensitivity was found to be 1.9% at the center of the scanner. Scatter fraction for mouse-sized phantoms was 8.5 %, and the peak count rate was 311 kcps at 153.5 MBq. The rat scatter fraction was 22%, and the peak count rate was 117 kcps at 123.24 MBq. Image uniformity showed better results with 2-D filtered back projection (FBP), while an overestimation of the recovery coefficients was observed when using 2-D and 3-D OSEM MAP reconstruction algorithm. All measurements were made for an energy window of 350-650 keV and a coincidence window of 6 ns. Histogramming and reconstruction parameters were used according to the manufacturer's recommendations. The microPET R4 scanner was fully characterized according to the NEMA NU 4-2008 standards. Our results diverge considerably from those previously reported with an adapted version of the NEMA NU 2-2001 clinical standards. These discrepancies can be attributed to the modifications in NEMA methodology, thereby highlighting the relevance of specific small-animal standards for the performance evaluation of PET systems.

  4. Efficacy of distortion correction on diffusion imaging: comparison of FSL eddy and eddy_correct using 30 and 60 directions diffusion encoding.

    PubMed

    Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki

    2014-01-01

    Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.

  5. Relational Language and the Development of Relational Mapping

    ERIC Educational Resources Information Center

    Loewenstein, J.; Gentner, D.

    2005-01-01

    We test the claim that learning and using language for spatial relations can influence spatial representation and reasoning. Preschool children were given a mapping task in which they were asked to find a ''winner'' placed in a three-tiered box after seeing one placed in a virtually identical box. The correct choice was determined by finding the…

  6. Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.

    PubMed

    Guérin, T; Dean, D S

    2015-12-01

    We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.

  7. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems.

  8. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    PubMed Central

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems. PMID:26754065

  9. Validation of a spatial model used to locate fish spawning reef construction sites in the St. Clair–Detroit River system

    USGS Publications Warehouse

    Fischer, Jason L.; Bennion, David; Roseman, Edward F.; Manny, Bruce A.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) populations have suffered precipitous declines in the St. Clair–Detroit River system, following the removal of gravel spawning substrates and overfishing in the late 1800s to mid-1900s. To assist the remediation of lake sturgeon spawning habitat, three hydrodynamic models were integrated into a spatial model to identify areas in two large rivers, where water velocities were appropriate for the restoration of lake sturgeon spawning habitat. Here we use water velocity data collected with an acoustic Doppler current profiler (ADCP) to assess the ability of the spatial model and its sub-models to correctly identify areas where water velocities were deemed suitable for restoration of fish spawning habitat. ArcMap 10.1 was used to create raster grids of water velocity data from model estimates and ADCP measurements which were compared to determine the percentage of cells similarly classified as unsuitable, suitable, or ideal for fish spawning habitat remediation. The spatial model categorized 65% of the raster cells the same as depth-averaged water velocity measurements from the ADCP and 72% of the raster cells the same as surface water velocity measurements from the ADCP. Sub-models focused on depth-averaged velocities categorized the greatest percentage of cells similar to ADCP measurements where 74% and 76% of cells were the same as depth-averaged water velocity measurements. Our results indicate that integrating depth-averaged and surface water velocity hydrodynamic models may have biased the spatial model and overestimated suitable spawning habitat. A model solely integrating depth-averaged velocity models could improve identification of areas suitable for restoration of fish spawning habitat.

  10. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps.

    PubMed

    Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.

  11. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps

    PubMed Central

    Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237

  12. Removing the Impact of Correlated PSF Uncertainties in Weak Lensing

    NASA Astrophysics Data System (ADS)

    Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui

    2018-05-01

    Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.

  13. Error correcting mechanisms during antisaccades: contribution of online control during primary saccades and offline control via secondary saccades.

    PubMed

    Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.

