Sample records for systems modeling technology

  1. OAST system technology planning

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1978-01-01

    The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.

  2. System Architecture Modeling for Technology Portfolio Management using ATLAS

    NASA Technical Reports Server (NTRS)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  3. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  4. System-of-Systems Technology-Portfolio-Analysis Tool

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel; Mankins, John; Feingold, Harvey; Johnson, Wayne

    2012-01-01

    Advanced Technology Life-cycle Analysis System (ATLAS) is a system-of-systems technology-portfolio-analysis software tool. ATLAS affords capabilities to (1) compare estimates of the mass and cost of an engineering system based on competing technological concepts; (2) estimate life-cycle costs of an outer-space-exploration architecture for a specified technology portfolio; (3) collect data on state-of-the-art and forecasted technology performance, and on operations and programs; and (4) calculate an index of the relative programmatic value of a technology portfolio. ATLAS facilitates analysis by providing a library of analytical spreadsheet models for a variety of systems. A single analyst can assemble a representation of a system of systems from the models and build a technology portfolio. Each system model estimates mass, and life-cycle costs are estimated by a common set of cost models. Other components of ATLAS include graphical-user-interface (GUI) software, algorithms for calculating the aforementioned index, a technology database, a report generator, and a form generator for creating the GUI for the system models. At the time of this reporting, ATLAS is a prototype, embodied in Microsoft Excel and several thousand lines of Visual Basic for Applications that run on both Windows and Macintosh computers.

  5. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  6. A formulation of multidimensional growth models for the assessment and forecast of technology attributes

    NASA Astrophysics Data System (ADS)

    Danner, Travis W.

    Developing technology systems requires all manner of investment---engineering talent, prototypes, test facilities, and more. Even for simple design problems the investment can be substantial; for complex technology systems, the development costs can be staggering. The profitability of a corporation in a technology-driven industry is crucially dependent on maximizing the effectiveness of research and development investment. Decision-makers charged with allocation of this investment are forced to choose between the further evolution of existing technologies and the pursuit of revolutionary technologies. At risk on the one hand is excessive investment in an evolutionary technology which has only limited availability for further improvement. On the other hand, the pursuit of a revolutionary technology may mean abandoning momentum and the potential for substantial evolutionary improvement resulting from the years of accumulated knowledge. The informed answer to this question, evolutionary or revolutionary, requires knowledge of the expected rate of improvement and the potential a technology offers for further improvement. This research is dedicated to formulating the assessment and forecasting tools necessary to acquire this knowledge. The same physical laws and principles that enable the development and improvement of specific technologies also limit the ultimate capability of those technologies. Researchers have long used this concept as the foundation for modeling technological advancement through extrapolation by analogy to biological growth models. These models are employed to depict technology development as it asymptotically approaches limits established by the fundamental principles on which the technological approach is based. This has proven an effective and accurate approach to modeling and forecasting simple single-attribute technologies. With increased system complexity and the introduction of multiple system objectives, however, the usefulness of this modeling technique begins to diminish. With the introduction of multiple objectives, researchers often abandon technology growth models for scoring models and technology frontiers. While both approaches possess advantages over current growth models for the assessment of multi-objective technologies, each lacks a necessary dimension for comprehensive technology assessment. By collapsing multiple system metrics into a single, non-intuitive technology measure, scoring models provide a succinct framework for multi-objective technology assessment and forecasting. Yet, with no consideration of physical limits, scoring models provide no insight as to the feasibility of a particular combination of system capabilities. They only indicate that a given combination of system capabilities yields a particular score. Conversely, technology frontiers are constructed with the distinct objective of providing insight into the feasibility of system capability combinations. Yet again, upper limits to overall system performance are ignored. Furthermore, the data required to forecast subsequent technology frontiers is often inhibitive. In an attempt to reincorporate the fundamental nature of technology advancement as bound by physical principles, researchers have sought to normalize multi-objective systems whereby the variability of a single system objective is eliminated as a result of changes in the remaining objectives. This drastically limits the applicability of the resulting technology model because it is only applicable for a single setting of all other system attributes. Attempts to maintain the interaction between the growth curves of each technical objective of a complex system have thus far been limited to qualitative and subjective consideration. This research proposes the formulation of multidimensional growth models as an approach to simulating the advancement of multi-objective technologies towards their upper limits. Multidimensional growth models were formulated by noticing and exploiting the correlation between technology growth models and technology frontiers. Both are frontiers in actuality. The technology growth curve is a frontier between capability levels of a single attribute and time, while a technology frontier is a frontier between the capability levels of two or more attributes. Multidimensional growth models are formulated by exploiting the mathematical significance of this correlation. The result is a model that can capture both the interaction between multiple system attributes and their expected rates of improvement over time. The fundamental nature of technology development is maintained, and interdependent growth curves are generated for each system metric with minimal data requirements. Being founded on the basic nature of technology advancement, relative to physical limits, the availability for further improvement can be determined for a single metric relative to other system measures of merit. A by-product of this modeling approach is a single n-dimensional technology frontier linking all n system attributes with time. This provides an environment capable of forecasting future system capability in the form of advancing technology frontiers. The ability of a multidimensional growth model to capture the expected improvement of a specific technological approach is dependent on accurately identifying the physical limitations to each pertinent attribute. This research investigates two potential approaches to identifying those physical limits, a physics-based approach and a regression-based approach. The regression-based approach has found limited acceptance among forecasters, although it does show potential for estimating upper limits with a specified degree of uncertainty. Forecasters have long favored physics-based approaches for establishing the upper limit to unidimensional growth models. The task of accurately identifying upper limits has become increasingly difficult with the extension of growth models into multiple dimensions. A lone researcher may be able to identify the physical limitation to a single attribute of a simple system; however, as system complexity and the number of attributes increases, the attention of researchers from multiple fields of study is required. Thus, limit identification is itself an area of research and development requiring some level of investment. Whether estimated by physics or regression-based approaches, predicted limits will always have some degree of uncertainty. This research takes the approach of quantifying the impact of that uncertainty on model forecasts rather than heavily endorsing a single technique to limit identification. In addition to formulating the multidimensional growth model, this research provides a systematic procedure for applying that model to specific technology architectures. Researchers and decision-makers are able to investigate the potential for additional improvement within that technology architecture and to estimate the expected cost of each incremental improvement relative to the cost of past improvements. In this manner, multidimensional growth models provide the necessary information to set reasonable program goals for the further evolution of a particular technological approach or to establish the need for revolutionary approaches in light of the constraining limits of conventional approaches.

  7. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  8. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  9. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  10. Seeing the System: Dynamics and Complexity of Technology Integration in Secondary Schools

    ERIC Educational Resources Information Center

    Howard, Sarah K.; Thompson, Kate

    2016-01-01

    This paper introduces system dynamics modeling to understand, visualize and explore technology integration in schools, through the development of a theoretical model of technology-related change in teachers' practice. Technology integration is a dynamic social practice, within the social system of education. It is difficult, if not nearly…

  11. Astrophysics space systems critical technology needs

    NASA Technical Reports Server (NTRS)

    Gartrell, C. F.

    1982-01-01

    This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.

  12. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  13. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  14. Solar Advisor Model User Guide for Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, P.; Blair, N.; Mehos, M.

    2008-08-01

    The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

  15. Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to Use E-Learning Systems

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Hsu, Chia-Ning

    2011-01-01

    This study intends to investigate factors affecting business employees' behavioral intentions to use the e-learning system. Combining the innovation diffusion theory (IDT) with the technology acceptance model (TAM), the present study proposes an extended technology acceptance model. The proposed model was tested with data collected from 552…

  16. The CICT Earth Science Systems Analysis Model

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Coughlan, Joe; Biegel, Bryan; Stevens, Ken; Hansson, Othar; Hayes, Jordan

    2004-01-01

    Contents include the following: Computing Information and Communications Technology (CICT) Systems Analysis. Our modeling approach: a 3-part schematic investment model of technology change, impact assessment and prioritization. A whirlwind tour of our model. Lessons learned.

  17. A Hypermedia Model for Teaching Technology.

    ERIC Educational Resources Information Center

    Savage, Ernest N.

    Ohio's Model Industrial Technology Systems (MITS) project was initiated in 1987 to achieve the following: identify good activities in the areas of physical, communication, and bio-related technology; standardize the activities' format; and provide a coding system for their eventual use in a hypermedia system. To date, 220 activities have been…

  18. Acquisition Modernization: Transitioning Technology Into Warfighter Capability

    DTIC Science & Technology

    2011-08-01

    to test and evaluate the technology and integrate the new capability into operational weapon systems (Figure 4). This funding model creates stove...misalignment between missions, TRLs, and the RDT&E funding model is a major 11 contributor to the valley of death. Technologies become obsolete on... funding model of the acquisition system. Create an individual budget account to fund the development of promising technologies. The Acquisition

  19. System approach to modeling of industrial technologies

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.; Toropov, E. S.

    2018-03-01

    The authors presented a system of methods for modeling and improving industrial technologies. The system consists of information and software. The information part is structured information about industrial technologies. The structure has its template. The template has several essential categories used to improve the technological process and eliminate weaknesses in the process chain. The base category is the physical effect that takes place when the technical process proceeds. The programming part of the system can apply various methods of creative search to the content stored in the information part of the system. These methods pay particular attention to energy transformations in the technological process. The system application will allow us to systematize the approach to improving technologies and obtaining new technical solutions.

  20. A Technology Enhanced Learning Model for Quality Education

    NASA Astrophysics Data System (ADS)

    Sherly, Elizabeth; Uddin, Md. Meraj

    Technology Enhanced Learning and Teaching (TELT) Model provides learning through collaborations and interactions with a framework for content development and collaborative knowledge sharing system as a supplementary for learning to improve the quality of education system. TELT deals with a unique pedagogy model for Technology Enhanced Learning System which includes course management system, digital library, multimedia enriched contents and video lectures, open content management system and collaboration and knowledge sharing systems. Open sources like Moodle and Wiki for content development, video on demand solution with a low cost mid range system, an exhaustive digital library are provided in a portal system. The paper depicts a case study of e-learning initiatives with TELT model at IIITM-K and how effectively implemented.

  1. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  2. System Study: Technology Assessment and Prioritizing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The objective of this NASA funded project is to assess and prioritize advanced technologies required to achieve the goals for an "Intelligent Propulsion System" through collaboration among GEAE, NASA, and Georgia Tech. Key GEAE deliverables are parametric response surface equations (RSE's) relating technology features to system benefits (sfc, weight, fuel burn, design range, acoustics, emission, etc...) and listings of Technology Impact Matrix (TIM) with benefits, debits, and approximate readiness status. TIM has been completed for GEAE and NASA proposed technologies. The combined GEAE and NASA TIM input requirement is shown in Table.1. In the course of building the RSE's and TIM, significant parametric technology modeling and RSE accuracy improvements were accomplished. GEAE has also done preliminary ranking of the technologies using Georgia Tech/GEAE USA developed technology evaluation tools. System level impact was performed by combining beneficial technologies with minimum conflict among various system figures of merits to assess their overall benefits to the system. The shortfalls and issues with modeling the proposed technologies are identified, and recommendations for future work are also proposed.

  3. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  4. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  5. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  6. Development of modelling algorithm of technological systems by statistical tests

    NASA Astrophysics Data System (ADS)

    Shemshura, E. A.; Otrokov, A. V.; Chernyh, V. G.

    2018-03-01

    The paper tackles the problem of economic assessment of design efficiency regarding various technological systems at the stage of their operation. The modelling algorithm of a technological system was performed using statistical tests and with account of the reliability index allows estimating the level of machinery technical excellence and defining the efficiency of design reliability against its performance. Economic feasibility of its application shall be determined on the basis of service quality of a technological system with further forecasting of volumes and the range of spare parts supply.

  7. Implementation of a Sage-Based Stirling Model Into a System-Level Numerical Model of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2011-01-01

    The Fission Power System (FPS) project is developing a Technology Demonstration Unit (TDU) to verify the performance and functionality of a subscale version of the FPS reference concept in a relevant environment, and to verify component and system models. As hardware is developed for the TDU, component and system models must be refined to include the details of specific component designs. This paper describes the development of a Sage-based pseudo-steady-state Stirling convertor model and its implementation into a system-level model of the TDU.

  8. How to measure technology assessment: an introduction.

    PubMed

    Hasman, Arie

    2014-01-01

    This contribution introduces the Technology Acceptance model. Since information systems are still underutilized, application of models of user acceptance can provide important clues about what can be done to increase system usage.

  9. Projecting technology change to improve space technology planning and systems management

    NASA Astrophysics Data System (ADS)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  10. OAST planning model for space systems technology

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1978-01-01

    The NASA Office of Aeronautics and Space Technology (OAST) planning model for space systems technology is described, and some space technology forecasts of a general nature are reported. Technology forecasts are presented as a span of technology levels; uncertainties in level of commitment to project and in required time are taken into account, with emphasis on differences resulting from high or low commitment. Forecasts are created by combining several types of data, including information on past technology trends, the trends of past predictions, the rate of advancement predicted by experts in the field, and technology forecasts already published.

  11. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  12. Technologies for Future Precision Strike Missile Systems (les Technologies des futurs systemes de missiles pour frappe de precision)

    DTIC Science & Technology

    2001-07-01

    hardware - in - loop (HWL) simulation is also developed...Firings / Engine Tests Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model...Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model Model

  13. 1992 NASA Life Support Systems Analysis workshop

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.

    1992-01-01

    The 1992 Life Support Systems Analysis Workshop was sponsored by NASA's Office of Aeronautics and Space Technology (OAST) to integrate the inputs from, disseminate information to, and foster communication among NASA, industry, and academic specialists. The workshop continued discussion and definition of key issues identified in the 1991 workshop, including: (1) modeling and experimental validation; (2) definition of systems analysis evaluation criteria; (3) integration of modeling at multiple levels; and (4) assessment of process control modeling approaches. Through both the 1991 and 1992 workshops, NASA has continued to seek input from industry and university chemical process modeling and analysis experts, and to introduce and apply new systems analysis approaches to life support systems. The workshop included technical presentations, discussions, and interactive planning, with sufficient time allocated for discussion of both technology status and technology development recommendations. Key personnel currently involved with life support technology developments from NASA, industry, and academia provided input to the status and priorities of current and future systems analysis methods and requirements.

  14. Information Technology Implementation and Sustainment Model: Data Collection Instrument

    DTIC Science & Technology

    2005-03-01

    users (Wing and Bettinger , 2003). A GIS is a computerized system for spatial (geographically-referenced) data management (Davis and Schultz, 1990:3...AFIT/GEM/ENV/05M-15 Abstract The goal of this research was to develop a data collection instrument for an existing information technology...implementation and sustsinment model. In 2003, a unique system dynamics model was developed at the Air Force Institute of Technology to predict the

  15. A study on spatial decision support systems for HIV/AIDS prevention based on COM GIS technology

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Luo, Huasong; Peng, Shungyun; Xu, Quanli

    2007-06-01

    Based on the deeply analysis of the current status and the existing problems of GIS technology applications in Epidemiology, this paper has proposed the method and process for establishing the spatial decision support systems of AIDS epidemic prevention by integrating the COM GIS, Spatial Database, GPS, Remote Sensing, and Communication technologies, as well as ASP and ActiveX software development technologies. One of the most important issues for constructing the spatial decision support systems of AIDS epidemic prevention is how to integrate the AIDS spreading models with GIS. The capabilities of GIS applications in the AIDS epidemic prevention have been described here in this paper firstly. Then some mature epidemic spreading models have also been discussed for extracting the computation parameters. Furthermore, a technical schema has been proposed for integrating the AIDS spreading models with GIS and relevant geospatial technologies, in which the GIS and model running platforms share a common spatial database and the computing results can be spatially visualized on Desktop or Web GIS clients. Finally, a complete solution for establishing the decision support systems of AIDS epidemic prevention has been offered in this paper based on the model integrating methods and ESRI COM GIS software packages. The general decision support systems are composed of data acquisition sub-systems, network communication sub-systems, model integrating sub-systems, AIDS epidemic information spatial database sub-systems, AIDS epidemic information querying and statistical analysis sub-systems, AIDS epidemic dynamic surveillance sub-systems, AIDS epidemic information spatial analysis and decision support sub-systems, as well as AIDS epidemic information publishing sub-systems based on Web GIS.

  16. Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and aeroheating specifications. The study team also creates designs for the overall mission spacecraft. Presentation slides are provided to further describe the aerocapture project.

  17. Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems.

    PubMed

    Tsai, Chung-Hung

    2014-05-07

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

  18. Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems

    PubMed Central

    Tsai, Chung-Hung

    2014-01-01

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities. PMID:24810577

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, MARIAH ENERGY CORPORATION HEAT PLUS POWER SYSTEM

    EPA Science Inventory

    The Greenhouse Gas Technology Center (GHG Center) has recently evaluated the performance of the Heat PlusPower(TM) System (Mariah CDP System), which integrates microturbine technology with a heat recovery system. Electric power is generated with a Capstone MicroTurbine(TM) Model ...

  20. Applying the Extended Technology Acceptance Model to the Use of Clickers in Student Learning: Some Evidence from Macroeconomics Classes

    ERIC Educational Resources Information Center

    Wu, Xiaoyu; Gao, Yuan

    2011-01-01

    This paper applies the extended technology acceptance model (exTAM) in information systems research to the use of clickers in student learning. The technology acceptance model (TAM) posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using and intention to use technology. Research subsequent…

  1. An Information System Development Method Combining Business Process Modeling with Executable Modeling and its Evaluation by Prototyping

    NASA Astrophysics Data System (ADS)

    Okawa, Tsutomu; Kaminishi, Tsukasa; Hirabayashi, Syuichi; Suzuki, Ryo; Mitsui, Hiroyasu; Koizumi, Hisao

    The business in the enterprise is closely related with the information system to such an extent that the business activities are difficult without the information system. The system design technique that considers the business process well, and that enables a quick system development is requested. In addition, the demand for the development cost is also severe than before. To cope with the current situation, the modeling technology named BPM(Business Process Management/Modeling)is drawing attention and becoming important as a key technology. BPM is a technology to model business activities as business processes and visualize them to improve the business efficiency. However, a general methodology to develop the information system using the analysis result of BPM doesn't exist, and a few development cases are reported. This paper proposes an information system development method combining business process modeling with executable modeling. In this paper we describe a guideline to support consistency of development and development efficiency and the framework enabling to develop the information system from model. We have prototyped the information system with the proposed method and our experience has shown that the methodology is valuable.

  2. Life support systems analysis and technical trades for a lunar outpost

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.

    1994-01-01

    The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.

  3. An Instructional Systems Technology Model for Institutional Change.

    ERIC Educational Resources Information Center

    Dudgeon, Paul J.

    A program based on instructional systems technology was developed at Canadore College as a means of devising the optimal learning experience for each individual student. The systems approach is used to solve educational problems through a process of analysis, synthesis, modeling, and simulation, based on the LOGOS (Language for Optimizing…

  4. Information-System Structure by Communication-Technology Concepts: A Cybernetic Model Approach.

    ERIC Educational Resources Information Center

    Reisig, Gerhard H. R.

    1978-01-01

    Presents the "Evidence-of-Existence" information system in which the structure is developed, with application of cybernetic concepts, as an isomorphic model in analogy to the system structure of communication technology. Three criteria of structuring are postulated: (1) source-channel-sink, with input-output characteristics, (2) filter-type…

  5. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Das, Trishna

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24more » bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.« less

  6. Cognitive Factors in Predicting Continued Use of Information Systems with Technology Adoption Models

    ERIC Educational Resources Information Center

    Huang, Chi-Cheng

    2017-01-01

    Introduction: The ultimate viability of an information system is dependent on individuals' continued use of the information system. In this study, we use the technology acceptance model and the theory of interpersonal behaviour to predict continued use of information systems. Method: We established a Web questionnaire on the mySurvey Website and…

  7. Mathematical Modeling Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  8. Series Bosch System Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Evans, Christopher; Mansell, Matt; Swickrath, Michael

    2012-01-01

    State-of-the-art (SOA) carbon dioxide (CO2) reduction technology for the International Space Station produces methane as a byproduct. This methane is subsequently vented overboard. The associated loss of hydrogen ultimately reduces the mass of oxygen that can be recovered from CO2 in a closed-loop life support system. As an alternative to SOA CO2 reduction technology, NASA is exploring a Series-Bosch system capable of reducing CO2 with hydrogen to form water and solid carbon. This results in 100% theoretical recovery of oxygen from metabolic CO2. In the past, Bosch-based technology did not trade favorably against SOA technology due to a high power demand, low reaction efficiencies, concerns with carbon containment, and large resupply requirements necessary to replace expended catalyst cartridges. An alternative approach to Bosch technology, labeled "Series-Bosch," employs a new system design with optimized multi-stage reactors and a membrane-based separation and recycle capability. Multi-physics modeling of the first stage reactor, along with chemical process modeling of the integrated system, has resulted in a design with potential to trade significantly better than previous Bosch technology. The modeling process and resulting system architecture selection are discussed.

  9. Examining the functionality of the DeLone and McLean information system success model as a framework for synthesis in nursing information and communication technology research.

    PubMed

    Booth, Richard G

    2012-06-01

    In this review, studies examining information and communication technology used by nurses in clinical practice were examined. Overall, a total of 39 studies were assessed spanning a time period from 1995 to 2008. The impacts of the various health information and communication technology evaluated by individual studies were synthesized using the DeLone and McLean's six-dimensional framework for evaluating information systems success (ie, System Quality, Information Quality, Service Quality, Use, User Satisfaction, and Net Benefits). Overall, the majority of researchers reported results related to the overall Net Benefits (positive, negative, and indifferent) of the health information and communication technology used by nurses. Attitudes and user satisfaction with technology were also commonly measured attributes. The current iteration of DeLone and McLean model is effective at synthesizing basic elements of health information and communication technology use by nurses. Regardless, the current model lacks the sociotechnical sensitivity to capture deeper nurse-technology relationalities. Limitations and recommendations are provided for researchers considering using the DeLone and McLean model for evaluating health information and communication technology used by nurses.

  10. Cadastral data model established and perfected with 4S technology

    NASA Astrophysics Data System (ADS)

    He, Beijing; He, Jiang; He, Jianpeng

    1998-08-01

    Considering China's social essential system and the actual case of the formation of cadastral information in urban and rural area, and based on the 4S technology and the theory and method of canton's GPS geodetic data bench developed by the authors, we thoroughly research on some correlative technical problems about establishing and perfecting all-level's microcosmic cadastral data model (called model in the following) once again. Such problems as the following are included: cadastral, feature and topographic information and its modality and expressing method, classifying and grading the model, coordinate system to be selected, data basis for the model, the collecting method and digitalization of information, database's structural model, mathematical model and the establishing technology of 3 or more dimensional model, dynamic monitoring of and the development and application of the model. Then, the domestic and overseas application prospect is revealed. It also has the tendency to intrude markets cooperated with 'data bench' technology or RS image maps' all-analysis digital surveying and mapping technology.

  11. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  12. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  13. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  14. Technology Transfer and Technology Transfer Intermediaries

    ERIC Educational Resources Information Center

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  15. The Triangle Model for evaluating the effect of health information technology on healthcare quality and safety

    PubMed Central

    Kern, Lisa M; Abramson, Erika; Kaushal, Rainu

    2011-01-01

    With the proliferation of relatively mature health information technology (IT) systems with large numbers of users, it becomes increasingly important to evaluate the effect of these systems on the quality and safety of healthcare. Previous research on the effectiveness of health IT has had mixed results, which may be in part attributable to the evaluation frameworks used. The authors propose a model for evaluation, the Triangle Model, developed for designing studies of quality and safety outcomes of health IT. This model identifies structure-level predictors, including characteristics of: (1) the technology itself; (2) the provider using the technology; (3) the organizational setting; and (4) the patient population. In addition, the model outlines process predictors, including (1) usage of the technology, (2) organizational support for and customization of the technology, and (3) organizational policies and procedures about quality and safety. The Triangle Model specifies the variables to be measured, but is flexible enough to accommodate both qualitative and quantitative approaches to capturing them. The authors illustrate this model, which integrates perspectives from both health services research and biomedical informatics, with examples from evaluations of electronic prescribing, but it is also applicable to a variety of types of health IT systems. PMID:21857023

  16. SAM Technical Review Committee Final Report: Summary and Key Recommendations from the Onsite TRC Meeting Held April 22-23, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, S.; Janzou, S.

    2013-08-01

    The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).

  17. Social network supported process recommender system.

    PubMed

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  18. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    NASA Astrophysics Data System (ADS)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  19. MOEMS Modeling Using the Geometrical Matrix Toolbox

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2005-01-01

    New technologies such as MicroOptoElectro-Mechanical Systems (MOEMS) require new modeling tools. These tools must simultaneously model the optical, electrical, and mechanical domains and the interactions between these domains. To facilitate rapid prototyping of these new technologies an optical toolbox has been developed for modeling MOEMS devices. The toolbox models are constructed using MATLAB's dynamical simulator, Simulink. Modeling toolboxes will allow users to focus their efforts on system design and analysis as opposed to developing component models. This toolbox was developed to facilitate rapid modeling and design of a MOEMS based laser ultrasonic receiver system.

  20. (abstract) Generic Modeling of a Life Support System for Process Technology Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.

  1. From translational research to open technology innovation systems.

    PubMed

    Savory, Clive; Fortune, Joyce

    2015-01-01

    The purpose of this paper is to question whether the emphasis placed within translational research on a linear model of innovation provides the most effective model for managing health technology innovation. Several alternative perspectives are presented that have potential to enhance the existing model of translational research. A case study is presented of innovation of a clinical decision support system. The paper concludes from the case study that an extending the triple helix model of technology transfer, to one based on a quadruple helix, present a basis for improving the performance translational research. A case study approach is used to help understand development of an innovative technology within a teaching hospital. The case is then used to develop and refine a model of the health technology innovation system. The paper concludes from the case study that existing models of translational research could be refined further through the development of a quadruple helix model of heath technology innovation that encompasses greater emphasis on user-led and open innovation perspectives. The paper presents several implications for future research based on the need to enhance the model of health technology innovation used to guide policy and practice. The quadruple helix model of innovation that is proposed can potentially guide alterations to the existing model of translational research in the healthcare sector. Several suggestions are made for how innovation activity can be better supported at both a policy and operational level. This paper presents a synthesis of the innovation literature applied to a theoretically important case of open innovation in the UK National Health Service. It draws in perspectives from other industrial sectors and applies them specifically to the management and organisation of innovation activities around health technology and the services in which they are embedded.

  2. Exploring Healthcare Consumer Acceptance of Personal Health Information Management Technology through Personal Health Record Systems

    ERIC Educational Resources Information Center

    Wu, Huijuan

    2013-01-01

    Healthcare technologies are evolving from a practitioner-centric model to a patient-centric model due to the increasing need for technology that directly serves healthcare consumers, including healthy people and patients. Personal health information management (PHIM) technology is one of the technologies designed to enhance an individual's ability…

  3. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  4. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  5. Learning Generation: Fostering Innovation with Tomorrow's Teachers and Technology

    ERIC Educational Resources Information Center

    Aust, Ronald; Newberry, Brian; O'Brien, Joseph; Thomas, Jennifer

    2005-01-01

    We discuss the context, conception, implementation, and research used to refine and evaluate a systemic model for fostering technology integration in teacher education. The Learning Generation model identifies conditions where innovations for using technology emerge in small group dialogues. The model uses a multifaceted implementation with…

  6. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement. Part 2; Structural Analysis Technologies and Modeling Practices

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.

    2004-01-01

    A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.

  7. Army Systems Engineering Career Development Model

    DTIC Science & Technology

    2014-01-30

    Army Systems Engineering Career Development Model Interim Technical Report SERC -2014-TR-042-1 January 30, 2014 Principal Investigators Dr. Val...Gavito, Stevens Institute of Technology Dr. Michael Pennotti, Stevens Institute of Technology Task Order 004, RT 104 Report No. SERC -2014-TR-042-1...Institute of Technology 8. PERFORMING ORGANIZATION REPORT NUMBER SERC -2014-TR-042-1 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) DASD

  8. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2014-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  9. ICT & OTs: a model of information and communications technology acceptance and utilisation by occupational therapists (part 2).

    PubMed

    Schaper, Louise; Pervan, Graham

    2007-01-01

    The research reported in this paper describes the development, empirical validation and analysis of a model of technology acceptance by Australian occupational therapists. The study described involved the collection of quantitative data through a national survey. The theoretical significance of this work is that it uses a thoroughly constructed research model, with one of the largest sample sizes ever tested (n=1605), to extend technology acceptance research into the health sector. Results provide strong support for the model. This work reveals the complexity of the constructs and relationships that influence technology acceptance and highlights the need to include sociotechnical and system issues in studies of technology acceptance in healthcare to improve information system implementation success in this arena. The results of this study have practical and theoretical implications for health informaticians and researchers in the field of health informatics and information systems, tertiary educators, Commonwealth and State Governments and the allied health professions.

  10. Post Landsat-D advanced concept evaluation /PLACE/

    NASA Technical Reports Server (NTRS)

    Alexander, L. D.; Alvarado, U. R.; Flatow, F. S.

    1979-01-01

    The aim of the Post Landsat-D Advanced Concept Evaluation (PLACE) program was to identify the key technology requirements of earth resources satellite systems for the 1985-2000 period. The program involved four efforts: (1) examination of future needs in the earth resources area, (2) creation of a space systems technology model capable of satisfying these needs, (3) identification of key technology requirements posed by this model, and (4) development of a methodology (PRISM) to assist in the priority structuring of the resulting technologies.

  11. Manufacturing Technology Support (MATES II) Task Order 0005: Manufacturing Integration and Technology Evaluation to Enable Technology Transition. Subtask Phase 0 Study Task: Manufacturing Technology (ManTech) and Systems Engineering For Quick Reaction Systems

    DTIC Science & Technology

    2014-10-01

    Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for

  12. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  13. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  14. Factors of adoption of mobile information technology by homecare nurses: a technology acceptance model 2 approach.

    PubMed

    Zhang, Huiying; Cocosila, Mihail; Archer, Norm

    2010-01-01

    Pervasive healthcare support through mobile information technology solutions is playing an increasing role in the attempt to improve healthcare and reduce costs. Despite the apparent attractiveness, many mobile applications have failed or have not been implemented as predicted. Among factors possibly leading to such outcomes, technology adoption is a key problem. This must be investigated early in the development process because healthcare is a particularly sensitive area with vital social implications. Moreover, it is important to investigate technology acceptance using the support of scientific tools validated for relevant information systems research. This article presents an empirical study based on the Technology Acceptance Model 2 in mobile homecare nursing. The study elicited the perceptions of 91 Canadian nurses who used personal digital assistants for 1 month in their daily activities. A partial least squares modeling data analysis revealed that nurse's perception of usefulness is the main factor in the adoption of mobile technology, having subjective norm and image within the organization as significant antecedents. Overall, this study was the first attempt at investigating scientifically, through a pertinent information systems research model, user adoption of mobile systems by homecare nursing personnel.

  15. Toward a Concept of Operations for Aviation Weather Information Implementation in the Evolving National Airspace System

    NASA Technical Reports Server (NTRS)

    McAdaragh, Raymon M.

    2002-01-01

    The capacity of the National Airspace System is being stressed due to the limits of current technologies. Because of this, the FAA and NASA are working to develop new technologies to increase the system's capacity which enhancing safety. Adverse weather has been determined to be a major factor in aircraft accidents and fatalities and the FAA and NASA have developed programs to improve aviation weather information technologies and communications for system users The Aviation Weather Information Element of the Weather Accident Prevention Project of NASA's Aviation Safety Program is currently working to develop these technologies in coordination with the FAA and industry. This paper sets forth a theoretical approach to implement these new technologies while addressing the National Airspace System (NAS) as an evolving system with Weather Information as one of its subSystems. With this approach in place, system users will be able to acquire the type of weather information that is needed based upon the type of decision-making situation and condition that is encountered. The theoretical approach addressed in this paper takes the form of a model for weather information implementation. This model addresses the use of weather information in three decision-making situations, based upon the system user's operational perspective. The model also addresses two decision-making conditions, which are based upon the need for collaboration due to the level of support offered by the weather information provided by each new product or technology. The model is proposed for use in weather information implementation in order to provide a systems approach to the NAS. Enhancements to the NAS collaborative decision-making capabilities are also suggested.

  16. The Development of a Framework for and a Model Teaching-Learning System in Electronics Technology for the Elementary School.

    ERIC Educational Resources Information Center

    Inaba, Lawrence Akio

    Developing a rationale and a structure of knowledge as the basis for an instructional system in electronics technology and designing and developing a packaged instructional system in electronics technology for the sixth grade is the two-fold purpose of this study. The study identifies electronics technology within the broad framework of industrial…

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE — BAYSAVER TECHNOLOGIES, INC. BAYSAVER SEPARATION SYSTEM, MODEL 10K

    EPA Science Inventory

    Verification testing of the BaySaver Separation System, Model 10K was conducted on a 10 acre drainage basin near downtown Griffin, Georgia. The system consists of two water tight pre-cast concrete manholes and a high-density polyethylene BaySaver Separator Unit. The BaySaver Mod...

  18. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  19. Unintended consequences of information technologies in health care--an interactive sociotechnical analysis.

