Sample records for systems typically rely

  1. Intelligent Transportation Systems Early Deployment Planning Study

    DOT National Transportation Integrated Search

    1996-06-01

    INTELLIGENT TRANSPORTATION SYSTEMS (ITS) REFER TO INNOVATIVE APPROACHES TO SOLVING TRANSPORTATION PROBLEMS AND PROVIDING SERVICES TO TRAVELERS. ITS SOLUTIONS ARE TYPICALLY BASED ON A USER'S VIEW OF THE TRANSPORTATION SYSTEM, AND RELY ON PARTNERSHIPS ...

  2. Changes in Adult Child Caregiver Networks

    ERIC Educational Resources Information Center

    Szinovacz, Maximiliane E.; Davey, Adam

    2007-01-01

    Purpose: Caregiving research has typically relied on cross-sectional data that focus on the primary caregiver. This approach neglects the dynamic and systemic character of caregiver networks. Our analyses addressed changes in adult child care networks over a 2-year period. Design and Methods: The study relied on pooled data from Waves 1 through 5…

  3. A Cross-Functional Systems Project in an IS Capstone Course

    ERIC Educational Resources Information Center

    Maloni, Michael; Dembla, Pamila; Swaim, J. Anthony

    2012-01-01

    Information systems (IS) practitioners must regularly work cross-functionally with business users when implementing enterprise systems. However, most IS higher education is not truly cross-functional in nature with students typically relying on instructors or even themselves to represent user requirements. To address this gap, we describe an…

  4. Comparison of five tillage systems in coastal plain soils for cotton production

    USDA-ARS?s Scientific Manuscript database

    Soil compaction management in the southeastern USA typically relies heavily on the practice of annual deep tillage. Strip tillage systems have shown considerable promise for reducing energy and labor requirements, equipment costs, soil erosion, and cotton plant damage from blowing sand. Replicated f...

  5. Practical operational implementation of Teton Pass avalanche monitoring infrasound system.

    DOT National Transportation Integrated Search

    2008-12-01

    Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...

  6. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  7. Who Do You Think I Am? Modeling Individual Differences for More Adaptive and Effective Instruction

    ERIC Educational Resources Information Center

    Allen, Laura K.

    2015-01-01

    The purpose of intelligent tutoring systems is to provide students with personalized instruction and feedback. The focus of these systems typically rests in the adaptability of the feedback provided to students, which relies on automated assessments of performance in the system. A large focus of my previous work has been to determine how natural…

  8. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.

    PubMed

    Siu, Ho Chit; Arenas, Ana M; Sun, Tingxiao; Stirling, Leia A

    2018-02-05

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  9. A holistic approach to movement education in sport and fitness: a systems based model.

    PubMed

    Polsgrove, Myles Jay

    2012-01-01

    The typical model used by movement professionals to enhance performance relies on the notion that a linear increase in load results in steady and progressive gains, whereby, the greater the effort, the greater the gains in performance. Traditional approaches to movement progression typically rely on the proper sequencing of extrinsically based activities to facilitate the individual in reaching performance objectives. However, physical rehabilitation or physical performance rarely progresses in such a linear fashion; instead they tend to evolve non-linearly and rather unpredictably. A dynamic system can be described as an entity that self-organizes into increasingly complex forms. Applying this view to the human body, practitioners could facilitate non-linear performance gains through a systems based programming approach. Utilizing a dynamic systems view, the Holistic Approach to Movement Education (HADME) is a model designed to optimize performance by accounting for non-linear and self-organizing traits associated with human movement. In this model, gains in performance occur through advancing individual perspectives and through optimizing sub-system performance. This inward shift of the focus of performance creates a sharper self-awareness and may lead to more optimal movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    PubMed Central

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

  11. Culture Shock and Higher Education Performance: Implications for Teaching

    ERIC Educational Resources Information Center

    Kelly, Philip; Moogan, Yvonne

    2012-01-01

    The globalisation of higher education brings together learners and teachers from differing systems, creating a heterogeneous and diverse environment. Yet many higher education institutions typically rely on foreign students themselves to adapt to their new higher education environments. An investigation was undertaken as to whether traditional…

  12. No Disposable Kids.

    ERIC Educational Resources Information Center

    Brendtro, Larry K.; Ness, Arlin; Mitchell, Martin

    Current educational and juvenile justice systems rely greatly on punishment and power over strategies-- especially when faced with youth whose severe behaviors escalate to violence. This book attempts to go beyond the typical problem-focused book, offering field-tested, concrete prevention and intervention strategies that can be used to help even…

  13. Facilitating nutrient aquisition of black walnut and other hardwoods at plantation establishment

    Treesearch

    Douglass F. Jacobs; John R. Seifert

    2004-01-01

    Bareroot hardwood seedlings typically undergo transplant shock immediately following planting before root systems are established. Fertilization at planting may act to minimize transplant shock by reducing nutrient stresses. However, previous work with fertilization of hardwoods at planting has generally relied on fertilizers with nutrient forms immediately available....

  14. Decision Aids for Multiple-Decision Disease Management as Affected by Weather Input Errors

    USDA-ARS?s Scientific Manuscript database

    Many disease management decision support systems (DSS) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation or estimation from off-site sources, may affect model calculations and manage...

  15. Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis.

    PubMed

    Stein, Manuel; Janetzko, Halldor; Lamprecht, Andreas; Breitkreutz, Thorsten; Zimmermann, Philipp; Goldlucke, Bastian; Schreck, Tobias; Andrienko, Gennady; Grossniklaus, Michael; Keim, Daniel A

    2018-01-01

    Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.

  16. Training Technology Handbook for System Acquisition Planners: Preliminary Version.

    DTIC Science & Technology

    1981-09-01

    relied upon to estimate training resources and -validation of program characteristics costs during the phases of the WSAP. The figure also 0 Ful- Sale ...COST (fIR ITUNENT 0 THIS IS All ESTIMATE ASED On TYPICAL RIOUIREOnT FOR THIS KIM OF SYSTEM p 45 i 8aSI U SI I i I I I ] | Ja I I I I a’ * I

  17. Automated mosaicking of sub-canopy video incorporating ancillary data

    Treesearch

    E. Kee; N.E. Clark; A.L. Abbott

    2002-01-01

    This work investigates the process of mosaicking overlapping video frames of individual tree stems in sub-canopy scenes captured with a portable multisensor instrument. The robust commercial computer vision systems that are in use today typically rely on precisely controlled conditions. Inconsistent lighting as well as image distortion caused by varying interior and...

  18. Effect-size measures as descriptors of assay quality in high-content screening: A brief review of some available methodologies

    USDA-ARS?s Scientific Manuscript database

    The field of high-content screening (HCS) typically uses measures of screen quality conceived for fairly straightforward high-throughput screening (HTS) scenarios. However, in contrast to HTS, image-based HCS systems rely on multidimensional readouts reporting biological responses associated with co...

  19. Reporting Data with "Over-the-Counter" Data Analysis Supports Improves Educators' Data Analyses

    ERIC Educational Resources Information Center

    Rankin, Jenny Grant

    2014-01-01

    The benefits of making data-informed decisions to improve learning rely on educators correctly interpreting given data. Many educators routinely misinterpret data, even at districts with proactive support for data use. The tool most educators use for data analyses, which is an information technology data system or its reports, typically reports…

  20. Inhibition of misleading heuristics as a core mechanism for typical cognitive development: evidence from behavioural and brain-imaging studies.

    PubMed

    Borst, Grégoire; Aïte, Ania; Houdé, Olivier

    2015-04-01

    Cognitive development is generally conceived as incremental with knowledge of increasing complexity acquired throughout childhood and adolescence. However, several studies have now demonstrated not only that infants possess complex cognitive abilities but also that older children, adolescents, and adults tend to make systematic errors even in simple logical reasoning tasks. Therefore, one of the main issues for any theory of typical cognitive development is to provide an explanation of why at some age and in some contexts children, adolescents, and adults do not express a knowledge or cognitive principle that they already acquired when they were younger. In this review, we present convergent behavioural and neurocognitive evidence that cognitive development is more similar to a non-linear dynamic system than to a linear, stage-like system. In this theoretical framework, errors can emerge in problems similar to the ones infants or young children were succeeding when older children, adolescents, and adults rely on a misleading heuristic rather than on the correct logical algorithm to solve such problems. And the core mechanism for overcoming these errors is inhibitory control (i.e. the ability to inhibit the misleading heuristics). Therefore, typical cognitive development relies not only on the ability to acquire knowledge of incremental complexity but also to inhibit previously acquired knowledge. © 2015 The Authors. Developmental Medicine & Child Neurology © 2015 Mac Keith Press.

  1. Looking without Perceiving: Impaired Preattentive Perceptual Grouping in Autism Spectrum Disorder

    PubMed Central

    Carther-Krone, Tiffany A.; Shomstein, Sarah; Marotta, Jonathan J.

    2016-01-01

    Before becoming aware of a visual scene, our perceptual system has organized and selected elements in our environment to which attention should be allocated. Part of this process involves grouping perceptual features into a global whole. Individuals with autism spectrum disorders (ASD) rely on a more local processing strategy, which may be driven by difficulties perceptually grouping stimuli. We tested this notion using a line discrimination task in which two horizontal lines were superimposed on a background of black and white dots organized so that, on occasion, the dots induced the Ponzo illusion if perceptually grouped together. Results showed that even though neither group was aware of the illusion, the ASD group was significantly less likely than typically developing group to make perceptual judgments influenced by the illusion, revealing difficulties in preattentive grouping of visual stimuli. This may explain why individuals with ASD rely on local processing strategies, and offers new insight into the mechanism driving perceptual grouping in the typically developing human brain. PMID:27355678

  2. Surface Power Radiative Cooling Tests

    NASA Astrophysics Data System (ADS)

    Vaughn, Jason; Schneider, Todd

    2006-01-01

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  3. Diffuse sunlight based calibration of the water vapor channel in the upc raman lidar

    NASA Astrophysics Data System (ADS)

    Muñoz-Porcar, Constantino; Comeron, Adolfo; Sicard, Michaël; Barragan, Ruben; Garcia-Vizcaino, David; Rodríguez-Gómez, Alejandro; Rocadenbosch, Francesc

    2018-04-01

    A method for determining the calibration factor of the water vapor channel of a Raman lidar, based on zenith measurements of diffuse sunlight and on assumptions regarding some system parameters and Raman scattering models, has been applied to the lidar system of Universitat Politècnica de Catalunya (UPC; Technical University of Catalonia, Spain). Results will be analyzed in terms of stability and comparison with typical methods relying on simultaneous radiosonde measurements.

  4. A Minimally Invasive Method for Sampling Nest and Roost Cavities for Fungi: a Novel Approach to Identify the Fungi Associated with Cavity-Nesting Birds

    Treesearch

    Michelle A. Jusino; Daniel Lindner; John K. Cianchetti; Adam T. Grisé; Nicholas J. Brazee; Jeffrey R. Walters

    2014-01-01

    Relationships among cavity-nesting birds, trees, and wood decay fungi pose interesting management challenges and research questions in many systems. Ornithologists need to understand the relationships between cavity-nesting birds and fungi in order to understand the habitat requirements of these birds. Typically, researchers rely on fruiting body surveys to identify...

  5. Kikuchi–Fujimoto disease and systemic lupus erythematosus

    PubMed Central

    Baenas, Diego F; Diehl, Fernando A; Haye Salinas, María J; Riva, Verónica; Diller, Ana; Lemos, Pablo A

    2016-01-01

    Kikuchi–Fujimoto disease, or histiocytic necrotizing lymphadenitis, is an infrequent idiopathic disorder. It has been associated with autoimmune disorders, of which systemic lupus erythematosus is the most outstanding. The basis of its diagnosis relies on the histological examination of lymph nodes, which typically reveals necrosis surrounded by histiocytes with crescentic nucleus, immunoblasts and plasma cells, and absence of neutrophils. We report the case of a 27-year-old Argentinian female patient without any relevant past medical history to demonstrate the correlation between Kikuchi–Fujimoto disease and systemic lupus erythematosus. PMID:27418858

  6. Atmospheric effects on active illumination

    NASA Astrophysics Data System (ADS)

    Shaw, Scot E. J.; Kansky, Jan E.