  14. Various attitudes to the use of corrective exercises in conservative treatment of scoliosis.

    PubMed

    Nowotny, Janusz; Nowotny-Czupryna, Olga; Czupryna, Krzysztof

    2010-01-01

    In acquired scoliosis, the degree of the curve is initially low and its type becomes apparent only after it has progressed. The characteristics of scoliosis include an abnormal spatial arrangement of individual body segments, which the central nervous system (CNS) interprets as a defect and automatically launches compensatory mechanisms. Neglecting low-degree scoliosis poses a two-fold danger. It usually leads to the development of structural changes, while the child gets used to the abnormal body arrangement, thus reinforcing the poor postural habits. The basic aim of early rehabilitation is to manage the compensatory mechanisms and prevent the development of adverse secondary changes, rehabilitation in scoliosis being no exception.Some cases of scoliosis require surgery. The point is to minimise the changes resulting from the progression of scoliosis. The role of corrective exercises seems to be significant here. However, views on the usefulness of such exercises are sometimes extremely varied, even though both favourable and sceptical opinions are not fully supported by the literature. However, a number of reports indicate that corrective exercises are useful.
    The selection and of corrective exercises and how they should be performed are another question. A number of methods of conservative treatment of scoliosis have been devised. Currently, none of them is considered a comprehensive regimen since each patient requires an individual approach. The most difficult aspect is to ensure that local correction translates to the automatic maintenance of the corrected body posture in a standing position. This is facilitated by corrective exercises supported with biofeedback.
    The aim of this paper is to elucidate this complex issue that often leads to divergent and improper attitudes to the conservative treatment of scoliosis.

  15. Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.

    1999-09-01

    A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less

  16. Perception of the Body in Space: Mechanisms

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1991-01-01

    The principal topic is the perception of body orientation and motion in space and the extent to which these perceptual abstraction can be related directly to the knowledge of sensory mechanisms, particularly for the vestibular apparatus. Spatial orientation is firmly based on the underlying sensory mechanisms and their central integration. For some of the simplest situations, like rotation about a vertical axis in darkness, the dynamic response of the semicircular canals furnishes almost enough information to explain the sensations of turning and stopping. For more complex conditions involving multiple sensory systems and possible conflicts among their messages, a mechanistic response requires significant speculative assumptions. The models that exist for multisensory spatial orientation are still largely of the non-rational parameter variety. They are capable of predicting relationships among input motions and output perceptions of motion, but they involve computational functions that do not now and perhaps never will have their counterpart in central nervous system machinery. The challenge continues to be in the iterative process of testing models by experiment, correcting them where necessary, and testing them again.

  17. Intraoperative spatial frequency domain diffuse optical tomography with indo-cyanine green (ICG) fluorescence contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chong, Sang Hoon; Parthasarathy, Ashwin B.; Kavuri, Venkaiah C.; Moscatelli, Frank A.; Singhal, Sunil; Yodh, Arjun G.

    2017-02-01

    Surgical resection is the most effective treatment strategy for solid tumors, but complete removal of the tumor is critical for post-surgical recovery/long-term survival and is dependent on correct identification of the tumor margin and accurate excision of microscopic residual tumor in the surgical field. Fluorescence image guided surgery is an emerging technique that has shown promise for intraoperative location of tumors and tumor margins. Current versions of such intraoperative fluorescence imaging, however, are generally limited to 2D near-surface images, i.e., without information about tumor depth. Here we present an intraoperative fluorescence imaging system for 3D volumetric imaging of tumors; the system uses spatial frequency domain diffuse optical tomography with an analytic inversion reconstruction method. The new instrument can derive depth-sensitive 3D tumor images at depths up to 1 cm, and it employs compact epi-imaging and illumination suitable for the operating room, with quasi-real-time image reconstruction for surgical visualization. We present experimental results with FDA-approved Indocynanine Green using an extensive array of tissue phantoms and in a pilot in-vivo study.

  18. Processing of SeaMARC swath sonar imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratson, L.; Malinverno, A.; Edwards, M.

    1990-05-01

    Side-scan swath sonar systems have become an increasingly important means of mapping the sea floor. Two such systems are the deep-towed, high-resolution SeaMARC I sonar, which has a variable swath width of up to 5 km, and the shallow-towed, lower-resolution SeaMARC II sonar, which has a swath width of 10 km. The sea-floor imagery of acoustic backscatter output by the SeaMARC sonars is analogous to aerial photographs and airborne side-looking radar images of continental topography. Geologic interpretation of the sea-floor imagery is greatly facilitated by image processing. Image processing of the digital backscatter data involves removal of noise by medianmore » filtering, spatial filtering to remove sonar scans of anomalous intensity, across-track corrections to remove beam patterns caused by nonuniform response of the sonar transducers to changes in incident angle, and contrast enhancement by histogram equalization to maximize the available dynamic range. Correct geologic interpretation requires submarine structural fabrics to be displayed in their proper locations and orientations. Geographic projection of sea-floor imagery is achieved by merging the enhanced imagery with the sonar vehicle navigation and correcting for vehicle attitude. Co-registration of bathymetry with sonar imagery introduces sea-floor relief and permits the imagery to be displayed in three-dimensional perspectives, furthering the ability of the marine geologist to infer the processes shaping formerly hidden subsea terrains.« less