    PubMed

    Harrison, Michael I; Koppel, Ross; Bar-Lev, Shirly

    2007-01-01

    Many unintended and undesired consequences of Healthcare Information Technologies (HIT) flow from interactions between the HIT and the healthcare organization's sociotechnical system-its workflows, culture, social interactions, and technologies. This paper develops and illustrates a conceptual model of these processes that we call Interactive Sociotechnical Analysis (ISTA). ISTA captures common types of interaction with special emphasis on recursive processes, i.e., feedback loops that alter the newly introduced HIT and promote second-level changes in the social system. ISTA draws on prior studies of unintended consequences, along with research in sociotechnical systems, ergonomics, social informatics, technology-in-practice, and social construction of technology. We present five types of sociotechnical interaction and illustrate each with cases from published research. The ISTA model should further research on emergent and recursive processes in HIT implementation and their unintended consequences. Familiarity with the model can also foster practitioners' awareness of unanticipated consequences that only become evident during HIT implementation.

  20. An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    NASA Astrophysics Data System (ADS)

    Silvernail, Nathan L.

    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes.

  1. Bringing Back the Social Affordances of the Paper Memo to Aerospace Systems Engineering Work

    NASA Technical Reports Server (NTRS)

    Davidoff, Scott; Holloway, Alexandra

    2014-01-01

    Model-based systems engineering (MBSE) is a relatively new field that brings together the interdisciplinary study of technological components of a project (systems engineering) with a model-based ontology to express the hierarchical and behavioral relationships between the components (computational modeling). Despite the compelling promises of the benefits of MBSE, such as improved communication and productivity due to an underlying language and data model, we observed hesitation to its adoption at the NASA Jet Propulsion Laboratory. To investigate, we conducted a six-month ethnographic field investigation and needs validation with 19 systems engineers. This paper contributes our observations of a generational shift in one of JPL's core technologies. We report on a cultural misunderstanding between communities of practice that bolsters the existing technology drag. Given the high cost of failure, we springboard our observations into a design hypothesis - an intervention that blends the social affordances of the narrative-based work flow with the rich technological advantages of explicit data references and relationships of the model-based approach. We provide a design rationale, and the results of our evaluation.

  2. Modeling nurses' attitude toward using automated unit-based medication storage and distribution systems: an extension of the technology acceptance model.

    PubMed

    Escobar-Rodríguez, Tomás; Romero-Alonso, María Mercedes

    2013-05-01

    This article analyzes the attitude of nurses toward the use of automated unit-based medication storage and distribution systems and identifies influencing factors. Understanding these factors provides an opportunity to explore actions that might be taken to boost adoption by potential users. The theoretical grounding for this research is the Technology Acceptance Model. The Technology Acceptance Model specifies the causal relationships between perceived usefulness, perceived ease of use, attitude toward using, and actual usage behavior. The research model has six constructs, and nine hypotheses were generated from connections between these six constructs. These constructs include perceived risks, experience level, and training. The findings indicate that these three external variables are related to the perceived ease of use and perceived usefulness of automated unit-based medication storage and distribution systems, and therefore, they have a significant influence on attitude toward the use of these systems.

  3. Development of a Model-Based Systems Engineering Application for the Ground Vehicle Robotics Sustainment Industrial Base

    DTIC Science & Technology

    2013-02-04

    Ground Vehicle Systems Engineering Technology Symposium HC Human Capital HIIT Helsinki Institute of Information Technology UNCLASSIFIED vii...Technology (TKK), and the Helsinki Institute of Information Technology ( HIIT ), the report introduced the concept and the state-of-the-art in the market

  4. Social Network Supported Process Recommender System

    PubMed Central

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced. PMID:24672309

  5. The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  6. The status of spacecraft bus and platform technology development under the NASA ISPT program

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  7. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  8. Technological Effects on Interpersonal Communication: A Classroom Activity.

    ERIC Educational Resources Information Center

    Vandehaar, Debb

    Noting that few scholars have examined specifically how technology is affecting basic communication processes, students in interpersonal, small group, and advanced presentational forms classes studied the systems model of interpersonal communication. The systems model described by P. Emmert and W.C. Donaghy includes the following components:…

  9. Generic Modeling of a Life Support System for Process Technology Comparison

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.

  10. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the new methodology as web services and incorporated the system into the Cloud. We have also developed a provenance management system for CMDA where CMDA service semantics modeling, service search and recommendation, and service execution history management are designed and implemented.

  11. A study on the attitude of use the mobile clinic registration system in Taiwan.

    PubMed

    Lai, Yi-Horng; Huang, Fen-Fen; Yang, Hsieh-Hua

    2015-01-01

    Mobile apps provide diverse services and various convenient functions. This study applied the modified technology acceptance model (MTAM) in information systems research to the use of the mobile hospital registration system in Taiwan. The MTAM posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using technology. Research studies using MTAM have determined information technology experience as a factor in predicting attitude. The objective of this present study is to test the validity of the MTAM model when it is being applied to the mobile registration system. The data was collected from 501 patients in a Taiwan's medical center. Path analysis results have shown that TAM is an applicable model in examining factors influencing users' attitudes of using the mobile registration system. It can be found that the perceived usefulness and the perceived ease of use are positively associated with users' attitudes toward using the mobile registration system, and they can improve users' attitudes of using it. In addition, the perceived ease of use is positively associated with the perceived usefulness. As for the personal prior experience, the information technology experience is positively associated with perceived usefulness and the perceived ease of use.

  12. NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  13. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    ERIC Educational Resources Information Center

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  14. The Open Academic Model for the Systems Engineering Graduate Program at Stevens Institute of Technology

    ERIC Educational Resources Information Center

    Lasfer, Kahina

    2012-01-01

    The Systems Engineering Program at Stevens Institute of Technology has developed the Open Academic Model (OAM) to guide its strategic planning and operations since its founding in 2001. Guided by OAM, the Stevens Systems Engineering Program (SSEP) has grown from inception in 2001 into one of the largest in the US. The main objectives of the…

  15. Development of a Fuel Spill/Vapor Migration Modeling System.

    DTIC Science & Technology

    1985-12-01

    transforms resulting in a direct solution of the differential equation. A second order finite * difference approximation to the Poisson equation A2*j is...7 O-A64 043 DEVELOPMENT OF A FUEL SPILL/VPOR MIGRATION MODELING 1/2 SYSTEM(U) TRACER TECHNOLOGIES ESCONDIDO Cflo IL 0 ENGLAND ET AL. DEC 85 RFURL...AFWAL-TR-85-2089 DEVELOPMENT OF A FUEL SPILL/VAPOR MIGRATION MODELING SYSTEM W.G. England * L.H. Teuscher TRACER TECHNOLOGIES DTIC *2120 WEST MISSION

  16. Using SysML to model complex systems for security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, Lester Arturo

    2010-08-01

    As security systems integrate more Information Technology the design of these systems has tended to become more complex. Some of the most difficult issues in designing Complex Security Systems (CSS) are: Capturing Requirements: Defining Hardware Interfaces: Defining Software Interfaces: Integrating Technologies: Radio Systems: Voice Over IP Systems: Situational Awareness Systems.

  17. Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Dougherty, Ryan; Manzella, David

    2005-01-01

    The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, system models were developed for each of the spacecraft subsystems that were integrated into one overarching system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 electric propulsion technology development efforts. This EPS model was then used to provide both performance and mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is described, detailing both the performance calculations as well as its evolution over the course of Phase A through three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed chronologically showing the response of the model development to the four technical baselines during Prometheus 1 Phase A.

  18. Air Force Reusable Booster System A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    Presents work supporting the Air force Reusable Booster System (RBS) - A Cost Study with Goals as follows: Support US launch systems decision makers, esp. in regards to the research, technology and demonstration investments required for reusable systems to succeed. Encourage operable directions in Reusable Booster / Launch Vehicle Systems technology choices, system design and product and process developments. Perform a quick-look cost study, while developing a cost model for more refined future analysis.

  19. IEEE Photovoltaic Specialists Conference, 20th, Las Vegas, NV, Sept. 26-30, 1988, Conference Record. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.

  20. Application of wireless sensor network technology in logistics information system

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  1. Dynamic thermal analysis of a concentrated photovoltaic system

    NASA Astrophysics Data System (ADS)

    Avrett, John T., II; Cain, Stephen C.; Pochet, Michael

    2012-02-01

    Concentrated photovoltaic (PV) technology represents a growing market in the field of terrestrial solar energy production. As the demand for renewable energy technologies increases, further importance is placed upon the modeling, design, and simulation of these systems. Given the U.S. Air Force cultural shift towards energy awareness and conservation, several concentrated PV systems have been installed on Air Force installations across the country. However, there has been a dearth of research within the Air Force devoted to understanding these systems in order to possibly improve the existing technologies. This research presents a new model for a simple concentrated PV system. This model accurately determines the steady state operating temperature as a function of the concentration factor for the optical part of the concentrated PV system, in order to calculate the optimum concentration that maximizes power output and efficiency. The dynamic thermal model derived is validated experimentally using a commercial polysilicon solar cell, and is shown to accurately predict the steady state temperature and ideal concentration factor.

  2. Factors influencing the adoption of health information technologies: a systematic review

    PubMed Central

    Garavand, Ali; Mohseni, Mohammah; Asadi, Heshmatollah; Etemadi, Manal; Moradi-Joo, Mohammad; Moosavi, Ahmad

    2016-01-01

    Introduction The successful implementation of health information technologies requires investigating the factors affecting the acceptance and use of them. The aim of this study was to determine the most important factors affecting the adoption of health information technologies by doing a systematic review on the factors affecting the acceptance of health information technology. Methods This systematic review was conducted by searching the major databases, such as Google Scholar, Emerald, Science Direct, Web of Science, Pubmed, and Scopus. We used various keywords, such as adoption, use, acceptance of IT in medicine, hospitals, and IT theories in health services, and we also searched on the basis of several important technologies, such as Electronic Health Records (HER), Electronic Patient Records (EPR), Electronic Medical Records (EMR), Computerized Physician Order Entry (CPOE), Hospital Information System (HIS), Picture Archiving and Communication System (PACS), and others in the 2004–2014 period. Results The technology acceptance model (TAM) is the most important model used to identify the factors influencing the adoption of information technologies in the health system; also, the unified theory of acceptance and use of technology (UTAUT) model has had a lot of applications in recent years in the health system. Ease of use, usefulness, social impact, facilitating conditions, attitudes and behavior of users are effective in the adoption of health information technologies. Conclusion By considering various factors, including ease of use, usefulness, and social impact, the rate of the adoption of health information technology can be increased. PMID:27757179

  3. Factors influencing the adoption of health information technologies: a systematic review.

    PubMed

    Garavand, Ali; Mohseni, Mohammah; Asadi, Heshmatollah; Etemadi, Manal; Moradi-Joo, Mohammad; Moosavi, Ahmad

    2016-08-01

    The successful implementation of health information technologies requires investigating the factors affecting the acceptance and use of them. The aim of this study was to determine the most important factors affecting the adoption of health information technologies by doing a systematic review on the factors affecting the acceptance of health information technology. This systematic review was conducted by searching the major databases, such as Google Scholar, Emerald, Science Direct, Web of Science, Pubmed, and Scopus. We used various keywords, such as adoption, use, acceptance of IT in medicine, hospitals, and IT theories in health services, and we also searched on the basis of several important technologies, such as Electronic Health Records (HER), Electronic Patient Records (EPR), Electronic Medical Records (EMR), Computerized Physician Order Entry (CPOE), Hospital Information System (HIS), Picture Archiving and Communication System (PACS), and others in the 2004-2014 period. The technology acceptance model (TAM) is the most important model used to identify the factors influencing the adoption of information technologies in the health system; also, the unified theory of acceptance and use of technology (UTAUT) model has had a lot of applications in recent years in the health system. Ease of use, usefulness, social impact, facilitating conditions, attitudes and behavior of users are effective in the adoption of health information technologies. By considering various factors, including ease of use, usefulness, and social impact, the rate of the adoption of health information technology can be increased.

  4. Business intelligence modeling in launch operations

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations, and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems.

  5. Business Intelligence Modeling in Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems. The future of business intelligence of space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems.

  6. Conceptual modeling for Prospective Health Technology Assessment.

    PubMed

    Gantner-Bär, Marion; Djanatliev, Anatoli; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2012-01-01

    Prospective Health Technology Assessment (ProHTA) is a new and innovative approach to analyze and assess new technologies, methods and procedures in health care. Simulation processes are used to model innovations before the cost-intensive design and development phase. Thus effects on patient care, the health care system as well as health economics aspects can be estimated. To generate simulation models a valid information base is necessary and therefore conceptual modeling is most suitable. Project-specifically improved methods and characteristics of simulation modeling are combined in the ProHTA Conceptual Modeling Process and initially implemented for acute ischemic stroke treatment in Germany. Additionally the project aims at simulation of other diseases and health care systems as well. ProHTA is an interdisciplinary research project within the Cluster of Excellence for Medical Technology - Medical Valley European Metropolitan Region Nuremberg (EMN), which is funded by the German Federal Ministry of Education and Research (BMBF), project grant No. 01EX1013B.

  7. LEVERAGING TECHNOLOGY TO ENHANCE ADDICTION TREATMENT AND RECOVERY

    PubMed Central

    Marsch, Lisa A.

    2012-01-01

    Technology such as the Internet and mobile phones offers considerable promise for affecting the assessment, prevention, and treatment of and recovery from substance use disorders. Technology may enable entirely new models of behavioral health care within and outside of formal systems of care. This article reviews the promise of technology-based therapeutic tools for affecting the quality and reach of addiction treatment and recovery support systems, as well as the empirical support to date for this approach. Potential models for implementing technology-based interventions targeting substance use disorders are described. Opportunities to optimize the effectiveness and impact of technology-based interventions targeting addiction and recovery, along with outstanding research needs, are discussed. PMID:22873192

  8. Leveraging technology to enhance addiction treatment and recovery.

    PubMed

    Marsch, Lisa A

    2012-01-01

    Technology such as the Internet and mobile phones offers considerable promise for affecting the assessment, prevention, and treatment of and recovery from substance use disorders. Technology may enable entirely new models of behavioral health care within and outside of formal systems of care. This article reviews the promise of technology-based therapeutic tools for affecting the quality and reach of addiction treatment and recovery support systems, as well as the empirical support to date for this approach. Potential models for implementing technology-based interventions targeting substance use disorders are described. Opportunities to optimize the effectiveness and impact of technology-based interventions targeting addiction and recovery, along with outstanding research needs, are discussed.

  9. Computer-aided decision making.

    Treesearch

    Keith M. Reynolds; Daniel L. Schmoldt

    2006-01-01

    Several major classes of software technologies have been used in decisionmaking for forest management applications over the past few decades. These computer-based technologies include mathematical programming, expert systems, network models, multi-criteria decisionmaking, and integrated systems. Each technology possesses unique advantages and disadvantages, and has...

  10. Evaluation of alternative future energy scenarios for Brazil using an energy mix model

    NASA Astrophysics Data System (ADS)

    Coelho, Maysa Joppert

    The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input assumptions and key assumptions of modeling framework, and are used as the basis for recommendations regarding energy development priorities for Brazil.

  11. Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems.

    PubMed

    Rahman, Md Mahmudur; Lesch, Mary F; Horrey, William J; Strawderman, Lesley

    2017-11-01

    Advanced Driver Assistance Systems (ADAS) are intended to enhance driver performance and improve transportation safety. The potential benefits of these technologies, such as reduction in number of crashes, enhancing driver comfort or convenience, decreasing environmental impact, etc., have been acknowledged by transportation safety researchers and federal transportation agencies. Although these systems afford safety advantages, they may also challenge the traditional role of drivers in operating vehicles. Driver acceptance, therefore, is essential for the implementation of these systems into the transportation system. Recognizing the need for research into the factors affecting driver acceptance, this study assessed the utility of the Technology Acceptance Model (TAM), the Theory of Planned Behavior (TPB), and the Unified Theory of Acceptance and Use of Technology (UTAUT) for modelling driver acceptance in terms of Behavioral Intention to use an ADAS. Each of these models propose a set of factors that influence acceptance of a technology. Data collection was done using two approaches: a driving simulator approach and an online survey approach. In both approaches, participants interacted with either a fatigue monitoring system or an adaptive cruise control system combined with a lane-keeping system. Based on their experience, participants responded to several survey questions to indicate their attitude toward using the ADAS and their perception of its usefulness, usability, etc. A sample of 430 surveys were collected for this study. Results found that all the models (TAM, TPB, and UTAUT) can explain driver acceptance with their proposed sets of factors, each explaining 71% or more of the variability in Behavioral Intention. Among the models, TAM was found to perform the best in modelling driver acceptance followed by TPB. The findings of this study confirm that these models can be applied to ADAS technologies and that they provide a basis for understanding driver acceptance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Triadic Reflective-Impulsive-Interoceptive Awareness Model of General and Impulsive Information System Use: Behavioral Tests of Neuro-Cognitive Theory

    PubMed Central

    Turel, Ofir; Bechara, Antoine

    2016-01-01

    This study examines a behavioral tripartite model developed in the field of addiction, and applies it here to understanding general and impulsive information technology use. It suggests that technology use is driven by two information-processing brain systems: reflective and impulsive, and that their effects on use are modulated by interoceptive awareness processes. The resultant reflective-impulsive-interoceptive awareness model is tested in two behavioral studies. Both studies employ SEM techniques to time-lagged self-report data from n1 = 300 and n2 = 369 social networking site users. Study 1 demonstrated that temptations augment the effect of habit on technology use, and reduce the effect of satisfaction on use. Study 2 showed that temptations strengthen the effect of habit on impulsive technology use, and weaken the effect of behavioral expectations on impulsive technology use. Hence, the results consistently support the notion that information technology users' behaviors are influenced by reflective and impulsive information processing systems; and that the equilibrium of these systems is determined, at least in part, by one's temptations. These results can serve as a basis for understanding the etiology of modern day addictions. PMID:27199834

  13. A Triadic Reflective-Impulsive-Interoceptive Awareness Model of General and Impulsive Information System Use: Behavioral Tests of Neuro-Cognitive Theory.

    PubMed

    Turel, Ofir; Bechara, Antoine

    2016-01-01

    This study examines a behavioral tripartite model developed in the field of addiction, and applies it here to understanding general and impulsive information technology use. It suggests that technology use is driven by two information-processing brain systems: reflective and impulsive, and that their effects on use are modulated by interoceptive awareness processes. The resultant reflective-impulsive-interoceptive awareness model is tested in two behavioral studies. Both studies employ SEM techniques to time-lagged self-report data from n 1 = 300 and n 2 = 369 social networking site users. Study 1 demonstrated that temptations augment the effect of habit on technology use, and reduce the effect of satisfaction on use. Study 2 showed that temptations strengthen the effect of habit on impulsive technology use, and weaken the effect of behavioral expectations on impulsive technology use. Hence, the results consistently support the notion that information technology users' behaviors are influenced by reflective and impulsive information processing systems; and that the equilibrium of these systems is determined, at least in part, by one's temptations. These results can serve as a basis for understanding the etiology of modern day addictions.

  14. About Regional Energy Deployment System Model-ReEDS | Regional Energy

    Science.gov Websites

    Deployment System Model | Energy Analysis | NREL About Regional Energy Deployment System Model -ReEDS About Regional Energy Deployment System Model-ReEDS The Regional Energy Deployment System (ReEDS ) is a long-term, capacity-expansion model for the deployment of electric power generation technologies

  15. Systems Engineering Programmatic Estimation Using Technology Variance

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2000-01-01

    Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.

  16. Logical Design of a Decision Support System to Forecast Technology, Prices and Costs for the National Communications System.

    DTIC Science & Technology

    1984-09-01

    IN SOFTWARE DESIGN ......... .................... 39 P. PROCESS DESCRIPTIONS 43.............3 1. Model Euilding .............. 43 2. M1odel Management ... manager to model a wide variety of technology, price and cost situations without the associated overhead imposed by multiple application-specific systems...The Manager of the National Communications System (NCS) has been tasked by the National Security Telecommunications Policy of 3 August 1983 with

  17. The role of CSP in the electricity system of South Africa - technical operation, grid constraints, market structure and economics

    NASA Astrophysics Data System (ADS)

    Kost, Christoph; Friebertshäuser, Chris; Hartmann, Niklas; Fluri, Thomas; Nitz, Peter

    2017-06-01

    This paper analyses the role of solar technologies (CSP and PV) and their interaction in the South African electricity system by using a fundamental electricity system modelling (ENTIGRIS-SouthAfrica). The model is used to analyse the South African long-term electricity generation portfolio mix, optimized site selection and required transmission capacities until the year 2050. Hereby especially the location and grid integration of solar technology (PV and CSP) and wind power plants is analysed. This analysis is carried out by using detailed resource assessment of both technologies. A cluster approach is presented to reduce complexity by integrating the data in an optimization model.

  18. Persuasive Technology in Mobile Applications Promoting Physical Activity: a Systematic Review.

    PubMed

    Matthews, John; Win, Khin Than; Oinas-Kukkonen, Harri; Freeman, Mark

    2016-03-01

    Persuasive technology in mobile applications can be used to influence the behaviour of users. A framework known as the Persuasive Systems Design model has been developed for designing and evaluating systems that influence the attitudes or behaviours of users. This paper reviews the current state of mobile applications for health behavioural change with an emphasis on applications that promote physical activity. The inbuilt persuasive features of mobile applications were evaluated using the Persuasive Systems Design model. A database search was conducted to identify relevant articles. Articles were then reviewed using the Persuasive Systems Design model as a framework for analysis. Primary task support, dialogue support, and social support were found to be moderately represented in the selected articles. However, system credibility support was found to have only low levels of representation as a persuasive systems design feature in mobile applications for supporting physical activity. To ensure that available mobile technology resources are best used to improve the wellbeing of people, it is important that the design principles that influence the effectiveness of persuasive technology be understood.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PHYSICAL REMOVAL OF MICROBIOLOGICAL AND PARTICULATE CONTAMINANTS IN DRINKING WATER : SEPARMATIC™ FLUID SYSTEMS DIATOMACEOUS EARTH PRESSURE TYPE FILTER SYSTEM MODEL 12P-2

    EPA Science Inventory

    The verification test of the SeparmaticTM DE Pressure Type Filter System Model 12P-2 was conducted at the UNH Water Treatment Technology Assistance Center (WTTAC) in Durham, New Hampshire. The source water was finished water from the Arthur Rollins Treatment Plant that was pretr...

  20. Investigating the Effect of Learning Styles in a Blended E-Learning System: An Extension of the Technology Acceptance Model (TAM)

    ERIC Educational Resources Information Center

    Al-Azawei, Ahmed; Parslow, Patrick; Lundqvist, Karsten

    2017-01-01

    This study assesses learner perceptions of a blended e-learning system (BELS) and the feasibility of accommodating educational hypermedia systems (EHSs) according to learning styles using a modified version of the technology acceptance model (TAM). Recently, Moodle has been adopted by an Iraqi university alongside face-to-face (F2F) classrooms to…

  1. Coastal Inlets Research Program

    DTIC Science & Technology

    2014-04-01

    PCs to evaluate inlets, channels, structures, adjacent beaches dredging and placement within, regional systems .  Transfer technology and...Coastal  Modeling  or o o  Management System   (CMS) Alex Sanchez Ned MitchellCIRP Honghai Li Waves at  Research & Development Geomorphic  Evolution T B k...channel infilling Aug 2005 Baltimore, MD Inlet Modeling  System  technology transfer workshop #7 – FSBPA, Jan/Feb 2006 Sarasota, FL Modeling of waves

  2. Systems architecture: a new model for sustainability and the built environment using nanotechnology, biotechnology, information technology, and cognitive science with living technology.

    PubMed

    Armstrong, Rachel

    2010-01-01

    This report details a workshop held at the Bartlett School of Architecture, University College London, to initiate interdisciplinary collaborations for the practice of systems architecture, which is a new model for the generation of sustainable architecture that combines the discipline of the study of the built environment with the scientific study of complexity, or systems science, and adopts the perspective of systems theory. Systems architecture offers new perspectives on the organization of the built environment that enable architects to consider architecture as a series of interconnected networks with embedded links into natural systems. The public workshop brought together architects and scientists working with the convergence of nanotechnology, biotechnology, information technology, and cognitive science and with living technology to investigate the possibility of a new generation of smart materials that are implied by this approach.

  3. Instructional Systems. The Educational Technology Reviews Series. Number Eight.

    ERIC Educational Resources Information Center

    Educational Technology Publications, Englewood Cliffs, NJ.

    Composed of articles which appeared recently in "Educational Technology" magazine, this volume in the review series considers instructional systems. Topics covered include systems models for instructional design and management, the design of simulation systems, informal and vocational education, individualized instruction, operational learning…

  4. An assessment of technology-based service encounters & network security on the e-health care systems of medical centers in Taiwan

    PubMed Central

    Chang, Hsin Hsin; Chang, Ching Sheng

    2008-01-01

    Background Enhancing service efficiency and quality has always been one of the most important factors to heighten competitiveness in the health care service industry. Thus, how to utilize information technology to reduce work load for staff and expeditiously improve work efficiency and healthcare service quality is presently the top priority for every healthcare institution. In this fast changing modern society, e-health care systems are currently the best possible way to achieve enhanced service efficiency and quality under the restraint of healthcare cost control. The electronic medical record system and the online appointment system are the core features in employing e-health care systems in the technology-based service encounters. Methods This study implemented the Service Encounters Evaluation Model, the European Customer Satisfaction Index, the Attribute Model and the Overall Affect Model for model inference. A total of 700 copies of questionnaires from two authoritative southern Taiwan medical centers providing the electronic medical record system and the online appointment system service were distributed, among which 590 valid copies were retrieved with a response rate of 84.3%. We then used SPSS 11.0 and the Linear Structural Relationship Model (LISREL 8.54) to analyze and evaluate the data. Results The findings are as follows: (1) Technology-based service encounters have a positive impact on service quality, but not patient satisfaction; (2) After experiencing technology-based service encounters, the cognition of the service quality has a positive effect on patient satisfaction; and (3) Network security contributes a positive moderating effect on service quality and patient satisfaction. Conclusion It revealed that the impact of electronic workflow (online appointment system service) on service quality was greater than electronic facilities (electronic medical record systems) in technology-based service encounters. Convenience and credibility are the most important factors of service quality in technology-based service encounters that patients demand. Due to the openness of networks, patients worry that transaction information could be intercepted; also, the credibility of the hospital involved is even a bigger concern, as patients have a strong sense of distrust. Therefore, in the operation of technology-based service encounters, along with providing network security, it is essential to build an atmosphere of psychological trust. PMID:18419820

  5. An assessment of technology-based service encounters & network security on the e-health care systems of medical centers in Taiwan.

    PubMed

    Chang, Hsin Hsin; Chang, Ching Sheng

    2008-04-17

    Enhancing service efficiency and quality has always been one of the most important factors to heighten competitiveness in the health care service industry. Thus, how to utilize information technology to reduce work load for staff and expeditiously improve work efficiency and healthcare service quality is presently the top priority for every healthcare institution. In this fast changing modern society, e-health care systems are currently the best possible way to achieve enhanced service efficiency and quality under the restraint of healthcare cost control. The electronic medical record system and the online appointment system are the core features in employing e-health care systems in the technology-based service encounters. This study implemented the Service Encounters Evaluation Model, the European Customer Satisfaction Index, the Attribute Model and the Overall Affect Model for model inference. A total of 700 copies of questionnaires from two authoritative southern Taiwan medical centers providing the electronic medical record system and the online appointment system service were distributed, among which 590 valid copies were retrieved with a response rate of 84.3%. We then used SPSS 11.0 and the Linear Structural Relationship Model (LISREL 8.54) to analyze and evaluate the data. The findings are as follows: (1) Technology-based service encounters have a positive impact on service quality, but not patient satisfaction; (2) After experiencing technology-based service encounters, the cognition of the service quality has a positive effect on patient satisfaction; and (3) Network security contributes a positive moderating effect on service quality and patient satisfaction. It revealed that the impact of electronic workflow (online appointment system service) on service quality was greater than electronic facilities (electronic medical record systems) in technology-based service encounters. Convenience and credibility are the most important factors of service quality in technology-based service encounters that patients demand. Due to the openness of networks, patients worry that transaction information could be intercepted; also, the credibility of the hospital involved is even a bigger concern, as patients have a strong sense of distrust. Therefore, in the operation of technology-based service encounters, along with providing network security, it is essential to build an atmosphere of psychological trust.

  6. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    PubMed

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected by household air pollution. The challenge is not confined to developing robust technical solutions to reduce household air pollution and exposure to improve respiratory health, and prevent associated diseases. The bigger challenge is to disseminate and implement cleaner cooking technologies and fuels in the context of various social, behavioral, and economic constraints faced by poor households and communities. The Institutional Review Board of Washington University in St. Louis has exempted community based system dynamics modeling from review.

  7. A taxonomy for the evolution of human settlements on the moon and Mars

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Mandell, Humboldt C.

    1991-01-01

    A proposed structure is described for partnerships with shared interests and investments to develop the technology and approach for evolutionary surface systems for the moon and Mars. Five models are presented for cooperation with specific references to the technical evolutionary path of the surface systems. The models encompass the standard customer/provider relationship, a concept for exclusive government use, a joint venture with a government-sponsored non-SEI market, a technology joint-development approach, and a redundancy model to insure competitive pricing. The models emphasize the nonaerospace components of the settlement technologies and the decentralized nature of surface systems that make the project suitable for private industrial development by several companies. It is concluded that the taxonomy be considered when examining collaborative opportunities for lunar and Martian settlement.

  8. Designing of a technological line in the context of controlling with the use of integration of the virtual controller with the mechatronics concept designer module of the PLM Siemens NX software

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2017-08-01

    In the work is examined the sequential control system of a technological line in the form of the final part of a system of an internal transport. The process of designing this technological line using the computer-aided approach ran concurrently in two different program environments. In the Mechatronics Concept Designer module of the PLM Siemens NX software was developed the 3D model of the technological line prepared for verification the logic interrelations implemented in the control system. For this purpose, from the whole system of the technological line, it was distinguished the sub-system of actuators and sensors, because their correct operation determines the correct operation of the whole system. Whereas in the application of the virtual controller have been implemented the algorithms of work of the planned line. Then both program environments have been integrated using the OPC server, which enables the exchange of data between the considered systems. The data on the state of the object and the data defining the way and sequence of operation of the technological line are exchanged between the virtual controller and the 3D model of the technological line in real time.

  9. An Investigation of Employees' Use of E-Learning Systems: Applying the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Chen, Yen-Hsun

    2013-01-01

    The purpose of this study is to apply the technology acceptance model to examine the employees' attitudes and acceptance of electronic learning (e-learning) systems in organisations. This study examines four factors (organisational support, computer self-efficacy, prior experience and task equivocality) that are believed to influence employees'…

  10. Advanced Technology Tech Prep Partnership for Northern Kane Regional Delivery System. Final Report.

    ERIC Educational Resources Information Center

    Elgin Community Coll., IL.

    A 1-year project was undertaken to continue implementation, evaluation, and revision of a model advanced technology partnership between Elgin Community College (ECC) and the Northern Kane Regional Delivery System in Illinois. The model program, which originally included three high schools, was expanded to include five additional high schools in…

  11. Application of Deterministic and Probabilistic System Design Methods and Enhancements of Conceptual Design Tools for ERA Project

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Schutte, Jeff S.

    2016-01-01

    This report documents work done by the Aerospace Systems Design Lab (ASDL) at the Georgia Institute of Technology, Daniel Guggenheim School of Aerospace Engineering for the National Aeronautics and Space Administration, Aeronautics Research Mission Directorate, Integrated System Research Program, Environmentally Responsible Aviation (ERA) Project. This report was prepared under contract NNL12AA12C, "Application of Deterministic and Probabilistic System Design Methods and Enhancement of Conceptual Design Tools for ERA Project". The research within this report addressed the Environmentally Responsible Aviation (ERA) project goal stated in the NRA solicitation "to advance vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions." To identify technology and vehicle solutions that simultaneously meet these three metrics requires the use of system-level analysis with the appropriate level of fidelity to quantify feasibility, benefits and degradations, and associated risk. In order to perform the system level analysis, the Environmental Design Space (EDS) [Kirby 2008, Schutte 2012a] environment developed by ASDL was used to model both conventional and unconventional configurations as well as to assess technologies from the ERA and N+2 timeframe portfolios. A well-established system design approach was used to perform aircraft conceptual design studies, including technology trade studies to identify technology portfolios capable of accomplishing the ERA project goal and to obtain accurate tradeoffs between performance, noise, and emissions. The ERA goal, shown in Figure 1, is to simultaneously achieve the N+2 benefits of a cumulative noise margin of 42 EPNdB relative to stage 4, a 75 percent reduction in LTO NOx emissions relative to CAEP 6 and a 50 percent reduction in fuel burn relative to the 2005 best in class aircraft. There were 5 research task associated with this research: 1) identify technology collectors, 2) model technology collectors in EDS, 3) model and assess ERA technologies, 4) LTO and cruise emission prediction, and 5) probabilistic analysis of technology collectors and portfolios.

