Science.gov

Sample records for systems nuclear criticality

  1. Nuclear criticality information system

    SciTech Connect

    Koponen, B.L.; Hampel, V.E.

    1981-11-30

    The nuclear criticality safety program at LLNL began in the 1950's with a critical measurements program which produced benchmark data until the late 1960's. This same time period saw the rapid development of computer technology useful for both computer modeling of fissile systems and for computer-aided management and display of the computational benchmark data. Database management grew in importance as the amount of information increased and as experimental programs were terminated. Within the criticality safety program at LLNL we began at that time to develop a computer library of benchmark data for validation of computer codes and cross sections. As part of this effort, we prepared a computer-based bibliography of criticality measurements on relatively simple systems. However, it is only now that some of these computer-based resources can be made available to the nuclear criticality safety community at large. This technology transfer is being accomplished by the DOE Technology Information System (TIS), a dedicated, advanced information system. The NCIS database is described.

  2. NCIS - a Nuclear Criticality Information System (overview)

    SciTech Connect

    Koponen, B.L.; Hampel, V.E.

    1983-07-01

    A Nuclear Criticality Information System (NCIS) is being established at the Lawrence Livermore National Laboratory (LLNL) in order to serve personnel responsible for safe storage, transport, and handling of fissile materials and those concerned with the evaluation and analysis of nuclear, critical experiments. Public concern for nuclear safety provides the incentive for improved access to nuclear safety information.

  3. Nuclear Criticality Information System. Database examples

    SciTech Connect

    Foret, C.A.

    1984-06-01

    The purpose of this publication is to provide our users with a guide to using the Nuclear Criticality Information System (NCIS). It is comprised of an introduction, an information and resources section, a how-to-use section, and several useful appendices. The main objective of this report is to present a clear picture of the NCIS project and its available resources as well as assisting our users in accessing the database and using the TIS computer to process data. The introduction gives a brief description of the NCIS project, the Technology Information System (TIS), online user information, future plans and lists individuals to contact for additional information about the NCIS project. The information and resources section outlines the NCIS database and describes the resources that are available. The how-to-use section illustrates access to the NCIS database as well as searching datafiles for general or specific data. It also shows how to access and read the NCIS news section as well as connecting to other information centers through the TIS computer.

  4. Seminar in Critical Inquiry Twenty-first Century Nuclear Systems

    SciTech Connect

    LeMone, D. V.

    2002-02-25

    Critical Inquiry, has not only been successful in increasing university student retention rate but also in improving student academic performance beyond the initial year of transition into the University. The seminar course herein reviewed is a balanced combination of student personal and academic skill development combined with a solid background in modern nuclear systems. It is a valid premise to assume that entering students as well as stakeholders of the general public demonstrate equal levels of capability. Nuclear systems is designed to give a broad and basic knowledge of nuclear power, medical, industrial, research, and military systems (nuclear systems) in 20-25 hours.

  5. Martin Marietta Energy Systems Nuclear Criticality Safety Improvement Program

    SciTech Connect

    Speas, I.G.

    1987-04-29

    This report addresses questions raised by criticality safety violation at several DOE plants. Two charts are included that define the severity and reporting requirements for the six levels of accidents. A summary is given of all reported criticality incident at the DOE plants involved. The report concludes with Martin Marietta's Nuclear Criticality Safety Policy Statement. (JDH)

  6. Nuclear criticality safety guide

    SciTech Connect

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  7. Conceptual design of a digital control system for nuclear criticality experiments

    SciTech Connect

    Rojas, S.P.

    1994-04-01

    Nuclear criticality is a concern in many areas of nuclear engineering including waste management, nuclear weapons testing and design, basic nuclear research, and nuclear reactor design and analysis. As in many areas of science and engineering, experimental work conducted in this field has provided a wealth of data and insight essential to the formulation of theory and the advancement in knowledge of fissioning systems. In light of the many diverse applications of nuclear criticality, there is a continuing interest to learn and understand more about the fundamental physical processes through continued experimentation. This thesis addresses the problem of setting up and programming a microprocessor-based digital control system (PLC) for a proposed critical experiment using, among other devices, a stepper motor, a joystick control mechanism, and switches. This experiment represents a revised configuration to test cylindrical nuclear waste packages. A Monte Carlo numerical study for the proposed critical assembly has been performed in order to illustrate how results from numerical calculations are used in the process of assembling the control system and to corroborate previous experimental data. In summary, a control system utilizing some common devices necessary to perform a critical experiment (stepper motor, push-buttons, etc.) has been assembled. Control components were sized using the results of a probabilistic computer code (MCNP). Finally, a program was written that illustrates the coupling between the hardware and the devices being controlled in the new test fixture.

  8. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    SciTech Connect

    Putman, V.L.

    1995-09-01

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies.

  9. Initial conceptual design study of self-critical nuclear pumped laser systems

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.

    1979-01-01

    An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.

  10. Autoclave nuclear criticality safety analysis

    SciTech Connect

    D`Aquila, D.M.; Tayloe, R.W. Jr.

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  11. Sensitivity and Uncertainty Analysis for Nuclear Criticality Safety Using KENO in the SCALE Code System

    NASA Astrophysics Data System (ADS)

    Rearden, B. T.

    Sensitivity and uncertainty methods have been developed to aid in the establishment of areas of applicability and validation of computer codes and nuclear data for nuclear criticality safety studies. A key component in this work is the generation of sensitivity and uncertainty parameters for typically several hundred benchmarks experiments used in validation exercises. Previously, only one-dimensional sensitivity tools were available for this task, which necessitated the remodeling of multidimensional inputs in order for such an analysis to be performed. This paper describes the development of the SEN3 Monte Carlo based sensitivity analysis sequence for SCALE.

  12. An updated nuclear criticality slide rule

    SciTech Connect

    Hopper, C.M.; Broadhead, B.L.

    1998-04-01

    This Volume 2 contains the functional version of the updated nuclear criticality slide rule (more accurately, sliding graphs) that is referenced in An Updated Nuclear Criticality Slide Rule: Technical Basis, NUREG/CR-6504, Vol. 1 (ORNL/TM-13322/V1). This functional slide rule provides a readily usable {open_quotes}in-hand{close_quotes} method for estimating pertinent nuclear criticality accident information from sliding graphs, thereby permitting (1) the rapid estimation of pertinent criticality accident information without laborious or sophisticated calculations in a nuclear criticality emergency situation, (2) the appraisal of potential fission yields and external personnel radiation exposures for facility safety analyses, and (3) a technical basis for emergency preparedness and training programs at nonreactor nuclear facilities. The slide rule permits the estimation of neutron and gamma dose rates and integrated doses based upon estimated fission yields, distance from the fission source, and time-after criticality accidents for five different critical systems. Another sliding graph permits the estimation of critical solution fission yields based upon fissile material concentration, critical vessel geometry, and solution addition rate. Another graph provides neutron and gamma dose-reduction factors for water, steel, and concrete. Graphs from historic documents are provided as references for estimating critical parameters of various fissile material systems. Conversion factors for various English and metric units are provided for quick reference.

  13. Nuclear data for criticality safety - current issues

    SciTech Connect

    Leal, L.C.; Jordan, W.C.; Wright, R.Q.

    1995-06-01

    Traditionally, nuclear data evaluations have been performed in support of the analysis and design of thermal and fast reactors. In general, the neutron spectra characteristic of the thermal and fast systems used for data testing are predominantly in the low- and high-energy range with a relatively small influence from the intermediate-energy range. In the area of nuclear criticality safety, nuclear systems arising from applications involving fissionable materials outside reactors can lead to situations very different from those most commonly found in reactor analysis and design. These systems are not limited to thermal or fast and may have significant influence from the intermediate energy range. The extension of the range of applicability of the nuclear data evaluation beyond thermal and fast systems is therefore needed to cover problems found in nuclear criticality safety. Before criticality safety calculations are performed, the bias and uncertainties of the codes and cross sections that are used must be determined. The most common sources of uncertainties, in general, are the calculational methodologies and the uncertainties related to the nuclear data, such as the microscopic cross sections, entering into the calculational procedure. The aim here is to focus on the evaluated nuclear data pertaining to applications in nuclear criticality safety.

  14. Nuclear criticality safety department training implementation

    SciTech Connect

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-09-06

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document.

  15. Nuclear Criticality Safety Data Book

    SciTech Connect

    Hollenbach, D. F.

    2016-11-14

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  16. Nuclear criticality safety: 2-day training course

    SciTech Connect

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  17. Reactivity impact of {sup 16}O thermal elastic-scattering nuclear data for some numerical and critical benchmark systems

    SciTech Connect

    Kozier, K. S.; Roubtsov, D.; Plompen, A. J. M.; Kopecky, S.

    2012-07-01

    The thermal neutron-elastic-scattering cross-section data for {sup 16}O used in various modern evaluated-nuclear-data libraries were reviewed and found to be generally too high compared with the best available experimental measurements. Some of the proposed revisions to the ENDF/B-VII.0 {sup 16}O data library and recent results from the TENDL system increase this discrepancy further. The reactivity impact of revising the {sup 16}O data downward to be consistent with the best measurements was tested using the JENDL-3.3 {sup 16}O cross-section values and was found to be very small in MCNP5 simulations of the UO{sub 2} and reactor-recycle MOX-fuel cases of the ANS Doppler-defect numerical benchmark. However, large reactivity differences of up to about 14 mk (1400 pcm) were observed using {sup 16}O data files from several evaluated-nuclear-data libraries in MCNP5 simulations of the Los Alamos National Laboratory HEU heavy-water solution thermal critical experiments, which were performed in the 1950's. The latter result suggests that new measurements using HEU in a heavy-water-moderated critical facility, such as the ZED-2 zero-power reactor at the Chalk River Laboratories, might help to resolve the discrepancy between the {sup 16}O thermal elastic-scattering cross-section values and thereby reduce or better define its uncertainty, although additional assessment work would be needed to confirm this. (authors)

  18. Nuclear criticality safety: 5-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples of computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.

  19. Nuclear criticality safety: 5-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course`s primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples of computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.

  20. Anomalies of Nuclear Criticality, Revision 6

    SciTech Connect

    Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.

    2010-02-19

    This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.

  1. Elements of a nuclear criticality safety program

    SciTech Connect

    Hopper, C.M.

    1995-07-01

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance.

  2. Nuclear criticality safety: 3-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course`s primary instructor. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) be able to identify examples of safety consciousness required in nuclear criticality safety.

  3. Nuclear criticality safety: 3-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) be able to identify examples of safety consciousness required in nuclear criticality safety.

  4. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    SciTech Connect

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  5. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    SciTech Connect

    Smidts, Carol; Huang, Funqun; Li, Boyuan; Li, Xiang

    2016-03-25

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty

  6. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  7. Nuclear criticality safety: 300 Area

    SciTech Connect

    Not Available

    1991-07-31

    This Standard applies to the receipt, processing, storage, and shipment of fissionable material in the 300 Area and in any other facility under the control of the Reactor Materials Project Management Team (PMT). The objective is to establish practices and process conditions for the storage and handling of fissionable material that prevent the accidental assembly of a critical mass and that comply with DOE Orders as well as accepted industry practice.

  8. Nuclear criticality safety: 300 Area

    SciTech Connect

    Not Available

    1991-07-31

    This Standard applies to the receipt, processing, storage, and shipment of fissionable material in the 300 Area and in any other facility under the control of the Reactor Materials Project Management Team (PMT). The objective is to establish practices and process conditions for the storage and handling of fissionable material that prevent the accidental assembly of a critical mass and that comply with DOE Orders as well as accepted industry practice.

  9. Neutron nuclear data measurements for criticality safety

    NASA Astrophysics Data System (ADS)

    Guber, Klaus; Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Siegler, Peter

    2017-09-01

    To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Joint Research Center Site Geel, European Union. Neutron capture and transmission measurements were carried out using metallic natural cerium and vanadium samples. Together with existing data, the measured data will be used for a new evaluation and will be submitted with covariances to the ENDF/B nuclear data library.

  10. New Improved Nuclear Data for Nuclear Criticality and Safety

    SciTech Connect

    Guber, Klaus H; Leal, Luiz C; Lampoudis, C.; Kopecky, S.; Schillebeeckx, P.; Emiliani, F.; Wynants, R.; Siegler, P.

    2011-01-01

    The Geel Electron Linear Accelerator (GELINA) was used to measure neutron total and capture cross sections of {sup 182,183,184,186}W and {sup 63,65}Cu in the energy range from 100 eV to {approx}200 keV using the time-of-flight method. GELINA is the only high-power white neutron source with excellent timing resolution and ideally suited for these experiments. Concerns about the use of existing cross-section data in nuclear criticality calculations using Monte Carlo codes and benchmarks were a prime motivator for the new cross-section measurements. To support the Nuclear Criticality Safety Program, neutron cross-section measurements were initiated using GELINA at the EC-JRC-IRMM. Concerns about data deficiencies in some existing cross-section evaluations from libraries such as ENDF/B, JEFF, or JENDL for nuclear criticality calculations were the prime motivator for new cross-section measurements. Over the past years many troubles with existing nuclear data have emerged, such as problems related to proper normalization, neutron sensitivity backgrounds, poorly characterized samples, and use of improper pulse-height weighting functions. These deficiencies may occur in the resolved- and unresolved-resonance region and may lead to erroneous nuclear criticality calculations. An example is the use of the evaluated neutron cross-section data for tungsten in nuclear criticality safety calculations, which exhibit discrepancies in benchmark calculations and show the need for reliable covariance data. We measured the neutron total and capture cross sections of {sup 182,183,184,186}W and {sup 63,65}Cu in the neutron energy range from 100 eV to several hundred keV. This will help to improve the representation of the cross sections since most of the available evaluated data rely only on old measurements. Usually these measurements were done with poor experimental resolution or only over a very limited energy range, which is insufficient for the current application.

  11. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  12. Nuclear systems 1

    SciTech Connect

    Todreas, N.E.; Kazami, M.J. )

    1990-01-01

    The book covers thermal hydraulic design fundamentals and analysis of the core of a nuclear reactor. Other components of the nuclear power plant, such as the pressurizer, the containment and the entire primary coolant system are addressed. The book reflects the importance of such considerations in thermal engineering of a modern nuclear power plant.

  13. Web-based nuclear criticality safety bibliographic database

    SciTech Connect

    Koponen, B L; Huang, S T

    2000-06-21

    The Lawrence Livermore National Laboratory has prepared a Nuclear Criticality Safety Bibliographic Database that is now available via the Internet. This database is a component of the U.S. DOE Nuclear Criticality Safety Program (NCSP) Web site. This WWW resource was developed as part of the DOE response to the DNFSB Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. To the extent possible, the hyperlinks on the Web pages direct the user to original source of the reference material in order to ensure accuracy and access to the latest versions. A master index is in place for simple navigation through the site. A search capability is available to assist in locating the on-line reference materials. Among the features included are: A user-friendly site map for ease of use; A personnel registry; Links to all major laboratories and organizations involved in the many aspects of criticality safety; General help for new criticality safety practitioners, including basic technical references and training modules; A discussion of computational methods; An interactive question and answer forum for the criticality safety community; and Collections of bibliographic references mdvahdation experiments. This paper will focus on the bibliographic database. This database evolved from earlier work done by the DOE's Nuclear Criticality Information System (NCIS) maintained at LLNL during the 1980s. The bibliographic database at the time of the termination of NCIS were composed principally of three parts: (1) A critical experiment bibliography of 1067 citations (reported in UCRL-52769); (2) A compilation of criticality safety papers from Volumes 1 through 41 of the Transactions of the American Nuclear Society (reported in UCRL-53369); and (3) A general criticality bibliography of several thousand citations (unpublished). When the NCIS project was terminated the database was nearly lost but, fortunately, several years later

  14. A neutron dosemeter for nuclear criticality accidents.

    PubMed

    d'Errico, F; Curzio, G; Ciolini, R; Del Gratta, A; Nath, R

    2004-01-01

    A neutron dosemeter which offers instant read-out has been developed for nuclear criticality accidents. The system is based on gels containing emulsions of superheated dichlorodifluoromethane droplets, which vaporise into bubbles upon neutron irradiation. The expansion of these bubbles displaces an equivalent volume of gel into a graduated pipette, providing an immediate measure of the dose. Instant read-out is achieved using an array of transmissive optical sensors which consist of coupled LED emitters and phototransistor receivers. When the gel displaced in the pipette crosses the sensing region of the photomicrosensors, it generates a signal collected on a computer through a dedicated acquisition board. The performance of the device was tested during the 2002 International Accident Dosimetry Intercomparison in Valduc, France. The dosemeter was able to follow the initial dose gradient of a simulated accident, providing accurate values of neutron kerma; however, the emulsion was rapidly depleted of all its drops. A model of the depletion effects was developed and it indicates that an adequate dynamic range of the dose response can be achieved by using emulsions of smaller droplets.

  15. HANFORD NUCLEAR CRITICALITY SAFETY PROGRAM DATABASE

    SciTech Connect

    TOFFER, H.

    2005-05-02

    The Hanford Database is a useful information retrieval tool for a criticality safety practitioner. The database contains nuclear criticality literature screened for parameter studies. The entries, characterized with a value index, are segregated into 16 major and six minor categories. A majority of the screened entries have abstracts and a limited number are connected to the Office of Scientific and Technology Information (OSTI) database of full-size documents. Simple and complex searches of the data can be accomplished very rapidly and the end-product of the searches could be a full-size document. The paper contains a description of the database, user instructions, and a number of examples.

  16. Nuclear Criticality Safety Application Guide: Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Safety analyses are performed to identify hazards and potential accidents; to analyze the adequacy of measures taken to eliminate, control, or mitigate hazards; and to evaluate potential accidents and determine associated risks. Safety Analysis Reports (SARs) are prepared to document the safety analysis to ensure facilities can be operated safely and in accordance with regulations. Many of the facilities requiring a SAR process fissionable material creating the potential for a nuclear criticality accident. MMES has long had a nuclear criticality safety program that provides the technical support to fissionable material operations to ensure the safe processing and storage of fissionable materials. The guiding philosophy of the program has always been the application of the double-contingency principle, which states: {open_quotes}process designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible.{close_quotes} At Energy Systems analyses have generally been maintained to document that no single normal or abnormal operating conditions that could reasonably be expected to occur can cause a nuclear criticality accident. This application guide provides a summary description of the MMES Nuclear Criticality Safety Program and the MMES Criticality Accident Alarm System requirements for inclusion in facility SARs. The guide also suggests a way to incorporate the analyses conducted pursuant to the double-contingency principle into the SAR. The prime objective is to minimize duplicative effort between the NCSA process and the SAR process and yet adequately describe the methodology utilized to prevent a nuclear criticality accident.

  17. Applications of Nuclear Data Covariances to Criticality Safety and Spent Fuel Characterization

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Ilas, G.; Marshall, W. J.; Rearden, B. T.

    2014-04-01

    Covariance data computational methods and data used for sensitivity and uncertainty analysis within the SCALE nuclear analysis code system are presented. Applications in criticality safety calculations and used nuclear fuel analysis are discussed.

  18. Applications of nuclear data covariances to criticality safety and spent fuel characterization

    SciTech Connect

    Williams, Mark L; Ilas, Germina; Marshall, William BJ J; Rearden, Bradley T

    2014-01-01

    Covariance data computational methods and data used for sensitivity and uncertainty analysis within the SCALE nuclear analysis code system are presented. Applications in criticality safety calculations and used nuclear fuel analysis are discussed.

  19. Critical incident reporting systems.

    PubMed

    Ahluwalia, Jag; Marriott, Lin

    2005-02-01

    Approximately 10% of all hospital admissions are complicated by critical incidents in which harm is caused to the patient - this amounts to more than 850,000 incidents annually. Critical incident reporting (CIR) systems refer to the structured reporting, collation and analysis of such incidents. This article describes the attributes required for an effective CIR system. Example neonatal trigger events and a management pathway for handling a critical incident report are described. The benefits and limitations of CIR systems, reactive and prospective approaches to the analysis of actual or potential critical incidents and the assessment of risk are also reviewed. Individual human error is but one contributor in the majority of critical incidents. Recognition of this and the fostering of an organisational culture that views critical incident reports as an opportunity to learn and to improve future patient care is vital if CIR systems are to be effective.

  20. Training of nuclear criticality safety engineers

    SciTech Connect

    Taylor, R.G.

    1997-06-01

    The site specific analysis of nuclear criticality training needs is very briefly described. Analysis indicated that the four major components required were analysis, surveillance, business practices or administration, and emergency preparedness. The analysis component was further divided into process analysis, accident analysis, and transportation analysis. Ten subject matter areas for the process analysis component were identified as candidates for class development. Training classes developed from the job content analysis have demonstrated that the specialized information can be successfully delivered to new entrants. 1 fig.

  1. Update of the Nuclear Criticality Slide Rule for the Emergency Response to a Nuclear Criticality Accident

    NASA Astrophysics Data System (ADS)

    Duluc, Matthieu; Bardelay, Aurélie; Celik, Cihangir; Heinrichs, Dave; Hopper, Calvin; Jones, Richard; Kim, Soon; Miller, Thomas; Troisne, Marc; Wilson, Chris

    2017-09-01

    AWE (UK), IRSN (France), LLNL (USA) and ORNL (USA) began a long term collaboration effort in 2015 to update the nuclear criticality Slide Rule for the emergency response to a nuclear criticality accident. This document, published almost 20 years ago, gives order of magnitude estimates of key parameters, such as number of fissions and doses (neutron and gamma), useful for emergency response teams and public authorities. This paper will present, firstly the motivation and the long term objectives for this update, then the overview of the initial configurations for updated calculations and preliminary results obtained with modern 3D codes.

  2. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-12-31

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  3. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  4. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.124 Criteria for nuclear criticality safety. (a) Design for...

  5. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.124 Criteria for nuclear criticality safety. (a) Design for...

  6. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.124 Criteria for nuclear criticality safety. (a) Design for...

  7. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.124 Criteria for nuclear criticality safety. (a) Design for...

  8. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.124 Criteria for nuclear criticality safety. (a) Design for...

  9. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  10. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  11. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  12. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    PubMed

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  13. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  14. Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  15. Criticality accident alarm system

    SciTech Connect

    Malenfant, R.E.

    1991-01-01

    The American National Standard ANSI/ANS-8.3-1986, Criticality Accident Alarm System provides guidance for the establishment and maintenance of an alarm system to initiate personnel evacuation in the event of inadvertent criticality. In addition to identifying the physical features of the components of the system, the characteristics of accidents of concern are carefully delineated. Unfortunately, this ANSI Standard has led to considerable confusion in interpretation, and there is evidence that the minimum accident of concern'' may not be appropriate. Furthermore, although intended as a guide, the provisions of the standard are being rigorously applied, sometimes with interpretations that are not consistent. Although the standard is clear in the use of absorbed dose in free air of 20 rad, at least one installation has interpreted the requirement to apply to dose in soft tissue. The standard is also clear in specifying the response to both neutrons and gamma rays. An assembly of uranyl fluoride enriched to 5% {sup 235}U was operated to simulate a potential accident. The dose, delivered in a free run excursion 2 m from the surface of the vessel, was greater than 500 rad, without ever exceeding a rate of 20 rad/min, which is the set point for activating an alarm that meets the standard. The presence of an alarm system would not have prevented any of the five major accidents in chemical operations nor is it absolutely certain that the alarms were solely responsible for reducing personnel exposures following the accident. Nevertheless, criticality alarm systems are now the subject of great effort and expense. 13 refs.

  16. Critical Infrastructure Modeling System

    SciTech Connect

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method of Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.

  17. Nuclear reactor sealing system

    DOEpatents

    McEdwards, James A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

  18. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  19. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    SciTech Connect

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  20. Nuclear reactor shutdown system

    DOEpatents

    Bhate, Suresh K.; Cooper, Martin H.; Riffe, Delmar R.; Kinney, Calvin L.

    1981-01-01

    An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

  1. Critical Systems Heuristics

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner; Reynolds, Martin

    Critical systems heuristics (CSH) is a framework for reflective professional practice organised around the central tool of boundary critique. This paper, written jointly by the original developer, Werner Ulrich, and Martin Reynolds, an experienced practitioner of CSH, offers a systematic introduction to the idea and use of boundary critique. Its core concepts are explained in detail and their use is illustrated by means of two case studies from the domain of environmental planning and management. A particular focus is on working constructively with tensions between opposing perspectives as they arise in many situations of professional intervention. These include tensions such as ‘situation' versus ‘system', ‘is' versus ‘ought' judgements, concerns of ‘those involved' versus ‘those affected but not involved', stakeholders' ‘stakes' versus ‘stakeholding issues', and others. Accordingly, boundary critique is presented as a participatory process of unfolding and questioning boundary judgements rather than as an expert-driven process of boundary setting. The paper concludes with a discussion of some essential skills and considerations regarding the practice of boundary critique.

  2. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.

    1993-09-20

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

  3. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  4. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  5. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Westfall, R. M.; McKnight, R. D.

    2005-05-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.

  6. TOPAZ-2 Nuclear Power System safety assurance

    SciTech Connect

    Nikitin, V.P.; Ogloblin, B.G.; Lutov, Y.I.; Luppov, A.N.; Shalaev, A.I. ); Ponomarev-Stepnoi, N.N.; Usov, V.A.; Nechaev, Y.A. )

    1993-01-15

    TOPAZ-2 Nuclear Power System (NPS) safety philosophy is based on the requirement that the reactor shall not be critical during all kinds of operations prior to its start-up on the safe orbit (except for physical start-up). Potentially dangerous operation were analyzed and both computational and experimental studies were carried out.

  7. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    SciTech Connect

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  8. Nuclear Criticality Safety Organization qualification program. Revision 4

    SciTech Connect

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-05-19

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSO technical and managerial qualification as required by the Y-12 Training Implementation Matrix (TIM). It is implemented through a combination of LMES plant-wide training courses and professional nuclear criticality safety training provided within the organization. This Qualification Program is applicable to technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who perform the NCS tasks or serve NCS-related positions as defined in sections 5 and 6 of this program.

  9. Proceedings of the Nuclear Criticality Technology Safety Workshop

    SciTech Connect

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  10. Merger of Nuclear Data with Criticality Safety Calculations

    SciTech Connect

    Derrien, H.; Larson, N.M.; Leal, L.C.

    1999-09-20

    In this paper we report on current activities related to the merger of differential/integral data (especially in the resolved-resonance region) with nuclear criticality safety computations. Techniques are outlined for closer coupling of many processes � measurement, data reduction, differential-data analysis, integral-data analysis, generating multigroup cross sections, data-testing, criticality computations � which in the past have been treated independently.

  11. Software Quality Assurance for Nuclear Safety Systems

    SciTech Connect

    Sparkman, D R; Lagdon, R

    2004-05-16

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: {sm_bullet} Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe {sm_bullet} Considers the larger system that uses the software and its impacts {sm_bullet} Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety-critical

  12. Asymptotic Expansions, 1/Z Expansions, and the Critical Nuclear Charge

    NASA Astrophysics Data System (ADS)

    Drake, Gordon

    2014-03-01

    The quantum mechanical three-body problem defies analytic solution, and so computationally intensive approximation methods involving, for example, variational calculations with large correlated basis sets must be used. This talk will review recent work to explore the outer fringes of the quantum mechanical three-body problem for heliumlike atoms. Asymptotic expansions provide a surprisingly simple and accurate account of highly excited Rydberg states with high angular momentum. 1 / Z expansions, where Z is the nuclear charge, provide results for an entire isoelectronic sequence within a single calculation. Its radius of convergence is thought to be related to the critical nuclear charge Zc for a state to be bound. For Z critical nuclear charge. Research suppoted by the Natural Sciences and Engineering Research Council of Canada, and by SHARCNET.

  13. Nuclear criticality research at the University of New Mexico

    SciTech Connect

    Busch, R.D.

    1997-06-01

    Two projects at the University of New Mexico are briefly described. The university`s Chemical and Nuclear Engineering Department has completed the final draft of a primer for MCNP4A, which it plans to publish soon. The primer was written to help an analyst who has little experience with the MCNP code to perform criticality safety analyses. In addition, the department has carried out a series of approach-to-critical experiments on the SHEBA-II, a UO{sub 2}F{sub 2} solution critical assembly at Los Alamos National Laboratory. The results obtained differed slightly from what was predicted by the TWODANT code.

  14. Proceedings of the nuclear criticality technology safety project

    SciTech Connect

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  15. Criticality Evaluation - Cask Unloading Using the Shielded Transfer System

    SciTech Connect

    Blanchard, A.; Nadeau, M.L.

    1998-06-01

    This evaluation reviewed the criticality aspects of Shielded Transfer System (STS) operation. The existing Nuclear Safety Control (NSC) elements were examined and new NSC elements were developed, as needed.

  16. Optimization of a Dry, Mixed Nuclear Fuel Storage Array for Nuclear Criticality Safety

    NASA Astrophysics Data System (ADS)

    Baranko, Benjamin T.

    A dry storage array of used nuclear fuel at the Idaho National Laboratory contains a mixture of more than twenty different research and test reactor fuel types in up to 636 fuel storage canisters. New analysis demonstrates that the current arrangement of the different fuel-type canisters does not minimize the system neutron multiplication factor (keff), and that the entire facility storage capacity cannot be utilized without exceeding the subcritical limit (ksafe) for ensuring nuclear criticality safety. This work determines a more optimal arrangement of the stored fuels with a goal to minimize the system keff, but with a minimum of potential fuel canister relocation movements. The solution to this multiple-objective optimization problem will allow for both an improvement in the facility utilization while also offering an enhancement in the safety margin. The solution method applies stochastic approximation and a Tabu search metaheuristic to an empirical model developed from supporting MCNP calculations. The results establish an optimal relocation of between four to sixty canisters, which will allow the current thirty-one empty canisters to be used for storage while reducing the array keff by up to 0.018 +/- 0.003 relative to the current arrangement.

