Boiler-turbine control system design using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.; Lee, K.Y.
1995-12-01
This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.
NASA Astrophysics Data System (ADS)
Moon, Byung-Young
2005-12-01
The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.
The potential of genetic algorithms for conceptual design of rotor systems
NASA Technical Reports Server (NTRS)
Crossley, William A.; Wells, Valana L.; Laananen, David H.
1993-01-01
The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.
Genetic algorithms for adaptive real-time control in space systems
NASA Technical Reports Server (NTRS)
Vanderzijp, J.; Choudry, A.
1988-01-01
Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.
Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous
NASA Technical Reports Server (NTRS)
Karr, C. L.; Freeman, L. M.; Meredith, D. L.
1990-01-01
The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.
Global Optimization of a Periodic System using a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Stucke, David; Crespi, Vincent
2001-03-01
We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.
Automatic page layout using genetic algorithms for electronic albuming
NASA Astrophysics Data System (ADS)
Geigel, Joe; Loui, Alexander C. P.
2000-12-01
In this paper, we describe a flexible system for automatic page layout that makes use of genetic algorithms for albuming applications. The system is divided into two modules, a page creator module which is responsible for distributing images amongst various album pages, and an image placement module which positions images on individual pages. Final page layouts are specified in a textual form using XML for printing or viewing over the Internet. The system makes use of genetic algorithms, a class of search and optimization algorithms that are based on the concepts of biological evolution, for generating solutions with fitness based on graphic design preferences supplied by the user. The genetic page layout algorithm has been incorporated into a web-based prototype system for interactive page layout over the Internet. The prototype system is built using client-server architecture and is implemented in java. The system described in this paper has demonstrated the feasibility of using genetic algorithms for automated page layout in albuming and web-based imaging applications. We believe that the system adequately proves the validity of the concept, providing creative layouts in a reasonable number of iterations. By optimizing the layout parameters of the fitness function, we hope to further improve the quality of the final layout in terms of user preference and computation speed.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.
Comparison of genetic algorithm methods for fuel management optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-12-31
The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.
2008-06-01
postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida
By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...
Page, Andrew J.; Keane, Thomas M.; Naughton, Thomas J.
2010-01-01
We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms. PMID:20862190
The application of immune genetic algorithm in main steam temperature of PID control of BP network
NASA Astrophysics Data System (ADS)
Li, Han; Zhen-yu, Zhang
In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.
Air data system optimization using a genetic algorithm
NASA Technical Reports Server (NTRS)
Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III
1992-01-01
An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.
A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection
Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta
2016-01-01
This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500
By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...
NASA Astrophysics Data System (ADS)
Huang, Yin; Chen, Jianhua; Xiong, Shaojun
2009-07-01
Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.
NASA Astrophysics Data System (ADS)
Wu, Q. H.; Ma, J. T.
1993-09-01
A primary investigation into application of genetic algorithms in optimal reactive power dispatch and voltage control is presented. The application was achieved, based on (the United Kingdom) National Grid 48 bus network model, using a novel genetic search approach. Simulation results, compared with that obtained using nonlinear programming methods, are included to show the potential of applications of the genetic search methodology in power system economical and secure operations.
Flexible Space-Filling Designs for Complex System Simulations
2013-06-01
interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations
Research and application of multi-agent genetic algorithm in tower defense game
NASA Astrophysics Data System (ADS)
Jin, Shaohua
2018-04-01
In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.
Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.
Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang
2017-01-01
Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.
NASA Astrophysics Data System (ADS)
Yusupov, L. R.; Klochkova, K. V.; Simonova, L. A.
2017-09-01
The paper presents a methodology of modeling the chemical composition of the composite material via genetic algorithm for optimization of the manufacturing process of products. The paper presents algorithms of methods based on intelligent system of vermicular graphite iron design
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Nuclear fuel management optimization using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-07-01
The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less
Self-calibration of a noisy multiple-sensor system with genetic algorithms
NASA Astrophysics Data System (ADS)
Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua
1996-01-01
This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.
Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber
NASA Astrophysics Data System (ADS)
Michaeli, Linor; Bahabad, Alon
2018-05-01
We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.
Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense
2010-03-01
17 NSGA-II non-dominated sorting genetic algorithm II . . . . . . . . . . . . . . . . . . . 17 jMetal Metaheuristic Algorithms in...to alert the other agents and ensure trust in the system. This research presents an algorithm that tasks robots to meet the two specific goals of...problem is defined as a constraint satisfaction problem solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Both goals of
NASA Astrophysics Data System (ADS)
Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen
2018-01-01
We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.
Weather prediction using a genetic memory
NASA Technical Reports Server (NTRS)
Rogers, David
1990-01-01
Kanaerva's sparse distributed memory (SDM) is an associative memory model based on the mathematical properties of high dimensional binary address spaces. Holland's genetic algorithms are a search technique for high dimensional spaces inspired by evolutional processes of DNA. Genetic Memory is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. This architecture is designed to maximize the ability of the system to scale-up to handle real world problems.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2012-01-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2011-12-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
ERIC Educational Resources Information Center
Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.
2003-01-01
Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…
NASA Astrophysics Data System (ADS)
Shao, Yuxiang; Chen, Qing; Wei, Zhenhua
Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.
NASA Astrophysics Data System (ADS)
Narwadi, Teguh; Subiyanto
2017-03-01
The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Genetic algorithm for neural networks optimization
NASA Astrophysics Data System (ADS)
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship s flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm s design, along with mathematical models of the algorithm s performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship's flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm's design, along with mathematical models of the algorithm's performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Neural system for heartbeats recognition using genetically integrated ensemble of classifiers.
Osowski, Stanislaw; Siwek, Krzysztof; Siroic, Robert
2011-03-01
This paper presents the application of genetic algorithm for the integration of neural classifiers combined in the ensemble for the accurate recognition of heartbeat types on the basis of ECG registration. The idea presented in this paper is that using many classifiers arranged in the form of ensemble leads to the increased accuracy of the recognition. In such ensemble the important problem is the integration of all classifiers into one effective classification system. This paper proposes the use of genetic algorithm. It was shown that application of the genetic algorithm is very efficient and allows to reduce significantly the total error of heartbeat recognition. This was confirmed by the numerical experiments performed on the MIT BIH Arrhythmia Database. Copyright © 2011 Elsevier Ltd. All rights reserved.
A meta-learning system based on genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
NASA Astrophysics Data System (ADS)
Jun, LIU; Huang, Wei; Hongjie, Fan
2016-02-01
A novel method for finding the initial structure parameters of an optical system via the genetic algorithm (GA) is proposed in this research. Usually, optical designers start their designs from the commonly used structures from a patent database; however, it is time consuming to modify the patented structures to meet the specification. A high-performance design result largely depends on the choice of the starting point. Accordingly, it would be highly desirable to be able to calculate the initial structure parameters automatically. In this paper, a method that combines a genetic algorithm and aberration analysis is used to determine an appropriate initial structure of an optical system. We use a three-mirror system as an example to demonstrate the validity and reliability of this method. On-axis and off-axis telecentric three-mirror systems are obtained based on this method.
Evolution, learning, and cognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.C.
1988-01-01
The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.
An automated diagnosis system of liver disease using artificial immune and genetic algorithms.
Liang, Chunlin; Peng, Lingxi
2013-04-01
The rise of health care cost is one of the world's most important problems. Disease prediction is also a vibrant research area. Researchers have approached this problem using various techniques such as support vector machine, artificial neural network, etc. This study typically exploits the immune system's characteristics of learning and memory to solve the problem of liver disease diagnosis. The proposed system applies a combination of two methods of artificial immune and genetic algorithm to diagnose the liver disease. The system architecture is based on artificial immune system. The learning procedure of system adopts genetic algorithm to interfere the evolution of antibody population. The experiments use two benchmark datasets in our study, which are acquired from the famous UCI machine learning repository. The obtained diagnosis accuracies are very promising with regard to the other diagnosis system in the literatures. These results suggest that this system may be a useful automatic diagnosis tool for liver disease.
Modeling of biological intelligence for SCM system optimization.
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Modeling of Biological Intelligence for SCM System Optimization
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724
NASA Astrophysics Data System (ADS)
Wisesty, Untari N.; Warastri, Riris S.; Puspitasari, Shinta Y.
2018-03-01
Cancer is one of the major causes of mordibility and mortality problems in the worldwide. Therefore, the need of a system that can analyze and identify a person suffering from a cancer by using microarray data derived from the patient’s Deoxyribonucleic Acid (DNA). But on microarray data has thousands of attributes, thus making the challenges in data processing. This is often referred to as the curse of dimensionality. Therefore, in this study built a system capable of detecting a patient whether contracted cancer or not. The algorithm used is Genetic Algorithm as feature selection and Momentum Backpropagation Neural Network as a classification method, with data used from the Kent Ridge Bio-medical Dataset. Based on system testing that has been done, the system can detect Leukemia and Colon Tumor with best accuracy equal to 98.33% for colon tumor data and 100% for leukimia data. Genetic Algorithm as feature selection algorithm can improve system accuracy, which is from 64.52% to 98.33% for colon tumor data and 65.28% to 100% for leukemia data, and the use of momentum parameters can accelerate the convergence of the system in the training process of Neural Network.
Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang
2017-09-01
Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.
Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng
2012-06-01
Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.
NASA Astrophysics Data System (ADS)
Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun
2018-07-01
Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.
A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2013-05-01
With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.
Nemesis Autonomous Test System
NASA Technical Reports Server (NTRS)
Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.
2012-01-01
A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Rakoczy, John; Steincamp, James; Taylor, Jaime
2003-01-01
A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.
Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria
Farasat, Iman; Kushwaha, Manish; Collens, Jason; Easterbrook, Michael; Guido, Matthew; Salis, Howard M
2014-01-01
Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs. PMID:24952589
Genetic algorithms applied to the scheduling of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Sponsler, Jeffrey L.
1989-01-01
A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.
Event Processing and Variable Part of Sample Period Determining in Combined Systems Using GA
NASA Astrophysics Data System (ADS)
Strémy, Maximilián; Závacký, Pavol; Jedlička, Martin
2011-01-01
This article deals with combined dynamic systems and usage of modern techniques in dealing with these systems, focusing particularly on sampling period design, cyclic processing tasks and related processing algorithms in the combined event management systems using genetic algorithms.
Joint optimization of maintenance, buffers and machines in manufacturing lines
NASA Astrophysics Data System (ADS)
Nahas, Nabil; Nourelfath, Mustapha
2018-01-01
This article considers a series manufacturing line composed of several machines separated by intermediate buffers of finite capacity. The goal is to find the optimal number of preventive maintenance actions performed on each machine, the optimal selection of machines and the optimal buffer allocation plan that minimize the total system cost, while providing the desired system throughput level. The mean times between failures of all machines are assumed to increase when applying periodic preventive maintenance. To estimate the production line throughput, a decomposition method is used. The decision variables in the formulated optimal design problem are buffer levels, types of machines and times between preventive maintenance actions. Three heuristic approaches are developed to solve the formulated combinatorial optimization problem. The first heuristic consists of a genetic algorithm, the second is based on the nonlinear threshold accepting metaheuristic and the third is an ant colony system. The proposed heuristics are compared and their efficiency is shown through several numerical examples. It is found that the nonlinear threshold accepting algorithm outperforms the genetic algorithm and ant colony system, while the genetic algorithm provides better results than the ant colony system for longer manufacturing lines.
NASA Astrophysics Data System (ADS)
Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng
2009-07-01
Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.
Floares, Alexandru George
2008-01-01
Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.
Ferentinos, Konstantinos P
2005-09-01
Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.
Integrative systems modeling and multi-objective optimization
This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...
NASA Astrophysics Data System (ADS)
Chen, Hao; Guan, Weipeng; Li, Simin; Wu, Yuxiang
2018-04-01
To improve the precision of indoor positioning and actualize three-dimensional positioning, a reversed indoor positioning system based on visible light communication (VLC) using genetic algorithm (GA) is proposed. In order to solve the problem of interference between signal sources, CDMA modulation is used. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) code using CDMA modulation. Receiver receives mixed signal from every LED reference point, by the orthogonality of spreading code in CDMA modulation, ID information and intensity attenuation information from every LED can be obtained. According to positioning principle of received signal strength (RSS), the coordinate of the receiver can be determined. Due to system noise and imperfection of device utilized in the system, distance between receiver and transmitters will deviate from the real value resulting in positioning error. By introducing error correction factors to global parallel search of genetic algorithm, coordinates of the receiver in three-dimensional space can be determined precisely. Both simulation results and experimental results show that in practical application scenarios, the proposed positioning system can realize high precision positioning service.
Lectures in Complex Systems, (1992). Volume 5
1993-05-01
Lattice Gas Methods for Partial Differential Equations, 1989 V P. W. Anderson, K. Arrow, The Economy as an Evolving Complex System, D. Pines 1988 VI C...to Improve EEG Classification and to Explore GA Parametrization Cathleen Barczys, Laura Bloom, and Leslie Kay 569 Symbiosis in Society and Monopoly in...Appeal of Evolution 1.2 Elements of Genetic Algorithms 1.3 A Simple GA 1.4 Overview of Some Applications of Genetic Algorithms 1.5 A Brief Example
Comparative Analysis of Rank Aggregation Techniques for Metasearch Using Genetic Algorithm
ERIC Educational Resources Information Center
Kaur, Parneet; Singh, Manpreet; Singh Josan, Gurpreet
2017-01-01
Rank Aggregation techniques have found wide applications for metasearch along with other streams such as Sports, Voting System, Stock Markets, and Reduction in Spam. This paper presents the optimization of rank lists for web queries put by the user on different MetaSearch engines. A metaheuristic approach such as Genetic algorithm based rank…
Algorithme intelligent d'optimisation d'un design structurel de grande envergure
NASA Astrophysics Data System (ADS)
Dominique, Stephane
The implementation of an automated decision support system in the field of design and structural optimisation can give a significant advantage to any industry working on mechanical designs. Indeed, by providing solution ideas to a designer or by upgrading existing design solutions while the designer is not at work, the system may reduce the project cycle time, or allow more time to produce a better design. This thesis presents a new approach to automate a design process based on Case-Based Reasoning (CBR), in combination with a new genetic algorithm named Genetic Algorithm with Territorial core Evolution (GATE). This approach was developed in order to reduce the operating cost of the process. However, as the system implementation cost is quite expensive, the approach is better suited for large scale design problem, and particularly for design problems that the designer plans to solve for many different specification sets. First, the CBR process uses a databank filled with every known solution to similar design problems. Then, the closest solutions to the current problem in term of specifications are selected. After this, during the adaptation phase, an artificial neural network (ANN) interpolates amongst known solutions to produce an additional solution to the current problem using the current specifications as inputs. Each solution produced and selected by the CBR is then used to initialize the population of an island of the genetic algorithm. The algorithm will optimise the solution further during the refinement phase. Using progressive refinement, the algorithm starts using only the most important variables for the problem. Then, as the optimisation progress, the remaining variables are gradually introduced, layer by layer. The genetic algorithm that is used is a new algorithm specifically created during this thesis to solve optimisation problems from the field of mechanical device structural design. The algorithm is named GATE, and is essentially a real number genetic algorithm that prevents new individuals to be born too close to previously evaluated solutions. The restricted area becomes smaller or larger during the optimisation to allow global or local search when necessary. Also, a new search operator named Substitution Operator is incorporated in GATE. This operator allows an ANN surrogate model to guide the algorithm toward the most promising areas of the design space. The suggested CBR approach and GATE were tested on several simple test problems, as well as on the industrial problem of designing a gas turbine engine rotor's disc. These results are compared to other results obtained for the same problems by many other popular optimisation algorithms, such as (depending of the problem) gradient algorithms, binary genetic algorithm, real number genetic algorithm, genetic algorithm using multiple parents crossovers, differential evolution genetic algorithm, Hookes & Jeeves generalized pattern search method and POINTER from the software I-SIGHT 3.5. Results show that GATE is quite competitive, giving the best results for 5 of the 6 constrained optimisation problem. GATE also provided the best results of all on problem produced by a Maximum Set Gaussian landscape generator. Finally, GATE provided a disc 4.3% lighter than the best other tested algorithm (POINTER) for the gas turbine engine rotor's disc problem. One drawback of GATE is a lesser efficiency for highly multimodal unconstrained problems, for which he gave quite poor results with respect to its implementation cost. To conclude, according to the preliminary results obtained during this thesis, the suggested CBR process, combined with GATE, seems to be a very good candidate to automate and accelerate the structural design of mechanical devices, potentially reducing significantly the cost of industrial preliminary design processes.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
NASA Astrophysics Data System (ADS)
Jin, Chenxia; Li, Fachao; Tsang, Eric C. C.; Bulysheva, Larissa; Kataev, Mikhail Yu
2017-01-01
In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.
Optimisation of assembly scheduling in VCIM systems using genetic algorithm
NASA Astrophysics Data System (ADS)
Dao, Son Duy; Abhary, Kazem; Marian, Romeo
2017-09-01
Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is quite different from one in traditional production systems because of the difference in the working principles of the two systems. In this article, the assembly scheduling problem in VCIM systems is modeled and then an integrated approach based on genetic algorithm (GA) is proposed to search for a global optimised solution to the problem. Because of dynamic nature of the scheduling problem, a novel GA with unique chromosome representation and modified genetic operations is developed herein. Robustness of the proposed approach is verified by a numerical example.
Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G
2014-08-18
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.
Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.
2014-01-01
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013
NASA Astrophysics Data System (ADS)
Shen, Yanqing
2018-04-01
LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.
Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm
NASA Astrophysics Data System (ADS)
Zhou, Qiongyang
2018-04-01
In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)
2000-01-01
We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.
Design of thrust vectoring exhaust nozzles for real-time applications using neural networks
NASA Technical Reports Server (NTRS)
Prasanth, Ravi K.; Markin, Robert E.; Whitaker, Kevin W.
1991-01-01
Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors.
D'Onofrio, David J; Abel, David L; Johnson, Donald E
2012-03-14
The fields of molecular biology and computer science have cooperated over recent years to create a synergy between the cybernetic and biosemiotic relationship found in cellular genomics to that of information and language found in computational systems. Biological information frequently manifests its "meaning" through instruction or actual production of formal bio-function. Such information is called prescriptive information (PI). PI programs organize and execute a prescribed set of choices. Closer examination of this term in cellular systems has led to a dichotomy in its definition suggesting both prescribed data and prescribed algorithms are constituents of PI. This paper looks at this dichotomy as expressed in both the genetic code and in the central dogma of protein synthesis. An example of a genetic algorithm is modeled after the ribosome, and an examination of the protein synthesis process is used to differentiate PI data from PI algorithms.
Liu, Chun; Kroll, Andreas
2016-01-01
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Genetic Algorithms and Local Search
NASA Technical Reports Server (NTRS)
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades
NASA Astrophysics Data System (ADS)
Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang
2017-12-01
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co; Arango, Carlos A.; Reyes, Andrés
2015-09-28
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding themore » interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.« less
Naturally selecting solutions: the use of genetic algorithms in bioinformatics.
Manning, Timmy; Sleator, Roy D; Walsh, Paul
2013-01-01
For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.