  12. Enhancement of the Acquisition Process for a Combat System-A Case Study to Model the Workflow Processes for an Air Defense System Acquisition

    DTIC Science & Technology

    2009-12-01

    Business Process Modeling BPMN Business Process Modeling Notation SoA Service-oriented Architecture UML Unified Modeling Language CSP...system developers. Supporting technologies include Business Process Modeling Notation ( BPMN ), Unified Modeling Language (UML), model-driven architecture

  13. SOA-based model for value-added ITS services delivery.

    PubMed

    Herrera-Quintero, Luis Felipe; Maciá-Pérez, Francisco; Marcos-Jorquera, Diego; Gilart-Iglesias, Virgilio

    2014-01-01

    Integration is currently a key factor in intelligent transportation systems (ITS), especially because of the ever increasing service demands originating from the ITS industry and ITS users. The current ITS landscape is made up of multiple technologies that are tightly coupled, and its interoperability is extremely low, which limits ITS services generation. Given this fact, novel information technologies (IT) based on the service-oriented architecture (SOA) paradigm have begun to introduce new ways to address this problem. The SOA paradigm allows the construction of loosely coupled distributed systems that can help to integrate the heterogeneous systems that are part of ITS. In this paper, we focus on developing an SOA-based model for integrating information technologies (IT) into ITS to achieve ITS service delivery. To develop our model, the ITS technologies and services involved were identified, catalogued, and decoupled. In doing so, we applied our SOA-based model to integrate all of the ITS technologies and services, ranging from the lowest-level technical components, such as roadside unit as a service (RSUAAS), to the most abstract ITS services that will be offered to ITS users (value-added services). To validate our model, a functionality case study that included all of the components of our model was designed.

  14. CoMET: Cost and Mass Evaluation Tool for Spacecraft and Mission Design

    NASA Technical Reports Server (NTRS)

    Bieber, Ben S.

    2005-01-01

    New technology in space exploration is often developed without a complete knowledge of its impact. While the immediate benefits of a new technology are obvious, it is harder to understand its indirect consequences, which ripple through the entire system. COMET is a technology evaluation tool designed to illuminate how specific technology choices affect a mission at each system level. COMET uses simplified models for mass, power, and cost to analyze performance parameters of technologies of interest. The sensitivity analysis that CoMET provides shows whether developing a certain technology will greatly benefit the project or not. CoMET is an ongoing project approaching a web-based implementation phase. This year, development focused on the models for planetary daughter craft, such as atmospheric probes, blimps and balloons, and landers. These models are developed through research into historical data, well established rules of thumb, and engineering judgment of experts at JPL. The model is validated by corroboration with JpL advanced mission studies. Other enhancements to COMET include adding launch vehicle analysis and integrating an updated cost model. When completed, COMET will allow technological development to be focused on areas that will most drastically improve spacecraft performance.

  15. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  16. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models.

    PubMed

    Schook, Lawrence B; Rund, Laurie; Begnini, Karine R; Remião, Mariana H; Seixas, Fabiana K; Collares, Tiago

    2016-01-01

    There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

  17. Integrated Technology Assessment Center (ITAC) Update

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)

    2002-01-01

    The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.

  18. Millimeter wave satellite concepts, volume 1

    NASA Technical Reports Server (NTRS)

    Hilsen, N. B.; Holland, L. D.; Thomas, R. E.; Wallace, R. W.; Gallagher, J. G.

    1977-01-01

    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications.

  19. The Model Industrial Technology Systems Project.

    ERIC Educational Resources Information Center

    Bowling Green State Univ., OH.

    This document contains materials used in a model industrial technology program that introduced technology into the curricula of elementary, middle, and high schools in three sites in Ohio: the Central site (coordinated through Ohio State University); the Northeast site (coordinated through Kent State University); and the Northwest site…

  20. An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry.

    PubMed

    Tung, Feng-Cheng; Chang, Su-Chao; Chou, Chi-Min

    2008-05-01

    Ever since National Health Insurance was introduced in 1995, the number of insurants increased to over 96% from 50 to 60%, with a continuous satisfaction rating of about 70%. However, the premium accounted for 5.77% of GDP in 2001 and the Bureau of National Health Insurance had pressing financial difficulties, so it reformed its expenditure systems, such as fee for service, capitation, case payment and the global budget system in order to control the rising medical costs. Since the change in health insurance policy, most hospitals attempted to reduce their operating expenses and improve efficiency. Introducing the electronic logistics information system is one way of reducing the cost of the department of central warehouse and the nursing stations. Hence, the study proposes a technology acceptance research model and examines how nurses' acceptance of the e-logistics information system has been affected in the medical industry. This research combines innovation diffusion theory, technology acceptance model and added two research parameters, trust and perceived financial cost to propose a new hybrid technology acceptance model. Taking Taiwan's medical industry as an experimental example, this paper studies nurses' acceptance of the electronic logistics information system. The structural equation modeling technique was used to evaluate the causal model and confirmatory factor analysis was performed to examine the reliability and validity of the measurement model. The results of the survey strongly support the new hybrid technology acceptance model in predicting nurses' intention to use the electronic logistics information system. The study shows that 'compatibility', 'perceived usefulness', 'perceived ease of use', and 'trust' all have great positive influence on 'behavioral intention to use'. On the other hand 'perceived financial cost' has great negative influence on behavioral intention to use.

  1. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  2. The Technology Acceptance Model for Resource-Limited Settings (TAM-RLS): A Novel Framework for Mobile Health Interventions Targeted to Low-Literacy End-Users in Resource-Limited Settings.

    PubMed

    Campbell, Jeffrey I; Aturinda, Isaac; Mwesigwa, Evans; Burns, Bridget; Santorino, Data; Haberer, Jessica E; Bangsberg, David R; Holden, Richard J; Ware, Norma C; Siedner, Mark J

    2017-11-01

    Although mobile health (mHealth) technologies have shown promise in improving clinical care in resource-limited settings (RLS), they are infrequently brought to scale. One limitation to the success of many mHealth interventions is inattention to end-user acceptability, which is an important predictor of technology adoption. We conducted in-depth interviews with 43 people living with HIV in rural Uganda who had participated in a clinical trial of a short messaging system (SMS)-based intervention designed to prompt return to clinic after an abnormal laboratory test. Interviews focused on established features of technology acceptance models, including perceived ease of use and perceived usefulness, and included open-ended questions to gain insight into unexplored issues related to the intervention's acceptability. We used conventional (inductive) and direct content analysis to derive categories describing use behaviors and acceptability. Interviews guided development of a proposed conceptual framework, the technology acceptance model for resource-limited settings (TAM-RLS). This framework incorporates both classic technology acceptance model categories as well as novel factors affecting use in this setting. Participants described how SMS message language, phone characteristics, and experience with similar technologies contributed to the system's ease of use. Perceived usefulness was shaped by the perception that the system led to augmented HIV care services and improved access to social support from family and colleagues. Emergent themes specifically related to mHealth acceptance among PLWH in Uganda included (1) the importance of confidentiality, disclosure, and stigma, and (2) the barriers and facilitators downstream from the intervention that impacted achievement of the system's target outcome. The TAM-RLS is a proposed model of mHealth technology acceptance based upon end-user experiences in rural Uganda. Although the proposed model requires validation, the TAM-RLS may serve as a useful tool to guide design and implementation of mHealth interventions.

  3. Applying Task-Technology Fit Model to the Healthcare Sector: a Case Study of Hospitals' Computed Tomography Patient-Referral Mechanism.

    PubMed

    Chen, Ping-Shun; Yu, Chun-Jen; Chen, Gary Yu-Hsin

    2015-08-01

    With the growth in the number of elderly and people with chronic diseases, the number of hospital services will need to increase in the near future. With myriad of information technologies utilized daily and crucial information-sharing tasks performed at hospitals, understanding the relationship between task performance and information system has become a critical topic. This research explored the resource pooling of hospital management and considered a computed tomography (CT) patient-referral mechanism between two hospitals using the information system theory framework of Task-Technology Fit (TTF) model. The TTF model could be used to assess the 'match' between the task and technology characteristics. The patient-referral process involved an integrated information framework consisting of a hospital information system (HIS), radiology information system (RIS), and picture archiving and communication system (PACS). A formal interview was conducted with the director of the case image center on the applicable characteristics of TTF model. Next, the Icam DEFinition (IDEF0) method was utilized to depict the As-Is and To-Be models for CT patient-referral medical operational processes. Further, the study used the 'leagility' concept to remove non-value-added activities and increase the agility of hospitals. The results indicated that hospital information systems could support the CT patient-referral mechanism, increase hospital performance, reduce patient wait time, and enhance the quality of care for patients.

  4. Human factors phase IV : risk analysis tool for new train control technology.

    DOT National Transportation Integrated Search

    2005-01-31

    This report covers the theoretical development of the safety state model for railroad operations. Using data from a train control technology experiment, experimental application of the model is demonstrated. A stochastic model of system behavior is d...

  5. Human factors phase IV : risk analysis tool for new train control technology

    DOT National Transportation Integrated Search

    2005-01-01

    This report covers the theoretical development of the safety state model for railroad operations. Using data from a train control technology experiment, experimental application of the model is demonstrated. A stochastic model of system behavior is d...

  6. 3D Modelling of Urban Terrain (Modelisation 3D de milieu urbain)

    DTIC Science & Technology

    2011-09-01

    Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis and Studies Panel • SCI... Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These bodies are made up of national representatives as well as...of a part of it may be made for individual use only. The approval of the RTA Information Management Systems Branch is required for more than one

  7. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less

  8. Modelling the Factors that Affect Individuals' Utilisation of Online Learning Systems: An Empirical Study Combining the Task Technology Fit Model with the Theory of Planned Behaviour

    ERIC Educational Resources Information Center

    Yu, Tai-Kuei; Yu, Tai-Yi

    2010-01-01

    Understanding learners' behaviour, perceptions and influence in terms of learner performance is crucial to predict the use of electronic learning systems. By integrating the task-technology fit (TTF) model and the theory of planned behaviour (TPB), this paper investigates the online learning utilisation of Taiwanese students. This paper provides a…

  9. Using Internet Technologies To Enhance Training.

    ERIC Educational Resources Information Center

    Pollock, Carl; Masters, Robert

    1997-01-01

    Describes how to use Internet technologies to create an intranet, or an online training database system, for improving company communications, effectiveness, and job performance. Topics include technology and performance; educating managers and key decision makers; creating a graphic model of the training system; and fitting into the existing…

  10. Technology Readiness of the NEXT Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Patterson, Michael J.

    2008-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including: a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development. The next round of competed planetary science mission announcements of opportunity, and directed mission decisions, are anticipated to occur in 2008 and 2009. Progress to date, and the success of on-going technology validation, indicate that the NEXT ion propulsion system will be a primary candidate for mission consideration in these upcoming opportunities.

  11. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  12. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  13. An object-oriented, technology-adaptive information model

    NASA Technical Reports Server (NTRS)

    Anyiwo, Joshua C.

    1995-01-01

    The primary objective was to develop a computer information system for effectively presenting NASA's technologies to American industries, for appropriate commercialization. To this end a comprehensive information management model, applicable to a wide variety of situations, and immune to computer software/hardware technological gyrations, was developed. The model consists of four main elements: a DATA_STORE, a data PRODUCER/UPDATER_CLIENT and a data PRESENTATION_CLIENT, anchored to a central object-oriented SERVER engine. This server engine facilitates exchanges among the other model elements and safeguards the integrity of the DATA_STORE element. It is designed to support new technologies, as they become available, such as Object Linking and Embedding (OLE), on-demand audio-video data streaming with compression (such as is required for video conferencing), Worldwide Web (WWW) and other information services and browsing, fax-back data requests, presentation of information on CD-ROM, and regular in-house database management, regardless of the data model in place. The four components of this information model interact through a system of intelligent message agents which are customized to specific information exchange needs. This model is at the leading edge of modern information management models. It is independent of technological changes and can be implemented in a variety of ways to meet the specific needs of any communications situation. This summer a partial implementation of the model has been achieved. The structure of the DATA_STORE has been fully specified and successfully tested using Microsoft's FoxPro 2.6 database management system. Data PRODUCER/UPDATER and PRESENTATION architectures have been developed and also successfully implemented in FoxPro; and work has started on a full implementation of the SERVER engine. The model has also been successfully applied to a CD-ROM presentation of NASA's technologies in support of Langley Research Center's TAG efforts.

  14. Human life support during interplanetary travel and domicile. V - Mars expedition technology trade study for solid waste management

    NASA Technical Reports Server (NTRS)

    Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.

    1992-01-01

    A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.

  15. Mathematical and Computational Modeling in Complex Biological Systems

    PubMed Central

    Li, Wenyang; Zhu, Xiaoliang

    2017-01-01

    The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology. PMID:28386558

  16. Mathematical and Computational Modeling in Complex Biological Systems.

    PubMed

    Ji, Zhiwei; Yan, Ke; Li, Wenyang; Hu, Haigen; Zhu, Xiaoliang

    2017-01-01

    The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology.

  17. A novel upper limb rehabilitation system with self-driven virtual arm illusion.

    PubMed

    Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul

    2014-01-01

    This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.

  18. A structural model decomposition framework for systems health management

    NASA Astrophysics Data System (ADS)

    Roychoudhury, I.; Daigle, M.; Bregon, A.; Pulido, B.

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  19. A Structural Model Decomposition Framework for Systems Health Management

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Daigle, Matthew J.; Bregon, Anibal; Pulido, Belamino

    2013-01-01

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  20. The costs of introducing new technologies into space systems

    NASA Technical Reports Server (NTRS)

    Dodson, E. N.; Partma, H.; Ruhland, W.

    1992-01-01

    A review is conducted of cost-research studies intended to provide guidelines for cost estimates of integrating new technologies into existing satellite systems. Quantitative methods are described for determining the technological state-of-the-art so that proposed programs can be evaluated accurately in terms of their contribution to technological development. The R&D costs associated with the proposed programs are then assessed with attention given to the technological advances. Also incorporated quantifiably are any reductions in the costs of production, operations, and support afforded by the advanced technologies. The proposed model is employed in relation to a satellite sizing and cost study in which a tradeoff between increased R&D costs and reduced production costs is examined. The technology/cost model provides a consistent yardstick for assessing the true relative economic impact of introducing novel techniques and technologies.

  1. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Graf, P.; Scott, G.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less

  2. Cost modeling to justify technology acquisitions.

    PubMed

    Vanden Brink, J; Gray, S

    1997-06-01

    In an era of diminishing resources, healthcare providers must justify new technology acquisitions. Cost modeling is one method of evaluating the financial impact a technology acquisition will have on a healthcare facility or integrated delivery system. This methodology requires careful data collection and a thorough analysis of both current costs and future cost savings resulting from the new technology. By using a cost modeling methodology, providers will be able to achieve competitive and economic advantages by analyzing both cost and value.

  3. Modelling Benefits-Oriented Costs for Technology Enhanced Learning

    ERIC Educational Resources Information Center

    Laurillard, Diana

    2007-01-01

    The introduction of technology enhanced learning (TEL) methods changes the deployment of the most important resource in the education system: teachers' and learners' time. New technology promises greater personalization and greater productivity, but without careful modeling of the effects on the use of staff time, TEL methods can easily increase…

  4. Marshall Space Flight Center ECLSS technology activities

    NASA Technical Reports Server (NTRS)

    Wieland, Paul

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) technology activities are presented. Topics covered include: analytical development; ECLSS modeling approach; example of water reclamation modeling needs; and hardware development and testing.

  5. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    PubMed

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  6. Electronic health records: postadoption physician satisfaction and continued use.

    PubMed

    Wright, Edward; Marvel, Jon

    2012-01-01

    One goal of public-policy makers in general and health care managers in particular is the adoption and efficient utilization of electronic health record (EHR) systems throughout the health care industry. Consequently, this investigation focused on the effects of known antecedents of technology adoption on physician satisfaction with EHR technology and the continued use of such systems. The American Academy of Family Physicians provided support in the survey of 453 physicians regarding their satisfaction with their EHR use experience. A conceptual model merging technology adoption and computer user satisfaction models was tested using structural equation modeling. Results indicate that effort expectancy (ease of use) has the most substantive effect on physician satisfaction and the continued use of EHR systems. As such, health care managers should be especially sensitive to the user and computer interface of prospective EHR systems to avoid costly and disruptive system selection mistakes.

  7. Report of the Power Sub systems Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.

  8. Systems Operations Studies for Automated Guideway Transit Systems : System Availability Model Programmer's Manual

    DOT National Transportation Integrated Search

    1981-07-01

    In order to examine specific automated guideway transit (AGT) developments and concepts, UMTA undertook a program of studies and technology investigations called Automated Guideway Transit Technology (AGTT) Program. The objectives of one segment of t...

  9. Scalable Entity-Based Modeling of Population-Based Systems, Final LDRD Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, A J; Smith, S G; Vassilevska, T K

    2005-01-27

    The goal of this project has been to develop tools, capabilities and expertise in the modeling of complex population-based systems via scalable entity-based modeling (EBM). Our initial focal application domain has been the dynamics of large populations exposed to disease-causing agents, a topic of interest to the Department of Homeland Security in the context of bioterrorism. In the academic community, discrete simulation technology based on individual entities has shown initial success, but the technology has not been scaled to the problem sizes or computational resources of LLNL. Our developmental emphasis has been on the extension of this technology to parallelmore » computers and maturation of the technology from an academic to a lab setting.« less

  10. Information and Communication Technology in the Israeli Educational System: Past, Present and Future.

    ERIC Educational Resources Information Center

    Katz, Yaacov J.

    2002-01-01

    Describes the development of the use of information and communication technology (ICT) in the Israeli educational system. Discusses a behaviorist approach to computer assisted instruction; open-ended courseware; constructivist approaches to multimedia, including simulations, modeling, and virtual reality; technology-based distance learning; and…

  11. Educational Technology and Organizational Development: A Collaborative Approach to Organizational Change.

    ERIC Educational Resources Information Center

    Forbes, Raymond L., Jr.; Nickols, Frederick W.

    The basic similarities between educational technology and organizational development provide a powerful rationale for collaboration. The two disciplines are essentially in the same business, that of systematically changing human behavior. System theory and the system model appear to supply the language and the technology through which such efforts…

  12. A Product Development Decision Model for Cockpit Weather Information System

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin; Johnson, Edward J., Jr. (Technical Monitor)

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  13. A Product Development Decision Model for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  14. Emerging technology for advancing the treatment of epilepsy using a dynamic control framework.

    PubMed

    Stanslaski, Scott; Giftakis, John; Stypulkowski, Paul; Carlson, Dave; Afshar, Pedram; Cong, Peng; Denison, Timothy

    2011-01-01

    We briefly describe a dynamic control system framework for neuromodulation for epilepsy, with an emphasis on its practical challenges and the preliminary validation of key prototype technologies in a chronic animal model. The current state of neuromodulation can be viewed as a classical dynamic control framework such that the nervous system is the classical "plant", the neural stimulator is the controller/actuator, clinical observation, patient diaries and/or measured bio-markers are the sensor, and clinical judgment applied to these sensor inputs forms the state estimator. Technology can potentially address two main factors contributing to the performance limitations of existing systems: "observability," the ability to observe the state of the system from output measurements, and "controllability," the ability to drive the system to a desired state. In addition to improving sensors and actuator performance, methods and tools to better understand disease state dynamics and state estimation are also critical for improving therapy outcomes. We describe our preliminary validation of key "observability" and "controllability" technology blocks using an implanted research tool in an epilepsy disease model. This model allows for testing the key emerging technologies in a representative neural network of therapeutic importance. In the future, we believe these technologies might enable both first principles understanding of neural network behavior for optimizing therapy design, and provide a practical pathway towards clinical translation.

  15. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  16. Agent-based Modeling to Simulate the Diffusion of Water-Efficient Innovations and the Emergence of Urban Water Sustainability

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.

    2014-12-01

    The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.

  17. Information data systems for a global change technology initiative architecture trade study

    NASA Technical Reports Server (NTRS)

    Murray, Nicholas D.

    1991-01-01

    The Global Change Technology Initiative (GCTI) was established to develop technology which will enable use of satellite systems of Earth observations on a global scale, enable use of the observations to predictively model Earth's changes, and provide scientists, government, business, and industry with quick access to the resulting information. At LaRC, a GCTI Architecture Trade Study was undertaken to develop and evaluate the architectural implications to meet the requirements of the global change studies and the eventual implementation of a global change system. The output of the trade study are recommended technologies for the GCTI. That portion of the study concerned with the information data system is documented. The information data system for an earth global change modeling system can be very extensive and beyond affordability in terms of today's costs. Therefore, an incremental approach to gaining a system is most likely. An options approach to levels of capability versus needed technologies was developed. The primary drivers of the requirements for the information data system evaluation were the needed science products, the science measurements, the spacecraft orbits, the instruments configurations, and the spacecraft configurations and their attendant architectures. The science products requirements were not studied here; however, some consideration of the product needs were included in the evaluation results. The information data system technology items were identified from the viewpoint of the desirable overall information system characteristics.

  18. Study on the key technology of grain logistics tracking system

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    In recent year, with the rapid development of GIS technology, more and more programming problems depend on the GIS technology and professional model system. The solution of auxiliary programming problem by using GIS technology, which has become very popular. GIS is an important tool and technology, that captures, stores, analyzes, manages, and presents data that are linked to location. A grain logistics distribution system based on GIS is established, which provides a visualization scheme during the process of grain circulation and supports users making decision and analyzing for grain logistics enterprise.

  19. A Flexible Electronic Commerce Recommendation System

    NASA Astrophysics Data System (ADS)

    Gong, Songjie

    Recommendation systems have become very popular in E-commerce websites. Many of the largest commerce websites are already using recommender technologies to help their customers find products to purchase. An electronic commerce recommendation system learns from a customer and recommends products that the customer will find most valuable from among the available products. But most recommendation methods are hard-wired into the system and they support only fixed recommendations. This paper presented a framework of flexible electronic commerce recommendation system. The framework is composed by user model interface, recommendation engine, recommendation strategy model, recommendation technology group, user interest model and database interface. In the recommender strategy model, the method can be collaborative filtering, content-based filtering, mining associate rules method, knowledge-based filtering method or the mixed method. The system mapped the implementation and demand through strategy model, and the whole system would be design as standard parts to adapt to the change of the recommendation strategy.

  20. Electrical Systems Analysis at NASA Glenn Research Center: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Liang, Anita D.; Berton, Jeffrey J.; Wickenheiser, Timothy J.

    2003-01-01

    An analysis of an electrical power and propulsion system for a 2-place general aviation aircraft is presented to provide a status of such modeling at NASA Glenn Research Center. The thermodynamic/ electrical model and mass prediction tools are described and the resulting system power and mass are shown. Three technology levels are used to predict the effect of advancements in component technology. Methods of fuel storage are compared by mass and volume. Prospects for future model development and validation at NASA as well as possible applications are also summarized.

  1. Research of Trust Chain of Operating System

    NASA Astrophysics Data System (ADS)

    Li, Hongjiao; Tian, Xiuxia

    Trust chain is one of the key technologies in designing secure operating system based on TC technology. Constructions of trust chain and trust models are analyzed. Future works in these directions are discussed.

  2. Aerospace Applications of Magnetic Suspension Technology, part 1

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1991-01-01

    Papers presented at the conference on aerospace applications of magnetic suspension technology are compiled. The following subject areas are covered: pointing and isolation systems; microgravity and vibration isolation; bearing applications; wind tunnel model suspension systems; large gap magnetic suspension systems; control systems; rotating machinery; science and application of superconductivity; and sensors.

  3. Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology.

    PubMed

    Janssen, Sander J C; Porter, Cheryl H; Moore, Andrew D; Athanasiadis, Ioannis N; Foster, Ian; Jones, James W; Antle, John M

    2017-07-01

    Agricultural modeling has long suffered from fragmentation in model implementation. Many models are developed, there is much redundancy, models are often poorly coupled, model component re-use is rare, and it is frequently difficult to apply models to generate real solutions for the agricultural sector. To improve this situation, we argue that an open, self-sustained, and committed community is required to co-develop agricultural models and associated data and tools as a common resource. Such a community can benefit from recent developments in information and communications technology (ICT). We examine how such developments can be leveraged to design and implement the next generation of data, models, and decision support tools for agricultural production systems. Our objective is to assess relevant technologies for their maturity, expected development, and potential to benefit the agricultural modeling community. The technologies considered encompass methods for collaborative development and for involving stakeholders and users in development in a transdisciplinary manner. Our qualitative evaluation suggests that as an overall research challenge, the interoperability of data sources, modular granular open models, reference data sets for applications and specific user requirements analysis methodologies need to be addressed to allow agricultural modeling to enter in the big data era. This will enable much higher analytical capacities and the integrated use of new data sources. Overall agricultural systems modeling needs to rapidly adopt and absorb state-of-the-art data and ICT technologies with a focus on the needs of beneficiaries and on facilitating those who develop applications of their models. This adoption requires the widespread uptake of a set of best practices as standard operating procedures.

  4. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models

    PubMed Central

    Schook, Lawrence B.; Rund, Laurie; Begnini, Karine R.; Remião, Mariana H.; Seixas, Fabiana K.; Collares, Tiago

    2016-01-01

    There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research. PMID:26973698

  5. Smart Water: Energy-Water Optimization in Drinking Water Systems

    EPA Science Inventory

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  6. A model for technology assessment as applied to closed loop infusion systems. Technology Assessment Task Force of the Society of Critical Care Medicine.

    PubMed

    Jastremski, M; Jastremski, C; Shepherd, M; Friedman, V; Porembka, D; Smith, R; Gonzales, E; Swedlow, D; Belzberg, H; Crass, R

    1995-10-01

    To test a model for the assessment of critical care technology on closed loop infusion control, a technology that is in its early stages of development and testing on human subjects. A computer-assisted search of the English language literature and reviews of the gathered data by experts in the field of closed loop infusion control systems. Studies relating to closed loop infusion control that addressed one or more of the questions contained in our technology assessment template were analyzed. Study design was not a factor in article selection. However, the lack of well-designed clinical outcome studies was an important factor in determining our conclusions. A focus person summarized the data from the selected studies that related to each of the assessment questions. The preliminary data summary developed by the focus person was further analyzed and refined by the task force. Experts in closed loop systems were then added to the group to review the summary provided by the task force. These experts' comments were considered by the task force and this final consensus report was developed. Closed loop system control is a technological concept that may be applicable to several aspects of critical care practice. This is a technology in the early stages of evolution and much more research and data are needed before its introduction into usual clinical practice. Furthermore, each specific application and each device for each application (e.g., nitroprusside infusion, ventilator adjustment), although based on the same technological concept, are sufficiently different in terms of hardware and computer algorithms to require independent validation studies. Closed loop infusion systems may have a role in critical care practice. However, for most applications, further development is required to move this technology from the innovation phase to the point where it can be evaluated so that its role in critical car practice can be defined. Each application of closed loop infusion systems must be independently validated by appropriately designed research studies. Users should be provided with the clinical parameters driving each closed loop system so that they can ensure that it agrees with their opinion of acceptable medical practice. Clinical researchers and leaders in industry should collaborate to perform the scientifically valid, outcome-based research that is necessary to evaluate the effect of this new technology. The original model we developed for technology assessment required the addition of several more questions to produce a complete analysis of an emerging technology. An emerging technology should be systematically assessed (using a model such as the model developed by the Society of Critical Care Medicine), before its introduction into clinical practice in order to provide a focus for human outcome validation trials and to minimize the possibility of widespread use of an unproven technology.

  7. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2005-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.

  8. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  9. The Chain-Link Fence Model: A Framework for Creating Security Procedures

    ERIC Educational Resources Information Center

    Houghton, Robert F.

    2013-01-01

    A long standing problem in information technology security is how to help reduce the security footprint. Many specific proposals exist to address specific problems in information technology security. Most information technology solutions need to be repeatable throughout the course of an information systems lifecycle. The Chain-Link Fence Model is…

  10. Improving Technology Acceptance Modeling for Disadvantaged Communities Using a Systems Engineering Approach

    ERIC Educational Resources Information Center

    Fletcher, Jordan L.

    2013-01-01

    Developing nations are poised to spend billions on information and communication technology (ICT) innovation in 2020. A study of the historical adoption of ICT in developing nations has indicated that their adoption patterns do not follow typical technology innovation adoption models. This study addressed the weaknesses found in existing…

  11. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  12. Control technology for future aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.

    1984-01-01

    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.

  13. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).

  14. Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.

    2002-04-01

    An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.

  15. National Systems of Innovation and Technological Differentiation:. a Multi-Country Model

    NASA Astrophysics Data System (ADS)

    Ribeiro, Leonardo C.; Ruiz, Ricardo M.; Albuquerque, Eduardo M.; Bernardes, Américo T.

    Science and technology have a fundamental role in the economic development. Although this statement is generally well accepted, the internal mechanisms which are responsible for these interactions are not clear. In the last decade, dealing with this problem, many models have been proposed. In this paper, we introduce a model that creates an artificial world economy that is a network of countries. Each country has its own national system of innovation and the interactions between countries are given by functions that connect the competitiveness of their prices and their technological capabilities. Starting from different configurations, the artificial world economy self-organizes itself and creates a hierarchies of countries.

  16. Determining the Roles of Mentors in the Teachers' Use of Technology: Implementation of Systems-Based Mentoring Model

    ERIC Educational Resources Information Center

    Gökoglu, Seyfullah; Çakiroglu, Ünal

    2017-01-01

    The aim of this case study is to evaluate the effect of mentors on teachers' technology integration process into their classrooms. In integration process, interactions between the mentors and the teachers are implemented in terms of Systems-Based Mentoring Model (SBMM). Mentors' leadership roles were determined and changes in teachers' technology…

  17. Nurses' Perceptions of the Impact of Work Systems and Technology on Patient Safety during the Medication Administration Process

    ERIC Educational Resources Information Center

    Gallagher Gordon, Mary

    2012-01-01

    This dissertation examines nurses' perceptions of the impacts of systems and technology utilized during the medication administration process on patient safety and the culture of medication error reporting. This exploratory research study was grounded in a model of patient safety based on Patricia Benner's Novice to Expert Skill Acquisition model,…

  18. Information and Communication Technology Skills of Students Using the Distant Education Management System to Complete Their Theology Undergraduate Education

    ERIC Educational Resources Information Center

    Yalman, Murat; Basaran, Bulent; Gonen, Selehattin

    2016-01-01

    Considering several variables, the present study aimed at examining the information and communication technology skills of university students taking their courses with the distant education system. In the study, the singular and relational survey model, one of general survey models, was used. The research sample was made up of 381 students…

  19. Distributed Energy Systems Integration and Demand Optimization for Autonomous Operations and Electric Grid Transactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghatikar, Girish; Mashayekh, Salman; Stadler, Michael

    Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost,more » energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.« less

  20. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  1. Technology assessment of advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

  2. Embedded Multiprocessor Technology for VHSIC Insertion

    NASA Technical Reports Server (NTRS)

    Hayes, Paul J.

    1990-01-01

    Viewgraphs on embedded multiprocessor technology for VHSIC insertion are presented. The objective was to develop multiprocessor system technology providing user-selectable fault tolerance, increased throughput, and ease of application representation for concurrent operation. The approach was to develop graph management mapping theory for proper performance, model multiprocessor performance, and demonstrate performance in selected hardware systems.

  3. Using the MCPLXS Generator for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Moore, Arlene A.; Dean, Edwin B.

    1987-01-01

    The objective of this paper is to acquaint you with some of the approaches we are taking at Langley to incorporate escalations (or de-escalations) of technology when modeling futuristic systems. Since we have a short turnaround between the time we receive enough descriptive information to start estimating the project and when the estimate is needed (the "we-want-it-yesterday syndrome"), creativity is often necessary. There is not much time available for tool development. It is expedient to use existing tools in an adaptive manner to model the situation at hand. Specifically, this paper describes the use of the RCA PRICE MCPLXS Generator to incorporate technology transfer and technology escalation in estimates for advanced space systems such as Shuttle II and NASA advanced technology vehicles. It is assumed that the reader is familiar with the RCA PRICE family of models as well as the RCA PRICE utility programs such as SCPLX, PARAM, PARASYN, and the MCPLXS Generator.

  4. Maturity Models of Healthcare Information Systems and Technologies: a Literature Review.

    PubMed

    Carvalho, João Vidal; Rocha, Álvaro; Abreu, António

    2016-06-01

    The maturity models are instruments to facilitate organizational management, including the management of its information systems function. These instruments are used also in hospitals. The objective of this article is to identify and compare the maturity models for management of information systems and technologies (IST) in healthcare. For each maturity model, it is identified the methodology of development and validation, as well as the scope, stages and their characteristics by dimensions or influence factors. This study resulted in the need to develop a maturity model based on a holistic approach. It will include a comprehensive set of influencing factors to reach all areas and subsystems of health care organizations.

  5. Status of NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David; Pencil, Eric; Vento, Dan; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts.

  6. System Model for MEMS based Laser Ultrasonic Receiver

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    2002-01-01

    A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.

  7. Using information communication technology in models of integrated community-based primary health care: learning from the iCOACH case studies.