  17. Nuclear Safety for Space Systems

    NASA Astrophysics Data System (ADS)

    Offiong, Etim

    2010-09-01

    It is trite, albeit a truism, to say that nuclear power can provide propulsion thrust needed to launch space vehicles and also, to provide electricity for powering on-board systems, especially for missions to the Moon, Mars and other deep space missions. Nuclear Power Sources(NPSs) are known to provide more capabilities than solar power, fuel cells and conventional chemical means. The worry has always been that of safety. The earliest superpowers(US and former Soviet Union) have designed and launched several nuclear-powered systems, with some failures. Nuclear failures and accidents, however little the number, could be far-reaching geographically, and are catastrophic to humans and the environment. Building on the numerous research works on nuclear power on Earth and in space, this paper seeks to bring to bear, issues relating to safety of space systems - spacecrafts, astronauts, Earth environment and extra terrestrial habitats - in the use and application of nuclear power sources. It also introduces a new formal training course in Space Systems Safety.

  18. Critical Nuclear Charge of the Quantum Mechanical Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Busuttil, Michael; Moini, Amirreza; Drake, Gordon W. F.

    2014-05-01

    The critical nuclear charge (Zc) for a three-body quantum mechanical system consisting of positive and negative charges is the minimum nuclear charge that can keep the system in a bound state. Here we present a study of the critical nuclear charge for two-electron (heliumlike) systems with infinite nuclear mass, and also a range of reduced mass ratio (μ / m) up to 0.5. The results help to resolve a discrepancy in the literature for the infinite mass case, and they are the first to study the dependence on reduced mass ratio. It was found that Zc has a local maximum with μ / m = 0 . 352 5 . The critical charge for the infinite mass case is found to be Zc = 0 . 911 028 224 076 8 (1 0) . This value is more accurate than any previous value in the literature, and agrees with the upper bound Zc = 0 . 911 03 reported by Baker et al.. The critical nuclear charge outside this range [0.5 - 1.0] still needs to be investigated in future works. Research Supported by NSERC and SHARCNET.

  19. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  20. Evaluation of a potential nuclear fuel repository criticality: Lessons learned

    SciTech Connect

    Wilson, J.R.; Evans, D.

    1995-10-01

    This paper presents lessons learned from a Probabilistic Risk Assessment (PRA) of the potential for a criticality in a repository containing spent nuclear fuel with high enriched uranium. The insights gained consisted of remarkably detailed conclusions about design issues, failure mechanisms, frequencies and source terms for events up to 10,000 years in the future. Also discussed are the approaches taken by the analysts in presenting this very technical report to a nontechnical and possibly antagonistic audience.

  1. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.

  2. Materials challenges for nuclear systems

    SciTech Connect

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclear systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.

  3. System model development for nuclear thermal propulsion

    SciTech Connect

    Walton, J.T.; Hannan, N.A.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-10-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented.

  4. 48 CFR 952.223-72 - Radiation protection and nuclear criticality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Radiation protection and....223-72 Radiation protection and nuclear criticality. As prescribed in 923.7003 the clause set forth... (including agreements with states under section 274 of the Atomic Energy Act): Radiation Protection and...

  5. 48 CFR 952.223-72 - Radiation protection and nuclear criticality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Radiation protection and....223-72 Radiation protection and nuclear criticality. As prescribed in 923.7003 the clause set forth... (including agreements with states under section 274 of the Atomic Energy Act): Radiation Protection and...

  6. 48 CFR 952.223-72 - Radiation protection and nuclear criticality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Radiation protection and....223-72 Radiation protection and nuclear criticality. As prescribed in 923.7003 the clause set forth... (including agreements with states under section 274 of the Atomic Energy Act): Radiation Protection and...

  7. 48 CFR 952.223-72 - Radiation protection and nuclear criticality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Radiation protection and....223-72 Radiation protection and nuclear criticality. As prescribed in 923.7003 the clause set forth... (including agreements with states under section 274 of the Atomic Energy Act): Radiation Protection and...

  8. 48 CFR 952.223-72 - Radiation protection and nuclear criticality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Radiation protection and....223-72 Radiation protection and nuclear criticality. As prescribed in 923.7003 the clause set forth... (including agreements with states under section 274 of the Atomic Energy Act): Radiation Protection and...

  9. System model development for nuclear thermal propulsion

    SciTech Connect

    Hannan, N.A.; Worley, B.A.; Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Dobranich, D.

    1992-11-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, cost and time required for the technology to reach flight-ready status. Since October 1991, the US Department of Energy (DOE), Department of Defense (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling.

  10. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    SciTech Connect

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  11. Nuclear criticality safety for drums at Babcock and Wilcox

    SciTech Connect

    Alcorn, F.M.

    1997-12-01

    The Babcock and Wilcox Company (B&W) operates a nuclear fuel facility in Lynchburg, Virginia, processing uranium over the full range of possible enrichments (depleted to 97.65 wt% {sup 235}U). Nuclear fuel is produced for defense programs and for various research and test reactors worldwide. The facility has a uranium recovery operation that handles scrap produced at B&W as well as scrap from other U.S. Department of Energy sites. B&W also has a down-blending operation that is currently completing the down-blending of the fully enriched Project Sapphire Uranium to commercial-grade fuel (4 Wt% {sup 235}U). The facility generates approximately two hundred 55-gal drums of radioactive waste each month. Just a few years ago the number of waste drums on-site stood at {approximately}5000; however, through an aggressive waste reduction program, this number has been reduced to {approximately}2000. B&W strives to avoid storing uranium scrap in 55-gal drums; however, there are approximately sixty-four 55-gal drums of scrap on-site. Scrap is that material from which the uranium is recovered because of financial, contractual, or regulatory considerations; waste is that material destined for disposal. Whether waste or scrap, nuclear criticality safety is of paramount concern in the handling, processing, and storing of uranium-bearing drums at B&W. Any shipment complies with applicable U.S. Nuclear Regulatory Commission and U.S. Department of Transportation regulations.

  12. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability

  13. White paper on VU for Modeling Nuclear Energy Systems

    SciTech Connect

    Klein, R; Turinsky, P

    2009-05-07

    The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

  14. Status and Value of International Standards for Nuclear Criticality Safety

    SciTech Connect

    Hopper, Calvin Mitchell

    2011-01-01

    This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards

  15. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    SciTech Connect

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

  16. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    SciTech Connect

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  17. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    SciTech Connect

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  18. Automatically scramming nuclear reactor system

    DOEpatents

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.

    2004-10-12

    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  19. Materials challenges for nuclear systems

    DOE PAGES

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  20. Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel

    SciTech Connect

    Radulescu, Georgeta; Mueller, Don; Goluoglu, Sedat; Hollenbach, Daniel F; Fox, Patricia B

    2007-10-01

    The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister.

  1. Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

    SciTech Connect

    Brown, Forrest B.

    2016-09-20

    These are slides from a seminar given to the University of Mexico Nuclear Engineering Department. Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future releases of MCNP6. Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years, continuous-energy Monte Carlo codes such as MCNP could not determine the required adjoint-weighted tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of Whisper. Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s computer power to codify past approaches based largely on expert judgment. Validation results are defensible, auditable, and repeatable as needed with different assumptions and process models. The new methods can supplement, support, and extend traditional validation approaches.

  2. Optimal ROS Signaling Is Critical for Nuclear Reprogramming.

    PubMed

    Zhou, Gang; Meng, Shu; Li, Yanhui; Ghebre, Yohannes T; Cooke, John P

    2016-05-03

    Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS) signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox)-inducible mouse embryonic fibroblasts (MEFs) carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM]) into induced pluripotent stem cells (iPSCs). ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22(phox)-a critical subunit of the Nox (1-4) complex-decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Determining the nuclear data uncertainty on MONK10 and WIMS10 criticality calculations

    NASA Astrophysics Data System (ADS)

    Ware, Tim; Dobson, Geoff; Hanlon, David; Hiles, Richard; Mason, Robert; Perry, Ray

    2017-09-01

    The ANSWERS Software Service is developing a number of techniques to better understand and quantify uncertainty on calculations of the neutron multiplication factor, k-effective, in nuclear fuel and other systems containing fissile material. The uncertainty on the calculated k-effective arises from a number of sources, including nuclear data uncertainties, manufacturing tolerances, modelling approximations and, for Monte Carlo simulation, stochastic uncertainty. For determining the uncertainties due to nuclear data, a set of application libraries have been generated for use with the MONK10 Monte Carlo and the WIMS10 deterministic criticality and reactor physics codes. This paper overviews the generation of these nuclear data libraries by Latin hypercube sampling of JEFF-3.1.2 evaluated data based upon a library of covariance data taken from JEFF, ENDF/B, JENDL and TENDL evaluations. Criticality calculations have been performed with MONK10 and WIMS10 using these sampled libraries for a number of benchmark models of fissile systems. Results are presented which show the uncertainty on k-effective for these systems arising from the uncertainty on the input nuclear data.

  4. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    SciTech Connect

    Rathbun, R.

    1993-10-13

    Review of NMP-NCS-930087, {open_quotes}Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, {close_quotes} was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1, and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion.

  5. Self-Organized Criticality Systems

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-07-01

    Contents: (1) Introduction - Norma B. Crosby --- (2) Theoretical Models of SOC Systems - Markus J. Aschwanden --- (3) SOC and Fractal Geometry - R. T. James McAteer --- (4) Percolation Models of Self-Organized Critical Phenomena - Alexander V. Milovanov --- (5) Criticality and Self-Organization in Branching Processes: Application to Natural Hazards - Álvaro Corral, Francesc Font-Clos --- (6) Power Laws of Recurrence Networks - Yong Zou, Jobst Heitzig, Jürgen Kurths --- (7) SOC computer simolations - Gunnar Pruessner --- (8) SOC Laboratory Experiments - Gunnar Pruessner --- (9) Self-Organizing Complex Earthquakes: Scaling in Data, Models, and Forecasting - Michael K. Sachs et al. --- (10) Wildfires and the Forest-Fire Model - Stefan Hergarten --- (11) SOC in Landslides - Stefan Hergarten --- (12) SOC and Solar Flares - Paul Charbonneau --- (13) SOC Systems in Astrophysics - Markus J. Aschwanden ---

  6. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  7. De-alerting of U.S. nuclear forces: a critical appraisal

    SciTech Connect

    Bailey, K C; Barish, F

    1998-08-21

    Since the end of the Cold War, there have been pressures by disarmament advocates to move more quickly to draw down, toward zero, the number of nuclear weapons in U.S. and Russian arsenals. They criticize the process of negotiating arms control agreements as being too slow, and point out that treaty implementation is hampered by the necessity of ratification by the U.S. Senate and Russian Duma. One method of moving more rapidly toward nuclear abolition suggested by some analysts is de-alerting of nuclear-weapon delivery systems. De-alerting is defined as taking steps that increase significantly the time required to launch a given delivery vehicle armed with a nuclear warhead. Although there is little inclination by the U.S. Government to de-alert its nuclear forces at present, some academic literature and press stories continue to advocate such steps. This paper offers a critique of de-alerting proposals together with an assessment of the dangers of accidental, unauthorized, or unintended use of nuclear weapons. It concludes that de-alerting nuclear forces would be extremely de-stabilizing, principally because it would increase the value to an opponent of launching a first strike.

  8. Assessment of the adequacy of a criticality incident detection system

    SciTech Connect

    Cartwright, C.M.; Finnerty, M.D.

    1993-12-31

    The primary purpose of a criticality incident detection (CID) and alarm system is to minimize, by means of building evacuation, the radiation doses received by plant personnel. The adequacy of a CID systems installed in a nuclear plant within the UK was investigated. Results are described.

  9. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  10. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  11. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  12. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  13. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC...

  14. Upgraded NERVA systems: Enabler nuclear system

    NASA Technical Reports Server (NTRS)

    Farbman, Gerry

    1991-01-01

    The NERVA/Rover Enabler technology enables to go on a low risk, short-term program to meet the requirements of the Mars mission and maybe some lunar missions. The following subject areas are covered: NERVA technology - the foundation for tomorrow's space missions; NERVA/Rover reactor system test sequence; NERVA engine development program; nuclear thermal reactor capability based on many related Westinghouse technology programs; investment in Rover/Nerva technology; synergistic applications of NERVA technology; flow schematic of the NDR engine; the NERVA nuclear subsystem; and technology evolution.

  15. Supercritical Brayton Cycle Nuclear Power System Concepts

    SciTech Connect

    Wright, Steven A.

    2007-01-30

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  16. Supercritical Brayton Cycle Nuclear Power System Concepts

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  17. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  18. Preservation and Dissemination of the Hardcopy Documentation Portion of the NCSP Nuclear Criticality Bibliographic Database

    SciTech Connect

    Koponen, B L; Heinrichs, D

    2009-05-18

    The U.S. Department of Energy supports a nuclear criticality safety bibliographic internet database that contains approximately 15,000 records. We are working to ensure that a substantial portion of the corresponding hardcopy documents are preserved, digitized, and made available to criticality safety practitioners via the Nuclear Criticality Safety Program web site.

  19. Recent and proposed changes in criticality alarm system requirements

    SciTech Connect

    Putman, V.L.

    1998-09-01

    Various changes in criticality alarm system (CAS) requirements of American Nuclear Society (ANS) standards, US Department of Energy (DOE) orders, US Nuclear Regulatory Commission (NRC) regulations and guidance, and Occupational Safety and Health Administration (OSHA) standards or regulations were approved or proposed in the last 5 yr. Many changes interpreted or clarified existing requirements or accommodated technological or organizational developments. However, some changes could substantively affect CAS programs, including several changes originally thought to be editorial. These changes are discussed here.

  20. System model development for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-08-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  1. System model development for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  2. Critical Nuclear Charge for Two-electron Atoms

    NASA Astrophysics Data System (ADS)

    Estienne, C. S.; Drake, G. W. F.

    2014-05-01

    There has been a recent revival of interest in the critical nuclear charge Zc that is just sufficient to bind a nucleus of charge Z and two electrons in the 1s21 S ground state. It is conjectured that the inverse of critical charge is related to the radius of convergence 1 /Z* for a 1 / Z expansion of the energy of the form E (Z) =Z2 (E0 +E1 / Z +E2 /Z2 + ⋯) . We have performed high precision variational calculations in Hylleraas coordinates, using the double basis set method, for values of Z very close to Zc, with basis sets containing up to 2809 terms (Ω = 24). Our preliminary result is Zc = 0 . 911 028 224 077 260 (15) , corresponding to 1 /Zc = 1 . 097 660 833 738 555 (18) . Well-defined eigenvalues continue to appear for Z

  3. An imaging nuclear survey system

    SciTech Connect

    Redus, R.; Squillante, M.R.; Gordon, J.S.; Bennett, P.; Entine, G.; Knoll, G.; Wehe, D.; Guru, S.

    1995-12-31

    A combined video and gamma ray imaging system was developed to rapidly determine the location, distribution, and intensity of gamma ray sources. This instrument includes both a conventional video camera and a gamma ray imaging system based on a position sensitive PM tube, scintillator, and pinhole collimator. The gamma camera records position and energy of each interaction, determining the energy spectrum and count rate from each direction. We have used a prototype of this instrument in preliminary field test to image radioactive sources with {gamma} ray energies between 120 keV and 2.4 MeV. This system achieves an angular resolution for the nuclear image of 6{degree} with an efficiency of 3x10{sup -6} at 1 meter, which is suitable for many nuclear applications. Sensitivity is sufficiently high that, in a low background environment, a 1 mCi {sup 137}Cs source at 5 meters can be located in <30 seconds. Alternatively, higher spatial resolution can be attained at lower efficiency and longer imaging times.

  4. Hydrothermal mineralising systems as critical systems

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce

    2015-04-01

    Hydrothermal mineralising systems as critical systems. Bruce E Hobbs1,2, Alison Ord1 and Mark A. Munro1. 1. Centre for Exploration Targeting, The University of Western Australia, M006, 35 Stirling Highway, Crawley, WA 6009, Australia. 2. CSIRO Earth and Resource Engineering, Bentley, WA, Australia Hydrothermal mineralising systems are presented as large, open chemical reactors held far from equilibrium during their life-time by the influx of heat, fluid and dissolved chemical species. As such they are nonlinear dynamical systems and need to be analysed using the tools that have been developed for such systems. Hydrothermal systems undergo a number of transitions during their evolution and this paper focuses on methods for characterising these transitions in a quantitative manner and establishing whether they resemble first or second (critical) phase transitions or whether they have some other kind of nature. Critical phase transitions are characterised by long range correlations for some parameter characteristic of the system, power-law probability distributions so that there is no characteristic length scale and a high sensitivity to perturbations; as one approaches criticality, characteristic parameters for the system scale in a power law manner with distance from the critical point. The transitions undergone in mineralised hydrothermal systems are: (i) widespread, non-localised mineral alteration involving exothermic mineral reactions that produce hydrous silicate phases, carbonates and iron-oxides, (ii) strongly localised veining, brecciation and/or stock-work formation, (iii) a series of endothermic mineral reactions involving the formation of non-hydrous silicates, sulphides and metals such as gold, (iv) multiple repetitions of transitions (ii) and (iii). We have quantified aspects of these transitions in gold deposits from the Yilgarn craton of Western Australia using wavelet transforms. This technique is convenient and fast. It enables one to establish if

  5. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity

    SciTech Connect

    Meissner, Torsten B.; Li, Amy; Liu, Yuen-Joyce; Gagnon, Etienne; Kobayashi, Koichi S.

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

  6. Free nuclear precession gradiometer system

    SciTech Connect

    Hinton, G. F.

    1985-10-08

    A free nuclear precession gradiometer uses a fluid sample surrounded by a coil the fluid sample containing one or more nuclear species which display a magnetic moment. Current in the coil polarizes the nucleii, which when the current is abruptly terminated precess coherently about the earth's magnetic field. The exact frequency generated is a precise measure of the absolute value of the earth's magnetic field. The signal is in the form of a damped sinusoid with the rate of decay being a function of gradients in the ambient magnetic field. Two vector magnetometers are mounted rigidly on the sensor at the right angles to each other and to the earth's magnetic field. A servo system continuously orients the sensor in a two-axis gimbal system to reduce the output of the vector magnetometers to zero. The instrument is polarized, a counter is triggered to make the frequency measurement, and the signal is analyzed by determining the average amplitude of the signal over a precise interval of time. The result is simultaneous measurement of total intensity and total gradient.

  7. TECHNICAL BASIS FOR THE NUCLEAR CRITICALITY REPRESENTATIVE ACCIDENT & ASSOCIATED REPRESENTED HAZARDOUS CONDITIONS

    SciTech Connect

    GOETZ, T.G.

    2003-06-17

    This document was developed to support the documented safety analysis (DSA) and describes the process and basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. Revision 1 incorporates ORP IRT comments to enhance the technical presentation and also makes editorial changes. This technical basis document was developed to support the documented safety analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the frequency and consequence.

  8. Fieldable Nuclear Material Identification System

    SciTech Connect

    Radle, James E; Archer, Daniel E; Carter, Robert J; Mullens, James Allen; Mihalczo, John T; Britton Jr, Charles L; Lind, Randall F; Wright, Michael C

    2010-01-01

    The Fieldable Nuclear Material Identification System (FNMIS), funded by the NA-241 Office of Dismantlement and Transparency, provides information to determine the material attributes and identity of heavily shielded nuclear objects. This information will provide future treaty participants with verifiable information required by the treaty regime. The neutron interrogation technology uses a combination of information from induced fission neutron radiation and transmitted neutron imaging information to provide high confidence that the shielded item is consistent with the host's declaration. The combination of material identification information and the shape and configuration of the item are very difficult to spoof. When used at various points in the warhead dismantlement sequence, the information complimented by tags and seals can be used to track subassembly and piece part information as the disassembly occurs. The neutron transmission imaging has been developed during the last seven years and the signature analysis over the last several decades. The FNMIS is the culmination of the effort to put the technology in a usable configuration for potential treaty verification purposes.

  9. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and the power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  10. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  11. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and the power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  12. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect

    Sovie, R.J.; Bozek, J.M.

    1994-09-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  13. Nuclear criticality safety calculational analysis for small-diameter containers

    SciTech Connect

    LeTellier, M.S.; Smallwood, D.J.; Henkel, J.A.

    1995-11-01

    This report documents calculations performed to establish a technical basis for the nuclear criticality safety of favorable geometry containers, sometimes referred to as 5-inch containers, in use at the Portsmouth Gaseous Diffusion Plant. A list of containers currently used in the plant is shown in Table 1.0-1. These containers are currently used throughout the plant with no mass limits. The use of containers with geometries or material types other than those addressed in this evaluation must be bounded by this analysis or have an additional analysis performed. The following five basic container geometries were modeled and bound all container geometries in Table 1.0-1: (1) 4.32-inch-diameter by 50-inch-high polyethylene bottle; (2) 5.0-inch-diameter by 24-inch-high polyethylene bottle; (3) 5.25-inch-diameter by 24-inch-high steel can ({open_quotes}F-can{close_quotes}); (4) 5.25-inch-diameter by 15-inch-high steel can ({open_quotes}Z-can{close_quotes}); and (5) 5.0-inch-diameter by 9-inch-high polybottle ({open_quotes}CO-4{close_quotes}). Each container type is evaluated using five basic reflection and interaction models that include single containers and multiple containers in normal and in credible abnormal conditions. The uranium materials evaluated are UO{sub 2}F{sub 2}+H{sub 2}O and UF{sub 4}+oil materials at 100% and 10% enrichments and U{sub 3}O{sub 8}, and H{sub 2}O at 100% enrichment. The design basis safe criticality limit for the Portsmouth facility is k{sub eff} + 2{sigma} < 0.95. The KENO study results may be used as the basis for evaluating general use of these containers in the plant.

  14. Los Alamos personnel and area criticality dosimeter systems

    SciTech Connect

    Vasilik, D.G.; Martin, R.W.

    1981-06-01

    Fissionable materials are handled and processed at the Los Alamos National Laboratory. Although the probability of a nuclear criticality accident is very remote, it must be considered. Los Alamos maintains a broad spectrum of dose assessment capabilities. This report describes the methods employed for personnel neutron, area neutron, and photon dose evaluations with passive dosimetry systems.

  15. Nuclear criticality safety modeling of an LEU deposit

    SciTech Connect

    Haire, M.J.; Elam, K.R.; Jordan, W.C.; Dahl, T.L.

    1996-11-01

    The construction of the Oak Ridge Gaseous Diffusion Plant (now known as the K-25 Site) began during World War H and eventually consisted of five major process buildings: K-25, K-27, K-29, K-31, and K-33. The plant took natural (0.711% {sup 231}U) uranium as feed and processed it into both low-enriched uranium (LEU) and high-enriched uranium (HEU) with concentrations up to {approximately}93% {sup 231}U. The K-25 and K-27 buildings were shut down in 1964, but the rest of the plant produced LEU until 1985. During operation, inleakage of humid air into process piping and equipment caused reactions with gaseous uranium hexafluoride (UF{sub 6}) that produced nonvolatile uranyl fluoride (UO{sub 2}F{sub 2}) deposits. As part of shutdown, most of the uranium was evacuated as volatile UF{sub 6}. The UO{sub 2}F{sub 2} deposits remained. The U.S. Department of Energy has mitiated a program to unprove nuclear criticality safety by removing the larger enriched uranium deposits.

  16. Nuclear criticality safety program for environmental restoration projects

    SciTech Connect

    Marble, R.C.; Brown, T.D.

    1994-05-01

    The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center (FMPC), is located on a 1050 acre site approximately twenty miles northwest of Cincinnati, Ohio. The production area of the site covers approximately 136 acres in the central portion of the site. Surrounding the core production area is a buffer consisting of leased grazing land, reforested land, and unused areas. The uranium processing facility was designed and constructed in the early 1950s. During the period from 1952 to 1989 the site produced uranium feed material and uranium products used in the United States weapons complex. Production at the site ended in 1989, when the site was shut down for what was expected to be a short period of time. However, the FUTC was permanently shut down in 1991, and the site`s mission was changed from production to environmental restoration. The objective of this paper is to give an update on activities at the Fernald Site and to describe the Nuclear Criticality Safety issues that are currently being addressed.

  17. Validation of Nuclear Criticality Safety Software and 27 energy group ENDF/B-IV cross sections

    SciTech Connect

    Lee, B.L. Jr.

    1994-08-01

    The validation documented in this report is based on calculations that were executed during June through August 1992, and was completed in June 1993. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Martin Marietta Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM 3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. When the validation results are treated as a single group, there is 95% confidence that 99.9% of future calculations of similar critical systems will have a calculated K{sub eff} > 0.9616. Based on this result the Portsmouth Nuclear Criticality Safety Department has adopted the calculational acceptance criteria that a k{sub eff} + 2{sigma} {le} 0.95 is safety subcritical. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

  18. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  19. Progress report of the critical equipment monitoring system

    SciTech Connect

    Pantis, M.J.

    1984-05-01

    The Philadelphia Electric Company has contracted with Energy Data Systems to develop a Critical Equipment Monitoring System for its Peach Bottom Nuclear Plant. This computerized system is designed to acquire and maintain accurate and timely status information on plant equipment. It will provide auditable record of plant and equipment transactions. Positive equipment identification and location will be provided. Errors in complex logical checking will be minimized. This system should reduce operator loading and improve operator communicatin with the plant personnel. Phase I of this system was installed at Peach Bottom Nuclear Station May 1982. It provides the necessary hardware and software to do check-off lists on critical plant systems. This paper describes some of the start-up and operational problems encountered.

  20. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear...-5028, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants.'' In DG-5028... Control and Accounting Systems for Nuclear Power Plants.'' DATES: Submit comments by July 16, 2012...

  1. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  2. U.S. national nuclear material control and accounting system

    SciTech Connect

    Taylor, S; Terentiev, V G

    1998-12-01

    Issues related to nuclear material control and accounting and illegal dealing in these materials were discussed at the April 19--20, 1996 Moscow summit meeting (G7 + Russia). The declaration from this meeting reaffirmed that governments are responsible for the safety of all nuclear materials in their possession and for the effectiveness of the national control and accounting system for these materials. The Russian delegation at this meeting stated that ''the creation of a nuclear materials accounting, control, and physical protection system has become a government priority''. Therefore, in order to create a government nuclear material control and accounting system for the Russian Federation, it is critical to study the structure, operating principles, and regulations supporting the control and accounting of nuclear materials in the national systems of nuclear powers. In particular, Russian specialists have a definite interest in learning about the National Nuclear Material Control and Accounting System of the US, which has been operating successfully as an automated system since 1968.

  3. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  4. Multimegawatt nuclear power systems for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  5. Application of Nuclear Material Tracking System to nuclear materials control

    SciTech Connect

    Eggers, R.F.

    1989-11-01

    This paper briefly reviews the design concept of the Nuclear Material Tracking System, which is called NTRAK. Subsequently, it provides preliminary estimates of NTRAK detection capability for selected situations and outlines how NTRAK can be used to defend against the insider adversary attempting to steal special nuclear material (SNM). The NTRAK is a special assembly of gamma radiation detectors. The feature of NTRAK which makes it unique is its ability to direction-find and triangulate the position of localized sources of gamma radiation. This capability allows the nuclear safeguards system designer to develop material control procedures based on the position or motion of detected material. This capability was not previously available, because detection systems were unable to determine the direction from the detectors to the nuclear material being monitored. Other features of NTRAK that make it useful for nuclear material control include its abilities to (1) detect SNM at significant ranges from the detectors, (2) verify material quantity, (3) detect theft material traveling piggyback on authorized material, and (4) provide defense in depth against the adversary insider attempting to steal SNM.

  6. Regulatory aspects of nuclear criticality safety in Germany

    SciTech Connect

    Schweer, H.H.

    1996-12-31

    The Atomic Energy Act on the peaceful use of nuclear energy and of the protection against its hazards was Passed in the German parliament in 1959. One of the purposes of this act is {open_quotes}to promote the research, development and utilization of nuclear energy for peaceful purposes.{close_quotes} This act defines fissile nuclear material (Kernbrennstoffe) and lays down the conditions and responsibilities for licensing transportation, storage, and other nuclear facilities including reactors. Based on the Atomic Energy Act, the ordinance for radiation protection was passed in October 1976. This ordinance contains requirements concerning the handling and transport of radioactive materials and basic principles for radiation protection.

  7. Cultural Awareness in Nuclear Security Programs: A Critical Link

    SciTech Connect

    Nasser, Al-Sharif Nasser bin; Auda, Jasmine; Bachner, Katherine

    2016-11-20

    Nuclear security programs that offer training and capacity building opportunities to practitioners working in nuclear facilities play a central role in strengthening the global nuclear security architecture. There is often a significant divide, however, between both the development of these programs and their implementation, and between the programs’ intended and actual outcomes. This article argues that this disconnect can often be attributed to an absence of cultural awareness and an inability for internationally-designed programs to effectively resonate with local audiences. Furthermore, the importance of the role of cultural awareness in implementing nuclear security programs will be assessed, and its applications in the Jordanian context will be presented.

  8. Nuclear Space Power Systems Materials Requirements

    SciTech Connect

    Buckman, R.W. Jr.

