NASA Astrophysics Data System (ADS)
Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.
2017-12-01
A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.
Low-cost measurement and monitoring system for cryogenic applications
NASA Astrophysics Data System (ADS)
Tubío Araújo, Óscar; Hernández Suárez, Elvio; Gracia Temich, Félix
2016-07-01
Cryostats are closed chambers that hinder the monitoring of materials, structures or systems installed therein. This paper presents a webcam-based measurement and monitoring system, which can operate under vacuum and cryogenic conditions to be mainly used in astrophysical applications. The system can be configured in two different assemblies: wide field that can be used for mechanism monitoring and narrow field, especially useful in cryogenic precision measurements with a resolution up to 4 microns/pixel.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Voska, N. (Technical Monitor)
2002-01-01
An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
Automated Cryocooler Monitor and Control System Software
NASA Technical Reports Server (NTRS)
Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad
2011-01-01
This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.
NASA Technical Reports Server (NTRS)
Regalado Reyes, Bjorn Constant
2015-01-01
1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.
NASA Technical Reports Server (NTRS)
Griffin, T. P.; Naylor, G. R.; Haskell, W. D.; Breznik, G. S.; Mizell, C. A.; Steinrock, Todd (Technical Monitor)
2001-01-01
This paper presents an on-line mass spectrometer designed to monitor for cryogenic leaks on the Space Shuttle. The topics include: 1) Hazardous Gas Detection Lab; 2) LASRE Test Support; 3) Background; 4) Location of Systems; 5) Sample Lines for Gas Detection; 6) Problems with Current Systems; 7) Requirements for New System (Nitrogen and Helium Background); and 8) HGDS 2000. This paper is in viewgraph form.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Steinrock, T. (Technical Monitor)
2001-01-01
An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user interface is very intuitive and easy to operate. The system has successfully supported four launches to date. It is currently being permanently installed as the primary system monitoring the Space Shuttles during ground processing and launch operations. Time and cost savings will be substantial over the current systems when it is fully implemented in the field. Tests were performed to demonstrate the performance of the system. Low limits-of-detection coupled with small drift make the system a major enhancement over the current systems. Though this system is currently optimized for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
Advanced active health monitoring system of liquid rocket engines
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo
2008-11-01
An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike
2008-10-01
A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.
Online helium inventory monitoring of JLab cryogenic systems
NASA Astrophysics Data System (ADS)
Hasan, N.; Knudsen, P.; Wright, M.
2017-12-01
There are five cryogenic plants at Jefferson Lab which support the LINAC, experiment hall end-stations and test facility. The majority of JLab’s helium inventory, which is around 15 tons, is allocated in the LINAC cryo-modules, with the majority of the balance of helium distributed at the cryogenic-plant level mainly as stored gas and liquid for stable operation. Due to the organic evolution of the five plants and independent actions within the experiment halls, the traditional inventory management strategy suffers from rapid identification of potential leaks. This can easily result in losses many times higher than the normally accepted (average) loss rate. A real-time program to quickly identify potential excessive leakage was developed and tested. This program was written in MATLAB© for portability, easy diagnostics and modification. It interfaces directly with EPICS to access the cryogenic system state, and with and NIST REFPROP© for real fluid properties. This program was validated against the actual helium offloaded into the system. The present paper outlines the details of the inventory monitoring program, its validation and a sample of the achieved results.
Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring
NASA Technical Reports Server (NTRS)
Sharma, M.; Brooks, R. E.
1980-01-01
Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.
Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea
2015-10-01
This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the range 300-4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300-30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line.
NASA Astrophysics Data System (ADS)
Haynes, M.; Fabian, P.
2015-12-01
Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.
Reusable Cryogenic Tank VHM Using Fiber Optic Distributed Sensing Technology
NASA Technical Reports Server (NTRS)
Bodan-Sanders, Patricia; Bouvier, Carl
1998-01-01
The reusable oxygen and hydrogen tanks are key systems for both the X-33 (sub-scale, sub-orbital technology demonstrator) and the commercial Reusable Launch Vehicle (RLV). The backbone of the X-33 Reusable Cryogenic Tank Vehicle Health Management (VHM) system lies in the optical network of distributed strain temperature and hydrogen sensors. This network of fiber sensors will create a global strain and temperature map for monitoring the health of the tank structure, cryogenic insulation, and Thermal Protection System. Lockheed Martin (Sanders and LMMSS) and NASA Langley have developed this sensor technology for the X-33 and have addressed several technical issues such as fiber bonding and laser performance in this harsh environment.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2012-01-01
The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.
NASA Astrophysics Data System (ADS)
Dutt, R. N.; Meena, D. K.; Kar, S.; Soni, V.; Nadaf, A.; Das, A.; Singh, F.; Datta, T. S.
2017-02-01
A system for carrying out automatic experimental measurements of various electrical transport characteristics and their relation to magnetic fields for samples mounted on the sample holder on a Variable Temperature Insert (VTI) of the Cryogen Free Superconducting Magnet System (CFMS) has been developed. The control and characterization system is capable of monitoring, online plotting and history logging in real-time of cryogenic temperatures with the Silicon (Si) Diode and Zirconium Oxy-Nitride sensors installed inside the magnet facility. Electrical transport property measurements have been automated with implementation of current reversal resistance measurements and automatic temperature set-point ramping with the parameters of interest available in real-time as well as for later analysis. The Graphical User Interface (GUI) based system is user friendly to facilitate operations. An ingenious electronics for reading Zirconium Oxy-Nitride temperature sensors has been used. Price to performance ratio has been optimized by using in house developed measurement techniques mixed with specialized commercial cryogenic measurement / control equipment.
G2 Autonomous Control for Cryogenic Delivery Systems
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.
Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P., E-mail: pasquale.arpaia@unina.it; Technology Department, European Organization for Nuclear Research; Girone, M., E-mail: mario.girone@cern.ch
2015-12-15
The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sourcesmore » most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.« less
The CUORE slow monitoring systems
NASA Astrophysics Data System (ADS)
Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.
2017-09-01
CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.
NASA Astrophysics Data System (ADS)
Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.
2017-12-01
CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.
Advanced Ground Systems Maintenance Physics Models For Diagnostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.
An experiment to evaluate liquid hydrogen storage in space
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.
1981-01-01
The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.
Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Schrading, J. Nicolas
2013-01-01
The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.
Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Shrading, Nicholas J.
2012-01-01
The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.
The CUORE slow monitoring systems
Gladstone, L.; Biare, D.; Cappelli, L.; ...
2017-09-20
CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less
The CUORE slow monitoring systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladstone, L.; Biare, D.; Cappelli, L.
CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less
Thermography to Inspect Insulation of Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Arens, Ellen; Youngquist, Robert
2011-01-01
Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.
NASA Astrophysics Data System (ADS)
Tiwari, Vidhu S.; Kalluru, Rajamohan R.; Yueh, Fang Y.; Singh, Jagdish P.; St. Cyr, William; Khijwania, Sunil K.
2007-06-01
A spontaneous Raman scattering optical fiber sensor was developed for a specific need of the National Aeronautics and Space Administration (NASA) for long-term detection and monitoring of the purity of liquid oxygen (LO2) in the oxidizer feed line during ground testing of rocket engines. The Raman peak intensity ratios for liquid nitrogen (LN2) and LO2 with varied weight ratios (LN2/LO2) were analyzed for their applicability to impurity sensing. The study of the sensor performance with different excitation light sources has helped to design a miniaturized, cost-effective system for this application. The optimal system response time of this miniaturized sensor for LN2/LO2 measurement was found to be in the range of a few seconds. It will need to be further reduced to the millisecond range for real-time, quantitative monitoring of the quality of cryogenic fluids in a harsh envioronment.
Gauging Systems Monitor Cryogenic Liquids
NASA Technical Reports Server (NTRS)
2009-01-01
Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.
Gas House Autonomous System Monitoring
NASA Technical Reports Server (NTRS)
Miller, Luke; Edsall, Ashley
2015-01-01
Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.
Research and Development Toward Massive Liquid Argon Time Projection Chambers for Neutrino Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiesse, Matthew
Liquid argon (LAr) time projection chambers (TPC) have rapidly increased in importance as particle detectors throughout the past four decades. While much research has been completed, there are still many areas which require further development to build and operate the next generation LAr TPC experiment, such as the Deep Underground Neutrino Experiment (DUNE). These include high voltage breakdown, argon purification and purity monitoring, and vacuum ultraviolet (VUV) scintillation light measurement. Visual monitoring of high voltage breakdown is helpful in allowing assessment of the performance of high voltage component design. Thus, a system of cryogenic cameras, the first of its kind,more » was developed for use in a large LAr cryostat, without the need for additional electronics heating. The system functioned without problem for 50 days at cryogenic temperature, with some degradation of image quality, and provided a useful monitor for the DUNE 35-ton cryogenics systems. The system did not observe any high voltage breakdowns during the run. Further development of the concept is ongoing for future installation in other experiments. The monitoring of LAr purity using TPC data is a fundamental study for LAr TPC experiments. However, the study has not been performed for a large LAr TPC in the presence of high electronic noise. Custom software was developed and validated for the accurate reconstruction of signals in noisy TPC data. The results of the reconstruction were used to successfully measure the LAr electron lifetime with an uncertainty comparable to alternate methods of measurement. The electron lifetime of the 35-ton Phase II run is determined to be 4.12 ± 0.17 (stat.) ±0.40 (syst.) ms. For general purpose research and development of high purity LAr as a particle detection medium, a dedicated test stand was designed, constructed, and commissioned. The system is used to test the gaseous photomultiplier (GPM) performance at cryogenic temperatures. The GPM functions with photoelectron multiplication at 77 K, at a reduced gain. Further study is required to show the detector’s direct sensitivity to LAr VUV scintillation light.« less
Cryogenic Controls for Fermilab's Srf Cavities and Test Facility
NASA Astrophysics Data System (ADS)
Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.
2008-03-01
A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.
Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)
NASA Technical Reports Server (NTRS)
Chojnacki, Kent
2013-01-01
Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.
Study Acoustic Emissions from Composites
NASA Technical Reports Server (NTRS)
Walker, James L.; Workman, Gary L.
1997-01-01
The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, technicians monitor readings during a test exposing Time Domain Reflectometry, or TDR, instrumentation to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.
2012-01-01
(1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration; (2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment; and (3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment
NASA Technical Reports Server (NTRS)
Tiwari, Vidhu S.; Kalluru, Rajamohan R.; Yueh, Fang-Yu; Singh, Jagdish P.; SaintCyr, William
2007-01-01
A spontaneous Raman scattering optical fiber sensor is developed for a specific need of NASA/SSC for long-term detection and monitoring of the quality of liquid oxygen (LOX) in the delivery line during ground testing of rocket engines. The sensor performance was tested in the laboratory and with different excitation light sources. To evaluate the sensor performance with different excitation light sources for the LOX quality application, we have used the various mixtures of liquid oxygen and liquid nitrogen as samples. The study of the sensor performance shows that this sensor offers a great deal of flexibility and provides a cost effective solution for the application. However, an improved system response time is needed for the real-time, quantitative monitoring of the quality of cryogenic fluids in harsh environment.
Study of Acoustic Emissions from Composites
NASA Technical Reports Server (NTRS)
Walker, James L.; Workman, Gary L.
1997-01-01
The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.
NASA Astrophysics Data System (ADS)
Krantz, C.; Novotný, O.; Becker, A.; George, S.; Grieser, M.; Hahn, R. von; Meyer, C.; Schippers, S.; Spruck, K.; Vogel, S.; Wolf, A.
2017-04-01
We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (∼keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The detector is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ∼ 6 K , the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.
The technological future of 7 T MRI hardware.
Webb, A G; Van de Moortele, P F
2016-09-01
In this article we present our projections of future hardware developments on 7 T human MRI systems. These include compact cryogen-light magnets, improved gradient performance, integrated RF-receive and direct current shimming coil arrays, new RF technology with adaptive impedance matching, patient-specific specific absorption rate estimation and monitoring, and increased integration of physiological monitoring systems. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
On electrical resistivity of AISI D2 steel during various stages of cryogenic treatment
NASA Astrophysics Data System (ADS)
Lomte, Sachin Vijay; Gogte, Chandrashekhar Laxman; Peshwe, Dilip
2012-06-01
The effect of dislocation densities and residual stresses is well known in tool steels. Measurement of electrical resistivity in order to monitor dislocation densities or residual stresses has seldom been used in investigating the effect of cryogenic treatment on tool steels. Monitoring residual stresses during cryogenic treatment becomes important as it is directly related to changes due to cryogenic treatment of tool steels. For high carbon high chromium (HCHC- AISI D2) steels, not only wear resistance but dimensional stability is an important issue as the steels are extensively used in dies, precision measuring instruments. This work comprises of study of measurement of electrical resistivity of AISI D2 steel at various stages of cryogenic treatment. Use of these measurements in order to assess the dimensional stability of these steels is discussed in this paper.
Developing NDE Techniques for Large Cryogenic Tanks - Year 2 Report
NASA Technical Reports Server (NTRS)
Arens, Ellen; youngquist, Robert; McFall, Judith; Simmons, Stephen
2010-01-01
The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Launch Complex-39 Pad tanks, which will be passed onto future launch programs, are over 40 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B LH2 tank, were accepted. There is a need and an opportunity, as the Shuttle program ends and work to upgrade the launch pad progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A non-destructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems. Year one of this project concentrated on analysis of the current tanks located at LC-39 while cryogen was present. Year two of this project concentrated on analysis of detectable thermal variations on the outer surface of the tanks as the cryogen was drained and the inner vessel warmed to ambient conditions. Two techniques have been deployed in the field to monitor the tank. The first consisted of a displacement sensor to monitor for any expansions at the base of the tank during warm-up that could indicate a compaction issue with the insulation. The second technique was continued thermal monitoring of the tank through and after warm up. The indications noted in the thermal images were compared to bore-scope images of the annular region taken once the tank was inert and warmed to ambient conditions. Similar thermal imaging was performed on a smaller tank where an insulation void was induced to compare the effectiveness of thermal imagining on a different tank geometry.
Electromechanical actuation for cryogenic valve control
NASA Technical Reports Server (NTRS)
Lister, M. J.; Reichmuth, D. M.
1993-01-01
The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.
Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments
NASA Astrophysics Data System (ADS)
Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.
2012-11-01
Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.
New cryogenic temperature monitor: PLT-HPT-32
NASA Astrophysics Data System (ADS)
Viera Curbelo, Teodora Aleida; Martín-Fernández, Sergio Gonzáles; Hoyland, R.; Vega-Moreno, A.; Cozar Castellano, Juan; Gómez Reñasco, M. F.; Aguiar-González, M.; Pérez de Taoro, Angeles; Sánchez-de la Rosa, V.; Rubiño-Martín, J. A.; Génova-Santos, R.
2016-07-01
The PLT-HPT-32, a new cryogenic temperature monitor, has been developed by the Institute of Astrophysics of the Canary Islands (IAC) and an external engineering company (Sergio González Martín-Fernandez). The PLT-HPT-32 temperature monitor offers precision measurement in a wide range of cryogenic and higher-temperature applications with the ability to easily monitor up to 32 sensor channels. It provides better measurement performance in applications where researchers need to ensure accuracy and precision in their low cryogenic temperature monitoring. The PLT-HPT-32 supports PTC RTDs such as platinum sensors, and diodes such as the Lake Shore DT-670 Series. Used with silicon diodes, it provides accurate measurements in cryo-cooler applications from 16 K to above room temperature. The resolution of the measurement is less than 0.1K. Measurements can be displayed in voltage units or Kelvin units. For it, two different tables can be used. One can be programmed by the user, and the other one corresponds to Lake Shore DT670 sensor that comes standard. There are two modes of measuring, the instantaneous mode and averaged mode. In this moment, all channels must work in the same mode but in the near future it expected to be used in blocks of eight channels. The instantaneous mode takes three seconds to read all channels. The averaged mode takes one minute to average twenty samples in all channels. Alarm thresholds can be configured independently for each input. The alarm events, come from the first eight channels, can activate the unit's relay outputs for hard-wired triggering of other systems or audible annunciators. Activate relays on high, low, or both alarms for any input. For local monitoring, "Stand-Alone Mode", the front panel of the PLT-HPT-32 features a bright liquid crystal display with an LED backlight that shows up to 32 readings simultaneously. Plus, monitoring can be done over a network "Remote Control Mode". Using the Ethernet port on the PLT-HPT-32, you can keep an eye on temperatures, log measurement and configured remotely via a Networked local PC or even remotely over a TCP/IP Internet connection from anywhere.
KSC Tech Transfer News, Volume 2, No. 2
NASA Technical Reports Server (NTRS)
Makufka, David (Editor); Dunn, Carol (Editor)
2009-01-01
This issue contains articles about: (1) the Innovative Partnerships Program (IPP) and the manager of the program, Alexis Hongamen, (2) New Technology Report (NTR) on a Monte Carlo Simulation to Estimate the Likelihood of Direct Lightning Strikes, (3) Kennedy Space Center's Applied Physics Lab, (4) a virtual ruler that is used for many applications, (5) a portable device that finds low-level leaks, (6) a sun-shield, that supports in-space cryogenic propellant storage, (7) lunar dust modeling software, (8) space based monitoring of radiation damage to DNA, (9) the use of light-emitting diode (LED) arrays vegetable production system, (10) Dust Tolerant Intelligent Electrical Connection Systems, (11) Ice Detection Camera System Upgrade, (12) Repair Techniques for Composite Structures, (13) Cryogenic Orbital Testbed, and (14) copyright protection.
Cooling of superconducting devices by liquid storage and refrigeration unit
Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene
2013-08-20
A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.
NASA Astrophysics Data System (ADS)
Beliakov, V. P.
Recent developments and trends in cryogenic engineering are reviewed, with emphasis on the role of cryogenics in power generation, machine building, chemistry, and metallurgy. Several cryogenic systems are described, including air-separation apparatus, cryogenic storage systems, cryothermovacuum devices, and the cryogenic systems of superconducting devices. The theoretical principles underlying the design of cryogenic systems are examined, along with the theory for the processes involved.
Sampath, Umesh; Kim, Daegil; Kim, Hyunjin; Song, Minho
2018-01-20
A polymer-coated fiber Bragg grating (PCFBG) is examined for real-time temperature and strain monitoring in composite materials at cryogenic temperatures. The proposed sensor enables the simultaneous measurement of temperature and strain at extremely low temperatures by tracking the changes in the reflected center wavelengths from a pair of PCFBGs embedded in a composite material. The cryogenic temperature sensing was realized by introducing polymer coatings onto bare FBGs, which resulted in high temperature sensitivity under cryogenic conditions. A comparison of wavelength responses of the Bragg grating with and without a polymer coating toward temperatures ranging from 25°C to -180°C was performed. The polymer-coated FBG exhibited a sensitivity of 48 pm/°C, which is 10 times greater than that of the bare FBGs. In addition, the encapsulation of the FBG in a capillary tube made it possible to evaluate the strain accumulated within the composite during operation under cryogenic conditions.
Spacecraft cryogenic gas storage systems
NASA Technical Reports Server (NTRS)
Rysavy, G.
1971-01-01
Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.
NASA Technical Reports Server (NTRS)
Werlink, Rudolph J.; Pena, Francisco
2015-01-01
This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.
Air Monitoring for Hazardous Gas Detection
NASA Technical Reports Server (NTRS)
Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.
2004-01-01
The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.
Method of measuring heat influx of a cryogenic transfer system
Niemann, Ralph C.; Zelipsky, Steven A.; Rezmer, Ronald R.; Smelser, Peter
1981-01-01
A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.
Cryogenic characterization of LEDs for space application
NASA Astrophysics Data System (ADS)
Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu
2017-09-01
In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.
NASA Astrophysics Data System (ADS)
Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.
2017-12-01
The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.
Survey of Cooling Options for Application in a Low-TC Squid System for Fetal Magnetocardiography
NASA Astrophysics Data System (ADS)
Rijpma, A. P.; Uzunbajakau, S.; ter Brake, H. J. M.; Peters, M. J.; Rogalla, H.
2004-06-01
As part of the development of a low-Tc SQUID-based magnetometer system for measuring fetal heart activity, the means of cooling is evaluated. To lower the threshold for the clinical application of this fetal heart monitor, it should be simple to operate. It is, therefore, deemed necessary to replace the liquid helium by a closed-cycle refrigerator. In this paper, the requirements with respect to the cryogenic system are defined. These include operating temperature (4 K), temperature stability (<0.2 K), cooling power (>0.1 W) and requirements on magnetic and mechanical interference. The paper also reviews the most relevant options for the realization of the cryogenic system. After comparison, we selected a 4-K mechanical cooler. To reduce the interference, it is placed at several meters from the magnetometer. The cooling power is to be transferred by circulation of helium.
Note: Sub-Kelvin refrigeration with dry-coolers on a rotating system.
Oguri, S; Ishitsuka, H; Choi, J; Kawai, M; Tajima, O
2014-08-01
We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 h, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.
Method of measuring heat influx of a cryogenic transfer system. [Patent application
Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.
1980-10-29
A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Slow Monitoring Systems for CUORE
NASA Astrophysics Data System (ADS)
Dutta, Suryabrata; Cuore Collaboration
2016-09-01
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale neutrinoless double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment is comprised of 988 TeO2 bolometric crystals arranged into 19 towers and operated at a temperature of 10 mK. We have developed slow monitoring systems to monitor the cryostat during detector installation, commissioning, data taking, and other crucial phases of the experiment. Our systems use responsive LabVIEW virtual instruments and video streams of the cryostat. We built a website using the Angular, Bootstrap, and MongoDB frameworks to display this data in real-time. The website can also display archival data and send alarms. I will present how we constructed these slow monitoring systems to be robust, accurate, and secure, while maintaining reliable access for the entire collaboration from any platform in order to ensure efficient communications and fast diagnoses of all CUORE systems.
Validation and performance of the LHC cryogenic system through commissioning of the first sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serio, L.; Bouillot, A.; Casas-Cubillos, J.
2007-12-01
The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was establishedmore » and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.« less
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.
Haefliger, Olivier P; Jeckelmann, Nicolas; Ouali, Lahoussine; León, Géraldine
2010-01-15
An innovative headspace sampling and injection system for gas chromatography was designed using a longitudinally modulating cryogenic system mounted around the sampling loop of a two-position loop injector. The setup was hyphenated to a fast low thermal mass gas chromatograph, allowing transient concentrations of semivolatile analytes to be monitored in real time with a time resolution of 4.5 min. The performance of the instrument, and in particular its cryotrapping efficiency, was characterized using a mixture of long-chain alkanes, methyl esters, ethyl esters, and alcohols of different volatilities. The device was found to be ideally suited to the analysis of semivolatile compounds with boiling points ranging between 190 and 320 degrees C, which are typical for a majority of perfumery raw materials. The new instrument was successfully used to monitor the release of eight odorant compounds from cotton towels to which fabric softener had been applied that alternatively contained the fragrance in free form or in microencapsulated form. The analytical results, unprecedented in their level of precision and time resolution for such an application, evidenced the major impact of microencapsulation technology on the kinetics of fragrance release during the drying of the towels and on the triggering of additional fragrance release by applying mechanical stress to the fabric to rupture the microcapsule walls.
Cryogenics maintenance strategy
NASA Astrophysics Data System (ADS)
Cruzat, Fabiola
2012-09-01
ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.
NASA Technical Reports Server (NTRS)
Scott, Elaine P.; Lee, Kasey M.
1994-01-01
Infrared sensor satellites, which consist of cryogenic infrared sensor detectors, electrical instrumentation, and data acquisition systems, are used to monitor the conditions of the earth's upper atmosphere in order to evaluate its present and future changes. Currently, the electrical connections (instrumentation), which act as thermal bridges between the cryogenic infrared sensor and the significantly warmer data acquisition unit of the sensor satellite system, constitute a significant portion of the heat load on the cryogen. As a part of extending the mission life of the sensor satellite system, the researchers at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) are evaluating the effectiveness of replacing the currently used manganin wires with high-temperature superconductive (HTS) materials as the electrical connections (thermal bridges). In conjunction with the study being conducted at NASA-LaRC, the proposed research is to design a space experiment to determine the thermal savings on a cryogenic subsystem when manganin leads are replaced by HTS leads printed onto a substrate with a low thermal conductivity, and to determine the thermal conductivities of HTS materials. The experiment is designed to compare manganin wires with two different types of superconductors on substrates by determining the heat loss by the thermal bridges and providing temperature measurements for the estimation of thermal conductivity. A conductive mathematical model has been developed and used as a key tool in the design process and subsequent analysis.
PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-01-01
PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.
Maritime Detection of Radiological/Nuclear Threats with Hybrid Imaging System
2014-01-01
localization system. Each subsystem is housed in a separate 20-ft refrigerated ISO container that provides humidity and temperature control, and...externally via laptop or remotely via wireless communication. A detailed description of each individual subsystem follows. A. Detection...LN2. Each dewar has a cryogenic solenoid valve and a temperature sensor on the exhaust to monitor when the dewar is full. The valves and sensors are
Infrared detectors and test technology of cryogenic camera
NASA Astrophysics Data System (ADS)
Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long
2016-10-01
Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.
NASA Astrophysics Data System (ADS)
Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.
2017-02-01
Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.
Commissioning the cryogenic system of the first LHC sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millet, F.; Claudet, S.; Ferlin, G.
2007-12-01
The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less
Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems
NASA Astrophysics Data System (ADS)
Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana
2017-12-01
At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.
Application of programmable logic controllers to space simulation
NASA Technical Reports Server (NTRS)
Sushon, Janet
1992-01-01
Incorporating a state-of-the-art process control and instrumentation system into a complex system for thermal vacuum testing is discussed. The challenge was to connect several independent control systems provided by various vendors to a supervisory computer. This combination will sequentially control and monitor the process, collect the data, and transmit it to color a graphic system for subsequent manipulation. The vacuum system upgrade included: replacement of seventeen diffusion pumps with eight cryogenic pumps and one turbomolecular pump, replacing a relay based control system, replacing vacuum instrumentation, and upgrading the data acquisition system.