  19. DM/LCWFC based adaptive optics system for large aperture telescopes imaging from visible to infrared waveband.

    PubMed

    Sun, Fei; Cao, Zhaoliang; Wang, Yukun; Zhang, Caihua; Zhang, Xingyun; Liu, Yong; Mu, Quanquan; Xuan, Li

    2016-11-28

    Almost all the deformable mirror (DM) based adaptive optics systems (AOSs) used on large aperture telescopes work at the infrared waveband due to the limitation of the number of actuators. To extend the imaging waveband to the visible, we propose a DM and Liquid crystal wavefront corrector (DM/LCWFC) combination AOS. The LCWFC is used to correct the high frequency aberration corresponding to the visible waveband and the aberrations of the infrared are corrected by the DM. The calculated results show that, to a 10 m telescope, DM/LCWFC AOS which contains a 1538 actuators DM and a 404 × 404 pixels LCWFC is equivalent to a DM based AOS with 4057 actuators. It indicates that the DM/LCWFC AOS is possible to work from visible to infrared for larger aperture telescopes. The simulations and laboratory experiment are performed for a 2 m telescope. The experimental results show that, after correction, near diffraction limited resolution USAF target images are obtained at the wavebands of 0.7-0.9 μm, 0.9-1.5 μm and 1.5-1.7 μm respectively. Therefore, the DM/LCWFC AOS may be used to extend imaging waveband of larger aperture telescope to the visible. It is very appropriate for the observation of spatial objects and the scientific research in astronomy.

  20. Hybrid information privacy system: integration of chaotic neural network and RSA coding

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.

    2005-03-01

    Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.

  1. Task-dependent vestibular feedback responses in reaching.

    PubMed

    Keyser, Johannes; Medendorp, W Pieter; Selen, Luc P J

    2017-07-01

    When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory. Copyright © 2017 the American Physiological Society.

  2. Independent effects of colour on object identification and memory.

    PubMed

    Lloyd-Jones, Toby J; Nakabayashi, Kazuyo

    2009-02-01

    We examined the effects of colour on object identification and memory using a study-test priming procedure with a coloured-object decision task at test (i.e., deciding whether an object is correctly coloured). Objects were selected to have a single associated colour and were either correctly or incorrectly coloured. In addition, object shape and colour were either spatially integrated (i.e., colour fell on the object surface) or spatially separated (i.e., colour formed the background to the object). Transforming the colour of an object from study to test (e.g., from a yellow banana to a purple banana) reduced priming of response times, as compared to when the object was untransformed. This utilization of colour information in object memory was not contingent upon colour falling on the object surface or whether the resulting configuration was of a correctly or incorrectly coloured object. In addition, we observed independent effects of colour on response times, whereby coloured-object decisions were more efficient for correctly than for incorrectly coloured objects but only when colour fell on the object surface. These findings provide evidence for two distinct mechanisms of shape-colour binding in object processing.

  3. High-resolution Monthly Satellite Precipitation Product over the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Fayne, J.; Knight, R. J.; Lakshmi, V.

    2017-12-01

    We present a data set that enhanced the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) monthly product 3B43 in its accuracy and spatial resolution. For this, we developed a correction function to improve the accuracy of TRMM 3B43, spatial resolution of 25 km, by estimating and removing the bias in the satellite data using a ground-based precipitation data set. We observed a strong relationship between the bias and land surface elevation; TRMM 3B43 tends to underestimate the ground-based product at elevations above 1500 m above mean sea level (m.amsl) over the conterminous United States. A relationship was developed between satellite bias and elevation. We then resampled TRMM 3B43 to the Digital Elevation Model (DEM) data set at a spatial resolution of 30 arc second ( 1 km on the ground). The produced high-resolution satellite-based data set was corrected using the developed correction function based on the bias-elevation relationship. Assuming that each rain gauge represents an area of 1 km2, we verified our product against 9,200 rain gauges across the conterminous United States. The new product was compared with the gauges, which have 50, 60, 70, 80, 90, and 100% temporal coverage within the TRMM period of 1998 to 2015. Comparisons between the high-resolution corrected satellite-based data and gauges showed an excellent agreement. The new product captured more detail in the changes in precipitation over the mountainous region than the original TRMM 3B43.