NASA Astrophysics Data System (ADS)
Wang, Danshi; Zhang, Min; Li, Ze; Song, Chuang; Fu, Meixia; Li, Jin; Chen, Xue
2017-09-01
A bio-inspired detector based on the artificial neural network (ANN) and genetic algorithm is proposed in the context of a coherent optical transmission system. The ANN is designed to mitigate 16-quadrature amplitude modulation system impairments, including linear impairment: Gaussian white noise, laser phase noise, in-phase/quadrature component imbalance, and nonlinear impairment: nonlinear phase. Without prior information or heuristic assumptions, the ANN, functioning as a machine learning algorithm, can learn and capture the characteristics of impairments from observed data. Numerical simulations were performed, and dispersion-shifted, dispersion-managed, and dispersion-unmanaged fiber links were investigated. The launch power dynamic range and maximum transmission distance for the bio-inspired method were 2.7 dBm and 240 km greater, respectively, than those of the maximum likelihood estimation algorithm. Moreover, the linewidth tolerance of the bio-inspired technique was 170 kHz greater than that of the k-means method, demonstrating its usability for digital signal processing in coherent systems.
Genetic Algorithm Optimization of Phononic Bandgap Structures
2006-09-01
a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal-matrix composite...systems consisting of Ti/SiC, and H2O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here...stress minimization, global optimization, phonon bandgap, genetic algorithm, periodic elastic media, inhomogeneity, inclusion, porous media, acoustic
Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes
NASA Technical Reports Server (NTRS)
Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.
1996-01-01
The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.
Inference of genetic network of Xenopus frog egg: improved genetic algorithm.
Wu, Shinq-Jen; Chou, Chia-Hsien; Wu, Cheng-Tao; Lee, Tsu-Tian
2006-01-01
An improved genetic algorithm (IGA) is proposed to achieve S-system gene network modeling of Xenopus frog egg. Via the time-courses training datasets from Michaelis-Menten model, the optimal parameters are learned. The S-system can clearly describe activative and inhibitory interaction between genes as generating and consuming process. We concern the mitotic control in cell-cycle of Xenopus frog egg to realize cyclin-Cdc2 and Cdc25 for MPF activity. The proposed IGA can achieve global search with migration and keep the best chromosome with elitism operation. The generated gene regulatory networks can provide biological researchers for further experiments in Xenopus frog egg cell cycle control.
A genetic algorithm approach in interface and surface structure optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less
Discovery of a meta-stable Al-Sm phase with unknown stoichiometry using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; McBrearty, Ian; Ott, R. T.
Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al 5Sm phase identified by simultaneously searching Al-rich compositions of the Al–Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al 90Sm 10 alloys.
Sethi, Gaurav; Saini, B S
2015-12-01
This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.
A genetic algorithm solution to the unit commitment problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.
1996-02-01
This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 unitsmore » and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.« less
NASA Technical Reports Server (NTRS)
Janich, Karl W.
2005-01-01
The At-Least version of the Generalized Minimum Spanning Tree Problem (L-GMST) is a problem in which the optimal solution connects all defined clusters of nodes in a given network at a minimum cost. The L-GMST is NPHard; therefore, metaheuristic algorithms have been used to find reasonable solutions to the problem as opposed to computationally feasible exact algorithms, which many believe do not exist for such a problem. One such metaheuristic uses a swarm-intelligent Ant Colony System (ACS) algorithm, in which agents converge on a solution through the weighing of local heuristics, such as the shortest available path and the number of agents that recently used a given path. However, in a network using a solution derived from the ACS algorithm, some nodes may move around to different clusters and cause small changes in the network makeup. Rerunning the algorithm from the start would be somewhat inefficient due to the significance of the changes, so a genetic algorithm based on the top few solutions found in the ACS algorithm is proposed to quickly and efficiently adapt the network to these small changes.
Approach to estimation of level of information security at enterprise based on genetic algorithm
NASA Astrophysics Data System (ADS)
V, Stepanov L.; V, Parinov A.; P, Korotkikh L.; S, Koltsov A.
2018-05-01
In the article, the way of formalization of different types of threats of information security and vulnerabilities of an information system of the enterprise and establishment is considered. In a type of complexity of ensuring information security of application of any new organized system, the concept and decisions in the sphere of information security are expedient. One of such approaches is the method of a genetic algorithm. For the enterprises of any fields of activity, the question of complex estimation of the level of security of information systems taking into account the quantitative and qualitative factors characterizing components of information security is relevant.
Operating rules for multireservoir systems
NASA Astrophysics Data System (ADS)
Oliveira, Rodrigo; Loucks, Daniel P.
1997-04-01
Multireservoir operating policies are usually defined by rules that specify either individual reservoir desired (target) storage volumes or desired (target) releases based on the time of year and the existing total storage volume in all reservoirs. This paper focuses on the use of genetic search algorithms to derive these multireservoir operating policies. The genetic algorithms use real-valued vectors containing information needed to define both system release and individual reservoir storage volume targets as functions of total storage in each of multiple within-year periods. Elitism, arithmetic crossover, mutation, and "en bloc" replacement are used in the algorithms to generate successive sets of possible operating policies. Each policy is then evaluated using simulation to compute a performance index for a given flow series. The better performing policies are then used as a basis for generating new sets of possible policies. The process of improved policy generation and evaluation is repeated until no further improvement in performance is obtained. The proposed algorithm is applied to example reservoir systems used for water supply and hydropower.
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
Ebtehaj, Isa; Bonakdari, Hossein
2014-01-01
The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.
JavaGenes: Evolving Graphs with Crossover
NASA Technical Reports Server (NTRS)
Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd
2000-01-01
Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.
Beheshti, Iman; Demirel, Hasan; Matsuda, Hiroshi
2017-04-01
We developed a novel computer-aided diagnosis (CAD) system that uses feature-ranking and a genetic algorithm to analyze structural magnetic resonance imaging data; using this system, we can predict conversion of mild cognitive impairment (MCI)-to-Alzheimer's disease (AD) at between one and three years before clinical diagnosis. The CAD system was developed in four stages. First, we used a voxel-based morphometry technique to investigate global and local gray matter (GM) atrophy in an AD group compared with healthy controls (HCs). Regions with significant GM volume reduction were segmented as volumes of interest (VOIs). Second, these VOIs were used to extract voxel values from the respective atrophy regions in AD, HC, stable MCI (sMCI) and progressive MCI (pMCI) patient groups. The voxel values were then extracted into a feature vector. Third, at the feature-selection stage, all features were ranked according to their respective t-test scores and a genetic algorithm designed to find the optimal feature subset. The Fisher criterion was used as part of the objective function in the genetic algorithm. Finally, the classification was carried out using a support vector machine (SVM) with 10-fold cross validation. We evaluated the proposed automatic CAD system by applying it to baseline values from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (160 AD, 162 HC, 65 sMCI and 71 pMCI subjects). The experimental results indicated that the proposed system is capable of distinguishing between sMCI and pMCI patients, and would be appropriate for practical use in a clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ravindran, Sindhu; Jambek, Asral Bahari; Muthusamy, Hariharan; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.
Perceptron Genetic to Recognize Openning Strategy Ruy Lopez
NASA Astrophysics Data System (ADS)
Azmi, Zulfian; Mawengkang, Herman
2018-01-01
The application of Perceptron method is not effective for coding on hardware based systems because it is not real time learning. With Genetic algorithm approach in calculating and searching the best weight (fitness value) system will do learning only one iteration. And the results of this analysis were tested in the case of the introduction of the opening pattern of chess Ruy Lopez. The Analysis with Perceptron Model with Algorithm Approach Genetics from group Artificial Neural Network for open Ruy Lopez. The data is processed with base open chess, with step eight a position white Pion from end open chess. Using perceptron method have many input and one output process many weight and refraction until output equal goal. Data trained and test with software Matlab and system can recognize the chess opening Ruy Lopez or Not open Ruy Lopez with Real time.
First flights of genetic-algorithm Kitty Hawk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, D.E.
1994-12-31
The design of complex systems requires an effective methodology of invention. This paper considers the methodology of the Wright brothers in inventing the powered airplane and suggests how successes in the design of genetic algorithms have come at the hands of a Wright-brothers-like approach. Recent reliable subquadratic results in solving hard problems with nontraditional GAs and predictions of the limits of simple GAs are presented as two accomplishments achieved in this manner.
Genetic algorithms using SISAL parallel programming language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tejada, S.
1994-05-06
Genetic algorithms are a mathematical optimization technique developed by John Holland at the University of Michigan [1]. The SISAL programming language possesses many of the characteristics desired to implement genetic algorithms. SISAL is a deterministic, functional programming language which is inherently parallel. Because SISAL is functional and based on mathematical concepts, genetic algorithms can be efficiently translated into the language. Several of the steps involved in genetic algorithms, such as mutation, crossover, and fitness evaluation, can be parallelized using SISAL. In this paper I will l discuss the implementation and performance of parallel genetic algorithms in SISAL.
NASA Astrophysics Data System (ADS)
Liu, Zhijian; Yin, Donghui; Yan, Jun
2017-05-01
Low frequency oscillation is still frequently happened in the power system and it affects the safety and stability of power system directly. With the continuously expending of the interconnection scale of power grid, the risk of low frequency oscillation becomes more and more noticeable. Firstly, the basic theory of port-controlled Hamilton (PCH) and its application is analyzed. Secondly, based on the PCH theory and the dynamic model of system, from the viewpoint of energy, the nonlinear stability controller of power system is designed. By the improved genetic algorithm, the parameters of the PCH model are optimized. Finally, a simulation model with PCH is built to vary the effectiveness of the method proposed in this paper.
Gobin, Oliver C; Schüth, Ferdi
2008-01-01
Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.
Optimal Design of Wind-PV-Diesel-Battery System using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Suryoatmojo, Heri; Hiyama, Takashi; Elbaset, Adel A.; Ashari, Mochamad
Application of diesel generators to supply the load demand on isolated islands in Indonesia has widely spread. With increases in oil price and the concerns about global warming, the integration of diesel generators with renewable energy systems have become an attractive energy sources for supplying the load demand. This paper performs an optimal design of integrated system involving Wind-PV-Diesel-Battery system for isolated island with CO2 emission evaluation by using genetic algorithm. The proposed system has been designed for the hybrid power generation in East Nusa Tenggara, Indonesia-latitude 09.30S, longitude 122.0E. From simulation results, the proposed system is able to minimize the total annual cost of the system under study and reduce CO2 emission generated by diesel generators.
Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam
2016-07-01
In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Discovery of a meta-stable Al–Sm phase with unknown stoichiometry using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; McBrearty, Ian; Ott, R T
Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al5Sm phase identified by simultaneously searching Al-rich compositions of the Al-Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al90Sm10 alloys. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules.
Nguyen, Su; Mei, Yi; Xue, Bing; Zhang, Mengjie
2018-06-04
Designing effective dispatching rules for production systems is a difficult and timeconsuming task if it is done manually. In the last decade, the growth of computing power, advanced machine learning, and optimisation techniques has made the automated design of dispatching rules possible and automatically discovered rules are competitive or outperform existing rules developed by researchers. Genetic programming is one of the most popular approaches to discovering dispatching rules in the literature, especially for complex production systems. However, the large heuristic search space may restrict genetic programming from finding near optimal dispatching rules. This paper develops a new hybrid genetic programming algorithm for dynamic job shop scheduling based on a new representation, a new local search heuristic, and efficient fitness evaluators. Experiments show that the new method is effective regarding the quality of evolved rules. Moreover, evolved rules are also significantly smaller and contain more relevant attributes.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Evolutionary Optimization of Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.
2001-01-01
Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.
Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping
NASA Astrophysics Data System (ADS)
Fronita, Mona; Gernowo, Rahmat; Gunawan, Vincencius
2018-02-01
Traveling Salesman Problem (TSP) is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour's to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.
An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size
NASA Astrophysics Data System (ADS)
Gao, Shangce; Wang, Rong-Long; Ishii, Masahiro; Tang, Zheng
This paper represents a feedback artificial immune system (FAIS). Inspired by the feedback mechanisms in the biological immune system, the proposed algorithm effectively manipulates the population size by increasing and decreasing B cells according to the diversity of the current population. Two kinds of assessments are used to evaluate the diversity aiming to capture the characteristics of the problem on hand. Furthermore, the processing of adding and declining the number of population is designed. The validity of the proposed algorithm is tested for several traveling salesman benchmark problems. Simulation results demonstrate the efficiency of the proposed algorithm when compared with the traditional genetic algorithm and an improved clonal selection algorithm.
Application of genetic algorithms to tuning fuzzy control systems
NASA Technical Reports Server (NTRS)
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Silwal, B.
2014-04-01
This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm and performance-based evaluation approach. The S-FBI system consists of a flat steel- PTFE sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA device provides restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm (GA) in order to optimize S-FBI system. Nonlinear time history analyses of the building with S-FBI system are performed. A set of 20 near-field ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.
1/f Noise in the Simple Genetic Algorithm Applied to a Traveling Salesman Problem
NASA Astrophysics Data System (ADS)
Yamada, Mitsuhiro
Complex dynamical systems are observed in physics, biology, and even economics. Such systems in balance are considered to be in a critical state, and 1/f noise is considered to be a footprint. Complex dynamical systems have also been investigated in the field of evolutionary algorithms inspired by biological evolution. The genetic algorithm (GA) is a well-known evolutionary algorithm in which many individuals interact, and the simplest GA is referred to as the simple GA (SGA). However, the GA has not been examined from the viewpoint of the emergence of 1/f noise. In the present paper, the SGA is applied to a traveling salesman problem in order to investigate the SGA from such a viewpoint. The timecourses of the fitness of the candidate solution were examined. As a result, when the mutation and crossover probabilities were optimal, the system evolved toward a critical state in which the average maximum fitness over all trial runs was maximum. In this situation, the fluctuation of the fitness of the candidate solution resulted in the 1/f power spectrum, and the dynamics of the system had no intrinsic time or length scale.
Byron, Kelly; Bluvshtein, Vlad; Lucke, Lori
2013-01-01
Transcutaneous energy transmission systems (TETS) wirelessly transmit power through the skin. TETS is particularly desirable for ventricular assist devices (VAD), which currently require cables through the skin to power the implanted pump. Optimizing the inductive link of the TET system is a multi-parameter problem. Most current techniques to optimize the design simplify the problem by combining parameters leading to sub-optimal solutions. In this paper we present an optimization method using a genetic algorithm to handle a larger set of parameters, which leads to a more optimal design. Using this approach, we were able to increase efficiency while also reducing power variability in a prototype, compared to a traditional manual design method.
NASA Astrophysics Data System (ADS)
Orłowska-Szostak, Maria; Orłowski, Ryszard
2017-11-01
The paper discusses some relevant aspects of the calibration of a computer model describing flows in the water supply system. The authors described an exemplary water supply system and used it as a practical illustration of calibration. A range of measures was discussed and applied, which improve the convergence and effective use of calculations in the calibration process and also the effect of such calibration which is the validity of the results obtained. Drawing up results of performed measurements, i.e. estimating pipe roughnesses, the authors performed using the genetic algorithm implementation of which is a software developed by Resan Labs company from Brazil.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve
2000-01-01
A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris
2000-01-01
Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency issues in the GA, it is possible to have idle processors. However, as long as the load at each processing node is similar, the processors are kept busy nearly all of the time. In applying GAs to circuit design, a suitable genetic representation 'is that of a circuit-construction program. We discuss one such circuit-construction programming language and show how evolution can generate useful analog circuit designs. This language has the desirable property that virtually all sets of combinations of primitives result in valid circuit graphs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm and circuit simulation software, we present experimental results as applied to three analog filter and two amplifier design tasks. For example, a figure shows an 85 dB amplifier design evolved by our system, and another figure shows the performance of that circuit (gain and frequency response). In all tasks, our system is able to generate circuits that achieve the target specifications.
Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm
NASA Astrophysics Data System (ADS)
Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui
2017-05-01
The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.
Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.
Yoon, Yourim; Kim, Yong-Hyuk
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.
Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge
Yoon, Yourim
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power. PMID:25197720
NASA Astrophysics Data System (ADS)
Guan, Weipeng; Wu, Yuxiang; Xie, Canyu; Chen, Hao; Cai, Ye; Chen, Yingcong
2017-10-01
An indoor positioning algorithm based on visible light communication (VLC) is presented. This algorithm is used to calculate a three-dimensional (3-D) coordinate of an indoor optical wireless environment, which includes sufficient orders of multipath reflections from reflecting surfaces of the room. Leveraging the global optimization ability of the genetic algorithm (GA), an innovative framework for 3-D position estimation based on a modified genetic algorithm is proposed. Unlike other techniques using VLC for positioning, the proposed system can achieve indoor 3-D localization without making assumptions about the height or acquiring the orientation angle of the mobile terminal. Simulation results show that an average localization error of less than 1.02 cm can be achieved. In addition, in most VLC-positioning systems, the effect of reflection is always neglected and its performance is limited by reflection, which makes the results not so accurate for a real scenario and the positioning errors at the corners are relatively larger than other places. So, we take the first-order reflection into consideration and use artificial neural network to match the model of a nonlinear channel. The studies show that under the nonlinear matching of direct and reflected channels the average positioning errors of four corners decrease from 11.94 to 0.95 cm. The employed algorithm is emerged as an effective and practical method for indoor localization and outperform other existing indoor wireless localization approaches.
NASA Astrophysics Data System (ADS)
Guruprasad, R.; Behera, B. K.
2015-10-01
Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.
Research and application of genetic algorithm in path planning of logistics distribution vehicle
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
The core of the logistics distribution system is the vehicle routing planning, research path planning problem, provide a better solution has become an important issue. In order to provide the decision support for logistics and distribution operations, this paper studies the problem of vehicle routing with capacity constraints (CVRP). By establishing a mathematical model, the genetic algorithm is used to plan the path of the logistics vehicle to meet the minimum logistics and transportation costs.
NASA Astrophysics Data System (ADS)
Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.
2017-12-01
Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.
Threshold matrix for digital halftoning by genetic algorithm optimization
NASA Astrophysics Data System (ADS)
Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero
1998-10-01
Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.
Robust PD Sway Control of a Lifted Load for a Crane Using a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kawada, Kazuo; Sogo, Hiroyuki; Yamamoto, Toru; Mada, Yasuhiro
PID control schemes still continue to be widely used for most industrial control systems. This is mainly because PID controllers have simple control structures, and are simple to maintain and tune. However, it is difficult to find a set of suitable control parameters in the case of time-varying and/or nonlinear systems. For such a problem, the robust controller has been proposed.Although it is important to choose the suitable nominal model in designing the robust controller, it is not usually easy.In this paper, a new robust PD controller design scheme is proposed, which utilizes a genetic algorithm.
Genetic Local Search for Optimum Multiuser Detection Problem in DS-CDMA Systems
NASA Astrophysics Data System (ADS)
Wang, Shaowei; Ji, Xiaoyong
Optimum multiuser detection (OMD) in direct-sequence code-division multiple access (DS-CDMA) systems is an NP-complete problem. In this paper, we present a genetic local search algorithm, which consists of an evolution strategy framework and a local improvement procedure. The evolution strategy searches the space of feasible, locally optimal solutions only. A fast iterated local search algorithm, which employs the proprietary characteristics of the OMD problem, produces local optima with great efficiency. Computer simulations show the bit error rate (BER) performance of the GLS outperforms other multiuser detectors in all cases discussed. The computation time is polynomial complexity in the number of users.
Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M
2017-10-01
Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.
Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus
2017-01-01
Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.