Commissioning of cryogenic system for China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun
2017-12-01
China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.
Reliability of Beam Loss Monitors System for the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Guaglio, G.; Dehning, B.; Santoni, C.
2004-11-01
The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.
NASA Astrophysics Data System (ADS)
Song, Jung-Bin; Lee, Haigun
2012-12-01
A cooling system employing a solid cryogen (SC), such as solid nitrogen (SN2), was recently reported for high-temperature superconducting (HTS) applications. However, thermal contact between the SC and the HTS can be degraded by repeated overcurrent runs, resulting in 'thermal dry-out'. Novel cryogens, SC with small amounts of liquid cryogen, have been suggested to overcome this problem. Such cooling systems rely on the small amount of liquid cryogen to facilitate heat exchange so as to fully exploit the heat capacity of the solid cryogen. This paper presents a description and summary of recent activities at Korea University related to cooling systems employing mixed cryogens of solid-liquid nitrogen, solid argon-liquid nitrogen, and solid nitrogen-liquid neon.
Reliability of Beam Loss Monitor Systems for the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Guaglio, G.; Dehning, B.; Santoni, C.
2005-06-01
The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.
Tracer-Encapsulated Solid Pellet (TESPEL) Injection System for the TJ-II Stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, N.; McCarthy, K. J.; Hayashi, H.
2016-01-01
A tracer-encapsulated solid pellet (TESPEL) injection system for the TJ-II stellarator was recently developed. In order to reduce the time and cost for the development, we combined a TESPEL injector provided by National Institute for Fusion Science with an existing TJ-II cryogenic pellet injection system. Consequently, the TESPEL injection into the TJ-II plasma was successfully achieved, which was confirmed by several pellet diagnostics including a normal-incidence spectrometer for monitoring a tracer impurity behavior.
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.
2007-01-01
This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.
Performance of a reentrant cavity beam position monitor
NASA Astrophysics Data System (ADS)
Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk
2008-08-01
The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.
40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraphs (a) and (b)(1) through (8) of this section. (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a non-cryogenic temperature range, use a temperature sensor... value, whichever is larger. (3) For a cryogenic temperature range, use a temperature sensor with a...
NASA Astrophysics Data System (ADS)
Shaffer, James; Dunmire, Howard; Samuels, Raemon; Trively, Martin
1989-12-01
The U.S. Army CECOM Center for Night Vision and Electro-Optics (C2NVEO) is responsible for developing cryogenic coolers for all infrared imaging systems for the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers in fielded Army weapon systems such as: M60A3 and M1 Tanks, Bradley Fighting Vehicle (BFV) System, tube-launched, optically tracked, wire-guided (TOW) Missile System, and Army Attack Helicopters. Currently, there are over 30,000 coolers in fielded systems and several thousand more are added each year. C2NVEO conducts development programs and monitors contractor internal research and development efforts to improve cooler performance such as reliability, audio noise, power consumption, and output vibration. The HD-1045 1/4-Watt Split Stirling Cooler was originally designed and developed by the C2NVEO in the early 1970s as a replacement for the gas bottle/cryostat used on the Manportable Common Thermal Night Sights. To date, however, the HD-1045 cooler has been used in the field in the Integrated Sight Unit (ISU) of the BFV System and is currently being used in the Driver Thermal Viewer (DTV) full scale development program. This document describes and reports the results of reliability testing done on Hughes Temperature Controlled 1/4 Watt split Cycle Cryogenic Coolers (HD-1045 (V)/UA), referred to herein as the coolers.
Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.
1996-01-01
A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, George
2017-06-13
Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.
Development of dual solid cryogens for high reliability refrigeration system
NASA Technical Reports Server (NTRS)
Caren, R. P.; Coston, R. M.
1967-01-01
High reliability solid cryogen refrigeration system consists of a container initially filled with a solid cryogen which is coupled thermally to an infrared detector by means of a link of high thermal conductivity extending from a heat exchanger within the cryogen container.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell
1998-01-01
Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.
2005-01-01
Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Barry; Bremer, Johan; Chalifour, Michel
2017-01-01
The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260more » ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution presents the performance, the functional requirements and the modes of operation of the SBN cryogenics, and details the current status of the design, present and future needs.« less
Antony, Joby; Mathuria, D S; Datta, T S; Maity, Tanmoy
2015-12-01
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW(®). This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.
NASA Astrophysics Data System (ADS)
Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy
2015-12-01
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW®. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antony, Joby; Mathuria, D. S.; Datta, T. S.
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similarmore » control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW{sup ®}. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.« less
The Redundant Compressor System for the Helium Cryogenic Plant at TPS
NASA Astrophysics Data System (ADS)
Li, H. C.; Tsai, H. H.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Hsiao, F. Z.; Liao, W. R.; Chuang, P. S. D.
2017-02-01
Recommissioning the 700-W helium cryogenic system was completed in 2014 and it entered service in 2015. The main target of this system is a stable supply of liquid helium to the superconducting RF cavities at Taiwan Photo Source. The annual maintenance of the compressor of the plant causes operation of the system to be suspended at least two weeks. To avoid such a long suspension for the cryogenic plant, we installed a redundant compressor system for the cryogenic plant in 2015. We can switch to this redundant compressor system and restart the cryogenic system in a few minutes. In this paper we present the configuration, local testing and long-term operation of this redundant compressor system.
Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)
NASA Technical Reports Server (NTRS)
Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.
1991-01-01
An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.
Impedance-Based Structural Health Monitoring for Composite Laminates at Cryogenic Environments
NASA Technical Reports Server (NTRS)
Tseng, Kevin
2003-01-01
One of the important ways of increasing the payload in a reusable launch vehicle (RLV) is to replace heavy metallic materials by lightweight composite laminates. Among various parts and systems of the RLV, this project focuses on tanks containing cryogenic fuel. Historically, aluminum alloys have been used as the materials to construct fuel tanks for launch vehicles. To replace aluminum alloys with composite laminates or honeycomb materials, engineers have to make sure that the composites are free of defects before, during, and after launch. In addition to robust design and manufacturing procedures, the performance of the composite structures needs to be monitored constantly.In recent years, the impedance-based health monitoring technique has shown its promise in many applications. This technique makes use of the special properties of smart piezoelectric materials to identify the change of material properties due to the nucleation and progression of damage. The piezoceramic patch serves as a sensor and an actuator simultaneously. The piezoelectric patch is bonded onto an existing structure or embedded into a new structure and electrically excited at high frequencies. The signature (impedance or admittance) is extracted as a function of the exciting frequency and is compared with the baseline signature of the healthy state. The damage is quantified using root mean square deviation (RMSD) in the impedance signatures with respect to the baseline signature. A major advantage of this technique is that the procedure is nondestructive in nature and does not perturb the properties and performance of the materials and structures. This project aims at applying the impedance-based nondestructive testing technique to the damage identification of composite laminates at cryogenic temperature.
NASA Technical Reports Server (NTRS)
1980-01-01
Different engineering problems associated with the design of mechanisms and systems to operate in a cryogenic environment are discussed. The focal point for the entire engineering effort was the design of the National Transonic Facility, which is a closed-circuit cryogenic wind tunnel. The papers covered a variety of mechanical, structural, and systems design subjects including thermal structures insulation systems, noise, seals, and materials.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
NASA Astrophysics Data System (ADS)
Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.
2017-12-01
Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P.; Technology Department, European Organization for Nuclear Research; Blanco, E.
2015-07-15
A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for differentmore » pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.« less
Study Acoustic Emissions from Composites
NASA Technical Reports Server (NTRS)
Walker, James; Workman,Gary
1998-01-01
The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.
Use of PROFIBUS for cryogenic instrumentation at XFEL
NASA Astrophysics Data System (ADS)
Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.
2017-12-01
The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.
Study to develop improved methods to detect leakage in fluid systems, phase 2
NASA Technical Reports Server (NTRS)
Janus, J. C.; Cimerman, I.
1971-01-01
An ultrasonic contact sensor engineering prototype leak detection system was developed and its capabilities under cryogenic operations demonstrated. The results from tests indicate that the transducer performed well on liquid hydrogen plumbing, that flow and valve actuation could be monitored, and that the phase change from gaseous to liquid hydrogen could be detected by the externally mounted transducers. Tests also demonstrate the ability of the system to detect internal leaks past valve seats and to function as a flow meter. Such a system demonstrates that it is not necessary to break into welded systems to locate internal leaks.
Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission
NASA Astrophysics Data System (ADS)
Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.; Devine, M.; Hedayat, A.
2016-03-01
Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.
Development of an FBG-based low temperature measurement system for cargo containment of LNG tankers
NASA Astrophysics Data System (ADS)
Kim, D. G.; Yoo, W.; Swinehart, P.; Jiang, B.; Haber, T.; Mendez, A.
2007-09-01
Given the growing demand for oil and natural gas to meet the world's energy needs, there is nowadays renewed interest in the use of liquefied natural gas (LNG) systems. For LNG to remain in its liquid phase, the gas has to be kept at cryogenic temperatures (< 160°C). And, as part of the LNG supply process, it becomes necessary to transport it using massive carrier tankers with cargo hulls operating at low temperatures and using special insulating double-wall construction. The safe and reliable storage and transportation of LNG products calls for low temperature monitoring of said containers to detect the onset of any potential leaks and possible thermal insulation degradation. Because of the hazardous nature of this cargo, only intrinsically-safe, explosion proof devices can be used. Optical fiber sensors-- such as fiber Bragg gratings-- are ideal for this application given their dielectric nature and multi-point sensing telemetry capability. In this paper, we describe the development of an on-line, multi-point FBG-based low temperature monitoring system based on a network of specially packaged FBG temperature and strain sensors mounted at critical locations within the inner hull, cofferdam and secondary barriers of a LNG carrier tanker. Given the stringent cryogenic operating temperature conditions, pertinent FBG designs, coatings and packaging approaches were formulated along with adequate installation techniques and integration of the interrogating FBG electronics into the tanker's overall SCADA monitoring system. FBG temperature sensors were demonstrated to be stable and sensitive over the 80-480K range. Stability is +/- 0.25K or better with repeated calibrations, and long term stability at 480K is ~0.2mK/hour.
A squid-based beam current monitor for FAIR/CRYRING
NASA Astrophysics Data System (ADS)
Geithner, Rene; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul; Stöhlker, Thomas
2015-11-01
A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring_40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design.
Subcooling Cryogenic Propellants for Long Duration Space Exploration
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Canavan, Edgar; Johnson, Wesley; Kutter, Bernard; Shull, Jeff
2009-01-01
The use of cryogenic propellants such as hydrogen and oxygen is crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles with the flexibility to remain in orbit or travel in space for months, necessitating long-term storage of these cryogens. One powerful technique for easing the challenge of cryogenic fluid storage is to remove energy from tlie cryogenic propellant by isobaricly subcooling them below their normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced. After launch, even with the use of the best insulation systems, heat will leak into the cold cryogenic propellant tank. However, the large heat capacity available in highly subcooled cryogenic propellants allows them to absorb the energy that leaks into the tank until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be no loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot many months with minimal mass penalty. Subcooling technologies for cryogenic propellants would thus provide the Exploration Systems Mission Directorate with an enhanced level of mission flexibility. However, there are a few challenges associated with subcooling cryogenic propellants since compact subcooling ground support equipment has not been demonstrated. This paper explores the beneficial impact of subcooling cryogenic propellants on the launch pad for long-term cryogenic propellant storage in space and proposes a novel method for implementing subcooling of cryogenic propellants for spacecraft such as the Ares V Earth Departure Stage (EDS). Analysis indicates that with a careful strategy to handle the subcooled cryogen it would be possible to store cryogenic propellants in space for many months without venting. A concept for subcooling the cryogenic propellant relatively quickly and inexpensively on the launch pad - the thermodynamic cryogen subcooler (TCS) - will be presented. Important components of the TCS and an associated subcooled cryogen tank (SCT) will be discussed in this paper. Results from a preliminary thermodynamic model of the performance of a TCS for an EDS sized hydrogen tank will also be presented.
Progress update on cryogenic system for ARIEL E-linac at TRIUMF
NASA Astrophysics Data System (ADS)
Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.
2014-01-01
TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.
NASA Technical Reports Server (NTRS)
Johnson, Wesley; Tomsik, Thomas; Moder, Jeff
2014-01-01
Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.
Cryogenic Technology Development for Exploration Missions
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.
Cryogenic reactant storage for lunar base regenerative fuel cells
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
1989-01-01
There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.
The cryogenics design of the SuperCDMS SNOLAB experiment
NASA Astrophysics Data System (ADS)
Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.
2017-12-01
The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.
Fastener load tests and retention systems tests for cryogenic wind-tunnel models
NASA Technical Reports Server (NTRS)
Wallace, J. W.
1984-01-01
A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.
Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.
2017-01-01
To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
Long-Term Cryogenic Propellant Storage for the Titan Orbiter Polar Surveyor (TOPS) Mission
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Francis, John; Li, Xiaoyi; DeLee, Hudson; Purves, Lloyd; Willis, Dewey; Nixon, Conor; Mcguinness, Dan; Riall, Sara; Devine, Matt;
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.
Long-Term Cryogenic Propellant Storage for the TOPS Mission
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt;
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.
NASA Technical Reports Server (NTRS)
Qing, Xinlin (Inventor); Beard, Shawn J. (Inventor); Li, Irene (Inventor)
2013-01-01
Sensors affixed to various such structures, where the sensors can withstand, remain affixed, and operate while undergoing both cryogenic temperatures and high vibrations. In particular, piezoelectric single crystal transducers are utilized, and these sensors are coupled to the structure via a low temperature, heat cured epoxy. This allows the transducers to monitor the structure while the engine is operating, even despite the harsh operating conditions. Aspects of the invention thus allow for real time monitoring and analysis of structures that operate in conditions that previously did not permit such analysis. A further aspect of the invention relates to use of piezoelectric single crystal transducers. In particular, use of such transducers allows the same elements to be used as both sensors and actuators.
Wavelength-Agile Optical Sensor for Exhaust Plume and Cryogenic Fluid Interrogation
NASA Technical Reports Server (NTRS)
Sanders, Scott T.; Chiaverini, Martin J.; Gramer, Daniel J.
2004-01-01
Two optical sensors developed in UW-Madison labs were evaluated for their potential to characterize rocket engine exhaust plumes and liquid oxygen (LOX) fluid properties. The plume sensor is based on wavelength-agile absorption spectroscopy A device called a chirped white pulse emitter (CWPE) is used to generate the wavelength agile light, scanning, for example, 1340 - 1560 nm every microsecond. Properties of the gases in the rocket plume (for example temperature and water mole fraction) can be monitored using these wavelength scans. We have performed preliminary tests in static gas cells, a laboratory GOX/GH2 thrust chamber, and a solid-fuel hybrid thrust chamber, and these initial tests demonstrate the potential of the CWPE for monitoring rocket plumes. The LOX sensor uses an alternative to wavelength agile sensing: two independent, fixed-wavelength lasers are combined into a single fiber. One laser is absorbed by LOX and the other not: by monitoring the differential transmission the LOX concentration in cryogenic feed lines can be inferred. The sensor was successful in interrogating static LOX pools in laboratory tests. Even in ice- and bubble-laden cryogenic fluids, LOX concentrations were measured to better than 1% with a 3 microsec time constant.
On-wafer, cryogenic characterization of ultra-low noise HEMT devices
NASA Technical Reports Server (NTRS)
Bautista, J. J.; Laskar, J.; Szydlik, P.
1995-01-01
Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.
Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems
NASA Technical Reports Server (NTRS)
Walker, M.; Figueroa, F.
2015-01-01
The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.
Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)
NASA Astrophysics Data System (ADS)
Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.
2017-12-01
Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.
Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models
NASA Technical Reports Server (NTRS)
1973-01-01
The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.
NASA Technical Reports Server (NTRS)
Fast, Ronald W. (Editor)
1991-01-01
The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.
Reusable cryogenic foam insulation for advanced aerospace vehicles
NASA Technical Reports Server (NTRS)
Mcauliffe, Patrick S.; Taylor, Allan H.; Sparks, Larry L.; Dube, William P.
1991-01-01
Future high-speed aircraft and aerospace vehicles using cryogenic propellants will require an advanced reusable insulation system for the propellant tank structure. This cryogenic insulation system must be lightweight, structurally and thermally efficient, and capable of multiple reuse without cracking or degraded performance. This paper presents recent progress in the development of a reusable cryogenic foam insulation system having a maximum service temperature of 400 F. The system consists of preshaped, precut blocks of rigid polymethacrylimide foam insulation, wrapped with a high-temperature Kapton and aluminum foil vapor barrier which is adhesively bonded to the propellant tank wall.
NASA Astrophysics Data System (ADS)
Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron
2010-08-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.
NASA Technical Reports Server (NTRS)
1973-01-01
The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.
Subcooling for Long Duration In-Space Cryogenic Propellant Storage
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff
2010-01-01
Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.
Automated Cryocooler Monitor and Control System
NASA Technical Reports Server (NTRS)
Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.
2011-01-01
A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and typically provide 50 watts of heat. There are four basic operating modes. "Cool " mode commands the system to cool to normal operating temperature. "Heat " mode is used to warm the device to a set temperature near room temperature. "Pump " mode is a maintenance function that allows the vacuum system to be operated alone to remove accumulated contaminants from the vacuum area. In "Off " mode, no power is applied to the system.
Shuttle cryogenic supply system optimization study. Volume 2: Technical report, sections 4 through 9
NASA Technical Reports Server (NTRS)
1973-01-01
The design and development of cryogenic supply systems for space shuttle vehicles are discussed. The weights, component counts, and statements of advantages and disadvantages of the systems considered are presented. Performance characteristics of the systems are analyzed in the form of graphs. Block diagrams and engineering drawings of the candidate systems are provided. Special consideration is given to flow rates and thermodynamic properties of the cryogenic systems.
Lessons learned: design, start-up, and operation of cryogenic systems
NASA Astrophysics Data System (ADS)
Bell, W. M.; Bagley, R. E.; Motew, S.; Young, P.-W.
2014-11-01
Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. "Cutting corners" in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these "lessoned learned" are described in this paper.
2017-04-06
William Cooley, Chief of the Space Vehicles Directorate, AFRL ; Douglas Dudis, WPAFB; Keith Avery, Kirtland AFB; William Byrne, Kirtland AFB. MURI team... AFRL -AFOSR-VA-TR-2017-0084 CRYOGENIC PELTIER COOLING Joseph Heremans OHIO STATE UNIVERSITY THE 190 N OVAL MALL COUMBUS, OH 43210-1321 04/06/2017...ACRONYM(S) AFRL /AFOSR RTB1 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -AFOSR-VA-TR-2017-0084 12. DISTRIBUTION/AVAILABILITY STATEMENT DISTRIBUTION A
Continuous-Reading Cryogen Level Sensor
NASA Technical Reports Server (NTRS)
Barone, F. E.; Fox, E.; Macumber, S.
1984-01-01
Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.
Space Propulsion Technology Program Overview
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1991-01-01
The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1988-01-01
Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.
1984-01-01
The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.
Temperature Sensing for Oil, Gas, and Structural Analysis
NASA Technical Reports Server (NTRS)
2006-01-01
In 1996, Systems and Processes Engineering Corporation (SPEC), of Austin, Texas, undertook a NASA Small Business Innovation Research (SBIR) contract with Langley Research Center to develop a compact and lightweight digital thermal sensing (DTS) system for monitoring the cryogenic tanks on the X-33 prototype aircraft. That technology, along with a processor developed by SPEC for Goddard Space Flight Center, was space-qualified and integrated into several NASA missions. SPEC formed an ancillary organization, SensorTran, Inc., to continue work developing the DTS technology for a variety of commercial and industrial applications.
Status of the LBNF Cryogenic System
Montanari, D.; Adamowski, M.; Bremer, J.; ...
2017-12-30
We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less
Status of the LBNF Cryogenic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, D.; Adamowski, M.; Bremer, J.
We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less
Status of the LBNF Cryogenic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, D.; Adamowski, M.; Bremer, J.
2017-01-01
The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team willmore » design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.« less
NASA Technical Reports Server (NTRS)
Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.
1999-01-01
The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.
Status of the LBNF Cryogenic System
NASA Astrophysics Data System (ADS)
Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.
2017-12-01
The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.
A magnetic levitation rotating plate model based on high-Tc superconducting technology
NASA Astrophysics Data System (ADS)
Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang
2017-09-01
With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.
NASA Technical Reports Server (NTRS)
Davis, Randall C. (Inventor); Taylor, Allan H. (Inventor); Jackson, L. Robert (Inventor); Mcauliffe, Patrick S. (Inventor)
1988-01-01
This invention relates to reusable, low density, high temperature cryogenic foam insulation systems and the process for their manufacture. A pacing technology for liquid hydrogen fueled, high speed aircraft is the development of a fully reusable, flight weight cryogenic insulation system for propellant tank structures. In the invention cryogenic foam insulation is adhesively bonded to the outer wall of the fuel tank structure. The cryogenic insulation consists of square sheets fabricated from an array of abutting square blocks. Each block consists of a sheet of glass cloth adhesively bonded between two layers of polymethacrylimide foam. Each block is wrapped in a vapor impermeable membrane, such as Kapton(R) aluminum Kapton(R), to provide a vapor barrier. Very beneficial results can be obtained by employing the present invention in conjunction with fibrous insulation and an outer aeroshell, a hot fuselage structure with an internal thermal protection system.
Use of thermal sieve to allow optical testing of cryogenic optical systems.
Kim, Dae Wook; Cai, Wenrui; Burge, James H
2012-05-21
Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.
Shuttle cryogenic supply system optimization study. Volume 1: Management supply, sections 1 - 3
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of the cryogenic supply system for use on space shuttle vehicles was conducted. The major outputs of the analysis are: (1) evaluations of subsystem and integrated system concepts, (2) selection of representative designs, (3) parametric data and sensitivity studies, (4) evaluation of cryogenic cooling in environmental control subsystems, and (5) development of mathematical model.
Kodak AMSD Cryogenic Test Plans
NASA Technical Reports Server (NTRS)
Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)
2002-01-01
NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.
NASA Astrophysics Data System (ADS)
Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.
2003-12-01
A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.
Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Arens, Ellen; Nurge, Mark; Youngquist, Robert; Starr, Stanley
2010-01-01
Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. Intrusively inspecting these tanks would mean a significant down time to the program as the cryogenic liquid and the perlite insulation would have to be removed which would be a significant task and long-term schedule disruption. A study of the tanks was performed to determine the extent to which performance and structural information could be revealed without intrusive inspection. Thermal images of the tanks were taken over a variety of environmental conditions to determine the best conditions under which to compare and use thermography as a health monitoring technique as the tanks continue to age. The settling and subsequent compaction of insulation is a serious concern for cryogenic tanks. Comparison of images from the tanks reveals significant variations in the insulation in the annual regions and point to the use of thermography as a way to monitor for insulation migration and possible compaction. These measurements, when combined with mathematical models of historical boil-off data provide key insight to the condition of the vessels. Acceptance testing methods for new tanks, before they are filled with cryogenic commodity (and thereby thermally cycled), are needed and we explore how thermography can be used to accomplish this.
System Administration Support/SWORDS G2
NASA Technical Reports Server (NTRS)
Dito, Scott Joseph
2014-01-01
The Soldier-Warfighter Operationally Responsive Deployer for Space (SWORDS) rocket is a dedicated small satellite launcher that will minimize danger and complexity in order to allow soldiers in the field to put payloads of up to 25kg into orbit from the field. The SWORDSG2 project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to the SWORDS rocket for testing purposes. To accomplish this, the project is using the programming language environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. In addition, observation of the current cryogenic fluid delivery system in the Kennedy Space Center Cry Lab has allowed me to gain valuable experience of fluid systems and propelant delivery that is valuable to our team when developing amd modeling our own system.The ultimate goal of having a test-ready application to show to the heads of the project, and demonstrating G2's capabilities, by late 2014 will require hard work and intense study and understanding of not only the programming aspect but also the physical phenomena we want to model, observe, and control.
Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR
NASA Astrophysics Data System (ADS)
Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang
2017-01-01
The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.
Method and apparatus of cryogenic cooling for high temperature superconductor devices
Yuan, Xing; Mine, Susumu
2005-02-15
A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.
Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions
NASA Technical Reports Server (NTRS)
Engberg, Robert C.
2005-01-01
Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.
Cost effective use of liquid nitrogen in cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Mcintosh, Glen E.; Lombard, David S.; Martindale, David L.; Dunn, Robert P.
1987-01-01
A method of reliquefying from 12 to 19% of the nitrogen exhaust gas from a cryogenic wind tunnel has been developed. Technical feasibility and cost effectiveness of the system depends on performance of an innovative positive displacement expander which requires scale model testing to confirm design studies. The existing cryogenic system at the 0.3-m transonic cryogenic tunnel has been surveyed and extensive upgrades proposed. Upgrades are generally cost effective and may be implemented immediately since they are based on established technology.
Operational present status and reliability analysis of the upgraded EAST cryogenic system
NASA Astrophysics Data System (ADS)
Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.
2017-12-01
Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.
Large-Scale Cryogen Systems and Test Facilities
NASA Technical Reports Server (NTRS)
Johnson, R. G.; Sass, J. P.; Hatfield, W. H.
2007-01-01
NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.
Cryogenic Boil-Off Reduction System Testing
NASA Technical Reports Server (NTRS)
Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery
2014-01-01
The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.
Superconducting Meissner Effect Bearings for Cryogenic Turbomachines
1993-05-01
Maximum 200 words) This report describes the second year efforts to develop a Meissner bearing system for miniature cryogenic turboexpanders used in... Turboexpander ....................................................................... 6 4.3. Task 7-Management and Reporting...The program is aimed at the development of a Meissner bearing system for miniature cryogenic turboexpanders used in Brayton cycle cryocoolers. "TIM
Cryogenics and its application with reference to spice grinding: a review.