    2005-08-01

    For some beam-control applications, we can rely on the cooperation of the target when gathering information about the target location and the state of the atmosphere between the target and the beam-control system. The typical example is a cooperative point-source beacon on the target. Light from such a beacon allows the beam-control system to track the target accurately, and, if higher-order adaptive optics is to be employed, to make wave-front measurements and apply appropriate corrections with a deformable mirror. In many applications, including directed-energy weapons, the target is not cooperative. In the absence of a cooperative beacon, we must find other ways to collect the relevant information. This can be accomplished with an active-illumination system. Typically, this means shining one or more lasers at the target and observing the reflected light. In this paper, we qualitatively explore a number of difficulties inherent to active illumination, and suggest some possible mitigation techniques.

  7. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  8. Evaluating imaging quality between different ghost imaging systems based on the coherent-mode representation

    NASA Astrophysics Data System (ADS)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2017-07-01

    The difference in imaging quality between different ghost imaging schemes is studied by using coherent-mode representation of partially coherent fields. It is shown that the difference mainly relies on the distribution changes of the decomposition coefficients of the object imaged when the light source is fixed. For a new-designed imaging scheme, we only need to give the distribution of the decomposition coefficients and compare them with that of the existing imaging system, thus one can predict imaging quality. By choosing several typical ghost imaging systems, we theoretically and experimentally verify our results.

  9. Spontaneous oscillations in microfluidic networks

    NASA Astrophysics Data System (ADS)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  10. Delivering beneficial impacts in Assistive Technology: Improving government's approach to innovation.

    PubMed

    Lane, Joseph P

    2015-01-01

    Society typically relies on the industrial sector to supply product and service innovations through the free market system. In some areas of free market failure deemed important to society - such as Assistive Technology - governments intervene by applying alternative innovation systems. This paper contends that governments consistently and inappropriately support an exploratory grant approach led by academia which generates knowledge in conceptual and prototype states, and instead should shift to a procurement contract approach led by industry which designs, tests and deploys commercial products and services.

  11. Evaluation methodology for query-based scene understanding systems

    NASA Astrophysics Data System (ADS)

    Huster, Todd P.; Ross, Timothy D.; Culbertson, Jared L.

    2015-05-01

    In this paper, we are proposing a method for the principled evaluation of scene understanding systems in a query-based framework. We can think of a query-based scene understanding system as a generalization of typical sensor exploitation systems where instead of performing a narrowly defined task (e.g., detect, track, classify, etc.), the system can perform general user-defined tasks specified in a query language. Examples of this type of system have been developed as part of DARPA's Mathematics of Sensing, Exploitation, and Execution (MSEE) program. There is a body of literature on the evaluation of typical sensor exploitation systems, but the open-ended nature of the query interface introduces new aspects to the evaluation problem that have not been widely considered before. In this paper, we state the evaluation problem and propose an approach to efficiently learn about the quality of the system under test. We consider the objective of the evaluation to be to build a performance model of the system under test, and we rely on the principles of Bayesian experiment design to help construct and select optimal queries for learning about the parameters of that model.

  12. Investigation on Improvements in Lightning Retest Criteria for Spacecraft

    NASA Technical Reports Server (NTRS)

    Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from a direct strike by launch the vehicle and ground structures, but protocols to evaluate the impact of nearby strikes are not consistent. Often spacecraft rely on the launch vehicle constraints to trigger a retest, but launch vehicles can typically evaluate the impact of a strike within minutes while spacecraft evaluation times can be on the order of hours or even days. For launches at the Kennedy Space Center where lightning activity is among the highest in the United States, this evaluation related delay could be costly with the possibility of missing the launch window altogether. This paper evaluated available data from local lightning measurements systems and computer simulations to predict the coupled effect from various nearby strikes onto a typical payload umbilical. Recommendations are provided to reduce the typical trigger criteria and costly delays.

  13. Imitation and action understanding in autistic spectrum disorders: how valid is the hypothesis of a deficit in the mirror neuron system?

    PubMed

    Hamilton, Antonia F de C; Brindley, Rachel M; Frith, Uta

    2007-04-09

    The motor mirror neuron system supports imitation and goal understanding in typical adults. Recently, it has been proposed that a deficit in this mirror neuron system might contribute to poor imitation performance in children with autistic spectrum disorders (ASD) and might be a cause of poor social abilities in these children. We aimed to test this hypothesis by examining the performance of 25 children with ASD and 31 typical children of the same verbal mental age on four action representation tasks and a theory of mind battery. Both typical and autistic children had the same tendency to imitate an adult's goals, to imitate in a mirror fashion and to imitate grasps in a motor planning task. Children with ASD showed superior performance on a gesture recognition task. These imitation and gesture recognition tasks all rely on the mirror neuron system in typical adults, but performance was not impaired in children with ASD. In contrast, the ASD group were impaired on the theory of mind tasks. These results provide clear evidence against a general imitation impairment and a global mirror neuron system deficit in children with autism. We suggest this data can best be understood in terms of multiple brain systems for different types of imitation and action understanding, and that the ability to understand and imitate the goals of hand actions is intact in children with ASD.

  14. Permanent spin currents in cavity-qubit systems

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manas; Hein, Sven M.; Kapit, Eliot; Aron, Camille

    2018-02-01

    In a recent experiment [P. Roushan et al., Nat. Phys. 13, 146 (2017), 10.1038/nphys3930], a spin current in an architecture of three superconducting qubits was produced during a few microseconds by creating synthetic magnetic fields. The lifetime of the current was set by the typical dissipative mechanisms that occur in those systems. We propose a scheme for the generation of permanent currents, even in the presence of such imperfections, and scalable to larger system sizes. It relies on striking a subtle balance between multiple nonequilibrium drives and the dissipation mechanisms, in order to engineer and stimulate chiral excited states which can carry current.

  15. Pickless event detection and location: The waveform correlation event detection system (WCEDS) revisited

    DOE PAGES

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford; ...

    2016-01-01

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events thatmore » generated the phase picks.« less

  16. The Development of Individuation in Autism

    ERIC Educational Resources Information Center

    O'Hearn, Kirsten; Franconeri, Steven; Wright, Catherine; Minshew, Nancy; Luna, Beatriz

    2013-01-01

    Evidence suggests that people with autism rely less on holistic visual information than typical adults. The current studies examine this by investigating core visual processes that contribute to holistic processing--namely, individuation and element grouping--and how they develop in participants with autism and typically developing (TD)…

  17. Importance of balanced architectures in the design of high-performance imaging systems

    NASA Astrophysics Data System (ADS)

    Sgro, Joseph A.; Stanton, Paul C.

    1999-03-01

    Imaging systems employed in demanding military and industrial applications, such as automatic target recognition and computer vision, typically require real-time high-performance computing resources. While high- performances computing systems have traditionally relied on proprietary architectures and custom components, recent advances in high performance general-purpose microprocessor technology have produced an abundance of low cost components suitable for use in high-performance computing systems. A common pitfall in the design of high performance imaging system, particularly systems employing scalable multiprocessor architectures, is the failure to balance computational and memory bandwidth. The performance of standard cluster designs, for example, in which several processors share a common memory bus, is typically constrained by memory bandwidth. The symptom characteristic of this problem is failure to the performance of the system to scale as more processors are added. The problem becomes exacerbated if I/O and memory functions share the same bus. The recent introduction of microprocessors with large internal caches and high performance external memory interfaces makes it practical to design high performance imaging system with balanced computational and memory bandwidth. Real word examples of such designs will be presented, along with a discussion of adapting algorithm design to best utilize available memory bandwidth.

  18. Controlled semantic cognition relies upon dynamic and flexible interactions between the executive 'semantic control' and hub-and-spoke 'semantic representation' systems.

    PubMed

    Chiou, Rocco; Humphreys, Gina F; Jung, JeYoung; Lambon Ralph, Matthew A

    2018-06-01

    Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the 'control' and 'representation' systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task - e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task - e.g., ketchup is related to mustard). We found the 'control' system was more engaged by atypical than typical pairing. While both tasks activated the ATL 'hub', colour pairing additionally involved occipitotemporal 'spoke' regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal 'spoke' zones preferring canonical colour processing to the rostral 'hub' zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal 'spoke'. Together, our findings characterise the interaction within the neural architecture of semantic cognition - the control system dynamically heightens its connectivity with relevant components of the representation system, in response to different semantic contents and difficulty levels. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. In Situ, On-Demand Lubrication System Developed for Space Mechanisms

    NASA Technical Reports Server (NTRS)

    Marchetti, Mario; Pepper, Stephen V.; Jansen, Mark J.; Predmore, Roamer E.

    2003-01-01

    Many moving mechanical assemblies (MMA) for space mechanisms rely on liquid lubricants to provide reliable, long-term performance. The proper performance of the MMA is critical in assuring a successful mission. Historically, mission lifetimes were short and MMA duty cycles were minimal. As mission lifetimes were extended, other components, such as batteries and computers, failed before lubricated systems. However, improvements in these ancillary systems over the last decade have left the tribological systems of the MMAs as the limiting factor in determining spacecraft reliability. Typically, MMAs are initially lubricated with a very small charge that is supposed to last the entire mission lifetime, often well in excess of 5 years. In many cases, the premature failure of a lubricated component can result in mission failure.

  20. CERN alerter—RSS based system for information broadcast to all CERN offices

    NASA Astrophysics Data System (ADS)

    Otto, R.

    2008-07-01

    Nearly every large organization uses a tool to broadcast messages and information across the internal campus (messages like alerts announcing interruption in services or just information about upcoming events). These tools typically allow administrators (operators) to send 'targeted' messages which are sent only to specific groups of users or computers, e/g only those located in a specified building or connected to a particular computing service. CERN has a long history of such tools: CERNVMS's SPM_quotMESSAGE command, Zephyr [2] and the most recent the NICE Alerter based on the NNTP protocol. The NICE Alerter used on all Windows-based computers had to be phased out as a consequence of phasing out NNTP at CERN. The new solution to broadcast information messages on the CERN campus continues to provide the service based on cross-platform technologies, hence minimizing custom developments and relying on commercial software as much as possible. The new system, called CERN Alerter, is based on RSS (Really Simple Syndication) [9] for the transport protocol and uses Microsoft SharePoint as the backend for database and posting interface. The windows-based client relies on Internet Explorer 7.0 with custom code to trigger the window pop-ups and the notifications for new events. Linux and Mac OS X clients could also rely on any RSS readers to subscribe to targeted notifications. The paper covers the architecture and implementation aspects of the new system.

  1. Privacy-preserving screen capture: towards closing the loop for health IT usability.

    PubMed

    Cooley, Joseph; Smith, Sean

    2013-08-01

    As information technology permeates healthcare (particularly provider-facing systems), maximizing system effectiveness requires the ability to document and analyze tricky or troublesome usage scenarios. However, real-world health IT systems are typically replete with privacy-sensitive data regarding patients, diagnoses, clinicians, and EMR user interface details; instrumentation for screen capture (capturing and recording the scenario depicted on the screen) needs to respect these privacy constraints. Furthermore, real-world health IT systems are typically composed of modules from many sources, mission-critical and often closed-source; any instrumentation for screen capture can rely neither on access to structured output nor access to software internals. In this paper, we present a tool to help solve this problem: a system that combines keyboard video mouse (KVM) capture with automatic text redaction (and interactively selectable unredaction) to produce precise technical content that can enrich stakeholder communications and improve end-user influence on system evolution. KVM-based capture makes our system both application-independent and OS-independent because it eliminates software-interface dependencies on capture targets. Using a corpus of EMR screenshots, we present empirical measurements of redaction effectiveness and processing latency to demonstrate system performances. We discuss how these techniques can translate into instrumentation systems that improve real-world health IT deployments. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A hybrid finite element-transfer matrix model for vibroacoustic systems with flat and homogeneous acoustic treatments.

    PubMed

    Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck

    2015-02-01

    Practical vibroacoustic systems involve passive acoustic treatments consisting of highly dissipative media such as poroelastic materials. The numerical modeling of such systems at low to mid frequencies typically relies on substructuring methodologies based on finite element models. Namely, the master subsystems (i.e., structural and acoustic domains) are described by a finite set of uncoupled modes, whereas condensation procedures are typically preferred for the acoustic treatments. However, although accurate, such methodology is computationally expensive when real life applications are considered. A potential reduction of the computational burden could be obtained by approximating the effect of the acoustic treatment on the master subsystems without introducing physical degrees of freedom. To do that, the treatment has to be assumed homogeneous, flat, and of infinite lateral extent. Under these hypotheses, simple analytical tools like the transfer matrix method can be employed. In this paper, a hybrid finite element-transfer matrix methodology is proposed. The impact of the limiting assumptions inherent within the analytical framework are assessed for the case of plate-cavity systems involving flat and homogeneous acoustic treatments. The results prove that the hybrid model can capture the qualitative behavior of the vibroacoustic system while reducing the computational effort.