    2004-02-04

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  9. Nuclear Space Power Systems Materials Requirements

    NASA Astrophysics Data System (ADS)

    Buckman, R. W.

    2004-02-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  10. A philosophy for space nuclear systems safety

    SciTech Connect

    Marshall, A.C.

    1992-08-01

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions.

  11. Experience with Nuclear Medicine Information System

    PubMed Central

    Volkan-Salanci, Bilge; Şahin, Figen; Babekoğlu, Vahide; Uğur, Ömer

    2012-01-01

    Objective: Radiology information system (RIS) is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS) that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven) and steps include, patient scheduling and retrieving information from HIS (hospital information system), radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex©) for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. Conflict of interest:None declared. PMID:23487446

  12. Experience with nuclear medicine information system.

    PubMed

    Volkan-Salanci, Bilge; Sahin, Figen; Babekoğlu, Vahide; Uğur, Omer

    2012-12-01

    Radiology information system (RIS) is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS) that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Workflow in NMIS uses HL7 (health level seven) and steps include, patient scheduling and retrieving information from HIS (hospital information system), radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex©) for reprocessing and quantitative analysis. NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. None declared.

  13. Nuclear criticality safety assessment of the proposed CFC replacement coolants

    SciTech Connect

    Jordan, W.C.; Dyer, H.R.

    1993-12-01

    The neutron multiplication characteristics of refrigerant-114 (R-114) and proposed replacement coolants perfluorobutane (C{sub 4}F{sub 10}) and cycloperfluorobutane C{sub 4}F{sub 8}) have been compared by evaluating the infinite media multiplication factors of UF{sub 6}/H/coolant systems and by replacement calculations considering a 10-MW freezer/sublimer. The results of these comparisons demonstrate that R-114 is a neutron absorber, due to its chlorine content, and that the alternative fluorocarbon coolants are neutron moderators. Estimates of critical spherical geometries considering mixtures of UF{sub 6}/HF/C{sub 4}F{sub 10} indicate that the flourocarbon-moderated systems are large compared with water-moderated systems. The freezer/sublimer calculations indicate that the alternative coolants are more reactive than R-114, but that the reactivity remains significantly below the condition of water in the tubes, which was a limiting condition. Based on these results, the alternative coolants appear to be acceptable; however, several follow-up tasks have been recommended, and additional evaluation will be required on an individual equipment basis.

  14. Critical experiments analysis by ABBN-90 constant system

    SciTech Connect

    Tsiboulia, A.; Nikolaev, M.N.; Golubev, V.

    1997-06-01

    The ABBN-90 is a new version of the well-known Russian group-constant system ABBN. Included constants were calculated based on files of evaluated nuclear data from the BROND-2, ENDF/B-VI, and JENDL-3 libraries. The ABBN-90 is intended for the calculation of different types of nuclear reactors and radiation shielding. Calculations of criticality safety and reactivity accidents are also provided by using this constant set. Validation of the ABBN-90 set was made by using a computerized bank of evaluated critical experiments. This bank includes the results of experiments conducted in Russia and abroad of compact spherical assemblies with different reflectors, fast critical assemblies, and fuel/water-solution criticalities. This report presents the results of the calculational analysis of the whole collection of critical experiments. All calculations were produced with the ABBN-90 group-constant system. Revealed discrepancies between experimental and calculational results and their possible reasons are discussed. The codes and archives INDECS system is also described. This system includes three computerized banks: LEMEX, which consists of evaluated experiments and their calculational results; LSENS, which consists of sensitivity coefficients; and LUND, which consists of group-constant covariance matrices. The INDECS system permits us to estimate the accuracy of neutronics calculations. A discussion of the reliability of such estimations is finally presented. 16 figs.

  15. Critical areas: Satellite power systems concepts

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Critical Areas are defined and discussed in the various areas pertinent to satellite power systems. The presentation is grouped into five areas (General, Space Systems, Solar Energy Conversion, Microwave Systems, and Environment/Ecology) with a sixth area (Power Relay) considered separately in an appendix. Areas for Future Consideration as critical areas are discussed in a second appendix.

  16. Consideration of criticality in a nuclear waste repository

    SciTech Connect

    Rechard, R.P.; Sanchez, L.C.; Stockman, C.T.; Ramsey, J.L. Jr.; Martell, M.

    1995-07-01

    The preliminary criticality analysis that was done suggests that the possibility of achieving critical conditions cannot be easily ruled out without looking at the geochemical process of assembly or the dynamics of the operation of a critical assembly. The evaluation of a critical assembly requires an integrated, consistent approach that includes evaluating the following: (1) the alteration rates of the layers of the container and spent fuel, (2) the transport of fissile material or neutron absorbers, and (3) the assembly mechanisms that can achieve critical conditions. The above is a non-trivial analysis and preliminary work suggests that with the loading assumed, enough fissile mass will leach from the HEU multi-purpose canisters to support a criticality. In addition, the consequences of an unpressurized Oklo type criticality would be insignificant to the performance of an unsaturated, tuff repository.

  17. Cultural Awareness in Nuclear Security Programs: A Critical Link

    DOE PAGES

    Nasser, Al-Sharif Nasser bin; Auda, Jasmine; Bachner, Katherine

    2016-11-20

    Nuclear security programs that offer training and capacity building opportunities to practitioners working in nuclear facilities play a central role in strengthening the global nuclear security architecture. There is often a significant divide, however, between both the development of these programs and their implementation, and between the programs’ intended and actual outcomes. This article argues that this disconnect can often be attributed to an absence of cultural awareness and an inability for internationally-designed programs to effectively resonate with local audiences. Furthermore, the importance of the role of cultural awareness in implementing nuclear security programs will be assessed, and its applicationsmore » in the Jordanian context will be presented.« less

  18. Training and qualification program for nuclear criticality safety technical staff. Revision 1

    SciTech Connect

    Taylor, R.G.; Worley, C.A.

    1997-03-05

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. All personnel who are to perform nuclear criticality safety technical work are required to participate in the program. The program includes both general nuclear criticality safety and plant specific knowledge components. Advantage can be taken of previous experience for that knowledge which is portable such as performance of computer calculations. Candidates step through a structured process which exposes them to basic background information, general plant information, and plant specific information which they need to safely and competently perform their jobs. Extensive documentation is generated to demonstrate that candidates have met the standards established for qualification.

  19. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  20. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  1. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  2. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  3. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  4. ANSI/ANS-8.23-1997: nuclear criticality accident emergency planning and response.

    SciTech Connect

    Baker, J. S.

    2004-01-01

    American National Standard ANSUANS-8.23 was developed to expand upon the basic emergency response guidance given in American National Standard, 'Administrative Practices for Nuclear Criticality Safety' ANSI/ANS-8.19-1996 (Ref. 1). This standard provides guidance for minimizing risks to personnel during emergency response to a nuclear criticality accident outside reactors. This standard is intended to apply to those facilities for which a criticality accident alarm system, as specified in American National Standard, 'Criticality Accident Alarm System', ANSI/ANS-8.3-1997 (Ref. 2) is in use. The Working Group was established in 1990, with Norman L. Pruvost as chairman. The Working Group had up to twenty-three members representing a broad range of the nuclear industry, and has included members from Canada, Japan and the United Kingdom. The initial edition of ANSI/ANS-8.23 was approved by the American National Standards Institute on December 30, 1997. It provides guidance for the following topics: (1) Management and technical staff responsibilities; (2) Evaluation of a potential criticality accident; (3) Emergency plan provisions; (4) Evacuation; (5) Re-entry, rescue and stabilization; and (6) Classroom training, exercises and evacuation drills. This guidance is not for generic emergency planning issues, but is specific to nuclear criticality accidents. For example, it assumes that an Emergency Plan is already established at facilities that implement the standard. During the development of the initial edition of ANSI/ANS-8.23, each Working Group member evaluated potential use of the standard at a facility with which the member was familiar. This revealed areas where a facility could have difficulty complying with the standard. These reviews helped identify and eliminate many potential problems and ambiguities with the guidance. The Working Group has received very limited feedback from the user community since the first edition of the standard was published. Suggestions

  5. Magnon-induced nuclear relaxation in the quantum critical region of a Heisenberg linear chain

    NASA Astrophysics Data System (ADS)

    Hoch, M. J. R.

    2017-07-01

    The low-temperature properties of spin-1/2 one-dimensional (1D) Heisenberg antiferromagnetic (HAF) chains which have relatively small exchange couplings between the spins can be tuned using laboratory-scale magnetic fields. Magnetization measurements, made as a function of temperature, provide phase diagrams for these systems and establish the quantum critical point (QCP). The evolution of the spin dynamics behavior with temperature and applied field in the quantum critical (QC) region, near the QCP, is of particular interest and has been experimentally investigated in a number of 1D HAFs using neutron scattering and nuclear magnetic resonance as the preferred techniques. In the QC phase both quantum and thermal spin fluctuations are present. As a result of extended spin correlations in the chains, magnon excitations are important at finite temperatures. An expression for the NMR spin-lattice relaxation rate 1 /T1 of probe nuclei in the QC phase of 1D HAFs is obtained by considering Raman scattering processes which induce nuclear spin flips. The relaxation rate expression, which involves the temperature and the chemical potential, predicts scaling behavior of 1 /T1 consistent with recent experimental findings for quasi-1D HAF systems. A simple relationship between 1 /T1 and the deviation of the magnetization from saturation (MS-M ) is predicted for the QC region.

  6. Improbability of igneous intrusion promoting a critical event in spent nuclear fuel disposed in unsaturated tuff.

    PubMed

    Rechard, Rob P; Tierney, Martin S

    2005-08-01

    In their regulations, the U.S. Environmental Protection Agency and the U.S. Nuclear Regulatory Commission permit the omission of features, events, or processes with probabilities of <10(-4) in 10(4) yr (e.g., a constant frequency of <10(-8) per yr) in assessments of the performance of radioactive waste disposal systems. Igneous intrusion (or "volcanism") of a geologic repository at Yucca Mountain for radioactive waste is one disruptive event that has a probability with a range of uncertainty that straddles this regulatory criterion and is considered directly in performance assessment calculations. A self-sustained nuclear chain reaction (or "criticality") is another potentially disruptive event to consider, although it was never found to be important when evaluating the efficacy of radioactive waste disposal since the early 1970s. The thesis of this article is that the consideration of the joint event--volcanism and criticality--occurring in any 10,000-year period following closure can be eliminated from performance calculations at Yucca Mountain. The probability of the joint event must be less than the fairly well-accepted but low probability of volcanism. Furthermore, volcanism does not "remove" or "fail" existing hydrologic or geochemical constraints at Yucca Mountain that tend to prevent concentration of fissile material. Prior to general corrosion failure of waste packages, the mean release of fissile mass caused by a low-probability, igneous intrusive event is so small that the probability of a critical event is remote, even for highly enriched spent nuclear fuel owned by the U.S. Department of Energy. After widespread failure of packages occurs, the probability of the joint event is less than the probability of criticality because of the very small influence of volcanism on the mean fissile mass release. Hence, volcanism plays an insignificant role in inducing criticality over any 10(4)-yr period. We also argue that the Oklo reactors serve as a natural

  7. Nuclear criticality safety calculations for a K-25 site vacuum cleaner

    SciTech Connect

    Shor, J.T.; Haire, M.J.

    1997-02-01

    A modified Nilfisk model GSJ dry vacuum cleaner is used throughout the K-25 Site to collect dry forms of highly enriched uranium (HEU). When vacuuming, solids are collected in a cyclone-type separator vacuum cleaner body. Calculations were done with the SCALE (KENO V.a) computer code to establish conditions at which a nuclear criticality event might occur if the vacuum cleaner was filled with fissile solution. Conditions evaluated included full (12-in. water) reflection and nominal (1-in. water) reflection, and full (100%) and 20% {sup 235}U enrichment. Validation analyses of SCALE/KENO and the SCALE 27-group cross sections for nuclear criticality safety applications indicate that a calculated k{sub eff} + 2{sigma} < 0.9605 may be considered safely subcritical. Thus, a system with a calculated k{sub eff} + 2{sigma} {ge} 0.9605 is considered unsafe and may be critical. Critical conditions were calculated to be 70 g U/L for 100% {sup 235}U and full 12-in. water reflection. This corresponds to a minimum critical mass of approximately 1,400 g {sup 235}U for the approximate 20.0-L volume of the vacuum cleaner. The actual volume of the vacuum cleaner is smaller than the modeled volume because some internal materials of construction were assumed to be fissile solution. The model was an overestimate, for conservatism, of fissile solution occupancy. At nominal reflection conditions, the critical concentration in a vacuum cleaner full of UO{sub 2}F{sub 2} solution was calculated to be 100 g{sup 235}U/L, or 2,000 g mass of 100% {sup 235}U. At 20% {sup 235}U for the 20.0-L volume of the vacuum cleaner. At 15% {sup 235}U enrichment and full reflection, critical conditions were not reached at any possible concentration of uranium as a uranyl fluoride solution. At 17.5% {sup 235}U enrichment, criticality was reached at approximately 1,300 g U/L which is beyond saturation at 25 C.

  8. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear... Accounting Systems for Nuclear Power Plants.'' This regulatory guide provides guidance on recordkeeping and reporting requirements with respect to material control and accounting. This guide applies to all nuclear...

  9. Nuclear power propulsion system for spacecraft

    NASA Astrophysics Data System (ADS)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  10. Nuclear Power Sources for Space Systems

    NASA Astrophysics Data System (ADS)

    Kukharkin, N. E.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    This chapter contains the information about nuclear power sources for space systems. Reactor nuclear sources are considered that use the energy of heavy nuclei fission generated by controlled chain fission reaction, as well as the isotope ones producing heat due to the energy of nuclei radioactive decay. Power of reactor nuclear sources is determined by the rate of heavy nuclei fission that may be controlled within a wide range from the zero up to the nominal one. Thermal power of isotope sources cannot be controlled. It is determined by the type and quantity of isotopes and decreases in time due to their radioactive decay. Both, in the reactor sources and in the isotope ones, nuclear power is converted into the thermal one that may be consumed for the coolant heating to produce thrust (Nuclear Power Propulsion System, NPPS) or may be converted into electricity (Nuclear Power Source, NPS) dynamically (a turbine generator) or statically (thermoelectric or thermionic converters). Electric power is supplied to the airborne equipment or is used to produce thrust in electric (ionic, plasma) low-thrust engines. A brief description is presented of the different nuclear systems with reactor and isotopic power sources implemented in Russia and the USA. The information is also given about isotopic sources for the ground-based application, mainly for navigation systems.

  11. Dual mode nuclear rocket system applications.

    NASA Technical Reports Server (NTRS)

    Boretz, J. E.; Bell, J. M.; Plebuch, R. K.; Priest, C. C.

    1972-01-01

    Mission areas where the dual-mode nuclear rocket system is superior to nondual-mode systems are demonstrated. It is shown that the dual-mode system is competitive with the nondual-mode system even for those specific missions and particular payload configurations where it does not have a clear-cut advantage.

  12. Critical infrastructure systems of systems assessment methodology.

    SciTech Connect

    Sholander, Peter E.; Darby, John L.; Phelan, James M.; Smith, Bryan; Wyss, Gregory Dane; Walter, Andrew; Varnado, G. Bruce; Depoy, Jennifer Mae

    2006-10-01

    Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies that separately consider physical security and cyber security. This research has developed a risk assessment methodology that explicitly accounts for both physical and cyber security, while preserving the traditional security paradigm of detect, delay, and respond. This methodology also accounts for the condition that a facility may be able to recover from or mitigate the impact of a successful attack before serious consequences occur. The methodology uses evidence-based techniques (which are a generalization of probability theory) to evaluate the security posture of the cyber protection systems. Cyber threats are compared against cyber security posture using a category-based approach nested within a path-based analysis to determine the most vulnerable cyber attack path. The methodology summarizes the impact of a blended cyber/physical adversary attack in a conditional risk estimate where the consequence term is scaled by a ''willingness to pay'' avoidance approach.

  13. Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    SciTech Connect

    Marshall, William BJ J; Wagner, John C

    2012-01-01

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., <40 years). Extended storage (ES) time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k{sub eff}. Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

  14. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    SciTech Connect

    Rathbun, R.

    1994-04-26

    Review of NMP-NCS-94-0087, ``Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,`` was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion.

  15. Safe, Affordable, Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  16. Decontamination of nuclear systems at the Grand Gulf Nuclear Station

    SciTech Connect

    Weed, R.D.; Baker, K.R.

    1996-12-31

    Early in 1994 Management at the Grand Gulf Nuclear Station realized that a potential decontamination of several reactor systems was needed to maintain the commitments to the {open_quotes}As Low As Reasonably Achievable{close_quotes} (ALARA) program. There was a substantial amount of planned outage work required to repair and replace some internals in loop isolation valves and there were inspections and other outage work that needed to be accomplished as it had been postponed from previous outages because of the radiation exposure levels in and around the system equipment. Management scheduled for the procurement specification to be revised to incorporate additional boundary areas which had not been previously considered. The schedule included the period for gathering bids, awarding a contract, and reviewing the contractor`s procedures and reports and granting approval for the decontamination to proceed during the upcoming outage. In addition to the reviews required by the engineering group for overall control of the process, the plant system engineers had to prepare procedures at the system level to provide for a smooth operation to be made during the decontamination of the systems. The system engineers were required to make certain that the decontamination fluids would be contained within the systems being decontaminated and that they would not cross contaminate any other system not being decontaminated. Since these nuclear stations do not have the provisions for decontaminating these systems with using additional equipment, the equipment required is furnished by the contractor as skid mounted packaged units which can be moved into the area, set up near the system being decontaminated, and after the decontamination is completed, the skid mounted packages are removed as part of the contract. Figure 1 shows a typical setup in block diagram required to perform a reactor system decontamination. 1 fig.

  17. Comparison of Two Approaches for Nuclear Data Uncertainty Propagation in MCNPX for Selected Fast Spectrum Critical Benchmarks

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Rochman, D.; Vasiliev, A.; Ferroukhi, H.; Wieselquist, W.; Pautz, A.

    2014-04-01

    Nuclear data uncertainty propagation based on stochastic sampling (SS) is becoming more attractive while leveraging modern computer power. Two variants of the SS approach are compared in this paper. The Total Monte Carlo (TMC) method by the Nuclear Research and Consultancy Group (NRG) generates perturbed ENDF-6-formatted nuclear data by varying nuclear reaction model parameters. At Paul Scherrer Institute (PSI) the Nuclear data Uncertainty Stochastic Sampling (NUSS) system generates perturbed ACE-formatted nuclear data files by applying multigroup nuclear data covariances onto pointwise ACE-formatted nuclear data. Uncertainties of 239Pu and 235U from ENDF/B-VII.1, ZZ-SCALE6/COVA-44G and TENDL covariance libraries are considered in NUSS and propagated in MCNPX calculations for well-studied Jezebel and Godiva fast spectrum critical benchmarks. The corresponding uncertainty results obtained by TMC are compared with NUSS results and the deterministic Sensitivity/Uncertainty method of TSUNAMI-3D from SCALE6 package is also applied to serve as a separate verification. The discrepancies in the propagated 239Pu and 235U uncertainties due to method and covariance differences are discussed.

  18. Improving US Theater Nuclear Doctrine. A Critical Analysis,

    DTIC Science & Technology

    1983-01-01

    various intermediate commands to the NCA and back down again. US doctrine expects this proc- ess to consume 24 hours. Other processes such as weapons... secondhand or thirdhand. He then lacks responsiveness to deal with changes there. 11 US Doctrine Has a Defensive Bias. The defensive bias of US nuclear...to reduce procurement time by purchasing commercial items. While these purchases offer savings both in time and money, the equipment design and

  19. Computer Resources Handbook for Flight Critical Systems.

    DTIC Science & Technology

    1985-01-01

    in avionic systems are suspected of being due to software. In a study of software reliability for digital flight controls conducted by SoHaR for the...aircraft and flight crew -- the use of computers in flight critical applications. Special reliability and fault tolerance (RAFT) techniques are being Used...tolerance in flight critical systems. Conventional reliability techniques and analysis and reliability improvement techniques at the system level are

  20. The ORSphere Benchmark Evaluation and Its Potential Impact on Nuclear Criticality Safety

    SciTech Connect

    John D. Bess; Margaret A. Marshall; J. Blair Briggs

    2013-10-01

    In the early 1970’s, critical experiments using an unreflected metal sphere of highly enriched uranium (HEU) were performed with the focus to provide a “very accurate description…as an ideal benchmark for calculational methods and cross-section data files.” Two near-critical configurations of the Oak Ridge Sphere (ORSphere) were evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook). The results from those benchmark experiments were then compared with additional unmoderated and unreflected HEU metal benchmark experiment configurations currently found in the ICSBEP Handbook. For basic geometries (spheres, cylinders, and slabs) the eigenvalues calculated using MCNP5 and ENDF/B-VII.0 were within 3 of their respective benchmark values. There appears to be generally a good agreement between calculated and benchmark values for spherical and slab geometry systems. Cylindrical geometry configurations tended to calculate low, including more complex bare HEU metal systems containing cylinders. The ORSphere experiments do not calculate within their 1s uncertainty and there is a possibility that the effect of the measured uncertainties for the GODIVA I benchmark may need reevaluated. There is significant scatter in the calculations for the highly-correlated ORCEF cylinder experiments, which are constructed from close-fitting HEU discs and annuli. Selection of a nuclear data library can have a larger impact on calculated eigenvalue results than the variation found within calculations of a given experimental series, such as the ORCEF cylinders, using a single nuclear data set.

  1. Manned space flight nuclear system safety. Voluem 5: Nuclear system safety guidelines. Part 2: Space shuttle/nuclear payloads safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  2. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  3. Criticality Safety Analysis Of As-loaded Spent Nuclear Fuel Casks

    SciTech Connect

    Banerjee, Kaushik; Scaglione, John M

    2015-01-01

    The final safety analysis report (FSAR) or the safety analysis report (SAR) for a particular spent nuclear fuel (SNF) cask system documents models and calculations used to demonstrate that a system meets the regulatory requirements under all normal, off-normal, and accident conditions of spent fuel storage, and normal and accident conditions of transportation. FSAR/SAR calculations and approved content specifications are intended to be bounding in nature to certify cask systems for a variety of fuel characteristics with simplified SNF loading requirements. Therefore, in general, loaded cask systems possess excess and uncredited criticality margins (i.e., the difference between the licensing basis and the as-loaded calculations). This uncredited margin could be quantified by employing more detailed cask-specific evaluations that credit the actual as-loaded cask inventory, and taking into account full (actinide and fission product) burnup credit. This uncredited criticality margin could be potentially used to offset (1) uncertainties in the safety basis that needs to account for the effects of system aging during extended dry storage prior to transportation, and (2) increases in SNF system reactivity over a repository performance period (e.g., 10,000 years or more) as the system undergoes degradation and internal geometry changes. This paper summarizes an assessment of cask-specific, as-loaded criticality margins for SNF stored at eight reactor sites (215 loaded casks were analyzed) under fully flooded conditions to assess the margins available during transportation after extended storage. It is observed that the calculated keff margin varies from 0.05 to almost 0.3 Δkeff for the eight selected reactor sites, demonstrating that significant uncredited safety margins are present. In addition, this paper evaluates the sufficiency of this excess margin in applications involving direct disposal of currently loaded SNF casks.

  4. Nuclear Materials Identification System Operational Manual

    SciTech Connect

    Chiang, L.G.

    2001-04-10

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  5. Application of Diagnostic/Prognostic Methods to Critical Equipment for the Spent Nuclear Fuel Cleanup Program

    SciTech Connect

    Casazza, Lawrence O.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Wallace, Dale E.

    2002-02-28

    The management of the Spent Nuclear Fuel (SNF) project at the Hanford K-Basin in the 100 N Area has successfully restructured the preventive maintenance, spare parts inventory requirements, and the operator rounds data requirements. In this investigation, they continue to examine the different facets of the operations and maintenance (O&M) of the K-Basin cleanup project in search of additional reliability and cost savings. This report focuses on the initial findings of a team of PNNL engineers engaged to identify potential opportunities for reducing the cost of O&M through the application of advanced diagnostics (fault determination) and prognostics (residual life/reliability determination). The objective is to introduce predictive technologies to eliminate or reduce high impact equipment failures. The PNNL team in conjunction with the SNF engineers found the following major opportunities for cost reduction and/or enhancing reliability: (1) Provide data routing and automated analysis from existing detection systems to a display center that will engage the operations and engineering team. This display will be operator intuitive with system alarms and integrated diagnostic capability. (2) Change operating methods to reduce major transients induced in critical equipment. This would reduce stress levels on critical equipment. (3) Install a limited sensor set on failure prone critical equipment to allow degradation or stressor levels to be monitored and alarmed. This would provide operators and engineers with advance guidance and warning of failure events. Specific methods for implementation of the above improvement opportunities are provided in the recommendations. They include an Integrated Water Treatment System (IWTS) decision support system, introduction of variable frequency drives on certain pump motors, and the addition of limited diagnostic instrumentation on specified critical equipment.

  6. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    Not Available

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  7. SPENT NUCLEAR FUEL NUMBER DENSITIES FOR MULTI-PURPOSE CANISTER CRITICALITY CALCULATIONS

    SciTech Connect

    D. A. Thomas

    1996-01-12

    The purpose of this analysis is to calculate the number densities for spent nuclear fuel (SNF) to be used in criticality evaluations of the Multi-Purpose Canister (MPC) waste packages. The objective of this analysis is to provide material number density information which will be referenced by future MPC criticality design analyses, such as for those supporting the Conceptual Design Report.

  8. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect

    Ronald E. Mizia

    2011-10-01

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  9. ENRICO FERMI FAST REACTOR SPENT NUCLEAR FUEL CRITICALLY CALCULATIONS: INTACT MODE

    SciTech Connect

    A.S. Mobasheran

    1999-04-12

    The purpose of this calculation is to perform intact mode and partially degraded mode criticality evaluations of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) co-disposed in a 5 Defense High-Level Waste (5-DHLW) Waste Package (WP) and emplaced in a Monitored Geologic Repository (MGR). The criticality evaluations estimate the values of the effective neutron multiplication factor, k{sub eff}, a measure of nuclear criticality potential, for the 5-DHLW/DOE SNF WP with intact or partially degraded internal configurations. These evaluations contribute to the WP design.

  10. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    SciTech Connect

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  11. New Neutron Cross-Section Measurements at ORELA for Improved Nuclear Criticality Calculations

    SciTech Connect

    Guber, Klaus H; Leal, Luiz C; Sayer, Royce O; Koehler, Paul Edward; Valentine, Timothy E; Derrien, Herve; Harvey, John A

    2005-05-01

    Many older neutron cross-section evaluations from libraries such as ENDF/B-VI or JENDL-3.2 exhibit deficiencies or do not cover energy ranges that are important for criticality safety applications. These deficiencies may occur in the resolved and unresolved-resonance regions. Consequently, these evaluated data may not be adequate for nuclear criticality calculations where effects such as self-shielding, multiple scattering, or Doppler broadening are important. To support the Nuclear Criticality Predictability Program, neutron cross-section measurements have been initiated at the Oak Ridge Electron Linear Accelerator (ORELA). ORELA is the only high-power white neutron source with excellent time resolution still operating in the United States. It is ideally suited to measure fission, neutron total, and capture cross sections in the energy range from 1 eV to {approx}600 keV, which is important for many nuclear criticality safety applications.

  12. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Thermodynamic data management system for nuclear waste disposal performance assessment

    SciTech Connect

    Phillips, S.L.; Hale, F.V.; Siegel, M.D.

    1988-04-01

    Thermodynamic property values for use in assessing the performance of a nuclear waste repository are described. More emphasis is on a computerized data base management system which facilitates use of the thermodynamic data in sensitivity analysis and other studies which critically assess the performance of disposal sites. Examples are given of critical evaluation procedures; comparison of apparent equilibrium constants calculated from the data base, with other work; and of correlations useful in estimating missing values of both free energy and enthalpy of formation for aqueous species. 49 refs., 11 figs., 6 tabs.

  17. Gain and Lasing in Nuclear Excited Excimer Laser Systems.

    DTIC Science & Technology

    1981-04-24

    sources. The most advantageous volumetric nuclear excitation source is UF If enriched UF could be used as a pump source, a self- critical NPL could be...3 lower laser state by nuclear excitation and gas heating or by quenching of the upper laser state by UF6 and other species. Most NPLs demonstrated...induced effects, the loss in power density may be more critical than any nuclear considerations.I * Direct nuclear pumping of XeF excimer lasers has been

  18. Space exploration with nuclear propulsion systems

    SciTech Connect

    Venetoklis, P.

    1994-12-31

    One of the greatest obstacles to the human exploration of space has been the physical limit in the efficiency of chemical propulsion systems. Chemical propulsion has been a mature technology for decades, and efficiency improvements over this time span have amounted to only a few percent. The limits of chemical propulsion have forced the space exploration community to develop other strategies for overcoming the strictures imposed by gravity in their exploration pursuits. These strategies have their own limits and invariably result in increased costs and mission time. Nuclear propulsion does not face the same physical limitations as chemical propulsion. Nuclear thermal propulsion (NTP) systems generate twice the efficiency of the best modern chemical systems, and nuclear electric propulsion (NEP) systems promise efficiencies 10 to 20 times that of chemical propulsion. These dramatic improvements provide mission planners with such an enormous leap in capability that the full range of possibilities has yet to be identified. This paper identifies the range of missions identified to date that benefit from nuclear propulsion, attempts to quantify the benefits, and discusses issues associated with the incorporation of nuclear propulsion into spacecraft.