  4. Spatial short-term memory in children with nonverbal learning disabilities: impairment in encoding spatial configuration.

    PubMed

    Narimoto, Tadamasa; Matsuura, Naomi; Takezawa, Tomohiro; Mitsuhashi, Yoshinori; Hiratani, Michio

    2013-01-01

    The authors investigated whether impaired spatial short-term memory exhibited by children with nonverbal learning disabilities is due to a problem in the encoding process. Children with or without nonverbal learning disabilities performed a simple spatial test that required them to remember 3, 5, or 7 spatial items presented simultaneously in random positions (i.e., spatial configuration) and to decide if a target item was changed or all items including the target were in the same position. The results showed that, even when the spatial positions in the encoding and probe phases were similar, the mean proportion correct of children with nonverbal learning disabilities was 0.58 while that of children without nonverbal learning disabilities was 0.84. The authors argue with the results that children with nonverbal learning disabilities have difficulty encoding relational information between spatial items, and that this difficulty is responsible for their impaired spatial short-term memory.

  5. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  6. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    PubMed

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions.

  7. Precise method of compensating radiation-induced errors in a hot-cathode-ionization gauge with correcting electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hiroshi, E-mail: saeki@spring8.or.jp; Magome, Tamotsu, E-mail: saeki@spring8.or.jp

    2014-10-06

    To compensate pressure-measurement errors caused by a synchrotron radiation environment, a precise method using a hot-cathode-ionization-gauge head with correcting electrode, was developed and tested in a simulation experiment with excess electrons in the SPring-8 storage ring. This precise method to improve the measurement accuracy, can correctly reduce the pressure-measurement errors caused by electrons originating from the external environment, and originating from the primary gauge filament influenced by spatial conditions of the installed vacuum-gauge head. As the result of the simulation experiment to confirm the performance reducing the errors caused by the external environment, the pressure-measurement error using this method wasmore » approximately less than several percent in the pressure range from 10{sup −5} Pa to 10{sup −8} Pa. After the experiment, to confirm the performance reducing the error caused by spatial conditions, an additional experiment was carried out using a sleeve and showed that the improved function was available.« less

  8. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    PubMed

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  9. Two-particle multichannel systems in a finite volume with arbitrary spin

    DOE PAGES

    Briceno, Raul A.

    2014-04-08

    The quantization condition for two-particle systems with arbitrary number of two-body open coupled channels, spin and masses in a finite cubic volume with either periodic or twisted boundary conditions is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is relativistic, holds for all momenta below the three- and four-particle thresholds, and is exact up to exponential volume corrections that are governed by L/r, where L is the spatial extent of the volume and r is the range of the interactions between the particles. With hadronic systems the rangemore » of the interaction is set by the inverse of the pion mass, m π, and as a result the formalism presented is suitable for m πL>>1. Implications of the formalism for the studies of multichannel baryon-baryon systems are discussed.« less

  10. Health Monitoring System for Composite Structures

    NASA Technical Reports Server (NTRS)

    Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.

    1996-01-01

    An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.

  11. Performance evaluation of the Trans-PET® BioCaliburn® LH system: a large FOV small-animal PET system

    NASA Astrophysics Data System (ADS)

    Wang, Luyao; Zhu, Jun; Liang, Xiao; Niu, Ming; Wu, Xiaoke; Kao, Chien-Min; Kim, Heejong; Xie, Qingguo