Juang, C F; Lin, J Y; Lin, C T
2000-01-01
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
Comparison of genetic algorithms with conjugate gradient methods
NASA Technical Reports Server (NTRS)
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
A Method for the Interpretation of Flow Cytometry Data Using Genetic Algorithms.
Angeletti, Cesar
2018-01-01
Flow cytometry analysis is the method of choice for the differential diagnosis of hematologic disorders. It is typically performed by a trained hematopathologist through visual examination of bidimensional plots, making the analysis time-consuming and sometimes too subjective. Here, a pilot study applying genetic algorithms to flow cytometry data from normal and acute myeloid leukemia subjects is described. Initially, Flow Cytometry Standard files from 316 normal and 43 acute myeloid leukemia subjects were transformed into multidimensional FITS image metafiles. Training was performed through introduction of FITS metafiles from 4 normal and 4 acute myeloid leukemia in the artificial intelligence system. Two mathematical algorithms termed 018330 and 025886 were generated. When tested against a cohort of 312 normal and 39 acute myeloid leukemia subjects, both algorithms combined showed high discriminatory power with a receiver operating characteristic (ROC) curve of 0.912. The present results suggest that machine learning systems hold a great promise in the interpretation of hematological flow cytometry data.
Software For Genetic Algorithms
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steve E.
1992-01-01
SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.
NASA Astrophysics Data System (ADS)
Iswari, T.; Asih, A. M. S.
2018-04-01
In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Optimization of HAART with genetic algorithms and agent-based models of HIV infection.
Castiglione, F; Pappalardo, F; Bernaschi, M; Motta, S
2007-12-15
Highly Active AntiRetroviral Therapies (HAART) can prolong life significantly to people infected by HIV since, although unable to eradicate the virus, they are quite effective in maintaining control of the infection. However, since HAART have several undesirable side effects, it is considered useful to suspend the therapy according to a suitable schedule of Structured Therapeutic Interruptions (STI). In the present article we describe an application of genetic algorithms (GA) aimed at finding the optimal schedule for a HAART simulated with an agent-based model (ABM) of the immune system that reproduces the most significant features of the response of an organism to the HIV-1 infection. The genetic algorithm helps in finding an optimal therapeutic schedule that maximizes immune restoration, minimizes the viral count and, through appropriate interruptions of the therapy, minimizes the dose of drug administered to the simulated patient. To validate the efficacy of the therapy that the genetic algorithm indicates as optimal, we ran simulations of opportunistic diseases and found that the selected therapy shows the best survival curve among the different simulated control groups. A version of the C-ImmSim simulator is available at http://www.iac.cnr.it/~filippo/c-ImmSim.html
NASA Astrophysics Data System (ADS)
Weber, James Daniel
1999-11-01
This dissertation presents a new algorithm that allows a market participant to maximize its individual welfare in the electricity spot market. The use of such an algorithm in determining market equilibrium points, called Nash equilibria, is also demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system. The OPF is also extended to model consumer behavior, and a thorough mathematical justification for the inclusion of the consumer model in the OPF is presented. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Assuming a market in which all participants maximize their individual welfare, economic equilibrium points, called Nash equilibria, are investigated. This is done by iteratively solving the individual welfare maximization algorithm for each participant until a point is reached where all individuals stop modifying their bids. It is shown that these Nash equilibria can be located in this manner. However, it is also demonstrated that equilibria do not always exist, and are not always unique when they do exist. It is also shown that individual welfare is a highly nonconcave function resulting in many local maxima. As a result, a more global optimization technique, using a genetic algorithm (GA), is investigated. The genetic algorithm is successfully demonstrated on several systems. It is also shown that a GA can be developed using special niche methods, which allow a GA to converge to several local optima at once. Finally, the last chapter of this dissertation covers the development of a new computer visualization routine for power system analysis: contouring. The contouring algorithm is demonstrated to be useful in visualizing bus-based and transmission line-based quantities.
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1999-01-01
Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).
Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping
NASA Astrophysics Data System (ADS)
Balakrishnan, D.; Quan, C.; Tay, C. J.
2013-06-01
The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.
Mobile robot dynamic path planning based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.
An Efficient Rank Based Approach for Closest String and Closest Substring
2012-01-01
This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations involved. Both genetic algorithms use a fitness function based on rank distance. We compare our algorithms with other genetic algorithms that use different distance measures, such as Hamming distance or Levenshtein distance, on real DNA sequences. Our experiments show that the genetic algorithms based on rank distance have the best results. PMID:22675483
A genetic algorithms approach for altering the membership functions in fuzzy logic controllers
NASA Technical Reports Server (NTRS)
Shehadeh, Hana; Lea, Robert N.
1992-01-01
Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.
A Novel Control Strategy for Autonomous Operation of Isolated Microgrid with Prioritized Loads
NASA Astrophysics Data System (ADS)
Kumar, R. Hari; Ushakumari, S.
2018-05-01
Maintenance of power balance between generation and demand is one of the most critical requirements for the stable operation of a power system network. To mitigate the power imbalance during the occurrence of any disturbance in the system, fast acting algorithms are inevitable. This paper proposes a novel algorithm for load shedding and network reconfiguration in an isolated microgrid with prioritized loads and multiple islands, which will help to quickly restore the system in the event of a fault. The performance of the proposed algorithm is enhanced using genetic algorithm and its effectiveness is illustrated with simulation results on modified Consortium for Electric Reliability Technology Solutions (CERTS) microgrid.
A hybrid genetic algorithm for resolving closely spaced objects
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Lillo, W. E.; Schulenburg, N.
1995-01-01
A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.
Artificial intelligence tools for pattern recognition
NASA Astrophysics Data System (ADS)
Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro
2017-06-01
In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.
Gogoshin, Grigoriy; Boerwinkle, Eric
2017-01-01
Abstract Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology—type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types—single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc. PMID:27681505
Gogoshin, Grigoriy; Boerwinkle, Eric; Rodin, Andrei S
2017-04-01
Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology-type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types-single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc.
Fashion sketch design by interactive genetic algorithms
NASA Astrophysics Data System (ADS)
Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.
2012-11-01
Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.
NASA Astrophysics Data System (ADS)
Hassan, Rania A.
In the design of complex large-scale spacecraft systems that involve a large number of components and subsystems, many specialized state-of-the-art design tools are employed to optimize the performance of various subsystems. However, there is no structured system-level concept-architecting process. Currently, spacecraft design is heavily based on the heritage of the industry. Old spacecraft designs are modified to adapt to new mission requirements, and feasible solutions---rather than optimal ones---are often all that is achieved. During the conceptual phase of the design, the choices available to designers are predominantly discrete variables describing major subsystems' technology options and redundancy levels. The complexity of spacecraft configurations makes the number of the system design variables that need to be traded off in an optimization process prohibitive when manual techniques are used. Such a discrete problem is well suited for solution with a Genetic Algorithm, which is a global search technique that performs optimization-like tasks. This research presents a systems engineering framework that places design requirements at the core of the design activities and transforms the design paradigm for spacecraft systems to a top-down approach rather than the current bottom-up approach. To facilitate decision-making in the early phases of the design process, the population-based search nature of the Genetic Algorithm is exploited to provide computationally inexpensive---compared to the state-of-the-practice---tools for both multi-objective design optimization and design optimization under uncertainty. In terms of computational cost, those tools are nearly on the same order of magnitude as that of standard single-objective deterministic Genetic Algorithm. The use of a multi-objective design approach provides system designers with a clear tradeoff optimization surface that allows them to understand the effect of their decisions on all the design objectives under consideration simultaneously. Incorporating uncertainties avoids large safety margins and unnecessary high redundancy levels. The focus on low computational cost for the optimization tools stems from the objective that improving the design of complex systems should not be achieved at the expense of a costly design methodology.
Application of genetic algorithm in integrated setup planning and operation sequencing
NASA Astrophysics Data System (ADS)
Kafashi, Sajad; Shakeri, Mohsen
2011-01-01
Process planning is an essential component for linking design and manufacturing process. Setup planning and operation sequencing is two main tasks in process planning. Many researches solved these two problems separately. Considering the fact that the two functions are complementary, it is necessary to integrate them more tightly so that performance of a manufacturing system can be improved economically and competitively. This paper present a generative system and genetic algorithm (GA) approach to process plan the given part. The proposed approach and optimization methodology analyses the TAD (tool approach direction), tolerance relation between features and feature precedence relations to generate all possible setups and operations using workshop resource database. Based on these technological constraints the GA algorithm approach, which adopts the feature-based representation, optimizes the setup plan and sequence of operations using cost indices. Case study show that the developed system can generate satisfactory results in optimizing the setup planning and operation sequencing simultaneously in feasible condition.
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
Knowledge Guided Evolutionary Algorithms in Financial Investing
ERIC Educational Resources Information Center
Wimmer, Hayden
2013-01-01
A large body of literature exists on evolutionary computing, genetic algorithms, decision trees, codified knowledge, and knowledge management systems; however, the intersection of these computing topics has not been widely researched. Moving through the set of all possible solutions--or traversing the search space--at random exhibits no control…
Initialization Method for Grammar-Guided Genetic Programming
NASA Astrophysics Data System (ADS)
García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.
This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.
NASA Astrophysics Data System (ADS)
Lilichenko, Mark; Kelley, Anne Myers
2001-04-01
A novel approach is presented for finding the vibrational frequencies, Franck-Condon factors, and vibronic linewidths that best reproduce typical, poorly resolved electronic absorption (or fluorescence) spectra of molecules in condensed phases. While calculation of the theoretical spectrum from the molecular parameters is straightforward within the harmonic oscillator approximation for the vibrations, "inversion" of an experimental spectrum to deduce these parameters is not. Standard nonlinear least-squares fitting methods such as Levenberg-Marquardt are highly susceptible to becoming trapped in local minima in the error function unless very good initial guesses for the molecular parameters are made. Here we employ a genetic algorithm to force a broad search through parameter space and couple it with the Levenberg-Marquardt method to speed convergence to each local minimum. In addition, a neural network trained on a large set of synthetic spectra is used to provide an initial guess for the fitting parameters and to narrow the range searched by the genetic algorithm. The combined algorithm provides excellent fits to a variety of single-mode absorption spectra with experimentally negligible errors in the parameters. It converges more rapidly than the genetic algorithm alone and more reliably than the Levenberg-Marquardt method alone, and is robust in the presence of spectral noise. Extensions to multimode systems, and/or to include other spectroscopic data such as resonance Raman intensities, are straightforward.
Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.
Yang, Shengxiang
2008-01-01
In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.
Threshold-selecting strategy for best possible ground state detection with genetic algorithms
NASA Astrophysics Data System (ADS)
Lässig, Jörg; Hoffmann, Karl Heinz
2009-04-01
Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.
Load Balancing in Multi Cloud Computing Environment with Genetic Algorithm
NASA Astrophysics Data System (ADS)
Vhansure, Fularani; Deshmukh, Apurva; Sumathy, S.
2017-11-01
Cloud is a pool of resources that is available on pay per use model. It provides services to the user which is increasing rapidly. Load balancing is an issue because it cannot handle so many requests at a time. It is also known as NP complete problem. In traditional system the functions consist of various parameter values to maximise it in order to achieve best optimal individualsolutions. Challenge is when there are many parameters of solutionsin the system space. Another challenge is to optimize the function which is much more complex. In this paper, various techniques to handle load balancing virtually (VM) as well as physically (nodes) using genetic algorithm is discussed.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Genetic algorithms for GNC settings and DACS design application to an asteroid Kinetic Impactor
NASA Astrophysics Data System (ADS)
Vernis, P.; Oliviero, V.
2018-06-01
This paper deals with an application of Genetic Algorithm (GA) tools in order to perform and optimize the settings phase of the Guidance, Navigation, and Control (GNC) data set for the endgame phase of a Kinetic Impactor (KI) targeting a medium-size Near Earth Object (NEO). A coupled optimization of the GNC settings and of the GC-oriented design of the Divert and Attitude Control System (DACS) is also proposed. The illustration of the developed principles is made considering the NEOShield study frame.
Method for hyperspectral imagery exploitation and pixel spectral unmixing
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang (Inventor)
2003-01-01
An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.
NASA Astrophysics Data System (ADS)
Xiang, Yu; Tao, Cheng
2018-05-01
During the operation of the personal rapid transit system(PRT), the empty vehicle resources is distributed unevenly because of different passenger demand. In order to maintain the balance between supply and demand, and to meet the passenger needs of the ride, PRT empty vehicle resource allocation model is constructed based on the future demand forecasted by historical demand in this paper. The improved genetic algorithm is implied in distribution of the empty vehicle which can reduce the customers waiting time and improve the operation efficiency of the PRT system so that all passengers can take the PRT vehicles in the shortest time. The experimental result shows that the improved genetic algorithm can allocate the empty vehicle from the system level optimally, and realize the distribution of the empty vehicle resources reasonably in the system.
Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M
1999-01-01
This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.
Teaching and Learning Activity Sequencing System using Distributed Genetic Algorithms
NASA Astrophysics Data System (ADS)
Matsui, Tatsunori; Ishikawa, Tomotake; Okamoto, Toshio
The purpose of this study is development of a supporting system for teacher's design of lesson plan. Especially design of lesson plan which relates to the new subject "Information Study" is supported. In this study, we developed a system which generates teaching and learning activity sequences by interlinking lesson's activities corresponding to the various conditions according to the user's input. Because user's input is multiple information, there will be caused contradiction which the system should solve. This multiobjective optimization problem is resolved by Distributed Genetic Algorithms, in which some fitness functions are defined with reference models on lesson, thinking and teaching style. From results of various experiments, effectivity and validity of the proposed methods and reference models were verified; on the other hand, some future works on reference models and evaluation functions were also pointed out.
NASA Astrophysics Data System (ADS)
Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin
2017-01-01
This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki
2009-10-01
Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.
NASA Astrophysics Data System (ADS)
Apribowo, Chico Hermanu Brillianto; Ibrahim, Muhammad Hamka; Wicaksono, F. X. Rian
2018-02-01
The growing burden of the load and the complexity of the power system has had an impact on the need for optimization of power system operation. Optimal power flow (OPF) with optimal location placement and rating of thyristor controlled series capacitor (TCSC) is an effective solution used to determine the economic cost of operating the plant and regulate the power flow in the power system. The purpose of this study is to minimize the total cost of generation by placing the location and the optimal rating of TCSC using genetic algorithm-design of experiment techniques (GA-DOE). Simulation on Java-Bali system 500 kV with the amount of TCSC used by 5 compensator, the proposed method can reduce the generation cost by 0.89% compared to OPF without using TCSC.
NASA Astrophysics Data System (ADS)
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
Accelerating artificial intelligence with reconfigurable computing
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw
Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.
Training product unit neural networks with genetic algorithms
NASA Technical Reports Server (NTRS)
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weigend, Florian, E-mail: florian.weigend@kit.edu
2014-10-07
Energy surfaces of metal clusters usually show a large variety of local minima. For homo-metallic species the energetically lowest can be found reliably with genetic algorithms, in combination with density functional theory without system-specific parameters. For mixed-metallic clusters this is much more difficult, as for a given arrangement of nuclei one has to find additionally the best of many possibilities of assigning different metal types to the individual positions. In the framework of electronic structure methods this second issue is treatable at comparably low cost at least for elements with similar atomic number by means of first-order perturbation theory, asmore » shown previously [F. Weigend, C. Schrodt, and R. Ahlrichs, J. Chem. Phys. 121, 10380 (2004)]. In the present contribution the extension of a genetic algorithm with the re-assignment of atom types to atom sites is proposed and tested for the search of the global minima of PtHf{sub 12} and [LaPb{sub 7}Bi{sub 7}]{sup 4−}. For both cases the (putative) global minimum is reliably found with the extended technique, which is not the case for the “pure” genetic algorithm.« less
Using a genetic algorithm to optimize a water-monitoring network for accuracy and cost effectiveness
NASA Astrophysics Data System (ADS)
Julich, R. J.
2004-05-01
The purpose of this project is to determine the optimal spatial distribution of water-monitoring wells to maximize important data collection and to minimize the cost of managing the network. We have employed a genetic algorithm (GA) towards this goal. The GA uses a simple fitness measure with two parts: the first part awards a maximal score to those combinations of hydraulic head observations whose net uncertainty is closest to the value representing all observations present, thereby maximizing accuracy; the second part applies a penalty function to minimize the number of observations, thereby minimizing the overall cost of the monitoring network. We used the linear statistical inference equation to calculate standard deviations on predictions from a numerical model generated for the 501-observation Death Valley Regional Flow System as the basis for our uncertainty calculations. We have organized the results to address the following three questions: 1) what is the optimal design strategy for a genetic algorithm to optimize this problem domain; 2) what is the consistency of solutions over several optimization runs; and 3) how do these results compare to what is known about the conceptual hydrogeology? Our results indicate the genetic algorithms are a more efficient and robust method for solving this class of optimization problems than have been traditional optimization approaches.
USDA-ARS?s Scientific Manuscript database
The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...
Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.
2016-12-01
Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street Concord, NH 03301 under contract W911SR...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street... Genetic Algorithm 5a. CONTRACT NUMBER W199SR-15-2-001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin L Paul 5d. PROJECT
Automatic Data Filter Customization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mandrake, Lukas
2013-01-01
This work predicts whether a retrieval algorithm will usefully determine CO2 concentration from an input spectrum of GOSAT (Greenhouse Gases Observing Satellite). This was done to eliminate needless runtime on atmospheric soundings that would never yield useful results. A space of 50 dimensions was examined for predictive power on the final CO2 results. Retrieval algorithms are frequently expensive to run, and wasted effort defeats requirements and expends needless resources. This algorithm could be used to help predict and filter unneeded runs in any computationally expensive regime. Traditional methods such as the Fischer discriminant analysis and decision trees can attempt to predict whether a sounding will be properly processed. However, this work sought to detect a subsection of the dimensional space that can be simply filtered out to eliminate unwanted runs. LDAs (linear discriminant analyses) and other systems examine the entire data and judge a "best fit," giving equal weight to complex and problematic regions as well as simple, clear-cut regions. In this implementation, a genetic space of "left" and "right" thresholds outside of which all data are rejected was defined. These left/right pairs are created for each of the 50 input dimensions. A genetic algorithm then runs through countless potential filter settings using a JPL computer cluster, optimizing the tossed-out data s yield (proper vs. improper run removal) and number of points tossed. This solution is robust to an arbitrary decision boundary within the data and avoids the global optimization problem of whole-dataset fitting using LDA or decision trees. It filters out runs that would not have produced useful CO2 values to save needless computation. This would be an algorithmic preprocessing improvement to any computationally expensive system.
Exponential H ∞ Synchronization of Chaotic Cryptosystems Using an Improved Genetic Algorithm
Hsiao, Feng-Hsiag
2015-01-01
This paper presents a systematic design methodology for neural-network- (NN-) based secure communications in multiple time-delay chaotic (MTDC) systems with optimal H ∞ performance and cryptography. On the basis of the Improved Genetic Algorithm (IGA), which is demonstrated to have better performance than that of a traditional GA, a model-based fuzzy controller is then synthesized to stabilize the MTDC systems. A fuzzy controller is synthesized to not only realize the exponential synchronization, but also achieve optimal H ∞ performance by minimizing the disturbance attenuation level. Furthermore, the error of the recovered message is stated by using the n-shift cipher and key. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach. PMID:26366432
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, X. R.; Wang, X.
2016-03-01
When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.