  19. Review of Nuclear Thermal Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Gabrielli, Roland Antonius; Herdrich, Georg

    2015-11-01

    This article offers a summary of past efforts in the development of Nuclear Thermal Propulsion systems for space transportation. First, the generic principle of thermal propulsion is outlined: a propellant is directly heated by a power source prior to being expanded which creates a thrusting force on the rocket. This enables deriving a motivation for the use of Nuclear Thermal Propulsion (NTP) relying on nuclear power sources. Then, a summary of major families of NTP systems is established on the basis of a literature survey. These families are distinguished by the nature of their power source, the most important being systems with radioisotope, fission, and fusion cores. Concepts proposing to harness the annihilation of matter and anti-matter are only touched briefly due to their limited maturity. For each family, an overview of physical fundamentals, technical concepts, and - if available - tested engines' propulsion parameters is given.

  20. Bimodality: a sign of critical behavior in nuclear reactions.

    PubMed

    Le Fèvre, A; Aichelin, J

    2008-02-01

    The recently discovered coexistence of multifragmentation and residue production for the same total transverse energy of light charged particles, which has been dubbed bimodality like it has been introduced in the framework of equilibrium thermodynamics, can be well reproduced in numerical simulations of heavy ion reactions. A detailed analysis shows that fluctuations (introduced by elementary nucleon-nucleon collisions) determine which of the exit states is realized. Thus, we can identify bifurcation in heavy ion reactions as a critical phenomenon. Also the scaling of the coexistence region with beam energy is well reproduced in these results from the quantum molecular dynamics simulation program.

  1. Remote nuclear screening system for hostile environments

    SciTech Connect

    Addleman, R.S.; Beck, M.A.; Blewett, G.R.; Selle, E.R.; McClellan, C.S.; Dodd, D.A.; Troyer, G.L.; Keele, B.D.

    1996-02-27

    A remote measurement system has been constructed for in situ gamma and beta isotopic characterization of highly radioactive nuclear material in hostile environments. A small collimated, planar CdZnTe detector is used for gamma-ray spectroscopy. Spectral resolution of 2% full width at half maximum at 662 kiloelectronvolts has been obtained remotely using rise time compensation and limited pulse shape discrimination, Isotopc measurement of high-energy beta emitters was accomplished with a ruggedized, deeply depleted, surface barrier silicon dictator. The primary function of the remote nuclear screening system is to provide fast qualitative and quantitative isotopic assessment of high-level radioactive material.

  2. Review of Current Nuclear Vacuum System Technologies

    SciTech Connect

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  3. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    SciTech Connect

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.

  4. Formal methods in the development of safety critical software systems

    SciTech Connect

    Williams, L.G.

    1991-11-15

    As the use of computers in critical control systems such as aircraft controls, medical instruments, defense systems, missile controls, and nuclear power plants has increased, concern for the safety of those systems has also grown. Much of this concern has focused on the software component of those computer-based systems. This is primarily due to historical experience with software systems that often exhibit larger numbers of errors than their hardware counterparts and the fact that the consequences of a software error may endanger human life, property, or the environment. A number of different techniques have been used to address the issue of software safety. Some are standard software engineering techniques aimed at reducing the number of faults in a software protect, such as reviews and walkthroughs. Others, including fault tree analysis, are based on identifying and reducing hazards. This report examines the role of one such technique, formal methods, in the development of software for safety critical systems. The use of formal methods to increase the safety of software systems is based on their role in reducing the possibility of software errors that could lead to hazards. The use of formal methods in the development of software systems is controversial. Proponents claim that the use of formal methods can eliminate errors from the software development process, and produce programs that are probably correct. Opponents claim that they are difficult to learn and that their use increases development costs unacceptably. This report discusses the potential of formal methods for reducing failures in safety critical software systems.

  5. Criticality benchmark calculations using PARTISN: Comparisons using MENDF5 and MENDF6 nuclear data libraries.

    SciTech Connect

    Ellis, Ronald J.; Yugo, James J.; Frankle, S. C.; Little, R. C.

    2003-01-01

    A project was undertaken to assess the MENDF5 and MENDF6 nuclear data libraries through the analysis of 86 critical assembly benchmarks using the LANL discrete ordinates transport code PARTISN. As an initial analysis of the effects of some limitations in the MENDF libraries, this current work assesses differences in k,,a calculations between the PARTISN cases (with MENDF5 and MENDF6 nuclear data libraries) and MCNP cases, and compares these results to the experimental data.

  6. Potential civil mission applications for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Beatty, R. G. G.

    1985-01-01

    It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.

  7. Critical care nursing: Embedded complex systems.

    PubMed

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  8. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility

    SciTech Connect

    Rathbun, R.

    1993-10-01

    Separate review of NMP-NCS-930058, {open_quotes}Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility (U), August 17, 1993,{close_quotes} was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility`s Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2{times}2{times}1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion.

  9. Warm unstable asymmetric nuclear matter: Critical properties and the density dependence of the symmetry energy

    NASA Astrophysics Data System (ADS)

    Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.

    2017-05-01

    The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.

  10. Space nuclear system expansion joints

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazki, T. T.

    1973-01-01

    The engineering, design, and fabrication status of the expansion joint unit (EJU) to be employed in the NaK primary coolant piping loop of the 5-kwe Reactor thermoelectric system are described. Four EJU's are needed in the NaK primary coolant piping loop. The four EJU's which will be identical, utilize bellows as the flexing member, are hermetically sealed, and provide double containment. The bellows are of a nested-formed design, and are to be constructed of 1-ply thickness of 0.010-in. Inconel 718. The EJU's provide a minimum piping load margin of safety of +0.22.

  11. Validation study for crediting chlorine in criticality analyses for spent nuclear fuel disposition

    SciTech Connect

    Sobes, Vladimir; Scaglione, John M; Wagner, John C; Dunn, Michael E

    2015-01-01

    Spent nuclear fuel (SNF) management practices in the United States rely on dry storage systems that include both canister- and cask-based systems. The United States Department of Energy Used Fuel Disposition Campaign is examining the feasibility of direct disposal of dual-purpose (storage and transportation) canisters (DPCs) in a geological repository. One of the major technical challenges for direct disposal is the ability to demonstrate the subcriticality of the DPCs loaded with SNF for the repository performance period (e.g., 10,000 years or more) as the DPCs may undergo degradation over time. Specifically, groundwater ingress into the DPC (i.e., flooding) could allow the system to achieve criticality in scenarios where the neutron absorber plates in the DPC basket have degraded. However, as was shown by Banerjee et al., some aqueous species in the groundwater provide noticeable reactivity reduction for these systems. For certain amounts of particular aqueous species (e.g., chlorine, lithium) in the groundwater, subcriticality can be demonstrated even for DPCs with complete degradation of the neutron absorber plates or a degraded fuel basket configuration. It has been demonstrated that chlorine is the leading impurity, as indicated by significant neutron absorption in the water that is available in reasonable quantities for the deep geological repository media under consideration. This paper presents the results of an investigation of the available integral experiments worldwide that could be used to validate DPC disposal criticality evaluations, including credit for chlorine. Due to the small number of applicable critical configurations, validation through traditional trending analysis was not possible. The bias in the eigenvalue of the application systems due only to the chlorine was calculated using TSURFER analysis and found to be on the order of 100 percent mille (1 pcm = 10-5 keff). This study investigated the design of a series of

  12. Validation Study for Crediting Chlorine in Criticality Analyses for US Spent Nuclear Fuel Disposition

    SciTech Connect

    Sobes, Vladimir; Scaglione, John M.; Wagner, John C.; Dunn, Michael E.

    2015-01-01

    Spent nuclear fuel (SNF) management practices in the United States rely on dry storage systems that include both canister- and cask-based systems. The United States Department of Energy Used Fuel Disposition Campaign is examining the feasibility of direct disposal of dual-purpose (storage and transportation) canisters (DPCs) in a geological repository. One of the major technical challenges for direct disposal is the ability to demonstrate the subcriticality of the DPCs loaded with SNF for the repository performance period (e.g., 10,000 years or more) as the DPCs may undergo degradation over time. Specifically, groundwater ingress into the DPC (i.e., flooding) could allow the system to achieve criticality in scenarios where the neutron absorber plates in the DPC basket have degraded. However, as was shown by Banerjee et al., some aqueous species in the groundwater provide noticeable reactivity reduction for these systems. For certain amounts of particular aqueous species (e.g., chlorine, lithium) in the groundwater, subcriticality can be demonstrated even for DPCs with complete degradation of the neutron absorber plates or a degraded fuel basket configuration. It has been demonstrated that chlorine is the leading impurity, as indicated by significant neutron absorption in the water that is available in reasonable quantities for the deep geological repository media under consideration. This paper presents the results of an investigation of the available integral experiments worldwide that could be used to validate DPC disposal criticality evaluations, including credit for chlorine. Due to the small number of applicable critical configurations, validation through traditional trending analysis was not possible. The bias in the eigenvalue of the application systems due only to the chlorine was calculated using TSURFER analysis and found to be on the order of 100 percent mille (1 pcm = 10-5 keff). This study investigated the design of a series of

  13. Nuclear systems for space power and propulsion

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1971-01-01

    As exploration and utilization of space proceeds through the 1970s, 1980s, and beyond, spacecraft in earth orbit will become increasingly larger, spacecraft will travel deeper into space, and space activities will involve more complex operations. These trends require increasing amounts of energy for power and propulsion. The role to be played by nuclear energy is presented, including plans for deep space missions using radioisotope generators, the reactor power systems for earth orbiting stations and satellites, and the role of nuclear propulsion in space transportation.

  14. Manned space flight nuclear system safety. Volume 5: Nuclear System safety guidelines. Part 1: Space base nuclear safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  15. Software Development Standard for Mission Critical Systems

    DTIC Science & Technology

    2014-03-17

    applied on contracts for mission critical systems . This report provides a full lifecycle software development process standard. This version includes an...integration and test environments. 5.3 Updated requirements for system requirements analysis . v Issue Date Sections Changes 5.4 Updated...requirements for system architectural design. 5.5 Updated requirements for software requirements analysis . 5.6 Major update to software

  16. Impact of drum storage on criticality accident alarm systems

    SciTech Connect

    Finfrock, S.; Watson, T.; Byrd, J.; Miles, B.; Wilkinson, A.

    1997-12-01

    The changing mission from production to decommissioning that is taking place at many U.S. Department of Energy sites is producing an ever-increasing inventory of waste drums. These drums typically contain low-level radioactive waste and, in some cases, significant amounts of fissile materials. Such drums must be handled with all of the care necessary for radioactive materials and, where fissile materials are present, criticality safety controls. As the number of drums increases, the question inevitably arises as to where to store them. Old process buildings present one solution to that question. These buildings are typically large, designed to handle radioactive and fissile materials, and largely unused under the current mission and, as such, would seem ideal candidates for at least short-term storage of waste drums. When undergoing such a major change in mission, however, the building`s nuclear safety systems need to be reevaluated to ensure that they are appropriate for the new activity. One such system that must be evaluated is the building`s criticality accident alarm system (AAS). This system is designed to detect criticality accidents and is generally required anywhere that a criticality accident is credible. If drums are to be stored in a facility where a CAAS is required (either because of other activities in the building or because of the contents of the drums themselves), then those drums must be shown not to prevent the CAAS from functioning as designed.

  17. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  18. Nuclear criticality safety assessment of the Consolidated Edison Uranium-Solidification Program Facility

    SciTech Connect

    Thomas, J.T.

    1984-01-01

    A nuclear criticality assessment of the Consolidated Edison Uranium-Solidification Program facility confirms that all operations involved in the process may be conducted with an acceptable margin of subcriticality. Normal operation presents no concern since subcriticality is maintained by design. Several recommendations are presented to prevent, or mitigate the consequences of, any abnormal events that might occur in the various portions of the process. These measures would also serve to reduce to a minimum the administrative controls required to prevent criticality.

  19. NADS - Nuclear and Atomic Data System

    SciTech Connect

    McKinley, Michael S.; Beck, Bret; McNabb, Dennis

    2005-05-24

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations of the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V, and ENDF/B-VI, as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/.

  20. NADS - Nuclear And Atomic Data System

    SciTech Connect

    McKinley, M S; Beck, B; McNabb, D

    2004-09-17

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross-sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V and ENDF/B-VI as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/

  1. PML isoform II plays a critical role in nuclear lipid droplet formation

    PubMed Central

    Ohsaki, Yuki; Kawai, Takeshi; Yoshikawa, Yukichika; Cheng, Jinglei; Jokitalo, Eija

    2016-01-01

    Lipid droplets (LDs) in the nucleus of hepatocyte-derived cell lines were found to be associated with premyelocytic leukemia (PML) nuclear bodies (NBs) and type I nucleoplasmic reticulum (NR) or the extension of the inner nuclear membrane. Knockdown of PML isoform II (PML-II) caused a significant decrease in both nuclear LDs and type I NR, whereas overexpression of PML-II increased both. Notably, these effects were evident only in limited types of cells, in which a moderate number of nuclear LDs exist intrinsically, and PML-II was targeted not only at PML NBs, but also at the nuclear envelope, excluding lamins and SUN proteins. Knockdown of SUN proteins induced a significant increase in the type I NR and nuclear LDs, but these effects were cancelled by simultaneous knockdown of PML-II. Nuclear LDs harbored diacylglycerol O-acyltransferase 2 and CTP:phosphocholine cytidylyltransferase α and incorporated newly synthesized lipid esters. These results corroborated that PML-II plays a critical role in generating nuclear LDs in specific cell types. PMID:26728854

  2. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  3. Integrated nuclear data utilisation system for innovative reactors.

    PubMed

    Yamano, N; Hasegawa, A; Kato, K; Igashira, M

    2005-01-01

    A five-year research and development project on an integrated nuclear data utilisation system was initiated in 2002, for developing innovative nuclear energy systems such as accelerator-driven systems. The integrated nuclear data utilisation system will be constructed as a modular code system, which consists of two sub-systems: the nuclear data search and plotting sub-system, and the nuclear data processing and utilisation sub-system. The system will be operated with a graphical user interface in order to enable easy utilisation through the Internet by both nuclear design engineers and nuclear data evaluators. This paper presents an overview of the integrated nuclear data utilisation system, describes the development of a prototype system to examine the operability of the user interface and discusses specifications of the two sub-systems.

  4. 75 FR 11918 - Hewlett Pachard Company, Business Critical Systems, Mission Critical Business Software Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... Business Software Division, Openvms Operating System Development Group, Including Employees Working Off... Company, Business Critical Systems, Mission Critical Business Software Division, Openvms Operating System... Software Division, OpenVMS Operating System Development Group, including employees working off site in New...

  5. Criticality calculation of non-ordinary systems

    SciTech Connect

    Kalugin, A. V. Tebin, V. V.

    2016-12-15

    The specific features of calculation of the effective multiplication factor using the Monte Carlo method for weakly coupled and non-asymptotic multiplying systems are discussed. Particular examples are considered and practical recommendations on detection and Monte Carlo calculation of systems typical in numerical substantiation of nuclear safety for VVER fuel management problems are given. In particular, the problems of the choice of parameters for the batch mode and the method for normalization of the neutron batch, as well as finding and interpretation of the eigenvalue spectrum for the integral fission matrix, are discussed.

  6. Criticality calculation of non-ordinary systems

    NASA Astrophysics Data System (ADS)

    Kalugin, A. V.; Tebin, V. V.

    2016-12-01

    The specific features of calculation of the effective multiplication factor using the Monte Carlo method for weakly coupled and non-asymptotic multiplying systems are discussed. Particular examples are considered and practical recommendations on detection and Monte Carlo calculation of systems typical in numerical substantiation of nuclear safety for VVER fuel management problems are given. In particular, the problems of the choice of parameters for the batch mode and the method for normalization of the neutron batch, as well as finding and interpretation of the eigenvalue spectrum for the integral fission matrix, are discussed.

  7. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  8. FRENDY: A new nuclear data processing system being developed at JAEA

    NASA Astrophysics Data System (ADS)

    Tada, Kenichi; Nagaya, Yasunobu; Kunieda, Satoshi; Suyama, Kenya; Fukahori, Tokio

    2017-09-01

    JAEA has provided an evaluated nuclear data library JENDL and nuclear application codes such as MARBLE, SRAC, MVP and PHITS. These domestic codes have been widely used in many universities and industrial companies in Japan. However, we sometimes find problems in imported processing systems and need to revise them when the new JENDL is released. To overcome such problems and immediately process the nuclear data when it is released, JAEA started developing a new nuclear data processing system, FRENDY in 2013. This paper describes the outline of the development of FRENDY and both its capabilities and performances by the analyses of criticality experiments. The verification results indicate that FRENDY properly generates ACE files.

  9. Systemic Change: Critically Reviewing the Literature.

    ERIC Educational Resources Information Center

    Carr-Chellman, Alison A.

    1998-01-01

    Examines critically the types of educational literature being advanced under the rubric of "systemic change." Data from an Educational Resources Information Center (ERIC) search suggest that most studies are theoretical rather than field based, conservative in their definition of change, and nonsystemic in both theory and practice.…

  10. Nuclear plants gain integrated information systems

    SciTech Connect

    Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.

    1994-10-01

    With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features an integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants.

  11. Alarm system for a nuclear control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  12. Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    SciTech Connect

    Karnaukhov, V. A.; Oeschler, H.; Budzanowski, A.; Avdeyev, S. P.; Botvina, A. S.; Cherepanov, E. A.; Karcz, W.; Kirakosyan, V. V.; Rukoyatkin, P. A.; Skwirczynska, I.; Norbeck, E.

    2008-12-15

    Critical temperature T{sub c} for the nuclear liquid-gas phase transition is estimated from both the multifragmentation and fission data. In the first case, the critical temperature is obtained by analysis of the intermediate-mass-fragment yields in p(8.1 GeV) + Au collisions within the statistical model of multifragmentation. In the second case, the experimental fission probability for excited {sup 188}Os is compared with the calculated one with T{sub c} as a free parameter. It is concluded for both cases that the critical temperature is higher than 15 MeV.

  13. Security for safety critical space borne systems

    NASA Technical Reports Server (NTRS)

    Legrand, Sue

    1987-01-01

    The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.

  14. Neural Network Based Intrusion Detection System for Critical Infrastructures

    SciTech Connect

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  15. Bad Actors Criticality Assessment for Pipeline system

    NASA Astrophysics Data System (ADS)

    Nasir, Meseret; Chong, Kit wee; Osman, Sabtuni; Siaw Khur, Wee

    2015-04-01

    Failure of a pipeline system could bring huge economic loss. In order to mitigate such catastrophic loss, it is required to evaluate and rank the impact of each bad actor of the pipeline system. In this study, bad actors are known as the root causes or any potential factor leading to the system downtime. Fault Tree Analysis (FTA) is used to analyze the probability of occurrence for each bad actor. Bimbaum's Importance and criticality measure (BICM) is also employed to rank the impact of each bad actor on the pipeline system failure. The results demonstrate that internal corrosion; external corrosion and construction damage are critical and highly contribute to the pipeline system failure with 48.0%, 12.4% and 6.0% respectively. Thus, a minor improvement in internal corrosion; external corrosion and construction damage would bring significant changes in the pipeline system performance and reliability. These results could also be useful to develop efficient maintenance strategy by identifying the critical bad actors.

  16. Nuclear waste criticality analysis. Final report, 1 July 1995--30 June 1996

    SciTech Connect

    Culbreth, W.G.

    1996-07-03

    The natural reactors that occurred in Gabon, Africa over 2 billion years ago present an interesting analog to the underground repositories proposed around the world for the long-term storage of high-level spent nuclear fuel. Many articles have been written concerning the low migration rates of actinides and fission products from the Oklo reactor sites, but Oklo also presents researchers with an opportunity to discover the conditions that led to nuclear criticality in uranium oxides with low enrichments. A computer model was developed to predict the conditions that were necessary to lead to criticality in the Oklo reactors. Critical core dimensions and infinite multiplication factors are presented as a function of time, the porosity of the host rock, and the water and uranium content of the sandstone deposits at Oklo.

  17. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  18. SP-100 space nuclear power system

    NASA Technical Reports Server (NTRS)

    Given, R. W.; Morgan, R. E.; Chi, J. W. H.

    1984-01-01

    A baseline design concept for a 100 kWe nuclear reactor space power system is described. The concept was developed under contract from JPL as part of a joint program of the DOE, DOD, and NASA. The major technical and safety constraints influencing the selection of reactor operating parameters are discussed. A lithium-cooled compact fast reactor was selected as the best candidate system. The material selected for the thermoelectric conversion system was silicon germanium (SiGe) with gallium phosphide doping. Attention is given to the improved safety of the seven in-core control rod configuration.

  19. Critical Systems Engineering Accelerator: Aerospace Demonstrator

    NASA Astrophysics Data System (ADS)

    Moreno, Ricardo; Fernandez, Gonzalo; Regada, Raul; Basanta, Luis; Alana, Elena; del Carmen Lomba, Maria

    2014-08-01

    Nowadays, the complexity and functionality of space systems is increasing more and more. Safety critical systems have to guarantee strong safety and dependability constraints. This paper presents CRYSTAL (Critical sYSTem engineering AcceLeration), a cross-domain ARTEMIS project for increasing the efficiency of the embedded software development in the industry through the definition of an integrated tool chain. CRYSTAL involves four major application domains: Aerospace, Automotive, Rail and Medical Healthcare. The impact in the Space Domain will be evaluated through a demonstrator implemented using CRYSTAL framework: the Low Level Software for an Avionics Control Unit, capable to run Application SW for autonomous navigation, image acquisition control, data compression and/or data handling. Finally, the results achieved will be evaluated taking into account the ECSS (European Committee for Space Standardization) standards and procedures.

  20. Critical Time Crystals in Dipolar Systems

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Choi, Soonwon; Lukin, Mikhail D.; Abanin, Dmitry A.

    2017-07-01

    We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature (London) 543, 221 (2017), 10.1038/nature21426]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.

  1. New Nuclear Emergency Prognosis system in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology

  2. Fission control system for nuclear reactor

    DOEpatents

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  3. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  4. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  5. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  6. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  7. Manned space flight nuclear system safety. Volume 4: Space shuttle nuclear system transportation. Part 1: Space shuttle nuclear safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the nuclear safety aspects (design and operational considerations) in the transport of nuclear payloads to and from earth orbit by the space shuttle is presented. Three representative nuclear payloads used in the study were: (1) the zirconium hydride reactor Brayton power module, (2) the large isotope Brayton power system and (3) small isotopic heat sources which can be a part of an upper stage or part of a logistics module. Reference data on the space shuttle and nuclear payloads are presented in an appendix. Safety oriented design and operational requirements were identified to integrate the nuclear payloads in the shuttle mission. Contingency situations were discussed and operations and design features were recommended to minimize the nuclear hazards. The study indicates the safety, design and operational advantages in the use of a nuclear payload transfer module. The transfer module can provide many of the safety related support functions (blast and fragmentation protection, environmental control, payload ejection) minimizing the direct impact on the shuttle.

  8. Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell

    SciTech Connect

    Williamson, T.G.

    1994-10-17

    The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

  9. An approach to a self-consistent nuclear energy system

    SciTech Connect

    Fujii-e, Yoichi ); Arie, Kazuo; Endo, Hiroshi )

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal.

  10. Validation of nuclear criticality safety software and 27 energy group ENDF/B-IV cross sections. Revision 1

    SciTech Connect

    Lee, B.L. Jr.; D`Aquila, D.M.

    1996-01-01

    The original validation report, POEF-T-3636, was documented in August 1994. The document was based on calculations that were executed during June through August 1992. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This revision is written to clarify the margin of safety being used at Portsmouth for nuclear criticality safety calculations. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Lockheed Martin Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. For calculations of Portsmouth systems using the specified codes and systems covered by this validation, a maximum k{sub eff} including 2{sigma} of 0.9605 or lower shall be considered as subcritical to ensure a calculational margin of safety of 0.02. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

  11. ANSI/ANS-8.15-1981(R87): Nuclear criticality control of special actinide elements

    SciTech Connect

    Brewer, R.W.; Pruvost, N.L.; Rombough, C.T.

    1996-12-31

    The American National Standard, {open_quotes}Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactotors{close_quotes} American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.1-1983(R88) provides guidance for the nuclides {sup 233}U, {sup 235}U, and {sup 239}Pu. These three nuclides are of primary interest in out-of-reactor criticality safety since they are the most commonly encountered in the vast majority of operations. However, some operations can involve nuclides other than {sup 233}U, {sup 235}U, and {sup 239}Pu in sufficient quantities that their effect on criticality safety could be of concern. ANSI/ANS-8.15-1981(R87) {open_quotes}Nuclear Criticality Control of Special Actinide Elements,{close_quotes} provides guidance for 15 such nuclides. The standard was approved for use on November 9, 1981. When it received its first 5-yr review, no changes were made, and it was reaffirmed effective October 30, 1987. The standard was again reviewed and reaffirmed without changes in December 1995. The next 5-yr review of the standard is due in December 2000. The affected nuclides are {sup 237}Np, {sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 241}Am, {sup 243}Am, {sup 244}Cm, {sup 239}Pu, {sup 241}Pu, {sup 242m}Am, {sup 243}Cm, {sup 245}Cm, {sup 247}Cm, {sup 249}Cf, and {sup 251}Cf.

  12. Slow Relaxation in Anderson Critical Systems

    NASA Astrophysics Data System (ADS)

    Choi, Soonwon; Yao, Norman; Choi, Joonhee; Kucsko, Georg; Lukin, Mikhail

    2016-05-01

    We study the single particle dynamics in disordered systems with long range hopping, focusing on the critical cases, i.e., the hopping amplitude decays as 1 /rd in d-dimension. We show that with strong on-site potential disorder, the return probability of the particle decays as power-law in time. As on-site potential disorder decreases, the temporal profile smoothly changes from a simple power-law to the sum of multiple power-laws with exponents ranged from 0 to νmax. We analytically compute the decay exponents using a simple resonance counting argument, which quantitatively agrees with exact numerical results. Our result implies that the dynamics in Anderson Critical systems are dominated by resonances. Harvard-MIT CUA, Kwanjeong Educational Fellowship, AFOSR MURI, Samsung Scholarship.

  13. Systems approach to nuclear waste glass development

    SciTech Connect

    Jantzen, C M

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan.

  14. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, Edward F.; Olson, Arne P.; Wade, David C.; Robinson, Bryan W.

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  15. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  16. Observation of critical modes in quasiperiodic systems

    NASA Astrophysics Data System (ADS)

    Desideri, Jean-Pierre; Macon, Louis; Sornette, Didier

    1989-07-01

    We present experimental results and their interpretation on the propagation of surface acoustic waves on a quasiperiodically corrugated solid. The surface is made of a thousand grooves engraved according to a Fibonacci sequence. For the first time, we observe the spatial structure of the critical proper modes obtained from an optical diffraction experiment. These special modes are characteristic of quasiperiodic systems and exhibit remarkable scaling features.

  17. Quantum critical points in quantum impurity systems

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Jung; Bulla, Ralf

    2005-04-01

    The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.

  18. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  19. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  20. Reliability assessment of nuclear structural systems

    SciTech Connect

    Reich, M.; Hwang, H.

    1983-01-01

    Reliability assessment of nuclear structural systems has been receiving more emphasis over the last few years. This paper deals with the recent progress made by the Structural Analysis Division of Brookhaven National Laboratory (BNL), in the development of a probability-based reliability analysis methodology for safety evaluation of reactor containments and other seismic category I structures. An important feature of this methodology is the incorporation of finite element analysis and random vibration theory. By utilizing this method, it is possible to evaluate the safety of nuclear structures under various static and dynamic loads in terms of limit state probability. Progress in other related areas, such as the establishment of probabilistic characteristics for various loads and structural resistance, are also described. Results of an application of the methodology to a realistic reinforced concrete containment subjected to dead and live loads, accidental internal pressures and earthquake ground accelerations are presented.

  1. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  2. Surface Critical Phenomena in Smoothly Inhomogeneous Systems.

    NASA Astrophysics Data System (ADS)

    Guim, Ihnsouk

    We consider the surface critical behavior of semi -infinite magnetic systems with short-range couplings that depend smoothly on the distance from the surface. We study how the inhomogeneity of the couplings modifies the surface critical behavior at the bulk critical temperature. According to renormalization-group or scaling arguments, the modifications depend on how fast the inhomogeneity decays into the bulk. In the case of couplings that vary as K(m) = K(,B)+A/m('y), where K(,B) is the bulk coupling and m is the distance from the surface, the scaling theory predicts that for y > (nu)('-1), the surface critical behavior is the same as in the homogeneous case A = 0. Here is the critical exponent of the bulk correlation length. For y < (nu)(' -1), the scaling theory predicts an anomalous exponential decay of the boundary pair correlation function. In this thesis we calculate exact results for inhomogeneous two-dimensional Gaussian and Ising models. The results are in complete agreement with the scaling predictions. For y < (nu)('-1), the pair correlation function of surface spins separated by r decays as g(,(PARLL))(r)(TURN)exp {-(r/(')(xi))('1-(nu)y)}, (')(xi)(TURN)A('-(nu)/(1 -(nu)y)), with (nu) = 1/2 and 1 for the Gaussian and Ising models, respectively. In the Ising model with A > 0 and y < (nu)('-1), there is a spontaneous boundary magnetization m(,1) at the bulk critical temperature. In the limit A (--->) 0, m(,1) vanishes as A('1/{2(1-y)}). At y = (nu)('-1), we find nonuniversal surface critical behavior in both the Gaussian and Ising models. The exponent (eta)(,(PARLL)) which characterizes the correlation function in the large -r limit depends on A. In the Ising model with A > A(,c) > 0, y = (nu)('-1), we also find a non-zero spontaneous boundary magnetization at the bulk critical temperature, which vanishes as (A-A(,c))(' 1/2) as A (--->) A(,c). At A(,c) the correlation function exhibits an unusual logarithmic decay. The method we use for obtaining these

  3. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.