  3. Study of the Time Response of a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Simani, S.; Alvisi, S.; Venturini, M.

    2014-12-01

    This paper addresses the design of an advanced control strategy for a typical hydroelectric dynamic process, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solution, the proposed methodology relies on an adaptive control designed by means of the on-line identification of the system model under monitoring. Extensive simulations and comparison with respect to a classic hydraulic turbine speed PID regulator show the effectiveness of the proposed modelling and control tools.

  4. Dense home-based recordings reveal typical and atypical development of tense/aspect in a child with delayed language development.

    PubMed

    Chin, Iris; Goodwin, Matthew S; Vosoughi, Soroush; Roy, Deb; Naigles, Letitia R

    2018-01-01

    Studies investigating the development of tense/aspect in children with developmental disorders have focused on production frequency and/or relied on short spontaneous speech samples. How children with developmental disorders use future forms/constructions is also unknown. The current study expands this literature by examining frequency, consistency, and productivity of past, present, and future usage, using the Speechome Recorder, which enables collection of dense, longitudinal audio-video recordings of children's speech. Samples were collected longitudinally in a child who was previously diagnosed with autism spectrum disorder, but at the time of the study exhibited only language delay [Audrey], and a typically developing child [Cleo]. While Audrey was comparable to Cleo in frequency and productivity of tense/aspect use, she was atypical in her consistency and production of an unattested future form. Examining additional measures of densely collected speech samples may reveal subtle atypicalities that are missed when relying on only few typical measures of acquisition.

  5. Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Finotti, S.; Simani, S.; Alvisi, S.; Venturini, M.

    2017-01-01

    This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system.

  6. Liquid Propulsion: Propellant Feed System Design. Chapter 2.3.11

    NASA Technical Reports Server (NTRS)

    Cannon, James L.

    2010-01-01

    The propellant feed system of a liquid rocket engine determines how the propellants are delivered from the tanks to the thrust chamber. They are generally classified as either pressure fed or pump fed. The pressure-fed system is simple and relies on tank pressures to feed the propellants into the thrust chamber. This type of system is typically used for space propulsion applications and auxiliary propulsion applications requiring low system pressures and small quantities of propellants. In contrast, the pump-fed system is used for high pressure, high performance applications. The selection of one propellant feed system over another is determined based on design trade studies at both the engine and vehicle levels. This chapter first provides a brief overview of the basic configurations of pressure-fed systems. Pump-fed systems are then discussed with greater detail given to the turbomachinery design. Selected design requirements and configurations are provided.

  7. A novel camera localization system for extending three-dimensional digital image correlation

    NASA Astrophysics Data System (ADS)

    Sabato, Alessandro; Reddy, Narasimha; Khan, Sameer; Niezrecki, Christopher

    2018-03-01

    The monitoring of civil, mechanical, and aerospace structures is important especially as these systems approach or surpass their design life. Often, Structural Health Monitoring (SHM) relies on sensing techniques for condition assessment. Advancements achieved in camera technology and optical sensors have made three-dimensional (3D) Digital Image Correlation (DIC) a valid technique for extracting structural deformations and geometry profiles. Prior to making stereophotogrammetry measurements, a calibration has to be performed to obtain the vision systems' extrinsic and intrinsic parameters. It means that the position of the cameras relative to each other (i.e. separation distance, cameras angle, etc.) must be determined. Typically, cameras are placed on a rigid bar to prevent any relative motion between the cameras. This constraint limits the utility of the 3D-DIC technique, especially as it is applied to monitor large-sized structures and from various fields of view. In this preliminary study, the design of a multi-sensor system is proposed to extend 3D-DIC's capability and allow for easier calibration and measurement. The suggested system relies on a MEMS-based Inertial Measurement Unit (IMU) and a 77 GHz radar sensor for measuring the orientation and relative distance of the stereo cameras. The feasibility of the proposed combined IMU-radar system is evaluated through laboratory tests, demonstrating its ability in determining the cameras position in space for performing accurate 3D-DIC calibration and measurements.

  8. Compound Velocity Synchronizing Control Strategy for Electro-Hydraulic Load Simulator and Its Engineering Application.

    PubMed

    Han, Songshan; Jiao, Zongxia; Yao, Jianyong; Shang, Yaoxing

    2014-09-01

    An electro-hydraulic load simulator (EHLS) is a typical case of torque systems with strong external disturbances from hydraulic motion systems. A new velocity synchronizing compensation strategy is proposed in this paper to eliminate motion disturbances, based on theoretical and experimental analysis of a structure invariance method and traditional velocity synchronizing compensation controller (TVSM). This strategy only uses the servo-valve's control signal of motion system and torque feedback of torque system, which could avoid the requirement on the velocity and acceleration signal in the structure invariance method, and effectively achieve a more accurate velocity synchronizing compensation in large loading conditions than a TVSM. In order to facilitate the implementation of this strategy in engineering cases, the selection rules for compensation parameters are proposed. It does not rely on any accurate information of structure parameters. This paper presents the comparison data of an EHLS with various typical operating conditions using three controllers, i.e., closed loop proportional integral derivative (PID) controller, TVSM, and the proposed improved velocity synchronizing controller. Experiments are conducted to confirm that the new strategy performs well against motion disturbances. It is more effective to improve the tracking accuracy and is a more appropriate choice for engineering applications.

  9. Probabilistic performance-based design for high performance control systems

    NASA Astrophysics Data System (ADS)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  10. Near-Infrared (0.67-4.7 microns) Optical Constants Estimated for Montmorillonite

    NASA Technical Reports Server (NTRS)

    Roush, T. L.

    2005-01-01

    Various models of the reflectance from particulate surfaces are used for interpretation of remote sensing data of solar system objects. These models rely upon the real (n) and imaginary (k) refractive indices of the materials. Such values are limited for commonly encountered silicates at visual and near-infrared wavelengths (lambda, 0.4-5 microns). Availability of optical constants for candidate materials allows more thorough modeling of the observations obtained by Earth-based telescopes and spacecraft. Two approaches for determining the absorption coefficient (alpha=2pik/lambda) from reflectance measurements of particulates have been described; one relies upon Kubelka-Munk theory and the other Hapke theory. Both have been applied to estimate alpha and k for various materials. Neither enables determination of the wavelength dependence of n, n=f(lambda). Thus, a mechanism providing this ability is desirable. Using Hapke-theory to estimate k from reflectance measurements requires two additional quantities be known or assumed: 1) n=f(lambda) and 2) d, the sample particle diameter. Typically n is assumed constant (c) or modestly varying with lambda; referred to here as n(sub 0). Assuming n(sub 0), at each lambda an estimate of k is used to calculate the reflectance and is iteratively adjusted until the difference between the model and measured reflectance is minimized. The estimated k's (k(sub 1)) are the final results, and this concludes the typical analysis.

  11. Equipment and technology in surgical robotics.

    PubMed

    Sim, Hong Gee; Yip, Sidney Kam Hung; Cheng, Christopher Wai Sam

    2006-06-01

    Contemporary medical robotic systems used in urologic surgery usually consist of a computer and a mechanical device to carry out the designated task with an image acquisition module. These systems are typically from one of the two categories: offline or online robots. Offline robots, also known as fixed path robots, are completely automated with pre-programmed motion planning based on pre-operative imaging studies where precise movements within set confines are carried out. Online robotic systems rely on continuous input from the surgeons and change their movements and actions according to the input in real time. This class of robots is further divided into endoscopic manipulators and master-slave robotic systems. Current robotic surgical systems have resulted in a paradigm shift in the minimally invasive approach to complex laparoscopic urological procedures. Future developments will focus on refining haptic feedback, system miniaturization and improved augmented reality and telesurgical capabilities.

  12. Electric Power Distribution System Model Simplification Using Segment Substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiman, Andrew P.; McDermott, Thomas E.; Akcakaya, Murat

    Quasi-static time-series (QSTS) simulation is used to simulate the behavior of distribution systems over long periods of time (typically hours to years). The technique involves repeatedly solving the load-flow problem for a distribution system model and is useful for distributed energy resource (DER) planning. When a QSTS simulation has a small time step and a long duration, the computational burden of the simulation can be a barrier to integration into utility workflows. One way to relieve the computational burden is to simplify the system model. The segment substitution method of simplifying distribution system models introduced in this paper offers modelmore » bus reduction of up to 98% with a simplification error as low as 0.2% (0.002 pu voltage). In contrast to existing methods of distribution system model simplification, which rely on topological inspection and linearization, the segment substitution method uses black-box segment data and an assumed simplified topology.« less

  13. Natural production of biological optical systems

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kim, Young L.

    2015-03-01

    Synthesis and production in nature often provide ideas to design and fabricate advanced biomimetic photonic materials and structures, leading to excellent physical properties and enhanced performance. In addition, the recognition and utilization of natural or biological substances have been typical routes to develop biocompatible and biodegradable materials for medical applications. In this respect, biological lasers utilizing such biomaterials and biostructures have been received considerable attention, given a variety of implications and potentials for bioimaging, biosensing, implantation, and therapy. However, without relying on industrial facilities, eco-friendly massive production of such optical components or systems has not yet been investigated. We show examples of bioproduction of biological lasers using agriculture and fisheries. We anticipate that such approaches will open new possibilities for scalable eco-friendly `green' production of biological photonics components and systems.

  14. On Using Exponential Parameter Estimators with an Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  15. Megawatt-Scale Application of Thermoelectric Devices in Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Knox, A. R.; Buckle, J.; Siviter, J.; Montecucco, A.; McCulloch, E.

    2013-07-01

    Despite the recent investment in renewable and sustainable energy sources, over 95% of the UK's electrical energy generation relies on the use of thermal power plants utilizing the Rankine cycle. Advanced supercritical Rankine cycle power plants typically have a steam temperature in excess of 600°C at a pressure of 290 bar and yet still have an overall efficiency below 50%, with much of this wasted energy being rejected to the environment through the condenser/cooling tower. This paper examines the opportunity for large-scale application of thermoelectric heat pumps to modify the Rankine cycle in such plants by preheating the boiler feedwater using energy recovered from the condenser system at a rate of approximately 1 MWth per °C temperature rise. A derivation of the improved process cycle efficiency and breakeven coefficient of performance required for economic operation is presented for a typical supercritical 600-MWe installation.

  16. Reward System Activation in Response to Alcohol Advertisements Predicts College Drinking.

    PubMed

    Courtney, Andrea L; Rapuano, Kristina M; Sargent, James D; Heatherton, Todd F; Kelley, William M

    2018-01-01

    In this study, we assess whether activation of the brain's reward system in response to alcohol advertisements is associated with college drinking. Previous research has established a relationship between exposure to alcohol marketing and underage drinking. Within other appetitive domains, the relationship between cue exposure and behavioral enactment is known to rely on activation of the brain's reward system. However, the relationship between neural activation to alcohol advertisements and alcohol consumption has not been studied in a nondisordered population. In this cross-sectional study, 53 college students (32 women) completed a functional magnetic resonance imaging scan while viewing alcohol, food, and control (car and technology) advertisements. Afterward, they completed a survey about their alcohol consumption (including frequency of drinking, typical number of drinks consumed, and frequency of binge drinking) over the previous month. In 43 participants (24 women) meeting inclusion criteria, viewing alcohol advertisements elicited activation in the left orbitofrontal cortex and bilateral ventral striatum-regions of the reward system that typically activate to other appetitive rewards and relate to consumption behaviors. Moreover, the level of self-reported drinking correlated with the magnitude of activation in the left orbitofrontal cortex. Results suggest that alcohol cues are processed within the reward system in a way that may motivate drinking behavior.

  17. Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2017-02-01

    The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically over frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.