Optimization in optical systems revisited: Beyond genetic algorithms
NASA Astrophysics Data System (ADS)
Gagnon, Denis; Dumont, Joey; Dubé, Louis
2013-05-01
Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Lee, William H K.
2016-01-01
A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.
Structural health monitoring feature design by genetic programming
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Todd, Michael D.
2014-09-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.
Multi-objective Optimization on Helium Liquefier Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Wang, H. R.; Xiong, L. Y.; Peng, N.; Meng, Y. R.; Liu, L. Q.
2017-02-01
Research on optimization of helium liquefier is limited at home and abroad, and most of the optimization is single-objective based on Collins cycle. In this paper, a multi-objective optimization is conducted using genetic algorithm (GA) on the 40 L/h helium liquefier developed by Technical Institute of Physics and Chemistry of the Chinese Academy of Science (TIPC, CAS), steady solutions are obtained in the end. In addition, the exergy loss of the optimized system is studied in the case of with and without liquid nitrogen pre-cooling. The results have guiding significance for the future design of large helium liquefier.
Yu, Yi; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm’s performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms. PMID:29324743
NASA Astrophysics Data System (ADS)
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
A niching genetic algorithm applied to optimize a SiC-bulk crystal growth system
NASA Astrophysics Data System (ADS)
Su, Juan; Chen, Xuejiang; Li, Yuan; Pons, Michel; Blanquet, Elisabeth
2017-06-01
A niching genetic algorithm (NGA) was presented to optimize a SiC-bulk crystal growth system by PVT. The NGA based on clearing mechanism and its combination method with heat transfer model for SiC crystal growth were described in details. Then three inverse problems for optimization of growth system were carried out by NGA. Firstly, the radius of blind hole was optimized to decrease the radial temperature gradient along the substrate while the center temperature on the surface of substrate is fixed at 2500 K. Secondly, insulation materials with anisotropic thermal conductivities were selected to obtain much higher growth rate as 600, 800 and 1000 μm/h. Finally, the density of coils was also rearranged to minimize the temperature variation in the SiC powder. All the results were analyzed and discussed.
Bio-inspired algorithms applied to molecular docking simulations.
Heberlé, G; de Azevedo, W F
2011-01-01
Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.
A Test of Genetic Algorithms in Relevance Feedback.
ERIC Educational Resources Information Center
Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de
2002-01-01
Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION)
NASA Technical Reports Server (NTRS)
Wang, L.
1994-01-01
SPLICER is a genetic algorithm tool which can be used to solve search and optimization problems. Genetic algorithms are adaptive search procedures (i.e. problem solving methods) based loosely on the processes of natural selection and Darwinian "survival of the fittest." SPLICER provides the underlying framework and structure for building a genetic algorithm application. These algorithms apply genetically-inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimal or near-optimal solution to the problem at hand. SPLICER 1.0 was created using a modular architecture that includes a Genetic Algorithm Kernel, interchangeable Representation Libraries, Fitness Modules and User Interface Libraries, and well-defined interfaces between these components. The architecture supports portability, flexibility, and extensibility. SPLICER comes with all source code and several examples. For instance, a "traveling salesperson" example searches for the minimum distance through a number of cities visiting each city only once. Stand-alone SPLICER applications can be used without any programming knowledge. However, to fully utilize SPLICER within new problem domains, familiarity with C language programming is essential. SPLICER's genetic algorithm (GA) kernel was developed independent of representation (i.e. problem encoding), fitness function or user interface type. The GA kernel comprises all functions necessary for the manipulation of populations. These functions include the creation of populations and population members, the iterative population model, fitness scaling, parent selection and sampling, and the generation of population statistics. In addition, miscellaneous functions are included in the kernel (e.g., random number generators). Different problem-encoding schemes and functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used with any representation scheme. The SPLICER tool provides representation libraries for binary strings and for permutations. These libraries contain functions for the definition, creation, and decoding of genetic strings, as well as multiple crossover and mutation operators. Furthermore, the SPLICER tool defines the appropriate interfaces to allow users to create new representation libraries. Fitness modules are the only component of the SPLICER system a user will normally need to create or alter to solve a particular problem. Fitness functions are defined and stored in interchangeable fitness modules which must be created using C language. Within a fitness module, a user can create a fitness (or scoring) function, set the initial values for various SPLICER control parameters (e.g., population size), create a function which graphically displays the best solutions as they are found, and provide descriptive information about the problem. The tool comes with several example fitness modules, while the process of developing a fitness module is fully discussed in the accompanying documentation. The user interface is event-driven and provides graphic output in windows. SPLICER is written in Think C for Apple Macintosh computers running System 6.0.3 or later and Sun series workstations running SunOS. The UNIX version is easily ported to other UNIX platforms and requires MIT's X Window System, Version 11 Revision 4 or 5, MIT's Athena Widget Set, and the Xw Widget Set. Example executables and source code are included for each machine version. The standard distribution media for the Macintosh version is a set of three 3.5 inch Macintosh format diskettes. The standard distribution medium for the UNIX version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. SPLICER was developed in 1991.
Portfolio optimization by using linear programing models based on genetic algorithm
NASA Astrophysics Data System (ADS)
Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.
2018-01-01
In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.
An improved genetic algorithm and its application in the TSP problem
NASA Astrophysics Data System (ADS)
Li, Zheng; Qin, Jinlei
2011-12-01
Concept and research actuality of genetic algorithm are introduced in detail in the paper. Under this condition, the simple genetic algorithm and an improved algorithm are described and applied in an example of TSP problem, where the advantage of genetic algorithm is adequately shown in solving the NP-hard problem. In addition, based on partial matching crossover operator, the crossover operator method is improved into extended crossover operator in order to advance the efficiency when solving the TSP. In the extended crossover method, crossover operator can be performed between random positions of two random individuals, which will not be restricted by the position of chromosome. Finally, the nine-city TSP is solved using the improved genetic algorithm with extended crossover method, the efficiency of whose solution process is much higher, besides, the solving speed of the optimal solution is much faster.
Solving TSP problem with improved genetic algorithm
NASA Astrophysics Data System (ADS)
Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying
2018-05-01
The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.
A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2007-01-01
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, Xin-ran; Wang, Xin
2017-04-01
When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.
NASA Technical Reports Server (NTRS)
Wang, Lui; Valenzuela-Rendon, Manuel
1993-01-01
The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.
Optimization and Simulation of Plastic Injection Process using Genetic Algorithm and Moldflow
NASA Astrophysics Data System (ADS)
Martowibowo, Sigit Yoewono; Kaswadi, Agung
2017-03-01
The use of plastic-based products is continuously increasing. The increasing demands for thinner products, lower production costs, yet higher product quality has triggered an increase in the number of research projects on plastic molding processes. An important branch of such research is focused on mold cooling system. Conventional cooling systems are most widely used because they are easy to make by using conventional machining processes. However, the non-uniform cooling processes are considered as one of their weaknesses. Apart from the conventional systems, there are also conformal cooling systems that are designed for faster and more uniform plastic mold cooling. In this study, the conformal cooling system is applied for the production of bowl-shaped product made of PP AZ564. Optimization is conducted to initiate machine setup parameters, namely, the melting temperature, injection pressure, holding pressure and holding time. The genetic algorithm method and Moldflow were used to optimize the injection process parameters at a minimum cycle time. It is found that, an optimum injection molding processes could be obtained by setting the parameters to the following values: T M = 180 °C; P inj = 20 MPa; P hold = 16 MPa and t hold = 8 s, with a cycle time of 14.11 s. Experiments using the conformal cooling system yielded an average cycle time of 14.19 s. The studied conformal cooling system yielded a volumetric shrinkage of 5.61% and the wall shear stress was found at 0.17 MPa. The difference between the cycle time obtained through simulations and experiments using the conformal cooling system was insignificant (below 1%). Thus, combining process parameters optimization and simulations by using genetic algorithm method with Moldflow can be considered as valid.
Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine
NASA Astrophysics Data System (ADS)
Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung
Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.
DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue.
Wang, QuanQiu; Xu, Rong
2015-01-01
Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system (DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the disease network. We then developed a novel algorithm to prioritize FDA-approved drugs from dengue-related diseases to treat dengue. When tested in a de-novo validation setting, DenguePredict found the only two drugs tested in clinical trials for treating dengue and ranked them highly: chloroquine ranked at top 0.96% and ivermectin at top 22.75%. We showed that drugs targeting immune systems and arachidonic acid metabolism-related apoptotic pathways might represent innovative drugs to treat dengue. In summary, DenguePredict, by combining comprehensive disease- and drug-related data and novel algorithms, may greatly facilitate drug discovery for dengue.
Gottlieb, Michael M; Arenillas, David J; Maithripala, Savanie; Maurer, Zachary D; Tarailo Graovac, Maja; Armstrong, Linlea; Patel, Millan; van Karnebeek, Clara; Wasserman, Wyeth W
2015-04-01
Advances in next-generation sequencing (NGS) technologies have helped reveal causal variants for genetic diseases. In order to establish causality, it is often necessary to compare genomes of unrelated individuals with similar disease phenotypes to identify common disrupted genes. When working with cases of rare genetic disorders, finding similar individuals can be extremely difficult. We introduce a web tool, GeneYenta, which facilitates the matchmaking process, allowing clinicians to coordinate detailed comparisons for phenotypically similar cases. Importantly, the system is focused on phenotype annotation, with explicit limitations on highly confidential data that create barriers to participation. The procedure for matching of patient phenotypes, inspired by online dating services, uses an ontology-based semantic case matching algorithm with attribute weighting. We evaluate the capacity of the system using a curated reference data set and 19 clinician entered cases comparing four matching algorithms. We find that the inclusion of clinician weights can augment phenotype matching. © 2015 WILEY PERIODICALS, INC.
Sensor Fusion, Prognostics, Diagnostics and Failure Mode Control for Complex Aerospace Systems
2010-10-01
algorithm and to then tune the candidates individually using known metaheuristics . As will be...parallel. The result of this arrangement is that the processing is a form that is analogous to standard parallel genetic algorithms , and as such...search algorithm then uses the hybrid of fitness data to rank the results. The ETRAS controller is developed using pre-selection, showing that a
Circuit Design Optimization Using Genetic Algorithm with Parameterized Uniform Crossover
NASA Astrophysics Data System (ADS)
Bao, Zhiguo; Watanabe, Takahiro
Evolvable hardware (EHW) is a new research field about the use of Evolutionary Algorithms (EAs) to construct electronic systems. EHW refers in a narrow sense to use evolutionary mechanisms as the algorithmic drivers for system design, while in a general sense to the capability of the hardware system to develop and to improve itself. Genetic Algorithm (GA) is one of typical EAs. We propose optimal circuit design by using GA with parameterized uniform crossover (GApuc) and with fitness function composed of circuit complexity, power, and signal delay. Parameterized uniform crossover is much more likely to distribute its disruptive trials in an unbiased manner over larger portions of the space, then it has more exploratory power than one and two-point crossover, so we have more chances of finding better solutions. Its effectiveness is shown by experiments. From the results, we can see that the best elite fitness, the average value of fitness of the correct circuits and the number of the correct circuits of GApuc are better than that of GA with one-point crossover or two-point crossover. The best case of optimal circuits generated by GApuc is 10.18% and 6.08% better in evaluating value than that by GA with one-point crossover and two-point crossover, respectively.
NASA Astrophysics Data System (ADS)
Wu, J.; Yang, Y.; Luo, Q.; Wu, J.
2012-12-01
This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.
An Improved Heuristic Method for Subgraph Isomorphism Problem
NASA Astrophysics Data System (ADS)
Xiang, Yingzhuo; Han, Jiesi; Xu, Haijiang; Guo, Xin
2017-09-01
This paper focus on the subgraph isomorphism (SI) problem. We present an improved genetic algorithm, a heuristic method to search the optimal solution. The contribution of this paper is that we design a dedicated crossover algorithm and a new fitness function to measure the evolution process. Experiments show our improved genetic algorithm performs better than other heuristic methods. For a large graph, such as a subgraph of 40 nodes, our algorithm outperforms the traditional tree search algorithms. We find that the performance of our improved genetic algorithm does not decrease as the number of nodes in prototype graphs.
NASA Astrophysics Data System (ADS)
Sorensen, Ira Joseph
A primary objective of the effort reported here is to develop a radiometric instrument modeling environment to provide complete end-to-end numerical models of radiometric instruments, integrating the optical, electro-thermal, and electronic systems. The modeling environment consists of a Monte Carlo ray-trace (MCRT) model of the optical system coupled to a transient, three-dimensional finite-difference electrothermal model of the detector assembly with an analytic model of the signal-conditioning circuitry. The environment provides a complete simulation of the dynamic optical and electrothermal behavior of the instrument. The modeling environment is used to create an end-to-end model of the CERES scanning radiometer, and its performance is compared to the performance of an operational CERES total channel as a benchmark. A further objective of this effort is to formulate an efficient design environment for radiometric instruments. To this end, the modeling environment is then combined with evolutionary search algorithms known as genetic algorithms (GA's) to develop a methodology for optimal instrument design using high-level radiometric instrument models. GA's are applied to the design of the optical system and detector system separately and to both as an aggregate function with positive results.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
Multidisciplinary design optimization using genetic algorithms
NASA Technical Reports Server (NTRS)
Unal, Resit
1994-01-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.
2013-01-01
intelligently selecting waveform parameters using adaptive algorithms. The adaptive algorithms optimize the waveform parameters based on (1) the EM...the environment. 15. SUBJECT TERMS cognitive radar, adaptive sensing, spectrum sensing, multi-objective optimization, genetic algorithms, machine...detection and classification block diagram. .........................................................6 Figure 5. Genetic algorithm block diagram
Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Xu, Liming
The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M
2014-05-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.
Mohamed, Ahmed F.; Elarini, Mahdi M.; Othman, Ahmed M.
2013-01-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt. PMID:25685507
Genetic programming based ensemble system for microarray data classification.
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.
Genetic Programming Based Ensemble System for Microarray Data Classification
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved. PMID:25810748
Modified Mahalanobis Taguchi System for Imbalance Data Classification
2017-01-01
The Mahalanobis Taguchi System (MTS) is considered one of the most promising binary classification algorithms to handle imbalance data. Unfortunately, MTS lacks a method for determining an efficient threshold for the binary classification. In this paper, a nonlinear optimization model is formulated based on minimizing the distance between MTS Receiver Operating Characteristics (ROC) curve and the theoretical optimal point named Modified Mahalanobis Taguchi System (MMTS). To validate the MMTS classification efficacy, it has been benchmarked with Support Vector Machines (SVMs), Naive Bayes (NB), Probabilistic Mahalanobis Taguchi Systems (PTM), Synthetic Minority Oversampling Technique (SMOTE), Adaptive Conformal Transformation (ACT), Kernel Boundary Alignment (KBA), Hidden Naive Bayes (HNB), and other improved Naive Bayes algorithms. MMTS outperforms the benchmarked algorithms especially when the imbalance ratio is greater than 400. A real life case study on manufacturing sector is used to demonstrate the applicability of the proposed model and to compare its performance with Mahalanobis Genetic Algorithm (MGA). PMID:28811820
Warehouse stocking optimization based on dynamic ant colony genetic algorithm
NASA Astrophysics Data System (ADS)
Xiao, Xiaoxu
2018-04-01
In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.
a Gsa-Svm Hybrid System for Classification of Binary Problems
NASA Astrophysics Data System (ADS)
Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan
2011-06-01
This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung
2005-05-01
An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.
NASA Astrophysics Data System (ADS)
Yelkenci Köse, Simge; Demir, Leyla; Tunalı, Semra; Türsel Eliiyi, Deniz
2015-02-01
In manufacturing systems, optimal buffer allocation has a considerable impact on capacity improvement. This study presents a simulation optimization procedure to solve the buffer allocation problem in a heat exchanger production plant so as to improve the capacity of the system. For optimization, three metaheuristic-based search algorithms, i.e. a binary-genetic algorithm (B-GA), a binary-simulated annealing algorithm (B-SA) and a binary-tabu search algorithm (B-TS), are proposed. These algorithms are integrated with the simulation model of the production line. The simulation model, which captures the stochastic and dynamic nature of the production line, is used as an evaluation function for the proposed metaheuristics. The experimental study with benchmark problem instances from the literature and the real-life problem show that the proposed B-TS algorithm outperforms B-GA and B-SA in terms of solution quality.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011
Scalability problems of simple genetic algorithms.
Thierens, D
1999-01-01
Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic algorithm-namely elitism, niching, and restricted mating are not significantly improving the scalability problems.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.
2005-01-01
We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.
NASA Astrophysics Data System (ADS)
Yang, Chen; Zhang, Xuepan; Huang, Xiaoqi; Cheng, ZhengAi; Zhang, Xinghua; Hou, Xinbin
2017-11-01
The concept of space solar power satellite (SSPS) is an advanced system for collecting solar energy in space and transmitting it wirelessly to earth. However, due to the long service life, in-orbit damage may occur in the structural system of SSPS. Therefore, sensor placement layouts for structural health monitoring should be firstly considered in this concept. In this paper, based on genetic algorithm, an optimal sensor placement method for deployable antenna module health monitoring in SSPS is proposed. According to the characteristics of the deployable antenna module, the designs of sensor placement are listed. Furthermore, based on effective independence method and effective interval index, a combined fitness function is defined to maximize linear independence in targeted modes while simultaneously avoiding redundant information at nearby positions. In addition, by considering the reliability of sensors located at deployable mechanisms, another fitness function is constituted. Moreover, the solution process of optimal sensor placement by using genetic algorithm is clearly demonstrated. At last, a numerical example about the sensor placement layout in a deployable antenna module of SSPS is presented, which by synthetically considering all the above mentioned performances. All results can illustrate the effectiveness and feasibility of the proposed sensor placement method in SSPS.
An investigation of messy genetic algorithms
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley
1990-01-01
Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.
Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2001-01-01
A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.
Polyglot Programming in Applications Used for Genetic Data Analysis
Nowak, Robert M.
2014-01-01
Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633
Polyglot programming in applications used for genetic data analysis.
Nowak, Robert M
2014-01-01
Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.
Primary chromatic aberration elimination via optimization work with genetic algorithm
NASA Astrophysics Data System (ADS)
Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao
2008-09-01
Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity
Louis, S.J.; Raines, G.L.
2003-01-01
We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.
Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem
NASA Astrophysics Data System (ADS)
Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf
2017-08-01
Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator
Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.
Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian
2016-01-01
With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
A New Challenge for Compression Algorithms: Genetic Sequences.
ERIC Educational Resources Information Center
Grumbach, Stephane; Tahi, Fariza
1994-01-01
Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2017-01-01
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.
Predicting Student Grades in Learning Management Systems with Multiple Instance Genetic Programming
ERIC Educational Resources Information Center
Zafra, Amelia; Ventura, Sebastian
2009-01-01
The ability to predict a student's performance could be useful in a great number of different ways associated with university-level learning. In this paper, a grammar guided genetic programming algorithm, G3P-MI, has been applied to predict if the student will fail or pass a certain course and identifies activities to promote learning in a…
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Refined genetic algorithm -- Economic dispatch example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheble, G.B.; Brittig, K.