    1997-01-01

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  4. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  5. Additional Studies of the Criticality Safety of Failed Used Nuclear Fuel

    SciTech Connect

    Marshall, William BJ J; Wagner, John C

    2013-01-01

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for periods potentially greater than 40 years. Extended storage (ES) time and irradiation to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, could result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. Criticality analyses are conducted considering representative UNF designs covering a range of enrichments and burnups in multiple cask systems. Prior work developed a set of failed fuel configuration categories and specific configurations were evaluated to understand trends and quantify the consequences of worst-case potential reconfiguration progressions. These results will be summarized here and indicate that the potential impacts on subcriticality can be rather significant for certain configurations (e.g., >20% keff). It can be concluded that the consequences of credible fuel failure configurations from ES or transportation following ES are manageable (e.g., <5% keff). The current work expands on these efforts and examines some modified scenarios and modified approaches to investigate the effectiveness of some techniques for reducing the calculated increase in keff. The areas included here are more realistic modeling of some assembly types and the effect of reconfiguration of some assemblies in the storage and transportation canister.

  6. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  7. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGES

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  8. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  9. Automated entry control system for nuclear facilities

    SciTech Connect

    Ream, W.K.; Espinoza, J.

    1985-01-01

    An entry control system to automatically control access to nuclear facilities is described. The design uses a centrally located console, integrated into the regular security system, to monitor the computer-controlled passage into and out of sensitive areas. Four types of entry control points are used: an unmanned enclosed portal with metal and SNM detectors for contraband detection with positive personnel identification, a bypass portal for contraband search after a contraband alarm in a regular portal also with positive personnel identification, a single door entry point with positive personnel identification, and a single door entry point with only a magnetic card-type identification. Security force action is required only as a response to an alarm. The integration of the entry control function into the security system computer is also described. The interface between the entry control system and the monitoring security personnel utilizing a color graphics display with touch screen input is emphasized. 2 refs., 7 figs.

  10. Nuclear modules of ITER tokamak systems code

    SciTech Connect

    Gohar, Y.; Baker, C.; Brooks, J.; Finn, P.; Hassanein, A.; Willms, S.; Barr, W.; Bushigin, A.; Kalyanam, K.M.; Haines, J.

    1987-10-01

    Nuclear modules were developed to model various reactor components in the ITER systems code. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module. 39 refs., 3 tabs.

  11. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear tomography system. 892.1310 Section 892.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  12. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear tomography system. 892.1310 Section 892.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  13. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear tomography system. 892.1310 Section 892.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  14. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear tomography system. 892.1310 Section 892.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  15. Assessment of lightweight mobile nuclear power systems

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    After nearly two decades of study, analysis, and experiments relating to lightweight mobile nuclear power systems (LMNPS), it seems fitting to report the status and to assess some options for the future of this technology. This report: (1) reviews the technical feasibility studies of LMNPS and airborne vehicles; (2) identifies what remains to be done to demonstrate technical feasibility of LMNPS; (3) reviews missions studies and identifies particular missions that could justify renewed support for such technology; and (4) identifies some of the nontechnical conditions that will be required for the development and eventual use of LMNPS.

  16. Operations Optimization of Nuclear Hybrid Energy Systems

    SciTech Connect

    Chen, Jun; Garcia, Humberto E.; Kim, Jong Suk; Bragg-Sitton, Shannon M.

    2016-08-01

    We proposed a plan for nuclear hybrid energy systems (NHES) as an effective element to incorporate high penetration of clean energy. Our paper focuses on the operations optimization of two specific NHES configurations to address the variability raised from various markets and renewable generation. Both analytical and numerical approaches are used to obtain the optimization solutions. Furthermore, key economic figures of merit are evaluated under optimized and constant operations to demonstrate the benefit of the optimization, which also suggests the economic viability of considered NHES under proposed operations optimizer. Furthermore, sensitivity analysis on commodity price is conducted for better understanding of considered NHES.

  17. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  18. Rodded shutdown system for a nuclear reactor

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  19. Operations Optimization of Nuclear Hybrid Energy Systems

    DOE PAGES

    Chen, Jun; Garcia, Humberto E.; Kim, Jong Suk; ...

    2016-08-01

    We proposed a plan for nuclear hybrid energy systems (NHES) as an effective element to incorporate high penetration of clean energy. Our paper focuses on the operations optimization of two specific NHES configurations to address the variability raised from various markets and renewable generation. Both analytical and numerical approaches are used to obtain the optimization solutions. Furthermore, key economic figures of merit are evaluated under optimized and constant operations to demonstrate the benefit of the optimization, which also suggests the economic viability of considered NHES under proposed operations optimizer. Furthermore, sensitivity analysis on commodity price is conducted for better understandingmore » of considered NHES.« less

  20. Assessment of lightweight mobile nuclear power systems

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    After nearly two decades of study, analysis, and experiments relating to lightweight mobile nuclear power systems (LMNPS), it seems fitting to report the status and to assess some options for the future of this technology. This report: (1) reviews the technical feasibility studies of LMNPS and airborne vehicles; (2) identifies what remains to be done to demonstrate technical feasibility of LMNPS; (3) reviews missions studies and identifies particular missions that could justify renewed support for such technology; and (4) identifies some of the nontechnical conditions that will be required for the development and eventual use of LMNPS.

  1. Space nuclear power systems for extraterrestrial basing

    NASA Technical Reports Server (NTRS)

    Lance, J. R.; Chi, J. W. H.

    1989-01-01

    Comparative analyses reveal that the nuclear power option significantly reduces the logistic burden required to support a lunar base. The paper considers power levels from tens of kWe for early base operation up to 2000 kWe for a self-sustaining base with a CELSS. It is shown that SP-100 and NERVA derivative reactor (NDR) technology for space power can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are described.

  2. The nuclear transport capacity of a human-pancreatic ribonuclease variant is critical for its cytotoxicity.

    PubMed

    Tubert, Pere; Rodríguez, Montserrat; Ribó, Marc; Benito, Antoni; Vilanova, Maria

    2011-10-01

    We have previously described a human pancreatic-ribonuclease variant, named PE5, which carries a non-contiguous extended bipartite nuclear localization signal. This signal comprises residues from at least three regions of the protein. We postulated that the introduction of this signal in the ribonuclease provides it with cytotoxic activity because although the variant poorly evades the ribonuclease inhibitor in vitro, it is routed to the nucleus, which is devoid of the inhibitor. In this work, we have investigated the relationship between the cytotoxicity produced by PE5 and its ability to reach the nucleus. First, we show that this enzyme, when incubated with HeLa cells, specifically cleaves nuclear RNA while it leaves cytoplasmic RNA unaffected. On the other hand, we have created new variants in which the residues of the nuclear localization signal that are important for the nuclear transport have been replaced. As expected, the individual changes produce a significant decrease in the cytotoxicity of the resulting variants. We conclude that the nuclear transport of PE5 is critical for its cytotoxicity. Therefore, routing a ribonuclease to the nucleus is an alternative strategy to endow it with cytotoxic activity.

  3. Critical issues in NASA information systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The National Aeronautics and Space Administration has developed a globally-distributed complex of earth resources data bases since LANDSAT 1 was launched in 1972. NASA envisages considerable growth in the number, extent, and complexity of such data bases, due to the improvements expected in its remote sensing data rates, and the increasingly multidisciplinary nature of its scientific investigations. Work already has begun on information systems to support multidisciplinary research activities based on data acquired by the space station complex and other space-based and terrestrial sources. In response to a request from NASA's former Associate Administrator for Space Science and Applications, the National Research Council convened a committee in June 1985 to identify the critical issues involving information systems support to space science and applications. The committee has suggested that OSSA address four major information systems issues; centralization of management functions, interoperability of user involvement in the planning and implementation of its programs, and technology.

  4. Critical Time Crystals in Dipolar Systems.

    PubMed

    Ho, Wen Wei; Choi, Soonwon; Lukin, Mikhail D; Abanin, Dmitry A

    2017-07-07

    We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature (London) 543, 221 (2017)NATUAS0028-083610.1038/nature21426]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.

  5. Systems aspects of a space nuclear reactor power system

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  6. Systems aspects of a space nuclear reactor power system

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  7. The 9-11 Commission's invitation to imagine: a pathophysiology-based approach to critical care of nuclear explosion victims.

    PubMed

    Manthous, Constantine A; Jackson, William L

    2007-03-01

    The successful management of mass casualties arising from detonation of a nuclear device (NDD) would require significant preparation at all levels of the healthcare system. This article briefly outlines previously published models of destruction and casualties, details approaches to on-site triage and medical evacuation, and offers pathophysiology-based suggestions for treatment of the critically injured. Documentation from previous bomb blasts and nuclear accidents is reviewed to assist in forecasting needs of both systems and patients in the event of an NDD in a major metropolitan area. This review extracts data from previously published models of destruction and casualties projected from an NDD, the primary literature detailing observations of patients' pathophysiology following NDDs in Japan and relevant nuclear accidents, and available contemporary resources for first responders and healthcare providers. The blast and radiation exposures that accompany an NDD will significantly affect local and regional public resources. Morbidity and mortality likely to arise in the setting of dose-dependent organ dysfunction may be minimized by rigorous a priori planning/training for field triage decisions, coordination of medical and civil responses to effect rapid responses and medical evacuation routes, radiation-specific interventions, and modern intensive care. Although the responses of emergency and healthcare systems following NDD will vary depending on the exact mechanism, magnitude, and location of the event, dose exposures and individual pathophysiology evolution are reasonably predictable. Triage decisions, resource requirements, and bedside therapeutic plans can be evidence-based and can be developed rapidly with appropriate preparation and planning.

  8. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    SciTech Connect

    Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

    2009-10-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  9. Nuclear spin dynamics in double quantum dots: Multistability, dynamical polarization, criticality, and entanglement

    NASA Astrophysics Data System (ADS)

    Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.

    2014-05-01

    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.

  10. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  11. Hyperbaric critical care patient data management system.

    PubMed

    Kronlund, Peter; Lind, Folke; Olsson, Daniel

    2012-06-01

    A patient data management system (PDMS) has been used for years in the intensive care unit (ICU) at the Karolinska University Hospital to provide bedside or remote clinical patient documentation and information. Data from monitors, mechanical ventilators and syringe pumps are fed into a central clinical information management system to monitor, display trends and record data of vital parameters, ventilator settings and drugs. In order to continue routine critical care monitoring and recording during hyperbaric oxygen therapy (HBOT), without endangering the safety demands of hyperbaric procedures, we have modified the PDMS system for hyperbaric use. Via an ethernet box placed inside the chamber, data are transmitted to the Clinisoft™ system through the local area network. By standardised risk-analysis procedures, in close cooperation between the hyperbaric and biomedical engineering departments, the chamber producer and the notifying body (Germanischer Lloyd), the ethernet box was modified to receive full safety approval by all parties. The PDMS is now functioning routinely during HBOT for intensive care patients so that data can be seen bedside and followed on-line in the ICU. Data are also continuously stored on the clinical information management system for later clinical or research purposes. Work continues to obtain CE approval for hyperbaric use for modern syringe pumps and mechanical ventilators connected to the PDMS system. Improved documentation of ICU care will improve quality of care during HBOT and facilitate research and development in hyperbaric medicine.

  12. Computer Information System For Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Cahill, P. T.; Knowles, R. J.....; Tsen, O.

    1983-12-01

    To meet the complex needs of a nuclear medicine division serving a 1100-bed hospital, a computer information system has been developed in sequential phases. This database management system is based on a time-shared minicomputer linked to a broadband communications network. The database contains information on patient histories, billing, types of procedures, doses of radiopharmaceuticals, times of study, scanning equipment used, and technician performing the procedure. These patient records are cycled through three levels of storage: (a) an active file of 100 studies for those patients currently scheduled, (b) a temporary storage level of 1000 studies, and (c) an archival level of 10,000 studies containing selected information. Merging of this information with reports and various statistical analyses are possible. This first phase has been in operation for well over a year. The second phase is an upgrade of the size of the various storage levels by a factor of ten.

  13. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  14. Forecast of criticality experiments and experimental programs needed to support nuclear operations in the United States of America: 1994--1999

    SciTech Connect

    Rutherford, D.

    1994-03-01

    This Forecast is generated by the Chair of the Experiment Needs Identification Workgroup (ENIWG), with input from Department of Energy and the nuclear community. One of the current concerns addressed by ENIWG was the Defense Nuclear Facilities Safety Board`s Recommendation 93-2. This Recommendation delineated the need for a critical experimental capability, which includes (1) a program of general-purpose experiments, (2) improving the information base, and (3) ongoing departmental programs. The nuclear community also recognizes the importance of criticality theory, which, as a stepping stone to computational analysis and safety code development, needs to be benchmarked against well-characterized critical experiments. A summary project of the Department`s needs with respect to criticality information includes (1) hands-on training, (2) criticality and nuclear data, (3) detector systems, (4) uranium- and plutonium-based reactors, and (5) accident analysis. The Workgroup has evaluated, prioritized, and categorized each proposed experiment and program. Transportation/Applications is a new category intended to cover the areas of storage, training, emergency response, and standards. This category has the highest number of priority-1 experiments (nine). Facilities capable of performing experiments include the Los Alamos Critical Experiment Facility (LACEF) along with Area V at Sandia National Laboratory. The LACEF continues to house the most significant collection of critical assemblies in the Western Hemisphere. The staff of this facility and Area V are trained and certified, and documentation is current. ENIWG will continue to work with the nuclear community to identify and prioritize experiments because there is an overwhelming need for critical experiments to be performed for basic research and code validation.

  15. A critical assembly designed to measure neutronic benchmarks in support of the space nuclear thermal propulsion program

    NASA Astrophysics Data System (ADS)

    Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.; Selcow, Elizabeth C.; Cerbone, Ralph J.

    1993-01-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark rector-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow-on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An overall description of the reactor is presented along with key design features and safety-related aspects.

  16. A critical assembly designed to measure neutronic benchmarks in support of the Space Nuclear Thermal Propulsion program

    NASA Astrophysics Data System (ADS)

    Parma, E. J.; Ball, R. M.; Hoovler, G. S.; Selcow, E. C.; Cerbone, R. J.

    1992-10-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark reactor-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An over-all description of the reactor is presented along with key design features and safety-related aspects.

  17. Critical metal-insulator transition due to nuclear quantum effects in Mn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Bae, Soungmin; Raebiger, Hannes

    2016-12-01

    Mn-doped GaAs exhibits a critical metal-insulator transition at the Mn concentration of xcrit≈1 % . Our self-interaction corrected first principles calculation shows that for Mn concentrations x ≳1 % , hole carriers are delocalized in host valence states, and for x ≲1 % , holes tend to be trapped in impurity-band-like states. We further show that for a finite range of concentrations around xcrit the system exhibits a nonadiabatic superposition of these states, i.e., a mixing of electronic and nuclear wave functions. This means that the phase transition is continuous, and its criticality is caused by quantum effects of the atomic nuclei. In other words, the apparently electronic phase transition from the insulator to metal state cannot be described by electronic effects alone.

  18. Test Suite for Nuclear Data I: Deterministic Calculations for Critical Assemblies and Replacement Coefficients

    SciTech Connect

    Pruet, J; Brown, D A; Descalle, M

    2006-05-22

    The authors describe tools developed by the Computational Nuclear Physics group for testing the quality of internally developed nuclear data and the fidelity of translations from ENDF formatted data to ENDL formatted data used by Livermore. These tests include S{sub n} calculations for the effective k value characterizing critical assemblies and for replacement coefficients of different materials embedded in the Godiva and Jezebel critical assemblies. For those assemblies and replacement materials for which reliable experimental information is available, these calculations provide an integral check on the quality of data. Because members of the ENDF and reactor communities use calculations for these same assemblies in their validation process, a comparison between their results with ENDF formatted data and their results with data translated into the ENDL format provides a strong check on the accuracy of translations. As a first application of the test suite they present a study comparing ENDL 99 and ENDF/B-V. They also consider the quality of the ENDF/B-V translation previously done by the Computational Nuclear Physics group. No significant errors are found.

  19. Space Nuclear Propulsion Systems and Applications

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1972-01-01

    The basic principles of the operation of a nuclear rocket engine are reviewed along with a summary of the early history. In addition, the technology status in the nuclear rocket program for development of the flight-rated NERVA engine is described, and applications for this 75,000-pound thrust engine and the results of nuclear stage studies are presented. Advanced research and supporting technology activities in the nuclear rocket program are also summarized.

  20. Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion

    PubMed Central

    Yenepalli, Aishwarya; Denais, Celine Marie; Rape, Andrew; Beach, Jordan R.; Wang, Yu-li; Schiemann, William P.; Baskaran, Harihara; Lammerding, Jan

    2015-01-01

    Non-muscle myosin II (NMII) is reported to play multiple roles during cell migration and invasion. However, the exact biophysical roles of different NMII isoforms during these processes remain poorly understood. We analyzed the contributions of NMIIA and NMIIB in three-dimensional (3D) migration and in generating the forces required for efficient invasion by mammary gland carcinoma cells. Using traction force microscopy and microfluidic invasion devices, we demonstrated that NMIIA is critical for generating force during active protrusion, and NMIIB plays a major role in applying force on the nucleus to facilitate nuclear translocation through tight spaces. We further demonstrate that the nuclear membrane protein nesprin-2 is a possible linker coupling NMIIB-based force generation to nuclear translocation. Together, these data reveal a central biophysical role for NMIIB in nuclear translocation during 3D invasive migration, a result with relevance not only to cancer metastasis but for 3D migration in other settings such as embryonic cell migration and wound healing. PMID:26261182

  1. Development of the RFID System for nuclear materials management.

    SciTech Connect

    Chen, K.; Tsai, H.; Liu, Y. Y.

    2008-01-01

    Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field

  2. DNA Ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair

    PubMed Central

    Gao, Yankun; Katyal, Sachin; Lee, Youngsoo; Zhao, Jingfeng; Rehg, Jerold E.; Russell, Helen R.; McKinnon, Peter J.

    2011-01-01

    DNA replication and repair in mammalian cells involves three distinct DNA ligases; ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4)1. Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway2,3. Lig3 is also present in the mitochondria where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc14. However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality5. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss6, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair. PMID:21390131

  3. EOS for critical slurry and solution systems

    SciTech Connect

    DiPeso, G; Peterson, P

    1998-10-27

    In a fire involving fissile material, the mixture of the fissile material ash with fire fighting water may lead to a criticality excursion if there are nearby sumps that permit a critical geometry. The severity of the resulting energy release and pressure pulse is dependent on the rate at which the mixing occurs. To calculate these excursions, a non-equilibrium equation of state for the water ash mixture or slurry is needed that accounts for the thermal non-equilibrium that occurs due to finite heat transfer rates. We are developing the slurry EOS as well as a lumped neutronic and hydrodynamic model to serve as a testing ground for the non-equilibrium EOS before its incorporation into more sophisticated neutronic-hydrodynamics codes. Though the model lacks spatial dependence, it provides estimates of energy release and pressure pulses for various mixture assembly rates. We are also developing a non-equilibrium EOS for critical solution systems in which the fissile material is dissolved in water, which accounts for chemical non-equilibrium due to finite mass transfer rates. In contrast to previously published solution EOS, our solution EOS specifically accounts for mass diffusion of dissolved radiolytic gas to bubble nucleation sites. This EOS was developed to check our overall modeling against published solution excursion experiments and to compare solution excursions with slurry excursions initiated under the same conditions. Preliminary results indicate a good match between solution EOS calculations and experiments involving premixed 60-80 g U/l solutions for both low rate and high rate reactivity insertions. Comparison between slurry and solution calculations for the same composition show comparable energy release and pressure peaks for both low and high rate reactivity insertions with the slurry releasing less energy but generating more pressure than the solution for the amount of energy released. Calculations more appropriate to actual fire fighting scenarios

  4. Nuclear Criticality Safety Calculational Analysis for Fissile Mass Limits and Spacing Requirements for 55 - Gallon Waste Drums

    SciTech Connect

    Davis, Thomas C.; Hesse, David J.; Tayloe, Jr., Robert W.

    1994-05-01

    A nuclear criticality safety analysis was performed to determine the fissile mass limits and spacing requirements for the storage of 55-gallon waste drums at the Portsmouth Gaseous Diffusion Plant (PORTS).

  5. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    SciTech Connect

    J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

    2012-03-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  6. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    SciTech Connect

    Cetiner, Sacit M.; Greenwood, Michael Scott; Harrison, Thomas J.; Qualls, A. L.; Guler Yigitoglu, Askin; Fugate, David W.

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  7. Nuclear reactor insulation and preheat system

    DOEpatents

    Wampole, Nevin C.

    1978-01-01

    An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.

  8. Nuclear reactor fuel rod attachment system

    DOEpatents

    Christiansen, David W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  9. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  10. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-12-02

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  11. Landau Zener Effect in Superfluid Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    The Landau Zener effect is generalized for many-body systems with pairing residual interactions. The microscopic equations of motion are obtained and the 14C decay of 223Ra spectroscopic factors are deduced. An asymmetric nuclear shape parametrization given by two intersected spheres is used. The single particle level scheme is determined in the frame of the superasymmetric two-center shell model. The deformation energy is computed in the microscopic macroscopic approximation. The penetrabilities are obtained within the WKB approximation. The fine structure of the cluster decay analyzed in the frame of this formalism gives a very good agreement with the experimental ratio of partial half-lives for transition to the first excited state and to the ground state.

  12. 75 FR 5146 - Hewlett Packard Company Business Critical Systems, Mission Critical Business Software Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Business Software Division, OpenVMS Operating System Development Group, Including Employees Working Off... Business Critical Systems, Mission Critical Business Software Division, OpenVMS Operating System..., OpenVMS Operating System Development Group, including employees working off site in New Hampshire...

  13. Nuclear instrumentation system design in FFTF and CRBRP

    SciTech Connect

    Warrick, R.P.

    1980-02-01

    The Nuclear Instrumentation System installed in the Fast Flux Test Facility (FFTF) is described. The Nuclear Instrumentation System includes equipment for monitoring neutron flux levels from shutdown to full power. Detector location and mounting provisions are described. The design basis for equipment design is provided. Detailed discussion of startup testing in FFTF follows a brief discussion of pre-delivery development work and testing. Finally, a description of the Nuclear Instrumentation System planned for the Clinch River Breeder Reactor Plant is provided.

  14. Emerging nuclear energy systems: Economic challenge: Revision 1

    SciTech Connect

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO/sub 2/ induced global climate changes. 12 refs., 1 fig.

  15. Criticality in a dynamic mixed system.

    PubMed

    Shnirman, M G; Blanter, E M

    2001-11-01

    We suggest a dynamic generalization of the simplest static hierarchical mixed model introduced by Shnirman and Blanter [Phys. Rev. Lett. 81, 5445 (1998); Phys. Rev. E. 60, 5111 (1998). We show that the stationary solution of the dynamic mixed model (DMM) demonstrates, in general, a linear form of the magnitude-frequency relation and may be considered a self-organized critical system. The dynamic mixed model demonstrates three principal kinds of system behavior: stability, catastrophe, and scale invariance. We show that the catastrophic area exists for all parameters of the mixture, and obtain three analytical expressions for boundary conditions of the stability and the scale invariance domains. As in the static model scale invariance appears as a result of a strong heterogeneity of the mixture. We describe how the magnitude-frequency relation reflects parameters of the heterogeneity and healing conditions for different domains of system behavior. Deviation of the DMM from the static mixed model and possible applications to earthquake prediction are discussed.

  16. Nuclear waste criticality analysis. Quarterly progress report, 1 October--31 December 1995

    SciTech Connect

    Culbreth, W.G.

    1996-01-19

    The work to date includes the preparation of a report related to criticality in spent fuel, a report on the Oklo reactors and their relevance to Yucca Mountain, and the creation of a computer program to model the Oklo reactors. The objective of the program includes a computational model of the only known natural analogue to an underground nuclear waste repository and the possible application of the model to predict the long-term behavior of Yucca Mountain. A final summary of all work completed will be presented after the end of the project on February 29, 1996.

  17. Hybrid Monte Carlo-Deterministic Methods for Nuclear Reactor-Related Criticality Calculations

    SciTech Connect

    Edward W. Larson

    2004-02-17

    The overall goal of this project is to develop, implement, and test new Hybrid Monte Carlo-deterministic (or simply Hybrid) methods for the more efficient and more accurate calculation of nuclear engineering criticality problems. These new methods will make use of two (philosophically and practically) very different techniques - the Monte Carlo technique, and the deterministic technique - which have been developed completely independently during the past 50 years. The concept of this proposal is to merge these two approaches and develop fundamentally new computational techniques that enhance the strengths of the individual Monte Carlo and deterministic approaches, while minimizing their weaknesses.

  18. Plutonium Finishing Plant (PFP) Criticality Alarm System Commercial Grade Item (CGI) Critical Characteristics

    SciTech Connect

    WHITE, W.F.

    1999-09-16

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for PFP's criticality alarm system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item. PFP's Criticality Alarm System includes the nine criticality alarm system panels and their associated hardware. This includes all parts up to the first breaker in the electrical distribution system. Specific system boundaries and justifications are contained in HNF-SD-CP-SDD-003, ''Definition and Means of Maintaining the Criticality Detectors and Alarms Portion of the PFP Safety Envelope.'' The procurement requirements associated with the system necessitates procurement of some system equipment as Commercial Grade Items in accordance with HNF-PRO-268, ''Control of Purchased Items and Services.''

  19. Critical roles of DNase1l3l in lens nuclear degeneration in zebrafish.

    PubMed

    Iida, Atsumi; Tabata, Yoko; Baba, Yukihiro; Fujii, Tomoaki; Watanabe, Sumiko

    2014-11-01

    The vertebrate lens undergoes organelle and nuclear degradation during lens development, allowing the lens to become transparent. DNase2b is an enzyme responsible for nuclear degradation in the mouse lens; however, dnase2b expression in zebrafish showed a distribution pattern that differed from that in mice. No zebrafish dnase2b was detected by reverse-transcription polymerase chain reaction until around 120 h postfertilization (hpf), suggesting that dnase2b is not expressed in the critical period for lens nuclear degradation, which corresponds to 56-74 hpf. However, public database searches have indicated that dnase1l3l is strongly and specifically expressed in embryonic zebrafish lens. Whole mount in situ hybridization showed that dnase1l3l expression began around 36 hpf and was found exclusively in the lens until the adult stage. Morpholino (MO)-dependent downregulation of dnase1l3l expression during early development in zebrafish led to the failure of nuclear degradation in the lens. Immunostaining of lens sections showed that expression of Pax6, Prox1 and β-catenin was comparable to the control in the early stage of development in dnase1l3l-MO injected embryos. However, downregulation of expression of these genes in lens was not observed in dnase1l3l-MO-treated zebrafish at 72 hpf, suggesting that the lens development was halted. Taken together, we showed that dnase1l3l plays major roles in nuclear degradation in zebrafish lens development. No homologous gene was found in other species in public databases, suggesting that dnase1l3l developed and acquired its function specifically in zebrafish.

  20. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect

    Wood, Richard Thomas; Upadhyaya, Belle R.

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  1. Manned space flight nuclear system safety. Volume 6: Space base nuclear system safety plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A qualitative identification of the steps required to assure the incorporation of radiological system safety principles and objectives into all phases of a manned space base program are presented. Specific areas of emphasis include: (1) radiological program management, (2) nuclear system safety plan implementation, (3) impact on program, and (4) summary of the key operation and design guidelines and requirements. The plan clearly indicates the necessity of considering and implementing radiological system safety recommendations as early as possible in the development cycle to assure maximum safety and minimize the impact on design and mission plans.

  2. A system for nuclear data aquisition

    SciTech Connect

    Malaquias, J.L.; Almeida, P.; Amilcar, P.

    1996-12-31

    A system is presented for use in Nuclear Physics Data Acquisition. The system is hosted on a Personal Computer`s ISA bus, and is based on the TMS320C31 digital signal processor (DSP), a fast floating point DSP that simultaneously handles several different tasks in this system, by means of an interrupt-driven architecture. The system includes three different data acquisition modules: a multichannel analyzer, a multi-channel scaler, and a signal analyzer. Using the interrupt-driven architecture, the DSP pre-processes the data coming from the three different data acquisition modules. and accepts data requests from the host PC. On the PC side, the system runs under Microsoft Windows 95 or Windows NT, and it implements the client-server model. While the data acquisition board performs its chores independently, the host PC sends it several commands on behalf of an arbitrary number of clients. Those clients each represent a window over the data being acquired, allowing different users to take different views of the data. Each client can run on the same host computer or on any other computer, provided there is a computer network (the Internet is a possibility, as long as there is enough bandwidth) connecting it to the host. This allows the experimentalist to remotely examine the experimental results from his office without having to go to the lab. On the other hand, different experimentalists can have different views of the data being acquired. All these are benefits stemming from the client-server model.