    PubMed

    Steele Gray, Carolyn; Barnsley, Jan; Gagnon, Dominique; Belzile, Louise; Kenealy, Tim; Shaw, James; Sheridan, Nicolette; Wankah Nji, Paul; Wodchis, Walter P

    2018-06-26

    Information communication technology (ICT) is a critical enabler of integrated models of community-based primary health care; however, little is known about how existing technologies have been used to support new models of integrated care. To address this gap, we draw on data from an international study of integrated models, exploring how ICT is used to support activities of integrated care and the organizational and environmental barriers and enablers to its adoption. We take an embedded comparative multiple-case study approach using data from a study of implementation of nine models of integrated community-based primary health care, the Implementing Integrated Care for Older Adults with Complex Health Needs (iCOACH) study. Six cases from Canada, three each in Ontario and Quebec, and three in New Zealand, were studied. As part of the case studies, interviews were conducted with managers and front-line health care providers from February 2015 to March 2017. A qualitative descriptive approach was used to code data from 137 interviews and generate word tables to guide analysis. Despite different models and contexts, we found strikingly similar accounts of the types of activities supported through ICT systems in each of the cases. ICT systems were used most frequently to support activities like care coordination by inter-professional teams through information sharing. However, providers were limited in their ability to efficiently share patient data due to data access issues across organizational and professional boundaries and due to system functionality limitations, such as a lack of interoperability. Even in innovative models of care, managers and providers in our cases mainly use technology to enable traditional ways of working. Technology limitations prevent more innovative uses of technology that could support disruption necessary to improve care delivery. We argue the barriers to more innovative use of technology are linked to three factors: (1) information access barriers, (2) limited functionality of available technology, and (3) organizational and provider inertia.

  8. Application of Mathematical and Three-Dimensional Computer Modeling Tools in the Planning of Processes of Fuel and Energy Complexes

    NASA Astrophysics Data System (ADS)

    Aksenova, Olesya; Nikolaeva, Evgenia; Cehlár, Michal

    2017-11-01

    This work aims to investigate the effectiveness of mathematical and three-dimensional computer modeling tools in the planning of processes of fuel and energy complexes at the planning and design phase of a thermal power plant (TPP). A solution for purification of gas emissions at the design development phase of waste treatment systems is proposed employing mathematical and three-dimensional computer modeling - using the E-nets apparatus and the development of a 3D model of the future gas emission purification system. Which allows to visualize the designed result, to select and scientifically prove economically feasible technology, as well as to ensure the high environmental and social effect of the developed waste treatment system. The authors present results of a treatment of planned technological processes and the system for purifying gas emissions in terms of E-nets. using mathematical modeling in the Simulink application. What allowed to create a model of a device from the library of standard blocks and to perform calculations. A three-dimensional model of a system for purifying gas emissions has been constructed. It allows to visualize technological processes and compare them with the theoretical calculations at the design phase of a TPP and. if necessary, make adjustments.

  9. A brief review on key technologies in the battery management system of electric vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  10. Schedule Risks Due to Delays in Advanced Technology Development

    NASA Technical Reports Server (NTRS)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  11. Explicating an Evidence-Based, Theoretically Informed, Mobile Technology-Based System to Improve Outcomes for People in Recovery for Alcohol Dependence

    PubMed Central

    Gustafson, David H.; Isham, Andrew; Baker, Timothy; Boyle, Michael G.; Levy, Michael

    2011-01-01

    Post treatment relapse to uncontrolled alcohol use is common. More cost-effective approaches are needed. We believe currently available communication technology can use existing models for relapse prevention to cost-effectively improve long-term relapse prevention. This paper describes: 1) research-based elements of alcohol related relapse prevention and how they can be encompassed in Self Determination Theory (SDT) and Marlatt’s Cognitive Behavioral Relapse Prevention Model, 2) how technology could help address the needs of people seeking recovery, 3) a technology-based prototype, organized around Self Determination Theory and Marlatt’s model and 4) how we are testing a system based on the ideas in this article and related ethical and operational considerations. PMID:21190410

  12. Understanding Intention to Use Electronic Information Resources: A Theoretical Extension of the Technology Acceptance Model (TAM)

    PubMed Central

    Tao, Donghua

    2008-01-01

    This study extended the Technology Acceptance Model (TAM) by examining the roles of two aspects of e-resource characteristics, namely, information quality and system quality, in predicting public health students’ intention to use e-resources for completing research paper assignments. Both focus groups and a questionnaire were used to collect data. Descriptive analysis, data screening, and Structural Equation Modeling (SEM) techniques were used for data analysis. The study found that perceived usefulness played a major role in determining students’ intention to use e-resources. Perceived usefulness and perceived ease of use fully mediated the impact that information quality and system quality had on behavior intention. The research model enriches the existing technology acceptance literature by extending TAM. Representing two aspects of e-resource characteristics provides greater explanatory information for diagnosing problems of system design, development, and implementation. PMID:18999300

  13. Understanding intention to use electronic information resources: A theoretical extension of the technology acceptance model (TAM).

    PubMed

    Tao, Donghua

    2008-11-06

    This study extended the Technology Acceptance Model (TAM) by examining the roles of two aspects of e-resource characteristics, namely, information quality and system quality, in predicting public health students' intention to use e-resources for completing research paper assignments. Both focus groups and a questionnaire were used to collect data. Descriptive analysis, data screening, and Structural Equation Modeling (SEM) techniques were used for data analysis. The study found that perceived usefulness played a major role in determining students' intention to use e-resources. Perceived usefulness and perceived ease of use fully mediated the impact that information quality and system quality had on behavior intention. The research model enriches the existing technology acceptance literature by extending TAM. Representing two aspects of e-resource characteristics provides greater explanatory information for diagnosing problems of system design, development, and implementation.

  14. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  15. NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Anderson, David J.

    2008-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  16. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  17. Future Defence Budget Constraints: Challenges and Opportunities (Contraintes futures sur les budgets de defense: Defis et opportunites)

    DTIC Science & Technology

    2016-12-01

    collaborative effort is addressed by six Technical Panels who manage a wide range of scientific research activities, a Group specialising in modelling and...HFM Human Factors and Medicine Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis...and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These Panels and Group are the

  18. Student Research Projects

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny A.

    1998-01-01

    Numerous FY1998 student research projects were sponsored by the Mississippi State University Center for Air Sea Technology. This technical note describes these projects which include research on: (1) Graphical User Interfaces, (2) Master Environmental Library, (3) Database Management Systems, (4) Naval Interactive Data Analysis System, (5) Relocatable Modeling Environment, (6) Tidal Models, (7) Book Inventories, (8) System Analysis, (9) World Wide Web Development, (10) Virtual Data Warehouse, (11) Enterprise Information Explorer, (12) Equipment Inventories, (13) COADS, and (14) JavaScript Technology.

  19. Multiobjective optimization of hybrid regenerative life support technologies. Topic D: Technology Assessment

    NASA Technical Reports Server (NTRS)

    Manousiouthakis, Vasilios

    1995-01-01

    We developed simple mathematical models for many of the technologies constituting the water reclamation system in a space station. These models were employed for subsystem optimization and for the evaluation of the performance of individual water reclamation technologies, by quantifying their operational 'cost' as a linear function of weight, volume, and power consumption. Then we performed preliminary investigations on the performance improvements attainable by simple hybrid systems involving parallel combinations of technologies. We are developing a software tool for synthesizing a hybrid water recovery system (WRS) for long term space missions. As conceptual framework, we are employing the state space approach. Given a number of available technologies and the mission specifications, the state space approach would help design flowsheets featuring optimal process configurations, including those that feature stream connections in parallel, series, or recycles. We visualize this software tool to function as follows: given the mission duration, the crew size, water quality specifications, and the cost coefficients, the software will synthesize a water recovery system for the space station. It should require minimal user intervention. The following tasks need to be solved for achieving this goal: (1) formulate a problem statement that will be used to evaluate the advantages of a hybrid WRS over a single technology WBS; (2) model several WRS technologies that can be employed in the space station; (3) propose a recycling network design methodology (since the WRS synthesis task is a recycling network design problem, it is essential to employ a systematic method in synthesizing this network); (4) develop a software implementation for this design methodology, design a hybrid system using this software, and compare the resulting WRS with a base-case WRS; and (5) create a user-friendly interface for this software tool.

  20. Computer Integrated Manufacturing: Physical Modelling Systems Design. A Personal View.

    ERIC Educational Resources Information Center

    Baker, Richard

    A computer-integrated manufacturing (CIM) Physical Modeling Systems Design project was undertaken in a time of rapid change in the industrial, business, technological, training, and educational areas in Australia. A specification of a manufacturing physical modeling system was drawn up. Physical modeling provides a flexibility and configurability…

  1. The Aviation System Analysis Capability Air Carrier Cost-Benefit Model

    NASA Technical Reports Server (NTRS)

    Gaier, Eric M.; Edlich, Alexander; Santmire, Tara S.; Wingrove, Earl R.., III

    1999-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. Therefore, NASA is developing the ability to evaluate the potential impact of various advanced technologies. By thoroughly understanding the economic impact of advanced aviation technologies and by evaluating how the new technologies will be used in the integrated aviation system, NASA aims to balance its aeronautical research program and help speed the introduction of high-leverage technologies. To meet these objectives, NASA is building the Aviation System Analysis Capability (ASAC). NASA envisions ASAC primarily as a process for understanding and evaluating the impact of advanced aviation technologies on the U.S. economy. ASAC consists of a diverse collection of models and databases used by analysts and other individuals from the public and private sectors brought together to work on issues of common interest to organizations in the aviation community. ASAC also will be a resource available to the aviation community to analyze; inform; and assist scientists, engineers, analysts, and program managers in their daily work. The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. Commercial air carriers, in particular, are an important stakeholder in this community. Therefore, to fully evaluate the implications of advanced aviation technologies, ASAC requires a flexible financial analysis tool that credibly links the technology of flight with the financial performance of commercial air carriers. By linking technical and financial information, NASA ensures that its technology programs will continue to benefit the user community. In addition, the analysis tool must be capable of being incorporated into the wide-ranging suite of economic and technical models that comprise ASAC. This report describes an Air Carrier Cost-Benefit Model (CBM) that meets these requirements. The ASAC CBM is distinguished from many of the aviation cost-benefit models by its exclusive focus on commercial air carriers. The model considers such benefit categories as time and fuel savings, utilization opportunities, reliability and capacity enhancements, and safety and security improvements. The model distinguishes between benefits that are predictable and those that occur randomly. By making such a distinction, the model captures the ability of air carriers to reoptimize scheduling and crew assignments for predictable benefits. In addition, the model incorporates a life-cycle cost module for new technology, which applies the costs of nonrecurring acquisitions, recurring maintenance and operation, and training to each aircraft equipment type independently.

  2. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  3. Energy demand analytics using coupled technological and economic models

    EPA Science Inventory

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  4. Endogenous technological and population change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2014-08-01

    Ancient civilizations may have dispersed or collapsed under extreme dry conditions. There are indications that the same may hold for modern societies. However, hydroclimatic change cannot be the sole predictor of the fate of contemporary societies in water-scarce regions. This paper focuses on technological change as a factor that may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. We study the role of technological change on the dynamics of coupled human-water systems, and model technological change as an endogenous process that depends on many factors intrinsic to coupled human-water dynamics. We do not treat technology as an exogenous random sequence of events, but assume that it results from societal actions. While the proposed model is a rather simple model of a coupled human-water system, it is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity, but typically it does so only to a certain extent. In general we find that endogenous technology change under increasing water scarcity helps to delay the peak of population size before it inevitably starts to decline. We also analyze the case when water remains constant over time and find that co-evolutionary trajectories can never grow at a constant rate; rather the rate itself grows with time. Thus our model does not predict a co-evolutionary trajectory of a socio-hydrological system where technological innovation harmoniously provides for a growing population. It allows either for an explosion or an eventual dispersal of population. The latter occurs only under increasing water scarcity. As a result, we draw the conclusion that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water-scarce basins.

  5. Modeling and Simulation Roadmap to Enhance Electrical Energy Security of U.S. Naval Bases

    DTIC Science & Technology

    2012-03-01

    evaluating power system architectures and technologies and, therefore, can become a valuable tool for the implementation of the described plan for Navy...a well validated and consistent process for evaluating power system architectures and technologies and, therefore, can be a valuable tool for the...process for evaluating power system architectures and component technologies is needed to support the development and implementation of these new

  6. Model Checking for Verification of Interactive Health IT Systems

    PubMed Central

    Butler, Keith A.; Mercer, Eric; Bahrami, Ali; Tao, Cui

    2015-01-01

    Rigorous methods for design and verification of health IT systems have lagged far behind their proliferation. The inherent technical complexity of healthcare, combined with the added complexity of health information technology makes their resulting behavior unpredictable and introduces serious risk. We propose to mitigate this risk by formalizing the relationship between HIT and the conceptual work that increasingly typifies modern care. We introduce new techniques for modeling clinical workflows and the conceptual products within them that allow established, powerful modeling checking technology to be applied to interactive health IT systems. The new capability can evaluate the workflows of a new HIT system performed by clinicians and computers to improve safety and reliability. We demonstrate the method on a patient contact system to demonstrate model checking is effective for interactive systems and that much of it can be automated. PMID:26958166

  7. Manned space station environmental control and life support system computer-aided technology assessment program

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Pickett, S. J.; Sage, K. H.

    1984-01-01

    A computer program for assessing manned space station environmental control and life support systems technology is described. The methodology, mission model parameters, evaluation criteria, and data base for 17 candidate technologies for providing metabolic oxygen and water to the crew are discussed. Examples are presented which demonstrate the capability of the program to evaluate candidate technology options for evolving space station requirements.

  8. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  9. Framework for a clinical information system.

    PubMed

    Van De Velde, R; Lansiers, R; Antonissen, G

    2002-01-01

    The design and implementation of Clinical Information System architecture is presented. This architecture has been developed and implemented based on components following a strong underlying conceptual and technological model. Common Object Request Broker and n-tier technology featuring centralised and departmental clinical information systems as the back-end store for all clinical data are used. Servers located in the "middle" tier apply the clinical (business) model and application rules. The main characteristics are the focus on modelling and reuse of both data and business logic. Scalability as well as adaptability to constantly changing requirements via component driven computing are the main reasons for that approach.

  10. Models and methods for assessing the value of HVDC and MVDC technologies in modern power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Elizondo, Marcelo A.; O'Brien, James G.

    This report reflects the results of U.S. Department of Energy’s (DOE) Grid Modernization project 0074 “Models and methods for assessing the value of HVDC [high-voltage direct current] and MTDC [multi-terminal direct current] technologies in modern power grids.” The work was done by the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) in cooperation with Mid-Continent Independent System Operator (MISO) and Siemens. The main motivation of this study was to show the benefit of using direct current (DC) systems larger than those in existence today as they overlap with the alternating current (AC) systems. Proper use of theirmore » flexibility in terms of active/reactive power control and fast response can provide much-needed services to the grid at the same time as moving large blocks of energy to take advantage of cost diversity. Ultimately, the project’s success will enable decision-makers and investors to make well-informed decisions regarding this use of DC systems. This project showed the technical feasibility of HVDC macrogrid for frequency control and congestion relief in addition to bulk power transfers. Industry-established models for commonly used technologies were employed, along with high-fidelity models for recently developed HVDC converter technologies; like the modular multilevel converters (MMCs), a voltage source converters (VSC). Models for General Electric Positive Sequence Load Flow (GE PSLF) and Siemens Power System Simulator (PSS/E), widely used analysis programs, were for the first time adapted to include at the same time both Western Electricity Coordinating Council (WECC) and Eastern Interconnection (EI), the two largest North American interconnections. The high-fidelity models and their control were developed in detail for MMC system and extended to HVDC systems in point-to-point and in three-node multi-terminal configurations. Using a continental-level mixed AC-DC grid model, and using a HVDC macrogrid power flow and transient stability model, the results showed that the HVDC macrogrid relieved congestion and mitigated loop flows in AC networks, and provided up to 24% improvement in frequency responses. These are realistic studies, based on the 2025 heavy summer and EI multi-regional modeling working group (MMWG) 2026 summer peak cases. This work developed high-fidelity models and simulation algorithms to understand the dynamics of MMC. The developed models and simulation algorithms are up to 25 times faster than the existing algorithms. Models and control algorithms for high-fidelity models were designed and tested for point-to-point and multi-terminal configurations. The multi-terminal configuration was tested connecting simplified models of EI, WI, and Electric Reliability Council of Texas (ERCOT). The developed models showed up to 45% improvement in frequency response with the connection of all the three asynchronous interconnections in the United States using fast and advanced DC technologies like the multi-terminal MMC-DC system. Future work will look into developing high-fidelity models of other advanced DC technologies, combining high-fidelity models with the continental-level model, incorporating additional services. More scenarios involving large-scale HVDC and MTDC will be evaluated.« less

  11. DARPA Emerging Technologies

    DTIC Science & Technology

    2016-01-01

    development requires wind tunnels and ranges that do not currently exist. Furthermore, continued technology matura- tion is needed for thermal management...designed with conceptual design engine model (at existing technology level), or existing propul- sion system, or modified propulsion system (e.g...internal cameras reading gauges and dials and switch positions , directly tapping into current or future avion- ics service buses and integrating

  12. Spaceborne power systems preference analyses. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.

    1985-01-01

    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis to identify promising concepts for further technology development. Four groups interviewed were: safety, systems definition and design, technology assessment, and mission analysis. The ranking results were consistent from group and for different utility function models for individuals.

  13. Development of a framework for the assessment of capacity and throughput technologies within the National Airspace System

    NASA Astrophysics Data System (ADS)

    Garcia, Elena

    The demand for air travel is expanding beyond the capacity of the existing National Airspace System. Excess traffic results in delays and compromised safety. Thus, a number of initiatives to improve airspace capacity have been proposed. To assess the impact of these technologies on air traffic one must move beyond the vehicle to a system-of-systems point of view. This top-level perspective must include consideration of the aircraft, airports, air traffic control and airlines that make up the airspace system. In addition to these components and their interactions economics, safety and government regulations must also be considered. Furthermore, the air transportation system is inherently variable with changes in everything from fuel prices to the weather. The development of a modeling environment that enables a comprehensive probabilistic evaluation of technological impacts was the subject of this thesis. The final modeling environment developed used economics as the thread to tie the airspace components together. Airport capacities and delays were calculated explicitly with due consideration to the impacts of air traffic control. The delay costs were then calculated for an entire fleet, and an airline economic analysis, considering the impact of these costs, was carried out. Airline return on investment was considered the metric of choice since it brings together all costs and revenues, including the cost of delays, landing fees for airport use and aircraft financing costs. Safety was found to require a level of detail unsuitable for a system-of-systems approach and was relegated to future airspace studies. Environmental concerns were considered to be incorporated into airport regulations and procedures and were not explicitly modeled. A deterministic case study was developed to test this modeling environment. The Atlanta airport operations for the year 2000 were used for validation purposes. A 2005 baseline was used as a basis for comparing the four technologies considered: a very large aircraft, Terminal Area Productivity air traffic control technologies, smoothing of an airline schedule, and the addition of a runway. A case including all four technologies simultaneously was also considered. Unfortunately, the complexity of the system prevented full exploration of the probabilistic aspects of the National Airspace System.

  14. STochastic Analysis of Technical Systems (STATS): A model for evaluating combined effects of multiple uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kranz, L.; VanKuiken, J.C.; Gillette, J.L.

    1989-12-01

    The STATS model, now modified to run on microcomputers, uses user- defined component uncertainties to calculate composite uncertainty distributions for systems or technologies. The program can be used to investigate uncertainties for a single technology on to compare two technologies. Although the term technology'' is used throughout the program screens, the program can accommodate very broad problem definitions. For example, electrical demand uncertainties, health risks associated with toxic material exposures, or traffic queuing delay times can be estimated. The terminology adopted in this version of STATS reflects the purpose of the earlier version, which was to aid in comparing advancedmore » electrical generating technologies. A comparison of two clean coal technologies in two power plants is given as a case study illustration. 7 refs., 35 figs., 7 tabs.« less

  15. Corporate Average Fuel Economy Compliance and Effects Modeling System Documentation

    DOT National Transportation Integrated Search

    2009-04-01

    The Volpe National Transportation Systems Center (Volpe Center) of the United States Department of Transportation's Research and Innovative Technology Administration has developed a modeling system to assist the National Highway Traffic Safety Admini...

  16. The monocular visual imaging technology model applied in the airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  17. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.

    1980-01-01

    Technologies including accelerated technology that are critical to performance and/or provide cost advantages for future space transportation systems are identified. Mission models are scoped and include priority missions, and cargo missions. Summary data, providing primary design concepts and features, are given for the SSTO, HLLV, POTV, and LCOTV vehicles. Significant system costs and total system costs in terms of life cycle costs in both discounted and undiscounted dollars are summarized for each of the vehicles.

  18. Analyst-centered models for systems design, analysis, and development

    NASA Technical Reports Server (NTRS)

    Bukley, A. P.; Pritchard, Richard H.; Burke, Steven M.; Kiss, P. A.

    1988-01-01

    Much has been written about the possible use of Expert Systems (ES) technology for strategic defense system applications, particularly for battle management algorithms and mission planning. It is proposed that ES (or more accurately, Knowledge Based System (KBS)) technology can be used in situations for which no human expert exists, namely to create design and analysis environments that allow an analyst to rapidly pose many different possible problem resolutions in game like fashion and to then work through the solution space in search of the optimal solution. Portions of such an environment exist for expensive AI hardware/software combinations such as the Xerox LOOPS and Intellicorp KEE systems. Efforts are discussed to build an analyst centered model (ACM) using an ES programming environment, ExperOPS5 for a simple missile system tradeoff study. By analyst centered, it is meant that the focus of learning is for the benefit of the analyst, not the model. The model's environment allows the analyst to pose a variety of what if questions without resorting to programming changes. Although not an ES per se, the ACM would allow for a design and analysis environment that is much superior to that of current technologies.

  19. Test Analysis Guidelines

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2007-01-01

    Development of analysis guidelines for Exploration Life Support (ELS) technology tests was completed. The guidelines were developed based on analysis experiences gained from supporting Environmental Control and Life Support System (ECLSS) technology development in air revitalization systems and water recovery systems. Analyses are vital during all three phases of the ELS technology test: pre-test, during test and post test. Pre-test analyses of a test system help define hardware components, predict system and component performances, required test duration, sampling frequencies of operation parameters, etc. Analyses conducted during tests could verify the consistency of all the measurements and the performance of the test system. Post test analyses are an essential part of the test task. Results of post test analyses are an important factor in judging whether the technology development is a successful one. In addition, development of a rigorous model for a test system is an important objective of any new technology development. Test data analyses, especially post test data analyses, serve to verify the model. Test analyses have supported development of many ECLSS technologies. Some test analysis tasks in ECLSS technology development are listed in the Appendix. To have effective analysis support for ECLSS technology tests, analysis guidelines would be a useful tool. These test guidelines were developed based on experiences gained through previous analysis support of various ECLSS technology tests. A comment on analysis from an experienced NASA ECLSS manager (1) follows: "Bad analysis was one that bent the test to prove that the analysis was right to begin with. Good analysis was one that directed where the testing should go and also bridged the gap between the reality of the test facility and what was expected on orbit."

  20. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Propulsion Fuel Pumps and Fuel Systems Liquid Rockets and Combustion Gas Generators Micropropulsion Gears Monopropellants High-Cycle Fatigue and Its... Systems Electric Propulsion Engine Health Monitoring Systems High-Energy-Density Matter Exhaust Nozzles Injectors and Spray Measurements Fans Laser...of software models to drive development of component-based systems and lightweight domain-specific specification and verification technology. Highly

  1. Components of spatial information management in wildlife ecology: Software for statistical and modeling analysis [Chapter 14

    Treesearch

    Hawthorne L. Beyer; Jeff Jenness; Samuel A. Cushman

    2010-01-01

    Spatial information systems (SIS) is a term that describes a wide diversity of concepts, techniques, and technologies related to the capture, management, display and analysis of spatial information. It encompasses technologies such as geographic information systems (GIS), global positioning systems (GPS), remote sensing, and relational database management systems (...

  2. Interaction and Impact Studies for Distributed Energy Resource, Transactive Energy, and Electric Grid, using High Performance Computing ?based Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, B. M.

    The electric utility industry is undergoing significant transformations in its operation model, including a greater emphasis on automation, monitoring technologies, and distributed energy resource management systems (DERMS). With these changes and new technologies, while driving greater efficiencies and reliability, these new models may introduce new vectors of cyber attack. The appropriate cybersecurity controls to address and mitigate these newly introduced attack vectors and potential vulnerabilities are still widely unknown and performance of the control is difficult to vet. This proposal argues that modeling and simulation (M&S) is a necessary tool to address and better understand these problems introduced by emergingmore » technologies for the grid. M&S will provide electric utilities a platform to model its transmission and distribution systems and run various simulations against the model to better understand the operational impact and performance of cybersecurity controls.« less

  3. Technology developments integrating a space network communications testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.

  4. Towards personalised management of atherosclerosis via computational models in vascular clinics: technology based on patient-specific simulation approach

    PubMed Central

    Di Tomaso, Giulia; Agu, Obiekezie; Pichardo-Almarza, Cesar

    2014-01-01

    The development of a new technology based on patient-specific modelling for personalised healthcare in the case of atherosclerosis is presented. Atherosclerosis is the main cause of death in the world and it has become a burden on clinical services as it manifests itself in many diverse forms, such as coronary artery disease, cerebrovascular disease/stroke and peripheral arterial disease. It is also a multifactorial, chronic and systemic process that lasts for a lifetime, putting enormous financial and clinical pressure on national health systems. In this Letter, the postulate is that the development of new technologies for healthcare using computer simulations can, in the future, be developed as in-silico management and support systems. These new technologies will be based on predictive models (including the integration of observations, theories and predictions across a range of temporal and spatial scales, scientific disciplines, key risk factors and anatomical sub-systems) combined with digital patient data and visualisation tools. Although the problem is extremely complex, a simulation workflow and an exemplar application of this type of technology for clinical use is presented, which is currently being developed by a multidisciplinary team following the requirements and constraints of the Vascular Service Unit at the University College Hospital, London. PMID:26609369

  5. Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft Excel

    NASA Technical Reports Server (NTRS)

    McGlothlin, E. P.; Yeh, H. Y.; Lin, C. H.

    1999-01-01

    The development of a Microsoft Excel-compatible Environmental Control and Life Support System (ECLSS) sizing analysis "tool" for conceptual design of Mars human exploration missions makes it possible for a user to choose a certain technology in the corresponding subsystem. This tool estimates the mass, volume, and power requirements of every technology in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, mass balance models that solve for component throughputs of such ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) must be developed. The ARS Mass Balance Model will be discussed in this paper.

  6. Advances in Geologic Disposal System Modeling and Shale Reference Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).« less

  7. Assisted-living spaces for end-users with complex needs: a proposed implementation and delivery model.

    PubMed

    Linskell, Jeremy; Bouamrane, Matt-Mouley

    2012-09-01

    An assisted living space (ALS) is a technology-enabled environment designed to allow people with complex health or social care needs to remain, and live independently, in their own home for longer. However, many challenges remain in order to deliver usable systems acceptable to a diverse range of stakeholders, including end-users, and their families and carers, as well as health and social care services. ALSs need to support activities of daily-living while allowing end-users to maintain important social connections. They must be dynamic, flexible and adaptable living environments. In this article, we provide an overview of the technological landscape of assisted-living technology (ALT) and recent policies to promote an increased adoption of ALT in Scotland. We discuss our experiences in implementing technology-supported ALSs and emphasise key lessons. Finally, we propose an iterative and pragmatic user-centred implementation model for delivering ALSs in complex-needs scenarios. This empirical model is derived from our past ALS implementations. The proposed model allows project stakeholders to identify requirements, allocate tasks and responsibilities, and identify appropriate technological solutions for the delivery of functional ALS systems. The model is generic and makes no assumptions on needs or technology solutions, nor on the technical knowledge, skills and experience of the stakeholders involved in the ALS design process.

  8. Using Parametric Cost Models to Estimate Engineering and Installation Costs of Selected Electronic Communications Systems

    DTIC Science & Technology

    1994-09-01

    Institute of Technology, Wright- Patterson AFB OH, January 1994. 4. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 5...Technology, Wright-Patterson AFB OH 5 April 1994. 29. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 30. Office of

  9. Methodolgy For Evaluation Of Technology Impacts In Space Electric Power Systems

    NASA Technical Reports Server (NTRS)

    Holda, Julie

    2004-01-01

    The Analysis and Management branch of the Power and Propulsion Office at NASA Glenn Research Center is responsible for performing complex analyses of the space power and In-Space propulsion products developed by GRC. This work quantifies the benefits of the advanced technologies to support on-going advocacy efforts. The Power and Propulsion Office is committed to understanding how the advancement in space technologies could benefit future NASA missions. They support many diverse projects and missions throughout NASA as well as industry and academia. The area of work that we are concentrating on is space technology investment strategies. Our goal is to develop a Monte-Carlo based tool to investigate technology impacts in space electric power systems. The framework is being developed at this stage, which will be used to set up a computer simulation of a space electric power system (EPS). The outcome is expected to be a probabilistic assessment of critical technologies and potential development issues. We are developing methods for integrating existing spreadsheet-based tools into the simulation tool. Also, work is being done on defining interface protocols to enable rapid integration of future tools. Monte Carlo-based simulation programs for statistical modeling of the EPS Model. I decided to learn and evaluate Palisade's @Risk and Risk Optimizer software, and utilize it's capabilities for the Electric Power System (EPS) model. I also looked at similar software packages (JMP, SPSS, Crystal Ball, VenSim, Analytica) available from other suppliers and evaluated them. The second task was to develop the framework for the tool, in which we had to define technology characteristics using weighing factors and probability distributions. Also we had to define the simulation space and add hard and soft constraints to the model. The third task is to incorporate (preliminary) cost factors into the model. A final task is developing a cross-platform solution of this framework.

  10. Impact of Media Richness and Flow on E-Learning Technology Acceptance

    ERIC Educational Resources Information Center

    Liu, Su-Houn; Liao, Hsiu-Li; Pratt, Jean A.

    2009-01-01

    Advances in e-learning technologies parallels a general increase in sophistication by computer users. The use of just one theory or model, such as the technology acceptance model, is no longer sufficient to study the intended use of e-learning systems. Rather, a combination of theories must be integrated in order to fully capture the complexity of…

  11. Network Centric Warfare in the U.S. Navy’s Fifth Fleet. Network-Supported Operational Level Command and Control in Operation Enduring Freedom

    DTIC Science & Technology

    2004-06-01

    Mark Adkins Director of Research Ph.D Human Communication adkins@arizona.edu Dr. John Kruse Director of Programming Ph.D Management Information Systems...Theory • Network Centric Warfare • Technology Adoption – Technology Adoption Model – Technology Transition Model • Human Communication – Social Context

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS: TRI-DIM FILTER CORP. PREDATOR II MODEL 8VADTP123C23

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Predator II, Model 8VADTP123C23CC000 air filter for dust and bioaerosol filtration manufactured by Tri-Dim Filter Corporation. The pressure drop across the filter was 138 Pa clean and...

  13. System Operations Studies for Automated Guideway Transit Systems : Discrete Event Simulation Model Programmer's Manual

    DOT National Transportation Integrated Search

    1982-07-01

    In order to examine specific automated guideway transit (AGT) developments and concepts, UMTA undertook a program of studies and technology investigations called Automated Guideway Transit Technology (AGTT) Program. The objectives of one segment of t...

  14. NEXT Ion Propulsion System Development Status and Capabilities

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.

  15. POST2 End-To-End Descent and Landing Simulation for the Autonomous Landing and Hazard Avoidance Technology Project

    NASA Technical Reports Server (NTRS)

    Fisher, Jody l.; Striepe, Scott A.

    2007-01-01

    The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.

  16. A model for successful use of student response systems.

    PubMed

    Klein, Kathleen; Kientz, Mary

    2013-01-01

    This article presents a model developed to assist teachers in selecting, implementing, and assessing student response system (SRS) use in the classroom. Research indicates that SRS technology is effective in achieving desired outcomes in higher education settings. Studies indicate that effective SRS use promotes greater achievement of learning outcomes, increased student attention, improved class participation, and active engagement. The model offered in this article is based on best practices described in the literature and several years of SRS use in a traditional higher education classroom setting. Student feedback indicates increased class participation and engagement with SRS technology. Teacher feedback indicates opportunities for contingent teaching. The model described in this article provides a process to assist teachers in the successful selection, implementation, and assessment of SRS technology in the classroom.

  17. Establishing access to technology: an evaluation and intervention model to increase the participation of children with cerebral palsy.

    PubMed

    McCarty, Elizabeth; Morress, Claire

    2009-08-01

    Children with a diagnosis of cerebral palsy often have significant physical limitations that prevent exploration and full participation in the environment. Assistive technology systems can provide opportunities for children with physical limitations to interact with their world, enabling play, communication, and daily living skills. Efficient access to and control of the technology is critical for successful use; however, establishing consistent access is often difficult because of the nature of the movement patterns exhibited by children with cerebral palsy. This article describes a 3-phase model of evaluation and intervention developed and used by Assistive Technology Services at the Aaron W. Perlman Center, Cincinnati Children's Hospital Medical Center, to establish successful access to technology systems in children with cerebral palsy.

  18. Rethinking modeling framework design: object modeling system 3.0

    USDA-ARS?s Scientific Manuscript database

    The Object Modeling System (OMS) is a framework for environmental model development, data provisioning, testing, validation, and deployment. It provides a bridge for transferring technology from the research organization to the program delivery agency. The framework provides a consistent and efficie...