1995-02-01
A genetic-based algorithm is used to solve an economic dispatch (ED) problem. The algorithm utilizes payoff information of perspective solutions to evaluate optimality. Thus, the constraints of classical LaGrangian techniques on unit curves are eliminated. Using an economic dispatch problem as a basis for comparison, several different techniques which enhance program efficiency and accuracy, such as mutation prediction, elitism, interval approximation and penalty factors, are explored. Two unique genetic algorithms are also compared. The results are verified for a sample problem using a classical technique.
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem
NASA Astrophysics Data System (ADS)
Pourrahimian, Parinaz
2017-11-01
Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Algorithm (MA) for optimizing partitioning problem of tandem AGVS. MAs employ a Genetic Algorithm (GA), as a global search, and apply a local search to bring the solutions to a local optimum point. A new Tabu Search (TS) has been developed and combined with a GA to refine the newly generated individuals by GA. The aim of the proposed algorithm is to minimize the maximum workload of the system. After all, the performance of the proposed algorithm is evaluated using Matlab. This study also compared the objective function of the proposed MA with GA. The results showed that the TS, as a local search, significantly improves the objective function of the GA for different system sizes with large and small numbers of zone by 1.26 in average.
Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Wells, Valana L.
1996-01-01
This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.
Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva
2018-04-01
Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.
3D Protein structure prediction with genetic tabu search algorithm
2010-01-01
Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256
Closed Loop System Identification with Genetic Algorithms
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.
Determining the optimal number of Kanban in multi-products supply chain system
NASA Astrophysics Data System (ADS)
Widyadana, G. A.; Wee, H. M.; Chang, Jer-Yuan
2010-02-01
Kanban, a key element of just-in-time system, is a re-order card or signboard giving instruction or triggering the pull system to manufacture or supply a component based on actual usage of material. There are two types of Kanban: production Kanban and withdrawal Kanban. This study uses optimal and meta-heuristic methods to determine the Kanban quantity and withdrawal lot sizes in a supply chain system. Although the mix integer programming method gives an optimal solution, it is not time efficient. For this reason, the meta-heuristic methods are suggested. In this study, a genetic algorithm (GA) and a hybrid of genetic algorithm and simulated annealing (GASA) are used. The study compares the performance of GA and GASA with that of the optimal method using MIP. The given problems show that both GA and GASA result in a near optimal solution, and they outdo the optimal method in term of run time. In addition, the GASA heuristic method gives a better performance than the GA heuristic method.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic algorithm dynamics on a rugged landscape
NASA Astrophysics Data System (ADS)
Bornholdt, Stefan
1998-04-01
The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491
An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
Ting, T O; Man, Ka Lok; Lim, Eng Gee; Leach, Mark
2014-01-01
In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.
Ting, T. O.; Lim, Eng Gee
2014-01-01
In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area. PMID:25162041
NASA Astrophysics Data System (ADS)
Peralta, Richard C.; Forghani, Ali; Fayad, Hala
2014-04-01
Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.
Ternary alloy material prediction using genetic algorithm and cluster expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chong
2015-12-01
This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we didmore » our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe 3VSi 2 is a new stable phase and it can be very inspiring to the future experiments.« less
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Wang, Xin; Chen, Yong; Kong, Deqian; Xia, Peijie
2017-05-01
For indoor visible light communication system, the layout of LED lamps affects the uniformity of the received power on communication plane. In order to find an optimized lighting layout that meets both the lighting needs and communication needs, a gene density genetic algorithm (GDGA) is proposed. In GDGA, a gene indicates a pair of abscissa and ordinate of a LED, and an individual represents a LED layout in the room. The segmented crossover operation and gene mutation strategy based on gene density are put forward to make the received power on communication plane more uniform and increase the population's diversity. A weighted differences function between individuals is designed as the fitness function of GDGA for reserving the population having the useful LED layout genetic information and ensuring the global convergence of GDGA. Comparing square layout and circular layout, with the optimized layout achieved by the GDGA, the power uniformity increases by 83.3%, 83.1% and 55.4%, respectively. Furthermore, the convergence of GDGA is verified compared with evolutionary algorithm (EA). Experimental results show that GDGA can quickly find an approximation of optimal layout.
Intelligent automated control of life support systems using proportional representations.
Wu, Annie S; Garibay, Ivan I
2004-06-01
Effective automatic control of Advanced Life Support Systems (ALSS) is a crucial component of space exploration. An ALSS is a coupled dynamical system which can be extremely sensitive and difficult to predict. As a result, such systems can be difficult to control using deliberative and deterministic methods. We investigate the performance of two machine learning algorithms, a genetic algorithm (GA) and a stochastic hill-climber (SH), on the problem of learning how to control an ALSS, and compare the impact of two different types of problem representations on the performance of both algorithms. We perform experiments on three ALSS optimization problems using five strategies with multiple variations of a proportional representation for a total of 120 experiments. Results indicate that although a proportional representation can effectively boost GA performance, it does not necessarily have the same effect on other algorithms such as SH. Results also support previous conclusions that multivector control strategies are an effective method for control of coupled dynamical systems.
Li, Yanhui; Guo, Hao; Wang, Lin; Fu, Jing
2013-01-01
Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment.
NASA Astrophysics Data System (ADS)
Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela
2016-01-01
Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.
Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States
NASA Technical Reports Server (NTRS)
Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.
2017-01-01
This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.
Pose estimation for augmented reality applications using genetic algorithm.
Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen
2005-12-01
This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.
Optimization of laminated stacking sequence for buckling load maximization by genetic algorithm
NASA Technical Reports Server (NTRS)
Le Riche, Rodolphe; Haftka, Raphael T.
1992-01-01
The use of a genetic algorithm to optimize the stacking sequence of a composite laminate for buckling load maximization is studied. Various genetic parameters including the population size, the probability of mutation, and the probability of crossover are optimized by numerical experiments. A new genetic operator - permutation - is proposed and shown to be effective in reducing the cost of the genetic search. Results are obtained for a graphite-epoxy plate, first when only the buckling load is considered, and then when constraints on ply contiguity and strain failure are added. The influence on the genetic search of the penalty parameter enforcing the contiguity constraint is studied. The advantage of the genetic algorithm in producing several near-optimal designs is discussed.
Development of a Tool for an Efficient Calibration of CORSIM Models
DOT National Transportation Integrated Search
2014-08-01
This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of ...
Kesharaju, Manasa; Nagarajah, Romesh
2015-09-01
The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa
2012-01-01
Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.
System Design under Uncertainty: Evolutionary Optimization of the Gravity Probe-B Spacecraft
NASA Technical Reports Server (NTRS)
Pullen, Samuel P.; Parkinson, Bradford W.
1994-01-01
This paper discusses the application of evolutionary random-search algorithms (Simulated Annealing and Genetic Algorithms) to the problem of spacecraft design under performance uncertainty. Traditionally, spacecraft performance uncertainty has been measured by reliability. Published algorithms for reliability optimization are seldom used in practice because they oversimplify reality. The algorithm developed here uses random-search optimization to allow us to model the problem more realistically. Monte Carlo simulations are used to evaluate the objective function for each trial design solution. These methods have been applied to the Gravity Probe-B (GP-B) spacecraft being developed at Stanford University for launch in 1999, Results of the algorithm developed here for GP-13 are shown, and their implications for design optimization by evolutionary algorithms are discussed.
Engineered Intrinsic Bioremediation of Ammonium Perchlorate in Groundwater
2010-12-01
German Collection of Microorganisms and Cell Cultures) GA Genetic Algorithms GA-ANN Genetic Algorithm Artificial Neural Network GMO genetically...for in situ treatment of perchlorate in groundwater. This is accomplished without the addition of genetically engineered microorganisms ( GMOs ) to the...perchlorate, even in the presence of oxygen and without the addition of genetically engineered microorganisms ( GMOs ) to the environment. This approach
[Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].
Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V
2014-01-01
Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.
NASA Astrophysics Data System (ADS)
Hou, Huirang; Zheng, Dandan; Nie, Laixiao
2015-04-01
For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.
Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed
2017-01-05
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.
VHBuild.com: A Web-Based System for Managing Knowledge in Projects.
ERIC Educational Resources Information Center
Li, Heng; Tang, Sandy; Man, K. F.; Love, Peter E. D.
2002-01-01
Describes an intelligent Web-based construction project management system called VHBuild.com which integrates project management, knowledge management, and artificial intelligence technologies. Highlights include an information flow model; time-cost optimization based on genetic algorithms; rule-based drawing interpretation; and a case-based…
Performance of Geno-Fuzzy Model on rainfall-runoff predictions in claypan watersheds
USDA-ARS?s Scientific Manuscript database
Fuzzy logic provides a relatively simple approach to simulate complex hydrological systems while accounting for the uncertainty of environmental variables. The objective of this study was to develop a fuzzy inference system (FIS) with genetic algorithm (GA) optimization for membership functions (MF...
Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.
Ziebarth, Jesse D; Cui, Yan
2017-01-01
The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.
NASA Astrophysics Data System (ADS)
Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei
2012-05-01
A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.
NASA Astrophysics Data System (ADS)
Sastry, Kumara Narasimha
2007-03-01
Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common building blocks in organic chemistry---indicate that MOGAs produce High-quality semiempirical methods that (1) are stable to small perturbations, (2) yield accurate configuration energies on untested and critical excited states, and (3) yield ab initio quality excited-state dynamics. The proposed method enables simulations of more complex systems to realistic, multi-picosecond timescales, well beyond previous attempts or expectation of human experts, and 2--3 orders-of-magnitude reduction in computational cost. While the two applications use simple evolutionary operators, in order to tackle more complex systems, their scalability and limitations have to be investigated. The second part of the thesis addresses some of the challenges involved with a successful design of genetic algorithms and genetic programming for multiscale modeling. The first issue addressed is the scalability of genetic programming, where facetwise models are built to assess the population size required by GP to ensure adequate supply of raw building blocks and also to ensure accurate decision-making between competing building blocks. This study also presents a design of competent genetic programming, where traditional fixed recombination operators are replaced by building and sampling probabilistic models of promising candidate programs. The proposed scalable GP, called extended compact GP (eCGP), combines the ideas from extended compact genetic algorithm (eCGA) and probabilistic incremental program evolution (PIPE) and adaptively identifies, propagates and exchanges important subsolutions of a search problem. Results show that eCGP scales cubically with problem size on both GP-easy and GP-hard problems. Finally, facetwise models are developed to explore limitations of scalability of MOGAs, where the scalability of multiobjective algorithms in reliably maintaining Pareto-optimal solutions is addressed. The results show that even when the building blocks are accurately identified, massive multimodality of the search problems can easily overwhelm the nicher (diversity preserving operator) and lead to exponential scale-up. Facetwise models are developed, which incorporate the combined effects of model accuracy, decision making, and sub-structure supply, as well as the effect of niching on the population sizing, to predict a limit on the growth rate of a maximum number of sub-structures that can compete in the two objectives to circumvent the failure of the niching method. The results show that if the number of competing building blocks between multiple objectives is less than the proposed limit, multiobjective GAs scale-up polynomially with the problem size on boundedly-difficult problems.
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
Transmission over UWB channels with OFDM system using LDPC coding
NASA Astrophysics Data System (ADS)
Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech
2009-06-01
Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.
Design of the smart home system based on the optimal routing algorithm and ZigBee network
Xie, Xiaoxia
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868
Helaers, Raphaël; Milinkovitch, Michel C
2010-07-15
The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org.
2010-01-01
Background The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Results Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. Conclusions The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org. PMID:20633263
Distributed genetic algorithms for the floorplan design problem
NASA Technical Reports Server (NTRS)
Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.
1991-01-01
Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.
Optimization of a Lunar Pallet Lander Reinforcement Structure Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Burt, Adam
2014-01-01
In this paper, a unique system level spacecraft design optimization will be presented. A Genetic Algorithm is used to design the global pattern of the reinforcing structure, while a gradient routine is used to adequately stiffen the sub-structure. The system level structural design includes determining the optimal physical location (and number) of reinforcing beams of a lunar pallet lander deck structure. Design of the substructure includes determining placement of secondary stiffeners and the number of rivets required for assembly.. In this optimization, several considerations are taken into account. The primary objective was to raise the primary natural frequencies of the structure such that the Pallet Lander primary structure does not significantly couple with the launch vehicle. A secondary objective is to determine how to properly stiffen the reinforcing beams so that the beam web resists the shear buckling load imparted by the spacecraft components mounted to the pallet lander deck during launch and landing. A third objective is that the calculated stress does not exceed the allowable strength of the material. These design requirements must be met while, minimizing the overall mass of the spacecraft. The final paper will discuss how the optimization was implemented as well as the results. While driven by optimization algorithms, the primary purpose of this effort was to demonstrate the capability of genetic algorithms to enable design automation in the preliminary design cycle. By developing a routine that can automatically generate designs through the use of Finite Element Analysis, considerable design efficiencies, both in time and overall product, can be obtained over more traditional brute force design methods.
Evolving aerodynamic airfoils for wind turbines through a genetic algorithm
NASA Astrophysics Data System (ADS)
Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI
2017-01-01
Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.
Intelligent cloud computing security using genetic algorithm as a computational tools
NASA Astrophysics Data System (ADS)
Razuky AL-Shaikhly, Mazin H.
2018-05-01
An essential change had occurred in the field of Information Technology which represented with cloud computing, cloud giving virtual assets by means of web yet awesome difficulties in the field of information security and security assurance. Currently main problem with cloud computing is how to improve privacy and security for cloud “cloud is critical security”. This paper attempts to solve cloud security by using intelligent system with genetic algorithm as wall to provide cloud data secure, all services provided by cloud must detect who receive and register it to create list of users (trusted or un-trusted) depend on behavior. The execution of present proposal has shown great outcome.
PDE Nozzle Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Billings, Dana; Turner, James E. (Technical Monitor)
2000-01-01
Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.
Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.
1999-04-12
The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a generalmore » parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.« less
A review on economic emission dispatch problems using quantum computational intelligence
NASA Astrophysics Data System (ADS)
Mahdi, Fahad Parvez; Vasant, Pandian; Kallimani, Vish; Abdullah-Al-Wadud, M.
2016-11-01
Economic emission dispatch (EED) problems are one of the most crucial problems in power systems. Growing energy demand, limitation of natural resources and global warming make this topic into the center of discussion and research. This paper reviews the use of Quantum Computational Intelligence (QCI) in solving Economic Emission Dispatch problems. QCI techniques like Quantum Genetic Algorithm (QGA) and Quantum Particle Swarm Optimization (QPSO) algorithm are discussed here. This paper will encourage the researcher to use more QCI based algorithm to get better optimal result for solving EED problems.
PSEMA: An Algorithm for Pattern Stimulated Evolution of Music
NASA Astrophysics Data System (ADS)
Mavrogianni, A. N.; Vlachos, D. S.; Harvalias, G.
2008-11-01
An algorithm for pattern stimulating evolution of music is presented in this work (PSEMA). The system combines a pattern with a genetic algorithm for automatic music composition in order to create a musical phrase uniquely characterizing the pattern. As an example a musical portrait is presented. The initialization of the musical phrases is done with a Markov Chain process. The evolution is dominated by an arbitrary correspondence between the pattern (feature extraction of the pattern may be used in this step) and the esthetic result of the musical phrase.
Prediction of dynamical systems by symbolic regression
NASA Astrophysics Data System (ADS)
Quade, Markus; Abel, Markus; Shafi, Kamran; Niven, Robert K.; Noack, Bernd R.
2016-07-01
We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast.
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171
A Genetic Algorithm Approach to Recognise Students' Learning Styles
ERIC Educational Resources Information Center
Yannibelli, Virginia; Godoy, Daniela; Amandi, Analia
2006-01-01
Learning styles encapsulate the preferences of the students, regarding how they learn. By including information about the student learning style, computer-based educational systems are able to adapt a course according to the individual characteristics of the students. In accomplishing this goal, educational systems have been mostly based on the…
Methodology of Numerical Optimization for Orbital Parameters of Binary Systems
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2010-02-01
The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.
NASA Astrophysics Data System (ADS)
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2017-02-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
NASA Astrophysics Data System (ADS)
Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna
2017-12-01
The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.
Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R
2012-08-01
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.
Alsmadi, Othman M K; Abo-Hammour, Zaer S
2015-01-01
A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.
NASA Astrophysics Data System (ADS)
Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad
2017-08-01
Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.
Genetic attack on neural cryptography.
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido
2006-03-01
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
Genetic attack on neural cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka
2006-03-15
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold formore » the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.« less
Wind power prediction based on genetic neural network
NASA Astrophysics Data System (ADS)
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
Genetic attack on neural cryptography
NASA Astrophysics Data System (ADS)
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido
2006-03-01
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
Optimal line drop compensation parameters under multi-operating conditions
NASA Astrophysics Data System (ADS)
Wan, Yuan; Li, Hang; Wang, Kai; He, Zhe
2017-01-01
Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.
2012-01-01
Background Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms associated with disease. However, these algorithms are often distributed as command line implementations that require expertise and effort to customize and put into practice. Because of the difficulty required to use these cutting-edge techniques, geneticists often revert to simpler, less powerful methods. Results To make structured association mapping more accessible to geneticists, we have developed an automatic processing system called Auto-SAM. Auto-SAM enables geneticists to run structured association mapping algorithms automatically, using parallelization. Auto-SAM includes algorithms to discover gene-networks and find population structure. Auto-SAM can also run popular association mapping algorithms, in addition to five structured association mapping algorithms. Conclusions Auto-SAM is available through GenAMap, a front-end desktop visualization tool. GenAMap and Auto-SAM are implemented in JAVA; binaries for GenAMap can be downloaded from http://sailing.cs.cmu.edu/genamap. PMID:22471660
Cloud computing-based TagSNP selection algorithm for human genome data.
Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2015-01-05
Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.
New optimization model for routing and spectrum assignment with nodes insecurity
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-04-01
By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.
The Applications of Genetic Algorithms in Medicine.
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-11-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.].
The Applications of Genetic Algorithms in Medicine
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-01-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060
Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data
Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2015-01-01
Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Benford, Andrew; Tinker, Michael L.
2004-01-01
The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.
Superscattering of light optimized by a genetic algorithm
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-01
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
Neural-network-assisted genetic algorithm applied to silicon clusters
NASA Astrophysics Data System (ADS)
Marim, L. R.; Lemes, M. R.; dal Pino, A.
2003-03-01
Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Sin (10⩽n⩽15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.
Genetic Algorithm Based Multi-Agent System Applied to Test Generation
ERIC Educational Resources Information Center
Meng, Anbo; Ye, Luqing; Roy, Daniel; Padilla, Pierre
2007-01-01
Automatic test generating system in distributed computing context is one of the most important links in on-line evaluation system. Although the issue has been argued long since, there is not a perfect solution to it so far. This paper proposed an innovative approach to successfully addressing such issue by the seamless integration of genetic…
Hybrid Architectures and Their Impact on Intelligent Design
NASA Technical Reports Server (NTRS)
Kandel, Abe
1996-01-01
In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.
Obtaining the phase in the star test using genetic algorithms
NASA Astrophysics Data System (ADS)
Salazar Romero, Marcos A.; Vazquez-Montiel, Sergio; Cornejo-Rodriguez, Alejandro
2004-10-01
The star test is conceptually perhaps the most basic and simplest of all methods of testing image-forming optical systems, the irradiance distribution at the image of a point source (such as a star) is give for the Point Spread Function, PSF. The PSF is very sensitive to aberrations. One way to quantify the PSF is measuring the irradiance distribution on the image of the source point. On the other hand, if we know the aberrations introduced by the optical systems and utilizing the diffraction theory then we can calculate the PSF. In this work we propose a method in order to find the wavefront aberrations starting from the PSF, transforming the problem of fitting a polynomial of aberrations in a problem of optimization using Genetic Algorithm. Also, we show that this method is immune to the noise introduced in the register or recording of the image. Results of these methods are shown.