  18. Dopamine and incentive learning: a framework for considering antipsychotic medication effects.

    PubMed

    Beninger, Richard J

    2006-12-01

    Hyperfunction of brain dopamine (DA) systems is associated with psychosis in schizophrenia and the medications used to treat schizophrenia are DA receptor blockers. DA also plays a critical role in incentive learning produced by rewarding stimuli. Using DA as the link, these results suggest that psychosis in schizophrenia can be understood from the point of view of excessive incentive learning. Incentive learning is mediated through the non-declarative memory system and may rely on the striatum or medial prefrontal cortex depending on the task. Typical and atypical antipsychotics differentially affect expression of the immediate early gene c-fos, producing greater activity in the striatum and medial prefrontal cortex, respectively. This led to the hypothesis that performance of schizophrenic patients on tasks that depend on the striatum or medial prefrontal cortex will be differentially affected by their antipsychotic medication. Results from a number of published papers supported this dissociation. Furthermore, the effects of two atypical drugs, clozapine and olanzapine, on c-fos expression were different from another atypical, risperidone that resembles the typical antipsychotics. Similarly, in tests of incentive learning, risperidone acted like the typical antipsychotics. Thus, typical and atypical antipsychotic drugs differed in the types of cognitive performance they affected and, furthermore, members of the atypical class differed in their effects on cognition. It remains the task of researchers and clinicians to sort out the symptoms associated with the endogenous illness from possible iatrogenic symptoms resulting from the antipsychotic medications used to treat schizophrenia.

  19. Scatter in Cargo Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erin A. Miller; Joseph A. Caggiano; Robert C. Runkle

    As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beamin the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scattermore » plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typicalmedical imaging scenarios, even for low-density cargo, with scatter-toprimary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.« less

  20. Predictive Ecotoxicology in the 21st Century

    EPA Science Inventory

    Ecological risk assessments have long relied on apical data on survival, growth/development, and reproduction, generated in animal toxicity tests and the application of uncertainty factors and conservative (typically) assumptions as a basis for decision-making. However, advances ...

  1. From sound to syntax: phonological constraints on children's lexical categorization of new words.

    PubMed

    Fitneva, Stanka A; Christiansen, Morten H; Monaghan, Padraic

    2009-11-01

    Two studies examined the role of phonological cues in the lexical categorization of new words when children could also rely on learning by exclusion and whether the role of phonology depends on extensive experience with a language. Phonological cues were assessed via phonological typicality - an aggregate measure of the relationship between the phonology of a word and the phonology of words in the same lexical class. Experiment 1 showed that when monolingual English-speaking seven-year-olds could rely on learning by exclusion, phonological typicality only affected their initial inferences about the words. Consistent with recent computational analyses, phonological cues had stronger impact on the processing of verb-like than noun-like items. Experiment 2 revealed an impact of French on the performance of seven-year-olds in French immersion when tested in a French language environment. Thus, phonological knowledge may affect lexical categorization even in the absence of extensive experience.

  2. Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems

    NASA Astrophysics Data System (ADS)

    Everest, B.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.

    2016-11-01

    Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment. Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures and the consequent suppression of thermal activation.

  3. Resonator reset in circuit QED by optimal control for large open quantum systems

    NASA Astrophysics Data System (ADS)

    Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre

    2017-10-01

    We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.

  4. 3D endoscopic imaging using structured illumination technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; Nguyen, Hieu; Wang, Zhaoyang; Kang, Jin U.

    2017-02-01

    Surgeons have been increasingly relying on minimally invasive surgical guidance techniques not only to reduce surgical trauma but also to achieve accurate and objective surgical risk evaluations. A typical minimally invasive surgical guidance system provides visual assistance in two-dimensional anatomy and pathology of internal organ within a limited field of view. In this work, we propose and implement a structure illumination endoscope to provide a simple, inexpensive 3D endoscopic imaging to conduct high resolution 3D imagery for use in surgical guidance system. The system is calibrated and validated for quantitative depth measurement in both calibrated target and human subject. The system exhibits a depth of field of 20 mm, depth resolution of 0.2mm and a relative accuracy of 0.1%. The demonstrated setup affirms the feasibility of using the structured illumination endoscope for depth quantization and assisting medical diagnostic assessments

  5. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei

    2017-12-01

    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  6. Assembly of the cnidarian camera-type eye from vertebrate-like components.

    PubMed

    Kozmik, Zbynek; Ruzickova, Jana; Jonasova, Kristyna; Matsumoto, Yoshifumi; Vopalensky, Pavel; Kozmikova, Iryna; Strnad, Hynek; Kawamura, Shoji; Piatigorsky, Joram; Paces, Vaclav; Vlcek, Cestmir

    2008-07-01

    Animal eyes are morphologically diverse. Their assembly, however, always relies on the same basic principle, i.e., photoreceptors located in the vicinity of dark shielding pigment. Cnidaria as the likely sister group to the Bilateria are the earliest branching phylum with a well developed visual system. Here, we show that camera-type eyes of the cubozoan jellyfish, Tripedalia cystophora, use genetic building blocks typical of vertebrate eyes, namely, a ciliary phototransduction cascade and melanogenic pathway. Our findings indicative of parallelism provide an insight into eye evolution. Combined, the available data favor the possibility that vertebrate and cubozoan eyes arose by independent recruitment of orthologous genes during evolution.

  7. Verbal and numerical consumer recommendations: switching between recommendation formats leads to preference inconsistencies.

    PubMed

    Maciejovsky, Boris; Budescu, David V

    2013-06-01

    Many Web sites provide consumers with product recommendations, which are typically presented by a sequence of verbal reviews and numerical ratings. In three experiments, we demonstrate that when participants switch between formats (e.g., from verbal to numerical), they are more prone to preference inconsistencies than when they aggregate the recommendations within the same format (e.g., verbal). When evaluating recommendations, participants rely primarily on central-location measures (e.g., mean) and less on other distribution characteristics (e.g., variance). We explain our findings within the theoretical framework of stimulus-response compatibility and we make practical recommendations for the design of recommendation systems and Web portals.

  8. Seeing red; the development of pON.mCherry, a broad-host range constitutive expression plasmid for Gram-negative bacteria.

    PubMed

    Gebhardt, Michael J; Jacobson, Rachael K; Shuman, Howard A

    2017-01-01

    The development of plasmid-mediated gene expression control in bacteria revolutionized the field of bacteriology. Many of these expression control systems rely on the addition of small molecules, generally metabolites or non-metabolized analogs thereof, to the growth medium to induce expression of the genes of interest. The paradigmatic example of an expression control system is the lac system from Escherichia coli, which typically relies on the Ptac promoter and the Lac repressor, LacI. In many cases, however, constitutive gene expression is desired, and other experimental approaches require the coordinated control of multiple genes. While multiple systems have been developed for use in E. coli and its close relatives, the utility and/or functionality of these tools does not always translate to other species. For example, for the Gram-negative pathogen, Legionella pneumophila, a causative agent of Legionnaires' Disease, the aforementioned Ptac system represents the only well-established expression control system. In order to enhance the tools available to study bacterial gene expression in L. pneumophila, we developed a plasmid, pON.mCherry, which confers constitutive gene expression from a mutagenized LacI binding site. We demonstrate that pON.mCherry neither interferes with other plasmids harboring an intact LacI-Ptac expression system nor alters the growth of Legionella species during intracellular growth. Furthermore, the broad-host range plasmid backbone of pON.mCherry allows constitutive gene expression in a wide variety of Gram-negative bacterial species, making pON.mCherry a useful tool for the greater research community.

  9. Time warp operating system version 2.7 internals manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.

  10. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less

  11. Ground robotic measurement of aeolian processes

    USDA-ARS?s Scientific Manuscript database

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These d...

  12. Electric Power Distribution System Model Simplification Using Segment Substitution

    DOE PAGES

    Reiman, Andrew P.; McDermott, Thomas E.; Akcakaya, Murat; ...

    2017-09-20

    Quasi-static time-series (QSTS) simulation is used to simulate the behavior of distribution systems over long periods of time (typically hours to years). The technique involves repeatedly solving the load-flow problem for a distribution system model and is useful for distributed energy resource (DER) planning. When a QSTS simulation has a small time step and a long duration, the computational burden of the simulation can be a barrier to integration into utility workflows. One way to relieve the computational burden is to simplify the system model. The segment substitution method of simplifying distribution system models introduced in this paper offers modelmore » bus reduction of up to 98% with a simplification error as low as 0.2% (0.002 pu voltage). Finally, in contrast to existing methods of distribution system model simplification, which rely on topological inspection and linearization, the segment substitution method uses black-box segment data and an assumed simplified topology.« less

  13. Electric Power Distribution System Model Simplification Using Segment Substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiman, Andrew P.; McDermott, Thomas E.; Akcakaya, Murat

    Quasi-static time-series (QSTS) simulation is used to simulate the behavior of distribution systems over long periods of time (typically hours to years). The technique involves repeatedly solving the load-flow problem for a distribution system model and is useful for distributed energy resource (DER) planning. When a QSTS simulation has a small time step and a long duration, the computational burden of the simulation can be a barrier to integration into utility workflows. One way to relieve the computational burden is to simplify the system model. The segment substitution method of simplifying distribution system models introduced in this paper offers modelmore » bus reduction of up to 98% with a simplification error as low as 0.2% (0.002 pu voltage). Finally, in contrast to existing methods of distribution system model simplification, which rely on topological inspection and linearization, the segment substitution method uses black-box segment data and an assumed simplified topology.« less

  14. Aerosol seeding systems for the NSWC wind tunnels

    NASA Technical Reports Server (NTRS)

    Yanta, W. J.; Smith, T. S.; Collier, A. S.

    1985-01-01

    Four types of laskin nozzles which are used to generate the primary aerosol mist are illustrated. This mist may be used directly as laser doppler velocimeters (LDV) particles. However, in general, a wide range of particle size exists at this stage and requires the use of some type of mono-dispersion refinement technique. These nozzles rely on the shearing action of high speed air near a column of seeding liquid. Typically, olive oil or dioctyl phthalate (DOP) is used, but within the past year solid polystyrene particles in an alcohol suspension have been used with great success. Air, at a typical pressure of five psig, is supplied to the top of the nozzle which is merely a hollow tube. This air issues radially from one or more small jets located near the collar close to the bottom of the tube. When the collar is submerged in the seeding liquid, the hollow columns located in the collar become filled with liquid. The air from the jet shears the liquid into the fine mist.

  15. Diffuse-Illumination Systems for Growing Plants

    NASA Technical Reports Server (NTRS)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  16. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling

    PubMed Central

    Podgornaia, Anna I.; Casino, Patricia; Marina, Alberto; Laub, Michael T.

    2013-01-01

    Summary Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, E. coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes, along with a systematic mutagenesis study, reveals how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions, protein evolution, and the design of novel protein interfaces. PMID:23954504

  17. Autoheated thermophilic aerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeny, K.; Hahn, H.; Leonhard, D.

    1991-10-01

    Autothermal thermophilic aerobic digestion (ATAD) is first and foremost a digestion process, the primary purpose of which is to decompose a portion of the waste organic solids generated from wastewater treatment. As a result of the high operating temperature, digestion is expected to occur within a short time period (6 days) and accomplish a high degree of pathogen reduction. ATAD systems are two-stage aerobic digestion processes that operate under thermophilic temperature conditions (40 to 80C) without supplemental heat. Like composting, the systems rely on the conservation of heat released during digestion itself to attain and sustain the desired operating temperature.more » Typical ATAD systems operate at 55C and may reach temperatures of 60 to 65C in the second-stage reactor. Perhaps because of the high operating temperature, this process has been referred to as Liquid Composting.' Major advantages associated with thermophilic operation include high biological reaction rates and a substantial degree of pathogen reduction.« less

  18. EVALUATING THE CONDITION OF RIVERINE-RIPARIAN RESOURCES IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    The evaluation of the condition of riverine-riparian resources at regional scales relies on the interpretation of measurements taken on a variety of attributes reflecting both status and processes governing status of these resources. Typical attributes include indicators of upsl...

  19. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  20. Nanoparticle accumulation and transcytosis in brain endothelial cell layers

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Raghnaill, Michelle Nic; Bramini, Mattia; Mahon, Eugene; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A.