  19. The Coevolution of Society and Multimedia Technology: Issues in Predicting the Future Innovation and Use of a Ubiquitous Technology.

    ERIC Educational Resources Information Center

    Stewart, James; Williams, Robin

    1998-01-01

    Criticizes "technologically deterministic" approaches, which seek to extrapolate social change from technological potential. Shows how a three-layer model of component, system, and application technologies can be used to integrate findings from the use and development of technology in specific sectors. Examines three cases of…

  20. 2012 - 2016 Corporate Average Fuel Economy compliance and effects modeling system documentation

    DOT National Transportation Integrated Search

    2010-03-01

    The Volpe National Transportation Systems Center (Volpe Center) of the United States Department of Transportation's Research and Innovative Technology Administration has developed a modeling system to assist the National Highway Traffic Safety Admini...

  1. 2017 - 2025 Corporate Average Fuel Economy Compliance and Effects Modeling System Documentation.

    DOT National Transportation Integrated Search

    2012-08-31

    The Volpe National Transportation Systems Center (Volpe Center) of the United States Department of Transportations Research and Innovative Technology Administration has developed a modeling system to assist the National Highway Traffic Safety Admi...

  2. A Power Efficient Exaflop Computer Design for Global Cloud System Resolving Climate Models.

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Oliker, L.; Shalf, J.

    2008-12-01

    Exascale computers would allow routine ensemble modeling of the global climate system at the cloud system resolving scale. Power and cost requirements of traditional architecture systems are likely to delay such capability for many years. We present an alternative route to the exascale using embedded processor technology to design a system optimized for ultra high resolution climate modeling. These power efficient processors, used in consumer electronic devices such as mobile phones, portable music players, cameras, etc., can be tailored to the specific needs of scientific computing. We project that a system capable of integrating a kilometer scale climate model a thousand times faster than real time could be designed and built in a five year time scale for US$75M with a power consumption of 3MW. This is cheaper, more power efficient and sooner than any other existing technology.

  3. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    PubMed

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  4. COREBA (cognition-oriented emergent behavior architecture)

    NASA Astrophysics Data System (ADS)

    Kwak, S. David

    2000-06-01

    Currently, many behavior implementation technologies are available for modeling human behaviors in Department of Defense (DOD) computerized systems. However, it is commonly known that any single currently adopted behavior implementation technology is not so capable of fully representing complex and dynamic human decision-making and cognition behaviors. The author views that the current situation can be greatly improved if multiple technologies are integrated within a well designed overarching architecture that amplifies the merits of each of the participating technologies while suppressing the limitations that are inherent with each of the technologies. COREBA uses an overarching behavior integration architecture that makes the multiple implementation technologies cooperate in a homogeneous environment while collectively transcending the limitations associated with the individual implementation technologies. Specifically, COREBA synergistically integrates Artificial Intelligence and Complex Adaptive System under Rational Behavior Model multi-level multi- paradigm behavior architecture. This paper will describe applicability of COREBA in DOD domain, behavioral capabilities and characteristics of COREBA and how the COREBA architectural integrates various behavior implementation technologies.

  5. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System.

    PubMed

    Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra

    2015-08-15

    There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.

  6. Evaluation of load flow and grid expansion in a unit-commitment and expansion optimization model SciGRID International Conference on Power Grid Modelling

    NASA Astrophysics Data System (ADS)

    Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven

    2018-02-01

    Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.

  7. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  8. Fitness landscapes, heuristics and technological paradigms: A critique on random search models in evolutionary economics

    NASA Astrophysics Data System (ADS)

    Frenken, Koen

    2001-06-01

    The biological evolution of complex organisms, in which the functioning of genes is interdependent, has been analyzed as "hill-climbing" on NK fitness landscapes through random mutation and natural selection. In evolutionary economics, NK fitness landscapes have been used to simulate the evolution of complex technological systems containing elements that are interdependent in their functioning. In these models, economic agents randomly search for new technological design by trial-and-error and run the risk of ending up in sub-optimal solutions due to interdependencies between the elements in a complex system. These models of random search are legitimate for reasons of modeling simplicity, but remain limited as these models ignore the fact that agents can apply heuristics. A specific heuristic is one that sequentially optimises functions according to their ranking by users of the system. To model this heuristic, a generalized NK-model is developed. In this model, core elements that influence many functions can be distinguished from peripheral elements that affect few functions. The concept of paradigmatic search can then be analytically defined as search that leaves core elements in tact while concentrating on improving functions by mutation of peripheral elements.

  9. ICT and OTs: a model of information and communication technology acceptance and utilisation by occupational therapists.

    PubMed

    Schaper, Louise K; Pervan, Graham P

    2007-06-01

    There is evidence to suggest that health professionals are reluctant to accept and utilise information and communication technologies (ICT) and concern is growing within health informatics research that this is contributing to the lag in adoption and utilisation of ICT across the health sector. Technology acceptance research within the field of information systems has been limited in its application to health and there is a concurrent need to develop and gain empirical support for models of technology acceptance within health and to examine acceptance and utilisation issues amongst health professionals to improve the success of information system implementation in this arena. This paper outlines a project that examines ICT acceptance and utilisation by Australian occupational therapists. It describes the theoretical basis behind the development of a research model and the methodology being employed to empirically validate the model using substantial quantitative, qualitative and longitudinal data. Preliminary results from Phase II of the study are presented. The theoretical significance of this work is that it uses a thoroughly constructed research model, with potentially the largest sample size ever tested, to extend technology acceptance research into the health sector.

  10. Modelling socio-environmental sensitivities: how public responses to low carbon energy technologies could shape the UK energy system.

    PubMed

    Moran Jay, Brighid; Howard, David; Hughes, Nick; Whitaker, Jeanette; Anandarajah, Gabrial

    2014-01-01

    Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public's socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO).

  11. Modelling Socio-Environmental Sensitivities: How Public Responses to Low Carbon Energy Technologies Could Shape the UK Energy System

    PubMed Central

    Moran Jay, Brighid

    2014-01-01

    Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public's socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO). PMID:24587735

  12. A cross-sectional investigation of acceptance of health information technology: A nationwide survey of community pharmacists in Turkey.

    PubMed

    Sezgin, Emre; Özkan-Yıldırım, Sevgi

    Health information technologies have become vital to health care services. In that regard, successful use of information technologies in pharmaceutical services is important to manage, control and maintain pharmaceutical transactions, which increase the quality of health care delivery. This study aimed to identify influencing factors on pharmacists' acceptance of pharmaceutical service systems. A cross-sectional study was conducted employing a research model based on technology acceptance theories. A parsimonious model was developed, and a self-reported questionnaire was distributed online. Community pharmacists participated voluntarily via the website of Turkish Pharmacists' Association. The data was analyzed employing Structural Equation Modeling. From 77 out of 81 cities of Turkey, 2169 community pharmacists participated to the survey with 43% response rate. Perceived usefulness, perceived ease of use, system factors and perceived behavioral control explained 47% of total variance in pharmacists' intention to use the pharmaceutical technology. The findings of the research provided insight about relations of influencing factors and practical implications regarding perceived behaviors and system use. Future researchers would benefit from the study design and findings. The study is also valuable for being the first nationwide study conducted on pharmacists about user attitudes toward a technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Assessing user acceptance towards automated and conventional sink use for hand decontamination using the technology acceptance model.

    PubMed

    Dawson, Carolyn H; Mackrill, Jamie B; Cain, Rebecca

    2017-12-01

    Hand hygiene (HH) prevents harmful contaminants spreading in settings including domestic, health care and food handling. Strategies to improve HH range from behavioural techniques through to automated sinks that ensure hand surface cleaning. This study aimed to assess user experience and acceptance towards a new automated sink, compared to a normal sink. An adapted version of the technology acceptance model (TAM) assessed each mode of handwashing. A within-subjects design enabled N = 46 participants to evaluate both sinks. Perceived Ease of Use and Satisfaction of Use were significantly lower for the automated sink, compared to the conventional sink (p < 0.005). Across the remaining TAM factors, there was no significant difference. Participants suggested design features including jet strength, water temperature and device affordance may improve HH technology. We provide recommendations for future HH technology development to contribute a positive user experience, relevant to technology developers, ergonomists and those involved in HH across all sectors. Practitioner Summary: The need to facilitate timely, effective hand hygiene to prevent illness has led to a rise in automated handwashing systems across different contexts. User acceptance is a key factor in system uptake. This paper applies the technology acceptance model as a means to explore and optimise the design of such systems.

  14. Integration of a Portfolio-based Approach to Evaluate Aerospace R and D Problem Formulation Into a Parametric Synthesis Tool

    NASA Astrophysics Data System (ADS)

    Oza, Amit R.

    The focus of this study is to improve R&D effectiveness towards aerospace and defense planning in the early stages of the product development lifecycle. Emphasis is on: correct formulation of a decision problem, with special attention to account for data relationships between the individual design problem and the system capability required to size the aircraft, understanding of the meaning of the acquisition strategy objective and subjective data requirements that are required to arrive at a balanced analysis and/or "correct" mix of technology projects, understanding the meaning of the outputs that can be created from the technology analysis, and methods the researcher can use at effectively support decisions at the acquisition and conceptual design levels through utilization of a research and development portfolio strategy. The primary objectives of this study are to: (1) determine what strategy should be used to initialize conceptual design parametric sizing processes during requirements analysis for the materiel solution analysis stage of the product development lifecycle when utilizing data already constructed in the latter phase when working with a generic database management system synthesis tool integration architecture for aircraft design , and (2) assess how these new data relationships can contribute for innovative decision-making when solving acquisition hardware/technology portfolio problems. As such, an automated composable problem formulation system is developed to consider data interactions for the system architecture that manages acquisition pre-design concept refinement portfolio management, and conceptual design parametric sizing requirements. The research includes a way to: • Formalize the data storage and implement the data relationship structure with a system architecture automated through a database management system. • Allow for composable modeling, in terms of level of hardware abstraction, for the product model, mission model, and operational constraint model data blocks in the pre-design stages. • Allow the product model, mission model, and operational constraint model to be cross referenced with a generic aircraft synthesis capability to identify disciplinary analysis methods and processes. • Allow for matching, comparison, and balancing of the aircraft hardware portfolio to the associated developmental and technology risk metrics. • Allow for visualization technology portfolio decision space. The problem formulation architecture is finally implemented and verified for a generic hypersonic vehicle research demonstrator where a portfolio of technology hardware are measured for developmental and technology risks, prioritized by the researcher risk constraints, and the data generated delivered to a novel aircraft synthesis tool to confirm vehicle feasibility.

  15. Contextualizing Learning Scenarios According to Different Learning Management Systems

    ERIC Educational Resources Information Center

    Drira, R.; Laroussi, M.; Le Pallec, X.; Warin, B.

    2012-01-01

    In this paper, we first demonstrate that an instructional design process of Technology Enhanced Learning (TEL) systems based on a Model Driven Approach (MDA) addresses the limits of Learning Technology Standards (LTS), such as SCORM and IMS-LD. Although these standards ensure the interoperability of TEL systems across different Learning Management…

  16. The TEF modeling and analysis approach to advance thermionic space power technology

    NASA Astrophysics Data System (ADS)

    Marshall, Albert C.

    1997-01-01

    Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.

  17. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  18. Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.

  19. The technology acceptance model: predicting nurses' intention to use telemedicine technology (eICU).

    PubMed

    Kowitlawakul, Yanika

    2011-07-01

    The purposes of this study were to determine factors and predictors that influence nurses' intention to use the eICU technology, to examine the applicability of the Technology Acceptance Model in explaining nurses' intention to use the eICU technology in healthcare settings, and to provide psychometric evidence of the measurement scales used in the study. The study involved 117 participants from two healthcare systems. The Telemedicine Technology Acceptance Model was developed based on the original Technology Acceptance Model that was initially developed by Fred Davis in 1986. The eICU Acceptance Survey was used as an instrument for the study. Content validity was examined, and the reliability of the instrument was tested. The results show that perceived usefulness is the most influential factor that influences nurses' intention to use the eICU technology. The principal factors that influence perceived usefulness are perceived ease of use, support from physicians, and years working in the hospital. The model fit was reasonably adequate and able to explain 58% of the variance (R = 0.58) in intention to use the eICU technology with the nursing sample.

  20. Advanced interdisciplinary technologies

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1990-01-01

    The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes.

  1. Propulsion IVHM Technology Experiment

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.

    2006-01-01

    The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  2. Construction of dynamic stochastic simulation models using knowledge-based techniques

    NASA Technical Reports Server (NTRS)

    Williams, M. Douglas; Shiva, Sajjan G.

    1990-01-01

    Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).

  3. A system for the simulation and evaluation of satellite communication networks

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.

    1983-01-01

    With the emergence of a new era in satellite communications brought about by NASA's thrust into the Ka band with multibeam and onboard processing technologies, new and innovative techniques for evaluating these concepts and systems are required. To this end, NASA, in conjunction with its extensive program for advanced communications technology development, has undertaken to develop a concept for the simulation and evaluation of a complete communications network. Incorporated in this network will be proof of concept models of the latest technologies proposed for future satellite communications systems. These include low noise receivers, matrix switches, baseband processors, and solid state and tube type high power amplifiers. To accomplish this, numerous supporting technologies must be added to those aforementioned proof of concept models. These include controllers for synchronization, order wire, and resource allocation, gain compensation, signal leveling, power augmentation, and rain fade and range delay simulation. Taken together, these will be assembled to comprise a system capable of addressing numerous design and performance questions. The simulation and evaluation system as planned will be modular in design and implementation, capable of modification and updating to track and evaluate a continuum emerging concepts and technologies.

  4. CSTI Earth-to-orbit propulsion research and technology program overview

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.

    1993-01-01

    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.

  5. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Montgomery, Edward E.; Montgomery, Sandy; Adams, Charles L.

    2007-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.

  6. Department of the Navy Supporting Data for Fiscal Year 1983 Budget Estimates Descriptive Summaries Submitted to Congress February 1982. Research, Development, Test & Evaluation, Navy. Book 1 of 3. Technology Base, Advanced Technology Development, Strategic Programs.

    DTIC Science & Technology

    1982-02-01

    optimization methods have been developed for problems in production and distribution modeling including design and evaluation of storage alternatives under...and winds using high frequency , X-band doppler, pulse -limited, and Delta-K radars. Development of millimeter-wave radiometric imaging systems and...generic system design concept for a system capable of defending the Fleet from the high angle threat 1.4 The first model of the drive system for a

  7. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  8. Exploring How Technology Growth Limits Impact Optimal Carbon dioxide Mitigation Pathways

    EPA Science Inventory

    Energy system optimization models prescribe the optimal mix of technologies and fuels for meeting energy demands over a time horizon, subject to energy supplies, demands, and other constraints. When optimizing, these models will, to the extent allowed, favor the least cost combin...

  9. Spatio-temporal modelling of electrical supply systems to optimize the site planning process for the "power to mobility" technology

    NASA Astrophysics Data System (ADS)

    Karl, Florian; Zink, Roland

    2016-04-01

    The transformation of the energy sector towards decentralized renewable energies (RE) requires also storage systems to ensure security of supply. The new "Power to Mobility" (PtM) technology is one potential solution to use electrical overproduction to produce methane for i.e. gas vehicles. Motivated by these fact, the paper presents a methodology for a GIS-based temporal modelling of the power grid, to optimize the site planning process for the new PtM-technology. The modelling approach is based on a combination of the software QuantumGIS for the geographical and topological energy supply structure and OpenDSS for the net modelling. For a case study (work in progress) of the city of Straubing (Lower Bavaria) the parameters of the model are quantified. The presentation will discuss the methodology as well as the first results with a view to the application on a regional scale.

  10. Automated Discovery and Modeling of Sequential Patterns Preceding Events of Interest

    NASA Technical Reports Server (NTRS)

    Rohloff, Kurt

    2010-01-01

    The integration of emerging data manipulation technologies has enabled a paradigm shift in practitioners' abilities to understand and anticipate events of interest in complex systems. Example events of interest include outbreaks of socio-political violence in nation-states. Rather than relying on human-centric modeling efforts that are limited by the availability of SMEs, automated data processing technologies has enabled the development of innovative automated complex system modeling and predictive analysis technologies. We introduce one such emerging modeling technology - the sequential pattern methodology. We have applied the sequential pattern methodology to automatically identify patterns of observed behavior that precede outbreaks of socio-political violence such as riots, rebellions and coups in nation-states. The sequential pattern methodology is a groundbreaking approach to automated complex system model discovery because it generates easily interpretable patterns based on direct observations of sampled factor data for a deeper understanding of societal behaviors that is tolerant of observation noise and missing data. The discovered patterns are simple to interpret and mimic human's identifications of observed trends in temporal data. Discovered patterns also provide an automated forecasting ability: we discuss an example of using discovered patterns coupled with a rich data environment to forecast various types of socio-political violence in nation-states.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elia, Valerio; Gnoni, Maria Grazia, E-mail: mariagrazia.gnoni@unisalento.it; Tornese, Fabiana

    Highlights: • Pay-As-You-Throw (PAYT) schemes are becoming widespread in several countries. • Economic, organizational and technological issues have to be integrated in an efficient PAYT model design. • Efficiency refers to a PAYT system which support high citizen participation rates as well as economic sustainability. • Different steps and constraints have to be evaluated from collection services to type technologies. • An holistic approach is discussed to support PAYT systems diffusion. - Abstract: Pay-As-You-Throw (PAYT) strategies are becoming widely applied in solid waste management systems; the main purpose is to support a more sustainable – from economic, environmental and socialmore » points of view – management of waste flows. Adopting PAYT charging models increases the complexity level of the waste management service as new organizational issues have to be evaluated compared to flat charging models. In addition, innovative technological solutions could also be adopted to increase the overall efficiency of the service. Unit pricing, user identification and waste measurement represent the three most important processes to be defined in a PAYT system. The paper proposes a holistic framework to support an effective design and management process. The framework defines most critical processes and effective organizational and technological solutions for supporting waste managers as well as researchers.« less

  12. Information Technology in Education and Training (IT@EDU98). Proceedings of a Conference (Ho Chi Minh City, Vietnam, January 15-16, 1998).

    ERIC Educational Resources Information Center

    Hoang, Kiem, Ed.; Tran, Van Hao, Ed.; Luu, Tien Hiep, Ed.; Phan, Viet Hoang, Ed.; Owens, Thomas, Ed.; Nguyen, Son Thanh, Ed.; Vuong, Son Thanh, Ed.; Dong Thi, Bich Thuy, Ed.; Phan Thi, Tuoi, Ed.

    This proceedings volume includes the following 29 papers: Session 1--(1) "Technology for Learning: The Present and Future in the United States" (Thomas Owens, Carolyn Cohen); (2) "Computer Systems Technology Programs at the British Columbia Institute of Technology (Canada). A Technology-Based Model for Information Technology"…

  13. Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2009-01-01

    Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.

  14. AI and simulation: What can they learn from each other

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.

    1988-01-01

    Simulation and Artificial Intelligence share a fertile common ground both from a practical and from a conceptual point of view. Strengths and weaknesses of both Knowledge Based System and Modeling and Simulation are examined and three types of systems that combine the strengths of both technologies are discussed. These types of systems are a practical starting point, however, the real strengths of both technologies will be exploited only when they are combined in a common knowledge representation paradigm. From an even deeper conceptual point of view, one might even argue that the ability to reason from a set of facts (i.e., Expert System) is less representative of human reasoning than the ability to make a model of the world, change it as required, and derive conclusions about the expected behavior of world entities. This is a fundamental problem in AI, and Modeling Theory can contribute to its solution. The application of Knowledge Engineering technology to a Distributed Processing Network Simulator (DPNS) is discussed.

  15. Advanced Technology for Portable Personal Visualization.

    DTIC Science & Technology

    1992-06-01

    interactive radiosity . 6 Advanced Technology for Portable Personal Visualization Progress Report January-June 1992 9 2.5 Virtual-Environment Ultrasound...the system, with support for textures, model partitioning, more complex radiosity emitters, and the replacement of model parts with objects from our...model libraries. "* Add real-time, interactive radiosity to the display program on Pixel-Planes 5. "* Move the real-time model mesh-generation to the

  16. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  17. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  18. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    technologies and business models help utilities and tech companies address integrate distributed energy invaders: Disruptive technologies crowding the utility space" at the Utilities in a Time of Change and Franyutti, Vice-President, Energy Business Group, Mexichem

  19. Goddard Conference on Mass Storage Systems and Technologies, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  20. FRAMES and Other IEM Technologies

    EPA Science Inventory

    A presentation package is developed that describes the FRAMES software technology system. The philosophy of FRAMES is discussed; its components and editors are reviewed; its relationship to integrated environmental modeling technologies; such as D4EM and SuperMUSE, are described;...

  1. Modeling and Simulation of Metallurgical Process Based on Hybrid Petri Net

    NASA Astrophysics Data System (ADS)

    Ren, Yujuan; Bao, Hong

    2016-11-01

    In order to achieve the goals of energy saving and emission reduction of iron and steel enterprises, an increasing number of modeling and simulation technologies are used to research and analyse metallurgical production process. In this paper, the basic principle of Hybrid Petri net is used to model and analyse the Metallurgical Process. Firstly, the definition of Hybrid Petri Net System of Metallurgical Process (MPHPNS) and its modeling theory are proposed. Secondly, the model of MPHPNS based on material flow is constructed. The dynamic flow of materials and the real-time change of each technological state in metallurgical process are simulated vividly by using this model. The simulation process can implement interaction between the continuous event dynamic system and the discrete event dynamic system at the same level, and play a positive role in the production decision.

  2. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  3. The Life and Times of a Learning Technology System: The Impact of Change and Evolution

    ERIC Educational Resources Information Center

    Pahl, Claus

    2013-01-01

    With the inception of the web now being more than 20 years ago, many web-based learning technology systems (LTS) have had a long life and have undergone many changes, both affecting content and infrastructure technologies. A change factor model can capture the various factors causing LTS to change. Methods for change-aware design of LTS have been…

  4. Advantages of using the CRISPR/Cas9 system of genome editing to investigate male reproductive mechanisms using mouse models.

    PubMed

    Young, Samantha A M; Aitken, R John; Ikawa, Masahito

    2015-01-01

    Gene disruption technology has long been beneficial for the study of male reproductive biology. However, because of the time and cost involved, this technology was not a viable method except in specialist laboratories. The advent of the CRISPR/Cas9 system of gene disruption has ushered in a new era of genetic investigation. Now, it is possible to generate gene-disrupted mouse models in very little time and at very little cost. This Highlight article discusses the application of this technology to study the genetics of male fertility and looks at some of the future uses of this system that could be used to reveal the essential and nonessential genetic components of male reproductive mechanisms.

  5. Modeling the dynamics of multipartite quantum systems created departing from two-level systems using general local and non-local interactions

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco

    2017-12-01

    Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.

  6. Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design

    NASA Technical Reports Server (NTRS)

    Harmon, T. J.; Roschak, E.

    1993-01-01

    A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.

  7. An innovative use of instant messaging technology to support a library's single-service point.

    PubMed

    Horne, Andrea S; Ragon, Bart; Wilson, Daniel T

    2012-01-01

    A library service model that provides reference and instructional services by summoning reference librarians from a single service point is described. The system utilizes Libraryh3lp, an open-source, multioperator instant messaging system. The selection and refinement of this solution and technical challenges encountered are explored, as is the design of public services around this technology, usage of the system, and best practices. This service model, while a major cultural and procedural change at first, is now a routine aspect of customer service for this library.

  8. Coastal Inlets Research Program

    DTIC Science & Technology

    2013-03-01

    structures, adjacent beaches dredging and placement within, regional systems .  Transfer technology and products  Guidance documents, Workshops...Mitch Brown Coastal  Modeling  Waves at  Navigation System   (CMS) Alex Sanchez   Structures Lihwa Lin Z ki D i bil kCIRPHonghai Li e   em r e C l...MD Inlet Modeling System technology transfer workshop 13 Years of Annu l Wo kshops 40 Cumulativ Workshops  ,            #7 – FSBPA, Jan/Feb 2006

  9. Electric propulsion for near-Earth space missions

    NASA Technical Reports Server (NTRS)

    Terwilliger, C. H.; Smith, W. W.

    1980-01-01

    A set of missions was postulated that was considered to be representative of those likely to be desirable/feasible over the next three decades. The characteristics of these missions, and their payloads, that most impact the choice/design of the requisite propulsion system were determined. A system-level model of the near-Earth transportation process was constructed, which incorporated these mission/system characteristics, as well as the fundamental parameters describing the technology/performance of an ion bombardment based electric propulsion system. The model was used for sensitivity studies to determine the interactions between the technology descriptors and program costs, and to establish the most cost-effective directions for technology advancement. The most important factor was seen to be the costs associated with the duration of the mission, and this in turn makes the development of advanced electric propulsion systems having moderate to high efficiencies ( 50 percent) at intermediate ranges of specific impulse (approximately 1000 seconds) very desirable.

  10. The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.

  11. Volvo drivers' experiences with advanced crash avoidance and related technologies.

    PubMed

    Eichelberger, Angela H; McCartt, Anne T

    2014-01-01

    Crash avoidance technologies can potentially prevent or mitigate many crashes, but their success depends in part on driver acceptance. Owners of 2010-2012 model Volvo vehicles with several technologies were interviewed about their experiences. Interviews were conducted in summer 2012 with 155 owners of vehicles with City Safety as a standard feature; 145 owners with an optional technology package that included adaptive cruise control, distance alert, collision warning with full auto brake (and pedestrian detection on certain models), driver alert control, and lane departure warning; and 172 owners with both City Safety and the technology package. The survey response rates were 21 percent for owners with City Safety, 30 percent for owners with the technology package, and 27 percent for owners with both. Ten percent of owners opted out before the telephone survey began, and 18 percent declined to participate when called. Despite some annoyance, most respondents always leave the systems on, although fewer do so for lane departure warning (59%). For each of the systems, at least 80 percent of respondents with the system would want it on their next vehicle. Many respondents reported safer driving habits with the systems (e.g., following less closely with adaptive cruise control, using turn signals more often with lane departure warning). Fewer respondents reported potentially unsafe behavior, such as allowing the vehicle to brake for them at least some of the time. About one third of respondents experienced autonomous braking when they believed they were at risk of crashing, and about one fifth of respondents thought it had prevented a crash. About one fifth of respondents with the technology package reported that they were confused or misunderstood which safety system had activated in their vehicle. Consistent with the results for early adopters in the previous survey of Volvo and Infiniti owners, the present survey found that driver acceptance of the technologies remains high, although less so for lane departure warning. This study is the first to report drivers' experiences with City Safety, a collision avoidance system provided as standard equipment on certain Volvo 2010-2012 models, and driver acceptance of this system was high, although not to the same extent as the optional forward collision avoidance system. Future research should continue to monitor drivers' experiences with these technologies as they become available in more vehicles.

  12. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  13. Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Silver ionization water purification technology was originally developed for Apollo spacecraft. It was later used to cleanse swimming pools and has now been applied to industrial cooling towers and process coolers. Sensible Technologies, Inc. has added two other technologies to the system, which occupies only six square feet. It is manufactured in three capacities, and larger models are custom built on request. The system eliminates scale, corrosion, algae, bacteria and debris, and because of the NASA technology, viruses and waterborne bacteria are also destroyed. Applications include a General Motors cooling tower, amusement parks, ice manufacture and a closed-loop process cooling system.

  14. The deployment of information systems and information technology in field hospitals.

    PubMed

    Crowe, Ian R J; Naguib, Raouf N G

    2010-01-01

    Information systems and related technologies continue to develop and have become an integral part of healthcare provision and hospital care in particular. Field hospitals typically operate in the most austere and difficult of conditions and have yet to fully exploit related technologies. This paper addresses those aspects of healthcare informatics, healthcare knowledge management and lean healthcare that can be applied to field hospitals, with a view to improving patient care. The aim is to provide a vision for the deployment of information systems and information technology in field hospitals, using the British Army's field hospital as a representative model.

  15. Drainpipe network management information system design based on GIS and SCADA technique

    NASA Astrophysics Data System (ADS)

    Gu, Ze-Yu; Zhao, De-An

    2011-02-01

    Achieving urban drainpipe network integration of geographical information system (GIS) and supervisory control and data acquisition (SCADA) technology is described in this paper. The system design's plans are put forward, which have realized GIS and SCADA system supplementary in the technology and strengthened the model visible analysis ability. It is verified by practical cases that the system has more practical values and a good prospect.

  16. [New simulation technologies in neurosurgery].

    PubMed

    Byvaltsev, V A; Belykh, E G; Konovalov, N A

    2016-01-01

    The article presents a literature review on the current state of simulation technologies in neurosurgery, a brief description of the basic technology and the classification of simulation models, and examples of simulation models and skills simulators used in neurosurgery. Basic models for the development of physical skills, the spectrum of available computer virtual simulators, and their main characteristics are described. It would be instructive to include microneurosurgical training and a cadaver course of neurosurgical approaches in neurosurgery training programs and to extend the use of three-dimensional imaging. Technologies for producing three-dimensional anatomical models and patient-specific computer simulators as well as improvement of tactile feedback systems and display quality of virtual models are promising areas. Continued professional education necessitates further research for assessing the validity and practical use of simulators and physical models.

  17. Advanced propulsion for LEO-Moon transport. 3: Transportation model. M.S. Thesis - California Univ.

    NASA Technical Reports Server (NTRS)

    Henley, Mark W.

    1992-01-01

    A simplified computational model of low Earth orbit-Moon transportation system has been developed to provide insight into the benefits of new transportation technologies. A reference transportation infrastructure, based upon near-term technology developments, is used as a departure point for assessing other, more advanced alternatives. Comparison of the benefits of technology application, measured in terms of a mass payback ratio, suggests that several of the advanced technology alternatives could substantially improve the efficiency of low Earth orbit-Moon transportation.

  18. Understanding the Need for Business Intelligence Systems: Technological Acceptance, Use, and Convergence

    ERIC Educational Resources Information Center

    Pierre, Ashley R.

    2012-01-01

    DeLone and McLean first introduced a review of information systems success (ISS) literature and proposed the information success model in 1992. The contribution of technology use and acceptance and its influence toward ISS is an area of information systems research that has received significant attention from both researchers and practitioners.…

  19. Understanding User Resistance to Information Technology: Toward a Comprehensive Model in Health Information Technology

    ERIC Educational Resources Information Center

    Ngafeeson, Madison N.

    2013-01-01

    The successful implementation of health information systems is expected to increase legibility, reduce medical errors, boost the quality of healthcare and shrink costs. Yet, evidence points to the fact that healthcare professionals resist the full use of these systems. Physicians and nurses have been reported to resist the system. Even though…

  20. Adaptive Hypermedia Educational System Based on XML Technologies.

    ERIC Educational Resources Information Center

    Baek, Yeongtae; Wang, Changjong; Lee, Sehoon

    This paper proposes an adaptive hypermedia educational system using XML technologies, such as XML, XSL, XSLT, and XLink. Adaptive systems are capable of altering the presentation of the content of the hypermedia on the basis of a dynamic understanding of the individual user. The user profile can be collected in a user model, while the knowledge…

  1. Accelerating the Integration of Distributed Water Solutions: A Conceptual Financing Model from the Electricity Sector

    NASA Astrophysics Data System (ADS)

    Quesnel, Kimberly J.; Ajami, Newsha K.; Wyss, Noemi

    2017-11-01

    Modern challenges require new approaches to urban water management. One solution in the portfolio of potential strategies is the integration of distributed water infrastructure, practices, and technologies into existing systems. However, many practical barriers have prevented the widespread adoption of these systems in the US. The objective of this paper is to address these challenges by developing a conceptual model encompassing regulatory, financial, and governance components that can be used to incorporate new distributed water solutions into our current network. To construct the model, case studies of successfully implemented distributed electricity systems, specifically energy efficiency and renewable energy technologies, were examined to determine how these solutions have become prominent in recent years and what lessons can be applied to the water sector in a similar pursuit. The proposed model includes four action-oriented elements: catalyzing change, establishing funding sources, using resource pathways, and creating innovative governance structures. As illustrated in the model, the water sector should use suite of coordinated policies to promote change, engage end users through fiscal incentives, and encourage research, development and dissemination of new technologies over time.

  2. Accelerating the Integration of Distributed Water Solutions: A Conceptual Financing Model from the Electricity Sector.

    PubMed

    Quesnel, Kimberly J; Ajami, Newsha K; Wyss, Noemi

    2017-11-01

    Modern challenges require new approaches to urban water management. One solution in the portfolio of potential strategies is the integration of distributed water infrastructure, practices, and technologies into existing systems. However, many practical barriers have prevented the widespread adoption of these systems in the US. The objective of this paper is to address these challenges by developing a conceptual model encompassing regulatory, financial, and governance components that can be used to incorporate new distributed water solutions into our current network. To construct the model, case studies of successfully implemented distributed electricity systems, specifically energy efficiency and renewable energy technologies, were examined to determine how these solutions have become prominent in recent years and what lessons can be applied to the water sector in a similar pursuit. The proposed model includes four action-oriented elements: catalyzing change, establishing funding sources, using resource pathways, and creating innovative governance structures. As illustrated in the model, the water sector should use suite of coordinated policies to promote change, engage end users through fiscal incentives, and encourage research, development and dissemination of new technologies over time.

  3. Control technology development

    NASA Astrophysics Data System (ADS)

    Schaechter, D. B.