Balasubramanian, S; Gupta, Manoj Kumar; Singh, K K
2012-01-01
Cryogenics is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, the manufacturing industry, sports and musical instruments, biological science and agriculture, etc. Cryogenic freezing finds pivotal application in food, that is, spices and condiments. Although there is a wide range of cryogens to produce the desired low temperature, generally liquid nitrogen (LN₂) is used in food grinding. The application of low temperature shows a promising pathway to produce higher quality end product with higher flavor and volatile oil retention. Cryogenic grinders generally consist of precoolers and grinder with the cryogen distribution system. In such grinding systems, cryogens subject the raw material up to or lower than glass transition temperature before it is ground, thus eliminating much of the material and quality hassles of traditional grinding. At present, the capital investment including cryogen and handling costs escalate the final cost of the product. Thus, for large-scale production, a proper design to optimize and make it feasible is the need of the hour and understanding the behavior of different food materials at these low temperature conditions. This article reviews the scenario and application of cryogenics in different sectors, especially to spice grinding.
Shuttle: Reaction control system. Cryogenic liquid distribution system: Study
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1972-01-01
A cryogenic liquid distribution system suitable for the reaction control system on space shuttles is described. The system thermodynamics, operation, performance and weight analysis are discussed along with the design, maintenance and integration concepts.
Cryogenics and the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)
1997-01-01
Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management technology as it applies to the current human Mars mission scenarios.
Long-term cryogenic space storage system
NASA Technical Reports Server (NTRS)
Hopkins, R. A.; Chronic, W. L.
1973-01-01
Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.
Advanced long term cryogenic storage systems
NASA Technical Reports Server (NTRS)
Brown, Norman S.
1987-01-01
Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.
NASA Technical Reports Server (NTRS)
Symons, Pat
1991-01-01
The topics presented are covered in viewgraph form. The concluded remarks are: (1) advanced cryogenic fluid systems technology is enhancing or enabling to all known transportation scenarios for space exploration; (2) an integrated/coordinated program involving LeRC/MSFC has been formulated to address all known CFM needs - new needs should they develop, can be accommodated within available skills/facilities; (3) all required/experienced personnel and facilities are finally in place - data from initial ground-based experiments is being collected and analyzed - small scale STS experiments are nearing flight - program is beginning to yield significant results; (4) future proposed funding to primarily come from two sources; and (5) cryogenic fluid experimentation is essential to provide required technology and assure implementation in future NASA missions.
Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.
2017-01-01
Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Rongli; Daly, Edward; Drury, Michael
2015-09-01
We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carriedmore » out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.« less
PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-07-06
The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes ofmore » operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.« less
Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam
2012-01-01
A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.
Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)
NASA Technical Reports Server (NTRS)
Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.
2018-01-01
The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
NASA Technical Reports Server (NTRS)
Calandra, M.; Duncan, G.
1986-01-01
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.
Ground operations demonstration unit for liquid hydrogen initial test results
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.
2015-12-01
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.
Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.
2015-01-01
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.
Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel
NASA Astrophysics Data System (ADS)
Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.
2018-01-01
When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.
Structural Health Monitoring of Composite Materials Using Distributed Fiber Bragg Sensors
NASA Technical Reports Server (NTRS)
Grant, Joseph; Kual, Raj; Taylor, Scott; Jackson, Kurt V.; Myers, George; Wang, Y.; Sharma, A.; Burdine, Robert (Technical Monitor)
2002-01-01
Health monitoring of polymer matrix composite materials using fiber optic Bragg grating (FBG) sensors is accomplished using a tunable IR (infrared) laser via transmission mode. Results are presented from experiments of composite structures with FBG's embedded at various orientations, and surface measurements of various cryogenic composite vessels.
Cryogenic Orbital Nitrogen Experiment (CONE): Phase A/B design study
NASA Technical Reports Server (NTRS)
Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.
1991-01-01
Subcritical cryogenic fluid management (CFM) has long been recognized as an enabling technology for future space missions. Subcritical liquid storage and supply are two of the five CFM technology areas that need to be studied in the low gravity on-orbit environment. The Cryogenic Orbital Nitrogen Experiment (CONE) is a LN2 cryogenic storage and supply system demonstration placed in orbit by the National Space Transportation System (NSTS) Orbiter and operated as an in-bay payload. In-space demonstration of CFM using LN2 with a few well defined areas of focus would provide the confidence level required to implement subcritical cryogen use and is the first step towards the more far reaching issue of cryogen transfer and tankage resupply. A conceptual approach for CONE was developed and an overview of the program is described including the following: (1) a description of the background and scope of the technology objectives; (2) a description of the payload design and operation; and (3) the justification for CONE relating to potential near term benefits and risk mitigation for future systems. Data and criteria is provided to correlate in-space performance with analytical and numerical modeling of CFM systems.
Inferential Framework for Autonomous Cryogenic Loading Operations
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara
2017-01-01
We address problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA KSC. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.
NASA's Cryogenic Fluid Management Technology Project
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Motil, Susan M.
2008-01-01
The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.
Design progress of cryogenic hydrogen system for China Spallation Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. P.; Zhang, Y.; Xiao, J.
2014-01-29
China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat loadmore » from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.« less
New tool holder design for cryogenic machining of Ti6Al4V
NASA Astrophysics Data System (ADS)
Bellin, Marco; Sartori, Stefano; Ghiotti, Andrea; Bruschi, Stefania
2017-10-01
The renewed demand of increasing the machinability of the Ti6Al4V titanium alloy to produce biomedical and aerospace parts working at high temperature has recently led to the application of low-temperature coolants instead of conventional cutting fluids to increase both the tool life and the machined surface integrity. In particular, the liquid nitrogen directed to the tool rake face has shown a great capability of reducing the temperature at the chip-tool interface, as well as the chemical interaction between the tool coating and the titanium to be machined, therefore limiting the tool crater wear, and improving, at the same time, the chip breakability. Furthermore, the nitrogen is a safe, non-harmful, non-corrosive, odorless, recyclable, non-polluting and abundant gas, characteristics that further qualify it as an environmental friendly coolant to be applied to machining processes. However, the behavior of the system composed by the tool and the tool holder, exposed to the cryogenics temperatures may represent a critical issue in order to obtain components within the required geometrical tolerances. On this basis, the paper aims at presenting the design of an innovative tool holder installed on a CNC lathe, which includes the cryogenic coolant provision system, and which is able to hinder the part possible distortions due to the liquid nitrogen adduction by stabilizing its dimensions through the use of heating cartridges and appropriate sensors to monitor the temperature evolution of the tool holder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, David; Adamowski, Mark; Bremer, Johan
2017-03-09
The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will bemore » engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. As a result, it also details the status of the design, present and future needs.« less
Helium refrigeration system for hydrogen liquefaction applications
NASA Astrophysics Data System (ADS)
Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.
2017-02-01
Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.
Cryogenics Testbed Laboratory Flange Baseline Configuration
NASA Technical Reports Server (NTRS)
Acuna, Marie Lei Ysabel D.
2013-01-01
As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.
Cryogenic Fluid Management Technology for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.
2010-01-01
In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.
Lee, Inkyu; Park, Jinwoo; Moon, Il
2017-12-01
This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.
Structural damping studies at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Buehrle, Ralph D.
1994-01-01
Results of an engineering study to measure changes in structural damping properties of two cryogenic wind tunnel model systems and two metallic test specimens at cryogenic temperatures are presented. Data are presented which indicate overall, a trend toward reduced structural damping at cryogenic temperatures (-250 degrees F) when compared with room temperature damping properties. The study was focused on structures and materials used for model systems tested in the National Transonic Facility (NTF). The study suggests that the significant reductions in damping at extremely cold temperatures are most likely associated with changes in mechanical joint compliance damping rather than changes in material (solid) damping.
NASA Astrophysics Data System (ADS)
Ho, Son H.; Rahman, Muhammad M.
2008-01-01
This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump-nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.
Experimental Thermal Performance Testing of Cryogenic Tank Systems and Materials
NASA Technical Reports Server (NTRS)
Myers, Wesley C.; Fesmire, J. E.
2018-01-01
A comparative study was conducted to collect and analyze thermal conductivity data on a wide variety of low density materials, as well as thermal performance data on a number of vacuum-jacketed cryogenic tank systems. Although a vast number of these types of materials and cryogenic tank systems exist, the thermal conductivity of insulation materials and the thermal performance of cryogenic tank systems is often difficult to compare because many industrial methods and experimental conditions are available and utilized. The availability of a new thermal conductivity measurement device, the Macroflash Cup Cryostat, which is applicable for assessing a variety of materials, is accessible at NASA's Cryogenic Test Laboratory (CTL) at the Kennedy Space Center (KSC). The convenience of this device has resulted in the ability to rapidly measure the thermal conductivity properties of these materials by using a flat-plate liquid nitrogen (LN2) boiloff technique that employs a guarded heat flow test methodology in order to determine the effective thermal conductivity (ke) of a test specimen. As the thermal conductivities are measured at cryogenic temperatures, materials suitable for both future space missions and cryogenic tank systems can be identified and experimentally analyzed. Also recognizable are materials which may help increase energy efficiency by limiting the thermal losses encountered under various environmental conditions. The overall focus of this work consisted of two parts. One part, was to produce and analyze thermal conductivity data on a wide variety of materials with suitable properties conducive to those needed to aid in the production of a calibration curve for the "low end" of the Macroflash instrument. (Low end meaning materials with a thermal conductivity rating below 100 milliwatts per meter-Kelvin). The second part was to collect and analyze heat transfer data for a variety of small vacuum-jacketed vessels (cryogenic tank systems) in order to compare the thermal performance between them.
NASA Astrophysics Data System (ADS)
Fast, R. W.
The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.
Robust Multilayer Insulation for Cryogenic Systems
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.
2007-01-01
New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.
Conceptual Design and Analysis of Orbital Cryogenic Liquid Storage and Supply Systems.
1981-05-01
MCR -79-561, Martin Marietta Corporation, June 1979. 5. Tegart, J. R.: Hydrodynamic Analysis Report - Cryogenic Fluid Management...Experiment, MCR -79-563, Martin Marietta Corporation, June 1979, (Contract NAS3-2 1591). 6. Gille, J. P.: Thermal Analysis Report - Cryogenic Fluid Management...Analysis Report - Cryogenic Fluid Management Experiment, MCR -79-567, Martin Marietta Corporation, June 1979, (Contract NAS3-21591). 8. "Low
Low-Heat-Leak Electrical Leads For Cryogenic Systems
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1994-01-01
Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.
Heat switch technology for cryogenic thermal management
NASA Astrophysics Data System (ADS)
Shu, Q. S.; Demko, J. A.; E Fesmire, J.
2017-12-01
Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
Main improvements of LHC Cryogenics Operation during Run 2 (2015-2018)
NASA Astrophysics Data System (ADS)
Delprat, L.; Bradu, B.; Brodzinski, K.; Ferlin, G.; Hafi, K.; Herblin, L.; Rogez, E.; Suraci, A.
2017-12-01
After the successful Run 1 (2010-2012), the LHC entered its first Long Shutdown period (LS1, 2013-2014). During LS1 the LHC cryogenic system went under a complete maintenance and consolidation program. The LHC resumed operation in 2015 with an increased beam energy from 4 TeV to 6.5 TeV. Prior to the new physics Run 2 (2015-2018), the LHC was progressively cooled down from ambient to the 1.9 K operation temperature. The LHC has resumed operation with beams in April 2015. Operational margins on the cryogenic capacity were reduced compared to Run 1, mainly due to the observed higher than expected electron-cloud heat load coming from increased beam energy and intensity. Maintaining and improving the cryogenic availability level required the implementation of a series of actions in order to deal with the observed heat loads. This paper describes the results from the process optimization and update of the control system, thus allowing the adjustment of the non-isothermal heat load at 4.5 - 20 K and the optimized dynamic behaviour of the cryogenic system versus the electron-cloud thermal load. Effects from the new regulation settings applied for operation on the electrical distribution feed-boxes and inner triplets will be discussed. The efficiency of the preventive and corrective maintenance, as well as the benefits and issues of the present cryogenic system configuration for Run 2 operational scenario will be described. Finally, the overall availability results and helium management of the LHC cryogenic system during the 2015-2016 operational period will be presented.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.
Pumping and Depressurizing of Insulation Materials
NASA Technical Reports Server (NTRS)
Porter, Amber
2010-01-01
The Fluids Testing and Technology Branch is a group that researches and tests efficient ways to use various Cryogenic Fluids, such as Liquid Nitrogen or Liquid Helium, in ground and space systems. Their main goal is to develop new technologies involving Cryogenic temperatures as well as making sure the existing technologies are understood. During my time here a lot of insulation testing has been done which is where insulation systems are tested for cryogenic systems that are in space for long durations.
Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System
NASA Astrophysics Data System (ADS)
Slater, Michael; Tribble, Robert
2013-10-01
The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.
Pre-cooling of ton-scale particle detectors in low radioactivity environments
NASA Astrophysics Data System (ADS)
Cappelli, L.; Pagliarone, C. E.; Bucci, C.; D’Aguanno, D.; Erme, G.; Gorla, P.; Kartal, S.; Marignetti, F.
2018-03-01
Low radioactivity sites are mandatory to perform searches for rare processes that cannot be studied with particle accelerators and requires low environmental backgrounds. Neutrino-less double β decay or Dark Matter searches must be performed in underground low radioactivity observatories. Large detectors are needed to increase the acceptances and proper cryogenic systems to run dedicated detectors. To reach the working temperatures, refrigerators as Pulse Tubes, Dilution Units are used inside complex cryostats. CUORE, Cryogenic Underground Observatory for Rare Events, is an experiment located at LNGS under the Gran Sasso mountain. So far, it’s the coldest cubic meter and the largest cold mass ever realized. Its 998 TeO2 bolometers need to be kept at temperatures T< 10 mK. Using only Pulse Tubes, CUORE needs several weeks to reach the baseline T. Then a Fast Cooling System has been designed and constructed for a faster precooling of the whole CUORE cold volume. The Fast Cooling System (FCS) consists of a cryostat with heat exchangers that use 3 Gifford-McMahon refrigerators, a 4He compressor, a filtering module and several sensors that allow to monitor and control the system during CUORE cooldown. The present work describes the FCS and summarizes its performances during the first full CUORE cooldown.
NASA Technical Reports Server (NTRS)
Frey, Bradley J.; Leviton, Douglas B.
2004-01-01
The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.
High Resolution BPM for Linear Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, C.; Chel, S.; Luong, M.
2006-11-20
A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Testmore » Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.« less
Miniature Cryogenic Valves for a Titan Lake Sampling System
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa
2014-01-01
The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.
A preliminary investigation of cryogenic CO2 capture utilizing a reverse Brayton Cycle
NASA Astrophysics Data System (ADS)
Yuan, L. C.; Pfotenhauer, J. M.; Qiu, L. M.
2014-01-01
Utilizing CO2 capture and storage (CCS) technologies is a significant way to reduce carbon emissions from coal fired power plants. Cryogenic CO2 capture (CCC) is an innovative and promising CO2 capture technology, which has an apparent energy and environmental advantage compared to alternatives. A process of capturing CO2 from the flue gas of a coal-fired electrical power plant by cryogenically desublimating CO2 has been discussed and demonstrated theoretically. However, pressurizing the inlet flue gas to reduce the energy penalty for the cryogenic process will lead to a more complex system. In this paper, a modified CCC system utilizing a reverse Brayton Cycle is proposed, and the energy penalty of these two systems are compared theoretically.
Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension
NASA Astrophysics Data System (ADS)
Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.
2004-06-01
An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.
Orbital storage and supply of subcritical liquid nitrogen
NASA Technical Reports Server (NTRS)
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable
NASA Astrophysics Data System (ADS)
Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John
2014-01-01
The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.
NASA Astrophysics Data System (ADS)
Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun
2018-01-01
In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.
The development of a cryogenic integrated system with the working temperature of 100K
NASA Astrophysics Data System (ADS)
Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin
2016-05-01
In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.
Investigation of cryogenic rupture disc design
NASA Technical Reports Server (NTRS)
Keough, J. B.; Oldland, A. H.
1973-01-01
Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.
Some General Principles in Cryogenic Design, Implementation, and Testing
NASA Technical Reports Server (NTRS)
Dipirro, Michael James
2015-01-01
Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.
Process simulations for the LCLS-II cryogenic systems
NASA Astrophysics Data System (ADS)
Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.
2017-12-01
Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.
Local Leak Detection and Health Monitoring of Pressurized Tanks
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam
2011-01-01
An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.
Cryogenic line insulation made from prefabricated polyurethane shells
NASA Technical Reports Server (NTRS)
Lerma, G.
1975-01-01
Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.
Aerogel Blanket Insulation Materials for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.
2009-01-01
Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off
Spiral 2 Cryogenic System for The Superconducting LINAC
NASA Astrophysics Data System (ADS)
Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.
2017-02-01
SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.
Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests
NASA Astrophysics Data System (ADS)
Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.
2017-12-01
The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.
Thermodynamic Analyses of the LCLS-II Cryogenic Distribution System
Dalesandro, Andrew; Kaluzny, Joshua; Klebaner, Arkadiy
2016-12-29
The Linac Coherent Light Source (LCLS) at Stanford Linear Accelerator Center (SLAC) is in the process of being upgraded to a superconducting radio frequency (SRF) accelerator and renamed LCLS-II. This upgrade requires thirty-five 1.3 GHz SRF cryomodules (CM) and two 3.9 GHz CM. A cryogenic distribution system (CDS) is in development by Fermi National Accelerator Laboratory to interconnect the CM Linac with the cryogenic plant (CP). The CDS design utilizes cryogenic helium to support the CM operations with a high temperature thermal shield around 55 K, a low temperature thermal intercepts around 5 K, and a SRF cavity liquid heliummore » supply and sub-atmospheric vapor return both around 2 K. Additionally the design must accommodate a Linac consisting of two parallel cryogenic strings, supported by two independent CP utilizing CDS components such as distribution boxes, transfer lines, feed caps and endcaps. In this paper, we describe the overall layout of the cryogenic distribution system and the major thermodynamic factors which influence the CDS design including heat loads, pressure drops, temperature profiles, and pressure relieving requirements. In addition the paper describes how the models are created to perform the analyses.« less
Comparison of cryogenic low-pass filters.
Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T
2017-11-01
Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.
Comparison of cryogenic low-pass filters
NASA Astrophysics Data System (ADS)
Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.
2017-11-01
Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.
NASA Astrophysics Data System (ADS)
Shimizu, Takayuki; Yari, Takashi; Nagai, Kanehiro; Takeda, Nobuo
2001-07-01
We conducted theoretical and experimental approaches for applying Brillouin optical time domain reflectometer (BOTDR) to aircraft and spacecraft structure health monitoring system. Firstly, distributed strain was measured by BOTDR under 3-point bending test and a spatial resolution was enhanced up to 0.5m using Brillouin spectrum analysis and processing though the device used in this experiment had a spatial resolution of 2m normally. Secondly, dynamic strain measurement was executed under cyclic loading conditions. Brillouin spectrum measured under dynamic conditions is equivalent to superposed spectrum using many spectra measured under static loading conditions. As the measured spectrum was decomposed into many spectra in static loading state, the strain amplitude and its ratio could be estimated. Thirdly, strain and temperature could be measured independently using combined system of BOTDR and fiber Bragg grating (FBG) with wavelength division multiplexing (WDM). Additionally, the application of BOTDR sensing system was shown for a prototype carbon fiber reinforced plastic (CFRP) liquid hydrogen (LH2) tank under cryogenic condition.
SR&DB Cryogenic Research & Development for Space Applications
NASA Astrophysics Data System (ADS)
Bondarenko, S. I.; Arkhipov, V. T.; Logvinenko, S. P.; Solodovnik, L. L.; Rusanov, K. V.; Shcherbakova, N. S.
The Special Research and Development Bureau (SR&DB) for Cryogenic Technology of the B. Verkin Institute for Low Temperature Physics & Engineering was founded in 1971 and is located in Kharkov, Ukraine. Its primary focus has been in the area of applied r&d in the field of cryogenic technology for space applications. Within this field SR&DB has had many successful accomplishments, especially in the development of satellite based cryogenic cooling systems, mass spectrometer measurement devices, resistence thermometers, and cryogenically cooled optical systems. We have developed very advanced technology in the fields of fluids, heat transfer and hydrodynamics under micro-gravity conditions. Many of the SR&DB cryogenic products have been successfully implemented for former Soviet space applications, both near-earth and deep space. The SR&DB unique experience in many R&D areas can be and are being used for a new generation of space applications which have a requirement for planetary and deep-space missions. Systems we have developed have been proven to have a 5-year life in orbit. Recently we have focused much of our attention, as well, to the requirement low-weight and low-power systems which are mandatory requirements for outerspace missions. The funtionality of the exterior surfaces of a spacecraft are mainly dependent on the composition of its internally generated local atmosphere. In order to continually assess the content and concentration of components of this atmosphere we have developed space based mass spectrometric measuring devices. Devices which require such continual measurement are optical devices, emission receivers, solar cells, etc. A significant technology advance in the field of cryogenics is the application of cryoagents in systems of life support and spacecraft engine operation. We have studied and have an in-depth comprehension of unique phase-transition for these cryoagents such as oxygen, hydrogen, et al. under microgravity conditions. Currently SR&DB under contract to the National Space Agency of Ukraine has been developing an experimental apparatus for studying the continuous boiling off of cryogenic fluids under micro-gravity conditions.
Below-Ambient and Cryogenic Thermal Testing
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2016-01-01
Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.
Operational Experience of the Upgraded Cryogenic Systems at the Nscl
NASA Astrophysics Data System (ADS)
McCartney, A. H.; Laumer, H. L.; Jones, S. A.
2010-04-01
The National Superconducting Cyclotron Laboratory (NSCL) is a NSF-supported facility, with additional support from Michigan State University (MSU) for conducting research in nuclear and accelerator science. The facility consists of two superconducting cyclotrons and over fifty individual cryostats, each containing several superconducting magnets that are used in the beam transport system. Beginning in 1999 a major facility upgrade was started. New, larger magnets were added, increasing the total 4.5 K loads, necessitating an increase of the cryogenic capacity. A helium plant (nominal 1750-Watt at 4.5 K) was acquired from the United States Bureau of Mines where it had been operating as a pure liquefier since the early 1980's. It was refurbished for the NSCL with extensive support from the cryogenics group at Thomas Jefferson National Laboratory. The new cryogenic system came online early in 2001. The cold-mass is relatively high in relation to the installed capacity, presenting challenges during cool downs. Reliability over the last five years has been greater than 99%. An overview of the last seven years of operations of our cryogenic systems is presented that includes normal operations, testing of new equipment, noteworthy breakdowns, routine maintenance, and system reliability.
Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duzhev, V.E.; Zhulkin, V.F.; Ugrovatov, A.E.
1996-12-31
The T-15 cryogenics system has been designed for cooling down, cryostatting, warming up of superconducting, cryoresistive and cryogenics T-15 objects. Maintenance of the cryogenics system has been on going since 1988. For the mentioned period, in the cryogenics T-15 system. The capacity of screw compressor was increased from 0.181 kg/s to 0.236 kg/s (third stage compressors with increased capacity were developed and manufactured), their reliability was also enhanced. The capacity of liquefiers was increased from 0.0833 - 0.0972 L/s (300-350 L/h) to 0.222 L/s (800 L/h) due to replacement of turboexpanders by more effective ones and due to introduction ofmore » an end-stage turboexpander into maintenance. The heat influxes to the cryogenics pipelines were reduced by 50%. For the same period some technological regimes of cryogenics system have been developed to produce the maximal output of cold. The cooling down from 110 K to 15 K is done, when one or two liquefiers are in operation under refrigerating conditions with the reverse flow splitting. The further cooling is performed under joint operation of two liquefiers; one of them operates in the liquefying mode, another, in the refrigerating one with excess reverse flow. A change in the operating conditions was necessary because of the impossibility of regulating the distribution of the reverse helium flow between two liquefiers at the temperature below 15K. The main regime at the level of 4.5 K is a two-loop operating diagram, when one liquefier and a passive refrigerator with excessive reverse flow are in operation, the refrigerating capacity is about 3 kW.« less
Cryogenic system for COMET experiment at J-PARC
NASA Astrophysics Data System (ADS)
Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi
2016-07-01
Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.
Cryogenically Cooled Field Effect Transistors for Low-Noise Systems
NASA Technical Reports Server (NTRS)
Wollack, Edward J.
2002-01-01
Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.
System and method for cooling a super-conducting device
Bray, James William [Niskayuna, NY; Steinbach, Albert Eugene [Schenectady, NY; Dawson, Richard Nils [Voorheesville, NY; Laskaris, Evangelos Trifon [Schenectady, NY; Huang, Xianrul [Clifton Park, NY
2008-01-08
A system and method for cooling a superconductive rotor coil. The system comprises a rotatable shaft coupled to the superconductive rotor coil. The rotatable shaft may comprise an axial passageway extending through the rotatable shaft and a first passageway extending through a wall of the rotatable shaft to the axial passageway. The axial passageway and the first passageway are operable to convey a cryogenic fluid to the superconductive rotor coil through the wall of the rotatable shaft. A cryogenic transfer coupling may be provided to supply cryogenic fluid to the first passageway.
NASA Technical Reports Server (NTRS)
Hansen, R. G.
1983-01-01
Various cryogenic techniques were used to evaluate state of the art electro-optic devices. As research, development, and production demands require more sensitive testing techniques, faster test results, and higher production throughput, the emphasis on supporting cryogenic systems increases. The three traditional methods currently utilized in electro-optic device testing are discussed: (1) liquid contaiment dewars; (2) liquid transfer systems; and (3) closed cycle refrigeration systems. Advantages, disadvantages, and the current state of the art of each of these cryogenic techniques is discussed.