    2013-10-01

    The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight junctions, which limit paracellular permeability. Several reports suggest that nanoparticles have a unique capacity to cross the BBB. However, direct evidence of nanoparticle transcytosis is difficult to obtain, and we found that typical transport studies present several limitations when applied to nanoparticles. In order to investigate the capacity of nanoparticles to access and transport across the BBB, several different nanomaterials, including silica, titania and albumin- or transferrin-conjugated gold nanoparticles of different sizes, were exposed to a human in vitro BBB model of endothelial hCMEC/D3 cells. Extensive transmission electron microscopy imaging was applied in order to describe nanoparticle endocytosis and typical intracellular localisation, as well as to look for evidence of eventual transcytosis. Our results show that all of the nanoparticles were internalised, to different extents, by the BBB model and accumulated along the endo-lysosomal pathway. Rare events suggestive of nanoparticle transcytosis were also observed for several of the tested materials.The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight junctions, which limit paracellular permeability. Several reports suggest that nanoparticles have a unique capacity to cross the BBB. However, direct evidence of nanoparticle transcytosis is difficult to obtain, and we found that typical transport studies present several limitations when applied to nanoparticles. In order to investigate the capacity of nanoparticles to access and transport across the BBB, several different nanomaterials, including silica, titania and albumin- or transferrin-conjugated gold nanoparticles of different sizes, were exposed to a human in vitro BBB model of endothelial hCMEC/D3 cells. Extensive transmission electron microscopy imaging was applied in order to describe nanoparticle endocytosis and typical intracellular localisation, as well as to look for evidence of eventual transcytosis. Our results show that all of the nanoparticles were internalised, to different extents, by the BBB model and accumulated along the endo-lysosomal pathway. Rare events suggestive of nanoparticle transcytosis were also observed for several of the tested materials. Electronic supplementary information (ESI) available: Nanoparticle characterization in relevant media by Dynamic Light Scattering and SDS-PAGE. Transport study for silica nanoparticles across the BBB layer. Additional Electron Microscopy images of cells treated with the different nanoparticles investigated and details of the filters of the transwell systems. See DOI: 10.1039/c3nr02905k

  1. Integrating observation and statistical forecasts over sub-Saharan Africa to support Famine Early Warning

    USGS Publications Warehouse

    Funk, Chris; Verdin, James P.; Husak, Gregory

    2007-01-01

    Famine early warning in Africa presents unique challenges and rewards. Hydrologic extremes must be tracked and anticipated over complex and changing climate regimes. The successful anticipation and interpretation of hydrologic shocks can initiate effective government response, saving lives and softening the impacts of droughts and floods. While both monitoring and forecast technologies continue to advance, discontinuities between monitoring and forecast systems inhibit effective decision making. Monitoring systems typically rely on high resolution satellite remote-sensed normalized difference vegetation index (NDVI) and rainfall imagery. Forecast systems provide information on a variety of scales and formats. Non-meteorologists are often unable or unwilling to connect the dots between these disparate sources of information. To mitigate these problem researchers at UCSB's Climate Hazard Group, NASA GIMMS and USGS/EROS are implementing a NASA-funded integrated decision support system that combines the monitoring of precipitation and NDVI with statistical one-to-three month forecasts. We present the monitoring/forecast system, assess its accuracy, and demonstrate its application in food insecure sub-Saharan Africa.

  2. Assembly of the cnidarian camera-type eye from vertebrate-like components

    PubMed Central

    Kozmik, Zbynek; Ruzickova, Jana; Jonasova, Kristyna; Matsumoto, Yoshifumi; Vopalensky, Pavel; Kozmikova, Iryna; Strnad, Hynek; Kawamura, Shoji; Piatigorsky, Joram; Paces, Vaclav; Vlcek, Cestmir

    2008-01-01

    Animal eyes are morphologically diverse. Their assembly, however, always relies on the same basic principle, i.e., photoreceptors located in the vicinity of dark shielding pigment. Cnidaria as the likely sister group to the Bilateria are the earliest branching phylum with a well developed visual system. Here, we show that camera-type eyes of the cubozoan jellyfish, Tripedalia cystophora, use genetic building blocks typical of vertebrate eyes, namely, a ciliary phototransduction cascade and melanogenic pathway. Our findings indicative of parallelism provide an insight into eye evolution. Combined, the available data favor the possibility that vertebrate and cubozoan eyes arose by independent recruitment of orthologous genes during evolution. PMID:18577593

  3. Expert system technology

    NASA Technical Reports Server (NTRS)

    Prince, Mary Ellen

    1987-01-01

    The expert system is a computer program which attempts to reproduce the problem-solving behavior of an expert, who is able to view problems from a broad perspective and arrive at conclusions rapidly, using intuition, shortcuts, and analogies to previous situations. Expert systems are a departure from the usual artificial intelligence approach to problem solving. Researchers have traditionally tried to develop general modes of human intelligence that could be applied to many different situations. Expert systems, on the other hand, tend to rely on large quantities of domain specific knowledge, much of it heuristic. The reasoning component of the system is relatively simple and straightforward. For this reason, expert systems are often called knowledge based systems. The report expands on the foregoing. Section 1 discusses the architecture of a typical expert system. Section 2 deals with the characteristics that make a problem a suitable candidate for expert system solution. Section 3 surveys current technology, describing some of the software aids available for expert system development. Section 4 discusses the limitations of the latter. The concluding section makes predictions of future trends.

  4. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  5. DIFFERENCES IN STRESSOR SENSITIVITY IN GEOGRAPHICALLY DISTINCT POPULATIONS OF AMPELISCA ABDITA

    EPA Science Inventory

    Risk assessment methods for contaminated sediments typically rely upon data derived from laboratory studies in which effects on individuals from a reference environment are the primary measure. The objective of this study was to determine if amphipods endemic to a contaminated si...

  6. Use of risk quotient and probabilistic approaches to assess risks of pesticides to birds

    EPA Science Inventory

    When conducting ecological risk assessments for pesticides, the United States Environmental Protection Agency typically relies upon the risk quotient (RQ). This approach is intended to be conservative in nature, making assumptions related to exposure and effects that are intended...

  7. A unified structural/terminological interoperability framework based on LexEVS: application to TRANSFoRm.

    PubMed

    Ethier, Jean-François; Dameron, Olivier; Curcin, Vasa; McGilchrist, Mark M; Verheij, Robert A; Arvanitis, Theodoros N; Taweel, Adel; Delaney, Brendan C; Burgun, Anita

    2013-01-01

    Biomedical research increasingly relies on the integration of information from multiple heterogeneous data sources. Despite the fact that structural and terminological aspects of interoperability are interdependent and rely on a common set of requirements, current efforts typically address them in isolation. We propose a unified ontology-based knowledge framework to facilitate interoperability between heterogeneous sources, and investigate if using the LexEVS terminology server is a viable implementation method. We developed a framework based on an ontology, the general information model (GIM), to unify structural models and terminologies, together with relevant mapping sets. This allowed a uniform access to these resources within LexEVS to facilitate interoperability by various components and data sources from implementing architectures. Our unified framework has been tested in the context of the EU Framework Program 7 TRANSFoRm project, where it was used to achieve data integration in a retrospective diabetes cohort study. The GIM was successfully instantiated in TRANSFoRm as the clinical data integration model, and necessary mappings were created to support effective information retrieval for software tools in the project. We present a novel, unifying approach to address interoperability challenges in heterogeneous data sources, by representing structural and semantic models in one framework. Systems using this architecture can rely solely on the GIM that abstracts over both the structure and coding. Information models, terminologies and mappings are all stored in LexEVS and can be accessed in a uniform manner (implementing the HL7 CTS2 service functional model). The system is flexible and should reduce the effort needed from data sources personnel for implementing and managing the integration.

  8. A unified structural/terminological interoperability framework based on LexEVS: application to TRANSFoRm

    PubMed Central

    Ethier, Jean-François; Dameron, Olivier; Curcin, Vasa; McGilchrist, Mark M; Verheij, Robert A; Arvanitis, Theodoros N; Taweel, Adel; Delaney, Brendan C; Burgun, Anita

    2013-01-01

    Objective Biomedical research increasingly relies on the integration of information from multiple heterogeneous data sources. Despite the fact that structural and terminological aspects of interoperability are interdependent and rely on a common set of requirements, current efforts typically address them in isolation. We propose a unified ontology-based knowledge framework to facilitate interoperability between heterogeneous sources, and investigate if using the LexEVS terminology server is a viable implementation method. Materials and methods We developed a framework based on an ontology, the general information model (GIM), to unify structural models and terminologies, together with relevant mapping sets. This allowed a uniform access to these resources within LexEVS to facilitate interoperability by various components and data sources from implementing architectures. Results Our unified framework has been tested in the context of the EU Framework Program 7 TRANSFoRm project, where it was used to achieve data integration in a retrospective diabetes cohort study. The GIM was successfully instantiated in TRANSFoRm as the clinical data integration model, and necessary mappings were created to support effective information retrieval for software tools in the project. Conclusions We present a novel, unifying approach to address interoperability challenges in heterogeneous data sources, by representing structural and semantic models in one framework. Systems using this architecture can rely solely on the GIM that abstracts over both the structure and coding. Information models, terminologies and mappings are all stored in LexEVS and can be accessed in a uniform manner (implementing the HL7 CTS2 service functional model). The system is flexible and should reduce the effort needed from data sources personnel for implementing and managing the integration. PMID:23571850

  9. Normalization as a canonical neural computation

    PubMed Central

    Carandini, Matteo; Heeger, David J.

    2012-01-01

    There is increasing evidence that the brain relies on a set of canonical neural computations, repeating them across brain regions and modalities to apply similar operations to different problems. A promising candidate for such a computation is normalization, in which the responses of neurons are divided by a common factor that typically includes the summed activity of a pool of neurons. Normalization was developed to explain responses in the primary visual cortex and is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions. Normalization may underlie operations such as the representation of odours, the modulatory effects of visual attention, the encoding of value and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that it serves as a canonical neural computation. PMID:22108672

  10. Taxonomic and ad hoc categorization within the two cerebral hemispheres.

    PubMed

    Shen, Yeshayahu; Aharoni, Bat-El; Mashal, Nira

    2015-01-01

    A typicality effect refers to categorization which is performed more quickly or more accurately for typical than for atypical members of a given category. Previous studies reported a typicality effect for category members presented in the left visual field/right hemisphere (RH), suggesting that the RH applies a similarity-based categorization strategy. However, findings regarding the typicality effect within the left hemisphere (LH) are less conclusive. The current study tested the pattern of typicality effects within each hemisphere for both taxonomic and ad hoc categories, using words presented to the left or right visual fields. Experiment 1 tested typical and atypical members of taxonomic categories as well as non-members, and Experiment 2 tested typical and atypical members of ad hoc categories as well as non-members. The results revealed a typicality effect in both hemispheres and in both types of categories. Furthermore, the RH categorized atypical stimuli more accurately than did the LH. Our findings suggest that both hemispheres rely on a similarity-based categorization strategy, but the coarse semantic coding of the RH seems to facilitate the categorization of atypical members.

  11. Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control

    ERIC Educational Resources Information Center

    Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia

    2017-01-01

    Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest that early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present…

  12. Situating Green Infrastructure in Context: A Framework for Adaptive Socio-Hydrology in Cities

    EPA Science Inventory

    Management of urban hydrologic processes using green infrastructure (GI) has largely focused on storm water management. Thus, design and implementation of GI usually rely on physical site characteristics and local rainfall patterns, and do not typically account for human or socia...

  13. DETERMINING SPECIATION OF PB IN PHOSPHATE AMENDED SOILS: METHOD LIMITATIONS

    EPA Science Inventory

    Determining the effectiveness of in-situ immobilization for P-amended, Pb-contaminated soils has typically relied on non-spectroscopic methods that in recent years have come under scrutiny due to technical and unforeseen error issues. In this study, we analyzed 18 soil samples vi...

  14. UNCERTAINTY AND THE JOHNSON-ETTINGER MODEL FOR VAPOR INTRUSION CALCULATIONS

    EPA Science Inventory

    The Johnson-Ettinger Model is widely used for assessing the impacts of contaminated vapors on residential air quality. Typical use of this model relies on a suite of estimated data, with few site-specific measurements. Software was developed to provide the public with automate...

  15. The Pythagorean Roots of Introductory Physics

    ERIC Educational Resources Information Center

    Clarage, James B.