    1982-03-01

    The main objectives of the control technology development task are given in the slide below. The first is to develop control design techniques based on flexible structural models, rather than simple rigid-body models. Since large space structures are distributed parameter systems, a new degree of freedom, that of sensor/actuator placement, may be exercised for improving control system performance. Another characteristic of large space structures is numerous oscillatory modes within the control bandwidth. Reduced-order controller design models must be developed which produce stable closed-loop systems when combined with the full-order system. Since the date of an actual large-space-structure flight is rapidly approaching, it is vitally important that theoretical developments are tested in actual hardware. Experimental verification is a vital counterpart of all current theoretical developments.

  4. Portable Optical Epidural Needle-A CMOS-Based System Solution and Its Circuit Design

    PubMed Central

    Gong, Cihun-Siyong Alex; Lin, Shih-Pin; Mandell, M. Susan; Tsou, Mei-Yung; Chang, Yin; Ting, Chien-Kun

    2014-01-01

    Epidural anesthesia is a common anesthesia method yet up to 10% of procedures fail to provide adequate analgesia. This is usually due to misinterpreting the tactile information derived from the advancing needle through the complex tissue planes. Incorrect placement also can cause dural puncture and neural injury. We developed an optic system capable of reliably identifying tissue planes surrounding the epidural space. However the new technology was too large and cumbersome for practical clinical use. We present a miniaturized version of our optic system using chip technology (first generation CMOS-based system) for logic functions. The new system was connected to an alarm that was triggered once the optic properties of the epidural were identified. The aims of this study were to test our miniaturized system in a porcine model and describe the technology to build this new clinical tool. Our system was tested in a porcine model and identified the epidural space in the lumbar, low and high thoracic regions of the spine. The new technology identified the epidural space in all but 1 of 46 attempts. Experimental results from our fabricated integrated circuit and animal study show the new tool has future clinical potential. PMID:25162150

  5. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  6. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  7. Welcome to health information science and systems.

    PubMed

    Zhang, Yanchun

    2013-01-01

    Health Information Science and Systems is an exciting, new, multidisciplinary journal that aims to use technologies in computer science to assist in disease diagnoses, treatment, prediction and monitoring through the modeling, design, development, visualization, integration and management of health related information. These computer-science technologies include such as information systems, web technologies, data mining, image processing, user interaction and interface, sensors and wireless networking and are applicable to a wide range of health related information including medical data, biomedical data, bioinformatics data, public health data.

  8. Aerospace Applications of Magnetic Suspension Technology, part 2

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1991-01-01

    In order to examine the state of technology of all areas of magnetic suspension with potential aerospace applications, and to review related recent developments in sensors and control approaches, superconducting technology, and design/implementation practices, a workshop was held at NASA-Langley. Areas of concern are pointing and isolation systems, microgravity and vibration isolation, bearing applications, wind tunnel model suspension systems, large gap magnetic suspension systems, controls, rotating machinery, science and applications of superconductivity, and sensors. Papers presented are included.

  9. Economic and Power System Modeling and Analysis | Water Power | NREL

    Science.gov Websites

    Economic and Power System Modeling and Analysis Economic and Power System Modeling and Analysis technologies, their possible deployment scenarios, and the economic impacts of this deployment. As a research approaches used to estimate direct and indirect economic impacts of offshore renewable energy projects

  10. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  11. A Synthetic Vision Preliminary Integrated Safety Analysis

    NASA Technical Reports Server (NTRS)

    Hemm, Robert; Houser, Scott

    2001-01-01

    This report documents efforts to analyze a sample of aviation safety programs, using the LMI-developed integrated safety analysis tool to determine the change in system risk resulting from Aviation Safety Program (AvSP) technology implementation. Specifically, we have worked to modify existing system safety tools to address the safety impact of synthetic vision (SV) technology. Safety metrics include reliability, availability, and resultant hazard. This analysis of SV technology is intended to be part of a larger effort to develop a model that is capable of "providing further support to the product design and development team as additional information becomes available". The reliability analysis portion of the effort is complete and is fully documented in this report. The simulation analysis is still underway; it will be documented in a subsequent report. The specific goal of this effort is to apply the integrated safety analysis to SV technology. This report also contains a brief discussion of data necessary to expand the human performance capability of the model, as well as a discussion of human behavior and its implications for system risk assessment in this modeling environment.

  12. Life Sciences Division Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Yost, B.

    1999-01-01

    The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.

  13. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  14. A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US

    PubMed Central

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID:25474632

  15. A geospatial comparison of distributed solar heat and power in Europe and the US.

    PubMed

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system.

  16. Constructing Model of Relationship among Behaviors and Injuries to Products Based on Large Scale Text Data on Injuries

    NASA Astrophysics Data System (ADS)

    Nomori, Koji; Kitamura, Koji; Motomura, Yoichi; Nishida, Yoshifumi; Yamanaka, Tatsuhiro; Komatsubara, Akinori

    In Japan, childhood injury prevention is urgent issue. Safety measures through creating knowledge of injury data are essential for preventing childhood injuries. Especially the injury prevention approach by product modification is very important. The risk assessment is one of the most fundamental methods to design safety products. The conventional risk assessment has been carried out subjectively because product makers have poor data on injuries. This paper deals with evidence-based risk assessment, in which artificial intelligence technologies are strongly needed. This paper describes a new method of foreseeing usage of products, which is the first step of the evidence-based risk assessment, and presents a retrieval system of injury data. The system enables a product designer to foresee how children use a product and which types of injuries occur due to the product in daily environment. The developed system consists of large scale injury data, text mining technology and probabilistic modeling technology. Large scale text data on childhood injuries was collected from medical institutions by an injury surveillance system. Types of behaviors to a product were derived from the injury text data using text mining technology. The relationship among products, types of behaviors, types of injuries and characteristics of children was modeled by Bayesian Network. The fundamental functions of the developed system and examples of new findings obtained by the system are reported in this paper.

  17. The Aviation System Analysis Capability Airport Capacity and Delay Models

    NASA Technical Reports Server (NTRS)

    Lee, David A.; Nelson, Caroline; Shapiro, Gerald

    1998-01-01

    The ASAC Airport Capacity Model and the ASAC Airport Delay Model support analyses of technologies addressing airport capacity. NASA's Aviation System Analysis Capability (ASAC) Airport Capacity Model estimates the capacity of an airport as a function of weather, Federal Aviation Administration (FAA) procedures, traffic characteristics, and the level of technology available. Airport capacity is presented as a Pareto frontier of arrivals per hour versus departures per hour. The ASAC Airport Delay Model allows the user to estimate the minutes of arrival delay for an airport, given its (weather dependent) capacity. Historical weather observations and demand patterns are provided by ASAC as inputs to the delay model. The ASAC economic models can translate a reduction in delay minutes into benefit dollars.

  18. Information Systems Education: The Case for the Academic Cloud

    ERIC Educational Resources Information Center

    Mew, Lionel

    2016-01-01

    This paper discusses how cloud computing can be leveraged to add value to academic programs in information systems and other fields by improving financial sustainment models for institutional technology and academic departments, relieving the strain on overworked technology support resources, while adding richness and improving pedagogical…

  19. The Systems and Global Engineering Project

    ERIC Educational Resources Information Center

    Harms, Henry; Janosz, David A., Jr.; Maietta, Steve

    2010-01-01

    This article describes the Systems and Global Engineering (SAGE) Project in which students collaborate with others from around the world to model solutions to some of today's most significant global problems. Stevens Institute of Technology and the New Jersey Technology Education Association (NJTEA) have teamed up to develop innovative…

  20. Biophysical system models advance agricultural research and technology: Some examples and further research needs

    USDA-ARS?s Scientific Manuscript database

    Environmental concerns of the general public, droughts, and climate change effects require continual adaptation and optimization of agricultural systems through changes in cropping and management. Advancement of science and technology to achieve these changes requires cutting-edge field research, us...

  1. Spinoff 2011

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.

  2. Data Model as an Architectural View

    DTIC Science & Technology

    2009-10-01

    store order - processing system. Logical. The logical data model is an evolution of the conceptual data model towards a data management technology (e.g...online store order - processing system at different stages. Perhaps the first draft was elaborated by the architect during discussion of requirements

  3. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  4. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  5. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  6. Intelligent tutoring systems for systems engineering methodologies

    NASA Technical Reports Server (NTRS)

    Meyer, Richard J.; Toland, Joel; Decker, Louis

    1991-01-01

    The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype.

  7. Modelling a Complex System: Using Novice-Expert Analysis for Developing an Effective Technology-Enhanced Learning Environment

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai

    2010-01-01

    The purposes of this article are to present the design of a technology-enhanced learning environment (Air Pollution Modeling Environment [APoME]) that was informed by a novice-expert analysis and to discuss high school students' development of modelling practices in the learning environment. APoME was designed to help high school students…

  8. Optimal Design of Biomass Utilization System for Rural Area Includes Technical and Economic Dimensions

    NASA Astrophysics Data System (ADS)

    Morioka, Yasuki; Nakata, Toshihiko

    In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.

  9. Propulsion System Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile

    2002-01-01

    The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.

  10. Developing Instructional Technology Products Using Effective Project Management Practices

    ERIC Educational Resources Information Center

    Allen, Stephanie; Hardin, Paul C.

    2008-01-01

    Delivering a successful instructional technology (IT) product depends on more than just having an extremely creative instructional solution or following an instructional systems design (ISD) model. Proper planning, direction, and execution of the project are require, as well. We present a model of management that encompasses the ISD process. Five…

  11. Learning through Creating Robotic Models of Biological Systems

    ERIC Educational Resources Information Center

    Cuperman, Dan; Verner, Igor M.

    2013-01-01

    This paper considers an approach to studying issues in technology and science, which integrates design and inquiry activities towards creating and exploring technological models of scientific phenomena. We implemented this approach in a context where the learner inquires into a biological phenomenon and develops its representation in the form of a…

  12. ETV TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS GLASFLOSS INDUSTRIES EXCEL FILTER, MODEL SBG24242898

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Excel Filter, Model SBG24242898 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 82 Pa clean and 348 Pa...

  13. Characterization of a Hyperspectral Chromotomographic Imaging Ground System

    DTIC Science & Technology

    2012-03-22

    developed by the Air Force Institute of Technology (AFIT). The optical model is constructed using Zemax and MATLAB. The model provides the mechanism required...can also be used to incorporate interferometric measurements of optical components and model them in Zemax. The model uses a Zernike Phase Surface to...THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC

  14. Systems cell biology

    PubMed Central

    Mast, Fred D.; Ratushny, Alexander V.

    2014-01-01

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. PMID:25225336

  15. A Technology Pathway for Airbreathing, Combined-Cycle, Horizontal Space Launch Through SR-71 Based Trajectory Modeling

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.

    2011-01-01

    Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.

  16. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies

    PubMed Central

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-01-01

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications. PMID:29393887

  17. Free-space high data rate communications technologies for near terrestrial space

    NASA Astrophysics Data System (ADS)

    Edwards, C. L.; Bruzzi, J. R.; Boone, B. G.

    2008-08-01

    Recent progress at the Applied Physics Laboratory in high data rate communications technology development is described in this paper. System issues for developing and implementing high data rate downlinks from geosynchronous earth orbit to the ground, either for CONUS or in-theater users is considered. Technology is described that supports a viable dual-band multi-channel system concept. Modeling and simulation of micro-electro-mechanical systems (MEMS) beamsteering mirrors has been accomplished to evaluate the potential for this technology to support multi-channel optical links with pointing accuracies approaching 10 microradians. These models were validated experimentally down to levels in which Brownian motion was detected and characterized for single mirror devices only 500 microns across. This multi-channel beamsteering technology can be designed to address environmental compromises to free-space optical links, which derive from turbulence, clouds, as well as spacecraft vibration. Another technology concept is being pursued that is designed to mitigate the adverse effects of weather. It consists of a dual-band (RF/optical) antenna that is optimally designed in both bands simultaneously (e.g., Ku-band and near infrared). This technology would enable optical communications hardware to be seamlessly integrated with existing RF communications hardware on spacecraft platforms, while saving on mass and power, and improving overall system performance. These technology initiatives have been pursued principally because of potential sponsor interest in upgrading existing systems to accommodate quick data recovery and decision support, particularly for the warfighter in future conflicts where the exchange of large data sets such as high resolution imagery would have significant tactical benefits.

  18. Technologies for security, military police and professional policing organizations, the Department of Energy perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, B.J.

    1996-12-31

    There are many technologies emerging from this decade that can be used to help the law enforcement community protect the public as well as public and private facilities against ever increasing threats to this country and its resources. These technologies include sensors, closed circuit television (CCTV), access control, contraband detection, communications, control and display, barriers, and various component and system modeling techniques. This paper will introduce some of the various technologies that have been examined for the Department of Energy that could be applied to various law enforcement applications. They include: (1) scannerless laser radar; (2) next generation security systems;more » (3) response force video information helmet system; (4) access delay technologies; (5) rapidly deployable intrusion detection systems; and (6) cost risk benefit analysis.« less

  19. [Decision modeling for economic evaluation of health technologies].

    PubMed

    de Soárez, Patrícia Coelho; Soares, Marta Oliveira; Novaes, Hillegonda Maria Dutilh

    2014-10-01

    Most economic evaluations that participate in decision-making processes for incorporation and financing of technologies of health systems use decision models to assess the costs and benefits of the compared strategies. Despite the large number of economic evaluations conducted in Brazil, there is a pressing need to conduct an in-depth methodological study of the types of decision models and their applicability in our setting. The objective of this literature review is to contribute to the knowledge and use of decision models in the national context of economic evaluations of health technologies. This article presents general definitions about models and concerns with their use; it describes the main models: decision trees, Markov chains, micro-simulation, simulation of discrete and dynamic events; it discusses the elements involved in the choice of model; and exemplifies the models addressed in national economic evaluation studies of diagnostic and therapeutic preventive technologies and health programs.

  20. Intelligent instrumentation applied in environment management

    NASA Astrophysics Data System (ADS)

    Magheti, Mihnea I.; Walsh, Patrick; Delassus, Patrick

    2005-06-01

    The use of information and communications technology in environment management and research has witnessed a renaissance in recent years. From optical sensor technology, expert systems, GIS and communications technologies to computer aided harvesting and yield prediction, these systems are increasable used for applications developing in the management sector of natural resources and biodiversity. This paper presents an environmental decision support system, used to monitor biodiversity and present a risk rating for the invasion of pests into the particular systems being examined. This system will utilise expert mobile technology coupled with artificial intelligence and predictive modelling, and will emphasize the potential for expansion into many areas of intelligent remote sensing and computer aided decision-making for environment management or certification. Monitoring and prediction in natural systems, harnessing the potential of computing and communication technologies is an emerging technology within the area of environmental management. This research will lead to the initiation of a hardware and software multi tier decision support system for environment management allowing an evaluation of areas for biodiversity or areas at risk from invasive species, based upon environmental factors/systems.

  1. Public health and valorization of genome-based technologies: a new model.

    PubMed

    Lal, Jonathan A; Schulte In den Bäumen, Tobias; Morré, Servaas A; Brand, Angela

    2011-12-05

    The success rate of timely translation of genome-based technologies to commercially feasible products/services with applicability in health care systems is significantly low. We identified both industry and scientists neglect health policy aspects when commercializing their technology, more specifically, Public Health Assessment Tools (PHAT) and early on involvement of decision makers through which market authorization and reimbursements are dependent. While Technology Transfer (TT) aims to facilitate translation of ideas into products, Health Technology Assessment, one component of PHAT, for example, facilitates translation of products/processes into healthcare services and eventually comes up with recommendations for decision makers. We aim to propose a new model of valorization to optimize integration of genome-based technologies into the healthcare system. The method used to develop our model is an adapted version of the Fish Trap Model and the Basic Design Cycle. We found although different, similarities exist between TT and PHAT. Realizing the potential of being mutually beneficial justified our proposal of their relative parallel initiation. We observed that the Public Health Genomics Wheel should be included in this relative parallel activity to ensure all societal/policy aspects are dealt with preemptively by both stakeholders. On further analysis, we found out this whole process is dependent on the Value of Information. As a result, we present our LAL (Learning Adapting Leveling) model which proposes, based on market demand; TT and PHAT by consultation/bi-lateral communication should advocate for relevant technologies. This can be achieved by public-private partnerships (PPPs). These widely defined PPPs create the innovation network which is a developing, consultative/collaborative-networking platform between TT and PHAT. This network has iterations and requires learning, assimilating and using knowledge developed and is called absorption capacity. We hypothesize that the higher absorption capacity, higher success possibility. Our model however does not address the phasing out of technology although we believe the same model can be used to simultaneously phase out a technology. This model proposes to facilitate optimization/decrease the timeframe of integration in healthcare. It also helps industry and researchers to come to a strategic decision at an early stage, about technology being developed thus, saving on resources, hence minimizing failures.

  2. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  3. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.

    2010-12-01

    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  4. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    NASA Technical Reports Server (NTRS)

    Tucker, Brian; Paxton, Joseph

    2010-01-01

    This paper will present a Supply Chain Readiness Level (SCRL) model that can be used to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. It will also show that using SCRL in conjunction with Technology Readiness Levels (TRLs), Manufacturing Readiness Levels (MRLs) and National Aeronautics Space Administrations (NASA s) Project Lifecycle Process will provide a more complete means of developing and evaluating a robust sustainable supply chain that encompasses the entire product, system and mission lifecycle. In addition, it will be shown that by implementing the SCRL model, NASA can additionally define supplier requirements to enable effective supply chain management (SCM). Developing and evaluating overall supply chain readiness for any product, system and mission lifecycle is critical for mission success. Readiness levels are presently being used to evaluate the maturity of technology and manufacturing capability during development and deployment phases of products and systems. For example, TRLs are used to support the assessment of the maturity of a particular technology and compare maturity of different types of technologies. MRLs are designed to assess the maturity and risk of a given technology from a manufacturing perspective. In addition, when these measurement systems are used collectively they can offer a more comprehensive view of the maturity of the system. While some aspects of the supply chain and supply chain planning are considered in these familiar metric systems, certain characteristics of an effective supply chain, when evaluated in more detail, will provide an improved insight into the readiness and risk throughout the supply chain. Therefore, a system that concentrates particularly on supply chain attributes is required to better assess enterprise supply chain readiness.

  5. Program test objectives milestone 3. [Integrated Propulsion Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.

    1994-01-01

    The following conclusions have been developed relative to propulsion system technology adequacy for efficient development and operation of recoverable and expendable launch vehicles (RLV and ELV) and the benefits which the integrated propulsion technology demonstrator will provide for enhancing technology: (1) Technology improvements relative to propulsion system design and operation can reduce program cost. Many features or improvement needs to enhance operability, reduce cost, and improve payload are identified. (2) The Integrated Propulsion Technology Demonstrator (IPTD) Program provides a means of resolving the majority of issues associated with improvement needs. (3) The IPTD will evaluate complex integration of vehicle and facility functions in fluid management and propulsion control systems, and provides an environment for validating improved mechanical and electrical components. (4) The IPTD provides a mechanism for investigating operational issues focusing on reducing manpower and time to perform various functions at the launch site. These efforts include model development, collection of data to validate subject models, and ultimate development of complex time line models. (5) The IPTD provides an engine test bed for tri/bi-propellant engine development firings which is representative of the actual vehicle environment. (6) The IPTD provides for only a limited multiengine configuration integration environment for RLV. Multiengine efforts may be simulated for a number of subsystems and a number of subsystems are relatively independent of the multiengine influences.

  6. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations

    PubMed Central

    Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya

    2016-01-01

    The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era. PMID:27649151

  7. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations.

    PubMed

    Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya

    2016-09-14

    The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.

  8. Application of geo-spatial technology in schistosomiasis modelling in Africa: a review.

    PubMed

    Manyangadze, Tawanda; Chimbari, Moses John; Gebreslasie, Michael; Mukaratirwa, Samson

    2015-11-04

    Schistosomiasis continues to impact socio-economic development negatively in sub-Saharan Africa. The advent of spatial technologies, including geographic information systems (GIS), Earth observation (EO) and global positioning systems (GPS) assist modelling efforts. However, there is increasing concern regarding the accuracy and precision of the current spatial models. This paper reviews the literature regarding the progress and challenges in the development and utilization of spatial technology with special reference to predictive models for schistosomiasis in Africa. Peer-reviewed papers identified through a PubMed search using the following keywords: geo-spatial analysis OR remote sensing OR modelling OR earth observation OR geographic information systems OR prediction OR mapping AND schistosomiasis AND Africa were used. Statistical uncertainty, low spatial and temporal resolution satellite data and poor validation were identified as some of the factors that compromise the precision and accuracy of the existing predictive models. The need for high spatial resolution of remote sensing data in conjunction with ancillary data viz. ground-measured climatic and environmental information, local presence/absence intermediate host snail surveys as well as prevalence and intensity of human infection for model calibration and validation are discussed. The importance of a multidisciplinary approach in developing robust, spatial data capturing, modelling techniques and products applicable in epidemiology is highlighted.

  9. Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.

    2010-01-01

    Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.

  10. Comparative Effectiveness of a Technology-Facilitated Depression Care Management Model in Safety-Net Primary Care Patients With Type 2 Diabetes: 6-Month Outcomes of a Large Clinical Trial

    PubMed Central

    Ell, Kathleen; Jin, Haomiao; Vidyanti, Irene; Chou, Chih-Ping; Lee, Pey-Jiuan; Gross-Schulman, Sandra; Sklaroff, Laura Myerchin; Belson, David; Nezu, Arthur M; Hay, Joel; Wang, Chien-Ju; Scheib, Geoffrey; Di Capua, Paul; Hawkins, Caitlin; Liu, Pai; Ramirez, Magaly; Wu, Brian W; Richman, Mark; Myers, Caitlin; Agustines, Davin; Dasher, Robert; Kopelowicz, Alex; Allevato, Joseph; Roybal, Mike; Ipp, Eli; Haider, Uzma; Graham, Sharon; Mahabadi, Vahid; Guterman, Jeffrey

    2018-01-01

    Background Comorbid depression is a significant challenge for safety-net primary care systems. Team-based collaborative depression care is effective, but complex system factors in safety-net organizations impede adoption and result in persistent disparities in outcomes. Diabetes-Depression Care-management Adoption Trial (DCAT) evaluated whether depression care could be significantly improved by harnessing information and communication technologies to automate routine screening and monitoring of patient symptoms and treatment adherence and allow timely communication with providers. Objective The aim of this study was to compare 6-month outcomes of a technology-facilitated care model with a usual care model and a supported care model that involved team-based collaborative depression care for safety-net primary care adult patients with type 2 diabetes. Methods DCAT is a translational study in collaboration with Los Angeles County Department of Health Services, the second largest safety-net care system in the United States. A comparative effectiveness study with quasi-experimental design was conducted in three groups of adult patients with type 2 diabetes to compare three delivery models: usual care, supported care, and technology-facilitated care. Six-month outcomes included depression and diabetes care measures and patient-reported outcomes. Comparative treatment effects were estimated by linear or logistic regression models that used generalized propensity scores to adjust for sampling bias inherent in the nonrandomized design. Results DCAT enrolled 1406 patients (484 in usual care, 480 in supported care, and 442 in technology-facilitated care), most of whom were Hispanic or Latino and female. Compared with usual care, both the supported care and technology-facilitated care groups were associated with significant reduction in depressive symptoms measured by scores on the 9-item Patient Health Questionnaire (least squares estimate, LSE: usual care=6.35, supported care=5.05, technology-facilitated care=5.16; P value: supported care vs usual care=.02, technology-facilitated care vs usual care=.02); decreased prevalence of major depression (odds ratio, OR: supported care vs usual care=0.45, technology-facilitated care vs usual care=0.33; P value: supported care vs usual care=.02, technology-facilitated care vs usual care=.007); and reduced functional disability as measured by Sheehan Disability Scale scores (LSE: usual care=3.21, supported care=2.61, technology-facilitated care=2.59; P value: supported care vs usual care=.04, technology-facilitated care vs usual care=.03). Technology-facilitated care was significantly associated with depression remission (technology-facilitated care vs usual care: OR=2.98, P=.04); increased satisfaction with care for emotional problems among depressed patients (LSE: usual care=3.20, technology-facilitated care=3.70; P=.05); reduced total cholesterol level (LSE: usual care=176.40, technology-facilitated care=160.46; P=.01); improved satisfaction with diabetes care (LSE: usual care=4.01, technology-facilitated care=4.20; P=.05); and increased odds of taking an glycated hemoglobin test (technology-facilitated care vs usual care: OR=3.40, P<.001). Conclusions Both the technology-facilitated care and supported care delivery models showed potential to improve 6-month depression and functional disability outcomes. The technology-facilitated care model has a greater likelihood to improve depression remission, patient satisfaction, and diabetes care quality. PMID:29685872

  11. On the application of motivation theory to human factors/ergonomics: motivational design principles for human-technology interaction.

    PubMed

    Szalma, James L

    2014-12-01

    Motivation is a driving force in human-technology interaction. This paper represents an effort to (a) describe a theoretical model of motivation in human technology interaction, (b) provide design principles and guidelines based on this theory, and (c) describe a sequence of steps for the. evaluation of motivational factors in human-technology interaction. Motivation theory has been relatively neglected in human factors/ergonomics (HF/E). In both research and practice, the (implicit) assumption has been that the operator is already motivated or that motivation is an organizational concern and beyond the purview of HF/E. However, technology can induce task-related boredom (e.g., automation) that can be stressful and also increase system vulnerability to performance failures. A theoretical model of motivation in human-technology interaction is proposed, based on extension of the self-determination theory of motivation to HF/E. This model provides the basis for both future research and for development of practical recommendations for design. General principles and guidelines for motivational design are described as well as a sequence of steps for the design process. Human motivation is an important concern for HF/E research and practice. Procedures in the design of both simple and complex technologies can, and should, include the evaluation of motivational characteristics of the task, interface, or system. In addition, researchers should investigate these factors in specific human-technology domains. The theory, principles, and guidelines described here can be incorporated into existing techniques for task analysis and for interface and system design.

  12. Agile Port and High Speed Ship Technologies, Vol 1: FY05 Projects 3-6 and 8-10

    DTIC Science & Technology

    2008-07-02

    Computational Fluid Dynamics DTMB - David Taylor Model Basin JVR - Jet Velocity Ratio NSWCCD - Naval Surface Warfare Center, Carderock Division SDD - Systems...immature current state of the technology employed for the reactor system (multiple closed Brayton Cycle, Helium Cooled Gas reactors); (iii) several

  13. Energy, environmental and climate assessment with the EPA MARKAL energy system modeling framework

    EPA Science Inventory

    The energy system is comprised of the technologies and fuels that extend from the import or extraction of energy resources (e.g., mines and wells), through the conversion of these resources into useful forms (e.g., electricity and gasoline), to the technologies (e.g., cars, light...

  14. Rethinking Technology-Enhanced Physics Teacher Education: From Theory to Practice

    ERIC Educational Resources Information Center

    Milner-Bolotin, Marina

    2016-01-01

    This article discusses how modern technology, such as electronic response systems, PeerWise system, data collection and analysis tools, computer simulations, and modeling software can be used in physics methods courses to promote teacher-candidates' professional competencies and their positive attitudes about mathematics and science education. We…

  15. IS 2010 and ABET Accreditation: An Analysis of ABET-Accredited Information Systems Programs

    ERIC Educational Resources Information Center

    Saulnier, Bruce; White, Bruce

    2011-01-01

    Many strong forces are converging on information systems academic departments. Among these forces are quality considerations, accreditation, curriculum models, declining/steady student enrollments, and keeping current with respect to emerging technologies and trends. ABET, formerly the Accrediting Board for Engineering and Technology, is at…

  16. Air Force Laboratory’s 2005 Technology Milestones

    DTIC Science & Technology

    2006-01-01

    Computational materials science methods can benefit the design and property prediction of complex real-world materials. With these models , scientists and...Warfighter Page Air High - Frequency Acoustic System...800) 203-6451 High - Frequency Acoustic System Payoff Scientists created the High - Frequency Acoustic Suppression Technology (HiFAST) airflow control

  17. Energy Models

    EPA Science Inventory

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  18. PACS for surgery and interventional radiology: features of a Therapy Imaging and Model Management System (TIMMS).

    PubMed

    Lemke, Heinz U; Berliner, Leonard

    2011-05-01

    Appropriate use of information and communication technology (ICT) and mechatronic (MT) systems is viewed by many experts as a means to improve workflow and quality of care in the operating room (OR). This will require a suitable information technology (IT) infrastructure, as well as communication and interface standards, such as specialized extensions of DICOM, to allow data interchange between surgical system components in the OR. A design of such an infrastructure, sometimes referred to as surgical PACS, but better defined as a Therapy Imaging and Model Management System (TIMMS), will be introduced in this article. A TIMMS should support the essential functions that enable and advance image guided therapy, and in the future, a more comprehensive form of patient-model guided therapy. Within this concept, the "image-centric world view" of the classical PACS technology is complemented by an IT "model-centric world view". Such a view is founded in the special patient modelling needs of an increasing number of modern surgical interventions as compared to the imaging intensive working mode of diagnostic radiology, for which PACS was originally conceptualised and developed. The modelling aspects refer to both patient information and workflow modelling. Standards for creating and integrating information about patients, equipment, and procedures are vitally needed when planning for an efficient OR. The DICOM Working Group 24 (WG-24) has been established to develop DICOM objects and services related to image and model guided surgery. To determine these standards, it is important to define step-by-step surgical workflow practices and create interventional workflow models per procedures or per variable cases. As the boundaries between radiation therapy, surgery and interventional radiology are becoming less well-defined, precise patient models will become the greatest common denominator for all therapeutic disciplines. In addition to imaging, the focus of WG-24 is to serve the therapeutic disciplines by enabling modelling technology to be based on standards. Copyright © 2011. Published by Elsevier Ireland Ltd.

  19. An Integrated Approach for Preservice Teachers' Acceptance and Use of Technology: UTAUT-PST Scale

    ERIC Educational Resources Information Center

    Kabakçi-Yurdakul, Isil; Ursavas, Ömer Faruk; Becit-Isçitürk, Gökçe

    2014-01-01

    Problem Statement: In educational systems, teachers and preservice teachers are the keys to the effective use of technology in the teaching and learning processes. Predicting teachers' technology acceptance and use remains an important issue. Models and theories have been developed to explain and predict technology acceptance. The Unified Theory…

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION OF URBAN RUNOFF MODELS

    EPA Science Inventory

    This paper will present the verification process and available results of the XP-SWMM modeling system produced by XP-Software conducted unde the USEPA's ETV Program. Wet weather flow (WWF) models are used throughout the US for the evaluation of storm and combined sewer systems. M...

  1. Metabolic systems biology: a brief primer.

    PubMed

    Edwards, Lindsay M

    2017-05-01

    In the early to mid-20th century, reductionism as a concept in biology was challenged by key thinkers, including Ludwig von Bertalanffy. He proposed that living organisms were specific examples of complex systems and, as such, they should display characteristics including hierarchical organisation and emergent behaviour. Yet the true study of complete biological systems (for example, metabolism) was not possible until technological advances that occurred 60 years later. Technology now exists that permits the measurement of complete levels of the biological hierarchy, for example the genome and transcriptome. The complexity and scale of these data require computational models for their interpretation. The combination of these - systems thinking, high-dimensional data and computation - defines systems biology, typically accompanied by some notion of iterative model refinement. Only sequencing-based technologies, however, offer full coverage. Other 'omics' platforms trade coverage for sensitivity, although the densely connected nature of biological networks suggests that full coverage may not be necessary. Systems biology models are often characterised as either 'bottom-up' (mechanistic) or 'top-down' (statistical). This distinction can mislead, as all models rely on data and all are, to some degree, 'middle-out'. Systems biology has matured as a discipline, and its methods are commonplace in many laboratories. However, many challenges remain, especially those related to large-scale data integration. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  2. Framework for a clinical information system.

    PubMed

    Van de Velde, R

    2000-01-01

    The current status of our work towards the design and implementation of a reference architecture for a Clinical Information System is presented. This architecture has been developed and implemented based on components following a strong underlying conceptual and technological model. Common Object Request Broker and n-tier technology featuring centralised and departmental clinical information systems as the back-end store for all clinical data are used. Servers located in the 'middle' tier apply the clinical (business) model and application rules to communicate with so-called 'thin client' workstations. The main characteristics are the focus on modelling and reuse of both data and business logic as there is a shift away from data and functional modelling towards object modelling. Scalability as well as adaptability to constantly changing requirements via component driven computing are the main reasons for that approach.

  3. Addressing the Real-World Challenges in the Development of Propulsion IVHM Technology Experiment (PITEX)

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy; Fulton, Christopher E.; Balaban, Edward; Sweet, Adam; Hayden, Sandra Claire; Bajwa, Anupa

    2005-01-01

    The Propulsion IVHM Technology Experiment (PITEX) has been an on-going research effort conducted over several years. PITEX has developed and applied a model-based diagnostic system for the main propulsion system of the X-34 reusable launch vehicle, a space-launch technology demonstrator. The application was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real-time on flight-like hardware. In an attempt to expose potential performance problems, these PITEX algorithms were subject to numerous real-world effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. The current research has demonstrated the potential benefits of model-based diagnostics, defined the performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  4. Enterprise Architecture Tradespace Analysis

    DTIC Science & Technology

    2014-02-21

    EXECUTIVE SUMMARY The Department of Defense (DoD)’s Science & Technology (S&T) priority for Engineered Resilient Systems (ERS) calls for...Science & Technology (S&T) priority for Engineered Resilient Systems (ERS) calls for adaptable designs with diverse systems models that can easily be...Department of Defense [Holland, 2012]. Some explicit goals are: • Establish baseline resiliency of current capabilities • More complete and robust

  5. Recent Progress in Hepatocyte Culture Models and Their Application to the Assessment of Drug Metabolism, Transport, and Toxicity in Drug Discovery: The Value of Tissue Engineering for the Successful Development of a Microphysiological System.