Cryogenic piping material selection for the Component Test Facility (CTF)
NASA Technical Reports Server (NTRS)
St. Cyr, William W.
1991-01-01
The anticipated high cost of the 8500 psi cryogenic and 15,000 psi gas piping systems used in the CTF at NASA's John C. Stennis Space Center led to the consideration of high-strength materials for these piping systems. Based on years of satisfactory service using austenitic stainless steels in cryogenic applications, particularly for hydrogen service, consideration was limited to the austenitic stainless steels. Attention was focused on alternatives to the 304/304L grades of stainless steel traditionally used in these applications. This paper discusses the various considerations that resulted in the decision to continue using 304/304L for the cryogenic piping and the selection of the nitrogen-strengthened 21Cr-6Ni-9Mn alloy (UNS S21903) for the high-pressure gas systems at the CTF.
Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Leviton, Doug; Frey, Brad
2013-01-01
First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.
Cryogenic insulation standard data and methodologies
NASA Astrophysics Data System (ADS)
Demko, J. A.; Fesmire, J. E.; Johnson, W. L.; Swanger, A. M.
2014-01-01
Although some standards exist for thermal insulation, few address the sub-ambient temperature range and cold-side temperatures below 100 K. Standards for cryogenic insulation systems require cryostat testing and data analysis that will allow the development of the tools needed by design engineers and thermal analysts for the design of practical cryogenic systems. Thus, this critically important information can provide reliable data and methodologies for industrial efficiency and energy conservation. Two Task Groups have been established in the area of cryogenic insulation systems Under ASTM International's Committee C16 on Thermal Insulation. These are WK29609 - New Standard for Thermal Performance Testing of Cryogenic Insulation Systems and WK29608 - Standard Practice for Multilayer Insulation in Cryogenic Service. The Cryogenics Test Laboratory of NASA Kennedy Space Center and the Thermal Energy Laboratory of LeTourneau University are conducting Inter-Laboratory Study (ILS) of selected insulation materials. Each lab carries out the measurements of thermal properties of these materials using identical flat-plate boil-off calorimeter instruments. Parallel testing will provide the comparisons necessary to validate the measurements and methodologies. Here we discuss test methods, some initial data in relation to the experimental approach, and the manner reporting the thermal performance data. This initial study of insulation materials for sub-ambient temperature applications is aimed at paving the way for further ILS comparative efforts that will produce standard data sets for several commercial materials. Discrepancies found between measurements will be used to improve the testing and data reduction techniques being developed as part of the future ASTM International standards.
Study on the Dynamic Performance of the Helium Turboexpander for EAST Subsystems
NASA Astrophysics Data System (ADS)
Chen, Shuangtao; Yang, Shanju; Fu, Bao; Zhang, Qiyong; Hou, Yu
2015-06-01
An increase of the cooling capacities in the liquid helium temperature area is required by Experimental Advanced Superconducting Tokamak (EAST) due to the extension of its subsystems in the near future. Limited by the heat exchangers, cryogenic pipes, and cryogenic valves, it is difficult to enlarge the present EAST helium system. 102 W@4.5 K level helium cryogenic systems are needed in view of feasibility and economy. A turboexpander is the key component of a helium cryogenic system. In this article, a hydrostatic gas lubricated cryogenic helium turboexpander for a 900 W@4.5 K cryogenic helium system was developed for the EAST updated subsystem by the Institute of Plasma Physics, Chinese Academy of Sciences and the Institute of Cryogenic and Refrigeration of Xi'an Jiaotong University. The main components, such as gas bearings, expansion wheel, shaft, and brake wheel, were briefly presented. The dynamic performance of the journal and thrust gas bearings was investigated numerically. The rotordynamic performance of the developed turboexpander was studied experimentally. The results show that the axial and radial load capacities supplied by the journal gas bearing and thrust gas bearing are enough to balance the axial force and radial force of the rotor. A 43% overspeed operation was achieved, which validated the reasonable design of the turboexpander. supported by Joint Funds of the National Natural Science Foundation of China (No. 11176023), National Natural Science Foundation of China (No. 51306135), and partially supported by the China Postdoctoral Science Foundation (No. 2013M532040) and Special Financial Grant of China Postdoctoral Science Foundation (No. 2014T70917)
Advanced Ground Systems Maintenance Physics Models for Diagnostics Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.
Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project
NASA Technical Reports Server (NTRS)
Harp, Janice Leshay
2014-01-01
This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.
Development of a Ground Operations Demonstration Unit for Liquid Hydrogen at Kennedy Space Center
NASA Astrophysics Data System (ADS)
Notardonato, W. U.
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project will design, assemble, and test a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives and will culminate with an operational demonstration of the loading of a simulated flight tank with densified propellants. The system will be unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. The integrated refrigerator is the critical feature enabling the testing of the following three functions: zero-loss storage and transfer, propellant densification/conditioning, and on-site liquefaction. This paper will discuss the test objectives, the design of the system, and the current status of the installation.
Cryogenic system options for a superconducting aircraft propulsion system
NASA Astrophysics Data System (ADS)
Berg, F.; Palmer, J.; Bertola, L.; Miller, Paul; Dodds, Graham
2015-12-01
There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution.
A compact 3 T all HTS cryogen-free MRI system
NASA Astrophysics Data System (ADS)
Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.
2017-12-01
We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Reynolds, J. M.
1985-01-01
A system was developed for the calibration and development of thermal ion instrumentation. The system provides an extended beam with usable current rates, approx. 1 pA/sq cm, at beam energies as low as 1 eV, with much higher values available with increasing energy. A tandem electrostatic and variable geometry magnetic mirror configuration within the ion source optimizes the use of the ionizing electrons. The system is integrated under microcomputer control to allow automatic control and monitoring of the beam energy and composition and the mass and angle-dependent response of the instrument under test. The system is pumped by a combination of carbon vane and cryogenic sorption roughing pumps and ion and liquid helium operating pumps.
Mobile Monitoring Stations and Web Visualization of Biotelemetric System - Guardian II
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej; Janckulik, Dalibor; Motalova, Leona; Kufel, Jan
The main area of interest of our project is to provide solution which can be used in different areas of health care and which will be available through PDAs (Personal Digital Assistants), web browsers or desktop clients. The realized system deals with an ECG sensor connected to mobile equipment, such as PDA/Embedded, based on Microsoft Windows Mobile operating system. The whole system is based on the architecture of .NET Compact Framework, and Microsoft SQL Server. Visualization possibilities of web interface and ECG data are also discussed and final suggestion is made to Microsoft Silverlight solution along with current screenshot representation of implemented solution. The project was successfully tested in real environment in cryogenic room (-136OC).
Mars transit vehicle thermal protection system: Issues, options, and trades
NASA Technical Reports Server (NTRS)
Brown, Norman
1986-01-01
A Mars mission is characterized by different mission phases. The thermal control of cryogenic propellant in a propulsive vehicle must withstand the different mission environments. Long term cryogenic storage may be achieved by passive or active systems. Passive cryo boiloff management features will include multilayer insulation, vapor cooled shield, and low conductance structural supports and penetrations. Active boiloff management incorporates the use of a refrigeration system. Key system trade areas include active verses passive system boiloff management (with respect to safety, reliability, and cost) and propellant tank insulation optimizations. Technology requirements include refrigeration technology advancements, insulation performance during long exposure, and cryogenic fluid transfer system for mission vehicle propellant tanking during vehicle buildip in LEO.
Cryogenic Cooling for Myriad Applications-A STAR Is Born
NASA Technical Reports Server (NTRS)
2006-01-01
Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.
A cryogenic waveplate rotator for polarimetry at mm and submm wavelengths
NASA Astrophysics Data System (ADS)
Salatino, M.; de Bernardis, P.; Masi, S.
2011-04-01
Context. Polarimetry at mm and submm wavelengths is the new frontier of research in cosmic microwave background and interstellar dust studies. Polarimeters working in the IR to MM range need to be operated at cryogenic temperatures to limit the systematic effects related to the emission of the polarization analyzer. Aims: We study the effect of the temperature of the different components of a waveplate polarimeter and describe a system able to rotate a birefringent crystal at 4 K in a completely automated way. Methods: We simulate the main systematic effects related to the temperature and non-ideality of the optical components in a Stokes polarimeter. To limit these effects, a cryogenic implementation of the polarimeter is mandatory. In our system, the rotation produced by a step motor running at room temperature is transmitted down to cryogenic temperatures by means of a long shaft and gears running on custom cryogenic bearings. Results: Our system is able to rotate a birefringent crystal at 4 K in a completely automated way and dissipates only a few mW in the cold environment. A readout system based on optical fibers allows us to control the rotation of the crystal to better than 0.1°. Conclusions: This device fulfills the stringent requirements for operations in cryogenic space experiments, such as the forthcoming PILOT, BOOMERanG and LSPE.
NASA Technical Reports Server (NTRS)
Dor, J. B.; Mignosi, A.; Plazanet, M.
1984-01-01
This report presents part of the tests for verification of the T2 transonic induction wind tunnel in cryogenic operation. The first part of the results presented concerns fluctuations in pressure and temperature at ambient temperature and in cryogenic regulation. The second part presents the condensation phenomena which could be observed in the cryogenic flow by means of an optical particle detection system in the test section.
A high-resolution x-ray spectrometer for a kaon mass measurement
NASA Astrophysics Data System (ADS)
Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo
2017-02-01
The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.
CERN experience and strategy for the maintenance of cryogenic plants and distribution systems
NASA Astrophysics Data System (ADS)
Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.
2015-12-01
CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.
2004-06-17
KENNEDY SPACE CENTER, FLA. - James E. Fesmire (right), NASA lead engineer for the KSC Cryogenics Testbed, works on Cryostat-1, the Methods of Testing Thermal Insulation and Association Test Apparatus, which he developed. At left is co-inventor Dr. Stan Augustynowicz, chief scientist with Sierra Lobo Inc. in Milan, Ohio. Cryostat-1 provides absolute thermal performance values of cryogenic insulation systems under real-world conditions. Cryogenic liquid is supplied to a test chamber and two guard chambers, and temperatures are sensed within the vacuum chamber to test aerogels, foams or other materials. The Cryostat-1 machine can detect the absolute heat leakage rates through materials under the full range of vacuum conditions. Fesmire recently acquired three patents for testing thermal insulation materials for cryogenic systems. The research team of the Cryogenics Testbed offers testing and support for a number of programs and initiatives for NASA and commercial customers.
2004-06-17
KENNEDY SPACE CENTER, FLA. - James E. Fesmire (right), NASA lead engineer for the KSC Cryogenics Testbed, works on Cryostat-1, the Methods of Testing Thermal Insulation and Association Test Apparatus, which he developed. At left is co-inventor Dr. Stan Augustynowicz, chief scientist with Sierra Lobo Inc. in Milan, Ohio. Cryostat-1 provides absolute thermal performance values of cryogenic insulation systems under real-world conditions. Cryogenic liquid is supplied to a test chamber and two guard chambers, and temperatures are sensed within the vacuum chamber to test aerogels, foams or other materials. The Cryostat-1 machine can detect the absolute heat leakage rates through materials under the full range of vacuum conditions. Fesmire recently acquired three patents for testing thermal insulation materials for cryogenic systems. The research team of the Cryogenics Testbed offers testing and support for a number of programs and initiatives for NASA and commercial customers.
High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels
NASA Technical Reports Server (NTRS)
Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun
2008-01-01
Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.
NASA Astrophysics Data System (ADS)
Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo
2017-07-01
We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.
Apparatus for supporting a cryogenic fluid containment system within an enclosure
Zhang, Burt X.; Ganni, Venkatarao; Stifle, Kirk E.
1995-01-01
An apparatus for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system.
NASA Astrophysics Data System (ADS)
Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.
2014-01-01
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Xiong, L. Y.; Peng, N.
2014-01-29
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemensmore » S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.« less
Postflight Analysis of the Apollo 14 Cryogenic Oxygen System
NASA Technical Reports Server (NTRS)
Rule, D. D.
1972-01-01
A postflight analysis of the Apollo 14 cryogenic oxygen system is presented. The subjects discussed are: (1) methods of analysis, (2) stratification and heat transfer, (3) flight analysis, (4) postflight analysis, and (5) determination of model parameters.
NASA Technical Reports Server (NTRS)
Russo, S. C.
1976-01-01
A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning Infrared Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a detector assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type detector package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.
Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility
NASA Astrophysics Data System (ADS)
Xavier, M.; Raj, R. Edwin; Narayanan, V.
2017-02-01
Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.
Optical Detection Of Cryogenic Leaks
NASA Technical Reports Server (NTRS)
Wyett, Lynn M.
1988-01-01
Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.
The US National Transonic Facility, NTF
NASA Technical Reports Server (NTRS)
Bruce, Walter E., Jr.; Gloss, Blair B.
1989-01-01
The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of tunnel systems were performed over the next two years. In August 1984, the Operational Readiness Review (ORR) was conducted and the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamic calibration and testing to commence. Also, the model access system for the cryogenic mode of operation would be placed into operation along with tunnel testing. Since the ORR, a host of operating problems resulting from the cryogenic environment were identified and solved. These range from making mechanical and electrical systems functional to eliminating temperature induced model vibration to coping with the outgassing of moisture from the thermal insulation. Additionally, a series of aerodynamic tests have demonstrated data quality and provided research data on several configurations. Some of the more significant efforts are reviewed since the ORR and the NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality are summarized.
Thermal architecture for the SPIDER flight cryostat
NASA Astrophysics Data System (ADS)
Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bonetti, J. A.; Bryan, S. A.; Burger, B.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J.; Fissel, L. M.; Gandilo, N. N.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Montroy, T. E.; Morford, T. A.; Netterfield, C. B.; O'Dea, D. T.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Schenker, M. A.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.
2010-07-01
We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.
Active Costorage of Cryogenic Propellants for Exploration
NASA Technical Reports Server (NTRS)
Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo
2008-01-01
Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.
Liquid helium free cryogenic mechanical property test system with optical windows
NASA Astrophysics Data System (ADS)
Zhang, H. C.; Huang, C. J.; Huang, R. J.; Li, L. F.
2017-12-01
Digital image correlation (DIC) is a non-contact optical method for the in-plane displacement and strain measurement, which has been widely accepted and applied in mechanical property analysis owing to its simple experimental steps, high accuracy and large range of measurement. However, it has been rarely used in cryogenic mechanical test since the opaque design of cryostats and the interaction of optics with liquid coolants (liquid nitrogen or liquid helium). In the present work, a liquid helium free cryogenic mechanical property test system cooled by G-M cryocoolers, with a continuous, tunable environmental temperature from room temperature down to around 20 K, was developed and tested. Quartz optical windows, which are compatible with 2D DIC technology, were designed and manufactured on both inner and outer vacuum chambers. The cryogenic test system with optical windows satisfies well for mechanical tests of materials and takes advantage of both being compatible with DIC technology and getting rid of the use of expensive liquid helium. Surface displacement and strain field of Ti6Al4V under uniaxial tension were studied at 20 K by using this system. The results obtained by DIC method agree well with those obtained by extensometers at cryogenic temperatures.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
Thermal acoustic oscillations, volume 2. [cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Sims, W. H.; Fan, C.
1975-01-01
A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.
Sorption cryogenic refrigeration - Status and future
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1988-01-01
The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.
Renewal of the Control System and Reliable Long Term Operation of the LHD Cryogenic System
NASA Astrophysics Data System (ADS)
Mito, T.; Iwamoto, A.; Oba, K.; Takami, S.; Moriuchi, S.; Imagawa, S.; Takahata, K.; Yamada, S.; Yanagi, N.; Hamaguchi, S.; Kishida, F.; Nakashima, T.
The Large Helical Device (LHD) is a heliotron-type fusion plasma experimental machine which consists of a fully superconducting magnet system cooled by a helium refrigerator having a total equivalent cooling capacity of 9.2 kW@4.4 K. Seventeenplasma experimental campaigns have been performed successfully since1997 with high reliability of 99%. However, sixteen years have passed from the beginning of the system operation. Improvements are being implementedto prevent serious failures and to pursue further reliability.The LHD cryogenic control system was designed and developed as an open system utilizing latest control equipment of VME controllers and UNIX workstations at the construction time. Howeverthe generation change of control equipment has been advanced. Down-sizing of control deviceshas beenplanned from VME controllers to compact PCI controllers in order to simplify the system configuration and to improve the system reliability. The new system is composed of compact PCI controller and remote I/O connected with EtherNet/IP. Making the system redundant becomes possible by doubling CPU, LAN, and remote I/O respectively. The smooth renewal of the LHD cryogenic controlsystem and the further improvement of the cryogenic system reliability are reported.
Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector
NASA Astrophysics Data System (ADS)
Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses
2014-10-01
An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.
NASA Technical Reports Server (NTRS)
Morse, S. F.; Roper, A. T.
1975-01-01
The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.
Technique for Configuring an Actively Cooled Thermal Shield in a Flight System
NASA Technical Reports Server (NTRS)
Barkfknecht, Peter; Mustafi, Shuvo
2011-01-01
Broad area cooling shields are a mass-efficient alternative to conductively cooled thermal radiation shielding. The shield would actively intercept a large portion of incident thermal radiation and transport the heat away using cryogenic helium gas. The design concept consists of a conductive and conformable surface that maximizes heat transfer and formability. Broad Area Cooled (BAC) shields could potentially provide considerable mass savings for spaceflight applications by eliminating the need for a rigid thermal radiation shield for cryogen tanks. The BAC consists of a network of capillary tubes that are thermally connected to a conductive shield material. Chilled helium gas is circulated through the network and transports unwanted heat away from the cryogen tanks. The cryogenic helium gas is pumped and chilled simultaneously using a specialized pulse-tube cryocooler, which further improves the mass efficiency of the system. By reducing the thermal environment temperature from 300 to 100 K, the radiative heat load on a cryogen tank could be reduced by an order of magnitude. For a cryogenic liquid propellant scenario of oxygen and hydrogen, the boiloff of hydrogen would be significantly reduced and completely eliminated for oxygen. A major challenge in implementing this technology on large tanks is that the BAC system must be easily scalable from lab demonstrations to full-scale missions. Also, the BAC shield must be conformable to complex shapes like spheres without losing the ability to maintain constant temperature throughout. The initial design maximizes thermal conductivity between the capillary tube and the conductive radiation shielding by using thin, corrugated aluminum foil with the tube running transverse to the folds. This configuration has the added benefit of enabling the foil to stretch and contract longitudinally. This allows the BAC to conform to the complex curvature of a cryogen tank, which is key to its success. To demonstrate a BAC shield system with minimal impact to current cryogen tank designs, the shielding must be applied after the final assembly of the tank and supporting structure. One method is to pre-fabricate the shield in long strips. A spool of corrugated aluminum foil with a thermally sunk aluminum capillary running through the center could then be simply wound around the cryogen tanks and encapsulated within the multi-layer insulation (MLI) blanket. Then, on orbit, the BAC would intercept thermal radiation coming in through the MLI and transport it away from the cryogen tanks. An optimization of the design could be done to take into account mass savings from thinner MLI blankets, eliminating solid thermal shields, and ultimately, a reduction in the required cryogen tank size.
NASA Technical Reports Server (NTRS)
1973-01-01
The manufacturing tasks for the program included the fabrication and assembly of an epoxy fiberglass purge bag to encapsulate an insulated cryogenic propellant tank. Purge, repressurization and venting hardware were procured and installed on the purge bag assembly in preparation for performance testing. The fabrication and installation of the superfloc multilayer insulation (MLI) on the cryogenic tank was accomplished as part of a continuing program. An abstraction of the results of the MLI fabrication task is included to describe the complete fabrication requirements for a reusable cryogenic propellant space storage system.
The Future with Cryogenic Fluid Dynamics
NASA Astrophysics Data System (ADS)
Scurlock, R. G.
The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his many contributions to Cryogenics. As long ago as 1992, he first proposed in his "History and Origins of Cryogenics" that the temperature range for Cryogenics should be extended up to the ice-point at 273K. This paper expands on this proposal with the implicit assumption that Cryogenic Fluid Dynamics can provide a universal basis for modelling heat transfer and convective fluid behaviour of all fluids, at all temperatures, below the ice-point at 273K; or below 250K if you wish to exclude refrigeration engineering."
Preliminary Thermal Design of Cryogenic Radiation Shielding
NASA Technical Reports Server (NTRS)
Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin
2015-01-01
Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.
In-orbit performance of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H
NASA Astrophysics Data System (ADS)
Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuichi; Ezoe, Yuichiro; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michael; Shirron, Peter
2018-04-01
ASTRO-H was an X-ray astronomy satellite that the Japan Aerospace Exploration Agency (JAXA) developed to study the evolution of the universe and physical phenomena yet to be discovered. The primary scientific instrument of ASTRO-H was the Soft X-ray Spectrometer (SXS). Its detectors were to be cooled to 50 m K using a complex cryogenic system with a multistage adiabatic demagnetization refrigerator (ADR) developed by the National Aeronautics and Space Administration (NASA), and a cryogenic system developed by Sumitomo Heavy Industries, Ltd. (SHI). SHI's cryogenic system was required to cool the ADR's heatsink to 1.3 K or less in orbit for three years or longer. To meet these requirements, SHI developed a hybrid cryogenic system consisting of a liquid helium tank, a 4 K Joule-Thomson cooler, and two two-stage Stirling coolers. ASTRO-H was launched from Tanegashima Space Center on February 17, 2016. The initial operation of the SXS cryogenic system in orbit was completed successfully. The cooling performance was as expected and could have exceeded the lifetime requirement of three years. This paper describes results of ground tests, results of top-off filling of superfluid liquid helium just before launch, and cooling performance in orbit.
Apparatus for supporting a cryogenic fluid containment system within an enclosure
Zhang, B.X.; Ganni, V.; Stifle, K.E.
1995-01-31
An apparatus is disclosed for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system. 8 figs.
NASA Technical Reports Server (NTRS)
Jassowski, Donald M.
1993-01-01
Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.
CryoTran user's manual, version 1.0
NASA Technical Reports Server (NTRS)
Cowgill, Glenn R.; Chato, David J.; Saad, Ehab
1989-01-01
The development of cryogenic fluid management systems for space operation is a major portion of the efforts of the Cryogenic Fluids Technology Office (CFTO) at the NASA Lewis Research Center. Analytical models are a necessary part of experimental programs which are used to verify the results of experiments and are also used as a predictor for parametric studies. The CryoTran computer program is a bridge to obtain analytical results. The object of CryoTran is to coordinate these separate analyses into an integrated framework with a user-friendly interface and a common cryogenic property database. CryoTran is an integrated software system designed to help solve a diverse set of problems involving cryogenic fluid storage and transfer in both ground and low-g environments.
The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delruelle, N.; Leclercq, Y.; Pirotte, O.
2014-01-29
The major upgrade of the energy and intensity of the existing ISOLDE and REX-ISOLDE radioactive ion beam facilities at CERN requires the replacement of most of the existing ISOLDE post-acceleration equipment by a superconducting linac based on quarter-wave resonators housed together with superconducting solenoids in a series of four high-β and two low-β cryo-modules. As well as providing optimum conditions for physics, the cryo-modules need to function under stringent vacuum and cryogenic conditions. We present the detail design and expected cryogenic performance of the high- β cryo-module together with the cryogenic supply and distribution system destined to service the completemore » superconducting linac.« less
Mechanical testing of large cryogenic structures
NASA Technical Reports Server (NTRS)
Newkirk, Roger; Burriesci, Larry
1990-01-01
The mechanical testing performed on the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument installed on the Upper Atmosphere Research Satellite is discussed. The CLAES determines temperatures and concentrations of stratospheric minor species as a function of altitude by measuring the atmospheric infrared emission spectra. CLAES is based on a telescope optical system and infrared spectrometer which are cooled with cryogens.
Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.
2014-01-01
In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.
Shuttle cryogenic supply system optimization study. Volume 6: Appendixes
NASA Technical Reports Server (NTRS)
1973-01-01
The optimization of the cryogenic supply system for space shuttles is discussed. The subjects considered are: (1) auxiliary power unit parametric data, (2) propellant acquisition, (3) thermal protection and thermodynamic properties, (4) instrumentation and controls, and (5) initial component redundancy evaluations. Diagrams of the systems are provided. Graphs of the performance capabilities are included.
Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.
2017-06-01
We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ^{222}Rn background originating from radon emanation. After inserting an auxiliary ^{222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the ^{222}Rn activity concentration inside the XENON100 detector.
Cryogenic Insulation Standard Data and Methodologies Project
NASA Technical Reports Server (NTRS)
Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam
2015-01-01
Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system for applications at sub-ambient to cryogenic temperatures. A growing need for energy efficiency and cryogenic applications is creating a worldwide demand for improved thermal insulation systems for low temperatures. The need for thermal characterization of these systems and materials raises a corresponding need for insulation test standards and thermal data targeted for cryogenic-vacuum applications. Such standards have a strong correlation to energy, transportation, and environment and the advancement of new materials technologies in these areas. In conjunction with this project, two new standards on cryogenic insulation were recently published by ASTM International: C1774 and C740. Following the requirements of NPR 7120.10, Technical Standards for NASA Programs and Projects, the appropriate information in this report can be provided to the NASA Chief Engineer as input for NASA's annual report to NIST, as required by OMB Circular No. A-119, describing NASA's use of voluntary consensus standards and participation in the development of voluntary consensus standards and bodies.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2005-01-01
Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2004-01-01
Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
Insulation Progress since the Mid-1950s
NASA Astrophysics Data System (ADS)
Timmerhaus, K. D.
Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.
Performance of Power Converters at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.
2001-01-01
Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer program for rapid parametric evaluation of various types of cryogenics spacecraft systems is presented. The mathematical techniques of the program provide the capability for in-depth analysis combined with rapid problem solution for the production of a large quantity of soundly based trade-study data. The program requires a large data bank capable of providing characteristics performance data for a wide variety of component assemblies used in cryogenic systems. The program data requirements are divided into: (1) the semipermanent data tables and source data for performance characteristics and (2) the variable input data which contains input parameters which may be perturbated for parametric system studies.