  3. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  4. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    SciTech Connect

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  5. Characterising nuclear simulant suspensions in situ with an acoustic backscatter system

    SciTech Connect

    Bux, Jaiyana; Hunter, Timothy N.; Paul, Neepa; Biggs, Simon R.; Dodds, Jonathan M.; Peakall, Jeffrey

    2013-07-01

    In situ characterisation of radio-toxic sludges and slurries is critical to numerous operations including those involving their transport and retrieval. An inexpensive, flexible acoustic backscatter system has been employed for the first time here to a 4/10. scale active storage tank comprising of a nuclear simulant suspension, to verify its application. Intricate suspension characteristics and tank operation features emerged. (authors)

  6. Radiation induced dissolution of UO 2 based nuclear fuel - A critical review of predictive modelling approaches

    NASA Astrophysics Data System (ADS)

    Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats

    2012-01-01

    Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.

  7. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  8. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability

    PubMed Central

    2016-01-01

    Non-erythroid alpha spectrin (αIISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. αIISp’s interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear αIISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in maintenance of genomic stability following ICL damage to DNA. We have proposed that αIISp acts as a scaffold aiding to recruit repair proteins to sites of damage. This involvement of αIISp in ICL repair and telomere maintenance after ICL damage represents new and critical functions for αIISp. These studies have led to development of a model for the role of αIISp in DNA ICL repair. They have been aided by examination of cells from patients with Fanconi anemia (FA), a repair-deficient genetic disorder in which a deficiency in αIISp leads to defective ICL repair in genomic and telomeric DNA, telomere dysfunction, and chromosome instability following DNA ICL damage. We have shown that loss of αIISp in FA cells is due to increased breakdown by the protease, µ-calpain. Importantly, we have demonstrated that this deficiency can be corrected by knockdown of µ-calpain and restoring αIISp levels to normal. This corrects a number of the phenotypic deficiencies in FA after ICL damage. These studies suggest a new and unexplored direction for therapeutically restoring genomic stability in FA cells and for correcting numerous phenotypic deficiencies occurring after ICL damage. Developing a more in-depth understanding of the importance of the interaction of αIISp with other nuclear proteins could significantly enhance our knowledge of the consequences of loss of αIISp on critical nuclear processes. PMID:27480253

  9. Graphic user interface-based nuclear medicine reporting system.

    PubMed

    Sanger, J J

    1993-03-01

    A graphically based, computerized report generation program has been developed and deployed at a dozen nuclear medicine facilities. The system is based on the Macintosh graphical user interface (GUI) and has been designed to be easy to learn and use. The system allows the nuclear medicine practitioner to generate reports for any nuclear medicine or nuclear cardiology procedure without transcriptionist support, dramatically decreasing report turnaround time. The system includes a relational database engine that allows cost-effective storage and rapid retrieval of final reports and also supports facsimile transmission of reports directly to referring clinicians' offices.

  10. Applicability of trends in nuclear safety analysis to space nuclear power systems

    SciTech Connect

    Bari, R.A.

    1992-10-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication.

  11. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    NASA Astrophysics Data System (ADS)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  12. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  13. Nuclear-criticality-safety studies of interest to TMI-2 recovery operations

    SciTech Connect

    Thomas, J.T.

    1982-10-01

    A series of criticality calculations was made on simple systems representative of possible situations that may be found during recovery operations at TMI-2. While not specific to physical conditions that may be encountered, the effect of oxide fines on the neutron multiplication factor may be estimated from the relative effects observed in the systems studied.

  14. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 2: Accident Model Document (AMD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.

  15. Criticality and Chaos in Systems of Communities

    NASA Astrophysics Data System (ADS)

    Ostilli, Massimo; Figueiredo, Wagner

    2016-01-01

    We consider a simple model of communities interacting via bilinear terms. After analyzing the thermal equilibrium case, which can be described by an Hamiltonian, we introduce the dynamics that, for Ising-like variables, reduces to a Glauber-like dynamics. We analyze and compare four different versions of the dynamics: flow (differential equations), map (discretetime dynamics), local-time update flow, and local-time update map. The presence of only bilinear interactions prevent the flow cases to develop any dynamical instability, the system converging always to the thermal equilibrium. The situation is different for the map when unfriendly couplings are involved, where period-two oscillations arise. In the case of the map with local-time updates, oscillations of any period and chaos can arise as a consequence of the reciprocal “tension” accumulated among the communities during their sleeping time interval. The resulting chaos can be of two kinds: true chaos characterized by positive Lyapunov exponent and bifurcation cascades, or marginal chaos characterized by zero Lyapunov exponent and critical continuous regions.

  16. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    SciTech Connect

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the `stone sack` to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods.

  17. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  18. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear tomography system. 892.1310 Section 892.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1310 Nuclear tomography system. (a...

  19. Nuclear system that burns its own wastes shows promise

    NASA Technical Reports Server (NTRS)

    Atchison, K.

    1975-01-01

    A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.

  20. Alpha particle clusters and their condensation in nuclear systems

    NASA Astrophysics Data System (ADS)

    Schuck, Peter; Funaki, Yasuro; Horiuchi, Hisashi; Röpke, Gerd; Tohsaki, Akihiro; Yamada, Taiichi

    2016-12-01

    In this article we review the present status of α clustering in nuclear systems. First of all, an important aspect is condensation in nuclear matter. Like for pairing, quartetting in matter is at the root of similar phenomena in finite nuclei. Cluster approaches for finite nuclei are shortly recapitulated in historical order. The α container model, recently been proposed by Tohsaki-Horiuchi-Schuck-Röpke (THSR), will be outlined and the ensuing condensate aspect of the Hoyle state at 7.65 MeV in 12C is investigated in some detail. A special case will be made with respect to the very accurate reproduction of the inelastic form factor from the ground to Hoyle state with the THSR description. The extended volume will be deduced. New developments concerning excitations of the Hoyle state will be discussed. After 15 years since the proposal of the α condensation concept a critical assessment of this idea will be given. Alpha gas states in other nuclei like 16O and 13C will be considered. An important aspect is the experimental evidence, both present and future ones. The THSR wave function can also describe configurations of one α particle on top of a doubly magic core. The cases of 20Ne and 212Po will be investigated.

  1. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given

  2. Manned space flight nuclear system safety. Volume 1: Executive summary. Part 2: Space shuttle nuclear system safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The nuclear safety integration and operational aspects of transporting nuclear payloads to and from an earth orbiting space base by space shuttle are discussed. The representative payloads considered were: (1) zirconium hydride-Brayton power module, (2) isotope-Brayton power module, and (3) small isotope power systems or heat sources. Areas of investigation also include nuclear safety related integration and packaging as well as operational requirements for the shuttle and payload systems for all phases of the mission.

  3. Nuclear thiol redox systems in plants.

    PubMed

    Delorme-Hinoux, Valérie; Bangash, Sajid A K; Meyer, Andreas J; Reichheld, Jean-Philippe

    2016-02-01

    Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Multiparticle Monte Carlo Code System for Shielding and Criticality Use.

    SciTech Connect

    2015-06-01

    Version 00 COG is a modern, full-featured Monte Carlo radiation transport code that provides accurate answers to complex shielding, criticality, and activation problems.COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computing Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://cog.llnl.gov. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. A lattice feature simplifies the specification of regular arrays of parts. Parallel processing under MPI is supported for multi-CPU systems. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, pathlength stretching, point detectors, scattered direction biasing, and forced collisions. Criticality – For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation – COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems – COG can solve coupled problems involving neutrons, photons, and electrons. COG 11.1 is an updated version of COG11.1 BETA 2 (RSICC C00777MNYCP02). New

  5. NTP system simulation and detailed nuclear engine modeling

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal propulsion (NTP) & detailed nuclear engine modeling; modeling and engineering simulation of nuclear thermal rocket systems; nuclear thermal rocket simulation system; INSPI-NTVR core axial flow profiles; INSPI-NTRV core axial flow profiles; specific impulse vs. chamber pressure; turbine pressure ratio vs. chamber pressure; NERVA core axial flow profiles; P&W XNR2000 core axial flow profiles; pump pressure rise vs. chamber pressure; streamline of jet-induced flow in cylindrical chamber; flow pattern of a jet-induced flow in a chamber; and radiative heat transfer models.

  6. Criticality-Control Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    SciTech Connect

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. The high boron content of Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5) makes it an effective neutron absorber, and suitable for criticality control applications. Average measured values of the neutron absorption cross section in transmission ({Sigma}{sub t}) for Type 316L stainless steel, Alloy C-22, borated stainless steel, a Ni-Cr-Mo-Gd alloy, and SAM2X5 have been determined to be approximately 1.1, 1.3, 2.3, 3.8 and 7.1 cm{sup -1}, respectively.

  7. Indications for a critical end point in the phase diagram for hot and dense nuclear matter.

    PubMed

    Lacey, Roy A

    2015-04-10

    Excitation functions for the Gaussian emission source radii difference (R_{out}^{2}-R_{side}^{2}) obtained from two-pion interferometry measurements in Au+Au (sqrt[s_{NN}]=7.7-200  GeV) and Pb+Pb (sqrt[s_{NN}]=2.76  TeV) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T,μ_{B}) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates T^{cep}∼165  MeV and μ_{B}^{cep}∼95  MeV for the location of the critical end point. The critical exponents (ν≈0.66 and γ≈1.2) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class.

  8. Passive sensor systems for nuclear material monitoring

    SciTech Connect

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-09-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y{sub 2}O{sub 3}) with {sup 6}LiF (95% {sup 6}Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant.

  9. Why Mission-Critical Systems Are Critical to the Future of Academic Libraries

    ERIC Educational Resources Information Center

    Oberlander, Cyril

    2012-01-01

    A mission-critical system is one that is so intertwined with the operation of an organization that the organization can scarcely function without it. Just as in corporations, mission-critical library systems offer the capability to unlock talent and time. They are essential to the transformation of higher education and the learning environment. A…

  10. Why Mission-Critical Systems Are Critical to the Future of Academic Libraries

    ERIC Educational Resources Information Center

    Oberlander, Cyril

    2012-01-01

    A mission-critical system is one that is so intertwined with the operation of an organization that the organization can scarcely function without it. Just as in corporations, mission-critical library systems offer the capability to unlock talent and time. They are essential to the transformation of higher education and the learning environment. A…

  11. Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel

    SciTech Connect

    Rearden, B.T.; Anderson, W.J.; Harms, G.A.

    2005-08-15

    Framatome ANP, Sandia National Laboratories (SNL), Oak Ridge National Laboratory (ORNL), and the University of Florida are cooperating on the U.S. Department of Energy Nuclear Energy Research Initiative (NERI) project 2001-0124 to design, assemble, execute, analyze, and document a series of critical experiments to validate reactor physics and criticality safety codes for the analysis of commercial power reactor fuels consisting of UO{sub 2} with {sup 235}U enrichments {>=}5 wt%. The experiments will be conducted at the SNL Pulsed Reactor Facility.Framatome ANP and SNL produced two series of conceptual experiment designs based on typical parameters, such as fuel-to-moderator ratios, that meet the programmatic requirements of this project within the given restraints on available materials and facilities. ORNL used the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) to assess, from a detailed physics-based perspective, the similarity of the experiment designs to the commercial systems they are intended to validate. Based on the results of the TSUNAMI analysis, one series of experiments was found to be preferable to the other and will provide significant new data for the validation of reactor physics and criticality safety codes.

  12. Futuristic systems: Solar and nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Byers, Dave

    1991-01-01

    The following topics are addressed: (1) in-space propulsion impacts; (2) electric propulsion; (3) mission impacts of electric propulsion; and (4) summaries of electric propulsion status and solar and nuclear propulsion.

  13. The Criticality Hypothesis in Neural Systems

    NASA Astrophysics Data System (ADS)

    Karimipanah, Yahya

    There is mounting evidence that neural networks of the cerebral cortex exhibit scale invariant dynamics. At the larger scale, fMRI recordings have shown evidence for spatiotemporal long range correlations. On the other hand, at the smaller scales this scale invariance is marked by the power law distribution of the size and duration of spontaneous bursts of activity, which are referred as neuronal avalanches. The existence of such avalanches has been confirmed by several studies in vitro and in vivo, among different species and across multiple scales, from spatial scale of MEG and EEG down to single cell resolution. This prevalent scale free nature of cortical activity suggests the hypothesis that the cortex resides at a critical state between two phases of order (short-lasting activity) and disorder (long-lasting activity). In addition, it has been shown, both theoretically and experimentally, that being at criticality brings about certain functional advantages for information processing. However, despite the plenty of evidence and plausibility of the neural criticality hypothesis, still very little is known on how the brain may leverage such criticality to facilitate neural coding. Moreover, the emergent functions that may arise from critical dynamics is poorly understood. In the first part of this thesis, we review several pieces of evidence for the neural criticality hypothesis at different scales, as well as some of the most popular theories of self-organized criticality (SOC). Thereafter, we will focus on the most prominent evidence from small scales, namely neuronal avalanches. We will explore the effect of adaptation and how it can maintain scale free dynamics even at the presence of external stimuli. Using calcium imaging we also experimentally demonstrate the existence of scale free activity at the cellular resolution in vivo. Moreover, by exploring the subsampling issue in neural data, we will find some fundamental constraints of the conventional methods

  14. Nuclear criticality safety controls for uranium deposits during D and D at the Oak Ridge Gaseous Diffusion Plant

    SciTech Connect

    Haire, M.J.; Jordan, W.C.; Jollay, L.J. III; Dahl, T.L.

    1997-02-01

    The US Department of Energy (DOE) Deputy Assistant Secretary of Energy for Environmental Management has issued a challenge to complete DOE environmental cleanup within a decade. The response for Oak Ridge facilities is in accordance with the DOE ten-year plan which calls for completion of > 95% of environmental management work by the year 2006. This will result in a 99% risk reduction and in a significant savings in base line costs in waste management (legacy waste); remedial action (groundwater, soil, etc.); and decontamination and decommissioning (D and D). It is assumed that there will be long-term institutional control of cascade equipment, i.e., there will be no walk away from sites, and that there will be firm radioactivity release limits by 1999 for recycle metals. An integral part of these plants is the removal of uranium deposits which pose nuclear criticality safety concerns in the shut down of the Oak Ridge Gaseous Diffusion Plant. DOE has initiated the Nuclear Criticality Stabilization Program to improve nuclear criticality safety by removing the larger uranium deposits from unfavorable geometry equipment. Nondestructive assay (NDA) measurements have identified the location of these deposits. The objective of the K-25 Site Nuclear Criticality Stabilization Program is to remove and place uranium deposits into safe geometry storage containers to meet the double contingency principle. Each step of the removal process results in safer conditions where multiple controls are present. Upon completion of the Program, nuclear criticality risks will be greatly reduced.

  15. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    SciTech Connect

    Not Available

    1980-06-01

    This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improvng the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness.

  16. Analysis of single events in ultrarelativistic nuclear collisions: A new method to search for critical fluctuations

    SciTech Connect

    Stock, R.

    1995-07-15

    The upcoming generation of experiments with ultrarelativistic heavy nuclear projectiles, at the CERN SPS and at RHIC and LHC, will confront researchers with several thousand identified hadrons per event, suitable detectors provided. An analysis of individual events becomes meaningful concerning a multitude of hadronic signals thought to reveal a transient deconfinement phase transition, or the related critical precursor fluctuations. Transverse momentum spectra, the kaon to pion ratio, and pionic Bose-Einstein correlation are examined, showing how to separate the extreme, probably rare candidate events from the bulk of average events. This type of observables can already be investigated with the Pb beam of the SPS. The author then discusses single event signals that add to the above at RHIC and LHC energies, kaon interferometry, rapidity fluctuation, jet and {gamma} production.

  17. Early warning signals for critical transitions in a thermoacoustic system

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, E. A.; Sharma, Yogita; John, Tony; Dutta, Partha Sharathi; Sujith, R. I.

    2016-10-01

    Dynamical systems can undergo critical transitions where the system suddenly shifts from one stable state to another at a critical threshold called the tipping point. The decrease in recovery rate to equilibrium (critical slowing down) as the system approaches the tipping point can be used to identify the proximity to a critical transition. Several measures have been adopted to provide early indications of critical transitions that happen in a variety of complex systems. In this study, we use early warning indicators to predict subcritical Hopf bifurcation occurring in a thermoacoustic system by analyzing the observables from experiments and from a theoretical model. We find that the early warning measures perform as robust indicators in the presence and absence of external noise. Thus, we illustrate the applicability of these indicators in an engineering system depicting critical transitions.

  18. Early warning signals for critical transitions in a thermoacoustic system.

    PubMed

    Gopalakrishnan, E A; Sharma, Yogita; John, Tony; Dutta, Partha Sharathi; Sujith, R I

    2016-10-21

    Dynamical systems can undergo critical transitions where the system suddenly shifts from one stable state to another at a critical threshold called the tipping point. The decrease in recovery rate to equilibrium (critical slowing down) as the system approaches the tipping point can be used to identify the proximity to a critical transition. Several measures have been adopted to provide early indications of critical transitions that happen in a variety of complex systems. In this study, we use early warning indicators to predict subcritical Hopf bifurcation occurring in a thermoacoustic system by analyzing the observables from experiments and from a theoretical model. We find that the early warning measures perform as robust indicators in the presence and absence of external noise. Thus, we illustrate the applicability of these indicators in an engineering system depicting critical transitions.

  19. Early warning signals for critical transitions in a thermoacoustic system

    PubMed Central

    Gopalakrishnan, E. A.; Sharma, Yogita; John, Tony; Dutta, Partha Sharathi; Sujith, R. I.

    2016-01-01

    Dynamical systems can undergo critical transitions where the system suddenly shifts from one stable state to another at a critical threshold called the tipping point. The decrease in recovery rate to equilibrium (critical slowing down) as the system approaches the tipping point can be used to identify the proximity to a critical transition. Several measures have been adopted to provide early indications of critical transitions that happen in a variety of complex systems. In this study, we use early warning indicators to predict subcritical Hopf bifurcation occurring in a thermoacoustic system by analyzing the observables from experiments and from a theoretical model. We find that the early warning measures perform as robust indicators in the presence and absence of external noise. Thus, we illustrate the applicability of these indicators in an engineering system depicting critical transitions. PMID:27767065

  20. Criticality accident alarm system at the Fernald Environmental Management Project

    SciTech Connect

    Marble, R.C.; Brown, T.D.; Wooldridge, J.C.

    1994-12-31

    This paper describes the staus of the Fernald Environmental Management Project (FEMP) criticality alarm system. A new radiation detection alarm system was installed in 1990. The anunciation system, calibration and maintenance, and detector placement is described.

  1. Legitimating a nuclear critic: John Gofman, radiation safety, and cancer risks.

    PubMed

    Semendeferi, Ioanna

    2008-01-01

    Whether low-level ionizing radiation has an effect on humans has been a polarizing issue for the last fifty years. The epicenter of this controversy has been the validity of the linear non-threshold dose-response model, according to which any amount of radiation, however small, causes damage to human genes and health. In the late 1960s and early 1970s, the nuclear scientist and medical researcher John Gofman (1918-2007) played a pivotal role in the debate. Historical accounts have treated Gofman as a radical antinuclear scientist whose unscientific arguments put enormous political pressure on the nuclear power industry and regulatory agencies. Gofman's bitter struggle with the Atomic Energy Commission, which funded his research at Lawrence Livermore National Laboratory, partly accounts for this view. However, my analysis of Gofman's involvement in the low-level radiation debate shows how he also helped shift the focus in radiation safety from the risks of genetic damage or leukemia to somatic or cancer risks. His arguments led to the introduction of the linear non-threshold radiation model as a means of numerically estimating cancer risks. This was a watershed event in radiation-safety science and politics. Gofman's case sheds light on the process by which a scientist could secure legitimation even when his technical arguments threatened the government's interests. I conclude that it also points to an open issue in the history of antinuclear scientists, or of other politically active scientists or technology critics: treating them as critics should not preclude historians from treating them as scientists.

  2. Stochastic sampling method with MCNPX for nuclear data uncertainty propagation in criticality safety applications

    SciTech Connect

    Zhu, T.; Vasiliev, A.; Wieselquist, W.; Ferroukhi, H.

    2012-07-01

    In the domain of criticality safety, the efficient propagation of uncertainty in nuclear data to uncertainty in k{sub eff} is an important area of current research. In this paper, a method based on stochastic sampling is presented for uncertainty propagation in MCNPX calculations. To that aim, the nuclear data (i.e. cross sections) are assumed to have a multivariate normal distribution and simple random sampling is performed following this presumed probability distribution. A verification of the developed stochastic sampling procedure with MCNPX is then conducted using the {sup 239}Pu Jezebel experiment as well as the PB-2 BWR and TMI-1 PWR pin cell models from the Uncertainty Analysis in Modeling (UAM) exercises. For the Jezebel case, it is found that the developed stochastic sampling approach predicts similar k{sub eff} uncertainties compared to conventional sensitivity and uncertainty methods. For the UAM models, slightly lower uncertainties are obtained when comparing to existing preliminary results. Further details of these verification studies are discussed and directions for future work are outlined. (authors)

  3. A journey from nuclear criticality methods to high energy density radflow experiments

    SciTech Connect

    Urbatsch, Todd James

    2016-11-08

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacity platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy and they are as saturated with politics as a presidential election, but they sure are fun.

  4. Critical Casimir forces from the equation of state of quantum critical systems

    NASA Astrophysics Data System (ADS)

    Rançon, Adam; Henry, Louis-Paul; Rose, Félix; Cardozo, David Lopes; Dupuis, Nicolas; Holdsworth, Peter C. W.; Roscilde, Tommaso

    2016-10-01

    The mapping between a classical length and inverse temperature as imaginary time provides a direct equivalence between the Casimir force of a classical system in D dimensions and internal energy of a quantum system in d =D -1 dimensions. The scaling functions of the critical Casimir force of the classical system with periodic boundaries thus emerge from the analysis of the symmetry related quantum critical point. We show that both nonperturbative renormalization group and quantum Monte Carlo analysis of quantum critical points provide quantitative estimates for the critical Casimir force in the corresponding classical model, giving access to widely different aspect ratios for the geometry of confined systems. In light of these results, we propose protocols for the realization of critical Casimir forces for periodic boundaries through state-of-the-art cold-atom and solid-state experiments.

  5. Nuclear data needs for accelerator-driven transmutation systems

    SciTech Connect

    Arthur, E.D.; Wilson, W.B.; Young, P.G.

    1994-07-01

    The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

  6. Regulatory assessment of safety critical software used in upgrades to analog systems

    SciTech Connect

    Taylor, R.P.

    1994-12-31

    As a result of the difficulties encountered by both licensee and regulator during the licensing of the Darlington nuclear generating station software-based shutdown systems, Ontario Hydro was directed by the Atomic Energy Control Board (AECL) to produce improved company standards and procedures for safety-critical software development. In partnership with Atomic Energy of Canada Ltd. (AECL), a joint committee called OASES (Ontario Hydro/AECL Software Engineering Standards) has developed a suite of standards and procedures for software specification, design, implementation, verification, testing, and safety analysis. These standards are now being applied to new systems and are being adapted for use on upgrades to existing systems. Several digital protection systems have been installed recently in Canadian nuclear plants, such as a primary heat transport pump trip and an emergency powerhouse venting system. We have learned from the experience of assessing these systems and are now applying these lessons to systems developed under the new OASES standards.

  7. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  8. A Roadmap of Innovative Nuclear Energy System

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  9. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  10. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As visions of space applications expand and as probes extend further and further out into the universe, the need for power also expands, and missions evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources are defined. These include earth orbital platforms, deep space platforms, planetary exploration and extraterrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the moon and Mars has more clearly defined these missions and their power requirements. This paper presents results of recent studies of radioisotope and nuclear-reactor energy sources combined with various energy-conversion devices for earth orbital applications, SEI lunar/Mars rover and surface power, and planetary exploration.

  11. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect

    Not Available

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  12. Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line

    NASA Astrophysics Data System (ADS)

    Becattini, Francesco; Steinheimer, Jan; Stock, Reinhard; Bleicher, Marcus

    2017-01-01

    We compare the reconstructed hadronization conditions in relativistic nuclear collisions in the nucleon-nucleon centre-of-mass energy range 4.7-2760 GeV in terms of temperature and baryon-chemical potential with lattice QCD calculations, by using hadronic multiplicities. We obtain hadronization temperatures and baryon chemical potentials with a fit to measured multiplicities by correcting for the effect of post-hadronization rescattering. The post-hadronization modification factors are calculated by means of a coupled hydrodynamical-transport model simulation under the same conditions of approximate isothermal and isochemical decoupling as assumed in the statistical hadronization model fits to the data. The fit quality is considerably better than without rescattering corrections, as already found in previous work. The curvature of the obtained "true" hadronization pseudo-critical line κ is found to be 0.0048 ± 0.0026, in agreement with lattice QCD estimates; the pseudo-critical temperature at vanishing μB is found to be 164.3 ± 1.8 MeV.

  13. Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system

    SciTech Connect

    Wang, Z. S.; Liu, G. Q.; Ji, Y. H.

    2009-05-15

    A scheme is proposed to include both cyclic and noncyclic geometric quantum computations in nuclear-magnetic-resonance system by the invariant theory. By controlling magnetic field and arbitrary parameters in the invariant operator, the phases accumulated in the entangling quantum gates for single- and two-qubit systems are pure geometric phases. Thus, fault tolerance may occur in some critical magnetic field parameters for either cyclic or noncyclic evolution by differently choosing for gate time.

  14. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    SciTech Connect

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T; Campbell, Billy J; Hammond, Glenn A; Meppen, Bruce W; Brown, Richard F

    2011-01-01

    A nuclear material control and accountability (MC&A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC&A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC&A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC&A system (2) A fault tree of the operating MC&A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC&A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area [MBA]) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance factor reports on the

  15. Nuclear Criticality Safety Evaluation of the 9965, 9968, 9972, 9973, 9974, and 9975 Shipping Casks

    SciTech Connect

    Frost, R.L.

    1999-02-26

    A Nuclear Criticality Safety Evaluation (NCSE) has been performed for the 9965, 9968, 9972, 9973, 9974, and 9975 SRS-designed shipping casks. This was done in support of the recertification effort for the 9965 and 9968, and the certification of the newly designed 9972-9975 series. The analysis supports the use of these packages as Fissile Class I for shipment of fissionable material from the SRS FB-Line, HB-Line, and from Lawrence Livermore national Laboratory. six different types of material were analyzed with varying Isotopic composition, of both oxide and metallic form. The mass limits required to support the fissile Class I rating for each of the envelopes are given in the Table below. These mass limits apply if DOE approves an exception as described in 10 CFR 71.55(c), such that water leakage into the primary containment vessel does not need to be considered in the criticality analysis. If this exception is not granted, the mass limits are lower than those shown below. this issue is discussed in detail in sections 5 and 6 of the report.One finding from this work is important enough to highlight in the abstract. The fire tests performed for this family of shipping casks indicates only minimal charring of the Celotex thermal insulation. Analysis of the casks with no Celotex insulation (assuming it has all burned away), results in values of k-eff that exceed 1.0. Therefore, the Celotex insulation must remain intact in order to guarantee sub criticality of the 9972-9975 family of shipping casks.

  16. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  17. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  18. American National Standard ANSI/ANS-8.15-1983: Nuclear criticality control of special actinide elements

    SciTech Connect

    Brewer, R.W.; Pruvost, N.L.; Rombough, C.T.

    1996-12-31

    The American National Standard, `Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors` ANSI/ANS-8.1- 1983 provides guidance for the nuclides [sup 233]U, [sup 235]U, and [sup 239]Pu These three nuclides are of primary interest in out-of-reactor criticality safety since they are the most commonly encountered in the vast majority of operations. However, some operations can involve nuclides other than `U, `U, and `Pu in sufficient quantities that their effect on criticality safety could be of concern. The American National Standard, `Nuclear Criticality Control of Special Actinide Elements` ANSI/ANS-8.`15-1983 (Ref 2), provides guidance for fifteen such nuclides.

  19. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  20. Assessment of lightweight mobile nuclear power systems. [for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.

  1. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  2. Nuclear power plant alarm systems: Problems and issues

    SciTech Connect

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  3. Passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  4. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  5. Linking Humans and Systems in Nuclear Power

    SciTech Connect

    Jacques Hugo

    2013-02-01

    Traditional engineering methods do not make provision for the integration of human considerations, while traditional human factors methods do not scale well to the complexity of large-scale nuclear power plant projects. Although the need for up-to-date human factors engineering processes and tools is recognised widely in industry, so far no formal guidance has been developed. This article proposes such a framework.

  6. Consideration of Nuclear Criticality When Directly Disposing Highly Enriched Spent Nuclear Fuel in Unsaturated Tuff - II: Geochemical Constraints

    SciTech Connect

    Rechard, Rob P.; Sanchez, Lawrence C.; Trellue, Holly R.