    2015-01-01

    The Trans-PET® BioCaliburn® LH is a commercial positron emission tomography (PET) system for animal imaging. The system offers a large transaxial field-of-view (FOV) of 13.0 cm to allow imaging of multiple rodents or larger animals. This paper evaluates and reports the performance characteristics of this system. Methods: in this paper, the system was evaluated for its spatial resolutions, sensitivity, scatter fraction, count rate performance and image quality in accordance with the National Electrical Manufacturers Association (NEMA) NU-4 2008 specification with modifications. Phantoms and animals not specified in the NEMA specification were also scanned to provide further demonstration of its imaging capability. Results: the spatial resolution is 1.0 mm at the center. When using a 350-650 keV energy window and a 5 ns coincidence time window, the sensitivity at the center is 2.04%. The noise equivalent count-rate curve reaches a peak value of 62 kcps at 28 MBq for the mouse-sized phantom and a peak value of 25 kcps at 31 MBq for the rat-sized phantom. The scatter fractions are 8.4% and 17.7% for the mouse- and rat-sized phantoms, respectively. The uniformity and recovery coefficients measured by using the NEMA image-quality phantom both indicate good imaging performance, even though the reconstruction algorithm provided by the vendor does not implement all desired corrections. The Derenzo-phantom images show that the system can resolve 1.0 mm diameter rods. Animal studies demonstrate the capabilities of the system in dynamic imaging and to image multiple rodents. Conclusion: the Trans-PET® BioCaliburn® LH system offers high spatial resolution, a large transaixal FOV and adequate sensitivity. It produces animal images of good quality and supports dynamic imaging. The system is an attractive imaging technology for preclinical research.

  12. Selection of neural network structure for system error correction of electro-optical tracker system with horizontal gimbal

    NASA Astrophysics Data System (ADS)

    Liu, Xing-fa; Cen, Ming

    2007-12-01

    Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.

  13. Stress polishing of thin shells for adaptive secondary mirrors. Application to the Very Large Telescope deformable secondary

    NASA Astrophysics Data System (ADS)

    Hugot, E.; Ferrari, M.; Riccardi, A.; Xompero, M.; Lemaître, G. R.; Arsenault, R.; Hubin, N.

    2011-03-01

    Context. Adaptive secondary mirrors (ASM) are, or will be, key components on all modern telescopes, providing improved seeing conditions or diffraction limited images, thanks to the high-order atmospheric turbulence correction obtained by controlling the shape of a thin mirror. Their development is a key milestone towards future extremely large telescopes (ELT) where this technology is mandatory for successful observations. Aims: The key point of actual adaptive secondaries technology is the thin glass mirror that acts as a deformable membrane, often aspheric. On 6 m - 8 m class telescopes, these are typically 1 m-class with a 2 mm thickness. The optical quality of this shell must be sufficiently good not to degrade the correction, meaning that high spatial frequency errors must be avoided. The innovative method presented here aims at generating aspherical shapes by elastic bending to reach high optical qualities. Methods: This method is called stress polishing and allows generating aspherical optics of a large amplitude with a simple spherical polishing with a full sized lap applied on a warped blank. The main advantage of this technique is the smooth optical quality obtained, free of high spatial frequency ripples as they are classically caused by subaperture toolmarks. After describing the manufacturing process we developed, our analytical calculations lead to a preliminary definition of the geometry of the blank, which allows a precise bending of the substrate. The finite element analysis (FEA) can be performed to refine this geometry by using an iterative method with a criterion based on the power spectral density of the displacement map of the optical surface. Results: Considering the specific case of the Very Large Telescope (VLT) deformable secondary mirror (DSM), extensive FEA were performed for the optimisation of the geometry. Results are showing that the warping will not introduce surface errors higher than 0.3 nm rms on the minimal spatial scale considered on the mirror. Simulations of the flattening operation of the shell also demonstrate that the actuators system is able to correct manufacturing surface errors coming from the warping of the blank with a residual error lower than 8 nm rms.

  14. Search for Spatially Extended Fermi-LAT Sources Using Two Years of Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lande, Joshua; Ackermann, Markus; Allafort, Alice

    2012-07-13

    Spatial extension is an important characteristic for correctly associating {gamma}-ray-emitting sources with their counterparts at other wavelengths and for obtaining an unbiased model of their spectra. We present a new method for quantifying the spatial extension of sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi). We perform a series of Monte Carlo simulations to validate this tool and calculate the LAT threshold for detecting the spatial extension of sources. We then test all sources in the second Fermi -LAT catalog (2FGL) for extension. We report the detection of sevenmore » new spatially extended sources.« less

  15. [GLIATILIN CORRECTION OF WORKING AND REFERENCE SPATIAL MEMORY IMPAIRMENT IN AGED RATS].