Guo, Hao; Fu, Jing
2013-01-01
Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment. PMID:24489489
Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N
2015-04-28
Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Taylor, Jaime; Rakoczy, John; Steincamp, James
2003-01-01
Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.
A stochastic conflict resolution model for trading pollutant discharge permits in river systems.
Niksokhan, Mohammad Hossein; Kerachian, Reza; Amin, Pedram
2009-07-01
This paper presents an efficient methodology for developing pollutant discharge permit trading in river systems considering the conflict of interests of involving decision-makers and the stakeholders. In this methodology, a trade-off curve between objectives is developed using a powerful and recently developed multi-objective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The best non-dominated solution on the trade-off curve is defined using the Young conflict resolution theory, which considers the utility functions of decision makers and stakeholders of the system. These utility functions are related to the total treatment cost and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. Finally, an optimization model provides the trading discharge permit policies. The practical utility of the proposed methodology in decision-making is illustrated through a realistic example of the Zarjub River in the northern part of Iran.
NASA Astrophysics Data System (ADS)
Selouani, Sid-Ahmed; O'Shaughnessy, Douglas
2003-12-01
Limiting the decrease in performance due to acoustic environment changes remains a major challenge for continuous speech recognition (CSR) systems. We propose a novel approach which combines the Karhunen-Loève transform (KLT) in the mel-frequency domain with a genetic algorithm (GA) to enhance the data representing corrupted speech. The idea consists of projecting noisy speech parameters onto the space generated by the genetically optimized principal axis issued from the KLT. The enhanced parameters increase the recognition rate for highly interfering noise environments. The proposed hybrid technique, when included in the front-end of an HTK-based CSR system, outperforms that of the conventional recognition process in severe interfering car noise environments for a wide range of signal-to-noise ratios (SNRs) varying from 16 dB to[InlineEquation not available: see fulltext.] dB. We also showed the effectiveness of the KLT-GA method in recognizing speech subject to telephone channel degradations.
Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.
ERIC Educational Resources Information Center
Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand
2003-01-01
Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Wang, Chujun; Chen, Yong
2018-01-01
Large-capacity encoding fiber Bragg grating (FBG) sensor network is widely used in modern long-term health monitoring system. Encoding FBG sensors have greatly improved the capacity of distributed FBG sensor network. However, the error of addressing increases correspondingly with the enlarging of capacity. To address the issue, an improved algorithm called genetic tracking algorithm (GTA) is proposed in the paper. In the GTA, for improving the success rate of matching and reducing the large number of redundant matching operations generated by sequential matching, the individuals are designed based on the feasible matching. Then, two kinds of self-crossover ways and a dynamic variation during mutation process are designed to increase the diversity of individuals and to avoid falling into local optimum. Meanwhile, an assistant decision is proposed to handle the issue that the GTA cannot solve when the variation of sensor information is highly overlapped. The simulation results indicate that the proposed GTA has higher accuracy compared with the traditional tracking algorithm and the enhanced tracking algorithm. In order to address the problems of spectrum fragmentation and low sharing degree of spectrum resources in survivable.
Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...
A genetic algorithm for solving supply chain network design model
NASA Astrophysics Data System (ADS)
Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.
2013-09-01
Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.
LEAP: biomarker inference through learning and evaluating association patterns.
Jiang, Xia; Neapolitan, Richard E
2015-03-01
Single nucleotide polymorphism (SNP) high-dimensional datasets are available from Genome Wide Association Studies (GWAS). Such data provide researchers opportunities to investigate the complex genetic basis of diseases. Much of genetic risk might be due to undiscovered epistatic interactions, which are interactions in which combination of several genes affect disease. Research aimed at discovering interacting SNPs from GWAS datasets proceeded in two directions. First, tools were developed to evaluate candidate interactions. Second, algorithms were developed to search over the space of candidate interactions. Another problem when learning interacting SNPs, which has not received much attention, is evaluating how likely it is that the learned SNPs are associated with the disease. A complete system should provide this information as well. We develop such a system. Our system, called LEAP, includes a new heuristic search algorithm for learning interacting SNPs, and a Bayesian network based algorithm for computing the probability of their association. We evaluated the performance of LEAP using 100 1,000-SNP simulated datasets, each of which contains 15 SNPs involved in interactions. When learning interacting SNPs from these datasets, LEAP outperformed seven others methods. Furthermore, only SNPs involved in interactions were found to be probable. We also used LEAP to analyze real Alzheimer's disease and breast cancer GWAS datasets. We obtained interesting and new results from the Alzheimer's dataset, but limited results from the breast cancer dataset. We conclude that our results support that LEAP is a useful tool for extracting candidate interacting SNPs from high-dimensional datasets and determining their probability. © 2015 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.
Automated Synthesis of Architecture of Avionic Systems
NASA Technical Reports Server (NTRS)
Chau, Savio; Xu, Joseph; Dang, Van; Lu, James F.
2006-01-01
The Architecture Synthesis Tool (AST) is software that automatically synthesizes software and hardware architectures of avionic systems. The AST is expected to be most helpful during initial formulation of an avionic-system design, when system requirements change frequently and manual modification of architecture is time-consuming and susceptible to error. The AST comprises two parts: (1) an architecture generator, which utilizes a genetic algorithm to create a multitude of architectures; and (2) a functionality evaluator, which analyzes the architectures for viability, rejecting most of the non-viable ones. The functionality evaluator generates and uses a viability tree a hierarchy representing functions and components that perform the functions such that the system as a whole performs system-level functions representing the requirements for the system as specified by a user. Architectures that survive the functionality evaluator are further evaluated by the selection process of the genetic algorithm. Architectures found to be most promising to satisfy the user s requirements and to perform optimally are selected as parents to the next generation of architectures. The foregoing process is iterated as many times as the user desires. The final output is one or a few viable architectures that satisfy the user s requirements.
Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva
2017-03-01
In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Application of genetic algorithm in modeling on-wafer inductors for up to 110 Ghz
NASA Astrophysics Data System (ADS)
Liu, Nianhong; Fu, Jun; Liu, Hui; Cui, Wenpu; Liu, Zhihong; Liu, Linlin; Zhou, Wei; Wang, Quan; Guo, Ao
2018-05-01
In this work, the genetic algorithm has been introducted into parameter extraction for on-wafer inductors for up to 110 GHz millimeter-wave operations, and nine independent parameters of the equivalent circuit model are optimized together. With the genetic algorithm, the model with the optimized parameters gives a better fitting accuracy than the preliminary parameters without optimization. Especially, the fitting accuracy of the Q value achieves a significant improvement after the optimization.
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software. PMID:28263994
[Application of genetic algorithm in blending technology for extractions of Cortex Fraxini].
Yang, Ming; Zhou, Yinmin; Chen, Jialei; Yu, Minying; Shi, Xiufeng; Gu, Xijun
2009-10-01
To explore the feasibility of genetic algorithm (GA) on multiple objective blending technology for extractions of Cortex Fraxini. According to that the optimization objective was the combination of fingerprint similarity and the root-mean-square error of multiple key constituents, a new multiple objective optimization model of 10 batches extractions of Cortex Fraxini was built. The blending coefficient was obtained by genetic algorithm. The quality of 10 batches extractions of Cortex Fraxini that after blending was evaluated with the finger print similarity and root-mean-square error as indexes. The quality of 10 batches extractions of Cortex Fraxini that after blending was well improved. Comparing with the fingerprint of the control sample, the similarity was up, but the degree of variation is down. The relative deviation of the key constituents was less than 10%. It is proved that genetic algorithm works well on multiple objective blending technology for extractions of Cortex Fraxini. This method can be a reference to control the quality of extractions of Cortex Fraxini. Genetic algorithm in blending technology for extractions of Chinese medicines is advisable.
A., Javadpour; A., Mohammadi
2016-01-01
Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629
Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio
2013-09-01
Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.
van der Lee, J H; Svrcek, W Y; Young, B R
2008-01-01
Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.
Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm
NASA Astrophysics Data System (ADS)
Mahdavi, Seyed Hossein; Razak, Hashim Abdul
2016-06-01
This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.
Self-Tuning of Design Variables for Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Lin, Chaung; Juang, Jer-Nan
2000-01-01
Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.
Calibration of neural networks using genetic algorithms, with application to optimal path planning
NASA Technical Reports Server (NTRS)
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
NASA Astrophysics Data System (ADS)
McPhee, J.; William, Y. W.
2005-12-01
This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system
A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem.
Lo, C C; Chang, W H
2000-01-01
The capacitated multipoint network design problem (CMNDP) is NP-complete. In this paper, a hybrid genetic algorithm for CMNDP is proposed. The multiobjective hybrid genetic algorithm (MOHGA) differs from other genetic algorithms (GAs) mainly in its selection procedure. The concept of subpopulation is used in MOHGA. Four subpopulations are generated according to the elitism reservation strategy, the shifting Prufer vector, the stochastic universal sampling, and the complete random method, respectively. Mixing these four subpopulations produces the next generation population. The MOHGA can effectively search the feasible solution space due to population diversity. The MOHGA has been applied to CMNDP. By examining computational and analytical results, we notice that the MOHGA can find most nondominated solutions and is much more effective and efficient than other multiobjective GAs.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Genetic Algorithm Approaches for Actuator Placement
NASA Technical Reports Server (NTRS)
Crossley, William A.
2000-01-01
This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.
Calibration of a crop model to irrigated water use using a genetic algorithm
USDA-ARS?s Scientific Manuscript database
Near-term consumption of groundwater for irrigated agriculture in the High Plains Aquifer supports a dynamic bio-socio-economic system, all parts of which will be impacted by a future transition to sustainable usage that matches natural recharge rates. Plants are the foundation of this system and so...
Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao
2017-02-01
This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improved Genetic Algorithm Based on the Cooperation of Elite and Inverse-elite
NASA Astrophysics Data System (ADS)
Kanakubo, Masaaki; Hagiwara, Masafumi
In this paper, we propose an improved genetic algorithm based on the combination of Bee system and Inverse-elitism, both are effective strategies for the improvement of GA. In the Bee system, in the beginning, each chromosome tries to find good solution individually as global search. When some chromosome is regarded as superior one, the other chromosomes try to find solution around there. However, since chromosomes for global search are generated randomly, Bee system lacks global search ability. On the other hand, in the Inverse-elitism, an inverse-elite whose gene values are reversed from the corresponding elite is produced. This strategy greatly contributes to diversification of chromosomes, but it lacks local search ability. In the proposed method, the Inverse-elitism with Pseudo-simplex method is employed for global search of Bee system in order to strengthen global search ability. In addition, it also has strong local search ability. The proposed method has synergistic effects of the three strategies. We confirmed validity and superior performance of the proposed method by computer simulations.
New approach for segmentation and recognition of handwritten numeral strings
NASA Astrophysics Data System (ADS)
Sadri, Javad; Suen, Ching Y.; Bui, Tien D.
2004-12-01
In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.
New approach for segmentation and recognition of handwritten numeral strings
NASA Astrophysics Data System (ADS)
Sadri, Javad; Suen, Ching Y.; Bui, Tien D.
2005-01-01
In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.
Blastocyst microinjection automation.
Mattos, Leonardo S; Grant, Edward; Thresher, Randy; Kluckman, Kimberly
2009-09-01
Blastocyst microinjections are routinely involved in the process of creating genetically modified mice for biomedical research, but their efficiency is highly dependent on the skills of the operators. As a consequence, much time and resources are required for training microinjection personnel. This situation has been aggravated by the rapid growth of genetic research, which has increased the demand for mutant animals. Therefore, increased productivity and efficiency in this area are highly desired. Here, we pursue these goals through the automation of a previously developed teleoperated blastocyst microinjection system. This included the design of a new system setup to facilitate automation, the definition of rules for automatic microinjections, the implementation of video processing algorithms to extract feedback information from microscope images, and the creation of control algorithms for process automation. Experimentation conducted with this new system and operator assistance during the cells delivery phase demonstrated a 75% microinjection success rate. In addition, implantation of the successfully injected blastocysts resulted in a 53% birth rate and a 20% yield of chimeras. These results proved that the developed system was capable of automatic blastocyst penetration and retraction, demonstrating the success of major steps toward full process automation.
Multivariable optimization of an auto-thermal ammonia synthesis reactor using genetic algorithm
NASA Astrophysics Data System (ADS)
Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Tien-Dung, Vu; Kim-Trung, Nguyen
2017-09-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone. The optimal problem requires the maximization of a multivariable objective function which subjects to a number of equality constraints involving the solution of coupled differential equations and also inequality constraints. The solution of an optimization problem can be found through, among others, deterministic or stochastic approaches. The stochastic methods, such as evolutionary algorithm (EA), which is based on natural phenomenon, can overcome the drawbacks such as the requirement of the derivatives of the objective function and/or constraints, or being not efficient in non-differentiable or discontinuous problems. Genetic algorithm (GA) which is a class of EA, exceptionally simple, robust at numerical optimization and is more likely to find a true global optimum. In this study, the genetic algorithm is employed to find the optimum profit of the process. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results showed that the presented numerical method could be applied to model the ammonia synthesis reactor. The optimum economic profit obtained from this study are also compared to the results from the literature. It suggests that the process should be operated at higher temperature of feed gas in catalyst zone and the reactor length is slightly longer.
A novel framework of tissue membrane systems for image fusion.
Zhang, Zulin; Yi, Xinzhong; Peng, Hong
2014-01-01
This paper proposes a tissue membrane system-based framework to deal with the optimal image fusion problem. A spatial domain fusion algorithm is given, and a tissue membrane system of multiple cells is used as its computing framework. Based on the multicellular structure and inherent communication mechanism of the tissue membrane system, an improved velocity-position model is developed. The performance of the fusion framework is studied with comparison of several traditional fusion methods as well as genetic algorithm (GA)-based and differential evolution (DE)-based spatial domain fusion methods. Experimental results show that the proposed fusion framework is superior or comparable to the other methods and can be efficiently used for image fusion.
Image reconstruction through thin scattering media by simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua
2018-07-01
An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.
NASA Astrophysics Data System (ADS)
Shah, Rahul H.
Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the production planning framework are discussed. A modified Particle Swarm Optimization solution technique is adopted to solve the proposed scheduling problem. The algorithm is described in detail and compared to Genetic Algorithm. Case studies are presented to illustrate the benefits of using the proposed model and the effectiveness of the Particle Swarm Optimization approach. Numerical Experiments are implemented and analyzed to test the effectiveness of the proposed model. The proposed scheduling strategy can achieve savings of around 19 to 27 % in cost per part when compared to the baseline scheduling scenarios. By optimizing key production system parameters from the cost per part model, the baseline scenarios can obtain around 20 to 35 % in savings for the cost per part. These savings further increase by 42 to 55 % when system parameter optimization is integrated with the proposed scheduling problem. Using this method, the most influential parameters on the cost per part are the rated power from production, the production rate, and the initial machine reliabilities. The modified Particle Swarm Optimization algorithm adopted allows greater diversity and exploration compared to Genetic Algorithm for the proposed joint model which results in it being more computationally efficient in determining the optimal scheduling. While Genetic Algorithm could achieve a solution quality of 2,279.63 at an expense of 2,300 seconds in computational effort. In comparison, the proposed Particle Swarm Optimization algorithm achieved a solution quality of 2,167.26 in less than half the computation effort which is required by Genetic Algorithm.
New algorithm and system for measuring size distribution of blood cells
NASA Astrophysics Data System (ADS)
Yao, Cuiping; Li, Zheng; Zhang, Zhenxi
2004-06-01
In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Hybrid Architectures for Evolutionary Computing Algorithms
2008-01-01
other EC algorithms to FPGA Core Burns P1026/MAPLD 200532 Genetic Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based...on Parallel and Distributed Processing (IPPS/SPDP ), pp. 316-320, Proceedings. IEEE Computer Society 1998. [12] Scott, S. D. , Samal , A., and...Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third
Ozmutlu, H. Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
Lifelog-based lighting design for biofied building
NASA Astrophysics Data System (ADS)
Kake, Fumika; Mita, Akira
2016-04-01
A design tool is proposed for lighting control system that reflects histories of residents' past life using a genetic mechanism. There are many previous researches which show the preference of lighting design differs depending on people and their behaviors. And recently, due to the appearance of LED which can change light color easily, the number of lighting scenes have drastically increased. It is difficult for residents to grasp all patterns of lighting and understand what pattern of lighting design fits for their behaviors. So if we can extract lighting preferences and demands of each resident from histories of past life and reflect these information in next lighting control, it's possible to make living space more comfortable. An evolutionally adaptation mechanism learnt from living organisms is proposed in this research to extract the information from lifelog, especially focusing on methylation and mutation. Methylation is one of the epigenetic algorithms making a difference in phenotype without changing DNA sequence. Mutation is one of the genetic algorithms making a difference in phenotype by changing DNA sequence. Those two mechanisms are applied in the system. First, the lifelog of residents and using hysteresis of lighting equipment are collected. Then the lifelog is converted into the genetic information and stored. When the lifelog is stored enough, the superior genes will be picked up from the stored genetic information to be reflected in lighting control in next generation. Simulations to verify the versatility of the system were conducted.
Goudie, Catherine; Coltin, Hallie; Witkowski, Leora; Mourad, Stephanie; Malkin, David; Foulkes, William D
2017-08-01
Identifying cancer predisposition syndromes in children with tumors is crucial, yet few clinical guidelines exist to identify children at high risk of having germline mutations. The McGill Interactive Pediatric OncoGenetic Guidelines project aims to create a validated pediatric guideline in the form of a smartphone/tablet application using algorithms to process clinical data and help determine whether to refer a child for genetic assessment. This paper discusses the initial stages of the project, focusing on its overall structure, the methodology underpinning the algorithms, and the upcoming algorithm validation process. © 2017 Wiley Periodicals, Inc.
Optimization of genomic selection training populations with a genetic algorithm
USDA-ARS?s Scientific Manuscript database
In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...
NASA Astrophysics Data System (ADS)
Li, Chen; Lu, Zhiqiang; Han, Xiaole; Zhang, Yuejun; Wang, Li
2016-03-01
The integrated scheduling of container handling systems aims to optimize the coordination and overall utilization of all handling equipment, so as to minimize the makespan of a given set of container tasks. A modified disjunctive graph is proposed and a mixed 0-1 programming model is formulated. A heuristic algorithm is presented, in which the original problem is divided into two subproblems. In the first subproblem, contiguous bay crane operations are applied to obtain a good quay crane schedule. In the second subproblem, proper internal truck and yard crane schedules are generated to match the given quay crane schedule. Furthermore, a genetic algorithm based on the heuristic algorithm is developed to search for better solutions. The computational results show that the proposed algorithm can efficiently find high-quality solutions. They also indicate the effectiveness of simultaneous loading and discharging operations compared with separate ones.
A novel metaheuristic for continuous optimization problems: Virus optimization algorithm
NASA Astrophysics Data System (ADS)
Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue
2016-01-01
A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems.
Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar
2015-07-23
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems
Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar
2015-01-01
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other. PMID:26213932
NASA Astrophysics Data System (ADS)
Zuliyana, Nia; Suseno, Jatmiko Endro; Adi, Kusworo
2018-02-01
Composition of foods containing sugar in people with Diabetes Mellitus should be balanced, so an app is required for facilitate the public and nutritionists in determining the appropriate food menu with calorie requirement of diabetes patient. This research will be recommended to determination of food variation for using Genetic Algorithm. The data used is nutrient content of food obtained from Tabel Komposisi Pangan Indonesia (TKPI). The requirement of caloric value the patient can be used the PERKENI 2015 method. Then the data is processed to determine the best food menu consisting of energy (E), carbohydrate (K), fat (L) and protein (P) requirements. The system is comparised with variation of Genetic Algorithm parameters is the total of chromosomes, Probability of Crossover (Pc) and Probability of Mutation (Pm). Maximum value of the probability generation of crossover and probability of mutation will be the more variations of food that will come out. For example, patient with gender is women aged 61 years old, height 160 cm, weight 55 kg, will be resulted number of calories: (E=1621.4, K=243.21, P=60.80, L=45.04), with the gene=4, chromosomes=3, generation=3, Pc=0.2, and Pm=0.2. The result obtained is the three varians: E=1607.25, K=198.877, P=95.385, L=47.508), (E=1633.25, K=196.677, P=85.885, L=55.758), (E=1630.90, K=177.455, P=85.245, L=64.335).
A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification
NASA Astrophysics Data System (ADS)
Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.
MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.
Fireworks algorithm for mean-VaR/CVaR models
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Liu, Zhifeng
2017-10-01
Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.
Artificial immune algorithm for multi-depot vehicle scheduling problems
NASA Astrophysics Data System (ADS)
Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling
2008-10-01
In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.
Dynamic traffic assignment : genetic algorithms approach
DOT National Transportation Integrated Search
1997-01-01
Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
NASA Astrophysics Data System (ADS)
Ebrahimi, Mehdi; Jahangirian, Alireza
2017-12-01
An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.
Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J
2017-12-01
To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine
NASA Astrophysics Data System (ADS)
Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.
2018-03-01
Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.
Research on laser marking speed optimization by using genetic algorithm.
Wang, Dongyun; Yu, Qiwei; Zhang, Yu
2015-01-01
Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%.
Tag SNP selection via a genetic algorithm.
Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh
2010-10-01
Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.
Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches
Kavitha, Muthu Subash; Ganesh Kumar, Pugalendhi; Park, Soon-Yong; Huh, Kyung-Hoe; Heo, Min-Suk; Kurita, Takio; Asano, Akira; An, Seo-Yong
2016-01-01
Objectives: This study proposed a new automated screening system based on a hybrid genetic swarm fuzzy (GSF) classifier using digital dental panoramic radiographs to diagnose females with a low bone mineral density (BMD) or osteoporosis. Methods: The geometrical attributes of both the mandibular cortical bone and trabecular bone were acquired using previously developed software. Designing an automated system for osteoporosis screening involved partitioning of the input attributes to generate an initial membership function (MF) and a rule set (RS), classification using a fuzzy inference system and optimization of the generated MF and RS using the genetic swarm algorithm. Fivefold cross-validation (5-FCV) was used to estimate the classification accuracy of the hybrid GSF classifier. The performance of the hybrid GSF classifier has been further compared with that of individual genetic algorithm and particle swarm optimization fuzzy classifiers. Results: Proposed hybrid GSF classifier in identifying low BMD or osteoporosis at the lumbar spine and femoral neck BMD was evaluated. The sensitivity, specificity and accuracy of the hybrid GSF with optimized MF and RS in identifying females with a low BMD were 95.3%, 94.7% and 96.01%, respectively, at the lumbar spine and 99.1%, 98.4% and 98.9%, respectively, at the femoral neck BMD. The diagnostic performance of the proposed system with femoral neck BMD was 0.986 with a confidence interval of 0.942–0.998. The highest mean accuracy using 5-FCV was 97.9% with femoral neck BMD. Conclusions: The combination of high accuracy along with its interpretation ability makes this proposed automatic system using hybrid GSF classifier capable of identifying a large proportion of undetected low BMD or osteoporosis at its early stage. PMID:27186991
Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit
NASA Astrophysics Data System (ADS)
Rong, R. W.; Ming, T. F.
2017-12-01
In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.
Network congestion control algorithm based on Actor-Critic reinforcement learning model
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2018-04-01
Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; McCulloch, Richard Chet James
In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less
Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm
ERIC Educational Resources Information Center
Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.
2009-01-01
Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.
2008-01-01
This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558
Mokeddem, Diab; Khellaf, Abdelhafid
2009-01-01
Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples. PMID:19543537
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.
Sun, Tao; Xu, Ming-Hai
2017-01-01
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.
An improved immune algorithm for optimizing the pulse width modulation control sequence of inverters
NASA Astrophysics Data System (ADS)
Sheng, L.; Qian, S. Q.; Ye, Y. Q.; Wu, Y. H.
2017-09-01
In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.
NASA Astrophysics Data System (ADS)
Yue, L.; Guan, Z.; He, C.; Luo, D.; Saif, U.
2017-06-01
In recent years, the competitive pressure on manufacturing companies shifted them from mass production to mass customization to produce large variety of products. It is a great challenge for companies nowadays to produce customized mixed flow mode of production to meet customized demand on time. Due to large variety of products, the storage system to deliver variety of products to production lines influences on the timely production of variety of products, as investigated from by simulation study of an inefficient storage system of a real Company, in the current research. Therefore, current research proposed a slotting optimization model with mixed model sequence to assemble in consideration of the final flow lines to optimize whole automated storage and retrieval system (AS/RS) and distribution system in the case company. Current research is aimed to minimize vertical height of centre of gravity of AS/RS and total time spent for taking the materials out from the AS/RS simultaneously. Genetic algorithm is adopted to solve the proposed problem and computational result shows significant improvement in stability and efficiency of AS/RS as compared to the existing method used in the case company.
Genetic algorithm for nuclear data evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer Ann
These are slides on genetic algorithm for nuclear data evaluation. The following is covered: initial population, fitness (outer loop), calculate fitness, selection (first part of inner loop), reproduction (second part of inner loop), solution, and examples.
NASA Astrophysics Data System (ADS)
Aksoy, A.; Lee, J. H.; Kitanidis, P. K.
2016-12-01
Heterogeneity in hydraulic conductivity (K) impacts the transport and fate of contaminants in subsurface as well as design and operation of managed aquifer recharge (MAR) systems. Recently, improvements in computational resources and availability of big data through electrical resistivity tomography (ERT) and remote sensing have provided opportunities to better characterize the subsurface. Yet, there is need to improve prediction and evaluation methods in order to obtain information from field measurements for better field characterization. In this study, genetic algorithm optimization, which has been widely used in optimal aquifer remediation designs, was used to determine the spatial distribution of K. A hypothetical 2 km by 2 km aquifer was considered. A genetic algorithm library, PGAPack, was linked with a fast Fourier transform based random field generator as well as a groundwater flow and contaminant transport simulation model (BIO2D-KE). The objective of the optimization model was to minimize the total squared error between measured and predicted field values. It was assumed measured K values were available through ERT. Performance of genetic algorithm in predicting the distribution of K was tested for different cases. In the first one, it was assumed that observed K values were evaluated using the random field generator only as the forward model. In the second case, as well as K-values obtained through ERT, measured head values were incorporated into evaluation in which BIO2D-KE and random field generator were used as the forward models. Lastly, tracer concentrations were used as additional information in the optimization model. Initial results indicated enhanced performance when random field generator and BIO2D-KE are used in combination in predicting the spatial distribution in K.
QPO observations related to neutron star equations of state
NASA Astrophysics Data System (ADS)
Stuchlik, Zdenek; Urbanec, Martin; Török, Gabriel; Bakala, Pavel; Cermak, Petr
We apply a genetic algorithm method for selection of neutron star models relating them to the resonant models of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems. It was suggested that pairs of kilo-hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density ρc . These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR,ρc , Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR,ρc , Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR,ρ, Ω, EOS) into chromosome we used Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.
Neutron star equation of state and QPO observations
NASA Astrophysics Data System (ADS)
Urbanec, Martin; Stuchlík, Zdeněk; Török, Gabriel; Bakala, Pavel; Čermák, Petr
2007-12-01
Assuming a resonant origin of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilohertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density rho_{c}. These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR, rho_{c}, Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR, rho_{c}, Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR, rho_{c}, Ω, EOS) into the chromosome we use the Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.
Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933
Fuel management optimization using genetic algorithms and expert knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1996-09-01
The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.
Optimal placement of tuning masses on truss structures by genetic algorithms
NASA Technical Reports Server (NTRS)
Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.
1993-01-01
Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.
Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming
2008-11-01
An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.
NASA Astrophysics Data System (ADS)
Sun, Xiuqiao; Wang, Jian
2018-07-01
Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.
An algorithm for testing the efficient market hypothesis.
Boboc, Ioana-Andreea; Dinică, Mihai-Cristian
2013-01-01
The objective of this research is to examine the efficiency of EUR/USD market through the application of a trading system. The system uses a genetic algorithm based on technical analysis indicators such as Exponential Moving Average (EMA), Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI) and Filter that gives buying and selling recommendations to investors. The algorithm optimizes the strategies by dynamically searching for parameters that improve profitability in the training period. The best sets of rules are then applied on the testing period. The results show inconsistency in finding a set of trading rules that performs well in both periods. Strategies that achieve very good returns in the training period show difficulty in returning positive results in the testing period, this being consistent with the efficient market hypothesis (EMH).
An Algorithm for Testing the Efficient Market Hypothesis
Boboc, Ioana-Andreea; Dinică, Mihai-Cristian
2013-01-01
The objective of this research is to examine the efficiency of EUR/USD market through the application of a trading system. The system uses a genetic algorithm based on technical analysis indicators such as Exponential Moving Average (EMA), Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI) and Filter that gives buying and selling recommendations to investors. The algorithm optimizes the strategies by dynamically searching for parameters that improve profitability in the training period. The best sets of rules are then applied on the testing period. The results show inconsistency in finding a set of trading rules that performs well in both periods. Strategies that achieve very good returns in the training period show difficulty in returning positive results in the testing period, this being consistent with the efficient market hypothesis (EMH). PMID:24205148
Belciug, Smaranda; Gorunescu, Florin
2016-03-01
Explore how efficient intelligent decision support systems, both easily understandable and straightforwardly implemented, can help modern hospital managers to optimize both bed occupancy and utilization costs. This paper proposes a hybrid genetic algorithm-queuing multi-compartment model for the patient flow in hospitals. A finite capacity queuing model with phase-type service distribution is combined with a compartmental model, and an associated cost model is set up. An evolutionary-based approach is used for enhancing the ability to optimize both bed management and associated costs. In addition, a "What-if analysis" shows how changing the model parameters could improve performance while controlling costs. The study uses bed-occupancy data collected at the Department of Geriatric Medicine - St. George's Hospital, London, period 1969-1984, and January 2000. The hybrid model revealed that a bed-occupancy exceeding 91%, implying a patient rejection rate around 1.1%, can be carried out with 159 beds plus 8 unstaffed beds. The same holding and penalty costs, but significantly different bed allocations (156 vs. 184 staffed beds, and 8 vs. 9 unstaffed beds, respectively) will result in significantly different costs (£755 vs. £1172). Moreover, once the arrival rate exceeds 7 patient/day, the costs associated to the finite capacity system become significantly smaller than those associated to an Erlang B queuing model (£134 vs. £947). Encoding the whole information provided by both the queuing system and the cost model through chromosomes, the genetic algorithm represents an efficient tool in optimizing the bed allocation and associated costs. The methodology can be extended to different medical departments with minor modifications in structure and parameterization. Copyright © 2016 Elsevier B.V. All rights reserved.
Research on Laser Marking Speed Optimization by Using Genetic Algorithm
Wang, Dongyun; Yu, Qiwei; Zhang, Yu
2015-01-01
Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831
NASA Astrophysics Data System (ADS)
An, M.; Assumpcao, M.
2003-12-01
The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2015-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle
NASA Technical Reports Server (NTRS)
SanSoucie, Michael; Hull, Patrick V.; Irwin, Ryan W.; TInker, Michael L.; Patton, Bruce W.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited.
Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal
2016-05-23
X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less
Inverse problem of HIV cell dynamics using Genetic Algorithms
NASA Astrophysics Data System (ADS)
González, J. A.; Guzmán, F. S.
2017-01-01
In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2014-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Comparison between genetic algorithm and self organizing map to detect botnet network traffic
NASA Astrophysics Data System (ADS)
Yugandhara Prabhakar, Shinde; Parganiha, Pratishtha; Madhu Viswanatham, V.; Nirmala, M.
2017-11-01
In Cyber Security world the botnet attacks are increasing. To detect botnet is a challenging task. Botnet is a group of computers connected in a coordinated fashion to do malicious activities. Many techniques have been developed and used to detect and prevent botnet traffic and the attacks. In this paper, a comparative study is done on Genetic Algorithm (GA) and Self Organizing Map (SOM) to detect the botnet network traffic. Both are soft computing techniques and used in this paper as data analytics system. GA is based on natural evolution process and SOM is an Artificial Neural Network type, uses unsupervised learning techniques. SOM uses neurons and classifies the data according to the neurons. Sample of KDD99 dataset is used as input to GA and SOM.
Optimal design of dampers within seismic structures
NASA Astrophysics Data System (ADS)
Ren, Wenjie; Qian, Hui; Song, Wali; Wang, Liqiang
2009-07-01
An improved multi-objective genetic algorithm for structural passive control system optimization is proposed. Based on the two-branch tournament genetic algorithm, the selection operator is constructed by evaluating individuals according to their dominance in one run. For a constrained problem, the dominance-based penalty function method is advanced, containing information on an individual's status (feasible or infeasible), position in a search space, and distance from a Pareto optimal set. The proposed approach is used for the optimal designs of a six-storey building with shape memory alloy dampers subjected to earthquake. The number and position of dampers are chosen as the design variables. The number of dampers and peak relative inter-storey drift are considered as the objective functions. Numerical results generate a set of non-dominated solutions.
Operating room scheduling using hybrid clustering priority rule and genetic algorithm
NASA Astrophysics Data System (ADS)
Santoso, Linda Wahyuni; Sinawan, Aisyah Ashrinawati; Wijaya, Andi Rahadiyan; Sudiarso, Andi; Masruroh, Nur Aini; Herliansyah, Muhammad Kusumawan
2017-11-01
Operating room is a bottleneck resource in most hospitals so that operating room scheduling system will influence the whole performance of the hospitals. This research develops a mathematical model of operating room scheduling for elective patients which considers patient priority with limit number of surgeons, operating rooms, and nurse team. Clustering analysis was conducted to the data of surgery durations using hierarchical and non-hierarchical methods. The priority rule of each resulting cluster was determined using Shortest Processing Time method. Genetic Algorithm was used to generate daily operating room schedule which resulted in the lowest values of patient waiting time and nurse overtime. The computational results show that this proposed model reduced patient waiting time by approximately 32.22% and nurse overtime by approximately 32.74% when compared to actual schedule.
NASA Astrophysics Data System (ADS)
Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran
2016-10-01
Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).
NASA Astrophysics Data System (ADS)
Javad Kazemzadeh-Parsi, Mohammad; Daneshmand, Farhang; Ahmadfard, Mohammad Amin; Adamowski, Jan; Martel, Richard
2015-01-01
In the present study, an optimization approach based on the firefly algorithm (FA) is combined with a finite element simulation method (FEM) to determine the optimum design of pump and treat remediation systems. Three multi-objective functions in which pumping rate and clean-up time are design variables are considered and the proposed FA-FEM model is used to minimize operating costs, total pumping volumes and total pumping rates in three scenarios while meeting water quality requirements. The groundwater lift and contaminant concentration are also minimized through the optimization process. The obtained results show the applicability of the FA in conjunction with the FEM for the optimal design of groundwater remediation systems. The performance of the FA is also compared with the genetic algorithm (GA) and the FA is found to have a better convergence rate than the GA.
A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications
NASA Astrophysics Data System (ADS)
Entezari-Maleki, Reza; Movaghar, Ali
Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Genetic Algorithms to Optimizatize Lecturer Assessment's Criteria
NASA Astrophysics Data System (ADS)
Jollyta, Deny; Johan; Hajjah, Alyauma
2017-12-01
The lecturer assessment criteria is used as a measurement of the lecturer's performance in a college environment. To determine the value for a criteriais complicated and often leads to doubt. The absence of a standard valuefor each assessment criteria will affect the final results of the assessment and become less presentational data for the leader of college in taking various policies relate to reward and punishment. The Genetic Algorithm comes as an algorithm capable of solving non-linear problems. Using chromosomes in the random initial population, one of the presentations is binary, evaluates the fitness function and uses crossover genetic operator and mutation to obtain the desired crossbreed. It aims to obtain the most optimum criteria values in terms of the fitness function of each chromosome. The training results show that Genetic Algorithm able to produce the optimal values of lecturer assessment criteria so that can be usedby the college as a standard value for lecturer assessment criteria.
A theoretical comparison of evolutionary algorithms and simulated annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1995-08-28
This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less
Cordova: Web-based management of genetic variation data
Ephraim, Sean S.; Anand, Nikhil; DeLuca, Adam P.; Taylor, Kyle R.; Kolbe, Diana L.; Simpson, Allen C.; Azaiez, Hela; Sloan, Christina M.; Shearer, A. Eliot; Hallier, Andrea R.; Casavant, Thomas L.; Scheetz, Todd E.; Smith, Richard J. H.; Braun, Terry A.
2014-01-01
Summary: Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician–scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. Availability and implementation: Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova. Contact: sean.ephraim@gmail.com or terry-braun@uiowa.edu PMID:25123904
Design of Genetic Algorithms for Topology Control of Unmanned Vehicles
2010-01-01
decentralised topology control mechanism distributed among active running software agents to achieve a uniform spread of terrestrial unmanned vehicles...14. ABSTRACT We present genetic algorithms (GAs) as a decentralised topology control mechanism distributed among active running software agents to...inspired topology control algorithm. The topology control of UVs using a decentralised solution over an unknown geographical terrain is a challenging
NASA Astrophysics Data System (ADS)
Hao, Qichen; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Huang, Linxian
2018-05-01
An optimization approach is used for the operation of groundwater artificial recharge systems in an alluvial fan in Beijing, China. The optimization model incorporates a transient groundwater flow model, which allows for simulation of the groundwater response to artificial recharge. The facilities' operation with regard to recharge rates is formulated as a nonlinear programming problem to maximize the volume of surface water recharged into the aquifers under specific constraints. This optimization problem is solved by the parallel genetic algorithm (PGA) based on OpenMP, which could substantially reduce the computation time. To solve the PGA with constraints, the multiplicative penalty method is applied. In addition, the facilities' locations are implicitly determined on the basis of the results of the recharge-rate optimizations. Two scenarios are optimized and the optimal results indicate that the amount of water recharged into the aquifers will increase without exceeding the upper limits of the groundwater levels. Optimal operation of this artificial recharge system can also contribute to the more effective recovery of the groundwater storage capacity.