    2003-11-15

    This article presents several reasonable cases in which four mechanisms - dissolution, physical mixing, adsorption, and precipitation (either chemical change or evaporation) - might concentrate fissile material in and around a disposal container for radioactive waste at the proposed repository at Yucca Mountain, Nevada. The possible masses, concentrations, and volume are then compared to criticality limits. The cases examined evaluate the geologic barrier role in preventing criticality since engineered options for preventing criticality (e.g., boron or gadolinium neutron absorber in the disposal container) are not considered. The solid concentrations able to form in the natural environment are insufficient for criticality to occur because (a) solutions of {sup 235}U and {sup 239}Pu are clearly not critical; (b) physical mixing of fissile material with the entire potential iron oxide (as goethite - FeOOH) in a waste package is not critical; (c) the adsorption of {sup 239}Pu on consolidated iron oxide in a waste package is not critical; (d) the adsorption of {sup 235}U on consolidated iron oxide in a waste package is not critical when accounting for reduced adsorption because of carbonates at high pH; (e) the filtration of iron oxide colloids, containing fissile material, by the thin invert material is not critical; (f) insufficient retention through precipitation of {sup 235}U or {sup 239}Pu occurs in the invert; (g) adsorption of {sup 235}U and {sup 239}Pu on devitrified or clinoptolite-rich tuff below the repository is not critical; (h) the average precipitation/adsorption of {sup 235}U as uranyl silicates in the tuff is not critical by analogy with calcite deposition in lithophysae at Yucca Mountain; and (i) precipitation/adsorption (caused by cyclic drying) as uranyl silicates on fracture surfaces of the tuff is not critical by analogy with the oxidation of UO{sub 2}, migration of U{sup VI}, and precipitation in fractures at the Nopal I ore deposit in Mexico.

  7. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  8. SCALE system cross-section validation for criticality safety analysis

    SciTech Connect

    Hathout, A M; Westfall, R M; Dodds, Jr, H L

    1980-01-01

    The purpose of this study is to test selected data from three cross-section libraries for use in the criticality safety analysis of UO/sub 2/ fuel rod lattices. The libraries, which are distributed with the SCALE system, are used to analyze potential criticality problems which could arise in the industrial fuel cycle for PWR and BWR reactors. Fuel lattice criticality problems could occur in pool storage, dry storage with accidental moderation, shearing and dissolution of irradiated elements, and in fuel transport and storage due to inadequate packing and shipping cask design. The data were tested by using the SCALE system to analyze 25 recently performed critical experiments.

  9. Critical electron binding to linear electric quadrupole systems.

    PubMed

    Garrett, W R

    2008-05-21

    Results for critical quadrupolar moments for electron binding to fixed, point-charge systems are normalized, extended, and displayed in graphical forms. The influence of rotational degrees of freedom on critical binding to quadrupolar systems is examined through calculations of critical moments for electron binding to linear electric quadrupolar rotors. The results are presented for rotors covering useful ranges of size and inertial parameters. The effect of rotational degrees of freedom on critical binding is found to be less important for quadrupolar as compared to dipolar rotors.

  10. Space nuclear power: Key to outer solar system exploration

    SciTech Connect

    Bennett, G.L.; Allen, D.M.

    1998-07-01

    In 1995, in response to threatened budget cuts, the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper supporting the maintenance of the technology base for space nuclear power. The position paper contained four recomemndations: (1) DOE, NASA, and DoD should develop and support an integrated program that maintains the nuclear option and develops the needed high-payoff technologies; (2) Congress should provide strong, continuing financial and political support for the agencies' program; (3) Government and industry leaders should voice their advocacy for a strong space nuclear power program to support future system requirements; and (4) The US should continue to maintain its cooperation and technical interchanges with other countries to advance nuclear power source technology and to promote nuclear safety.

  11. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  12. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2007-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  13. Modern Nuclear Data Evaluation with the TALYS Code System

    NASA Astrophysics Data System (ADS)

    Koning, A. J.; Rochman, D.

    2012-12-01

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: "Total" Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  14. Validation of Flight Critical Control Systems

    DTIC Science & Technology

    1991-12-01

    Operations and Control System ADIRS Air Data & Inertial Reference Systems AFB Air Force Base AFTI Advanced Fighter Technology Integration AGARD Advisory...redundancy is employed at the aircraft effector plane. The objective is to generate forces and moments about some control axis, in the case of failure of...Flight Control System", Proceedings of the United States Air Force Academy Advanced Flight Controls Symposium, 198 1. 2-13 2 fFlapper, J.A., and

  15. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  16. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  17. Westinghouse Small Modular Reactor nuclear steam supply system design

    SciTech Connect

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  18. Sensor Systems Collect Critical Aerodynamics Data

    NASA Technical Reports Server (NTRS)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  19. Discussion on software aging management of nuclear power plant safety digital control system.

    PubMed

    Liang, Huihui; Gu, Pengfei; Tang, Jianzhong; Chen, Weihua; Gao, Feng

    2016-01-01

    Managing the aging of digital control systems ensures that nuclear power plant systems are in adequate safety margins during their life cycles. Software is a core component in the execution of control logic and differs between digital and analog control systems. The hardware aging management for the digital control system is similar to that for the analog system, which has matured over decades of study. However, software aging management is still in the exploratory stage. Software aging evaluation is critical given the higher reliability and safety requirements of nuclear power plants. To ensure effective inputs for reliability assessment, this paper provides the required software aging information during the life cycle. Moreover, the software aging management scheme for safety digital control system is proposed on the basis of collected aging information.

  20. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    SciTech Connect

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-09-29

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium {gamma}-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material.

  1. The advisability of prototypic testing for space nuclear systems

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.

    2005-07-01

    From October 1987 until 1993, the US Department of Defense conducted the Space Nuclear Thermal Propulsion program. This program's objective was to design and develop a high specific impulse, high thrust-to-weight nuclear thermal rocket engine for upper stage applications. The author was the program manager for this program until 1992. Numerous analytical, programmatic and experimental results were generated during this period of time. This paper reviews the accomplishments of the program and highlights the importance of prototypic testing for all aspects of a space nuclear program so that a reliable and safe system compliant with all regulatory requirements can be effectively engineered. Specifically, the paper will recount how many non-prototypic tests we performed only to have more representative tests consistently generate different results. This was particularly true in area of direct nuclear heat generation. As nuclear tests are generally much more expensive than non-nuclear tests, programs attempt to avoid such tests in favor of less expensive non-nuclear tests. Each time this approach was followed, the SNTP program found these tests to not be verified by nuclear heated testing. Hence the author recommends that wherever possible, a spiral development approach that includes exploratory and confirmatory experimental testing be employed to ensure a viable design.

  2. Critical Analysis of Dry Storage Temperature Limits for Zircaloy-Clad Spent Nuclear Fuel Based on Diffusion Controlled Cavity Growth

    SciTech Connect

    Hayes, T.A.; Rosen, R.S.; Kassner, M.E.

    1999-12-01

    Interim dry storage of spent nuclear fuel (SNF) rods is of critical concern because a shortage of existing SNF wet storage capacity combined with delays in the availability of a permanent disposal repository has led to an increasing number of SNF rods being placed into interim dry storage. Safe interim dry storage must be maintained for a minimum of twenty years according to the Standard Review Plan for Dry Cask Storage Systems [1] and the Code of Federal Regulations, 10 CFR Part 72 [2]. Interim dry storage licensees must meet certain safety conditions when storing SNF rods to ensure that there is a ''very low probability (e.g. 0.5%) of cladding breach during long-term storage'' [1]. Commercial SNF typically consists of uranium oxide pellets surrounded by a thin cladding. The cladding is usually an {alpha}-zirconium based alloy know as ''Zircaloy''. In dry storage, the SNF rods are confined in one of several types of cask systems approved by the Nuclear Regulatory Commission (NRC). ''The cask system must be designed to prevent degradation of fuel cladding that results in a type of cladding breach, such as axial-splits or ductile fracture, where irradiated UO{sub 2} particles may be released. In addition, the fuel cladding should not degrade to the point where more than one percent of the fuel rods suffer pinhole or hairline crack type failure under normal storage conditions [1].'' The NRC has approved two models [3,4] for use by proposed dry storage licensees to determine the maximum initial temperature limit for nuclear fuel rods in dry storage that supposedly meet the above criteria and yield consistent temperature limits. Though these two models are based on the same fundamental failure theory, different assumptions have been made including the choice of values for material constants in the failure equation. This report will examine and compare the similarities and inconsistencies of these two models. It will illustrate some of the shortcomings of the current

  3. INIS: A Computer-Based International Nuclear Information System.

    ERIC Educational Resources Information Center

    Balakrishnan, M. R.

    1986-01-01

    Description of the International Nuclear Information System includes its history, organizational structure, subject classification scheme, thesaurus, input standards, and various products and services generated by the system. Appendices provide a list of participating countries, subjects covered by the system, and a sample output record.…

  4. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance

    SciTech Connect

    Not Available

    1980-06-01

    The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

  5. New Resolved Resonance Region Evaluation for 63Cu and 65Cu for Nuclear Criticality Safety Program

    SciTech Connect

    Sobes, Vladimir; Leal, Luiz C; Guber, Klaus H; Forget, Benoit; Kopecky, S.; Schillebeeckx, P.; Siegler, P.

    2014-01-01

    A new resolved resonance region evaluation of 63Cu and 65Cu was done in the energy region from 10-5 eV to 99.5 keV. The R-Matrix SAMMY method using the Reich-Moore approximation was used to create a new set of consistent resonance parameters. The new evaluation was based on three experimental transmission data sets; two measured at ORELA and one from MITR, and two radiative capture experimental data sets from GELINA. A total of 141 new resonances were identied for 63Cu and 117 for 65Cu. The corresponding set of external resonances for each isotope was based on the identied resonances above 99.5 keV from the ORELA transmission data. The negative external levels (bound levels) were determined to match the dierential thermal cross section measured at the MITR. Double dierential elastic scattering cross sections were calculated from the new set of resonance parameters. Benchmarking calculations were carried out on a set of ICSBEP benchmarks. This work is in support of the DOE Nuclear Criticality Safety Program.

  6. Modeling the nuclear magnetic resonance behavior of lung: from electrical engineering to critical care medicine.

    PubMed

    Cutillo, A G; Ailion, D C

    1999-01-01

    The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air-tissue interface (because air and water have different magnetic susceptibilities). The air-tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin-echo sequences. Theoretical models developed to explain the internal (tissue-induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients.

  7. Information Theory and Undersampling Diagnostics for Monte Carlo Simulation of Nuclear Criticality

    SciTech Connect

    Ueki, Taro

    2005-11-15

    The criterion of information-theoretic stationarity diagnostics for the Monte Carlo simulation of nuclear criticality has been extended to undersampling diagnostics. Here, undersampling diagnostics means the posterior checking of the number of neutron histories per cycle. A statistically sound criterion using Shannon and relative entropies is defined based on the inequality with a penalty term for the minimum descriptive length of instantaneously decodable encoding. An alternative criterion based on a large sample property of particle population is defined within the information-theoretic framework of the asymptotic equipartition property and the method of types. An auxiliary criterion is proposed using the concave property of Shannon entropy. Numerical results are presented for the 'k-effective of the world' problem by Whitesides. The results indicate that the estimation bias of the neutron effective multiplication factor will be reduced to a practically negligible level if these criteria are satisfied. It can be concluded that equilibrium is a stronger condition than stationarity concerning the source distribution in the Monte Carlo simulation.

  8. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark; Zinaman, Owen; Forsberg, Charles; Collins, John

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  9. Monitoring the critical radiation exposure pathways at a BWR nuclear power station.

    PubMed

    Golden, J C; Chandrasekaran, E S; Kahn, B

    1982-06-01

    Iodine-131 in milk and gamma radiation from radionuclides in air in the environment of a 3-unit nuclear power station were measured at the levels predicted for airborne effluent. These measurements were part of a modified environmental radiological monitoring program to confirm the population doses computed from radionuclide release rates and environmental transfer models. The limits of detection were lowered relative to conventional monitoring programs by analyzing 21 L samples of milk for 131I and by determining external gamma radiation with a system that combined use of thermoluminescent dosimeters, pressurized ionization chambers, and NaI(T1) survey meters. For monitoring periods slightly longer than 6 months, during a time when fallout from atmospheric nuclear tests contributed very little, the average measured 131I concentration in milk was 0.1 pCi/L for cows on a nearby pasture and 0.02 pCi/L for cows at a more distant control location, compared to predicted values of 0.07 and 0.02 pCi/L, respectively; the average radiation exposure from airborne radionuclides measured at 16 nearby dosimeter locations was 7 mR, compared to the average of predicted values of 4 mR.

  10. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    DOE PAGES

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; ...

    2013-12-20

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are definedmore » as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.« less

  11. Man-machine interface issues for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Nelson, William R.; Haugset, Kjell

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man-machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented.

  12. Man--machine interface issues for space nuclear power systems

    SciTech Connect

    Nelson, W.R.; Haugset, K. )

    1991-01-10

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented.

  13. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; Boardman, Richard D.; Cherry, Robert S.; Bazilian, Morgan D.

    2013-12-20

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  14. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; Boardman, Richard D.; Cherry, Robert S.; Bazilian, Morgan D.

    2014-02-01

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  15. Multimission nuclear electric propulsion system for outer planet exploration missions

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.

    1981-01-01

    The conceptual design configuration of a nuclear electric propulsion system (NEP) with a multimission capability for both earth orbital and electric propulsion missions is discussed. Two basic types of space reactor power system concepts are analyzed emphasizing conduction coupled and radiation coupled systems, and a radiation coupled thermoelectric panel concept is schematically represented and described in detail. A nuclear-powered 100-kWe surveillance spacecraft concept is presented and the developmental phases are given including cost estimates. In addition, a system is described that seems to have the capability to perform all the outer planet missions.

  16. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  17. Achieving Critical System Survivability Through Software Architectures

    DTIC Science & Technology

    2006-01-01

    survivability. Two major projects of note in the area are OASIS and MAFTIA. For detailed dis- cussions of intrusion tolerance, see the text by Lala [21] and...Software Wrappers.” in OASIS: Foundations of Intrusion Tolerant Systems (J. Lala Ed.), IEEE Computer Society Press, 2003. [16] Gartner, Felix C...2003. [21] Lala , J. “Foundations of Intrusion Tolerant Systems.” IEEE Computer Society Press, Catalog # PR02057, 2003. [22] Leveson, N., T. Shimeall, J

  18. Important technology considerations for space nuclear power systems

    SciTech Connect

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  19. Self limiting features of accidental criticality in a solution system

    SciTech Connect

    Malenfant, R.E.

    1988-01-01

    Experience with the SHEBA solution critical assembly during validation testing of accidental criticality alarm detectors provided several insights into the character of potential accidental excursions. Two observations were of particular interest. First, it is nearly impossible to maintain a solution system, particularly one employing low-enrichment material, in a constant state. If super-critical, the system will heat up, expand (or form bubbles), return to a sub-critical state, and shut down of its own accord without going into short period oscillations. Second, a very slow change in the system could produce a long ''pulse'' resulting in lengthy exposures, a high dose, but a low dose rate. The experiments dramatically contradicted the popular contention that accidental criticality is characterized by a blue flash, a clap of thunder, and violet expulsion of material. 5 refs., 3 figs., 4 tabs.

  20. Defense nuclear energy systems selection methodology for civil nuclear power applications

    SciTech Connect

    Scarborough, J.C.

    1986-01-01

    A methodology developed to select a preferred nuclear power system for a US Department of Defense (DOD) application has been used to evaluate preferred nuclear power systems for a remote island community in Southeast Asia. The plant would provide approx.10 MW of electric power, possibly low-temperature process heat for the local community, and would supplement existing island diesel electric capacity. The nuclear power system evaluation procedure was evolved from a disciplined methodology for ranking ten nuclear power designs under joint development by the US Department of Energy (DOE) and DOD. These included six designs proposed by industry for the Secure Military Power Plant Program (now termed Multimegawatt Terrestrial Reactor Program), the SP-100 Program, the North Warning System Program, and the Modular Advanced High-Temperature Gas-Cooled Reactor (HTGR) and Liquid-Metal Reactor (LMR) programs. The 15 evaluation criteria established for the civil application were generally similar to those developed and used for the defense energy systems evaluation, except that the weighting factor applied to each individual criterion differed. The criteria and their weighting (importance) functions for the civil application are described.

  1. Non-Systemic Drugs: A Critical Review

    PubMed Central

    Charmot, Dominique

    2012-01-01

    Non-systemic drugs act within the intestinal lumen without reaching the systemic circulation. The first generation included polymeric resins that sequester phosphate ions, potassium ions, or bile acids for the treatment of electrolyte imbalances or hypercholesteremia. The field has evolved towards non-absorbable small molecules or peptides targeting luminal enzymes or transporters for the treatment of mineral metabolism disorders, diabetes, gastrointestinal (GI) disorders, and enteric infections. From a drug design and development perspective, non-systemic agents offer novel opportunities to address unmet medical needs while minimizing toxicity risks, but also present new challenges, including developing a better understanding and control of non-transcellular leakage pathways into the systemic circulation. The pharmacokinetic-pharmacodynamic relationship of drugs acting in the GI tract can be complex due to the variability of intestinal transit, interaction with chyme, and the complex environment of the surface epithelia. We review the main classes of non-absorbable agents at various stages of development, and their therapeutic potential and limitations. The rapid progress in the identification of intestinal receptors and transporters, their functional characterization and role in metabolic and inflammatory disorders, will undoubtedly renew interest in the development of novel, safe, non-systemic therapeutics. PMID:22300258

  2. Systemic trade risk of critical resources.

    PubMed

    Klimek, Peter; Obersteiner, Michael; Thurner, Stefan

    2015-11-01

    In the wake of the 2008 financial crisis, the role of strongly interconnected markets in causing systemic instability has been increasingly acknowledged. Trade networks of commodities are susceptible to cascades of supply shocks that increase systemic trade risks and pose a threat to geopolitical stability. We show that supply risk, scarcity, and price volatility of nonfuel mineral resources are intricately connected with the structure of the worldwide trade networks spanned by these resources. At the global level, we demonstrate that the scarcity of a resource is closely related to the susceptibility of the trade network with respect to cascading shocks. At the regional level, we find that, to some extent, region-specific price volatility and supply risk can be understood by centrality measures that capture systemic trade risk. The resources associated with the highest systemic trade risk indicators are often those that are produced as by-products of major metals. We identify significant strategic shortcomings in the management of systemic trade risk, in particular in the European Union.

  3. Systemic trade risk of critical resources

    PubMed Central

    Klimek, Peter; Obersteiner, Michael; Thurner, Stefan

    2015-01-01

    In the wake of the 2008 financial crisis, the role of strongly interconnected markets in causing systemic instability has been increasingly acknowledged. Trade networks of commodities are susceptible to cascades of supply shocks that increase systemic trade risks and pose a threat to geopolitical stability. We show that supply risk, scarcity, and price volatility of nonfuel mineral resources are intricately connected with the structure of the worldwide trade networks spanned by these resources. At the global level, we demonstrate that the scarcity of a resource is closely related to the susceptibility of the trade network with respect to cascading shocks. At the regional level, we find that, to some extent, region-specific price volatility and supply risk can be understood by centrality measures that capture systemic trade risk. The resources associated with the highest systemic trade risk indicators are often those that are produced as by-products of major metals. We identify significant strategic shortcomings in the management of systemic trade risk, in particular in the European Union. PMID:26702431

  4. The NJOY nuclear data processing system Version 91

    SciTech Connect

    MacFarlane, R.E.; Muir, D.W.

    1994-10-01

    The NJOY nuclear data processing system is a comprehensive computer code package for producing pointwise and multigroup cross sections and related quantities from elevated nuclear data in the ENDF format, including the latest US library, ENDF/B-VI. The NJOY code can work with neutrons, photons, and charged particles, and it can produce libraries for a wide variety of particle transport and reactor analysis codes.

  5. A high-throughput screening system targeting the nuclear export pathway via the third nuclear export signal of influenza A virus nucleoprotein.

    PubMed

    Kakisaka, Michinori; Mano, Takafumi; Aida, Yoko

    2016-06-02

    Two classes of antiviral drugs, M2 channel inhibitors and neuraminidase (NA) inhibitors, are currently approved for the treatment of influenza; however, the development of resistance against these agents limits their efficacy. Therefore, the identification of new targets and the development of new antiviral drugs against influenza are urgently needed. The third nuclear export signal (NES3) of nucleoprotein (NP) is the most important for viral replication among seven NESs encoded by four viral proteins, NP, M1, NS1, and NS2. NP-NES3 is critical for the nuclear export of NP, and targeting NP-NES3 is therefore a promising strategy that may lead to the development of antiviral drugs. However, a high-throughput screening (HTS) system to identify inhibitors of NP nuclear export has not been established. Here, we developed a novel HTS system to evaluate the inhibitory effects of compounds on the nuclear export pathway mediated by NP-NES3 using a MDCK cell line stably expressing NP-NES3 fused to a green fluorescent protein from aequorea coerulescens (AcGFP-NP-NES3) and a cell imaging analyzer. This HTS system was used to screen a 9600-compound library, leading to the identification of several hit compounds with inhibitory activity against the nuclear export of AcGFP-NP-NES3. The present HTS system provides a useful strategy for the identification of inhibitors targeting the nuclear export of NP via its NES3 sequence.

  6. Involving family systems in critical care nursing: challenges and opportunities.

    PubMed

    Leon, Ana M; Knapp, Sandra

    2008-01-01

    The literature indicates that involvement of families in critical care settings is effective in meeting the needs of families and patients during a medical crisis. This article presents basic concepts from family systems theory, including cultural considerations useful in developing nursing care plans that integrate family involvement in the care of critically ill patients.

  7. Nuclear-Spin Measurements of Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshiro

    Nuclear magnetic resonance (NMR) is widely used in the physical, chemical, and biological sciences. However, conventional NMR techniques based on induction-detection have drawbacks of low-sensitivity and the need of a relatively large sample. It is not suitable to investigate single or double layers (or their nanostructure), which is essential in studying quantum Hall (QH) effects. In this presentation, I discussed a resistively-detected technique to overcome the low-sensitivity limitation of conventional NMR and its application to QH systems. Resistively-detected nuclear-spin-based measurements rely on enhanced interactions between electron and nuclear spins at the degenerate point of different electron-spin states. For example, at the ν = 2/3 degenerate point in a AlGaAs/GaAs system,1-3 nuclear-spin polarization far beyond the thermal equilibrium is generated using current flow (dynamic nuclear-spin polarization). Moreover, nuclear-spin polarization can be detected as enhanced resistance, which is proportional to the magnetization, Mz, of nuclear spins.2 It should be stressed that the special states of ν = 2/3 are needed for dynamic nuclear-spin polarization and Mz detection, but we can apply NMR spectrum and nuclear-spin relaxation (T1 time) measurements for any state we want to estimate. These nuclear-spin-based measurements were successfully applied to characterize QH systems, especially their electron-spin features, using single and double layer systems where characteristics are controlled electrically by the gate biases. For a single layer, we could clarify skyrmion,2 spin-polarization of composite fermion,4 and enhanced spin-orbit interactions in a strongly asymmetric confinement.5 Exciting phases, like a canted antiferromagnetic phase, were studied in a double layer QH system with a total filling factor of 2 (Refs. 6, 7). The low-frequency mode was sensitively detected by monitoring T1, reflecting correlated electron spin features.7 The clear

  8. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    SciTech Connect

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-04

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and 'iron' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  9. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  10. New neutron cross-section measurements on {sup 19}F, {sup 39,41}K, {sup 55}Mn, and {sup 103}Rh for improved nuclear criticality safety

    SciTech Connect

    Guber, K. H.; Leal, L. C.; Sayer, R. O.; Koehler, P. E.; Wiarda, D.; Valentine, T. E.; Derrien, H.; Harvey, J. A.; Kopecky, S.; Siegler, P.; Schillebeeckx, P.; Wynants, R.; Ivanov, I.; Borella, A.

    2006-07-01

    A series of new measurements has been undertaken in response to deficiencies identified in nuclear data libraries of crucial importance to the Nuclear Criticality Safety Program as well as for burnup credit studies involving the transportation of spent nuclear fuel. New data and evaluations including covariances are required for several stable fission products as well as for materials found in mixtures with uranium. (authors)

  11. Static and dynamic high power, space nuclear electric generating systems

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Begg, L. L.; Koester, J. K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.

  12. Developing Correct Safety Critical, Hybrid, Embedded Systems

    DTIC Science & Technology

    2001-04-01

    Embedded Systems* Alexander Pretschner, Oscar Slotosch, Thomas Stauner Institut fuir Informatik, Technische Universitd.t Miinchen Arcisstrafe 21, 80290...case specifying this specifica- kontinuierlich-diskreter Prozesse . In Proc. of tion is depicted in Fig. 8. Note the close relationship VDI/VDE GMA

  13. Systems approach critical to agroecosystems management

    USDA-ARS?s Scientific Manuscript database

    Sustainable dryland agriculture in the semi-arid Great Plains of the U.S. depends on achieving economic yields while maintaining soil resources. The traditional system of conventional tillage wheat-fallow was vulnerable to excessive soil erosion which resulted in excessive organic matter loss. No-...

  14. JANIS: NEA JAva-based Nuclear Data Information System

    NASA Astrophysics Data System (ADS)

    Soppera, Nicolas; Bossant, Manuel; Cabellos, Oscar; Dupont, Emmeric; Díez, Carlos J.

    2017-09-01

    JANIS (JAva-based Nuclear Data Information System) software is developed by the OECD Nuclear Energy Agency (NEA) Data Bank to facilitate the visualization and manipulation of nuclear data, giving access to evaluated nuclear data libraries, such as ENDF, JEFF, JENDL, TENDL etc., and also to experimental nuclear data (EXFOR) and bibliographical references (CINDA). It is available as a standalone Java program, downloadable and distributed on DVD and also a web application available on the NEA website. One of the main new features in JANIS is the scripting capability via command line, which notably automatizes plots generation and permits automatically extracting data from the JANIS database. Recent NEA software developments rely on these JANIS features to access nuclear data, for example the Nuclear Data Sensitivity Tool (NDaST) makes use of covariance data in BOXER and COVERX formats, which are retrieved from the JANIS database. New features added in this version of the JANIS software are described along this paper with some examples.

  15. Identity Verification Systems as a Critical Infrastructure

    DTIC Science & Technology

    2012-03-01

    fraudulent credit card scanners , stolen purse or wallet, or phone and Internet scams.9 The FTC also reports that identity thieves steal information in...alternative to knowledge and token-based verification. Fingerprints, retinal scans, facial recognition software, and DNA provide technically and...utilizing these systems. U.S.-VISIT was intended to automate the entry and exit process for foreign travelers. Biometric fingerprint scanners and

  16. Critical issues in an electronic documentation system.

    PubMed

    Weir, Charlene R; Nebeker, Jonathan R

    2007-10-11

    The Veterans Health Administration (VHA), of the U.S. Department of Veteran Affairs has instituted a medical record (EMR) that includes electronic documentation of all narrative components of the medical record. To support clinicians using the system, multiple efforts have been instituted to ease the creation of narrative reports. Although electronic documentation is easier to read and improves access to information, it also may create new and additional hazards for users. This study is the first step in a series of studies to evaluate the issues surrounding the creation and use of electronic documentation. Eighty-eight providers across multiple clinical roles were interviewed in 10 primary care sites in the VA system. Interviews were tape-recorded, transcribed and qualitatively analyzed for themes. In addition, specific questions were asked about perceived harm due to electronic documentation practices. Five themes relating to difficulties with electronic documentation were identified: 1) information overload; 2) hidden information; 3) lack of trust; 4) communication; 5) decision-making. Three providers reported that they knew of an incident where current documentation practices had caused patient harm and over 75% of respondents reported significant mis-trust of the system.

  17. Nuclear Pore Protein p62 Autoantibodies in Systemic Lupus Erythematosus

    PubMed Central

    Kraemer, Doris M; Tony, Hans-Peter

    2010-01-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease which is classically characterised by a variety of autoantibodies to deoxyribonucleic acid (DNA), ribonucleic acid (RNA), other nuclear and cytoplasmic antigens. Recently several novel autoantibodies against a variety of specific nuclear pore proteins have been described, including the nucleoporin p62. In this paper we evaluate anti-nucleoporin p62 antibodies by western blot analysis in 25 systemic lupus erythematosus patients. Six patients showed antibodies directed against nucleoporin p62. Our data indicate that p62 antibodies could be a useful additional marker in SLE. PMID:20648220

  18. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect

    Shipers, L.R.; Allen, G.C.

    1992-09-09

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  19. Use of expert systems in nuclear power plants

    SciTech Connect

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  20. Nuclear Weapons: NNSA Needs to Establish a Cost and Schedule Baseline for Manufacturing a Critical Nuclear Weapon Component

    DTIC Science & Technology

    2008-05-01

    MOX mixed-oxide NNSA National Nuclear Security Administration PF-4 Plutonium Facility-4 building RRW Reliable Replacement Warhead TA-50...disassembles legacy pits and removes and oxidizes the plutonium, which can be used as a feed metal for the mixed-oxide ( MOX ) fuel polishing activities...Facility at the Savannah River Site. MOX fuel polishing This program purifies plutonium from the ARIES project to specifications that would allow direct

  1. Change of criticality in a prototypical thermoacoustic system.

    PubMed

    Etikyala, S; Sujith, R I

    2017-02-01

    In this paper, we report on the existence of the phenomenon of change of criticality in a horizontal Rijke tube, a prototypical thermoacoustic system. In the experiments, the phenomenon is shown to occur as the criticality of the Hopf bifurcation changes with varying air flow rates in the system. The dynamics of a nonlinear system exhibiting Hopf bifurcation can be described using a Stuart-Landau equation (SLE) in the vicinity of the bifurcation point. The criticality of Hopf bifurcations can be determined by the Landau constant of the Stuart-Landau equation, which represents the effect of nonlinearities in the system. We propose an SLE to model the bifurcations seen in the horizontal Rijke tube. We identify a rescaled version of Strouhal number as the Landau constant, which determines the criticality of the bifurcation in the present study.