2012-07-09
CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis
2012-07-09
CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis
New Process Controls for the Hera Cryogenic Plant
NASA Astrophysics Data System (ADS)
Böckmann, T.; Clausen, M.; Gerke, Chr.; Prüß, K.; Schoeneburg, B.; Urbschat, P.
2010-04-01
The cryogenic plant built for the HERA accelerator at DESY in Hamburg (Germany) is now in operation for more than two decades. The commercial process control system for the cryogenic plant is in operation for the same time period. Ever since the operator stations, the control network and the CPU boards in the process controllers went through several upgrade stages. Only the centralized Input/Output system was kept unchanged. Many components have been running beyond the expected lifetime. The control system for one at the three parts of the cryogenic plant has been replaced recently by a distributed I/O system. The I/O nodes are connected to several Profibus-DP field busses. Profibus provides the infrastructure to attach intelligent sensors and actuators directly to the process controllers which run the open source process control software EPICS. This paper describes the modification process on all levels from cabling through I/O configuration, the process control software up to the operator displays.
Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Steadman, Todd
2003-01-01
The chilldown of fluid transfer lines is an important part of using cryogenic systems such as those found in both ground and space based applications. The chilldown process is a complex combination of both thermal and fluid transient phenomena. A cryogenic liquid flows through a transfer line that is initially at a much higher temperature than the cryogen. Transient heat transfer processes between the liquid and transfer line cause vaporization of the liquid, and this phase change can cause transient pressure and flow surges in the liquid. As the transfer line is cooled, these effects diminish until the liquid reaches a steady flow condition in the chilled transfer line. If these transient phenomena are not properly accounted for in the design process of a cryogenic system, it can lead to damage or failure of system components during operation. For such cases, analytical modeling is desirable for ensuring that a cryogenic system transfer line design is adequate for handling the effects of a chilldown process. The purpose of this paper is to present the results of a numerical model developed using Generalized Fluid System Simulation Program (GFSSP)'s new fluid transient capability in combination with its previously developed thermal transient capability to predict pressure and flow surge in cryogenic transfer lines during a chilldown process. An experiment performed by the National Bureau of Standards (NBS) in 1966 has been chosen as the baseline comparison case for this work. NBS s experimental set-up consisted of a 10.59 cubic foot supply dewar, an inlet valve, and a 200 foot long, in Outside Diameter (OD) vacuum jacketed copper transfer line that exhausted to atmosphere. Three different inlet valves, an in-port ball valve, a 1-in-port globe valve and a 1-in-port gate valve, were used in NBS's experiments. Experiments were performed using both liquid hydrogen and liquid nitrogen as the fluids. The proposed paper will include detailed comparisons of GFSSP's predictions with NBS's experimental results.
Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Ernst, E. W.; Sass, J. P.; Lobemeyer, D. A.; Sojourner, S. J.; Hatfield, W. H.; Rewinkel, D. A.
2007-01-01
The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facility
Safety Aspects of Big Cryogenic Systems Design
NASA Astrophysics Data System (ADS)
Chorowski, M.; Fydrych, J.; Poliński, J.
2010-04-01
Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.
NASA Astrophysics Data System (ADS)
Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng
2017-03-01
The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.
Developments in advanced and energy saving thermal isolations for cryogenic applications
NASA Astrophysics Data System (ADS)
Shu, Q. S.; Demko, J. A.; Fesmire, J. E.
2015-12-01
The cooling power consumption in large scale superconducting systems is huge and cryogenic devices used in space applications often require an extremely long cryogen holding time. To economically maintain the device at its operating temperature and minimize the refrigeration losses, high performance of thermal isolation is essential. The radiation from warm surrounding surfaces and conducting heat leaks through supports and penetrations are the dominant heat loads to the cold mass under vacuum condition. The advanced developments in various cryogenic applications to successfully reduce the heat loads through radiation and conduction are briefly and systematically discussed and evaluated in this review paper. These include: (1) thermal Insulation for different applications (foams, perlites, glass bubbles, aerogel and MLI), (2) sophisticated low-heat-leak support (cryogenic tension straps, trolley bars and posts with dedicated thermal intercepts), and (3) novel cryogenic heat switches.
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.
2015-01-01
Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.
NASA Technical Reports Server (NTRS)
Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.
2009-01-01
This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.
Development of COPVS for High pressure, In-Space, Cryogenic Fuel Storage
NASA Technical Reports Server (NTRS)
DeLay, Tom; Schneider, Judy; Dyess, Mark; Hastings, Chad; Noorda, Ryan; Noorda, Jared; Patterson, James
2008-01-01
Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. To evaluate the ultimate performance, various polymeric COPV's have been statically burst tested at cryogenic conditions before and after exposure to irradiation. Materials selected for these COPVs were based on the measured mechanical properties of candidate resin systems and fibers that were also tested at cryogenic conditions before and after exposure to irradiation. The correlation of COPV burst pressures with the constituent material properties has proven to be a valuable screening method for selection of suitable candidate materials with resistance to material degradation due to exposure to temperature and radiation.
A sub-Kelvin cryogen-free EPR system.
Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard
2017-09-01
We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-01-01
The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
Conceptual design of ACB-CP for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang
2012-06-01
ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA SBIR (Small Business Innovative Research) contract with Johnson Space Center, Aspen Systems developed aerogel-based superinsulation. This super-insulation is an innovative, flexible cryogenic insulation with extremely low thermal conductivity. Potential commercial uses include cryogenic applications in the transportation, storage and transfer of cryogens; near room-temperature applications such as refrigerator insulation; and elevated temperature applications such as insulations for high- temperature industrial processes and furnaces.
NASA Astrophysics Data System (ADS)
Baranov, G. D.; Koresheva, E. R.; Listratov, V. I.; Merkul'ev, Yu A.; Mineev, G. V.; Nikitenko, A. I.; Osipov, I. E.; Rogachev, A. V.; Tolokonnikov, S. M.; Chumanov, A. N.
1989-08-01
It is suggested that cryogenic targets be delivered to the focus of a laser fusion chamber by a "cryogenic gun" system based on the principle of electromagnetic acceleration of a special ferromagnetic plunger carrying a target. The performance of the acceleration unit of the cryogenic gun is considered. Experimental results are reported.
Resistance of Metallic Screens in a Cryogenic Flow
NASA Astrophysics Data System (ADS)
Fischer, Alexander; Stief, Malte
The propellant behaviour in cryogenic upper stages tanks imposes challenging requirements on the design, especially for future upper stages designed for multiple restarts and long ballistic flight phases. The main challenge is the supply of the propellants to the feed system prior to the engine reignition. During the entire mission the engine requires a gaseous and bubble free liquid supply of propellant at the required thermodynamic conditions. The current research focus is to prepare the initial steps for the maturation of the Propellant Management Device (PMD) technology for cryogenic tank systems. Main components of such a PMD are metallic screens. The metallic screens are used as barrier for any gas bubbles within the fluid stream approaching the space craft engines. The screen characteristics are of fundamental importance for the PMD and feed system design. The paper presents a summary on available experimental screen data with regard to the flow resistance and gives a comparison with theoretical and empirical predictions found in literature. The lack on comparable data with regard to space craft applications and the need on further research with cryogenic flows is demonstrated. The DLR Institute of Space Systems is preparing various cryogenic tests to collect the desired information about the flow properties of such metallic screens. The planned test setup and the foreseen experiments will be presented.
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
Apollo experience report: The cryogenic storage system
NASA Technical Reports Server (NTRS)
Chandler, W. A.; Rice, R. R.; Allgeier, R. K., Jr.
1973-01-01
A review of the design, development, and flight history of the Apollo cryogenic storage system and of selected components within the system is presented. Discussions are presented on the development history of the pressure vessels, heaters, insulation, and selected components. Flight experience and operational difficulties are reported in detail to provide definition of the problems and applicable corrective actions.
Vacuum-Gauge Connection For Shipping Container
NASA Technical Reports Server (NTRS)
Henry, Robert H.
1990-01-01
External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.
Recent Advances and Applications in Cryogenic Propellant Densification Technology
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
2000-01-01
This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayama, Yuki; Nakasako, Masayoshi; RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148
2012-05-15
Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, wemore » report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.« less
Experimental Results of Integrated Refrigeration and Storage System Testing
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Johnson, W. L.; Jumper, K.
2009-01-01
Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage
Cryogenics for the MuCool Test Area (MTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, Christine; Norris, Barry; Pei, Liu-Jin
2005-09-01
MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R&D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH{sub 2}) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN{sub 2} and LH{sub 2}. The latter dictates stringent system design for hazardous locations.more » The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R&D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less
Cryogenics for the MuCool Test Area (MTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, Christine; Norris, Barry; Pei, Liujin
2006-03-20
MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. Themore » cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less
Cryogenic Fluid Management Technology Development Roadmaps
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Johnson, W. L.
2017-01-01
Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.
2012-01-01
The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.
Cryogenic Liquid Sample Acquisition System for Remote Space Applications
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John
2013-01-01
There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.
Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks
NASA Astrophysics Data System (ADS)
Sass, J. P.; Cyr, W. W. St.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.
2010-04-01
A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years.
Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks
NASA Technical Reports Server (NTRS)
Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.
2009-01-01
A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.
Status Of Sorption Cryogenic Refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1988-01-01
Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.
NASA Technical Reports Server (NTRS)
Lobmeyer, Dennis A.; Meneghelli, Barry J.
2001-01-01
The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit and escape the bonds of Earth's gravity. In the future there may be other means available; however, currently few of these alternatives can compare to the speed or the ease of use provided by cryogenic chemical propulsion agents. Cryogenics, the science and art of producing cold operating conditions, has become increasingly important to our ability to travel within our solar system. The production and transport of cryogenic fuels as well as the long-term storage of these fluids are necessary for mankind to travel within our solar system. It is with great care and at a significant cost that gaseous compounds such as hydrogen and oxygen are liquified and become dense enough to use for rocket fuel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a complete round-trip. The cost and the size of any expedition to another celestial body are extreme. If we are constrained by the need to take everything necessary (fuel, life support, etc.) for our survival and return, we greatly increase the risk of being able to go. As with the early explorers on Earth, we will need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy sources is paramount to success. Due to the current propulsion system designs, the in-situ processes will require liquefaction and the application of cryogenics. The challenge we face for the near future is to increase our understanding of cryogenic long-term storage and off-world production of cryogenic fluids. We must do this all within the boundaries of very restricted size, weight, and robustness parameters so that we may launch these apparatus from Earth and utilize them elsewhere. Miniaturization, efficiency, and physically robust systems will all play a part in making space exploration possible; however, it is cryogenics that will enable all of this to occur.
Demonstration of Microsphere Insulation in Cryogenic Vessels
NASA Astrophysics Data System (ADS)
Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.
2006-04-01
While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.
Research of the cold shield in cryogenic liquid storage
NASA Astrophysics Data System (ADS)
Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.
2017-12-01
To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.
The 26th Space Cryogenic Workshop: Overview, Description of Presentations, and List of Abstracts
NASA Technical Reports Server (NTRS)
Hartwig, Jason; Plachta, David; Shirron, Peter; Huget, Laurie
2016-01-01
This is a summary of the 2015 Space Cryogenics Workshop that was held in Phoenix, Arizona, June 24 to 26, 2015. The workshop was organized by David Plachta and Jason Hartwig of the Cryogenics and Fluid Systems Branch at NASA Glenn Research Center, and continued the tradition of bringing together specialists in the field of space cryogenics to discuss upcoming and potential space missions, and the development of technologies that support or-more often-are enabling for the science and exploration goals of the world's space agencies. The workshop consisted of two days of talks and poster sessions, and provided ample opportunity for more informal discussions that foster collaborations and cooperation in the space cryogenics community. Selected papers from the workshop are published in a special issue of Cryogenics, which is expected to be published by the end of 2015.
Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site
NASA Astrophysics Data System (ADS)
Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.
2017-02-01
The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geynisman, M.; Bremer, J.; Chalifour, M.
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements formore » the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.« less
ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience
NASA Astrophysics Data System (ADS)
Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Kishi, D.; Laxdal, R.; Ma, Y.; Nagimov, R.; Yosifov, D.
2015-12-01
The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience.
NASA Astrophysics Data System (ADS)
Geynisman, M.; Bremer, J.; Chalifour, M.; Delaney, M.; Dinnon, M.; Doubnik, R.; Hentschel, S.; Kim, M. J.; Montanari, C.; Montanari, D.; Nichols, T.; Norris, B.; Sarychev, M.; Schwartz, F.; Tillman, J.; Zuckerbrot, M.
2017-12-01
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ∼260 tons) and SBN’s Far Detector (SBN-FD, ∼760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.
NASA Astrophysics Data System (ADS)
Klug, Martin; Fabian, Karl; Knies, Jochen; Sauer, Simone
2017-04-01
Natural remanent magnetization (NRM) and rock magnetic parameters from two locations, West Barents Sea ( 71.6°N,16.2°E) and Vestnesa Ridge, NW Svalbard ( 79.0°N, 6.9°E), were acquired using a new, automatically operating cryogenic magnetometer system at the Geological Survey of Norway. The magnetometer setup comprises an automated robot sample feeding, dynamic operation and measurement monitoring, and customised output-to-database data handling. The setup is designed to dynamically enable a variety of parallel measurements with several coupled devices (e.g. balance, MS2B) to effectively use dead-time in between the otherwise time-consuming measurements with the cryogen magnetometer. Web-based access allows remote quality control and interaction 24/7 and enables high sample throughput. The magnetic properties are combined with geophysical, geochemical measurements and optical imaging, both radiographic and colour images, from high-resolution core-logging. The multidisciplinary approach enables determination and interpretation of content and formation of the magnetic fraction, and its development during diagenetic processes. Besides palaeomagnetic age determination the results offer the opportunity to study sediment transformation processes that have implications for the burial and degradation of organic matter. The results also help to understand long and short-term variability of sediment accumulation. Chemical sediment stability is directly linked to environmental and climate variability in the polar marine environment during the recent past.
NASA Astrophysics Data System (ADS)
Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.
2017-02-01
Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.
Cryogenic Fluid Transfer for Exploration
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.
Cryogenic Fluid Transfer for Exploration
NASA Technical Reports Server (NTRS)
Chato, David J.
2008-01-01
This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.
NASA Technical Reports Server (NTRS)
Kramer, Edward (Editor)
1998-01-01
The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.
Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.
1988-01-01
A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.
Cryogenic System for the Cryomodule Test Stand at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Michael J.; Hansen, Benjamin; Klebaner, Arkadiy
This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description ofmore » the heat load measurement plan.« less
Valve Health Monitoring System Utilizing Smart Instrumentation
NASA Technical Reports Server (NTRS)
Jensen, Scott L.; Drouant, George J.
2006-01-01
The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station
Valve health monitoring system utilizing smart instrumentation
NASA Astrophysics Data System (ADS)
Jensen, Scott L.; Drouant, George J.
2006-05-01
The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.
Continued Development of a Precision Cryogenic Dilatometer for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Karlmann, Paul B.; Dudik, Matthew J.; Halverson, Peter G.; Levine, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart; VanBuren, David
2004-01-01
As part of the James Webb Space Telescope (JWST) materials working group, a novel cryogenic dilatometer was designed and built at NASA Jet Propulsion Laboratory to help address stringent coefficient of thermal expansion (CTE) knowledge requirements. Previously reported results and error analysis have estimated a CTE measurement accuracy for ULE of 1.7 ppb/K with a 20K thermal load and 0.1 ppb/K with a 280K thermal load. Presented here is a further discussion of the cryogenic dilatometer system and a description of recent work including system modifications and investigations.
Inexpensive cryogenic insulation replaces vacuum jacketed line
NASA Technical Reports Server (NTRS)
Fuchs, C. E.
1967-01-01
Commercially available aluminized Mylar, cork and fiber glass form a multilayered sealed system and provide rugged and economical field installed insulation for cryogenic /liquid nitrogen or oxygen/ pipe lines in an exposed environment.
NASA Technical Reports Server (NTRS)
Shideler, J. L.; Swegle, A. R.; Fields, R. A.
1982-01-01
The status of the structural development of an integral cryogenic-tankage/hot-fuselage concept for future space transportation systems is reviewed. The concept comprises a honeycomb sandwich structure that serves the combined functions of containing the cryogenic fuel, supporting the vehicle loads, and protecting the spacecraft from entry heating. The inner face sheet is exposed to cryogenic temperature of -423 F during boost; the outer face sheet, which is slotted to reduce thermal stress, is exposed to a maximum temperature of 1400 F during a high-altitude gliding entry. Attention is given to the development of a fabrication process for a Rene 41 honeycomb sandwich panel with a core density of less than 1 percent that is consistent with desirable heat treatment processes for high strength.
NASA Technical Reports Server (NTRS)
Shideler, J. J.; Swegle, A. R.; Fields, R. A.
1982-01-01
The status of the structural development of an integral cryogenic-tankage/hot-fuselage concept for future space transportation systems (STS) is discussed. The concept consists of a honeycomb sandwich structure which serves the combined functions of containment of cryogenic fuel, support of vehicle loads, and thermal protection from an entry heating environment. The inner face sheet is exposed to a cryogenic (LH2) temperature of -423 F during boost; and the outer face sheet, which is slotted to reduce thermal stress, is exposed to a maximum temperature of 1400 F during a high altitude, gliding entry. A fabrication process for a Rene' 41 honeycomb sandwich panel with a core density less than 1 percent was developed which is consistent with desirable heat treatment processes for high strength.
HTS cryogenic current comparator for non-invasive sensing of charged-particle beams
NASA Astrophysics Data System (ADS)
Hao, L.; Gallop, J. C.; Macfarlane, J. C.; Carr, C.
2002-03-01
The principle of the superconducting cryogenic direct-current comparator (CCC) is applied to the non-invasive sensing of charged-particle beams (ions, electrons). With the use of HTS components it is feasible to envisage applications, for example, in precision mass spectrometry, in real-time monitoring of ion-beam implantation currents and for the determination of the Faraday fundamental constant. We have developed a novel current concentrating technique using HTS thick-film material, to increase the sensitivity of the CCC. Recent simulations and experimental measurements of the flux and current concentration ratios, frequency response and linearity of a prototype HTS-CCC operating at 77 K are described.
Evaluation of high temperature superconductive thermal bridges for space borne cryogenic detectors
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1996-01-01
Infrared sensor satellites are used to monitor the conditions in the earth's upper atmosphere. In these systems, the electronic links connecting the cryogenically cooled infrared detectors to the significantly warmer amplification electronics act as thermal bridges and, consequently, the mission lifetimes of the satellites are limited due to cryogenic evaporation. High-temperature superconductor (HTS) materials have been proposed by researchers at the National Aeronautics and Space Administration Langley's Research Center (NASA-LaRC) as an alternative to the currently used manganin wires for electrical connection. The potential for using HTS films as thermal bridges has provided the motivation for the design and the analysis of a spaceflight experiment to evaluate the performance of this superconductive technology in the space environment. The initial efforts were focused on the preliminary design of the experimental system which allows for the quantitative comparison of superconductive leads with manganin leads, and on the thermal conduction modeling of the proposed system. Most of the HTS materials were indicated to be potential replacements for the manganin wires. In the continuation of this multi-year research, the objectives of this study were to evaluate the sources of heat transfer on the thermal bridges that have been neglected in the preliminary conductive model and then to develop a methodology for the estimation of the thermal conductivities of the HTS thermal bridges in space. The Joule heating created by the electrical current through the manganin wires was incorporated as a volumetric heat source into the manganin conductive model. The radiative heat source on the HTS thermal bridges was determined by performing a separate radiant interchange analysis within a high-T(sub c) superconductor housing area. Both heat sources indicated no significant contribution on the cryogenic heat load, which validates the results obtained in the preliminary conduction model. A methodology was presented for the estimation of the thermal conductivities of the individual HTS thermal bridge materials and the effective thermal conductivities of the composite HTS thermal bridges as functions of temperature. This methodology included a sensitivity analysis and the demonstration of the estimation procedure using simulated data with added random errors. The thermal conductivities could not be estimated as functions of temperature; thus the effective thermal conductivities of the HTS thermal bridges were analyzed as constants.
Propulsion Technology Needs for Exploration
NASA Technical Reports Server (NTRS)
Brown, Thomas
2007-01-01
The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.
NASA Astrophysics Data System (ADS)
Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.
2017-02-01
The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.
2014-01-01
This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).
Problems associated with operations and measurement in cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Blanchard, A.; Delcourt, V.; Plazanet, M.
1986-01-01
Cryogenic wind tunnel T'3 under continuous blower operation has been the object of improvements and the installation of auxiliary equipment, dealing in particular with the enlargement of the liquid nitrogen injection reservoir and the hook-up to a fast data acquisition system. Following a brief description of the installation and its functioning, we present the main experimental techniques and the instrumentation used in the cryogenic environment.
Harding, D. R.; Ulreich, J.; Wittman, M. D.; ...
2017-12-06
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
Advanced Devices for Cryogenic Thermal Management
NASA Astrophysics Data System (ADS)
Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.
2006-04-01
This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D. R.; Ulreich, J.; Wittman, M. D.
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
A Practical Cryogen-Free CO2 Purification and Freezing Technique for Stable Isotope Analysis.
Sakai, Saburo; Matsuda, Shinichi
2017-04-18
Since isotopic analysis by mass spectrometry began in the early 1900s, sample gas for light-element isotopic measurements has been purified by the use of cryogens and vacuum-line systems. However, this conventional purification technique can achieve only certain temperatures that depend on the cryogens and can be sustained only as long as there is a continuous cryogen supply. Here, we demonstrate a practical cryogen-free CO 2 purification technique using an electrical operated cryocooler for stable isotope analysis. This approach is based on portable free-piston Stirling cooling technology and controls the temperature to an accuracy of 0.1 °C in a range from room temperature to -196 °C (liquid-nitrogen temperature). The lowest temperature can be achieved in as little as 10 min. We successfully purified CO 2 gas generated by carbonates and phosphoric acid reaction and found its sublimation point to be -155.6 °C at 0.1 Torr in the vacuum line. This means that the temperature required for CO 2 trapping is much higher than the liquid-nitrogen temperature. Our portable cooling system offers the ability to be free from the inconvenience of cryogen use for stable isotope analysis. It also offers a new cooling method applicable to a number of fields that use gas measurements.
Centaur Test Bed (CTB) for Cryogenic Fluid Management
NASA Technical Reports Server (NTRS)
Sakla, Steven; Kutter, Bernard; Wall, John
2006-01-01
Future missions such as NASA s space exploration vision and DOD satellite servicing will require significant increases in the understanding and knowledge of space based cryogenic fluid management (CFM), including the transfer and storage of cryogenic fluids. Existing CFM capabilities are based on flight of upper stage cryogenic vehicles, scientific dewars, a few dedicated flight demonstrations and ground testing. This current capability is inadequate to support development of the CEV cryogenic propulsion system, other aspects of robust space exploration or the refueling of satellite cryo propulsion systems with reasonable risk. In addition, these technologies can provide significant performance increases for missions beyond low-earth orbit to enable manned missions to the Moon and beyond. The Centaur upper-stage vehicle can provide a low cost test platform for performing numerous flight demonstrations of the full breadth of required CFM technologies to support CEV development. These flight demonstrations can be performed as secondary mission objectives using excess LH2 and/or LO2 from the main vehicle propellant tanks following primary spacecraft separation at minimal cost and risk.
Silva Elipe, Maria Victoria; Donovan, Neil; Krull, Robert; Pooke, Donald; Colson, Kimberly L
2018-04-17
After years towards higher field strength magnets, nuclear magnetic resonance (NMR) technology in commercial instruments in the past decade has expanded at low and high magnetic fields to take advantage of new opportunities. At lower field strengths, permanent magnets are well established, whereas for midrange and high field, developments utilize superconducting magnets cooled with cryogenic liquids. Recently, the desire to locate NMR spectrometers in nontypical NMR laboratories has created interest in the development of cryogen-free magnets. These magnets require no cryogenic maintenance, eliminating routine filling and large cryogen dewars in the facility. Risks of spontaneous quenches and safety concerns when working with cryogenic liquids are eliminated. The highest field commercially available cryogen-free NMR magnet previously reported was at 4.7 T in 2013. Here we tested a prototype cryogen-free 9.4-T power-driven high-temperature-superconducting (HTS) magnet mated to commercial NMR spectrometer electronics. We chose cinacalcet HCl, a typical active pharmaceutical ingredient, to evaluate its performance towards structure elucidation. Satisfactory standard 1D and 2D homonuclear and heteronuclear NMR results were obtained and compared with those from a standard 9.4-T cryogenically cooled superconducting NMR instrument. The results were similar between both systems with minor differences. Further comparison with different shims and probes in the HTS magnet system confirmed that the magnet homogeneity profile could be matched with commercially available NMR equipment for optimal results. We conclude that HTS magnet technology works well providing results comparable with those of standard instruments, leading us to investigate additional applications for this magnet technology outside a traditional NMR facility. Copyright © 2018 John Wiley & Sons, Ltd.
Carbon fiber composites for cryogenic filament-wound vessels
NASA Technical Reports Server (NTRS)
Larsen, J. V.; Simon, R. A.
1972-01-01
Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.