    2013-01-01

    Much of the mathematical reasoning employed in the typical introductory physics course can be traced to Pythagorean roots planted over two thousand years ago. Besides obvious examples involving the Pythagorean theorem, I draw attention to standard physics problems and derivations which often unknowingly rely upon the Pythagoreans' work on…

  16. Groundwater and enteric disease: A review of the epidemiological evidence

    USDA-ARS?s Scientific Manuscript database

    Globally, approximately 2.2 billion people rely on groundwater for daily consumption. It is widely accepted that groundwater typically represents a more pristine source of water for human consumption than surface water resources. While this assumption is frequently the case, groundwater is not ubiqu...

  17. Immortalized sheep microglia are permissive to a diverse range of ruminant viruses.

    USDA-ARS?s Scientific Manuscript database

    Small ruminants are important agricultural species worldwide; however, diagnostics and research of small ruminant infectious diseases typically rely on cattle-based reagents. One example of this is the lack of small ruminant-derived cell lines to diagnose and study small ruminant viruses. Furtherm...

  18. Crisis Management in the Community College

    ERIC Educational Resources Information Center

    Murray, John P.; Kishur, Joseph M., Jr.

    2008-01-01

    This study examined the decision-making processes of community college presidents when confronted with unexpected and major challenges. During the day-to-day operations of community colleges, presidents typically rely on their best judgment when making routine decisions. However, this decision-making process needs to change when the unexpected…

  19. For Your Local Eyes Only: Culture-Specific Face Typicality Influences Perceptions of Trustworthiness.

    PubMed

    Sofer, Carmel; Dotsch, Ron; Oikawa, Masanori; Oikawa, Haruka; Wigboldus, Daniel H J; Todorov, Alexander

    2017-08-01

    Recent findings show that typical faces are judged as more trustworthy than atypical faces. However, it is not clear whether employment of typicality cues in trustworthiness judgment happens across cultures and if these cues are culture specific. In two studies, conducted in Japan and Israel, participants judged trustworthiness and attractiveness of faces. In Study 1, faces varied along a cross-cultural dimension ranging from a Japanese to an Israeli typical face. Own-culture typical faces were perceived as more trustworthy than other-culture typical faces, suggesting that people in both cultures employ typicality cues when judging trustworthiness, but that the cues, indicative of typicality, are culture dependent. Because perceivers may be less familiar with other-culture typicality cues, Study 2 tested the extent to which they rely on available facial information other than typicality, when judging other-culture faces. In Study 2, Japanese and Israeli faces varied from either Japanese or Israeli attractive to unattractive with the respective typical face at the midpoint. For own-culture faces, trustworthiness judgments peaked around own-culture typical face. However, when judging other-culture faces, both cultures also employed attractiveness cues, but this effect was more apparent for Japanese participants. Our findings highlight the importance of culture when considering the effect of typicality on trustworthiness judgments.

  20. Accelerating activity coefficient calculations using multicore platforms, and profiling the energy use resulting from such calculations.

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Bane, Michael

    2017-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method. Activity coefficients are often neglected with the largely untested hypothesis that they are simply too computationally expensive to include in dynamic frameworks. We present results demonstrating increased computational efficiency for a range of typical scenarios, including a profiling of the energy use resulting from reliance on such computations. As the landscape of HPC changes, the latter aspect is important to consider in future applications.

  1. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin; Davidson, John B.; Ifju, Peter G.

    2002-01-01

    Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.

  2. Point-of-Care Test Equipment for Flexible Laboratory Automation.

    PubMed

    You, Won Suk; Park, Jae Jun; Jin, Sung Moon; Ryew, Sung Moo; Choi, Hyouk Ryeol

    2014-08-01

    Blood tests are some of the core clinical laboratory tests for diagnosing patients. In hospitals, an automated process called total laboratory automation, which relies on a set of sophisticated equipment, is normally adopted for blood tests. Noting that the total laboratory automation system typically requires a large footprint and significant amount of power, slim and easy-to-move blood test equipment is necessary for specific demands such as emergency departments or small-size local clinics. In this article, we present a point-of-care test system that can provide flexibility and portability with low cost. First, the system components, including a reagent tray, dispensing module, microfluidic disk rotor, and photometry scanner, and their functions are explained. Then, a scheduler algorithm to provide a point-of-care test platform with an efficient test schedule to reduce test time is introduced. Finally, the results of diagnostic tests are presented to evaluate the system. © 2014 Society for Laboratory Automation and Screening.

  3. Understanding the health and wellbeing challenges of the food banking system: A qualitative study of food bank users, providers and referrers in London.

    PubMed

    Thompson, C; Smith, D; Cummins, S

    2018-05-16

    In the UK, food poverty has been associated with conditions such as obesity, malnutrition, hypertension, iron deficiency, and impaired liver function. Food banks, the primary response to food poverty on the ground, typically rely on community referral and distribution systems that involve health and social care professionals and local authority public health teams. The perspectives of these key stakeholders remain underexplored. This paper reports on a qualitative study of the health and wellbeing challenges of food poverty and food banking in London. An ethnographic investigation of food bank staff and users was carried out alongside a series of healthcare stakeholder interviews. A total of 42 participants were interviewed. A Critical Grounded Theory (CGT) analysis revealed that contemporary lived experiences of food poverty are embedded within and symptomatic of extreme marginalisation, which in turn impacts upon health. Specifically, food poverty was conceptualised by participants to: firstly, be a barrier to providing adequate care and nutrition for young children; secondly, be exacerbated by lack of access to adequate fresh food, food storage and cooking facilities; and thirdly, amplify existing health and social problems. Further investigation of the local government structures and professional roles that both rely upon and serve to further embed the food banking system is necessary in order to understand the politics of changing welfare landscapes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Grid Computing: Topology-Aware, Peer-to-Peer, Power-Aware, and Embedded Web Services

    DTIC Science & Technology

    2003-09-22

    Dist Simulation • Time Management enables temporal causality to be enforced in Distributed Simulations • Typically enforced via a Lower Bound Time...algorithm • Distinguished Root Node Algorithm developed as a topology-aware time management service – Relies on a tree from end-hosts to a

  5. The Implications of Research on Expertise for Curriculum and Pedagogy

    ERIC Educational Resources Information Center

    Feldon, David F.

    2007-01-01

    Instruction on problem solving in particular domains typically relies on explanations from experts about their strategies. However, research indicates that such self-reports often are incomplete or inaccurate (e.g., Chao & Salvendy, 1994; Cooke & Breedin, 1994). This article evaluates research on experts' cognition, the accuracy of experts'…

  6. Special Report on the English Language Arts.

    ERIC Educational Resources Information Center

    Freeman, Lawrence D.

    This report, based on statistics gathered from the first statewide census of Illinois public secondary school course offerings, enrollments, and cocurricular activities, focuses on English language arts courses. Among the highlights from the report are the following: (1) Illinois junior and senior high schools typically rely on general, grade…

  7. Heads Up! a Calculation- & Jargon-Free Approach to Statistics

    ERIC Educational Resources Information Center

    Giese, Alan R.

    2012-01-01

    Evaluating the strength of evidence in noisy data is a critical step in scientific thinking that typically relies on statistics. Students without statistical training will benefit from heuristic models that highlight the logic of statistical analysis. The likelihood associated with various coin-tossing outcomes gives students such a model. There…

  8. Estimating the impact of grouping misclassification on risk prediction when using the relative potency factors method to assess mixtures risk

    EPA Science Inventory

    Environmental health risk assessments of chemical mixtures that rely on component approaches often begin by grouping the chemicals of concern according to toxicological similarity. Approaches that assume dose addition typically are used for groups of similarly-acting chemicals an...

  9. Load Induced Blindness

    ERIC Educational Resources Information Center

    Macdonald, James S. P.; Lavie, Nilli

    2008-01-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied on indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005, for a review). Here we varied the level of…

  10. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Molecular imaging by mass spectrometry (MS) is emerging as a tool to determine the distribution of proteins, lipids and metabolites in tissues. The existing imaging methods, however, rely on predefined typically rectangular grids for sampling that ignore the natural cellular organization of the tiss...

  11. Screen Miniatures as Icons for Backward Navigation in Content-Based Software.

    ERIC Educational Resources Information Center

    Boling, Elizabeth; Ma, Guoping; Tao, Chia-Wen; Askun, Cengiz; Green, Tim; Frick, Theodore; Schaumburg, Heike

    Users of content-based software programs, including hypertexts and instructional multimedia, rely on the navigation functions provided by the designers of those program. Typical navigation schemes use abstract symbols (arrows) to label basic navigational functions like moving forward or backward through screen displays. In a previous study, the…

  12. A Critical Analysis of the Child and Adolescent Wellness Scale (CAWS)

    ERIC Educational Resources Information Center

    Weller-Clarke, Alandra

    2006-01-01

    Current practice for assessing children and adolescents rely on objectively scored deficit-based models and/or informal assessments to determine how maladaptive behaviors affect performance. Social-emotional assessment instruments are used in schools and typically provide information related to behavioral and emotional deficits, but provide little…

  13. Estimation of dose-response models for discrete and continuous data in weed science

    USDA-ARS?s Scientific Manuscript database

    Dose-response analysis is widely used in biological sciences and has application to a variety of risk assessment, bioassay, and calibration problems. In weed science, dose-response methodologies have typically relied on least squares estimation under an assumption of normality. Advances in computati...

  14. Sharing Local Revenue: One District's Perspective

    ERIC Educational Resources Information Center

    Cline, David S.

    2011-01-01

    The vast majority of U.S. school districts are considered independent and have taxing authority; the remaining districts rely on revenue and budgetary approval from their local government. In the latter case, localities often use some form of negotiated process to determine the amount of revenue their school districts will receive. Typically, a…

  15. Near-Death Experiences and the "Fantasy-Prone" Personality: Preliminary Findings.

    ERIC Educational Resources Information Center

    Council, James R.; Greyson, Bruce

    Near-death experiences (NDEs) are subjective experiences at the threshold of death which can include strong positive affect, dissociation from the physical body, and paranormal/transcendental phenomena. Empirical investigation of NDEs has typically relied upon retrospective reports and personality studies of individuals who have come close to…

  16. When Time Makes a Difference: Addressing Ergodicity and Complexity in Education

    ERIC Educational Resources Information Center

    Koopmans, Matthijs

    2015-01-01

    The detection of complexity in behavioral outcomes often requires an estimation of their variability over a prolonged time spectrum to assess processes of stability and transformation. Conventional scholarship typically relies on time-independent measures, "snapshots", to analyze those outcomes, assuming that group means and their…

  17. Dos and Don'ts of Writing Presidential Contracts

    ERIC Educational Resources Information Center

    Fain, Paul

    2006-01-01

    In the not-so-distant past, an employment agreement between a university president and a governing board was often nothing more than a handshake. Today, formal contracts are requirements for presidents, with boards and presidents typically relying on lawyers to extensively document terms of employment, salary and benefits, and, perhaps most…

  18. SPATIALLY-BALANCED SURVEY DESIGN FOR GROUNDWATER USING EXISTING WELLS

    EPA Science Inventory

    Many states have a monitoring program to evaluate the water quality of groundwater across the state. These programs rely on existing wells for access to the groundwater, due to the high cost of drilling new wells. Typically, a state maintains a database of all well locations, in...

  19. Carbon Offsets and Renewable Energy Certificates | Climate Neutral Research

    Science.gov Websites

    Campuses | NREL Carbon Offsets and Renewable Energy Certificates Carbon Offsets and Renewable Energy Certificates Carbon offsets are typically less expensive than installing hardware or undertaking climate reduction targets. While research campuses should not rely on carbon offsets long term, they can

  20. Ecotourism as Experiential Environmental Education?

    ERIC Educational Resources Information Center

    Russell, Constance L.

    1994-01-01

    Questions the assumption that ecotourism will connect people to nature and foster conservationist attitudes. Discusses the history of ecotourism and the dangers of relying on an economic rationale for conservation. Suggests that the typical ecotourist experience may be too short to develop feelings of place and may result in social constructions…

  1. The Knowledge Café: A Unique Teaching Experience

    ERIC Educational Resources Information Center

    Baim, Susan A.

    2016-01-01

    Teaching adult learners in a community-based educational setting differs in many ways from applying typical campus-based or online instructional best practices. Adult learners show tremendous diversity in their backgrounds, approach learning in a myriad of different ways, and rely heavily on their past experiences to help guide their future…

  2. Recent progress in a classical biological control program for olive fruit fly in California

    USDA-ARS?s Scientific Manuscript database

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe damage to olive production worldwide. Control of olive fruit fly typically relies on pesticides, and under such conditions the impact of natural enemies is relatively low. About 15 years ago, the USDA-ARS European Biologic...