NASA Astrophysics Data System (ADS)
Jinchai, Phinai; Chittaladakorn, Suwatana
This research has its objective to develop the decision support system on GIS to be used in the coastal erosion protection management. The developed model in this research is called Decision Support System for Coastal Protection Layout Design (DSS4CPD). It has created both for systematic protection and solution measures to the problem by using Genetic Algorithm (GA) and Multicriteria Analysis (MCA) for finding the coastal structure layout optimal solution. In this research, three types of coastal structures were used as structure alternatives for the layout, which are seawall, breakwater, and groin. The coastal area in Nakornsrithammaraj, Thailand was used as the case study. The studied result has found the appropriate position of coastal structures considering the suitable rock size relied on the wave energy, and the appropriate coastal structure position based on the wave breaking line. Using GA and MCA in DSS4CPD, it found the best layout in this project. This DSS4CPD will be used by the authorized decision makers to find the most suitable erosion problem solution.
Combinatorial optimization problem solution based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Zhang, Peng
2017-08-01
Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.
NASA Astrophysics Data System (ADS)
Hayrapetyan, David B.; Hovhannisyan, Levon; Mantashyan, Paytsar A.
2013-04-01
The analysis of complex spectra is an actual problem for modern science. The work is devoted to the creation of a software package, which analyzes spectrum in the different formats, possesses by dynamic knowledge database and self-study mechanism, performs automated analysis of the spectra compound based on knowledge database by application of certain algorithms. In the software package as searching systems, hyper-spherical random search algorithms, gradient algorithms and genetic searching algorithms were used. The analysis of Raman and IR spectrum of diamond-like carbon (DLC) samples were performed by elaborated program. After processing the data, the program immediately displays all the calculated parameters of DLC.
Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I
2011-09-26
A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.
NASA Astrophysics Data System (ADS)
Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee
2018-04-01
In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.
NASA Astrophysics Data System (ADS)
Ferreira, Ana C. M.; Teixeira, Senhorinha F. C. F.; Silva, Rui G.; Silva, Ângela M.
2018-04-01
Cogeneration allows the optimal use of the primary energy sources and significant reductions in carbon emissions. Its use has great potential for applications in the residential sector. This study aims to develop a methodology for thermal-economic optimisation of small-scale micro-gas turbine for cogeneration purposes, able to fulfil domestic energy needs with a thermal power out of 125 kW. A constrained non-linear optimisation model was built. The objective function is the maximisation of the annual worth from the combined heat and power, representing the balance between the annual incomes and the expenditures subject to physical and economic constraints. A genetic algorithm coded in the java programming language was developed. An optimal micro-gas turbine able to produce 103.5 kW of electrical power with a positive annual profit (i.e. 11,925 €/year) was disclosed. The investment can be recovered in 4 years and 9 months, which is less than half of system lifetime expectancy.
Genetic algorithms for the application of Activated Sludge Model No. 1.
Kim, S; Lee, H; Kim, J; Kim, C; Ko, J; Woo, H; Kim, S
2002-01-01
The genetic algorithm (GA) has been integrated into the IWA ASM No. 1 to calibrate important stoichiometric and kinetic parameters. The evolutionary feature of GA was used to configure the multiple local optima as well as the global optimum. The objective function of optimization was designed to minimize the difference between estimated and measured effluent concentrations at the activated sludge system. Both steady state and dynamic data of the simulation benchmark were used for calibration using denitrification layout. Depending upon the confidence intervals and objective functions, the proposed method provided distributions of parameter space. Field data have been collected and applied to validate calibration capacity of GA. Dynamic calibration was suggested to capture periodic variations of inflow concentrations. Also, in order to verify this proposed method in real wastewater treatment plant, measured data sets for substrate concentrations were obtained from Haeundae wastewater treatment plant and used to estimate parameters in the dynamic system. The simulation results with calibrated parameters matched well with the observed concentrations of effluent COD.
NASA Astrophysics Data System (ADS)
Bay, Annick; Mayer, Alexandre
2014-09-01
The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.
Liang, Lihua; Yuan, Jia; Zhang, Songtao; Zhao, Peng
2018-01-01
This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller.
Liang, Lihua; Zhang, Songtao; Zhao, Peng
2018-01-01
This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller. PMID:29709008
Bellucci, Michael A; Coker, David F
2011-07-28
We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics
MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION
In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...
NASA Astrophysics Data System (ADS)
Liu, Zhipeng; Zhang, Bin; Feng, Qi; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun
2017-06-01
Focusing light through strongly scattering media plays an important role in biomedical imaging and therapy. Here, we experimentally demonstrate light focusing through ZnO sample by controlling binary amplitude optimization using genetic algorithm. In the experiment, we use a Micro Electro-Mechanical System (MEMS)-based digital micromirror device (DMD) which is in amplitude-only modulation mode. The DMD consists of 1920×1080 square mirrors that can be independently controlled to reflect light to a desired position. We control only 160 thousand mirrors which are divided into 400 segments to modulate light focusing through the scattering media using advanced genetic algorithm. Light intensity at the target position is enhanced up to 50+/-5 times the average speckle intensity. The diameters of focusing spot can be changed ranging from 7 μm to 70 μm at arbitrary positions and multiple foci are obtained simultaneously. The spatial arrangement of multiple foci can be flexibly controlled. The advantage of DMDs lies in their switching speed up to 30 kHz, which has the potential to generate a focus in an ultra-short period of time. Our work provides a reference for the study of high speed wavefront shaping that is required in vivo tissues imaging.
Interactive searching of facial image databases
NASA Astrophysics Data System (ADS)
Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean
1995-09-01
A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.
Chi-square-based scoring function for categorization of MEDLINE citations.
Kastrin, A; Peterlin, B; Hristovski, D
2010-01-01
Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine-learning algorithms (support vector machines, decision trees, naïve Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine-learning algorithms. We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.
Strain gage selection in loads equations using a genetic algorithm
NASA Technical Reports Server (NTRS)
1994-01-01
Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.
A hybrid genetic algorithm for solving bi-objective traveling salesman problems
NASA Astrophysics Data System (ADS)
Ma, Mei; Li, Hecheng
2017-08-01
The traveling salesman problem (TSP) is a typical combinatorial optimization problem, in a traditional TSP only tour distance is taken as a unique objective to be minimized. When more than one optimization objective arises, the problem is known as a multi-objective TSP. In the present paper, a bi-objective traveling salesman problem (BOTSP) is taken into account, where both the distance and the cost are taken as optimization objectives. In order to efficiently solve the problem, a hybrid genetic algorithm is proposed. Firstly, two satisfaction degree indices are provided for each edge by considering the influences of the distance and the cost weight. The first satisfaction degree is used to select edges in a “rough” way, while the second satisfaction degree is executed for a more “refined” choice. Secondly, two satisfaction degrees are also applied to generate new individuals in the iteration process. Finally, based on genetic algorithm framework as well as 2-opt selection strategy, a hybrid genetic algorithm is proposed. The simulation illustrates the efficiency of the proposed algorithm.
Xu, Rong; Wang, QuanQiu; Li, Li
2015-01-01
Dietary intakes of red meat and fat are established risk factors for both colorectal cancer (CRC) and cardiovascular disease (CVDs). Recent studies have shown a mechanistic link between TMAO, an intestinal microbial metabolite of red meat and fat, and risk of CVDs. Data linking TMAO directly to CRC is, however, lacking. Here, we present an unbiased data-driven network-based systems approach to uncover a potential genetic relationship between TMAO and CRC. We constructed two different epigenetic interaction networks (EINs) using chemical-gene, disease-gene and protein-protein interaction data from multiple large-scale data resources. We developed a network-based ranking algorithm to ascertain TMAO-related diseases from EINs. We systematically analyzed disease categories among TMAO-related diseases at different ranking cutoffs. We then determined which genetic pathways were associated with both TMAO and CRC. We show that CVDs and their major risk factors were ranked highly among TMAO-related diseases, confirming the newly discovered mechanistic link between CVDs and TMAO, and thus validating our algorithms. CRC was ranked highly among TMAO-related disease retrieved from both EINs (top 0.02%, #1 out of 4,372 diseases retrieved based on Mendelian genetics and top 10.9% among 882 diseases based on genome-wide association genetics), providing strong supporting evidence for our hypothesis that TMAO is genetically related to CRC. We have also identified putative genetic pathways that may link TMAO to CRC, which warrants further investigation. Through systematic disease enrichment analysis, we also demonstrated that TMAO is related to metabolic syndromes and cancers in general. Our genome-wide analysis demonstrates that systems approaches to studying the epigenetic interactions among diet, microbiome metabolisms, and disease genetics hold promise for understanding disease pathogenesis. Our results show that TMAO is genetically associated with CRC. This study suggests that TMAO may be an important intermediate marker linking dietary meat and fat and gut microbiota metabolism to risk of CRC, underscoring opportunities for the development of new gut microbiome-dependent diagnostic tests and therapeutics for CRC.
Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel
Akbari, Mohsen; Manesh, Mohsen Riahi
2014-01-01
In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods. PMID:25045725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Man Gyun; Oh, Seungrohk
A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce themore » time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.« less
NASA Astrophysics Data System (ADS)
Obara, Shin'ya
A micro-grid with the capacity for sustainable energy is expected to be a distributed energy system that exhibits quite a small environmental impact. In an independent micro-grid, “green energy,” which is typically thought of as unstable, can be utilized effectively by introducing a battery. In the past study, the production-of-electricity prediction algorithm (PAS) of the solar cell was developed. In PAS, a layered neural network is made to learn based on past weather data and the operation plan of the compound system of a solar cell and other energy systems was examined using this prediction algorithm. In this paper, a dynamic operational scheduling algorithm is developed using a neural network (PAS) and a genetic algorithm (GA) to provide predictions for solar cell power output. We also do a case study analysis in which we use this algorithm to plan the operation of a system that connects nine houses in Sapporo to a micro-grid composed of power equipment and a polycrystalline silicon solar cell. In this work, the relationship between the accuracy of output prediction of the solar cell and the operation plan of the micro-grid was clarified. Moreover, we found that operating the micro-grid according to the plan derived with PAS was far superior, in terms of equipment hours of operation, to that using past average weather data.
The optimization on flow scheme of helium liquefier with genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, H. R.; Xiong, L. Y.; Peng, N.; Liu, L. Q.
2017-01-01
There are several ways to organize the flow scheme of the helium liquefiers, such as arranging the expanders in parallel (reverse Brayton stage) or in series (modified Brayton stages). In this paper, the inlet mass flow and temperatures of expanders in Collins cycle are optimized using genetic algorithm (GA). Results show that maximum liquefaction rate can be obtained when the system is working at the optimal parameters. However, the reliability of the system is not well due to high wheel speed of the first turbine. Study shows that the scheme in which expanders are arranged in series with heat exchangers between them has higher operation reliability but lower plant efficiency when working at the same situation. Considering both liquefaction rate and system stability, another flow scheme is put forward hoping to solve the dilemma. The three configurations are compared from different aspects, they are respectively economic cost, heat exchanger size, system reliability and exergy efficiency. In addition, the effect of heat capacity ratio on heat transfer efficiency is discussed. A conclusion of choosing liquefier configuration is given in the end, which is meaningful for the optimal design of helium liquefier.
Ullah, Saleem; Groen, Thomas A; Schlerf, Martin; Skidmore, Andrew K; Nieuwenhuis, Willem; Vaiphasa, Chaichoke
2012-01-01
Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.
Rabow, A. A.; Scheraga, H. A.
1996-01-01
We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints. PMID:8880904
The genetic algorithm: A robust method for stress inversion
NASA Astrophysics Data System (ADS)
Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.
2017-01-01
The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.
USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES
Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...
Optimization of multicast optical networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng
2007-11-01
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.
Real coded genetic algorithm for fuzzy time series prediction
NASA Astrophysics Data System (ADS)
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm
Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...
2014-10-15
In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.
A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
NASA Astrophysics Data System (ADS)
Wang, Aimeng; Guo, Jiayu
2017-12-01
A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Y.; Edwards, R.M.; Lee, K.Y.
1997-03-01
In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances ormore » uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade.« less
Novel optimization technique of isolated microgrid with hydrogen energy storage.
Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.
Novel optimization technique of isolated microgrid with hydrogen energy storage
Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433
Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A
2015-06-01
Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs
NASA Astrophysics Data System (ADS)
Schalkoff, Robert J.; Shaaban, Khaled M.
1999-07-01
Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.
Sudha, M
2017-09-27
As a recent trend, various computational intelligence and machine learning approaches have been used for mining inferences hidden in the large clinical databases to assist the clinician in strategic decision making. In any target data the irrelevant information may be detrimental, causing confusion for the mining algorithm and degrades the prediction outcome. To address this issue, this study attempts to identify an intelligent approach to assist disease diagnostic procedure using an optimal set of attributes instead of all attributes present in the clinical data set. In this proposed Application Specific Intelligent Computing (ASIC) decision support system, a rough set based genetic algorithm is employed in pre-processing phase and a back propagation neural network is applied in training and testing phase. ASIC has two phases, the first phase handles outliers, noisy data, and missing values to obtain a qualitative target data to generate appropriate attribute reduct sets from the input data using rough computing based genetic algorithm centred on a relative fitness function measure. The succeeding phase of this system involves both training and testing of back propagation neural network classifier on the selected reducts. The model performance is evaluated with widely adopted existing classifiers. The proposed ASIC system for clinical decision support has been tested with breast cancer, fertility diagnosis and heart disease data set from the University of California at Irvine (UCI) machine learning repository. The proposed system outperformed the existing approaches attaining the accuracy rate of 95.33%, 97.61%, and 93.04% for breast cancer, fertility issue and heart disease diagnosis.
NASA Astrophysics Data System (ADS)
Sheng, Lizeng
The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.
Selecting materialized views using random algorithm
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi
2007-04-01
The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.
Ortho Image and DTM Generation with Intelligent Methods
NASA Astrophysics Data System (ADS)
Bagheri, H.; Sadeghian, S.
2013-10-01
Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma
As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.
Lu, Qingzhang; Shen, Guoli; Yu, Ruqin
2002-11-15
The chaotic dynamical system is introduced in genetic algorithm to train ANN to formulate the CGANN algorithm. Logistic mapping as one of the most important chaotic dynamic mappings provides each new generation a high chance to hold GA's population diversity. This enhances the ability to overcome overfitting in training an ANN. The proposed CGANN has been used for QSAR studies to predict the tetrahedral modes (nu(1)(A1) and nu(2)(E)) of halides [MX(4)](epsilon). The frequencies predicted by QSAR were compared with those calculated by quantum chemistry methods including PM3, AM1, and MNDO/d. The possibility of improving the predictive ability of QSAR by including quantum chemistry parameters as feature variables has been investigated using tetrahedral tetrahalide examples. Copyright 2002 Wiley Periodicals, Inc.
Nguyen, Hai Van; Finkelstein, Eric Andrew; Mital, Shweta; Gardner, Daphne Su-Lyn
2017-11-01
Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (<45 years) and body mass index (<25 kg/m 2 if diagnosed >30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Genetic Algorithms for Multiple-Choice Problems
NASA Astrophysics Data System (ADS)
Aickelin, Uwe
2010-04-01
This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.
A synthetic genetic edge detection program.
Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D
2009-06-26
Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
A Synthetic Genetic Edge Detection Program
Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.
2009-01-01
Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel
2009-10-01
Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.
Constrained minimization of smooth functions using a genetic algorithm
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Pamadi, Bandu N.
1994-01-01
The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
2012-01-01
Background As Next-Generation Sequencing data becomes available, existing hardware environments do not provide sufficient storage space and computational power to store and process the data due to their enormous size. This is and will be a frequent problem that is encountered everyday by researchers who are working on genetic data. There are some options available for compressing and storing such data, such as general-purpose compression software, PBAT/PLINK binary format, etc. However, these currently available methods either do not offer sufficient compression rates, or require a great amount of CPU time for decompression and loading every time the data is accessed. Results Here, we propose a novel and simple algorithm for storing such sequencing data. We show that, the compression factor of the algorithm ranges from 16 to several hundreds, which potentially allows SNP data of hundreds of Gigabytes to be stored in hundreds of Megabytes. We provide a C++ implementation of the algorithm, which supports direct loading and parallel loading of the compressed format without requiring extra time for decompression. By applying the algorithm to simulated and real datasets, we show that the algorithm gives greater compression rate than the commonly used compression methods, and the data-loading process takes less time. Also, The C++ library provides direct-data-retrieving functions, which allows the compressed information to be easily accessed by other C++ programs. Conclusions The SpeedGene algorithm enables the storage and the analysis of next generation sequencing data in current hardware environment, making system upgrades unnecessary. PMID:22591016
Das, Arpita; Bhattacharya, Mahua
2011-01-01
In the present work, authors have developed a treatment planning system implementing genetic based neuro-fuzzy approaches for accurate analysis of shape and margin of tumor masses appearing in breast using digital mammogram. It is obvious that a complicated structure invites the problem of over learning and misclassification. In proposed methodology, genetic algorithm (GA) has been used for searching of effective input feature vectors combined with adaptive neuro-fuzzy model for final classification of different boundaries of tumor masses. The study involves 200 digitized mammograms from MIAS and other databases and has shown 86% correct classification rate.
Spin systems and Political Districting Problem
NASA Astrophysics Data System (ADS)
Chou, Chung-I.; Li, Sai-Ping
2007-03-01
The aim of the Political Districting Problem is to partition a territory into electoral districts subject to some constraints such as contiguity, population equality, etc. In this paper, we apply statistical physics methods to Political Districting Problem. We will show how to transform the political problem to a spin system, and how to write down a q-state Potts model-like energy function in which the political constraints can be written as interactions between sites or external fields acting on the system. Districting into q voter districts is equivalent to finding the ground state of this q-state Potts model. Searching for the ground state becomes an optimization problem, where optimization algorithms such as the simulated annealing method and Genetic Algorithm can be employed here.
Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Noever, D.
1999-01-01
Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
Disaggregated Imaging Spacecraft Constellation Optimization with a Genetic Algorithm
2014-03-27
Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree...distinct mod- ules which, once ‘assembled’ on orbit, deliver the capability of the original monolithic system [5].” Jerry Sellers includes a comic in
An Introduction to Computational Physics
NASA Astrophysics Data System (ADS)
Pang, Tao
2010-07-01
Preface to first edition; Preface; Acknowledgements; 1. Introduction; 2. Approximation of a function; 3. Numerical calculus; 4. Ordinary differential equations; 5. Numerical methods for matrices; 6. Spectral analysis; 7. Partial differential equations; 8. Molecular dynamics simulations; 9. Modeling continuous systems; 10. Monte Carlo simulations; 11. Genetic algorithm and programming; 12. Numerical renormalization; References; Index.
Learning Path Recommendation Based on Modified Variable Length Genetic Algorithm
ERIC Educational Resources Information Center
Dwivedi, Pragya; Kant, Vibhor; Bharadwaj, Kamal K.
2018-01-01
With the rapid advancement of information and communication technologies, e-learning has gained a considerable attention in recent years. Many researchers have attempted to develop various e-learning systems with personalized learning mechanisms for assisting learners so that they can learn more efficiently. In this context, curriculum sequencing…
Cordova: web-based management of genetic variation data.
Ephraim, Sean S; Anand, Nikhil; DeLuca, Adam P; Taylor, Kyle R; Kolbe, Diana L; Simpson, Allen C; Azaiez, Hela; Sloan, Christina M; Shearer, A Eliot; Hallier, Andrea R; Casavant, Thomas L; Scheetz, Todd E; Smith, Richard J H; Braun, Terry A
2014-12-01
Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova. Published by Oxford University Press. This work is written by US Government employees and is in the public domain in the US.