NASA Technical Reports Server (NTRS)
Augustynowicz, S. D.; Fesmire, James E.; Steinrock, T. (Technical Monitor)
2001-01-01
A unique research program, including a comprehensive study of thermal performance at cryogenic vacuum insulation systems, was performed at the NASA Kennedy Space Center. The main goal was to develop a new soft vacuum system (from 1 torr to 10 torr) that provides an intermediate level of performance (k-value below 4.8 mW/m-K). Liquid nitrogen boil-off methods were used to test conventional materials, novel materials, and certain combinations. The test articles included combinations of aluminum foil, fiberglass paper, polyester fabric, silica aerogel composite blanket, fumed silica, silica aerogel powder, and syntactic foam. A new LCI system was developed at the Cryogenics Test Laboratory. This system performs exceptionally well at soft vacuum levels and nearly as good as an MLI at high vacuum levels. Apparent thermal conductivities for the LCI range from 2 mW/m-K at soft vacuum to 0.1 mW/m-K at high vacuum. Several cryostats were designed, constructed, and calibrated by the Cryogenics Test Laboratory at KSC NASA as part of this research program. The cryostat test apparatus is a liquid nitrogen boil-off calorimeter system for direct measurement of the apparent thermal conductivity at a fixed vacuum level between 5 x 10(exp -5) and 760 torr. The apparatus is also used for transient measurements of temperature profiles. The development of efficient, robust cryogenic insulation systems has been a targeted area of research for a number of years. Improved methods of characterization, testing, and evaluation of complex biological substance systems for cryosurgery and cryobiology are the focus of this paper.
NASA Technical Reports Server (NTRS)
Plachta, David W.; Tucker, Stephen; Hoffman, David J.
1993-01-01
This paper analyzes, defines, and sizes cryogenic storage thermal control systems that meet the requirements of future NASA Mars human exploration missions. The design issues of this system include the projection of the existing Multilayer Insulation data base for cryogenic storage to much thicker (10 cm or more) insulation systems, the unknown heat leak from mechanical interfaces, and the thermal and structural performance effects of the large tank sizes required for a Mars mission. Acknowledging these unknown effects, heat loss projections are made based on extrapolation of the existing data base. The results indicate that hydrogen, methane, and oxygen are feasible propellants, and that the best suited thermal control sytems are 'thick' MLI, thermodynamic vent sytems, cryocoolers, and vacuum jackets.
NASA Astrophysics Data System (ADS)
van der Weijden, H.; Benschop, T.; van de Groep, W.; Willems, D.
2011-06-01
Thales Cryogenics (TCBV) has an extensive background in delivering long-life cryogenic coolers for military, civil and space programs. During the last years many technical improvements have increased the lifetime of coolers resulting in significantly higher MTTF's. Lifetime endurance tests are used to validate these performance increases. An update will be given on lifetime test of a selection of TCBV's coolers. MTTF figures indicate the statistical average lifetimes for a large population of coolers. However, for the user of IR camera's and spectrometers a detailed view on the performance of an individual cooler and the possible impact of its performance degradation during its lifetime is very important. Thales Cryogenics is developing Cooler Diagnostic Software (CDS), which can be implemented in the firmware of its DSP based cooler drive electronics. With this implemented software the monitoring of the main cooler parameters during the lifetime in the equipment will be possible, including the prediction of the expected cooler performance availability. Based on this software it will be possible to analyze the status of the cooler inside the equipment and, supported by the lifetime knowledge at Thales Cryogenics, make essential choices on the maintenance of equipment and the replacement of coolers. In the paper, we will give an overview of potential situations in which such a predictive algorithm can be used. We will present the required interaction with future users to make an optimal interaction and interpretation of the generated data possible.
NASA Astrophysics Data System (ADS)
Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor
2004-08-01
An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.
Focal Plane Array Shutter Mechanism of the JWST NIRSpec Detector System
NASA Technical Reports Server (NTRS)
Hale, Kathleen; Sharma, Rajeev
2006-01-01
This viewgraph presentation reviews the requirements, chamber location, shutter system design, stepper motor specifications, dry lubrication, control system, the environmental cryogenic function testing and the test results of the Focal Plane Array Shutter mechanism for the James Webb Space Telescope Near Infrared Spectrum Detector system. Included are design views of the location for the Shutter Mechanism, lubricant (lubricated with Molybdenum Di Sulfide) thickness, and information gained from the cryogenic testing.
Computing the Thermodynamic State of a Cryogenic Fluid
NASA Technical Reports Server (NTRS)
Willen, G. Scott; Hanna, Gregory J.; Anderson, Kevin R.
2005-01-01
The Cryogenic Tank Analysis Program (CTAP) predicts the time-varying thermodynamic state of a cryogenic fluid in a tank or a Dewar flask. CTAP is designed to be compatible with EASY5x, which is a commercial software package that can be used to simulate a variety of processes and equipment systems. The mathematical model implemented in CTAP is a first-order differential equation for the pressure as a function of time.
Bulk Charging of Dielectrics in Cryogenic Space Environments
NASA Technical Reports Server (NTRS)
Minow, J. I.; Coffey, V. N.; Blackwell, W. C., Jr.; Parker, L. N.; Jun, I.; Garrett, H. B.
2007-01-01
We use a 1-D bulk charging model to evaluate dielectric charging at cryogenic temperatures relevant to space systems using passive cooling to <100K or extended operations in permanently dark lunar craters and the lunar night.
Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration
NASA Technical Reports Server (NTRS)
Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.
2012-01-01
NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.
Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials
NASA Technical Reports Server (NTRS)
Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.
2007-01-01
The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.
Wall mounted heat exchanger characterization. [cryogenic propellant tanks
NASA Technical Reports Server (NTRS)
Bullard, B. R.
1975-01-01
Analytical models are presented for describing the heat and mass transfer and the energy distribution in the contents of a cryogenic propellant tank, under varying gravity levels. These models are used to analytically evaluate the effectiveness of a wall heat exchanger as a means of controlling the pressure in the tank during flight and during fill operations. Pressure and temperature histories are presented for tanks varying in size from 4 to 22.5 feet in diameter and gravity levels from 0-1. Results from the subscale test program, utilizing both non-cryogenic and cryogenic fluid, designed to evaluate a tank wall heat exchanger are described and compared with the analytical models. Both the model and test results indicate that a passive tank wall heat exchanger can effectively control tank pressure. However, the weight of such a system is considerably higher than that of an active mixer system.
Preliminary design of the cryogenic cooled limb scanning interferometer radiometer (CLIR)
NASA Technical Reports Server (NTRS)
Sherman, A.
1978-01-01
The preliminary design of the cryogenic cooling system for the Cryogenic Cooled Limb Scanning Interferometer Radiometer (CLIR) instrument to be flown on the Atmospheric Magnetospheric Physics Satellite (AMPS) was studied. The top level trade studies were extensive due to the instrument requirement for cooling at three temperature levels as opposed to the two levels initially described for the instrument. Approximately 12 different combinations of cryogens were investigated. The basic lifetime requirement for the instrument was 30 days. However, studies were also conducted for a follow-up mission requiring a 1 year lifetime. The top level trades led to the selection of a single stage supercritical helium baseline.
Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (lhc)
NASA Astrophysics Data System (ADS)
Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.
2010-04-01
The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.
Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.
1988-11-01
A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.
Large scale cryogenic fluid systems testing
NASA Technical Reports Server (NTRS)
1992-01-01
NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.
NASA Technical Reports Server (NTRS)
Plachta, David; Kittel, Peter
2003-01-01
Previous efforts have shown the analytical benefits of zero boil-off (ZBO) cryogenic propellant storage in launch vehicle upper stages of Mars transfer vehicles for conceptual Mars Missions. However, recent NASA mission investigations have looked at a different and broad array of missions, including a variety of orbit transfer vehicle (OTV) propulsion concepts, some requiring cryogenic storage. For many of the missions, this vehicle will remain for long periods (greater than one week) in low earth orbit (LEO), a relatively warm thermal environment. Under this environment, and with an array of tank sizes and propellants, the performance of a ZBO cryogenic storage system is predicted and compared with a traditional, passive-only storage concept. The results show mass savings over traditional, passive-only cryogenic storage when mission durations are less than one week in LEO for oxygen, two weeks for methane, and roughly 2 months for LH2. Cryogenic xenon saves mass over passive storage almost immediately.
Cryogenic applications of commercial electronic components
NASA Astrophysics Data System (ADS)
Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.
2012-10-01
We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.
Cyclic Cryogenic Thermal-Mechanical Testing of an X-33/RLV Liquid Oxygen Tank Concept
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin
1999-01-01
An important step in developing a cost-effective, reusable, launch vehicle is the development of durable, lightweight, insulated, cryogenic propellant tanks. Current cryogenic tanks are expendable so most of the existing technology is not directly applicable to future launch vehicles. As part of the X-33/Reusable Launch Vehicle (RLV) Program, an experimental apparatus developed at the NASA Langley Research Center for evaluating the effects of combined, cyclic, thermal and mechanical loading on cryogenic tank concepts was used to evaluate cryogenic propellant tank concepts for Lockheed-Martin Michoud Space Systems. An aluminum-lithium (Al 2195) liquid oxygen tank concept, insulated with SS-1171 and PDL-1034 cryogenic insulation, is tested under simulated mission conditions, and the results of those tests are reported. The tests consists of twenty-five simulated Launch/Abort missions and twenty-five simulated flight missions with temperatures ranging from -320 F to 350 F and a maximum mechanical load of 71,300 lb. in tension.
Experimental study on cryogenic moisture uptake in polyurethane foam insulation material
NASA Astrophysics Data System (ADS)
Zhang, X. B.; Yao, L.; Qiu, L. M.; Gan, Z. H.; Yang, R. P.; Ma, X. J.; Liu, Z. H.
2012-12-01
Rigid foam is widely used to insulate cryogenic tanks, in particular for space launch vehicles due to its lightweight, mechanical strength and thermal-insulating performance. Up to now, little information is available on the intrusion of moisture into the material under cryogenic conditions, which will bring substantial additional weight for the space vehicles at lift-off. A cryogenic moisture uptake apparatus has been designed and fabricated to measure the amount of water uptake into the polyurethane foam. One side of the specimen is exposed to an environment with high humidity and ambient temperature, while the other with cryogenic temperature at approximately 78 K. A total of 16 specimens were tested for up to 24 h to explore the effects of the surface thermal protection layer, the foam thickness, exposed time, the butt joints, and the material density on water uptake of the foam. The results are constructive for the applications of the foam to the cryogenic insulation system in space launch vehicles.
Cryogenic Applications of Commercial Electronic Components
NASA Technical Reports Server (NTRS)
Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.
2012-01-01
We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.
NASA Astrophysics Data System (ADS)
Nadig, D. S.; Bhat, M. R.; Pavan, V. K.; Mahishi, Chandan
2017-09-01
Cryogenic treatment on metals is a well known technology where the materials are exposed to cryogenic temperature for prolonged time duration. The process involves three stages viz. slow cooling, holding at cryogenic temperature and warming to room temperature. During this process, hard and micro sized carbide particles are released within the steel material. In addition, soft and unconverted austenite of steel changes to strong martensite structure. These combined effects increase the strength and hardness of the cryotreated steel. In this experimental study, the effects of cryogenic treatment, austenitising and tempering on the mechanical properties of stainless steel (07X16H6) have been carried. After determining the strength properties of the original material, the specimens were cryotreated at 98K for 24 hours in a specially developed cryotreatment system. The effects of austenitising prior to cryogenic treatment and tempering post cryotreatment on the mechanical properties of steel samples have been experimentally determined and analysed.
Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments
NASA Astrophysics Data System (ADS)
Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming
2013-04-01
Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.
Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage
NASA Technical Reports Server (NTRS)
Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert
2000-01-01
The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics
Strickland, N M; Hoffmann, C; Wimbush, S C
2014-11-01
A cryogenic electrical transport measurement system is described that is particularly designed to meet the requirements for routine and effective characterization of commercial second generation high-temperature superconducting (HTS) wires in the form of coated conductors based on YBa2Cu3O7. Specific design parameters include a base temperature of 20 K, an applied magnetic field capability of 8 T (provided by a HTS split-coil magnet), and a measurement current capacity approaching 1 kA. The system accommodates samples up to 12 mm in width (the widest conductor size presently commercially available) and 40 mm long, although this is not a limiting size. The sample is able to be rotated freely with respect to the magnetic field direction about an axis parallel to the current flow, producing field angle variations in the standard maximum Lorentz force configuration. The system is completely free of liquid cryogens for both sample cooling and magnet cool-down and operation. Software enables the system to conduct a full characterization of the temperature, magnetic field, and field angle dependence of the critical current of a sample without any user interaction. The system has successfully been used to measure a wide range of experimental and commercially-available superconducting wire samples sourced from different manufacturers across the full range of operating conditions. The system encapsulates significant advances in HTS magnet design and efficient cryogen-free cooling technologies together with the capability for routine and automated high-current electrical transport measurements at cryogenic temperatures. It will be of interest to both research scientists investigating superconductor behavior and commercial wire manufacturers seeking to accurately characterize the performance of their product under all desired operating conditions.
Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention
NASA Technical Reports Server (NTRS)
Christie, R. J.; Hartwig, J. W.
2014-01-01
Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.
Installation and pre-commissioning of the cryogenic system of JT-60SA tokamak
NASA Astrophysics Data System (ADS)
Hoa, C.; Michel, F.; Roussel, P.; Fejoz, P.; Girard, S.; Goncalves, R.; Lamaison, V.; Natsume, K.; Kizu, K.; Koide, Y.; Yoshida, K.; Cardella, A.; Portone, A.; Verrecchia, M.; Wanner, M.; Beauvisage, J.; Bertholat, F.; Gaillard, G.; Heloin, V.; Langevin, B.; Legrand, J.; Maire, S.; Perrier, J. M.; Pudys, V.
2017-02-01
The cryogenic system for the superconducting tokamak JT-60SA is currently being commissioned in Naka, Japan and shall be ready for operation in summer 2016. This contribution is part of the Broader Approach agreement between Japan and Europe. With an equivalent refrigeration capacity of about 9.5 kW at 4.5 K the cryogenic system will supply cryo-pump panels at 3.7 K, superconducting magnets and their structures at 4.4 K, high temperature superconducting current leads at 50 K and thermal shields between 80 K and 100 K. The system has been specifically designed to handle large pulse loads at 4.4 K during plasma operation. The mechanical and electrical assembly of the cryogenic system has been achieved within six months by October 2015. The main contractor Air Liquide Advanced Technology (AL-aT) have supplied eight parallel working screw compressors with a common oil removal and dryer system, a Refrigeration Cold Box and an Auxiliary Cold box with cold rotating machines. F4E has provided six GHe storage vessels and QST has provided the complete infrastructure and the facilities for the utilities. The paper gives an overview of the main design features, the infrastructure and the status of installation and pre-commissioning.
Thin Aerogel as a Spacer in Multilayer Insulation
NASA Technical Reports Server (NTRS)
Moroz, Nancy
2015-01-01
Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on real-world tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).
Thin Aerogel as a Spacer in Multilayer Insulation
NASA Technical Reports Server (NTRS)
Moroz, Nancy
2015-01-01
Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).
NASA Technical Reports Server (NTRS)
Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.
2005-01-01
A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to investigate the effect of cryogenic cycling on permeability for various composite material systems. Textile composites have lower permeability than laminated composites even with increasing number of cryogenic cycle. Nano-particles dispersed in laminated composites do not show improvement on permeability. The optical inspection is performed to investigate the microcrack propagation and void content in laminated composites and compared the microscopic results before and after cryogenic cycling.
Thermal (Silicon Diode) Data Acquisition Systems
NASA Technical Reports Server (NTRS)
Wright, Ernest; Kegley, Jeff
2008-01-01
Marshall Space Flight Center s X-ray Cryogenic Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.
Modeling a Transient Pressurization with Active Cooling Sizing Tool
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.
2011-01-01
As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank pressure recovery with ZBO of a liquid oxygen propellant tank.
Analysis of selected volatile organic compounds at background level in South Africa.
NASA Astrophysics Data System (ADS)
Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang
2017-04-01
Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator
NASA Astrophysics Data System (ADS)
Dotsenko, V. V.; Sahu, A.; Chonigman, B.; Tang, J.; Lehmann, A. E.; Gupta, V.; Talalevskii, A.; Ruotolo, S.; Sarwana, S.; Webber, R. J.; Gupta, D.
2017-02-01
Research and development of cryogenic application-specific integrated circuits (ASICs), such as high-frequency (tens of GHz) semiconductor and superconductor mixed-signal circuits and large-scale (>10,000 Josephson Junctions) superconductor digital circuits, have long been hindered by the absence of specialized cryogenic test apparatus. During their iterative development phase, most ASICs require many additional input-output lines for applying independent bias controls, injecting test signals, and monitoring outputs of different sub-circuits. We are developing a full suite of modular test apparatus based on cryocoolers that do not consume liquid helium, and support extensive electrical interfaces to standard and custom test equipment. Our design separates the cryogenics from electrical connections, allowing even inexperienced users to conduct testing by simply mounting their ASIC on a removable electrical insert. Thermal connections between the cold stages and the inserts are made with robust thermal links. ICE-T accommodates two independent electrical inserts at the same time. We have designed various inserts, such as universal ones with all 40 or 80 coaxial cables and those with customized wiring and temperature-controlled stages. ICE-T features fast thermal cycling for rapid testing, enables detailed testing over long periods (days to months, if necessary), and even supports automated testing of digital ICs with modular additions.
Low-noise cryogenic transmission line
NASA Technical Reports Server (NTRS)
Norris, D.
1987-01-01
New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.
Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria
2010-11-22
We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.
NASA Technical Reports Server (NTRS)
Propp, C. E.; Mcgee, J. M.
1971-01-01
The Apollo 13 anomaly provided considerable impetus for a variety of types of cryogenic and ignition tests. The logic of the various test program designs, the test techniques, and their final impact upon the investigation findings are described. In addition, several test programs initiated to determine the thermal performance and general performance characteristics of the redesigned Apollo 14 cryogenic storage system are presented.
A Piezoelectric Cryogenic Heat Switch
NASA Technical Reports Server (NTRS)
Jahromi, Amir E.; Sullivan, Dan F.
2014-01-01
We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.
Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article
NASA Technical Reports Server (NTRS)
Hedayat, A
2013-01-01
To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.
Mission demonstration concept for the long-duration storage and transfer of cryogenic propellants
NASA Astrophysics Data System (ADS)
McLean, C.; Deininger, W.; Ingram, K.; Schweickart, R.; Unruh, B.
This paper describes an experimental platform that will demonstrate the major technologies required for the handling and storage of cryogenic propellants in a low-to-zero-g environment. In order to develop a cost-effective, high value-added demonstration mission, a review of the complete mission concept of operations (CONOPS) was performed. The overall cost of such a mission is driven not only by the spacecraft platform and on-orbit experiments themselves, but also by the complexities of handling cryogenic propellants during ground-processing operations. On-orbit storage methodologies were looked at for both passive and active systems. Passive systems rely purely on isolation of the stored propellant from environmental thermal loads, while active cooling employs cryocooler technologies. The benefit trade between active and passive systems is mission-dependent due to the mass, power, and system-level penalties associated with active cooling systems. The experimental platform described in this paper is capable of demonstrating multiple advanced micro-g cryogenic propellant management technologies. In addition to the requirements of demonstrating these technologies, the methodology of propellant transfer must be evaluated. The handling of multiphase liquids in micro-g is discussed using flight-heritage micro-g propellant management device technologies as well as accelerated tank stratification for access to vapor-free or liquid-free propellants. The mission concept presented shows the extensibility of the experimental platform to demonstrate advanced cryogenic components and technologies, propellant transfer methodologies, as well as the validation of thermal and fluidic models, from subscale tankage to an operational architecture.
NASA Technical Reports Server (NTRS)
Elim, Frank M.
1989-01-01
This study provides a summary of future cryogenic space payload users, their currently projected needs and reported planning for space operations over the next decade. At present, few users with payloads consisting of reactive cryogens, or any cryogen in significant quantities, are contemplating the use of the Space Shuttle. Some members of the cryogenic payload community indicated an interest in flying their future planned payloads on the orbiter, versus an expendable launch vehicle (ELV), but are awaiting the outcome of a Rockwell study to define what orbiter mods and payloads requirements are needed to safely fly chemically reactive cryogen payloads, and the resultant cost, schedule, and operational impacts. Should NASA management decide in early 1990 to so modify orbiter(s), based on the Rockwell study and/or changes in national defense payloads launch requirements, then at least some cryo payload customers will reportedly plan on using the Shuttle orbiter vehicle in preference to an ELV. This study concludes that the most potential for possible future cryogenic space payloads for the Space Transportation System Orbiter fleet lies within the scientific research and defense communities.
Assurance Technology Challenges of Advanced Space Systems
NASA Technical Reports Server (NTRS)
Chern, E. James
2004-01-01
The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.
Passive cryogenic cooling of electrooptics with a heat pipe/radiator.
Nelson, B E; Goldstein, G A
1974-09-01
The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.
A Rapid Turnaround Cryogenic Detector Characterization System
NASA Technical Reports Server (NTRS)
Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.
2004-01-01
Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.
NASA Technical Reports Server (NTRS)
Kegley, Jeff; Burdine, Robert V. (Technical Monitor)
2002-01-01
A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.
NASA Technical Reports Server (NTRS)
Kegley, Jeff; Stahl, H. Philip (Technical Monitor)
2002-01-01
A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.
NASA Astrophysics Data System (ADS)
Kangas, Miikka Matias
The big bang, early galaxy formation, the interstellar medium, and high z galaxy cluster evolution are all science objectives that are studied in the far infrared (FIR). The cosmological parameters that describe the universe are encoded in anisotropies in the Cosmic Microwave Background (CMB), and can be extracted from precision subdegree angular resolution FIR maps. Cryogenic bolometers are well suited for these science objectives, and are evolving rapidly today. A cryogenic bolometric system is made up of a few building blocks, which can be modularized or integrated depending on the maturity of the scientific field they are used for. Integration of systems increases with the maturity of the technology. The basic building blocks are the bolometer, the cryogenics, the dewar, the optics, the filters, and electronics. The electronics can be further subdivided into room temperature back-end and cryogenic front-end electronics. The electronics are often partly integrated into the dewar. The dewar is part of the support structure, and only the subkelvin portion the dewar is referred to as cryogenics here. Each of these can be a sophisticated engineering feat on their own, and this dissertation revolves around the development of several of these elements. The microfabrication sequence for a free standing micromesh detector was developed. Polarization preserving photometer optics and filters were constructed and tested. A test dewar mechanical and optical structure was created to test single pixel photometers prior to mounting in the flight dewar. A modular flight dewar capable of holding an array of photometers and adaptable to a number of different cryogenics schemes and detector arrays was engineered and constructed. A zero gravity dilution refrigerator coil was constructed and tested. A corrugated platelet array concept was designed and tested. Metal mesh filter design and fabrication techniques were developed. Kevlar isolator structures were improved to work in subkelvin dewars, and detector modules that mounted the bolometer chips to the photometer tubes were created. These subsystems underwent testing to compare the predicted behavior and actual performance.
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Huang, Di; Wu, Shiwei
While low temperature scanning tunneling microscope (STM) has become an indispensable research tool in surface science, its versatility is yet limited by the shortage or high cost of liquid helium. The makeshifts include the use of alternative cryogen (such as liquid nitrogen) at higher temperature or the development of helium liquefier system usually at departmental or campus wide. The ultimate solution would be the direct integration of a cryogen-free cryocooler based on GM or pulse tube closed cycle in the STM itself. However, the nasty mechanical vibration at low frequency intrinsic to cryocoolers has set the biggest obstacle because of the known challenges in vibration isolation required to high performance of STM. In this talk, we will present the design and performance of our home-built cryogen-free variable temperature STM at Fudan University. This system can obtain atomically sharp STM images and high resolution dI/dV spectra comparable to state-of-the-art low temperature STMs, but with no limitation on running hours. Moreover, we demonstrated the inelastic tunneling spectroscopy (STM-IETS) on a single CO molecule with a cryogen-free STM for the first time.
Development of the Los Alamos National Laboratory Cryogenic Pressure Loader
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebey, Peter S.; Dole, James M.; Hoffer, James K.
2003-05-15
Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.
1994-01-01
Subcritical cryogens such as liquid hydrogen (LH2) and liquid oxygen (LO2) are required for space based transportation propellant, reactant, and life support systems. Future long-duration space missions will require on-orbit systems capable of long-term cryogen storage and efficient fluid transfer capabilities. COLD-SAT, which stands for cryogenic orbiting liquid depot-storage acquisition and transfer, is a free-flying liquid hydrogen management flight experiment. Experiments to determine optimum methods of fluid storage and transfer will be performed on the COLD-SAT mission. The success of the mission is directly related to the type and accuracy of measurements made. The instrumentation and measurement techniques used are therefore critical to the success of the mission. This paper presents the results of the COLD-SAT experiment subsystem instrumentation and wire harness design effort. Candidate transducers capable of fulfilling the COLD-SAT experiment measurement requirements are identified. Signal conditioning techniques, data acquisition requirements, and measurement uncertainty analysis are presented. Electrical harnessing materials and wiring techniques for the instrumentation designed to minimize heat conduction to the cryogenic tanks and provide optimum measurement accuracy are listed.
Analysis and Design of the NASA Langley Cryogenic Pressure Box
NASA Technical Reports Server (NTRS)
Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.
1999-01-01
A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.
NASA Astrophysics Data System (ADS)
Kim, K. L.; Song, J. B.; Choi, J. H.; Kim, S. H.; Y Koh, D.; Seong, K. C.; Chang, H. M.; Lee, H. G.
2010-12-01
A cooling system that uses solid nitrogen (SN2) as an effective heat capacity enhancer was recently introduced to enhance the thermal stability of the HTS SMES. Since SN2 has a large enthalpy with minimal weight, it enables a portable system by increasing the recooling to recooling time period (RRTP). However, contact between the SN2 and HTS SMES magnet can be broken by repeated thermal disturbances (thermal 'dry-out' phenomena). Therefore, it is essential to improve thermal contact to allow full use of the heat capacity of SN2. This study evaluated the effect of using a mixture containing SN2 and a small amount of a liquid cryogen as a cooling system in the HTS SMES system. The performance of the cooling system was evaluated using the mixed cryogen and compared with that of SN2 alone. In addition, the role of liquid neon (Ne) as a heat exchanger between SN2 and the HTS SMES magnet is discussed.