    PubMed

    Tetsuka, Kazuhiro; Ohbuchi, Masato; Tabata, Kenji

    2017-09-01

    Tissue engineering technology has provided many useful culture models. This article reviews the merits of this technology in a hepatocyte culture system and describes the applications of the sandwich-cultured hepatocyte model in drug discovery. In addition, we also review recent investigations of the utility of the 3-dimensional bioprinted human liver tissue model and spheroid model. Finally, we present the future direction and developmental challenges of a hepatocyte culture model for the successful establishment of a microphysiological system, represented as an organ-on-a-chip and even as a human-on-a-chip. A merit of advanced culture models is their potential use for detecting hepatotoxicity through repeated exposure to chemicals as they allow long-term culture while maintaining hepatocyte functionality. As a future direction, such advanced hepatocyte culture systems can be connected to other tissue models for evaluating tissue-to-tissue interaction beyond cell-to-cell interaction. This combination of culture models could represent parts of the human body in a microphysiological system. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Design of on-board Bluetooth wireless network system based on fault-tolerant technology

    NASA Astrophysics Data System (ADS)

    You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang

    2007-11-01

    In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.

  7. Test of the technology acceptance model for a Web-based information system in a Hong Kong Chinese sample.

    PubMed

    Cheung, Emily Yee Man; Sachs, John

    2006-12-01

    The modified technology acceptance model was used to predict actual Blackboard usage (a web-based information system) in a sample of 57 Hong Kong student teachers whose mean age was 27.8 yr. (SD = 6.9). While the general form of the model was supported, Application-specific Self-efficacy was a more powerful predictor of system use than Behavioural Intention as predicted by the theory of reasoned action. Thus in this cultural and educational context, it has been shown that the model does not fully mediate the effect of Self-efficacy on System Use. Also, users' Enjoyment exerted considerable influence on the component variables of Usefulness and Ease of Use and on Application-specific Self-efficacy, thus indirectly influencing system usage. Consequently, efforts to gain students' acceptance and, therefore, use of information systems such as Blackboard must pay adequate attention to users' Self-efficacy and motivational variables such as Enjoyment.

  8. Applying dynamic simulation modeling methods in health care delivery research-the SIMULATE checklist: report of the ISPOR simulation modeling emerging good practices task force.

    PubMed

    Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Osgood, Nathaniel D; Padula, William V; Higashi, Mitchell K; Wong, Peter K; Pasupathy, Kalyan S; Crown, William

    2015-01-01

    Health care delivery systems are inherently complex, consisting of multiple tiers of interdependent subsystems and processes that are adaptive to changes in the environment and behave in a nonlinear fashion. Traditional health technology assessment and modeling methods often neglect the wider health system impacts that can be critical for achieving desired health system goals and are often of limited usefulness when applied to complex health systems. Researchers and health care decision makers can either underestimate or fail to consider the interactions among the people, processes, technology, and facility designs. Health care delivery system interventions need to incorporate the dynamics and complexities of the health care system context in which the intervention is delivered. This report provides an overview of common dynamic simulation modeling methods and examples of health care system interventions in which such methods could be useful. Three dynamic simulation modeling methods are presented to evaluate system interventions for health care delivery: system dynamics, discrete event simulation, and agent-based modeling. In contrast to conventional evaluations, a dynamic systems approach incorporates the complexity of the system and anticipates the upstream and downstream consequences of changes in complex health care delivery systems. This report assists researchers and decision makers in deciding whether these simulation methods are appropriate to address specific health system problems through an eight-point checklist referred to as the SIMULATE (System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence) tool. It is a primer for researchers and decision makers working in health care delivery and implementation sciences who face complex challenges in delivering effective and efficient care that can be addressed with system interventions. On reviewing this report, the readers should be able to identify whether these simulation modeling methods are appropriate to answer the problem they are addressing and to recognize the differences of these methods from other modeling approaches used typically in health technology assessment applications. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaics

    NASA Astrophysics Data System (ADS)

    Ristow, Alan H.

    2008-10-01

    Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.

  10. [Advances in low impact development technology for urban stormwater management].

    PubMed

    Liu, Wen; Chen, Wei-ping; Peng, Chi

    2015-06-01

    Low impact development ( LID), as an innovative technology for stormwater management, is effective to mitigate urban flooding and to detain pollutants. This paper systemically introduced the LID technology system, and summarized the reduction effects of three typical LID facilities (i.e. , bio-retention, green roof and permeable pavement) on stormwater runoff and main pollutants in recent literature, as well as research outcomes and experiences of LID technology on model simulation, cost-benefit analysis and management system. On this basis, we analyzed the problems and limitations of current LID technology studies. Finally, some suggestions about future research directions, appropriate design and scientific management were put forth. This work intended to provide scientific basis and suggestions for widespread use and standard setting of LID technology in China by referencing overseas studies.

  11. Design and Implementation of C-iLearning: A Cloud-Based Intelligent Learning System

    ERIC Educational Resources Information Center

    Xiao, Jun; Wang, Minjuan; Wang, Lamei; Zhu, Xiaoxiao

    2013-01-01

    The gradual development of intelligent learning (iLearning) systems has prompted the changes of teaching and learning. This paper presents the architecture of an intelligent learning (iLearning) system built upon the recursive iLearning model and the key technologies associated with this model. Based on this model and the technical structure of a…

  12. Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies.

    PubMed

    Sharp, Benjamin E; Miller, Shelie A

    2016-03-15

    Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts. Diffusion of innovation is an established field of research that analyzes the adoption of new innovations, and its principles can be used to construct scenario models that enhance LCA of emerging technologies. Integrating diffusion modeling techniques with an LCA of emerging technology can provide estimates for the extent of market penetration, the displacement of existing systems, and the rate of adoption. Two general perspectives of application are macro-level diffusion models that use a function of time to represent adoption, and microlevel diffusion models that simulate adoption through interactions of individuals. Incorporating diffusion of innovation concepts complement existing methods within LCA to inform proactive environmental management of emerging technologies.

  13. A New Look at NASA: Strategic Research In Information Technology

    NASA Technical Reports Server (NTRS)

    Alfano, David; Tu, Eugene (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on research undertaken by NASA to facilitate the development of information technologies. Specific ideas covered here include: 1) Bio/nano technologies: biomolecular and nanoscale systems and tools for assembly and computing; 2) Evolvable hardware: autonomous self-improving, self-repairing hardware and software for survivable space systems in extreme environments; 3) High Confidence Software Technologies: formal methods, high-assurance software design, and program synthesis; 4) Intelligent Controls and Diagnostics: Next generation machine learning, adaptive control, and health management technologies; 5) Revolutionary computing: New computational models to increase capability and robustness to enable future NASA space missions.

  14. A framework to analyze emissions implications of ...

    EPA Pesticide Factsheets

    Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future uncertainty in regulations and evaluate resulting emissions growth patterns. The framework integrates EPA’s energy systems model with an economic Input-Output (I/O) Life Cycle Assessment model. The EPAUS9r MARKAL database is assembled from a set of technologies to represent the U.S. energy system within MARKAL bottom-up technology rich energy modeling framework. The general state of the economy and consequent demands for goods and services from these sectors are taken exogenously in MARKAL. It is important to characterize exogenous inputs about the economy to appropriately represent the industrial sector outlook for each of the scenarios and case studies evaluated. An economic input-output (I/O) model of the US economy is constructed to link up with MARKAL. The I/O model enables user to change input requirements (e.g. energy intensity) for different sectors or the share of consumer income expended on a given good. This gives end-users a mechanism for modeling change in the two dimensions of technological progress and consumer preferences that define the future scenarios. The framework will then be extended to include environmental I/O framework to track life cycle emissions associated

  15. Fifth NASA Goddard Conference on Mass Storage Systems and Technologies.. Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1996-01-01

    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.

  16. A decision model for selecting sustainable drinking water supply and greywater reuse systems for developing communities with a case study in Cimahi, Indonesia.

    PubMed

    Henriques, Justin J; Louis, Garrick E

    2011-01-01

    Capacity Factor Analysis is a decision support system for selection of appropriate technologies for municipal sanitation services in developing communities. Developing communities are those that lack the capability to provide adequate access to one or more essential services, such as water and sanitation, to their residents. This research developed two elements of Capacity Factor Analysis: a capacity factor based classification for technologies using requirements analysis, and a matching policy for choosing technology options. First, requirements analysis is used to develop a ranking for drinking water supply and greywater reuse technologies. Second, using the Capacity Factor Analysis approach, a matching policy is developed to guide decision makers in selecting the appropriate drinking water supply or greywater reuse technology option for their community. Finally, a scenario-based informal hypothesis test is developed to assist in qualitative model validation through case study. Capacity Factor Analysis is then applied in Cimahi Indonesia as a form of validation. The completed Capacity Factor Analysis model will allow developing communities to select drinking water supply and greywater reuse systems that are safe, affordable, able to be built and managed by the community using local resources, and are amenable to expansion as the community's management capacity increases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Study and performances analysis of fuel cell assisted vector control variable speed drive system used for electric vehicles

    NASA Astrophysics Data System (ADS)

    Pachauri, Rupendra Kumar; Chauhan, Yogesh K.

    2017-02-01

    This paper is a novel attempt to combine two important aspects of fuel cell (FC). First, it presents investigations on FC technology and its applications. A description of FC operating principles is followed by the comparative analysis of the present FC technologies together with the issues concerning various fuels. Second, this paper also proposes a model for the simulation and performances evaluation of a proton exchange membrane fuel cell (PEMFC) generation system. Furthermore, a MATLAB/Simulink-based dynamic model of PEMFC is developed and parameters of FC are so adjusted to emulate a commercially available PEMFC. The system results are obtained for the PEMFC-driven adjusted speed induction motor drive (ASIMD) system, normally used in electric vehicles and analysis is carried out for different operating conditions of FC and ASIMD system. The obtained results prove the validation of system concept and modelling.

  18. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, andmore » each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and −0.3 M€/year saved on incineration.« less

  19. An investigation of air transportation technology at the Massachusetts Institute of Technology, 1990-1991

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1991-01-01

    Brief summaries are given of research activities at the Massachusetts Institute of Technology (MIT) under the sponsorship of the FAA/NASA Joint University Program. Topics covered include hazard assessment and cockpit presentation issues for microburst alerting systems; the situational awareness effect of automated air traffic control (ATC) datalink clearance amendments; a graphical simulation system for adaptive, automated approach spacing; an expert system for temporal planning with application to runway configuration management; deterministic multi-zone ice accretion modeling; alert generation and cockpit presentation for an integrated microburst alerting system; and passive infrared ice detection for helicopter applications.

  20. Capacity Expansion Modeling for Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    2017-04-03

    The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.

  1. On determining specifications and selections of alternative technologies for airport checked-baggage security screening.

    PubMed

    Feng, Qianmei

    2007-10-01

    Federal law mandates that every checked bag at all commercial airports be screened by explosive detection systems (EDS), explosive trace detection systems (ETD), or alternative technologies. These technologies serve as critical components of airport security systems that strive to reduce security risks at both national and global levels. To improve the operational efficiency and airport security, emerging image-based technologies have been developed, such as dual-energy X-ray (DX), backscatter X-ray (BX), and multiview tomography (MVT). These technologies differ widely in purchasing cost, maintenance cost, operating cost, processing rate, and accuracy. Based on a mathematical framework that takes into account all these factors, this article investigates two critical issues for operating screening devices: setting specifications for continuous security responses by different technologies; and selecting technology or combination of technologies for efficient 100% baggage screening. For continuous security responses, specifications or thresholds are used for classifying threat items from nonthreat items. By investigating the setting of specifications on system security responses, this article assesses the risk and cost effectiveness of various technologies for both single-device and two-device systems. The findings provide the best selection of image-based technologies for both single-device and two-device systems. Our study suggests that two-device systems outperform single-device systems in terms of both cost effectiveness and accuracy. The model can be readily extended to evaluate risk and cost effectiveness of multiple-device systems for airport checked-baggage security screening.

  2. HIS priorities in developing countries.

    PubMed

    Amado Espinosa, L

    1995-04-01

    Looking for a solution to fulfill the requirements that the new global economical system demands, developing countries face a reality of poor communications infrastructure, a delay in applying information technology to the organizations, and a semi-closed political system avoiding the necessary reforms. HIS technology has been developed more for transactional purposes on mini and mainframe platforms. Administrative modules are the most frequently observed and physicians are now requiring more support for their activities. The second information systems generation will take advantage of PC technology, client-server models and telecommunications to achieve integration. International organizations, academic and industrial, public and private, will play a major role to transfer technology and to develop this area.

  3. Information technology infusion model for health sector in a developing country: Nigeria as a case.

    PubMed

    Idowu, Bayo; Adagunodo, Rotimi; Adedoyin, Rufus

    2006-01-01

    To date, information technology (IT) has not been widely adopted in the health sector in the developing countries. Information Technology may bring an improvement on health care delivery systems. It is one of the prime movers of globalization. Information technology infusion is the degree to which a different information technology tools are integrated into organizational activities. This study aimed to know the degree and the extent of incorporation of Information Technology in the Nigerian health sector and derive an IT infusion models for popular IT indicators that are in use in Nigeria (Personal computers, Mobile phones, and the Internet) and subsequently investigates their impacts on the health care delivery system in Nigerian teaching hospitals. In this study, data were collected through the use of questionnaires. Also, oral interviews were conducted and subsequently, the data gathered were analyzed. The results of the analysis revealed that out of the three IT indicators considered, mobile phones are spreading fastest. It also revealed that computers and mobile phones are in use in all the teaching hospitals. Finally in this research, IT infusion models were developed for health sector in Nigeria from the data gathered through the questionnaire and oral interview.

  4. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  5. Selecting cockpit functions for speech I/O technology

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1985-01-01

    A general methodology for the initial selection of functions for speech generation and speech recognition technology is discussed. The SCR (Stimulus/Central-Processing/Response) compatibility model of Wickens et al. (1983) is examined, and its application is demonstrated for a particular cockpit display problem. Some limits of the applicability of that model are illustrated in the context of predicting overall pilot-aircraft system performance. A program of system performance measurement is recommended for the evaluation of candidate systems. It is suggested that no one measure of system performance can necessarily be depended upon to the exclusion of others. Systems response time, system accuracy, and pilot ratings are all important measures. Finally, these measures must be collected in the context of the total flight task environment.

  6. Effects of thermal blooming on systems comprised of tiled subapertures

    NASA Astrophysics Data System (ADS)

    Leakeas, Charles L.; Bartell, Richard J.; Krizo, Matthew J.; Fiorino, Steven T.; Cusumano, Salvatore J.; Whiteley, Matthew R.

    2010-04-01

    Laser weapon systems comprise of tiled subapertures are rapidly emerging in the directed energy community. The Air Force Institute of Technology Center for Directed Energy (AFIT/CDE), under sponsorship of the HEL Joint Technology Office has developed performance models of such laser weapon system configurations consisting of tiled arrays of both slab and fiber subapertures. These performance models are based on results of detailed waveoptics analyses conducted using WaveTrain. Previous performance model versions developed in this effort represent system characteristics such as subaperture shape, aperture fill factor, subaperture intensity profile, subaperture placement in the primary aperture, subaperture mutual coherence (piston), subaperture differential jitter (tilt), and beam quality wave-front error associated with each subaperture. The current work is a prerequisite for the development of robust performance models for turbulence and thermal blooming effects for tiled systems. Emphasis is placed on low altitude tactical scenarios. The enhanced performance model developed will be added to AFIT/CDE's HELEEOS parametric one-on-one engagement level model via the Scaling for High Energy Laser and Relay Engagement (SHaRE) toolbox.

  7. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  8. 3D Surveying, Modeling and Geo-Information System of the New Campus of ITB-Indonesia

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Trisyanti, S. W.; Ainiyah, N.; Fajri, M. N.; Hanan, H.; Virtriana, R.; Edmarani, A. A.

    2016-10-01

    The new campus of ITB-Indonesia, which is located at Jatinangor, requires good facilities and infrastructures to supporting all of campus activities. Those can not be separated from procurement and maintenance activities. Technology for procurement and maintenance of facilities and infrastructures -based computer (information system)- has been known as Building Information Modeling (BIM). Nowadays, that technology is more affordable with some of free software that easy to use and tailored to user needs. BIM has some disadvantages and it requires other technologies to complete it, namely Geographic Information System (GIS). BIM and GIS require surveying data to visualized landscape and buildings on Jatinangor ITB campus. This paper presents the on-going of an internal service program conducted by the researcher, academic staff and students for the university. The program including 3D surveying to support the data requirements for 3D modeling of buildings in CityGML and Industry Foundation Classes (IFC) data model. The entire 3D surveying will produce point clouds that can be used to make 3D model. The 3D modeling is divided into low and high levels of detail modeling. The low levels model is stored in 3D CityGML database, and the high levels model including interiors is stored in BIM Server. 3D model can be used to visualized the building and site of Jatinangor ITB campus. For facility management of campus, an geo-information system is developed that can be used for planning, constructing, and maintaining Jatinangor ITB's facilities and infrastructures. The system uses openMAINT, an open source solution for the Property & Facility Management.

  9. Hybrid network defense model based on fuzzy evaluation.

    PubMed

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  10. Model-free inference of direct network interactions from nonlinear collective dynamics.

    PubMed

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  11. The Potential of Directed Instruction to Teach Effectively Technology Usage

    ERIC Educational Resources Information Center

    Hosseini, Zahra

    2016-01-01

    Currently, teacher educational systems tend to develop their teachers' knowledge to effectively integrate technology in teaching. Consequently, numerous studies have attempted to describe strategies, models and approaches to develop teachers' knowledge for teaching with technology. However, most teachers are still following their traditional…

  12. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.

  13. Modeling water resources as a constraint in electricity capacity expansion models

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.

    2013-12-01

    In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs and availability of freshwater (surface and groundwater) and alternative water resources (municipal wastewater and brackish groundwater). In each region, a new power plant must secure sufficient water rights for operation before being built. Water rights constraints thus influence the type of power plant, cooling system, or location of new generating capacity. Results indicate that the aggregate national generating capacity by fuel type and associated carbon dioxide emissions change marginally with the inclusion of water rights. Water resource withdrawals and consumption, however, can vary considerably. Regional water resource dynamics indicate substantial differences in the location where power plant-cooling system technology combinations are built. These localized impacts highlight the importance of considering water resources as a constraint in the electricity sector when evaluating costs, transmission infrastructure needs, and externalities. Further scenario evaluations include assessments of how climate change could affect the availability of water resources, and thus the development of the electricity sector.

  14. Systems cell biology.

    PubMed

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. © 2014 Mast et al.

  15. Development of Inflatable Entry Systems Technologies

    NASA Technical Reports Server (NTRS)

    Player, Charles J.; Cheatwood, F. McNeil; Corliss, James

    2005-01-01

    Achieving the objectives of NASA s Vision for Space Exploration will require the development of new technologies, which will in turn require higher fidelity modeling and analysis techniques, and innovative testing capabilities. Development of entry systems technologies can be especially difficult due to the lack of facilities and resources available to test these new technologies in mission relevant environments. This paper discusses the technology development process to bring inflatable aeroshell technology from Technology Readiness Level 2 (TRL-2) to TRL-7. This paper focuses mainly on two projects: Inflatable Reentry Vehicle Experiment (IRVE), and Inflatable Aeroshell and Thermal Protection System Development (IATD). The objectives of IRVE are to conduct an inflatable aeroshell flight test that demonstrates exoatmospheric deployment and inflation, reentry survivability and stability, and predictable drag performance. IATD will continue the development of the technology by conducting exploration specific trade studies and feeding forward those results into three more flight tests. Through an examination of these projects, and other potential projects, this paper discusses some of the risks, issues, and unexpected benefits associated with the development of inflatable entry systems technology.

  16. Measuring the Success of Library 2.0 Technologies in the African Context: The Suitability of the DeLone and McLean's Model

    ERIC Educational Resources Information Center

    Lwoga, Edda Tandi

    2013-01-01

    Purpose: This study aims to examine the suitability of information systems (IS) success model in the adoption of library 2.0 technologies among undergraduate students in the African context, and focused at the Muhimbili University of Health and Allied Sciences (MUHAS) of Tanzania. Design/methodology/approach: Based on the IS success model, the…

  17. GEOGRAPHICAL INFORMATION SYSTEM, DECISION SUPPORT SYSTEMS, AND URBAN STORMWATER MANAGEMENT

    EPA Science Inventory

    The full report reviews the application of Geographic Inforamtion System (GIS) technology to the field of urban stormwater modeling. The GIS literature is reviewed in the context of its use as a spatial database for urban stormwater modeling, integration of GIS and hydroloic time...

  18. Aviation system modeling study and alternatives

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Aviation System Modeling Study was directed toward two primary goals: an improved understanding of the U.S. aviation system, and technology. There are three major categories into which the individual study efforts may be subdivided. These three categories are: special issue studies, task studies, and data base development.

  19. Space power technology into the 21st century

    NASA Technical Reports Server (NTRS)

    Faymon, K. A.; Fordyce, J. S.

    1984-01-01

    This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.

  20. Space power technology into the 21st Century

    NASA Technical Reports Server (NTRS)

    Faymon, K. A.; Fordyce, J. S.

    1983-01-01

    The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.

  1. Internet infrastructures and health care systems: a qualitative comparative analysis on networks and markets in the British National Health Service and Kaiser Permanente.

    PubMed

    Séror, Ann C

    2002-12-01

    The Internet and emergent telecommunications infrastructures are transforming the future of health care management. The costs of health care delivery systems, products, and services continue to rise everywhere, but performance of health care delivery is associated with institutional and ideological considerations as well as availability of financial and technological resources. to identify the effects of ideological differences on health care market infrastructures including the Internet and telecommunications technologies by a comparative case analysis of two large health care organizations: the British National Health Service and the California-based Kaiser Permanente health maintenance organization. A qualitative comparative analysis focusing on the British National Health Service and the Kaiser Permanente health maintenance organization to show how system infrastructures vary according to market dynamics dominated by health care institutions ("push") or by consumer demand ("pull"). System control mechanisms may be technologically embedded, institutional, or behavioral. The analysis suggests that telecommunications technologies and the Internet may contribute significantly to health care system performance in a context of ideological diversity. The study offers evidence to validate alternative models of health care governance: the national constitution model, and the enterprise business contract model. This evidence also suggests important questions for health care policy makers as well as researchers in telecommunications, organizational theory, and health care management.

  2. Internet Infrastructures and Health Care Systems: a Qualitative Comparative Analysis on Networks and Markets in the British National Health Service and Kaiser Permanente

    PubMed Central

    2002-01-01

    Background The Internet and emergent telecommunications infrastructures are transforming the future of health care management. The costs of health care delivery systems, products, and services continue to rise everywhere, but performance of health care delivery is associated with institutional and ideological considerations as well as availability of financial and technological resources. Objective To identify the effects of ideological differences on health care market infrastructures including the Internet and telecommunications technologies by a comparative case analysis of two large health care organizations: the British National Health Service and the California-based Kaiser Permanente health maintenance organization. Methods A qualitative comparative analysis focusing on the British National Health Service and the Kaiser Permanente health maintenance organization to show how system infrastructures vary according to market dynamics dominated by health care institutions ("push") or by consumer demand ("pull"). System control mechanisms may be technologically embedded, institutional, or behavioral. Results The analysis suggests that telecommunications technologies and the Internet may contribute significantly to health care system performance in a context of ideological diversity. Conclusions The study offers evidence to validate alternative models of health care governance: the national constitution model, and the enterprise business contract model. This evidence also suggests important questions for health care policy makers as well as researchers in telecommunications, organizational theory, and health care management. PMID:12554552

  3. The Effect of Using E-Learning Tools in Online and Campus-Based Classrooms on Student Performance

    ERIC Educational Resources Information Center

    Galy, Edith; Downey, Clara; Johnson, Jennie

    2011-01-01

    Creating an integrative research framework that extends a model frequently used in the Information Systems field, the Technology Acceptance Model, together with variables used in the Education field, this empirical study investigates the factors influencing student performance as reflected by their final course grade. The Technology Acceptance…

  4. Design of Training Systems. Computerization of the Educational Technology Assessment Model. Volume 1.

    ERIC Educational Resources Information Center

    Duffy, Larry B.; And Others

    The Educational Technology Assessment Model (ETAM) is a set of comprehensive procedures and variables for the analysis, synthesis, and decision making, in regard to the benefits, costs, and risks associated with introducing technical innovations in education and training. This final report summarizes the analysis, design, and development…

  5. Modeling and Simulation: PowerBoosting Productivity with Simulation.

    ERIC Educational Resources Information Center

    Riley, Suzanne

    Minnesota high school students and teachers are learning the technology of simulation and integrating it into business and industrial technology courses. Modeling and simulation is the science of using software to construct a system within an organization and then running simulations of proposed changes to assess results before funds are spent. In…

  6. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  7. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-08-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  8. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  9. Evolutionary Technologies: Fundamentals and Applications to Information/Communication Systems and Manufacturing/Logistics Systems

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma

    As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.

  10. Advanced Technology Lifecycle Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is satisfied with the system configurations, technology portfolios, and deployment strategies, he or she can present the concepts to a team, which will conduct a detailed, discipline-oriented analysis within a CEE. An analog to this approach is the music industry where a songwriter creates the lyrics and music before entering a recording studio.

  11. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  12. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  13. Prediction of Francis Turbine Prototype Part Load Pressure and Output Power Fluctuations with Hydroelectric Model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.

    2017-04-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).

  14. Strategic relevance and accountability expectations: new perspectives for health care information technology design.

    PubMed

    Tan, J K; Modrow, R E

    1999-05-01

    In this article, we discuss the traditional systems analysis perspective on end-user information requirements analysis and extend it to merge with the new accountability expectations perspective to guide the future planning and design of health organization information systems. Underlying the strategic relevance of health care information technology (HCIT) are three critical questions: (1) What is the ideal HCIT model for the health organization in terms of achieving strategic expertise and competitive advantage? Specifically, how does this model link industry performance standards with organizational performance and accountability expectations? (2) How should the limitations of past HCIT models be reconciled to the benefits presented by the superior arrangement of the ideal model in the context of changing accountability expectations? (3) How should alternative HCIT solutions be evaluated in light of evidence-based accountability and organizational performance benchmarking? Insights into these questions will ensure that health care managers, HCIT practitioners and researchers can continue to focus on the most critical issues in harnessing today's fast-paced changing technologies for evolving strategically relevant, performance-based health organization systems.

  15. Distributed Aviation Concepts and Technologies

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2008-01-01

    Aviation has experienced one hundred years of evolution, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. While the first fifty years involved disruptive technologies that required frequent vehicle adaptation, the second fifty years produced a stable evolutionary optimization of decreasing costs with increasing safety. This optimization has resulted in traits favoring a centralized service model with high vehicle productivity and cost efficiency. However, it may also have resulted in a system that is not sufficiently robust to withstand significant system disturbances. Aviation is currently facing rapid change from issues such as environmental damage, terrorism threat, congestion and capacity limitations, and cost of energy. Currently, these issues are leading to a loss of service for weaker spoke markets. These catalysts and a lack of robustness could result in a loss of service for much larger portions of the aviation market. The impact of other competing transportation services may be equally important as casual factors of change. Highway system forecasts indicate a dramatic slow down as congestion reaches a point of non-linearly increasing delay. In the next twenty-five years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient and environmentally friendly system. To achieve these characteristics, the new system will likely be based on a distributed model that enables more direct services. Short range travel is already demonstrating itself to be inefficient with a centralized model, providing opportunities for emergent distributed services through air-taxi models. Technologies from the on-demand revolution in computers and communications are now available as major drivers for aviation on-demand adaptation. Other technologies such as electric propulsion are currently transforming the automobile industry, and will also significantly alter the functionality of future distributed aviation concepts. Many hurdles exist, including technology, regulation, and perception. Aviation has an inherent governmental role not present in other recent on-demand transformations, which may pose a risk of curtailing aviation democratization .

  16. System model development for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  17. The Doctor Is In, but Is Academia? Re-Tooling II Education for a New Era in Healthcare

    ERIC Educational Resources Information Center

    Lee, Andre; Moy, Lawrence; Kruck, S. E.; Rabang, Joshua

    2015-01-01

    Healthcare information technology is at a crossroads today. As legacy data systems converge with bleeding edge technologies, the technology environments of today's hospitals and clinics are evolving rapidly, producing new care delivery models. As a result, we need to reassess how information technology education is meeting the needs of healthcare…

  18. Appraising the Cost Efficiency of Higher Technological and Vocational Education Institutions in Taiwan Using the Metafrontier Cost-Function Model

    ERIC Educational Resources Information Center

    Lu, Yung-Hsiang; Chen, Ku-Hsieh

    2013-01-01

    This paper aims at appraising the cost efficiency and technology of institutions of higher technological and vocational education. Differing from conventional literature, it considers the potential influence of inherent discrepancies in output quality and characteristics of school systems for institutes of technology (ITs) and universities of…

  19. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  20. Developing R&D portfolio business validity simulation model and system.

    PubMed

    Yeo, Hyun Jin; Im, Kwang Hyuk

    2015-01-01

    The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen.

  1. Developing R&D Portfolio Business Validity Simulation Model and System

    PubMed Central

    2015-01-01

    The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen. PMID:25893209

  2. Real-time simulation for intra-operative navigation in robotic surgery. Using a mass spring system for a basic study of organ deformation.

    PubMed

    Kawamura, Kazuya; Kobayashi, Yo; Fujie, Masakatsu G

    2007-01-01

    Medical technology has advanced with the introduction of robot technology, making previous medical treatments that were very difficult far more possible. However, operation of a surgical robot demands substantial training and continual practice on the part of the surgeon because it requires difficult techniques that are different from those of traditional surgical procedures. We focused on a simulation technology based on the physical characteristics of organs. In this research, we proposed the development of surgical simulation, based on a physical model, for intra-operative navigation by a surgeon. In this paper, we describe the design of our system, in particular our organ deformation calculator. The proposed simulation system consists of an organ deformation calculator and virtual slave manipulators. We obtained adequate experimental results of a target node at a nearby point of interaction, because this point ensures better accuracy for our simulation model. The next research step would be to focus on a surgical environment in which internal organ models would be integrated into a slave simulation system.

  3. Hybrid Communication Architectures for Distributed Smart Grid Applications

    DOE PAGES

    Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin; ...

    2018-04-09

    Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less

  4. Hybrid Communication Architectures for Distributed Smart Grid Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin

    Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less

  5. A study on building data warehouse of hospital information system.

    PubMed

    Li, Ping; Wu, Tao; Chen, Mu; Zhou, Bin; Xu, Wei-guo

    2011-08-01

    Existing hospital information systems with simple statistical functions cannot meet current management needs. It is well known that hospital resources are distributed with private property rights among hospitals, such as in the case of the regional coordination of medical services. In this study, to integrate and make full use of medical data effectively, we propose a data warehouse modeling method for the hospital information system. The method can also be employed for a distributed-hospital medical service system. To ensure that hospital information supports the diverse needs of health care, the framework of the hospital information system has three layers: datacenter layer, system-function layer, and user-interface layer. This paper discusses the role of a data warehouse management system in handling hospital information from the establishment of the data theme to the design of a data model to the establishment of a data warehouse. Online analytical processing tools assist user-friendly multidimensional analysis from a number of different angles to extract the required data and information. Use of the data warehouse improves online analytical processing and mitigates deficiencies in the decision support system. The hospital information system based on a data warehouse effectively employs statistical analysis and data mining technology to handle massive quantities of historical data, and summarizes from clinical and hospital information for decision making. This paper proposes the use of a data warehouse for a hospital information system, specifically a data warehouse for the theme of hospital information to determine latitude, modeling and so on. The processing of patient information is given as an example that demonstrates the usefulness of this method in the case of hospital information management. Data warehouse technology is an evolving technology, and more and more decision support information extracted by data mining and with decision-making technology is required for further research.

  6. Research on application model of blockchain technology in distributed electricity market

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Zeng, B.; Huang, Y. Z.

    2017-11-01

    In the context of current energy Internet, the emergence of a large number of energy productive consumers will create a new business model. In the decentralized electricity market, the cost of traditional centralized solution construction, management and maintenance is too high, and it is difficult to support the collection, transmission, reception, storage and analysis of massive data. To provide a solution to this phenomenon, we apply the blockchain technology to this distributed electricity market to achieve peer to peer transactions in the power systems. The blockchain technology which is very popular nowadays will be used in power system to establish a credible direct transaction between devices. At first, this article analyzes the future direction of the development of power systems, studies the characteristics of decentralized power systems and summarizes the main issues in the development process. Then, we analyze the basic characteristics of blockchain and put forward a new transaction framework in consideration of problems existing in current energy market. The transaction framework is based on the blockchain technology in the distributed electricity market and includes the pricing method, the power transaction system architecture, various modules of the trading system and the details of the whole transaction system runtime. This framework provides a viable solution for increasingly complex energy transactions.