    PubMed

    Tyurenkov, I N; Volotova, E V; Kurkin, D V

    2015-01-01

    This work was aimed at evaluating the influence of gliatilin administration on the spatial memory in aged rats. Cognitive function and spatial memory in animals was evaluated using radial (8-beam) maze test. Errors of working spatial memory and reference memory were used as indicators of impaired cognitive function. It was found that aged (24-month) rats compared with younger (6-months) age group exhibited cognitive impairment, as manifested by deterioration of short- and long-term memory processes. Course administration of gliatilin in rats of the older age group at a dose of 100 mg/kg resulted in significant improvement of the working and reference spatial memory in aged rats.

  16. Thermal equilibrium and statistical thermometers in special relativity.

    PubMed

    Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter

    2007-10-26

    There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.

  17. Improvement of gray-scale representation of horizontally scanning holographic display using error diffusion.

    PubMed

    Matsumoto, Yuji; Takaki, Yasuhiro

    2014-06-15

    Horizontally scanning holography can enlarge both screen size and viewing zone angle. A microelectromechanical-system spatial light modulator, which can generate only binary images, is used to generate hologram patterns. Thus, techniques to improve gray-scale representation in reconstructed images should be developed. In this study, the error diffusion technique was used for the binarization of holograms. When the Floyd-Steinberg error diffusion coefficients were used, gray-scale representation was improved. However, the linearity in the gray-scale representation was not satisfactory. We proposed the use of a correction table and showed that the linearity was greatly improved.

  18. Nonuniformity correction based on focal plane array temperature in uncooled long-wave infrared cameras without a shutter.

    PubMed

    Liang, Kun; Yang, Cailan; Peng, Li; Zhou, Bo

    2017-02-01

    In uncooled long-wave IR camera systems, the temperature of a focal plane array (FPA) is variable along with the environmental temperature as well as the operating time. The spatial nonuniformity of the FPA, which is partly affected by the FPA temperature, obviously changes as well, resulting in reduced image quality. This study presents a real-time nonuniformity correction algorithm based on FPA temperature to compensate for nonuniformity caused by FPA temperature fluctuation. First, gain coefficients are calculated using a two-point correction technique. Then offset parameters at different FPA temperatures are obtained and stored in tables. When the camera operates, the offset tables are called to update the current offset parameters via a temperature-dependent interpolation. Finally, the gain coefficients and offset parameters are used to correct the output of the IR camera in real time. The proposed algorithm is evaluated and compared with two representative shutterless algorithms [minimizing the sum of the squares of errors algorithm (MSSE), template-based solution algorithm (TBS)] using IR images captured by a 384×288 pixel uncooled IR camera with a 17 μm pitch. Experimental results show that this method can quickly trace the response drift of the detector units when the FPA temperature changes. The quality of the proposed algorithm is as good as MSSE, while the processing time is as short as TBS, which means the proposed algorithm is good for real-time control and at the same time has a high correction effect.

  19. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps implemented in LANDARTs and propose a local and spatial validation of the LST products from Landsat dataset archive over two climatically contrasted zones: south-west France and centre of Tunisia. In both sites, long term datasets of in-situ surface temperature measurements have been compared to LST obtained for Landsat data processed by LANDARTs and filtered from clouds. This temporal comparison presents RMSE between 1.84K and 2.55K. Then, Landsat LST products are compared to ASTER kinetic surface temperature products on two synchronous dates from both zones. This comparison presents satisfactory RMSE about 2.55K with a good correlation coefficient of 0.9. Finally, a sensibility analysis to the spatial variation of parameters presents a variability reaching 2K at the Landsat image scale and confirms the improved accuracy in Landsat LST estimation linked to our spatial approach.

  20. Temporal and spatial adaptations during the acquisition of a reversal movement.

    PubMed

    van Loon, E M; Buekers, M J; Helsen, W; Magill, R A

    1998-03-01

    Adjustments of the biphasic movement in a coincidence anticipation task were studied using an erroneous knowledge of results (KR) paradigm. Forty participants received either no KR, correct KR, erroneous (+100 ms) KR, or 100 trials of correct KR followed by 50 trials of erroneous KR. Kinematic analyses revealed that for this 100-50 KR group the extension part of the movement was temporally adjusted under the influence of erroneous KR. Although accompanied by a decrease in movement amplitude, this did not account for the temporal shift in movement outcome, because all groups showed a reduction in amplitude. It is argued that changing external time constraints mainly results in temporal adaptations. However, spatial adaptations do play a role in kinematic changes during acquisition.

Top