2016-08-03
Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
High-pressure cryogenic seals for pressure vessels
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1977-01-01
This investigation of the problems associated with reliably containing gaseous helium pressurized to 1530 bars (22 500 psi) between 4.2 K and 150 K led to the following conclusions: (1) common seal designs used in existing elevated-temperature pressure vessels are unsuitable for high-pressure cryogenic operation, (2) extrusion seal-ring materials such as Teflon, tin, and lead are not good seal materials for cryogenic high-pressure operation; and (3) several high-pressure cryogenic seal systems suitable for large-pressure vessel applications were developed; two seals required prepressurization, and one seal functioned repeatedly without any prepressurization. These designs used indium seal rings, brass or 304 stainless-steel anvil rings, and two O-rings of silicone rubber or Kel-F.
Two-year solid hydrogen cooler for the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument
NASA Technical Reports Server (NTRS)
Naes, L. G.; Nast, T. C.; Roche, A. E.; Forney, P. B.
1983-01-01
The Cryogenic Limb Array Etalon Spectrometer (CLAES) will be one of thirteen instruments on board the Upper Atmospheric Research Satellite (UARS) in late 1988. CLAES is to be employed for the measurement of stratospheric trace species concentrations affecting the ozone layer balance. It is an earth-limb viewing instrument which requires cryogenic cooling in order to obtain the necessary performance sensitivity. The present investigation is concerned with the solid hydrogen cryogen subsystem which provides the instrument temperature needed. Attention is given to the studies which led to the selection of solid hydrogen as cooling agent, the baseline cooler system, aspects of baseline performance sensitivity, and nominal cooler operations.
Vibration and Thermal Cycling Effects on Bulk-fill Insulation Materials for Cryogenic Tanks
NASA Astrophysics Data System (ADS)
Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.
2006-04-01
Large-scale (1,000,000 liters or more) cryogenic storage tanks are typically perlite-insulated double-walled vessels. Associated problems with perlite, such as mechanical compaction and settling, could be greatly reduced by using newer bulk-fill materials such as glass bubbles or aerogel beads. Using the newer materials should translate to lower life cycle costs and improved system reliability. NASA Kennedy Space Center is leveraging its experience in the areas of materials development, insulation testing, and cryogenic systems design to develop an insulation retrofit option that will meet both industry and NASA requirements. A custom 10-liter dewar test apparatus, developed by the KSC Cryogenics Test Laboratory, was used to determine the vibration and thermal cycling effects on different bulk-fill insulation materials for cryogenic tanks. The testing included liquid-nitrogen boiloff testing and thermal cycling (with vibration) of a number of test dewars. Test results show that glass bubbles have better thermal performance and less mechanical compaction compared to perlite powder. The higher cost of the bulk material should be offset by reduced commodity loss from boiloff and improvements in material handling, evacuation, and vacuum retention. The long-term problem with settling and compaction of perlite should also be eliminated. Aerogel beads are superior for the no-vacuum condition and can now be considered in some applications. Further studies on large-scale systems are presently being pursued.
Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.; Ravindran, S. S.
2017-01-01
Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.
Fiber-optic temperature profiling for thermal protection system heat shields
NASA Astrophysics Data System (ADS)
Black, Richard J.; Costa, Joannes M.; Zarnescu, Livia; Hackney, Drew A.; Moslehi, Behzad; Peters, Kara J.
2016-11-01
To achieve better designs for spacecraft heat shields for missions requiring atmospheric aero-capture or entry/reentry, reliable thermal protection system (TPS) sensors are needed. Such sensors will provide both risk reduction and heat-shield mass minimization, which will facilitate more missions and enable increased payloads and returns. This paper discusses TPS thermal measurements provided by a temperature monitoring system involving lightweight, electromagnetic interference-immune, high-temperature resistant fiber Bragg grating (FBG) sensors with a thermal mass near that of TPS materials together with fast FBG sensor interrogation. Such fiber-optic sensing technology is highly sensitive and accurate, as well as suitable for high-volume production. Multiple sensing FBGs can be fabricated as arrays on a single fiber for simplified design and reduced cost. Experimental results are provided to demonstrate the temperature monitoring system using multisensor FBG arrays embedded in a small-size super-light ablator (SLA) coupon which was thermally loaded to temperatures in the vicinity of the SLA charring temperature. In addition, a high-temperature FBG array was fabricated and tested for 1000°C operation, and the temperature dependence considered over the full range (cryogenic to high temperature) for which silica fiber FBGs have been subjected.
Wireless Integrated Microelectronic Vacuum Sensor System
NASA Technical Reports Server (NTRS)
Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun
2013-01-01
NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa-Loza, Francisco; Ross, Timothy O.; Switzer, Vernon A.
An insert for a cryogenic capable pressure vessel for storage of hydrogen or other cryogenic gases at high pressure. The insert provides the interface between a tank and internal and external components of the tank system. The insert can be used with tanks with any or all combinations of cryogenic, high pressure, and highly diffusive fluids. The insert can be threaded into the neck of a tank with an inner liner. The threads withstand the majority of the stress when the fluid inside the tank that is under pressure.
Cryogenic Target-Implosion Experiments on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D.R.; Meyerhofer, D.D.; Sangster, T.C.
The University of Rochester’s Laboratory for Laser Energetics has been imploding thick cryogenic targets for six years. Improvements in the Cryogenic Target Handling System and the ability to accurately design laser pulse shapes that properly time shocks and minimize electron preheat, produced high fuel areal densities in deuterium cryogenic targets (202+/-7 mg/cm^2). The areal density was inferred from the energy loss of secondary protons in the fuel (D2) shell. Targets were driven on a low final adiabat (alpha = 2) employing techniques to radially grade the adiabat (the highest adiabat at the ablation surface). The ice layer meets the target-designmore » toughness specification for DT ice of 1-um rms (all modes), while D2 ice layers average 3.0-um-rms roughness. The implosion experiments and the improvements in the quality and understanding of cryogenic targets are presented.« less
Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.
2007-01-01
In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.
NASA Technical Reports Server (NTRS)
Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.
1990-01-01
This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.
Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas
NASA Astrophysics Data System (ADS)
Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.
2014-01-01
In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.
Cryogenic Selective Surface - How Cold Can We Go?
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Nurge, Mark
2015-01-01
Selective surfaces have wavelength dependent emissivitya bsorption. These surfaces can be designed to reflect solar radiation, while maximizing infrared emittance, yielding a cooling effect even in sunlight. On earth cooling to -50 C below ambient has been achieved, but in space, outside of the atmosphere, theory using ideal materials has predicted a maximum cooling to 40 K! If this result holds up for real world materials and conditions, then superconducting systems and cryogenic storage can be achieved in space without active cooling. Such a result would enable long term cryogenic storage in deep space and the use of large scale superconducting systems for such applications as galactic cosmic radiation (GCR) shielding and large scale energy storage.
NASA Astrophysics Data System (ADS)
Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.
2016-01-01
We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.
Fabrication and assembly of a superconducting undulator for the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasse, Quentin; Fuerst, J. D.; Ivanyushenkov, Y.
2014-01-29
A prototype superconducting undulator magnet (SCU0) has been built at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) and has successfully completed both cryogenic performance and magnetic measurement test programs. The SCU0 closed loop, zero-boil-off cryogenic system incorporates high temperature superconducting (HTS) current leads, cryocoolers, a LHe reservoir supplying dual magnetic cores, and an integrated cooled beam chamber. This system presented numerous challenges in the design, fabrication, and assembly of the device. Aspects of this R and D relating to both the cryogenic and overall assembly of the device are presented here. The SCU0 magnet has been installedmore » in the APS storage ring.« less
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2013-01-01
The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.
1989-01-01
The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.
Physical sciences: Thermodynamics, cryogenics, and vacuum technology: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Technological developments which have potential application outside the aerospace community are reported. A variety of thermodynamic devices including heat pipes and cooling systems are described along with methods of handling cryogenic fluids. Vacuum devices are also described. Pata et information is included.
NASA Technical Reports Server (NTRS)
Blake, Peter; Miller, Franklin; Zukowski, Tim; Canavan, Edgar R.; Crane, Allen; Madison, Tim; Miller, David
2007-01-01
This report describes the facility, experimental methods, characterizations, and uncertainty analysis of the Cryo Distortion Measurement Facility (CDMF) at the Goddard Space Flight Center (GSFC). This facility is designed to measure thermal distortions of structural elements as the temperature is lowered from 320K to below 40 K over multiple cycles, and is capable of unattended running and data logging. The first measurement is to be the change in length and any bending of composite tubes with Invar end-fittings. The CDMF includes a chamber that is efficiently cooled with two cryo-coolers (one single-stage and one two-stage) rather than with liquid cryogens. Five optical ports incorporate sapphire radiation shields - transparent to the interferometer - on each of two shrouds and a fused silica vacuum-port window. The change in length of composite tubes is monitored continuously with displacement-measuring interferometers; and the rotations, bending, and twisting are measured intermittently with theodolites and a surface-figure interferometer. Nickel-coated invar mirrors and attachment mechanisms were developed and qualified by test in the CDMF. The uncertainty in measurement of length change of 0.4 m tubes is currently estimated at 0.9 micrometers.
A large-stroke cryogenic imaging FTS system for SPICA-Safari
NASA Astrophysics Data System (ADS)
Jellema, Willem; van Loon, Dennis; Naylor, David; Roelfsema, Peter
2014-08-01
The scientific goals of the far-infrared astronomy mission SPICA challenge the design of a large-stroke imaging FTS for Safari, inviting for the development of a new generation of cryogenic actuators with very low dissipation. In this paper we present the Fourier Transform Spectrometer (FTS) system concept, as foreseen for SPICA-Safari, and we discuss the technical developments required to satisfy the instrument performance.
Across-Gimbal and Miniaturized Cryogenic Loop Heat Pipes
NASA Astrophysics Data System (ADS)
Bugby, D.; Marland, B.; Stouffer, C.; Kroliczek, E.
2003-01-01
This paper describes the development status of three advanced cryogenic loop heat pipes (CLHP) for solving important problems in cryogenic integration. The three devices described herein are: (1) an across-gimbal CLHP; (2) a short transport length miniaturized CLHP; and (3) a long transport length miniaturized CLHP. The across-gimbal CLHP, which is baselined for operation from 80-100 K with nitrogen, provides a low weight, low torque, high conductance solution for gimbaled cryogenic systems wishing to mount their cryocoolers off-gimbal. The short transport length miniaturized CLHP, which is baselined for operation near 35 K with neon, combines localized thermal transport, flexibility, and thermal switching into one device that can be directly mounted to a cryocooler cold head and a cryogenic component just a short distance (10-20 cm) away. The long transport length miniaturized CLHP, which is also baselined for operation near 35 K with neon, adds to the capabilities of the short transport length miniaturized CLHP by increasing the transport length to over 250 cm to meet cryogenic heat transport device requirements of future NASA and DoD spacecraft.
NASA Technical Reports Server (NTRS)
1988-01-01
The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.
NASA Technical Reports Server (NTRS)
Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.
2014-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.
Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.
2008-01-01
Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.
Active Control of Cryogenic Propellants in Space
NASA Technical Reports Server (NTRS)
Notardonato, William
2011-01-01
A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.
Design and experimental investigation of a cryogenic system for environmental test applications
NASA Astrophysics Data System (ADS)
Yan, Lutao; Li, Hong; Liu, Yue; Han, Che; Lu, Tian; Su, Yulei
2015-04-01
This paper is concerned with the design, development and performance testing of a cryogenic system for use in high cooling power instruments for ground-based environmental testing. The system provides a powerful tool for a combined environmental test that consists of high pressure and cryogenic temperatures. Typical cryogenic conditions are liquid hydrogen (LH2) and liquid oxygen (LO2), which are used in many fields. The cooling energy of liquid nitrogen (LN2) and liquid helium (LHe) is transferred to the specimen by a closed loop of helium cycle. In order to minimize the consumption of the LHe, the optimal design of heat recovery exchangers has been used in the system. The behavior of the system is discussed based on experimental data of temperature and pressure. The results show that the temperature range from room temperature to LN2 temperature can be achieved by using LN2, the pressurization process is stable and the high test pressure is maintained. Lower temperatures, below 77 K, can also be obtained with LHe cooling, the typical cooling time is 40 min from 90 K to 22 K. Stable temperatures of 22 K at the inlet of the specimen have been observed, and the system in this work can deliver to the load a cooling power of several hundred watts at a pressure of 0.58 MPa.
High-temperature, high-pressure optical port for rocket engine applications
NASA Technical Reports Server (NTRS)
Delcher, Ray; Nemeth, ED; Powers, W. T.
1993-01-01
This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.
Cryogenic fluid flow instabilities in heat exchangers
NASA Technical Reports Server (NTRS)
Fleming, R. B.; Staub, F. W.
1969-01-01
Analytical and experimental investigation determines the nature of oscillations and instabilities that occur in the flow of two-phase cryogenic fluids at both subcritical and supercritical pressures in heat exchangers. Test results with varying system parameters suggest certain design approaches with regard to heat exchanger geometry.
Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization
Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.
2009-01-01
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957
Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
Lee, J. H.; Brooks, W. F.
1984-01-01
The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.
Specification of the 2nd cryogenic plant for RAON
NASA Astrophysics Data System (ADS)
Yoon, S.; Ki, T.; Lee, K. W.; Kim, Y.; Jo, H. C.; Kim, D. G.
2017-12-01
RAON is a rare isotope beam facility being built at Daejeon, South Korea. The RAON consists of three linear accelerators, SCL1 (1st SuperConducting LINAC), SCL2, and SCL3. Each LINAC has its own cryogenic plant. The cryogenic plant for SCL2 will provide the cooling for cryomodules, low temperature SC magnets, high temperature SC magnets, and a cryogenic distribution system. This paper describes the specification of the plant including cooling capacity, steady state and transient operation modes, and cooling strategies. In order to reduce CAPEX with the specification, two suppliers will consider no liquid nitrogen pre-cooling, one integrated cold box, and one back-up HP compressor. The detail design of the plant will be started at the end of this year.
Orion EM-1 Interim Cryogenic Propulsion Stage (ICPS) move from HIF to DOC
2017-04-12
The Orion EM-1 Interim Cryogenic Propulsion Stage is moved from the Horizontal Integration Facility (HIF) to the Delta Operations Center (DOC) at Cape Canaveral Air Force Station to continue processing for it's future mission on the Space Launch System rocket.
Design features and operational characteristics of the Langley pilot transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1974-01-01
A fan-driven transonic cryogenic tunnel was designed, and its purging, cooldown, and warmup times were determined satisfactory. Cooling with liquid nitrogen is at the power levels required for transonic testing. Good temperature distributions are obtained by using a simple nitrogen injection system.
Automatic control of a liquid nitrogen cooled, closed-circuit, cryogenic pressure tunnel
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Goglia, G. L.
1980-01-01
The control system design, performance analysis, microprocesser based controller software development, and specifications for the Transonic Cryogenic Tunnel (TCT) are discussed. The control laws for the single-input single-output controllers were tested on the TCT simulator, and successfully demonstrated on the TCT.
Energy Efficient Storage and Transfer of Cryogens
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2013-01-01
Cryogenics is globally linked to energy generation, storage, and usage. Thermal insulation systems research and development is an enabling part of NASA's technology goals for Space Launch and Exploration. New thermal testing methodologies and materials are being transferred to industry for a wide range of commercial applications.
Use of thin plastic films at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Lark, R. F.; Hoggatt, J. T.; Wiedekamp, K. E.; Shdo, J. G.
1972-01-01
Commercially available plastic film materials that remain flexible at cryogenic temperatures and resist failures caused by folds and wrinkles created during expulsion were investigated for use in expulsion bladders for liquefied gases. Compatible adhesive systems, fabrication techniques, and results of impact and dynamic loading tests are summarized.
Steering and positioning targets for HWIL IR testing at cryogenic conditions
NASA Astrophysics Data System (ADS)
Perkes, D. W.; Jensen, G. L.; Higham, D. L.; Lowry, H. S.; Simpson, W. R.
2006-05-01
In order to increase the fidelity of hardware-in-the-loop ground-truth testing, it is desirable to create a dynamic scene of multiple, independently controlled IR point sources. ATK-Mission Research has developed and supplied the steering mirror systems for the 7V and 10V Space Simulation Test Chambers at the Arnold Engineering Development Center (AEDC), Air Force Materiel Command (AFMC). A portion of the 10V system incorporates multiple target sources beam-combined at the focal point of a 20K cryogenic collimator. Each IR source consists of a precision blackbody with cryogenic aperture and filter wheels mounted on a cryogenic two-axis translation stage. This point source target scene is steered by a high-speed steering mirror to produce further complex motion. The scene changes dynamically in order to simulate an actual operational scene as viewed by the System Under Test (SUT) as it executes various dynamic look-direction changes during its flight to a target. Synchronization and real-time hardware-in-the-loop control is accomplished using reflective memory for each subsystem control and feedback loop. This paper focuses on the steering mirror system and the required tradeoffs of optical performance, precision, repeatability and high-speed motion as well as the complications of encoder feedback calibration and operation at 20K.
Method for Detecting Perlite Compaction in Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Youngquist, Robert
2010-01-01
Perlite is the most typical insulating powder used to separate the inner and outer shells of cryogenic tanks. The inner tank holds the low-temperature commodity, while the outer shell is exposed to the ambient temperature. Perlite minimizes radiative energy transfer between the two tanks. Being a powder, perlite will settle over time, leading to the danger of transferring any loads from the inner shell to the outer shell. This can cause deformation of the outer shell, leading to damaged internal fittings. The method proposed is to place strain or displacement sensors on several locations of the outer shell. Loads induced on the shell by the expanding inner shell and perlite would be monitored, providing an indication of the location and degree of compaction.
A Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Overbeeke, Arend; Hodgson, Edward; Paul, Heather; Geier, Harold; Bradt, Howard
2007-01-01
Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in EVA systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded Hamilton Sundstrand production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper will describe the design and manufacture of the prototype system and present the results of preliminary testing to verify its performance characteristics. The potential significance and application of the system will also be discussed.
System having unmodulated flux locked loop for measuring magnetic fields
Ganther, Jr., Kenneth R.; Snapp, Lowell D [Blue Springs, MO
2006-08-15
A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.
Internal insulation system development
NASA Technical Reports Server (NTRS)
Gille, J. P.
1973-01-01
The development of an internal insulation system for cryogenic liquids is described. The insulation system is based on a gas layer concept in which capillary or surface tension effects are used to maintain a stable gas layer within a cellular core structure between the tank wall and the contained cryogen. In this work, a 1.8 meter diameter tank was insulated and tested with liquid hydrogen. Ability to withstand cycling of the aluminum tank wall to 450 K was a design and test condition.
Design manual: Oxygen Thermal Test Article (OTTA)
NASA Technical Reports Server (NTRS)
Chronic, W. L.; Baese, C. L.; Conder, R. L.
1974-01-01
The characteristics of a cryogenic tank for storing liquid hydrogen, nitrogen, oxygen, methane, or helium for an extended period of time with minimum losses are discussed. A description of the tank and control module, assembly drawings and details of major subassemblies, specific requirements controlling development of the system, thermal concept considerations, thermal analysis methods, and a record of test results are provided. The oxygen thermal test article thermal protection system has proven that the insulation system for cryogenic vessels is effective.
Cryogenic testing of Planck sorption cooler test facility
NASA Technical Reports Server (NTRS)
Zhang, B.; Pearson, D.; Borders, J.; Franklin, B.; Prina, M.; Hardy, J.; Crumb, D.
2004-01-01
A test facility has been upgraded in preparation for testing of two hydrogen sorption cryocoolers operating at 18/20 K. these sorption coolers are currently under development at the Jet Propulsion Laboratory. This work summarizes the scope of the test facility upgrade, including design for cryogenic cooling power delivery, system thermal management, insulation schemes, and data acquisition techniques. Ground support equipment for the sorption coolers, structural features of the test chamber, and the vacuum system involved for system testing will also be described in detail.
Thermal modeling of a cryogenic turbopump for space shuttle applications.
NASA Technical Reports Server (NTRS)
Knowles, P. J.
1971-01-01
Thermal modeling of a cryogenic pump and a hot-gas turbine in a turbopump assembly proposed for the Space Shuttle is described in this paper. A model, developed by identifying the heat-transfer regimes and incorporating their dependencies into a turbopump system model, included heat transfer for two-phase cryogen, hot-gas (200 R) impingement on turbine blades, gas impingement on rotating disks and parallel plate fluid flow. The ?thermal analyzer' program employed to develop this model was the TRW Systems Improved Numerical Differencing Analyzer (SINDA). This program uses finite differencing with lumped parameter representation for each node. Also discussed are model development, simulations of turbopump startup/shutdown operations, and the effects of varying turbopump parameters on the thermal performance.
Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, X. X.; Zhang, D. X.; Qian, Y.
2014-01-29
In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in heliummore » recycle gas are less than 1 ppb.« less
Cryogenic radiometers and intensity-stabilized lasers for Eos radiometric calibrations
NASA Technical Reports Server (NTRS)
Foukal, P.; Hoyt, C.; Jauniskis, L.
1991-01-01
Liquid helium-cooled electrical substitution radiometers (ESRs) provide irradiance standards with demonstrated absolute accuracy at the 0.01 percent level, spectrally flat response between the UV and IR, and sensitivity down to 0.1 nW/sq cm. We describe an automated system developed for NASA - Goddard Space Flight Center, consisting of a cryogenic ESR illuminated by servocontrolled laser beams. This system is designed to provide calibration of single-element and array detectors over the spectral range between 257nm in the UV to 10.6 microns in the IR. We also describe a cryogenic ESR optimized for black body calibrations that has been installed at NIST, and another that is under construction for calibrations of the CERES scanners planned for Eos.
Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.
2017-01-01
In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
Design concepts for the ASTROMAG cryogenic system
NASA Technical Reports Server (NTRS)
Green, M. A.; Castles, S.
1987-01-01
Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.
LOX/LH2 propulsion system for launch vehicle upper stage, test results
NASA Technical Reports Server (NTRS)
Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.
1984-01-01
The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Hyeon; Choi, Sung-Woong; Park, Doo-Hwan; Park, Seong-Bo; Kim, Seul-Kee; Park, Kwang-Jun; Lee, Jae-Myung
2018-04-01
The present study investigates the applicability of melamine-urea-formaldehyde (MUF) resin plywood in cryogenic applications, including liquefied natural gas (LNG) carrier insulation systems. Phenolic-formaldehyde (PF) resin plywood has been extensively used as a structural material in industrial applications. However, many shortcomings of PF resin plywood have been reported, and replacement of PF resin plywood with a new material is necessary to resolve these problems. MUF resin plywood has the advantages of short fabrication time, low veneer cost, and economic feasibility compared to PF resin plywood. However, the mechanical and failure characteristics of MUF resin plywood have not yet been investigated at low temperature ranges. For this reason, adapting MUF resin plywood for cryogenic applications has been difficult, despite the many strong points of the material in engineering aspects. In this study, the effects of cryogenic temperature and thermal treatment on the mechanical characteristics of MUF resin plywood are investigated. The performance of MUF resin plywood is compared with that of PF resin plywood to verify the applicability of the material for use as a structural material in LNG insulation systems. The results demonstrate that MUF resin plywood has mechanical properties comparable with those of PF resin plywood, even at cryogenic conditions.
Zhang, Shuai; Huang, Di; Wu, Shiwei
2016-06-01
The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuai; Huang, Di; Wu, Shiwei, E-mail: swwu@fudan.edu.cn
The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM imagesmore » and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.« less
Testing the equipment for the cryogenic optical test of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Whitman, Tony L.; Dziak, K. J.; Huguet, Jesse; Knight, J. Scott; Reis, Carl; Wilson, Erin
2014-08-01
After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the JWST optics are tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. Tens of trucks full of custom test equipment are being delivered to the JSC, in addition to the large pieces built at the Center, and the renovation of the chamber itself. The facility is tested for the thermal stability control for optical measurements and contamination control during temperature transitions. The support for the OTIS is also tested for thermal stability control, load tested in the cryogenic environment, and tested for isolation of the background vibration for the optical measurements. The Center of Curvature Optical Assembly (COCOA) is tested for the phasing and wavefront error (WFE) measurement of an 18 segment mirror and for cryogenic operation. A photogrammetry system is tested for metrology performance and cryogenic operation. Test mirrors for auto-collimation measurements are tested for optical performance and cryogenic operation. An assembly of optical test sources are calibrated and tested in a cryogenic environment. A Pathfinder telescope is used as a surrogate telescope for cryogenic testing of the OTIS optical test configuration. A Beam Image Analyzer (BIA) is used as a surrogate ISIM with the Pathfinder in this test. After briefly describing the OTIS optical test configuration, the paper will overview the list and configuration of significant tests of the equipment leading up to the OTIS test.
Cryogen-free operation of the Soft X-ray Spectrometer instrument
NASA Astrophysics Data System (ADS)
Sneiderman, Gary A.; Shirron, Peter J.; Fujimoto, Ryuichi; Bialas, Thomas G.; Boyce, Kevin R.; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Hartz, Leslie; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Caroline A.; Masters, Candace; McCammon, Dan; Mitsuda, Kazuhisa; Noda, Hirofumi; Porter, Frederick S.; Szymkowiak, Andrew E.; Takei, Yoh; Tsujimoto, Masahiro; Yoshida, Seiji
2016-07-01
The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement redundancy in the operation of a sub-Kelvin refrigerator. The SXS cryogenic system consists of a superfluid helium tank and a combination of Stirling and Joule-Thompson (JT) cryocoolers that support the operation of a 3-stage adiabatic demagnetization refrigerator (ADR). When liquid helium is present, the x-ray microcalorimeter detectors are cooled to their 50 mK operating temperature by two ADR stages, which reject their heat directly to the liquid at 1.1 K. When the helium is depleted, all three ADR stages are used to accomplish detector cooling while rejecting heat to the JT cooler operating at 4.5 K. Compared to the simpler helium mode operation, the cryogen-free mode achieves the same instrument performance by controlling the active cooling devices within the cooling system differently. These include the three ADR stages and four active heat switches, provided by NASA, and five cryocoolers, provided by JAXA. Development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free cooling systems.