  2. Change of criticality in a prototypical thermoacoustic system

    NASA Astrophysics Data System (ADS)

    Etikyala, S.; Sujith, R. I.

    2017-02-01

    In this paper, we report on the existence of the phenomenon of change of criticality in a horizontal Rijke tube, a prototypical thermoacoustic system. In the experiments, the phenomenon is shown to occur as the criticality of the Hopf bifurcation changes with varying air flow rates in the system. The dynamics of a nonlinear system exhibiting Hopf bifurcation can be described using a Stuart-Landau equation (SLE) in the vicinity of the bifurcation point. The criticality of Hopf bifurcations can be determined by the Landau constant of the Stuart-Landau equation, which represents the effect of nonlinearities in the system. We propose an SLE to model the bifurcations seen in the horizontal Rijke tube. We identify a rescaled version of Strouhal number as the Landau constant, which determines the criticality of the bifurcation in the present study.

  3. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different

  4. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    SciTech Connect

    Yingling, G. E.; Curran, R. N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II.

  5. A critical assessment on kidney allocation systems.

    PubMed

    Formica, Richard N

    2017-01-01

    The kidney allocation system that took effect on December 4, 2014 represents a significant improvement over the prior approach. It seeks to improve outcomes by longevity matching - pairing kidneys expected to function the longest with recipients expected to live the longest. It addresses the biological barriers faced by highly sensitized patients in an evidence based fashion and it begins to introduce the concept of medical need into kidney allocation by crediting time from the starting dialysis to a patient's waiting time. Additionally, it adds a more granular and continuous approach to classifying deceased donor kidneys through the kidney donor profile index and moves away from the dichotomous and flawed, standard criteria/extended criteria approach to allocating kidneys. Despite these changes, access to kidney transplantation across the age spectrum has remained intact and equitable. However even with these numerous positive improvements the system is not without its flaws. The increased sharing and by extension shipping of kidneys have created logistical challenges for organ procurement organizations and transplant centers. Early results seem to indicate that there have been an increase in cold ischemic time, an increase in delayed graft function and an increase in organ discard rate. There is also a reduced offer rate for children and while not a statistically significant decline in the number of transplants, it is a trend that requires close monitoring. Finally, the new kidney allocation system has done nothing to address the glaring deficiencies in the multi-organ allocation practices, all of which include a kidney, in the United States. Therefore despite the improvements made in kidney allocation, there is work yet to be done to ensure that the allocation of life saving and life prolonging organs for transplantation is done in a fashion consistent with ethical principles, based on science and free from local self interest so that this national resource is

  6. Instrument Landing System Critical Area Studies.

    DTIC Science & Technology

    1983-11-01

    VOODOO , -43- 󈧔 WAurC m . -C 84410 0a 0 0440004.. fsau @,nt 𔃺 F LgCL ..... ..... 0 -o U0 1. 0- rum 4-u 4. 4- 0 0 U suilie~~uso Voi eoN. -45-ij...other con- figurations of glide slope are used, for example, the capture effect, side- band reference or endf ire glide slope system. -1 53- XI...perturbations are best viewed in the frequency domain (i.e., the error spectrum).’ That is, -*.’ the PFE occupies a frequency band which is essentially

  7. Assessment of ceramic composites for MMW space nuclear power systems

    SciTech Connect

    Besmann, T.M.

    1987-01-01

    Proposed multimegawatt nuclear power systems which operate at high temperatures, high levels of stress, and in hostile environments, including corrosive working fluids, have created interest in the use of ceramic composites as structural materials. This report assesses the applicability of several ceramic composites in both Brayton and Rankine cycle power systems. This assessment considers an equilibrium thermodynamic analysis and also a nonequilibrium assessment. (FI)

  8. Children's Fears and Nuclear War: A Systems Strategy for Change.

    ERIC Educational Resources Information Center

    Duncan, Barry L; And Others

    1986-01-01

    Authors conclude from literature survey that children worldwide fear nuclear war. Resulting feelings of powerlessness, hopelessness, and resignation may be heightened by adults' inappropriate response to and denial of threat. Article suggests systemic interventions directed at familial and larger social systems to allay fears. Also recommends…

  9. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  10. A nuclear source term analysis for spacecraft power systems

    SciTech Connect

    McCulloch, W.H.

    1998-12-01

    All US space missions involving on board nuclear material must be approved by the Office of the President. To be approved the mission and the hardware systems must undergo evaluations of the associated nuclear health and safety risk. One part of these evaluations is the characterization of the source terms, i.e., the estimate of the amount, physical form, and location of nuclear material, which might be released into the environment in the event of credible accidents. This paper presents a brief overview of the source term analysis by the Interagency Nuclear Safety Review Panel for the NASA Cassini Space Mission launched in October 1997. Included is a description of the Energy Interaction Model, an innovative approach to the analysis of potential releases from high velocity impacts resulting from launch aborts and reentries.

  11. Critical roles of SMYD2-mediated β-catenin methylation for nuclear translocation and activation of Wnt signaling.

    PubMed

    Deng, Xiaolan; Hamamoto, Ryuji; Vougiouklakis, Theodore; Wang, Rui; Yoshioka, Yuichiro; Suzuki, Takehiro; Dohmae, Naoshi; Matsuo, Yo; Park, Jae-Hyun; Nakamura, Yusuke

    2017-08-22

    Accumulation of β-catenin in the nucleus is a hallmark of activation of the Wnt/β-catenin signaling pathway, which drives development of a large proportion of human cancers. However, the mechanism of β-catenin nuclear translocation has not been well investigated. Here we report biological significance of SMYD2-mediated lysine 133 (K133) methylation of β-catenin on its nuclear translocation. Knockdown of SMYD2 attenuates the nuclear localization of β-catenin protein in human cancer cells. Consequently, transcriptional levels of well-known Wnt-signaling molecules, cMYC and CCND1, are significantly reduced. Substitution of lysine 133 to alanine in β-catenin almost completely abolishes its nuclear localization. We also demonstrate the K133 methylation is critical for the interaction of β-catenin with FOXM1. Furthermore, after treatment with a SMYD2 inhibitor, significant reduction of nuclear β-catenin and subsequent induction of cancer cell death are observed. Accordingly, our results imply that β-catenin methylation by SMYD2 promotes its nuclear translocation and activation of Wnt signaling.

  12. Self-organized critical system with no stationary attractor state

    NASA Astrophysics Data System (ADS)

    Nørrelykke, Simon F.; Bak, Per

    2002-03-01

    A simple model economy with interacting producers and consumers is introduced. When driven by extremal dynamics, the model self-organizes not to an attractor state, but to an asymptote, on which the economy has a constant rate of deflation, is critical, and exhibits avalanches of activity with power-law distributed sizes. This example demonstrates that self-organized critical behavior occurs in a larger class of systems than so far considered: systems not driven to an attractive fixed point, but, e.g., an asymptote, may also display self-organized criticality.

  13. The Effect of Measurement Bias on Nuclear Criticality Safety Calculations for WIPP TRUPACT-II Shipments

    SciTech Connect

    Blackwood, Larry G.; Harker, Yale D.

    2000-12-15

    Current nuclear criticality safety limit requirements for transporting TRUPACT-II waste containers to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) specify that the {sup 239}Pu fissile gram equivalent (FGE) plus two times its measurement error must be {<=}325 g for a payload of fourteen 55-gal drums. The authorized method for calculating a TRUPACT-II FGE measurement error value is to take the square root of the sum of the squared error values for the individual containers (often called root-sum-squares or simply RSS). However, to the extent that the individual drum measurements contain common bias effects (e.g., due to common calibration or other adjustment factors), the corresponding measurement errors are correlated, and simple RSS calculations will underestimate the true error in the TRUPACT-II FGE value.The RSS calculations assume independence, while common bias effects can induce strong correlations between the errors in measurements. Significant bias effects can occur when the matrix characteristics for a particular waste type are not fully accounted for in the measurement process. Depending on the relative size of the bias error compared to precision error, the true measurement error can be greater than twice that calculated by RSS. In such cases, the FGE shipping requirement may not be met. To avoid underestimating the error, bias components should be estimated and propagated separately (combined only at the final step in the TRUPACT-II FGE calculation), or the effect of bias on covariance between measurements must be calculated. These covariance terms then need to be included in the final uncertainty calculations.

  14. Medicare's prospective payment system: A critical appraisal

    PubMed Central

    Coulam, Robert F.; Gaumer, Gary L.

    1992-01-01

    Implementation of the Medicare prospective payment system (PPS) for hospital payment has produced major changes in the hospital industry and in the way hospital services are used by physicians and their patients. The substantial published literature that examines these changes is reviewed in this article. This literature suggests that most of the intended effects of PPS on costs and intensity of care have been realized. But the literature fails to answer fundamental questions about the effectiveness and equity of administered pricing as a policy tool for cost containment. The literature offers some hope that the worst fears about the effects of PPS on quality of care and the health of the hospital industry have not materialized. But because of data lags, the studies done to date seem to tell us more about the effects of the early, more generous period of PPS than about the opportunity costs of reducing hospital cost inflation. PMID:25372306

  15. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect

    Schmidt, George R.; Houts, Michael G.

    2006-01-20

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  16. Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie

    2007-01-01

    This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.

  17. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    SciTech Connect

    Garcia, Humberto E.; Chen, Jun; Kim, Jong Suk; McKellar, Michael George; Deason, Wesley R; Richard B. Vilim; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  18. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  19. CESAR robotics and intelligent systems research for nuclear environments

    SciTech Connect

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.

  20. CESAR robotics and intelligent systems research for nuclear environments

    SciTech Connect

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.

  1. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  2. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  3. Functional issues and environmental qualification of digital protection systems of advanced light-water nuclear reactors

    SciTech Connect

    Korsah, K.; Clark, R.L.; Wood, R.T.

    1994-04-01

    Issues of obsolescence and lack of infrastructural support in (analog) spare parts, coupled with the potential benefits of digital systems, are driving the nuclear industry to retrofit analog instrumentation and control (I&C) systems with digital and microprocessor-based systems. While these technologies have several advantages, their application to safety-related systems in nuclear power plants raises key issues relating to the systems` environmental qualification and functional reliability. To bound the problem of new I&C system functionality and qualification, the authors focused this study on protection systems proposed for use in ALWRs. Specifically, both functional and environmental qualification issues for ALWR protection system I&C were addressed by developing an environmental, functional, and aging data template for a protection division of each proposed ALWR design. By using information provided by manufacturers, environmental conditions and stressors to which I&C equipment in reactor protection divisions may be subjected were identified. The resulting data were then compared to a similar template for an instrument string typically found in an analog protection division of a present-day nuclear power plant. The authors also identified fiber-optic transmission systems as technologies that are relatively new to the nuclear power plant environment and examined the failure modes and age-related degradation mechanisms of fiber-optic components and systems. One reason for the exercise of caution in the introduction of software into safety-critical systems is the potential for common-cause failure due to the software. This study, however, approaches the functionality problem from a systems point of view. System malfunction scenarios are postulated to illustrate the fact that, when dealing with the performance of the overall integrated system, the real issues are functionality and fault tolerance, not hardware vs. software.

  4. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  5. System dynamics: An introduction & applications to the nuclear industry

    SciTech Connect

    Hansen, K.F.; Golay, M.W.

    1997-03-01

    The field of nuclear technology has been developing for over 50 years and has moved from the laboratory into a very large commercial industry. The growth in the underlying science and engineering has been remarkable both in its breadth and depth. The ability to design, analyze, and understand the behavior of nuclear plants is firmly established. There remain many challenging technical problems, but success of the industry is not contingent upon solving those technical problems. Rather, the success of the industry will be determined by a wider array of concerns than pure technology. For instance, nuclear plants in the future will have to compete economically against efficient, versatile, and reliable fossil technologies. In addition, potential users must be assured that the indirect costs, such as those of environmental effects and waste disposal, are acceptable. Finally, public perceptions about risks must somehow be allayed, if not resolved. The objective of this paper is to provide an introduction to a tool that may be useful to the industry in addressing the types of issues suggested above. The tool discussed is system dynamics. It has been used with considerable success in many other fields in ways that are similar to the needs of the nuclear field. In the second section of the paper the authors provide some background on the system dynamics method and illustrate how system dynamics models are constructed. In section 3 they discuss two applications in the nuclear field, the first relating to construction of nuclear plants and the second in the operation of a nuclear utility in the social/political environment of today in the United States. They conclude with some summary comments.

  6. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    SciTech Connect

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  7. Initiating nuclear-chemical transformations in native systems: Phenomenology

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2016-10-01

    A possible mechanism of nuclear transformations in biological systems in vivo is proposed. Reasons why there is no ionizing radiation that could be detrimental to native systems during the corresponding nuclear reactions are given. It is established that the initial stage of these processes is associated with that of ATP hydrolysis, which initiates the action of the inner-shell electron of an atom participating in the reaction on its nucleus according to the mechanism of weak nuclear interaction. This results in the formation of a nucleus in a metastable state with a disturbed nucleon structure and a charge one unit lower than that of the initial nucleus. It is also assumed that the atom participating in the reaction is adsorbed near the mouth of one of the transport ATPases in the cell's cytoplasmic membrane, and the reason for the initiating impact the electron has on the nucleus is due to the emergence of a local electric field formed during ATP hydrolysis near the ion channel of a donor-acceptor pair of charges that is opposite to the direction of the average membrane field. It is concluded that as a result of the key role of weak nuclear interaction in these processes, the energy of nuclear transformations in biological systems in vivo is released through the emission of neutrino-antineutrino pairs that are harmless to living organisms.

  8. Critical Elements and Needs for Nuclear Weapons Maintenance: A Delphi Study

    DTIC Science & Technology

    2012-06-01

    Nuclear Surety Inspections (NSI) and Nuclear Operational Readiness Inspections ( NORI ) to assess the units. SE assists with NSSAVs/inspections and...technical data prevents standardized maintenance practices” and makes their jobs harder. This also makes major inspections like NSIs and NORIs more

  9. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  10. Systems modeling and simulation applications for critical care medicine

    PubMed Central

    2012-01-01

    Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area. PMID:22703718

  11. Assessing Reliability: Critical Corrections for a Critical Examination of the Rorschach Comprehensive System.

    ERIC Educational Resources Information Center

    Meyer, Gregory J.

    1997-01-01

    In reply to criticism of the Rorschach Comprehensive System (CS) by J. Wood, M. Nezworski, and W. Stejskal (1996), this article presents a meta-analysis of published data indicating that the CS has excellent chance-corrected interrater reliability. It is noted that the erroneous assumptions of Wood et al. make their assertions about validity…

  12. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  13. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  14. A Methodology for Evaluating System Performance for Radiological/Nuclear Counterterrorism Systems - Full Paper

    SciTech Connect

    Bredt, Ofelia P.; Holter, Gregory M.; Wood, Thomas W.

    2005-04-28

    Various countermeasure systems could be deployed against radiological/nuclear terrorism. The need to compare various systems and configurations has resulted in development of a method for estimating performance of such systems. This paper presents one such performance evaluation method.

  15. Nuclear bimodal new vision solar system missions

    SciTech Connect

    Mondt, J.F.; Zubrin, R.M.

    1996-03-01

    This paper presents an analysis of the potential mission capability using space reactor bimodal systems for planetary missions. Missions of interest include the Main belt asteroids, Jupiter, Saturn, Neptune, and Pluto. The space reactor bimodal system, defined by an Air Force study for Earth orbital missions, provides 10 kWe power, 1000 N thrust, 850 s Isp, with a 1500 kg system mass. Trajectories to the planetary destinations were examined and optimal direct and gravity assisted trajectories were selected. A conceptual design for a spacecraft using the space reactor bimodal system for propulsion and power, that is capable of performing the missions of interest, is defined. End-to-end mission conceptual designs for bimodal orbiter missions to Jupiter and Saturn are described. All missions considered use the Delta 3 class or Atlas 2AS launch vehicles. The space reactor bimodal power and propulsion system offers both; new vision {open_quote}{open_quote}constellation{close_quote}{close_quote} type missions in which the space reactor bimodal spacecraft acts as a carrier and communication spacecraft for a fleet of microspacecraft deployed at different scientific targets and; conventional missions with only a space reactor bimodal spacecraft and its science payload. {copyright} {ital 1996 American Institute of Physics.}

  16. A Cost Effective System Design Approach for Critical Space Systems

    NASA Technical Reports Server (NTRS)

    Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai

    2000-01-01

    NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically

  17. Ensuring the Sustainability of Russian Federation National Nuclear Material Accounting System

    SciTech Connect

    Pitel, V; Kasumova, L; Kushnaryov, M; Babcock, R

    2006-06-07

    The Federal Nuclear Material Control and Accounting Information System (FIS) is the national information source on nuclear material accounting of the Russian Federation (RF). RF regulations mandated the creation of a national nuclear material accounting system to be managed by Federal Agency For Atomic Energy (Rosatom), and for the past decade, the FIS has been developed for all organizations required to report to Rosatom. The system represents a successful integration of U.S. financial support and consulting with Russian vision and technical expertise, creating a viable national nuclear material accounting system. This paper discusses crucial elements to ensure Sustainability of the FIS. A long-term plan for operation and maintenance of the information system is critical to a sustainable national accounting system. Plans undertaken throughout the FIS Project lifecycle have supported the necessary elements to ensure success. Through the next two years, long-term planning will be reevaluated and the successful elements and new initiatives will become part of an overall Operations Management Program. FIS resource needs will be managed through prioritization and ranking for each Program element, including: system operation; revising and implementing supporting regulations; establishing monitoring and control mechanisms to ensure validity of the data reported; maintaining and improving communication channels; and establishing regular FIS training. The results of a survey on improving FIS reporting, expected in June 2006, will be used in the prioritization and ranking process. Developing the Program and planning for long-term sustainability of the FIS will ensure a viable national nuclear material accounting system for the future.

  18. ENABLER Nuclear Propulsion System Conceptual Design

    NASA Astrophysics Data System (ADS)

    Pauley, Keith A.; Woodham, Kurt; Ohi, Don; Haga, Heath; Henderson, Bo

    2004-02-01

    The Titan Corporation conducted a systems engineering study to develop an overall architecture that meets both the articulated and unarticulated requirements on the Prometheus Program with the least development effort. Key elements of the Titan-designed ENABLER system include a thermal fission reactor, thermionic power converters, sodium heat pipes, ion thruster engines, and a radiation shield and deployable truss to protect the payload. The overall design is scaleable over a wide range of power requirements from 10s of kilowatts to 10s of megawatts.

  19. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    SciTech Connect

    Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason; Stout, William M.S.; Lee, Erik

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

  20. Safety system augmentation at Russian nuclear power plants

    SciTech Connect

    Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.; Reister, R.A. |

    1996-12-31

    This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC power supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.

  1. Nuclear power for space based systems

    NASA Astrophysics Data System (ADS)

    Livingston, J. M.; Ivanenok, Joseph F., III

    1991-09-01

    A 100 kWe closed Brayton cycle power conversion system utilizing a recuperator coupled to a NERVA derivative reactor for a lunar power plant is presented. Power plant mass versus recuperator effectiveness, compressor inlet temperature, and turbine pressure ratio are described.

  2. Ferromagnetic critical behavior in U(Co1-xFex)Al (0 ≤x ≤0.02 ) studied by 59Co nuclear quadrupole resonance measurements

    NASA Astrophysics Data System (ADS)

    Karube, K.; Hattori, T.; Ishida, K.; Kimura, N.

    2015-02-01

    In order to investigate physical properties around a ferromagnetic (FM) quantum transition point and a tricritical point (TCP) in the itinerant-electron metamagnetic compound UCoAl, we have performed the 59Co nuclear quadrupole resonance (NQR) measurement for the Fe-substituted U(Co1-xFex)Al(x =0 ,0.5 ,1 ,and2 %) in zero external magnetic field. The Fe concentration dependence of 59Co -NQR spectra at low temperatures indicates that the first-order FM transition occurs at least above x =1 % . The magnetic fluctuations along the c axis detected by the nuclear spin-spin relaxation rate 1 /T2 exhibit an anomaly at Tmax˜20 K and enhance with increasing x . These results are in good agreement with theoretical predictions and indicate the presence of prominent critical fluctuations at the TCP in this system.

  3. Quantum criticality of bosonic systems with the Lifshitz dispersion

    NASA Astrophysics Data System (ADS)

    Wu, Jianda; Zhou, Fei; Wu, Congjun

    2017-08-01

    We study a novel type of quantum criticality of the Lifshitz φ4 theory below the upper critical dimension du=z +dc=8 , where the dynamic critical exponent z =4 and the spatial upper critical dimension dc=4 . Two fixed points, one Gaussian and the other non-Gaussian, are identified with zero and finite interaction strengths, respectively. At zero temperature the particle density exhibits different power-law dependences on the chemical potential in the weak- and strong-interaction regions. At finite temperatures, critical behaviors in the quantum disordered region are mainly controlled by the chemical potential. In contrast, in the quantum critical region critical scalings are determined by temperature. The scaling ansatz remains valid in the strong-interaction limit for the chemical potential, correlation length, and particle density, while it breaks down in the weak-interaction one. Approaching the upper critical dimension, physical quantities develop logarithmic dependence on dimensionality in the strong-interaction region. These results are applied to spin-orbit coupled bosonic systems, leading to predictions testable by future experiments.

  4. A COMPUTER-ASSIST MATERIAL TRACKING SYSTEM AS A CRITICALITY SAFETY AID TO OPERATORS

    SciTech Connect

    Claybourn, R V; Huang, S T

    2007-03-30

    In today's compliant-driven environment, fissionable material handlers are inundated with work control rules and procedures in carrying out nuclear operations. Historically, human errors are one of the key contributors of various criticality accidents. Since moving and handling fissionable materials are key components of their job functions, any means that can be provided to assist operators in facilitating fissionable material moves will help improve operational efficiency and enhance criticality safety implementation. From the criticality safety perspective, operational issues have been encountered in Lawrence Livermore National Laboratory (LLNL) plutonium operations. Those issues included lack of adequate historical record keeping for the fissionable material stored in containers, a need for a better way of accommodating operations in a research and development setting, and better means of helping material handlers in carrying out various criticality safety controls. Through the years, effective means were implemented including better work control process, standardized criticality control conditions (SCCC) and relocation of criticality safety engineers to the plutonium facility. Another important measure taken was to develop a computer data acquisition system for criticality safety assessment, which is the subject of this paper. The purpose of the Criticality Special Support System (CSSS) is to integrate many of the proven operational support protocols into a software system to assist operators with assessing compliance to procedures during the handling and movement of fissionable materials. Many nuclear facilities utilize mass cards or a computer program to track fissionable material mass data in operations. Additional item specific data such as, the presence of moderators or close fitting reflectors, could be helpful to fissionable material handlers in assessing compliance to SCCC's. Computer-assist checking of a workstation material inventory against the

  5. Critical-point symmetry in a finite system.

    PubMed

    Leviatan, A; Ginocchio, J N

    2003-05-30

    At a critical point of a second-order phase transition the intrinsic energy surface is flat and there is no stable minimum value of the deformation. However, for a finite system, we show that there is an effective deformation which can describe the dynamics at the critical point. This effective deformation is determined by minimizing the energy surface after projection onto the appropriate symmetries. We derive analytic expressions for energies and quadrupole rates which provide good estimates for these observables at the critical point.

  6. Quantum criticality in a double-quantum-dot system.

    PubMed

    Zaránd, Gergely; Chung, Chung-Hou; Simon, Pascal; Vojta, Matthias

    2006-10-20

    We discuss the realization of the quantum-critical non-Fermi-liquid state, originally discovered within the two-impurity Kondo model, in double-quantum-dot systems. Contrary to common belief, the corresponding fixed point is robust against particle-hole and various other asymmetries and is unstable only to charge transfer between the two dots. We propose an experimental setup where such charge transfer processes are suppressed, allowing a controlled approach to the quantum-critical state. We also discuss transport and scaling properties in the vicinity of the critical point.

  7. NuDat system for access to nuclear data

    SciTech Connect

    Dunford, C.L.; Kinsey, R.R.

    1998-07-07

    The NuDat program provides a user with access to nuclear properties and to some nuclear reaction data. The program operates on DEC VMS operating systems and on PC`s with Microsoft operating systems. The program has four user interfaces, all having the same content and functionality. These interfaces are Web, Video and Sequential for VMS. The PC interface is identical to the VMS Video interface. Forms are used to supply the type of data the user desires, the retrieval parameters, the output format, and the sort order of the data. The program and associated database is used in basic research, particularly for the systematic study of nuclear properties. It is also a useful tool for applied research to identify radiations from radionuclides contained in environmental samples, or from those produced by neutron or charged particle activation. The NuDat database is derived from several databases maintained by the National Nuclear Data Center. The databases are the Adopted Levels and Gammas data sets from ENSDF, the Nuclear Wallet Cards, Decay Radiations derived from ENSDF decay data sets processed by RADLIST, and Thermal Neutron Cross Sections.

  8. Safety system augmentation at Russian Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Scerbo, J. A.; Satpute, S. N.; Donkin, J. Y.; Reister, R. A.

    1997-06-01

    This paper describes the design and procurement of a Class 1E DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyanie Zprie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER 440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC power supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNASZOR (GAN), the Russian Version of US Nuclear Regulatory Commission was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union.

  9. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  10. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  11. Manned space flight nuclear system safety. Volume 1: base nuclear system safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.

  12. Component criticality in failure cascade processes of network systems.

    PubMed

    Zio, Enrico; Sansavini, Giovanni

    2011-08-01

    In this work, specific indicators are used to characterize the criticality of components in a network system with respect to their contribution to failure cascade processes. A realistic-size network is considered as reference case study. Three different models of cascading failures are analyzed, differing both on the failure load distribution logic and on the cascade triggering event. The criticality indicators are compared to classical measures of topological centrality to identify the one most characteristic of the cascade processes considered.

  13. Acknowledging the Infrasystem: A Critical Feminist Analysis of Systems Theory.

    ERIC Educational Resources Information Center

    Creedon, Pamela J.

    1993-01-01

    Examines the absence of a critical feminist perspective in the application of systems theory as a unifying model for public relations. Describes an unacknowledged third system, the infrasystem, that constructs both suprasystem and subsystem interactions. Concludes with a case analysis of sport as illustration. (HB)

  14. A review of nuclear electric propulsion spacecraft system concepts

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Nock, K. T.

    1990-01-01

    The last 25-30 years of system concepts and design philosophies for spacecraft employing nuclear-electric propulsion (NEP) are reviewed. NEP spacecraft-system design constraints and criteria are identified, including radiation exposure of humans and electronics, thermal control requirements, effluent contamination of spacecraft surfaces, surface erosion, launch-vehicle integration, operations and safety requirements, attitude control, EM interference, and power control and distribution. The impact on spacecraft design philosophy of these constraints and criteria is explored. Several NEP spacecraft are characterized and discussed with respect to the propulsion system used. The electric propulsion system catagories are electrothermal (arcjet), EM (magnetoplasmadynamic and pulsed-inductive thruster) and electrostatic (ion engine). A brief summary of the mission, nuclear power source, electric propulsion system, and spacecraft configuration are provided for each NEP spacecraft concept.

  15. (New imaging systems in nuclear medicine)

    SciTech Connect

    Not Available

    1991-01-01

    We continue to use and maintain PCR-I, the single-slice high- resolution high-sensitivity positron emission tomograph, while development proceeds on PCR-II, a three-dimensional PET system. A two-dimensional BGO scintillation detector has been designed and we are nearing completion of the detector, including the light guide, crystals and phototube assembly, and the gantry electronics. We are currently exploring techniques for a very high resolution (sub-mm) PET imaging system. We are using the current PCR-I system to assess changes in presynaptic dopamine receptors and glucose utilization in current biological models of Huntington's disease. Our preliminary studies support the use of the primate (Cynomolgus monkey) model of Huntington's disease to monitor in vivo functional changes. We are planning to extend this study to examine the MPTP model of Parkinson disease, and to assess the therapeutic value of D{sub 1} dopamine receptor agonists for treatment of MPTP-induced neurological defects. 13 refs., 5 figs. (MHB)

  16. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    SciTech Connect

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  17. Nuclear test monitoring system detected meteor explosion over Russia

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Sound waves from the Chelyabinsk meteor, which exploded over Russia on 15 February 2013, were detected by 20 infrasound stations that are part of the international monitoring system operated by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The fireball was the most energetic event observed since the 1908 Tunguska meteorite impact and is the most energetic event detected by the CTBTO network.

  18. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  19. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  20. Nuclear data needs for advanced reactor systems. A NEA nuclear science committee initiative.

    SciTech Connect

    Salvatores, M.; Aliberti, G.; Palmiotti, G.; Rochman, D.; Oblozinsky, P.; Hermann, M.; Talou, P.; Kawano, T.; Leal, L.; Koning, A.; Kodeli, I.; Nuclear Engineering Division; CEA Cadarache; BNL; LANL; ORNL; NRG-Petten; NEA-Databank

    2008-01-01

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered. The methodology, the systems considered and the sensitivity approach are consistent with the work reported in ref. [1]. For the present study, the approach has been extended to the ABTR Na-cooled core, recently studied within the GNEP initiative [2]. Sensitivity coefficients (in a 15 energy group structure) have been calculated at ANL with the ERANOS code system [3] for all reactors and for the parameters most sensitive to nuclear data uncertainties: Multiplication factor, Power peak, Burn-up {Delta}k/k, Coolant void reactivity coefficient, Doppler reactivity coefficient, Nuclide density at end of cycle (transmutation potential), Neutron source at fuel fabrication, Dose in a repository.