  7. Fundamental Technology Development for Gas-Turbine Engine Health Management

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Simon, Donald L.; Hunter, Gary W.; Arnold, Steven M.; Reveley, Mary S.; Anderson, Lynn M.

    2007-01-01

    Integrated vehicle health management technologies promise to dramatically improve the safety of commercial aircraft by reducing system and component failures as causal and contributing factors in aircraft accidents. To realize this promise, fundamental technology development is needed to produce reliable health management components. These components include diagnostic and prognostic algorithms, physics-based and data-driven lifing and failure models, sensors, and a sensor infrastructure including wireless communications, power scavenging, and electronics. In addition, system assessment methods are needed to effectively prioritize development efforts. Development work is needed throughout the vehicle, but particular challenges are presented by the hot, rotating environment of the propulsion system. This presentation describes current work in the field of health management technologies for propulsion systems for commercial aviation.

  8. Overcoming Barriers To IVHS -- Lessons From Other Technologies, Final Task F Report, Model Advanced Traffic Management System Franchise Agreement

    DOT National Transportation Integrated Search

    1995-08-25

    VIABLE ADVANCED TRAFFIC MANAGEMENT SYSTEMS WILL BE CENTRAL TO THE : DEVELOPMENT OF ITS TECHNOLOGIES, AND CRITICAL TO THE DELIVERY OF MANY PRIVATE SECTOR ITS SERVICES TO THE PUBLIC. BY ITS VERY NATURE, HOWEVER, ATMS RELIES HEAVILY ON ACCESS TO THE PUB...

  9. Television broadcast from space systems: Technology, costs

    NASA Technical Reports Server (NTRS)

    Cuccia, C. L.

    1981-01-01

    Broadcast satellite systems are described. The technologies which are unique to both high power broadcast satellites and small TV receive-only earth terminals are also described. A cost assessment of both space and earth segments is included and appendices present both a computer model for satellite cost and the pertinent reported experience with the Japanese BSE.

  10. Commercial Supersonics Technology Project - Status of Airport Noise

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2016-01-01

    The Commercial Supersonic Technology Project has been developing databases, computational tools, and system models to prepare for a level 1 milestone, the Low Noise Propulsion Tech Challenge, to be delivered Sept 2016. Steps taken to prepare for the final validation test are given, including system analysis, code validation, and risk reduction testing.

  11. Experts on Super Innovators: Understanding Staff Adoption of Learning Management Systems

    ERIC Educational Resources Information Center

    Sinclair, Jane; Aho, Anne-Maria

    2018-01-01

    Learning management systems (LMSs) are widely used in higher education and offer a gateway to innovative, technology-enhanced teaching and learning. However, many university staff still choose not to adopt them or do not explore the more creative functionality. Previous research has developed models of technology adoption which map observed…

  12. Key issues and technical route of cyber physical distribution system

    NASA Astrophysics Data System (ADS)

    Zheng, P. X.; Chen, B.; Zheng, L. J.; Zhang, G. L.; Fan, Y. L.; Pei, T.

    2017-01-01

    Relying on the National High Technology Research and Development Program, this paper introduced the key issues in Cyber Physical Distribution System (CPDS), mainly includes: composite modelling method and interaction mechanism, system planning method, security defence technology, distributed control theory. Then on this basis, the corresponding technical route is proposed, and a more detailed research framework along with main schemes to be adopted is also presented.

  13. Exploring the Learning Mechanism of Web-Based Question-Answering Systems and Their Design

    ERIC Educational Resources Information Center

    Zhang, Yin

    2010-01-01

    In recent years, a number of models concerning question-answering (QA) systems have been put forward. But many of them stress technology and neglect the research of QA itself. In this paper, we analyse the essence of QA and discuss the relationship between technology and QA. On that basis, we propose that when designing web-based QA systems, more…

  14. Developing an Enterprise Systems Appropriation Model in the Public Sector: A Case Study of Implementing Payroll System Replacement (PAYSERV) at the New York State Office of the State Comptroller

    ERIC Educational Resources Information Center

    Kamya, Moses M.

    2009-01-01

    This dissertation examines an enterprise system appropriation process applying structuration theory and adaptive structuration theory (AST). The key research questions are: (1) what structures emerge from the implementation of enterprise information technology (EIT); (2) how do enterprise technologies and existing organization structures influence…

  15. An evaluation framework for Health Information Systems: human, organization and technology-fit factors (HOT-fit).

    PubMed

    Yusof, Maryati Mohd; Kuljis, Jasna; Papazafeiropoulou, Anastasia; Stergioulas, Lampros K

    2008-06-01

    The realization of Health Information Systems (HIS) requires rigorous evaluation that addresses technology, human and organization issues. Our review indicates that current evaluation methods evaluate different aspects of HIS and they can be improved upon. A new evaluation framework, human, organization and technology-fit (HOT-fit) was developed after having conducted a critical appraisal of the findings of existing HIS evaluation studies. HOT-fit builds on previous models of IS evaluation--in particular, the IS Success Model and the IT-Organization Fit Model. This paper introduces the new framework for HIS evaluation that incorporates comprehensive dimensions and measures of HIS and provides a technological, human and organizational fit. Literature review on HIS and IS evaluation studies and pilot testing of developed framework. The framework was used to evaluate a Fundus Imaging System (FIS) of a primary care organization in the UK. The case study was conducted through observation, interview and document analysis. The main findings show that having the right user attitude and skills base together with good leadership, IT-friendly environment and good communication can have positive influence on the system adoption. Comprehensive, specific evaluation factors, dimensions and measures in the new framework (HOT-fit) are applicable in HIS evaluation. The use of such a framework is argued to be useful not only for comprehensive evaluation of the particular FIS system under investigation, but potentially also for any Health Information System in general.

  16. Factors influencing nurses' acceptance of hospital information systems in Iran: application of the Unified Theory of Acceptance and Use of Technology.

    PubMed

    Sharifian, Roxana; Askarian, Fatemeh; Nematolahi, Mohtaram; Farhadi, Payam

    User acceptance is a precondition for successful implementation of hospital information systems (HISs). Increasing investment in information technology by healthcare organisations internationally has made user acceptance an important issue in technology implementation and management. Despite the increased focus on hospital information systems, there continues to be user resistance. The present study aimed to investigate the factors affecting hospital information systems nurse-user acceptance of HISs, based on the Unified Theory of Acceptance and Use of Technology (UTAUT), in the Shiraz University of Medical Sciences teaching hospitals. A descriptive-analytical research design was employed to study nurses' adoption and use of HISs. Data collection was undertaken using a cross-sectional survey of nurses (n=303). The research model was examined using the LISREL path confirmatory modeling. The results demonstrated that the nurses' behavioural intention (BI) to use hospital information systems was predicted by Performance Expectancy (PE) (β= 2.34, p<0.01), Effort Expectancy (EE) (β= 2.21, p<0.01), Social Influence (SI) (β= 2.63, p<0.01) and Facilitating Conditions (FC) (β= 2.84, p<0.01). The effects of these antecedents of BI explained 72.8% of the variance in nurses' intention to use hospital information systems (R2 = 0.728). Application of the research model suggested that nurses' acceptance of HISs was influenced by performance expectancy, effort expectancy, social influence and facilitating conditions, with performance expectancy having the strongest effect on user intention.

  17. Cargo launch vehicles to low earth orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.

    1990-01-01

    There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.

  18. Current Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Wright, Michael; Barnhardt, Michael; Hughes, Monica

    2017-01-01

    This talk will provide an overview of investments in the Entry Systems Modeling project, along with some context of where the effort sits in the overall Space Technology EDL Portfolio. Technical highlights, particularly with referent to work on Ablation Modeling, will be given. Future directions will be discussed.

  19. 75 FR 52373 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... Administration. Type of Review: NEW. Title of Collection: Evaluation of the Technology-Based Learning Grants. OMB... technology based learning. The initiative increases worker access to training while stimulating the development of innovative models and uses for technology based learning in the public workforce system. For...

  20. EVALUATION OF USFILTER CORPORATION'S RETEC® MODEL SCP-6 SEPARATED CELL PURIFICATION SYSTEM FOR CHROMIC ACID ANODIZE BATH SOLUTION

    EPA Science Inventory

    The USEPA has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The ETV P2 Metal Finishing Technologies (ETV-MF) Prog...

  1. Automatic summary generating technology of vegetable traceability for information sharing

    NASA Astrophysics Data System (ADS)

    Zhenxuan, Zhang; Minjing, Peng

    2017-06-01

    In order to solve problems of excessive data entries and consequent high costs for data collection in vegetable traceablility for farmers in traceability applications, the automatic summary generating technology of vegetable traceability for information sharing was proposed. The proposed technology is an effective way for farmers to share real-time vegetable planting information in social networking platforms to enhance their brands and obtain more customers. In this research, the influencing factors in the vegetable traceablility for customers were analyzed to establish the sub-indicators and target indicators and propose a computing model based on the collected parameter values of the planted vegetables and standard legal systems on food safety. The proposed standard parameter model involves five steps: accessing database, establishing target indicators, establishing sub-indicators, establishing standard reference model and computing scores of indicators. On the basis of establishing and optimizing the standards of food safety and traceability system, this proposed technology could be accepted by more and more farmers and customers.

  2. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  3. Assessment of Solid Sorbent Systems for Post-Combustion Carbon Dioxide Capture at Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Glier, Justin C.

    In an effort to lower future CO2 emissions, a wide range of technologies are being developed to scrub CO2 from the flue gases of fossil fuel-based electric power and industrial plants. This thesis models one of several early-stage post-combustion CO2 capture technologies, solid sorbent-based CO2 capture process, and presents performance and cost estimates of this system on pulverized coal power plants. The spreadsheet-based software package Microsoft Excel was used in conjunction with AspenPlus modelling results and the Integrated Environmental Control Model to develop performance and cost estimates for the solid sorbent-based CO2 capture technology. A reduced order model also was created to facilitate comparisons among multiple design scenarios. Assumptions about plant financing and utilization, as well as uncertainties in heat transfer and material design that affect heat exchanger and reactor design were found to produce a wide range of cost estimates for solid sorbent-based systems. With uncertainties included, costs for a supercritical power plant with solid sorbent-based CO2 capture ranged from 167 to 533 per megawatt hour for a first-of-a-kind installation (with all costs in constant 2011 US dollars) based on a 90% confidence interval. The median cost was 209/MWh. Post-combustion solid sorbent-based CO2 capture technology is then evaluated in terms of the potential cost for a mature system based on historic experience as technologies are improved with sequential iterations of the currently available system. The range costs for a supercritical power plant with solid sorbent-based CO2 capture was found to be 118 to 189 per megawatt hour with a nominal value of 163 per megawatt hour given the expected range of technological improvement in the capital and operating costs and efficiency of the power plant after 100 GW of cumulative worldwide experience. These results suggest that the solid sorbent-based system will not be competitive with currently available liquid amine-systems in the absence of significant new improvements in solid sorbent properties and process system design to reduce the heat exchange surface area in the regenerator and cross-flow heat exchanger. Finally, the importance of these estimates for policy makers is discussed.

  4. A Fuzzy Rule Based Decision Support System for Identifying Location of Water Harvesting Technologies in Rainfed Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Vema, V. K.; Sudheer, K.

    2016-12-01

    Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.

  5. Risk of spacecraft on-orbit obsolescence: Novel framework, stochastic modeling, and implications

    NASA Astrophysics Data System (ADS)

    Dubos, Gregory F.; Saleh, Joseph H.

    2010-07-01

    The Government Accountability Office (GAO) has repeatedly noted the difficulties encountered by the Department of Defense (DOD) in keeping its acquisition of space systems on schedule and within budget. Among the recommendations provided by GAO, a minimum Technology Readiness Level (TRL) for technologies to be included in the development of a space system is advised. The DOD considers this recommendation impractical arguing that if space systems were designed with only mature technologies (high TRL), they would likely become obsolete on-orbit fairly quickly. The risk of on-orbit obsolescence is a key argument in the DOD's position for dipping into low technology maturity for space acquisition programs, but this policy unfortunately often results in the cost growth and schedule slippage criticized by the GAO. The concept of risk of on-orbit obsolescence has remained qualitative to date. In this paper, we formulate a theory of risk of on-orbit obsolescence by building on the traditional notion of obsolescence and adapting it to the specificities of space systems. We develop a stochastic model for quantifying and analyzing the risk of on-orbit obsolescence, and we assess, in its light, the appropriateness of DOD's rationale for maintaining low TRL technologies in its acquisition of space assets as a strategy for mitigating on-orbit obsolescence. Our model and results contribute one step towards the resolution of the conceptual stalemate on this matter between the DOD and the GAO, and we hope will inspire academics to further investigate the risk of on-orbit obsolescence.

  6. Using semantic technologies and the OSU ontology for modelling context and activities in multi-sensory surveillance systems

    NASA Astrophysics Data System (ADS)

    Gómez A, Héctor F.; Martínez-Tomás, Rafael; Arias Tapia, Susana A.; Rincón Zamorano, Mariano

    2014-04-01

    Automatic systems that monitor human behaviour for detecting security problems are a challenge today. Previously, our group defined the Horus framework, which is a modular architecture for the integration of multi-sensor monitoring stages. In this work, structure and technologies required for high-level semantic stages of Horus are proposed, and the associated methodological principles established with the aim of recognising specific behaviours and situations. Our methodology distinguishes three semantic levels of events: low level (compromised with sensors), medium level (compromised with context), and high level (target behaviours). The ontology for surveillance and ubiquitous computing has been used to integrate ontologies from specific domains and together with semantic technologies have facilitated the modelling and implementation of scenes and situations by reusing components. A home context and a supermarket context were modelled following this approach, where three suspicious activities were monitored via different virtual sensors. The experiments demonstrate that our proposals facilitate the rapid prototyping of this kind of systems.

  7. Current and emerging business models in the health care information technology industry: a view from wall street.

    PubMed

    Frank, Seth

    2003-01-01

    When we think about health care IT, we don't just think about clinical automation with the movement to computerized physician order entry (CPOE), but also the need to upgrade legacy financial and administrative systems to interact with clinical systems. Technology acceptance by physicians remains low, and computer use by physicians for data entry and analysis remains minimal. We expect this trend to change, and expect increased automation to represent gradual change. The HCIT space is dynamic, with many opportunities, but also many challenges. The unique nature of the end market buyers, existing business models, and nature of the technology makes this a challenging but dynamic area for equity investment.

  8. SEXTANT - Station Explorer for X-Ray Timing and Navigation Technology

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason; Hasouneh, Monther; Winternitz, Luke; Valdez, Jennifer; Price, Sam; Semper, Sean; Yu, Wayne; Gaebler, John; Ray, Paul; Wood, Kent; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technology- demonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  9. Expeditious illustration of layer-cake models on and above a tactile surface

    NASA Astrophysics Data System (ADS)

    Lopes, Daniel Simões; Mendes, Daniel; Sousa, Maurício; Jorge, Joaquim

    2016-05-01

    Too often illustrating and visualizing 3D geological concepts are performed by sketching in 2D mediums, which may limit drawing performance of initial concepts. Here, the potential of expeditious geological modeling brought by hand gestures is explored. A spatial interaction system was developed to enable rapid modeling, editing, and exploration of 3D layer-cake objects. User interactions are acquired with motion capture and touch screen technologies. Virtual immersion is guaranteed by using stereoscopic technology. The novelty consists of performing expeditious modeling of coarse geological features with only a limited set of hand gestures. Results from usability-studies show that the proposed system is more efficient when compared to a windows-icon-menu-pointer modeling application.

  10. Train Control and Operations

    DOT National Transportation Integrated Search

    1971-06-01

    ATO (automatic train operation) and ATC (automatic train control) systems are evaluated relative to available technology and cost-benefit. The technological evaluation shows that suitable mathematical models of the dynamics of long trains are require...

  11. Modelling End-User of Electronic-Government Service: The Role of Information quality, System Quality and Trust

    NASA Astrophysics Data System (ADS)

    Witarsyah Jacob, Deden; Fudzee, Mohd Farhan Md; Aizi Salamat, Mohamad; Kasim, Shahreen; Mahdin, Hairulnizam; Azhar Ramli, Azizul

    2017-08-01

    Many governments around the world increasingly use internet technologies such as electronic government to provide public services. These services range from providing the most basic informational website to deploying sophisticated tools for managing interactions between government agencies and beyond government. Electronic government (e-government) aims to provide a more accurate, easily accessible, cost-effective and time saving for the community. In this study, we develop a new model of e-government adoption service by extending the Unified Theory of Acceptance and Use of Technology (UTAUT) through the incorporation of some variables such as System Quality, Information Quality and Trust. The model is then tested using a large-scale, multi-site survey research of 237 Indonesian citizens. This model will be validated by using Structural Equation Modeling (SEM). The result indicates that System Quality, Information Quality and Trust variables proven to effect user behavior. This study extends the current understanding on the influence of System Quality, Information Quality and Trust factors to researchers, practitioners, and policy makers.

  12. Comparative systems biology between human and animal models based on next-generation sequencing methods.

    PubMed

    Zhao, Yu-Qi; Li, Gong-Hua; Huang, Jing-Fei

    2013-04-01

    Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.

  13. Advanced Technology Training System on Motor-Operated Valves

    NASA Technical Reports Server (NTRS)

    Wiederholt, Bradley J.; Widjaja, T. Kiki; Yasutake, Joseph Y.; Isoda, Hachiro

    1993-01-01

    This paper describes how features from the field of Intelligent Tutoring Systems are applied to the Motor-Operated Valve (MOV) Advanced Technology Training System (ATTS). The MOV ATTS is a training system developed at Galaxy Scientific Corporation for the Central Research Institute of Electric Power Industry in Japan and the Electric Power Research Institute in the United States. The MOV ATTS combines traditional computer-based training approaches with system simulation, integrated expert systems, and student and expert modeling. The primary goal of the MOV ATTS is to reduce human errors that occur during MOV overhaul and repair. The MOV ATTS addresses this goal by providing basic operational information of the MOV, simulating MOV operation, providing troubleshooting practice of MOV failures, and tailoring this training to the needs of each individual student. The MOV ATTS integrates multiple expert models (functional and procedural) to provide advice and feedback to students. The integration also provides expert model validation support to developers. Student modeling is supported by two separate student models: one model registers and updates the student's current knowledge of basic MOV information, while another model logs the student's actions and errors during troubleshooting exercises. These two models are used to provide tailored feedback to the student during the MOV course.

  14. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  15. Verification technology of remote sensing camera satellite imaging simulation based on ray tracing

    NASA Astrophysics Data System (ADS)

    Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun

    2017-08-01

    Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.

  16. Modeling the Energy Use of a Connected and Automated Transportation System (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.; Brown, A.

    Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing trafficmore » flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.« less

  17. A combined approach of AHP and TOPSIS methods applied in the field of integrated software systems

    NASA Astrophysics Data System (ADS)

    Berdie, A. D.; Osaci, M.; Muscalagiu, I.; Barz, C.

    2017-05-01

    Adopting the most appropriate technology for developing applications on an integrated software system for enterprises, may result in great savings both in cost and hours of work. This paper proposes a research study for the determination of a hierarchy between three SAP (System Applications and Products in Data Processing) technologies. The technologies Web Dynpro -WD, Floorplan Manager - FPM and CRM WebClient UI - CRM WCUI are multi-criteria evaluated in terms of the obtained performances through the implementation of the same web business application. To establish the hierarchy a multi-criteria analysis model that combines the AHP (Analytic Hierarchy Process) and the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods was proposed. This model was built with the help of the SuperDecision software. This software is based on the AHP method and determines the weights for the selected sets of criteria. The TOPSIS method was used to obtain the final ranking and the technologies hierarchy.

  18. Investigating IT Faculty Resistance to Learning Management System Adoption Using Latent Variables in an Acceptance Technology Model.

    PubMed

    Bousbahi, Fatiha; Alrazgan, Muna Saleh

    2015-01-01

    To enhance instruction in higher education, many universities in the Middle East have chosen to introduce learning management systems (LMS) to their institutions. However, this new educational technology is not being used at its full potential and faces resistance from faculty members. To investigate this phenomenon, we conducted an empirical research study to uncover factors influencing faculty members' acceptance of LMS. Thus, in the Fall semester of 2014, Information Technology faculty members were surveyed to better understand their perceptions of the incorporation of LMS into their courses. The results showed that personal factors such as motivation, load anxiety, and organizational support play important roles in the perception of the usefulness of LMS among IT faculty members. These findings suggest adding these constructs in order to extend the Technology acceptance model (TAM) for LMS acceptance, which can help stakeholders of the university to implement the use of this system. This may assist in planning and evaluating the use of e-learning.

  19. Investigating IT Faculty Resistance to Learning Management System Adoption Using Latent Variables in an Acceptance Technology Model

    PubMed Central

    Bousbahi, Fatiha; Alrazgan, Muna Saleh

    2015-01-01

    To enhance instruction in higher education, many universities in the Middle East have chosen to introduce learning management systems (LMS) to their institutions. However, this new educational technology is not being used at its full potential and faces resistance from faculty members. To investigate this phenomenon, we conducted an empirical research study to uncover factors influencing faculty members' acceptance of LMS. Thus, in the Fall semester of 2014, Information Technology faculty members were surveyed to better understand their perceptions of the incorporation of LMS into their courses. The results showed that personal factors such as motivation, load anxiety, and organizational support play important roles in the perception of the usefulness of LMS among IT faculty members. These findings suggest adding these constructs in order to extend the Technology acceptance model (TAM) for LMS acceptance, which can help stakeholders of the university to implement the use of this system. This may assist in planning and evaluating the use of e-learning. PMID:26491712

  20. Knowledge network model of the energy consumption in discrete manufacturing system

    NASA Astrophysics Data System (ADS)

    Xu, Binzi; Wang, Yan; Ji, Zhicheng

    2017-07-01

    Discrete manufacturing system generates a large amount of data and information because of the development of information technology. Hence, a management mechanism is urgently required. In order to incorporate knowledge generated from manufacturing data and production experience, a knowledge network model of the energy consumption in the discrete manufacturing system was put forward based on knowledge network theory and multi-granularity modular ontology technology. This model could provide a standard representation for concepts, terms and their relationships, which could be understood by both human and computer. Besides, the formal description of energy consumption knowledge elements (ECKEs) in the knowledge network was also given. Finally, an application example was used to verify the feasibility of the proposed method.

  1. Dynamic assessment of urban economy-environment-energy system using system dynamics model: A case study in Beijing.

    PubMed

    Wu, Desheng; Ning, Shuang

    2018-07-01

    Economic development, accompanying with environmental damage and energy depletion, becomes essential nowadays. There is a complicated and comprehensive interaction between economics, environment and energy. Understanding the operating mechanism of Energy-Environment-Economy model (3E) and its key factors is the inherent part in dealing with the issue. In this paper, we combine System Dynamics model and Geographic Information System to analyze the energy-environment-economy (3E) system both temporally and spatially, which explicitly explore the interaction of economics, energy, and environment and effects of the key influencing factors. Beijing is selected as a case study to verify our SD-GIS model. Alternative scenarios, e.g., current, technology, energy and environment scenarios are explored and compared. Simulation results shows that, current scenario is not sustainable; technology scenario is applicable to economic growth; environment scenario maintains a balanced path of development for long term stability. Policy-making insights are given based on our results and analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticismmore » related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.« less

  3. A Systems Model for Power Technology Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2002-01-01

    A computer model is under continuing development at NASA Glenn Research Center that enables first-order assessments of space power technology. The model, an evolution of NASA Glenn's Array Design Assessment Model (ADAM), is an Excel workbook that consists of numerous spreadsheets containing power technology performance data and sizing algorithms. Underlying the model is a number of databases that contain default values for various power generation, energy storage and power management and distribution component parameters. These databases are actively maintained by a team of systems analysts so that they contain state-of-art data as well as the most recent technology performance projections. Sizing of the power subsystems can be accomplished either by using an assumed mass specific power (W/kg) or energy (Wh/kg) or by a bottoms-up calculation that accounts for individual component performance and masses. The power generation, energy storage and power management and distribution subsystems are sized for given mission requirements for a baseline case and up to three alternatives. This allows four different power systems to be sized and compared using consistent assumptions and sizing algorithms. The component sizing models contained in the workbook are modular so that they can be easily maintained and updated. All significant input values have default values loaded from the databases that can be over-written by the user. The default data and sizing algorithms for each of the power subsystems are described in some detail. The user interface and workbook navigational features are also discussed. Finally, an example study case that illustrates the model's capability is presented.

  4. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy

    PubMed Central

    Xu, Huaigeng

    2017-01-01

    In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs) and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD) has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic. PMID:28607562

  5. Cybersecurity Capability Maturity Model for Information Technology Services (C2M2 for IT Services), Version 1.0

    DTIC Science & Technology

    2015-04-01

    Information and technology assets are a particular focus of the model. Information assets could be digital (e.g., stored in a computer system...which give context for the domain and intro - duce its practices and its abbreviation. (The abbreviation for the Risk Management domain, for example...Objectives and Practices 1. Manage Asset Inventory MIL1 a. There is an inventory of technology assets (e.g., computers and telecommunication equipment

  6. A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003

    PubMed Central

    van Witteloostuijn, Arjen

    2018-01-01

    In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575

  7. The Impact of National Cultural Differences on Nurses' Acceptance of Hospital Information Systems.

    PubMed

    Lin, Hsien-Cheng

    2015-06-01

    This study aims to explore the influence of national cultural differences on nurses' perceptions of their acceptance of hospital information systems. This study uses the perspective of Technology Acceptance Model; national cultural differences in terms of masculinity/femininity, individualism/collectivism, power distance, and uncertainty avoidance are incorporated into the Technology Acceptance Model as moderators, whereas time orientation is a control variable on hospital information system acceptance. A quantitative research design was used in this study; 261 participants, US and Taiwan RNs, all had hospital information system experience. Data were collected from November 2013 to February 2014 and analyzed using a t test to compare the coefficients for each moderator. The results show that individualism/collectivism, power distance, and uncertainty avoidance all exhibit significant difference on hospital information system acceptance; however, both masculinity/femininity and time orientation factors did not show significance. This study verifies that national cultural differences have significant influence on nurses' behavioral intention to use hospital information systems. Therefore, hospital information system providers should emphasize the way in which to integrate different technological functions to meet the needs of nurses from various cultural backgrounds.

  8. A survey of university students' perceptions of learning management systems in a low-resource setting using a technology acceptance model.

    PubMed

    Chipps, Jennifer; Kerr, Jane; Brysiewicz, Petra; Walters, Fiona

    2015-02-01

    Learning management systems have been widely advocated for the support of distance learning. In low-resource settings, the uptake of these systems by students has been mixed. This study aimed to identify, through the use of the Technology Acceptance Model, the individual, organizational, and technological factors that could be influencing the use of learning management systems. A simple quantitative descriptive survey was conducted of nursing and health science students at a university in South Africa as part of their first exposure to a learning management system. A total of 274 respondents (56.7%) completed the survey questionnaire, made up of 213 nursing respondents (87.7%) and 61 health sciences respondents (25%). Overall, the respondents found the learning management system easy to use and useful for learning. There were significant differences between the two groups of respondents, with the respondents from health sciences being both younger and more computer literate. The nursing respondents, who received more support and orientations, reported finding the learning management system more useful. Recommendations are made for training and support to ensure uptake.

  9. Assessing Advanced Technology in CENATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallent, Nathan R.; Barker, Kevin J.; Gioiosa, Roberto

    PNNL's Center for Advanced Technology Evaluation (CENATE) is a new U.S. Department of Energy center whose mission is to assess and facilitate access to emerging computing technology. CENATE is assessing a range of advanced technologies, from evolutionary to disruptive. Technologies of interest include the processor socket (homogeneous and accelerated systems), memories (dynamic, static, memory cubes), motherboards, networks (network interface cards and switches), and input/output and storage devices. CENATE is developing a multi-perspective evaluation process based on integrating advanced system instrumentation, performance measurements, and modeling and simulation. We show evaluations of two emerging network technologies: silicon photonics interconnects and the Datamore » Vortex network. CENATE's evaluation also addresses the question of which machine is best for a given workload under certain constraints. We show a performance-power tradeoff analysis of a well-known machine learning application on two systems.« less

  10. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; DeFelice, Tom P.

    2016-09-01

    Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.

  11. Modeling and simulation for space medicine operations: preliminary requirements considered

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Billica, R. D.; McDonald, P. V.

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  12. Requirements for Modeling and Simulation for Space Medicine Operations: Preliminary Considerations

    NASA Technical Reports Server (NTRS)

    Dawson, David L.; Billica, Roger D.; Logan, James; McDonald, P. Vernon

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical Simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  13. Analysis and design of segment control system in segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Yu, Wenhao; Li, Bin; Chen, Mo; Xian, Hao

    2017-10-01

    Segmented primary mirror will be adopted widely in giant telescopes in future, such as TMT, E-ELT and GMT. High-performance control technology of the segmented primary mirror is one of the difficult technologies for telescopes using segmented primary mirror. The control of each segment is the basis of control system in segmented mirror. Correcting the tilt and tip of single segment is the main work of this paper which is divided into two parts. Firstly, harmonic response done in finite element model of single segment matches the Bode diagram of a two-order system whose natural frequency is 45 hertz and damping ratio is 0.005. Secondly, a control system model is established, and speed feedback is introduced in control loop to suppress resonance point gain and increase the open-loop bandwidth, up to 30Hz or even higher. Corresponding controller is designed based on the control system model described above.

  14. Modeling Business Processes in Public Administration

    NASA Astrophysics Data System (ADS)

    Repa, Vaclav

    During more than 10 years of its existence business process modeling became a regular part of organization management practice. It is mostly regarded. as a part of information system development or even as a way to implement some supporting technology (for instance workflow system). Although I do not agree with such reduction of the real meaning of a business process, it is necessary to admit that information technologies play an essential role in business processes (see [1] for more information), Consequently, an information system is inseparable from a business process itself because it is a cornerstone of the general basic infrastructure of a business. This fact impacts on all dimensions of business process management. One of these dimensions is the methodology that postulates that the information systems development provide the business process management with exact methods and tools for modeling business processes. Also the methodology underlying the approach presented in this paper has its roots in the information systems development methodology.

  15. Multimedia Learning System and Its Effect on Self-Efficacy in Database Modeling and Design: An Exploratory Study

    ERIC Educational Resources Information Center

    Cheung, Waiman; Li, Eldon Y.; Yee, Lester W.

    2003-01-01

    Metadatabase modeling and design integrate process modeling and data modeling methodologies. Both are core topics in the information technology (IT) curriculum. Learning these topics has been an important pedagogical issue to the core studies for management information systems (MIS) and computer science (CSc) students. Unfortunately, the learning…

  16. Old Dog New Tricks: Use of Point-based Crop Models in Grid-based Regional Assessment of Crop Management Technologies Impact on Future Food Security

    NASA Astrophysics Data System (ADS)

    Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.

    2012-12-01

    HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published on the web with an interface that allows users to explore the simulation results in each country with user-defined baseline and what-if scenarios. The results are dynamically presented on maps, charts, and tables. This paper discusses the development of the simulation platform and its underlying data layers, a case study that assessed the role of potential crop management technology development, and the development of a web-based application that visualizes the simulation results.

  17. From PCK to TPACK: Developing a Transformative Model for Pre-Service Science Teachers

    NASA Astrophysics Data System (ADS)

    Jang, Syh-Jong; Chen, Kuan-Chung

    2010-12-01

    New science teachers should be equipped with the ability to integrate and design the curriculum and technology for innovative teaching. How to integrate technology into pre-service science teachers' pedagogical content knowledge is the important issue. This study examined the impact on a transformative model of integrating technology and peer coaching for developing technological pedagogical and content knowledge (TPACK) of pre-service science teachers. A transformative model and an online system were designed to restructure science teacher education courses. Participants of this study included an instructor and 12 pre-service teachers. The main sources of data included written assignments, online data, reflective journals, videotapes and interviews. This study expanded four views, namely, the comprehensive, imitative, transformative and integrative views to explore the impact of TPACK. The model could help pre-service teachers develop technological pedagogical methods and strategies of integrating subject-matter knowledge into science lessons, and further enhanced their TPACK.

  18. An intelligent anti-jamming network system of data link

    NASA Astrophysics Data System (ADS)

    Fan, Xiangrui; Lin, Jingyong; Liu, Jiarun; Zhou, Chunmei

    2017-10-01

    Data link is the key information system for the cooperation of weapons, single physical layer anti-jamming technology has been unable to meet its requirements. High dynamic precision-guided weapon nodes like missiles, anti-jamming design of data link system need to have stronger pertinence and effectiveness: the best anti-jamming communication mode can be selected intelligently in combat environment, in real time, guarantee the continuity of communication. We discuss an anti-jamming intelligent networking technology of data link based on interference awareness, put forward a model of intelligent anti-jamming system, and introduces the cognitive node protocol stack model and intelligent anti-jamming method, in order to improve the data chain of intelligent anti-jamming ability.

  19. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  20. Intelligent model-based diagnostics for vehicle health management

    NASA Astrophysics Data System (ADS)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

Top