Accessing protein conformational ensembles using room-temperature X-ray crystallography
Fraser, James S.; van den Bedem, Henry; Samelson, Avi J.; Lang, P. Therese; Holton, James M.; Echols, Nathaniel; Alber, Tom
2011-01-01
Modern protein crystal structures are based nearly exclusively on X-ray data collected at cryogenic temperatures (generally 100 K). The cooling process is thought to introduce little bias in the functional interpretation of structural results, because cryogenic temperatures minimally perturb the overall protein backbone fold. In contrast, here we show that flash cooling biases previously hidden structural ensembles in protein crystals. By analyzing available data for 30 different proteins using new computational tools for electron-density sampling, model refinement, and molecular packing analysis, we found that crystal cryocooling remodels the conformational distributions of more than 35% of side chains and eliminates packing defects necessary for functional motions. In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps. These results expose a bias in structural databases toward smaller, overpacked, and unrealistically unique models. Monitoring room-temperature conformational ensembles by X-ray crystallography can reveal motions crucial for catalysis, ligand binding, and allosteric regulation. PMID:21918110
NASA Technical Reports Server (NTRS)
Engberg, Robert; Ooi, Teng K.
2004-01-01
New methods for structural health monitoring are being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. A variety of damage detection methods and different Sensors are employed in the different composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency, impedance measurements, and pulse echoing techniques of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage. These results are furthermore compared with previous work using externally mounted sensors. Results and optimized methods from this work can then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2" generation reusable launch vehicle using composites as a structural element.
Fiberoptic characteristics for extreme operating environments
NASA Technical Reports Server (NTRS)
Delcher, R. C.
1992-01-01
Fiberoptics could offer several major benefits for cryogenic liquid-fueled rocket engines, including lightning immunity, weight reduction, and the possibility of implementing a number of new measurements for engine condition monitoring. The technical feasibility of using fiberoptics in the severe environments posed by cryogenic liquid-fueled rocket engines was determined. The issues of importance and subsequent requirements for this use of fiberoptics were compiled. These included temperature ranges, moisture embrittlement succeptability, and the ability to withstand extreme shock and vibration levels. Different types of optical fibers were evaluated and several types of optical fibers' ability to withstand use in cryogenic liquid-fueled rocket engines was demonstrated through environmental testing of samples. This testing included: cold-bend testing, moisture embrittlement testing, temperature cycling, temperature extremes testing, vibration testing, and shock testing. Three of five fiber samples withstood the tests to a level proving feasibility, and two of these remained intact in all six of the tests. A fiberoptic bundle was also tested, and completed testing without breakage. Preliminary cabling and harnessing for fiber protection was also demonstrated. According to cable manufacturers, the successful -300 F cold bend, vibration, and shock tests are the first instance of any major fiberoptic cable testing below roughly -55 F. This program has demonstrated the basic technical feasibility of implementing optical fibers on cryogenic liquid-fueled rocket engines, and a development plan is included highlighting requirements and issues for such an implementation.
ERTS-C (Landsat 3) cryogenic heat pipe experiment definition
NASA Technical Reports Server (NTRS)
Brennan, P. J.; Kroliczek, E. J.
1975-01-01
A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.
Requirements for maintaining cryogenic propellants during planetary surface stays
NASA Technical Reports Server (NTRS)
Riccio, Joseph R.; Schoenberg, Richard J.
1991-01-01
Potential impacts on the planetary surface system infrastructure resulting from the use of liquid hydrogen and oxygen propellants for a stage and half lander are discussed. Particular attention is given to techniques which can be incorporated into the surface infrastructure and/or the vehicle to minimize the impact resulting from the use of these cryogens. Methods offered for reducing cryogenic propellant boiloff include modification of the lander to accommodate boiloff, incorporation of passive thermal control devices to the lander, addition of active propellant management, and use of alternative propellants.
Commissioning of the cryogenics of the LHC long straight sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perin, A.; Casas-Cubillos, J.; Claudet, S.
2010-01-01
The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.
NASA Technical Reports Server (NTRS)
1976-01-01
The National Cancer Institute worked with Goddard Space Flight Center to propose a solution to the blood-cell freezing problem. White blood cells and bone marrow are stored for future use by leukemia patients as a result of Goddard and Jet Propulsion Laboratory expertise in electronics and cryogenics. White blood cell and bone marrow bank established using freezing unit. Freezing unit monitors temperature of cells themselves. Thermocouple placed against polyethylene container relays temperature signals to an electronic system which controls small heaters located outside container. Heaters allow liquid nitrogen to circulate at constant temperature and maintain consistent freezing rate. Ability to freeze, store, and thaw white cells and bone marrow without damage is important in leukemia treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D.; Costin, K.; Hutton, D.
1991-03-01
The spool piece design for the standard arc half-cell of the Superconducting Super Collider collider ring is an electromechanical system which performs a variety of tasks. The components provide conditioning and control of the cryogenics and electrical bus routing and protection; they also accommodate the beam position monitor and corrector magnet families, vacuum separation, and connection points for control and instrumentation. The design uses unique locations for each component, mixing form and function in a limited amount of allocated length in the standard 90 m half-cell. This paper describes the purpose and positioning of the various components and the assemblymore » sequence required to achieve these space constraints. 5 refs., 6 figs., 3 tabs.« less
Electronics and Algorithms for HOM Based Beam Diagnostics
NASA Astrophysics Data System (ADS)
Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee
2006-11-01
The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.
NASA IN-STEP Cryo System Experiment flight test
NASA Astrophysics Data System (ADS)
Russo, S. C.; Sugimura, R. S.
The Cryo System Experiment (CSE), a NASA In-Space Technology Experiments Program (IN-STEP) flight experiment, was flown on Space Shuttle Discovery (STS 63) in February 1995. The experiment was developed by Hughes Aircraft Company to validate in zero- g space a 65 K cryogenic system for focal planes, optics, instruments or other equipment (gamma-ray spectrometers and infrared and submillimetre imaging instruments) that requires continuous cryogenic cooling. The CSE is funded by the NASA Office of Advanced Concepts and Technology's IN-STEP and managed by the Jet Propulsion Laboratory (JPL). The overall goal of the CSE was to validate and characterize the on-orbit performance of the two thermal management technologies that comprise a hybrid cryogenic system. These thermal management technologies consist of (1) a second-generation long-life, low-vibration, Stirling-cycle 65 K cryocooler that was used to cool a simulated thermal energy storage device (TRP) and (2) a diode oxygen heat pipe thermal switch that enables physical separation between a cryogenic refrigerator and a TRP. All CSE experiment objectives and 100% of the experiment success criteria were achieved. The level of confidence provided by this flight experiment is an important NASA and Department of Defense (DoD) milestone prior to multi-year mission commitment. Presented are generic lessons learned from the system integration of cryocoolers for a flight experiment and the recorded zero- g performance of the Stirling cryocooler and the diode oxygen heat pipe.
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Tomsik, Thomas M.
2011-01-01
As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full validation, this tool has already made significant steps towards giving a clearer understanding of the performance of a reverse turbo-Brayton cycle cryocooler integrated with broad area cooling technology for zero boil-off active thermal control.
Ames Research Center cryogenics program
NASA Technical Reports Server (NTRS)
Kittel, Peter
1987-01-01
Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.
Carbon Fiber Composites for Cryogenic Filament-Wound Vessels.
in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in NOL Ring composites, CTBN /ERLB 4617 exhibited the...bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures, with the CTBN /ERLB 4617 composites giving somewhat
Design of a blood-freezing system for leukemia research
NASA Technical Reports Server (NTRS)
Williams, T. E.; Cygnarowicz, T. A.
1978-01-01
Leukemia research involves the use of cryogenic freezing and storage equipment. In a program being carried out at the National Cancer Institute (NCI), bone marrow (white blood cells) was frozen using a standard cryogenic biological freezer. With this system, it is difficult to maintain the desired rate of freezing and repeatability from sample to sample. A freezing system was developed that satisfies the requirements for a repeatable, constant freezing rate. The system was delivered to NIC and is now operational. This report describes the design of the major subsystems, the analyses, the operating procedure, and final system test results.
NASA Technical Reports Server (NTRS)
Stephens, J. B. (Inventor)
1980-01-01
A cryostat for use in a low or a substantially gravity-free environment adapted to cool an experiment through the use of helium 2, or helium in its super fluid state is characterized by a number of interchangeable daughter dewars and helium supply or mother dewar. A low pressure venting system is provided for converting helium contained in the mother dewar to a superfluid state for use as a primary cryogen. Each daughter dewar is adapted to be removably mounted in mated relation on the mother dewar and is characterized by support for an experiment package, a source of helium to be employed as a secondary cryogen. A heat pipe is suspended from each daughter dewar and adapted to be extended into the mother dewar for facilitating cooling of the secondary cryogen. A transfer of heat from the package to the primary cryogen, via the secondary cryogen, is accommodated as a film flow of helium 2 progresses from the heat pipe to the experiment dewar.
Tensile Properties of Polymeric Matrix Composites Subjected to Cryogenic Environments
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Gates, Thomas S.
2004-01-01
Polymer matrix composites (PMC s) have seen limited use as structural materials in cryogenic environments. One reason for the limited use of PMC s in cryogenic structures is a design philosophy that typically requires a large, validated database of material properties in order to ensure a reliable and defect free structure. It is the intent of this paper to provide an initial set of mechanical properties developed from experimental data of an advanced PMC (IM7/PETI-5) exposed to cryogenic temperatures and mechanical loading. The application of this data is to assist in the materials down-select and design of cryogenic fuel tanks for future reusable space vehicles. The details of the material system, test program, and experimental methods will be outlined. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different laminates. These properties were also tested after aging at -186 C with and without loading applied. Microcracking was observed in one laminate.
Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced Gravity
NASA Astrophysics Data System (ADS)
Marchetta, J. G.; Hochstein, J. I.
2002-01-01
Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced strong evidence that a magnetic positioning system may be a feasible alternative technology for use in the management of cryogenic propellants onboard spacecraft. The results of these preliminary studies have indicated that further investigation of the physical processes and potential reliability of such a system is required. The utility of magnetic fields as an alternative method in cryogenic propellant management is dependent on its reliability and flexibility. Simulations and experiments have previously yielded evidence in support of the magnetic positive positioning (MPP) process to predictably reorient LOX for a variety of initial conditions. Presently, though, insufficient evidence has been established to support the use of magnetic fields with respect to the long-term storage of cryogenic propellants. Current modes of propellant storage have met with a moderate level of success and are well suited for short duration missions using monopropellants. However, the storage of cryogenic propellants warrants additional consideration for long-term missions. For example, propellant loss during storage is due to vaporization by incident solar radiation and the vaporized ullage must be vented to prevent excessive pressurization of the tank. Ideally, positioning the fluid in the center of the tank away from the tank wall will reduce vaporization by minimizing heat transfer through the tank wall to the liquid. A second issue involves the capability of sustaining a stable fluid configuration at tank center under varying g-levels or perturbations propellant storage. Results presented herein include comparisons illustrating the influence of gravity, fluid volume, and the magnetic field on a paramagnetic fluid, LOX. The magnetic Bond number is utilized as predictive correlating parameter for investigating these processes. A dimensionless relationship between the Bom and Bo was sought with the goal of developing a correlation that was independent of fluid volume and tank geometry. Evidence is presented to support the hypothesis that the magnetic Bond number is an effective dimensionless parameter for modeling and understanding such systems. Further, this study supports the conclusion that magnetic storage appears to be a viable emerging technology for cryogenic propellant management systems that merits further computational investigation and space-based experimentation to establish the technology base required for future spacecraft design.
2014-02-28
From left, Wayne Arrington, a Boeing Company technician, and Steve Presti, a mechanical technician at NASA's Marshall Space Flight Center in Huntsville, Ala., install Developmental Flight Instrumentation Data Acquisition Units in Marshall's Systems Integration and Test Facility. The units are part of NASA's Space Launch System (SLS) core stage avionics, which will guide the biggest, most powerful rocket in history to deep space missions. When completed, the core stage will be more than 200 feet tall and store cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle's RS-25 engines. The hardware, software and operating systems for the SLS are arranged in flight configuration in the facility for testing. The new Data Acquisition Units will monitor vehicle behavior in flight -- like acceleration, thermal environments, shock and vibration. That data will then be used to validate previous ground tests and analyses models that were used in the development of the SLS vehicle.
Durability Characterization of Advanced Polymeric Composites at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Gates, T. S.
2001-01-01
The next generation of reusable launch vehicles will require technology development in several key areas. Of these key areas, the development of polymeric composite cryogenic fuel tanks promises to present one of the most difficult technical challenges. It is envisioned that a polymer matrix composite (PMC) tank would be a large shell structure capable of containing cryogenic fuels and carrying a range of structural loads. The criteria that will be imposed on such a design include reduced weight, conformal geometry, and impermeability. It is this last criterion, impermeability, that will provide the focus of this paper. The essence of the impermeability criterion is that the tank remains leak free throughout its design lifetime. To address this criterion, one of the first steps is to conduct a complete durability assessment of the PMC materials. At Langley Research Center, a durability assessment of promising new polyimide-based PMCs is underway. This durability program has focused on designing a set of critical laboratory experiments that will determine fundamental material properties under combined thermal-mechanical loading at cryogenic temperatures. The test program provides measurements of lamina and laminate properties, including strength, stiffness, and fracture toughness. The performance of the PMC materials is monitored as a function of exposure conditions and aging time. Residual properties after exposure are measured at cryogenic temperatures and provide quantitative values of residual strength and stiffness. Primary degradation mechanisms and the associated damage modes are measured with both destructive and nondestructive techniques. In addition to mechanical properties, a range of physical properties, such as weight, glass transition, and crack density, are measured and correlated with the test conditions. This paper will report on the progress of this research program and present critical results and illustrative examples of current findings.
Verification of the predictive capabilities of the 4C code cryogenic circuit model
NASA Astrophysics Data System (ADS)
Zanino, R.; Bonifetto, R.; Hoa, C.; Richard, L. Savoldi
2014-01-01
The 4C code was developed to model thermal-hydraulics in superconducting magnet systems and related cryogenic circuits. It consists of three coupled modules: a quasi-3D thermal-hydraulic model of the winding; a quasi-3D model of heat conduction in the magnet structures; an object-oriented a-causal model of the cryogenic circuit. In the last couple of years the code and its different modules have undergone a series of validation exercises against experimental data, including also data coming from the supercritical He loop HELIOS at CEA Grenoble. However, all this analysis work was done each time after the experiments had been performed. In this paper a first demonstration is given of the predictive capabilities of the 4C code cryogenic circuit module. To do that, a set of ad-hoc experimental scenarios have been designed, including different heating and control strategies. Simulations with the cryogenic circuit module of 4C have then been performed before the experiment. The comparison presented here between the code predictions and the results of the HELIOS measurements gives the first proof of the excellent predictive capability of the 4C code cryogenic circuit module.
Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Perrella, M. D.; Ghiaasiaan, S. M.
2017-12-01
The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.
Experimentation for the Maturation of Deep Space Cryogenic Refueling Technologies
NASA Technical Reports Server (NTRS)
Chato, David J.
2008-01-01
This report describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. This study identifies cryogenic fluid management technologies that require low-gravity flight experiments bring technology readiness levels to 5 to 6; examines many possible flight experiment options; and develops near-term low-cost flight experiment concepts to mature the core technologies. A total of 25 white papers were prepared by members of the project team in the course of this study. The full text of each white paper is included and 89 relevant references are cited. The team reviewed the white papers that provided information on new or active concepts of experiments to pursue and assessed them on the basis of technical need, cost, return on investment, and flight platform. Based on on this assessment the "Centaur Test Bed for Cryogenic Fluid Management" was rated the highest. "Computational Opportunities for Cryogenics for Cryogenic and Low-g Fluid Systems" was ranked second, based on its high scores in state of the art and return on investment, even though scores in cost and time were second to last. "Flight Development Test Objective Approach for In-space Propulsion Elements" was ranked third.
Cryogenic wind tunnels for high Reynolds number testing
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Kilgore, R. A.; Mcguire, P. D.
1986-01-01
A compilation of lectures presented at various Universities over a span of several years is discussed. A central theme of these lectures has been to present the research facility in terms of the service it provides to, and its potential effect on, the entire community, rather than just the research community. This theme is preserved in this paper which deals with the cryogenic transonic wind tunnels at Langley Research Center. Transonic aerodynamics is a focus both because of its crucial role in determining the success of aeronautical systems and because cryogenic wind tunnels are especially applicable to the transonics problem. The paper also provides historical perspective and technical background for cryogenic tunnels, culminating in a brief review of cryogenic wind tunnel projects around the world. An appendix is included to provide up to date information on testing techniques that have been developed for the cryogenic tunnels at Langley Research Center. In order to be as inclusive and as current as possible, the appendix is less formal than the main body of the paper. It is anticipated that this paper will be of particular value to the technical layman who is inquisitive as to the value of, and need for, cryogneic tunnels.
An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks
NASA Technical Reports Server (NTRS)
Murphey, Amy Y.
1990-01-01
This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.
Cryogenic hydrogen-induced air liquefaction technologies
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1990-01-01
Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.
Cryogenic Boil-Off Reduction System
NASA Astrophysics Data System (ADS)
Plachta, David W.; Guzik, Monica C.
2014-03-01
A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.
NASA Astrophysics Data System (ADS)
Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny
2006-03-01
Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.
NASA Astrophysics Data System (ADS)
Liaudat, Dario Trombotto; Penas, Pablo; Aloy, Gustavo
2014-03-01
Soil temperatures of the active Volcanic Complex Peteroa situated in the Cordillera Principal between Chile and Argentina at 35°15‧ S and 70°35‧ W (approximately) were monitored in the area, and local geomorphology (periglacial geomorphology, presence of permafrost, and cryoforms) was studied. The present contribution also resulted in a comparison of two consecutive analyses of the volcano peak carried out with special thermocameras (AGEMA TVH 550, FUR P660) in order to study the thermal range of different hot and cold sites selected in 2009. The thermocameras were used ascending by foot and also during flights with a Cessna 180. A night expedition to the volcanic avalanche caldera, at up to 3900 m asl (approximately), completed the monitoring activity of 2010. Hot zones were associated to present volcanism and cold zones to the presence of glacier ice and shadowy slopes with possible presence of permafrost. Identifying and mapping uncovered and covered ice was possible with the help of monitoring and geomorphological interpretation related to the upper englacement, which is severely affected by volcanism. Glaciers are retreating toward the north or approaching the rims of the volcanic avalanche caldera leaving islands of ice associated with superficial permafrost. The cryogenic area with slope permafrost was identified through active protalus and sedimentary cryogenic slopes. Craters have undergone considerable thermal changes in comparison to the year 2009; and new, much more vigorous fumaroles have appeared in hot areas detected in 2009 following a tendency toward the west. New subaquatic heat columns that appeared in crater 3, crater walls, and glaciated areas vanished, supplying cold water and thus contributing to the formation of a new lake in crater 4. A possible post-seismic shift of the volcanic activity may provide geodynamical evidence of the changes registered in other areas after the earthquake of 27 February 2010.
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Technical Reports Server (NTRS)
Brown, Kendall K.; Nelson, Karl W.
2005-01-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Astrophysics Data System (ADS)
Brown, Kendall K.; Nelson, Karl W.
2005-02-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Electronic Components and Systems for Cryogenic Space Applications
NASA Technical Reports Server (NTRS)
Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.
2001-01-01
Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.
Compact drilling and sample system
NASA Technical Reports Server (NTRS)
Gillis-Smith, Greg R.; Petercsak, Doug
1998-01-01
The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.
NASA Astrophysics Data System (ADS)
Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.
2010-04-01
A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.
Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Theilacker, J.; Klebaner, A.
2015-11-05
The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05more » PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.« less
Peña Arellano, Fabián Erasmo; Sekiguchi, Takanori; Fujii, Yoshinori; Takahashi, Ryutaro; Barton, Mark; Hirata, Naoatsu; Shoda, Ayaka; van Heijningen, Joris; Flaminio, Raffaele; DeSalvo, Riccardo; Okutumi, Koki; Akutsu, Tomotada; Aso, Yoichi; Ishizaki, Hideharu; Ohishi, Naoko; Yamamoto, Kazuhiro; Uchiyama, Takashi; Miyakawa, Osamu; Kamiizumi, Masahiro; Takamori, Akiteru; Majorana, Ettore; Agatsuma, Kazuhiro; Hennes, Eric; van den Brand, Jo; Bertolini, Alessandro
2016-03-01
KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported.
Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2009-01-01
Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.
Pelliccione, M; Sciambi, A; Bartel, J; Keller, A J; Goldhaber-Gordon, D
2013-03-01
We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design. Using Coulomb blockade thermometry on a GaAs/AlGaAs gate-defined quantum dot, we demonstrate an electron temperature of 45 mK.
Quarter Scale RLV Multi-Lobe LH2 Tank Test Program
NASA Technical Reports Server (NTRS)
Blum, Celia; Puissegur, Dennis; Tidwell, Zeb; Webber, Carol
1998-01-01
Thirty cryogenic pressure cycles have been completed on the Lockheed Martin Michoud Space Systems quarter scale RLV composite multi-lobe liquid hydrogen propellant tank assembly, completing the initial phases of testing and demonstrating technologies key to the success of large scale composite cryogenic tankage for X33, RLV, and other future launch vehicles.
49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the pressure prescribed in § 173.318 of this subchapter. (iii) For liquid hazardous materials loaded in DOT... vehicle used to transport a liquid hazardous material with a gas pad must have a pressure relief system...
49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the pressure prescribed in § 173.318 of this subchapter. (iii) For liquid hazardous materials loaded in DOT... vehicle used to transport a liquid hazardous material with a gas pad must have a pressure relief system...
Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders
NASA Astrophysics Data System (ADS)
Lebrun, Philippe; Tavian, Laurent
Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.
Conceptual design of a cryogen-free μMRI device
NASA Astrophysics Data System (ADS)
Authelet, G.; Poirier-Quinot, M.; Ginefri, J.-C.; Bonelli, A.; Baudouy, B.
2017-12-01
To perform Micro Magnetic Resonance Imaging (mMRI) analysis on small regions such as skins, articulations or small animals, the required spatial resolution implies to dramatically improve the sensitivity of the detection. One way to go is to use small radio-frequency superconducting coil that allow, among others, increasing significantly the signal-to-noise ratio. The RF probe, constituted of an optimized YBaCuO film coil cooled below nitrogen temperature, must be located no further than few millimeters from the biological region to be imaged in a clinical MRI magnet. To fulfill the medical environment and constraints, a cryogen-free cooling scheme has been developed to maintain the superconducting coil at the working temperature. The cryogenic design is based on a pulse tube cryocooler and solid thermal links inserted in a non-magnetic cryostat to avoid creating any electromagnetic perturbations to the MRI magnet and the measurements. We report here the conceptual design of the cryogenic system with the required thermal performances, the corresponding layout and architecture of the system as well as the main technical challenges met for the construction.
Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage
NASA Astrophysics Data System (ADS)
Espinosa-Loza, Francisco Javier
Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also demonstrated a methodology for computationally efficient detailed modeling of cryogenic pressure vessels. The work continues with support of the US Department of Energy to demonstrate a new generation of cryogenic vessels anticipated to improve on the hydrogen storage performance figures previously imposed in this project. The author looks forward to further contributing to a future of long-range, inexpensive, and safe zero emissions transportation.
NASA Astrophysics Data System (ADS)
Duband, Lionel; Charles, Ivan; Duval, Jean-Marc; Ercolani, Eric; Gully, Philippe; Luchier, Nicolas; Prouve, Thomas; Thibault, Pierre
2017-11-01
The "Service des Basses Températures" (SBT) of CEA Grenoble has been involved in space cryogenics for over 20 years now. In fact a dedicated laboratory was created within SBT to carry out these developments, the "Cryocoolers and Space Cryogenics" group, which comprises about 20 persons as of today. Various cryocoolers have been developed in the past and our fields of activity focus now on four main technologies: sorption coolers, multistage pulse tubes, adiabatic demagnetization refrigerators (ADR), and cryogenic loop heat pipes. In addition work on two new concepts for ground based dilution refrigerators is also ongoing. Finally developments on various key technologies such as the heat switches, the suspension or structural systems are also carried out. These developments are mainly funded by the European Space Agency (ESA) or by the Centre National d'Etudes Spatiales (CNES). For most of these systems the common feature is the absence of any moving parts or any friction, which guarantees a very good reliability and make them very good candidates for space borne instruments requiring cryogenic temperatures. In this paper we give an overview of these developments with a particular focus on the sub Kelvin coolers. Based on the HERSCHEL heritage for which we developed the flight sorption coolers, we are now proposing an original concept featuring the association of a 300 mK sorption unit with a miniature adiabatic demagnetization refrigerator. This combination will allow to provide temperature as low as 50 mK with a system weighting less than 5 kg. This development may have direct application for the XEUS and SPICA missions.
NASA Technical Reports Server (NTRS)
Hansen, R. G.; Byrd, E. A.
1983-01-01
The primary development of cryogenically cooled infrared systems was accomplished by FLIR systems designed for airborne, passive night vision. Essential to the development of these FLIR systems was a family of closed cycle refrigerators which had to meet a limited envelope requirement, utilize a nonlubricated compressor module, and be light in weight. Closed cycle refrigerators accomplished the same cooling function, they use modified oil lubricated reciprocating compressors which are limited in their axis of orientation to an angle of approximately 15-20 degrees maximum from horizon.