  3. Technological Literacy Learning with Cumulative and Stepwise Integration of Equations into Electrical Circuit Diagrams

    ERIC Educational Resources Information Center

    Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.

    2012-01-01

    Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…

  4. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid contradictions such as having to choose one sub-component to generate performance diagnostics to another, possibly not fully consistent, component.

  5. Are Physics-Based Simulators Ready for Prime Time? Comparisons of RSQSim with UCERF3 and Observations.

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Shaw, B. E.; Gilchrist, J. J.; Jordan, T. H.

    2017-12-01

    Probabilistic seismic hazard analysis (PSHA) is typically performed by combining an earthquake rupture forecast (ERF) with a set of empirical ground motion prediction equations (GMPEs). ERFs have typically relied on observed fault slip rates and scaling relationships to estimate the rate of large earthquakes on pre-defined fault segments, either ignoring or relying on expert opinion to set the rates of multi-fault or multi-segment ruptures. Version 3 of the Uniform California Earthquake Rupture Forecast (UCERF3) is a significant step forward, replacing expert opinion and fault segmentation with an inversion approach that matches observations better than prior models while incorporating multi-fault ruptures. UCERF3 is a statistical model, however, and doesn't incorporate the physics of earthquake nucleation, rupture propagation, and stress transfer. We examine the feasibility of replacing UCERF3, or components therein, with physics-based rupture simulators such as the Rate-State Earthquake Simulator (RSQSim), developed by Dieterich & Richards-Dinger (2010). RSQSim simulations on the UCERF3 fault system produce catalogs of seismicity that match long term rates on major faults, and produce remarkable agreement with UCERF3 when carried through to PSHA calculations. Averaged over a representative set of sites, the RSQSim-UCERF3 hazard-curve differences are comparable to the small differences between UCERF3 and its predecessor, UCERF2. The hazard-curve agreement between the empirical and physics-based models provides substantial support for the PSHA methodology. RSQSim catalogs include many complex multi-fault ruptures, which we compare with the UCERF3 rupture-plausibility metrics as well as recent observations. Complications in generating physically plausible kinematic descriptions of multi-fault ruptures have thus far prevented us from using UCERF3 in the CyberShake physics-based PSHA platform, which replaces GMPEs with deterministic ground motion simulations. RSQSim produces full slip/time histories that can be directly implemented as sources in CyberShake, without relying on the conditional hypocenter and slip distributions needed for the UCERF models. We also compare RSQSim with time-dependent PSHA calculations based on multi-fault renewal models.

  6. Motion based parsing for video from observational psychology

    NASA Astrophysics Data System (ADS)

    Kokaram, Anil; Doyle, Erika; Lennon, Daire; Joyeux, Laurent; Fuller, Ray

    2006-01-01

    In Psychology it is common to conduct studies involving the observation of humans undertaking some task. The sessions are typically recorded on video and used for subjective visual analysis. The subjective analysis is tedious and time consuming, not only because much useless video material is recorded but also because subjective measures of human behaviour are not necessarily repeatable. This paper presents tools using content based video analysis that allow automated parsing of video from one such study involving Dyslexia. The tools rely on implicit measures of human motion that can be generalised to other applications in the domain of human observation. Results comparing quantitative assessment of human motion with subjective assessment are also presented, illustrating that the system is a useful scientific tool.

  7. Difference in electrodynamic transduction between speaker and alternator in thermoacoustic applications.

    PubMed

    Gonen, Eran; Grossman, Gershon

    2015-09-01

    Conventional reciprocating pistons, normally found in thermoacoustic engines, tend to introduce complex impedance characteristics, including acoustic, mechanical, and electrical portions. System behavior and performance usually rely on proper tuning processes and selection of an optimal point of operation, affected substantially by complementary hardware, typically adjusted for the specific application. The present study proposes an alternative perspective on the alternator behavior, by considering the relative motion between gas and piston during the engine mode of operation. Direct analytical derivation of the velocity distribution inside a tight seal gap and the associated impedance is employed to estimate the electro-acoustic conversion efficiency, thus indicating how to improve the system performance. The influence of acoustic phase, gap dimensions, and working conditions is examined, suggesting the need to develop tighter and longer seal gaps, having increased impedance, to allow optimization for use in upcoming sustainable power generation solutions and smart grids.

  8. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  9. Human vision is attuned to the diffuseness of natural light

    PubMed Central

    Morgenstern, Yaniv; Geisler, Wilson S.; Murray, Richard F.

    2014-01-01

    All images are highly ambiguous, and to perceive 3-D scenes, the human visual system relies on assumptions about what lighting conditions are most probable. Here we show that human observers' assumptions about lighting diffuseness are well matched to the diffuseness of lighting in real-world scenes. We use a novel multidirectional photometer to measure lighting in hundreds of environments, and we find that the diffuseness of natural lighting falls in the same range as previous psychophysical estimates of the visual system's assumptions about diffuseness. We also find that natural lighting is typically directional enough to override human observers' assumption that light comes from above. Furthermore, we find that, although human performance on some tasks is worse in diffuse light, this can be largely accounted for by intrinsic task difficulty. These findings suggest that human vision is attuned to the diffuseness levels of natural lighting conditions. PMID:25139864

  10. Discovering relevance knowledge in data: a growing cell structures approach.

    PubMed

    Azuaje, F; Dubitzky, W; Black, N; Adamson, K

    2000-01-01

    Both information retrieval and case-based reasoning systems rely on effective and efficient selection of relevant data. Typically, relevance in such systems is approximated by similarity or indexing models. However, the definition of what makes data items similar or how they should be indexed is often nontrivial and time-consuming. Based on growing cell structure artificial neural networks, this paper presents a method that automatically constructs a case retrieval model from existing data. Within the case-based reasoning (CBR) framework, the method is evaluated for two medical prognosis tasks, namely, colorectal cancer survival and coronary heart disease risk prognosis. The results of the experiments suggest that the proposed method is effective and robust. To gain a deeper insight and understanding of the underlying mechanisms of the proposed model, a detailed empirical analysis of the models structural and behavioral properties is also provided.

  11. Imaging-Assisted Large-Format Breast Pathology: Program Rationale and Development in a Nonprofit Health System in the United States

    PubMed Central

    Tucker, F. Lee

    2012-01-01

    Modern breast imaging, including magnetic resonance imaging, provides an increasingly clear depiction of breast cancer extent, often with suboptimal pathologic confirmation. Pathologic findings guide management decisions, and small increments in reported tumor characteristics may rationalize significant changes in therapy and staging. Pathologic techniques to grossly examine resected breast tissue have changed little during this era of improved breast imaging and still rely primarily on the techniques of gross inspection and specimen palpation. Only limited imaging information is typically conveyed to pathologists, typically in the form of wire-localization images from breast-conserving procedures. Conventional techniques of specimen dissection and section submission destroy the three-dimensional integrity of the breast anatomy and tumor distribution. These traditional methods of breast specimen examination impose unnecessary limitations on correlation with imaging studies, measurement of cancer extent, multifocality, and margin distance. Improvements in pathologic diagnosis, reporting, and correlation of breast cancer characteristics can be achieved by integrating breast imagers into the specimen examination process and the use of large-format sections which preserve local anatomy. This paper describes the successful creation of a large-format pathology program to routinely serve all patients in a busy interdisciplinary breast center associated with a community-based nonprofit health system in the United States. PMID:23316372

  12. Fetal Abuse and the Criminalization of Behavior during Pregnancy.

    ERIC Educational Resources Information Center

    Farr, Kathryn Ann

    1995-01-01

    Discusses efforts to criminalize fetal abuse, harm caused from a pregnant woman's use of illegal drugs. Such efforts have typically failed to withstand judicial scrutiny. Suggests that criminal prosecution for fetal abuse relies on questionable procedures, is unevenly applied, and may keep women from seeking drug treatment or prenatal care. (LKS)

  13. Publicizing Your Web Resources for Maximum Exposure.

    ERIC Educational Resources Information Center

    Smith, Kerry J.

    2001-01-01

    Offers advice to librarians for marketing their Web sites on Internet search engines. Advises against relying solely on spiders and recommends adding metadata to the source code and delivering that information directly to the search engines. Gives an overview of metadata and typical coding for meta tags. Includes Web addresses for a number of…

  14. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Treesearch

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers

    2015-01-01

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...

  15. Speech-Language Pathologists' Knowledge of Tongue/Palate Contact for Consonants

    ERIC Educational Resources Information Center

    McLeod, Sharynne

    2011-01-01

    Speech-language pathologists (SLPs) rely on knowledge of tongue placement to assess and provide intervention. A total of 175 SLPs who worked with children with speech sound disorders (SSDs) drew coronal diagrams of tongue/palate contact for 24 English consonants. Comparisons were made between their responses and typical English-speaking adults'…

  16. ERP Correlates of Recognition Memory in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Massand, Esha; Bowler, Dermot M.; Mottron, Laurent; Hosein, Anthony; Jemel, Boutheina

    2013-01-01

    Recognition memory in autism spectrum disorder (ASD) tends to be undiminished compared to that of typically developing (TD) individuals (Bowler et al. 2007), but it is still unknown whether memory in ASD relies on qualitatively similar or different neurophysiology. We sought to explore the neural activity underlying recognition by employing the…

  17. The Implications of Summer Learning Loss for Value-Added Estimates of Teacher Effectiveness

    ERIC Educational Resources Information Center

    Gershenson, Seth; Hayes, Michael S.

    2018-01-01

    School districts across the United States increasingly use value-added models (VAMs) to evaluate teachers. In practice, VAMs typically rely on lagged test scores from the previous academic year, which necessarily conflate summer with school-year learning and potentially bias estimates of teacher effectiveness. We investigate the practical…

  18. Challenges to the Use of Artificial Neural Networks for Diagnostic Classifications with Student Test Data

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Circi, Ruhan

    2017-01-01

    Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…

  19. A randomized study of dietary composition during weight-loss maintenance: Rationale, study design, intervention, and assessment

    USDA-ARS?s Scientific Manuscript database

    While many people with overweight or obesity can lose weight temporarily, most have difficulty maintaining weight loss over the long term. Studies of dietary composition typically focus on weight loss, rather than weight-loss maintenance, and rely on nutrition education and dietary counseling, rathe...

  20. Qualitative Investigation into Students' Use of Divergence and Curl in Electromagnetism

    ERIC Educational Resources Information Center

    Bollen, Laurens; van Kampen, Paul; Baily, Charles; De Cock, Mieke

    2016-01-01

    Many students struggle with the use of mathematics in physics courses. Although typically well trained in rote mathematical calculation, they often lack the ability to apply their acquired skills to physical contexts. Such student difficulties are particularly apparent in undergraduate electrodynamics, which relies heavily on the use of vector…

  1. Commercial Transfer--A Business Model Innovation for the Entrepreneurial University

    ERIC Educational Resources Information Center

    Gaus, Olaf; Raith, Matthias G.

    2016-01-01

    While knowledge-intensive societies rely heavily on universities for the creation of knowledge, its translation into economic value is typically performed by firms in the market. Since universities increasingly depend on additional funds for new and expensive research, current policies urge them to interact proactively with the market. The authors…

  2. Estimating the impact of grouping misclassification on risk prediction when using the relative potency factors method to assess mixtures risk -Presentation

    EPA Science Inventory

    Environmental health risk assessments of chemical mixtures that rely on component approaches often begin by grouping the chemicals of concern according to toxicological similarity. Approaches that assume dose addition typically are used for groups of similarly-acting chemicals an...

  3. Strengths, Opportunities, Aspirations, and Results: An Emerging Approach to Organization Development

    ERIC Educational Resources Information Center

    Zarestky, Jill; Cole, Catherine S.

    2017-01-01

    Organization development (OD) interventions have typically relied on the strengths, weaknesses, opportunities, and threats (SWOT) framework for strategic planning. The strengths, opportunities, aspirations, and results (SOAR) framework is a relatively new innovation in OD that may serve as a viable alternative to SWOT for those who wish to apply…

  4. Lobbying Behaviors of Higher Education Institutions: Structures, Attempts, and Success

    ERIC Educational Resources Information Center

    Burgess, Brent; Miller, Michael T.

    2009-01-01

    As colleges and universities are under increased pressure to demonstrate their effectiveness, leaders have come to rely on government relations personnel to adequately tell the story of the activities and needs of the campus. State governments typically are the largest single supplier of public institution funding, yet they have been challenged by…

  5. Government Support for Open Educational Resources: Policy, Funding, and Strategies

    ERIC Educational Resources Information Center

    Stacey, Paul

    2013-01-01

    Foundations like Hewlett, Mellon, and Gates provided start-up funding and support that nurtured the field of open educational resources (OER) from infancy to a robust early adolescence characterized by energy and idealism (Casserly & Smith, 2008). However, foundation grants typically focus on establishing exemplars and cannot be relied on for…

  6. Quantifying trail erosion and stream sedimentation with sediment tracers

    Treesearch

    Mark S. Riedel

    2006-01-01

    Abstract--The impacts of forest disturbance and roads on stream sedimentation have been rigorously investigated and documented. While historical research on turbidity and suspended sediments has been thorough, studies of stream bed sedimentation have typically relied on semi-quantitative measures such as embeddedness or marginal pool depth. To directly quantify the...

  7. Designated Medical Directors for Emergency Medical Services: Recruitment and Roles

    ERIC Educational Resources Information Center

    Slifkin, Rebecca T.; Freeman, Victoria A.; Patterson, P. Daniel

    2009-01-01

    Context: Emergency medical services (EMS) agencies rely on medical oversight to support Emergency Medical Technicians (EMTs) in the provision of prehospital care. Most states require EMS agencies to have a designated medical director (DMD), who typically is responsible for the many activities of medical oversight. Purpose: To assess rural-urban…

  8. Anxiety, a Benefit and Detriment to Cognition: Behavioral and Magnetoencephalographic Evidence from a Mixed-Saccade Task

    ERIC Educational Resources Information Center

    Cornwell, Brian R.; Mueller, Sven C.; Kaplan, Raphael; Grillon, Christian; Ernst, Monique

    2012-01-01

    Anxiety is typically considered an impediment to cognition. We propose anxiety-related impairments in cognitive-behavioral performance are the consequences of enhanced stimulus-driven attention. Accordingly, reflexive, habitual behaviors that rely on stimulus-driven mechanisms should be facilitated in an anxious state, while novel, flexible…

  9. A Pilot Study of Collective Parent Engagement and Children's Academic Achievement

    ERIC Educational Resources Information Center

    Alameda-Lawson, Tania

    2014-01-01

    Parent involvement (PI) programs typically represent an important improvement strategy for schools serving low-income children of color. This pilot study offers an alternative to conventional PI approaches, collective parent engagement (CPE). The study relied on a post hoc, quasiexperimental design, and data were collected from 32 low-income,…

  10. Transplanting native dominant plants to facilitate community development in restored coastal plain wetlands

    Treesearch

    Diane De Steven; Rebecca R. Sharitz

    2007-01-01

    Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous...

  11. Accuracy of an IFSAR-derived digital terrain model under a conifer forest canopy.

    Treesearch

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2005-01-01

    Accurate digital terrain models (DTMs) are necessary for a variety of forest resource management applications, including watershed management, timber harvest planning, and fire management. Traditional methods for acquiring topographic data typically rely on aerial photogrammetry, where measurement of the terrain surface below forest canopy is difficult and error prone...

  12. Chinese Characters Elicit Face-Like N170 Inversion Effects

    ERIC Educational Resources Information Center

    Wang, Man-Ying; Kuo, Bo-Cheng; Cheng, Shih-Kuen

    2011-01-01

    Recognition of both faces and Chinese characters is commonly believed to rely on configural information. While faces typically exhibit behavioral and N170 inversion effects that differ from non-face stimuli (Rossion, Joyce, Cottrell, & Tarr, 2003), the current study examined whether a similar reliance on configural processing may result in similar…

  13. Innovative Activities for Teaching Anatomy of Speech Production

    ERIC Educational Resources Information Center

    Skinder-Meredith, Amy E.

    2010-01-01

    Courses in anatomy have traditionally relied on lectures and cadaver dissection laboratories. In speech and hearing sciences, there tends to be less access to cadavers than in medical schools and other allied health professions. It is more typical to use anatomical models, diagrams and lecture slides. Regardless of the resources available, anatomy…

  14. A modular positron camera for the study of industrial processes

    NASA Astrophysics Data System (ADS)

    Leadbeater, T. W.; Parker, D. J.

    2011-10-01

    Positron imaging techniques rely on the detection of the back-to-back annihilation photons arising from positron decay within the system under study. A standard technique, called positron emitting particle tracking (PEPT) [1], uses a number of these detected events to rapidly determine the position of a positron emitting tracer particle introduced into the system under study. Typical applications of PEPT are in the study of granular and multi-phase materials in the disciplines of engineering and the physical sciences. Using components from redundant medical PET scanners a modular positron camera has been developed. This camera consists of a number of small independent detector modules, which can be arranged in custom geometries tailored towards the application in question. The flexibility of the modular camera geometry allows for high photon detection efficiency within specific regions of interest, the ability to study large and bulky systems and the application of PEPT to difficult or remote processes as the camera is inherently transportable.

  15. Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    2007-05-01

    An electrical capacitance volume tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 × 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This paper presents a method of reconstructing images of high contrast dielectric materials using only the self-capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminium structure inserted at different positions within the sensing region. Comparisons with standard two-dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  16. Electrical capacitance volume tomography of high contrast dielectrics using a cuboid geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  17. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light

    PubMed Central

    Clarke, Patrick J.; Collins, Robert J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2012-01-01

    Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called ‘one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm. PMID:23132024

  18. Usability of a Wearable Camera System for Dementia Family Caregivers

    PubMed Central

    Matthews, Judith T.; Lingler, Jennifer H.; Campbell, Grace B.; Hunsaker, Amanda E.; Hu, Lu; Pires, Bernardo R.; Hebert, Martial; Schulz, Richard

    2015-01-01

    Health care providers typically rely on family caregivers (CG) of persons with dementia (PWD) to describe difficult behaviors manifested by their underlying disease. Although invaluable, such reports may be selective or biased during brief medical encounters. Our team explored the usability of a wearable camera system with 9 caregiving dyads (CGs: 3 males, 6 females, 67.00 ± 14.95 years; PWDs: 2 males, 7 females, 80.00 ± 3.81 years, MMSE 17.33 ± 8.86) who recorded 79 salient events over a combined total of 140 hours of data capture, from 3 to 7 days of wear per CG. Prior to using the system, CGs assessed its benefits to be worth the invasion of privacy; post-wear privacy concerns did not differ significantly. CGs rated the system easy to learn to use, although cumbersome and obtrusive. Few negative reactions by PWDs were reported or evident in resulting video. Our findings suggest that CGs can and will wear a camera system to reveal their daily caregiving challenges to health care providers. PMID:26288888

  19. Small Portable PEM Fuel Cell Systems for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2005-01-01

    Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges

  20. A Data Augmentation Approach to Short Text Classification

    ERIC Educational Resources Information Center

    Rosario, Ryan Robert

    2017-01-01

    Text classification typically performs best with large training sets, but short texts are very common on the World Wide Web. Can we use resampling and data augmentation to construct larger texts using similar terms? Several current methods exist for working with short text that rely on using external data and contexts, or workarounds. Our focus is…

  1. Deep Learning in Intermediate Microeconomics: Using Scaffolding Assignments to Teach Theory and Promote Transfer

    ERIC Educational Resources Information Center

    Green, Gareth P.; Bean, John C.; Peterson, Dean J.

    2013-01-01

    Intermediate microeconomics is typically viewed as a theory and tools course that relies on algorithmic problems to help students learn and apply economic theory. However, the authors' assessment research suggests that algorithmic problems by themselves do not encourage students to think about where the theory comes from, why the theory is…

  2. Strategies and Correlates of Jigsaw Puzzle and Visuospatial Performance by Persons with Prader-Willi Syndrome

    ERIC Educational Resources Information Center

    Verdine, Brian N.; Troseth, Georgene L.; Hodapp, Robert M.; Dykens, Elisabeth M.

    2008-01-01

    Some individuals with Prader-Willi syndrome exhibit strengths in solving jigsaw puzzles. We compared visuospatial ability and jigsaw puzzle performance and strategies of 26 persons with Prader-Willi syndrome and 26 MA-matched typically developing controls. Individuals with Prader-Willi syndrome relied on piece shape. Those in the control group…

  3. Race, Class and Gender in Engineering Education: A Quantitative Investigation of First Year Enrollment

    ERIC Educational Resources Information Center

    Phillips, Canek Moises Luna

    2016-01-01

    Research explanations for the disparity across both race and gender in engineering education has typically relied on a deficit model, whereby women and people of color lack the requisite knowledge or psychological characteristics that Whites and men have to become engineers in sufficient numbers. Instead of using a deficit model approach to…

  4. Use of single nucleotide polymorphisms (SNP) to fine-map quantitative trait loci (QTL) in swine

    USDA-ARS?s Scientific Manuscript database

    Mapping quantitative trait loci (QTL) in swine at the US Meat Animal Research Center has relied heavily on linkage mapping in either F2 or Backcross families. QTL identified in the initial scans typically have very broad confidence intervals and further refinement of the QTL’s position is needed bef...

  5. Meeting Contemporary Statistical Needs of Instructional Communication Research: Modeling Teaching and Learning as a Conditional Process. Forum: The Future of Instructional Communication

    ERIC Educational Resources Information Center

    Goodboy, Alan K.

    2017-01-01

    For decades, instructional communication scholars have relied predominantly on cross-sectional survey methods to generate empirical associations between effective teaching and student learning. These studies typically correlate students' perceptions of their instructor's teaching behaviors with subjective self-report assessments of their own…

  6. The BioCassava Plus program: Biofortification of cassava for sub-Saharan Africa

    USDA-ARS?s Scientific Manuscript database

    More than 250 million Africans rely on the starchy root crop cassava (Manihot esculenta) as their staple source of calories. A typical cassava-based diet, however, provides less than 30% of the minimum daily requirement for protein and only 10-20% of that for iron, zinc, and vitamin A. The BioCassav...

  7. Dense Home-Based Recordings Reveal Typical and Atypical Development of Tense/Aspect in a Child with Delayed Language Development

    ERIC Educational Resources Information Center

    Chin, Iris; Goodwin, Matthew S.; Vosoughi, Soroush; Roy, Deb; Naigles, Letitia R.

    2018-01-01

    Studies investigating the development of tense/aspect in children with developmental disorders have focused on production frequency and/or relied on short spontaneous speech samples. How children with developmental disorders use future forms/constructions is also unknown. The current study expands this literature by examining frequency,…

  8. The effects of climate downscaling technique and observational data set on modeled ecological responses

    Treesearch

    Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe; Anne M. K. Stoner

    2016-01-01

    Assessments of future climate change impacts on ecosystems typically rely on multiple climate model projections, but often utilize only one downscaling approach trained on one set of observations. Here, we explore the extent to which modeled biogeochemical responses to changing climate are affected by the selection of the climate downscaling method and training...

  9. Adaptive cluster sampling: An efficient method for assessing inconspicuous species

    Treesearch

    Andrea M. Silletti; Joan Walker

    2003-01-01

    Restorationistis typically evaluate the success of a project by estimating the population sizes of species that have been planted or seeded. Because total census is raely feasible, they must rely on sampling methods for population estimates. However, traditional random sampling designs may be inefficient for species that, for one reason or another, are challenging to...

  10. Results Not Typical: One Latino Family's Experiences in Higher Education

    ERIC Educational Resources Information Center

    Jimenez-Silva, Margarita; Jimenez Hernandez, Norma V.; Luevanos, Ruth; Jimenez, Dulcemonica; Jimenez, Abel, Jr.

    2009-01-01

    In this narrative, five adult siblings bring their voices together to tell the stories of their interwoven college experiences--how they influenced, supported, and relied on one another and other family members. As the stories unfold, they reveal the strengths of the familial ties that provide meaning and purpose to the college experience, the…

  11. Convergent Validity of Four Accelerometer Cutpoints with Direct Observation of Preschool Children's Outdoor Physical Activity

    ERIC Educational Resources Information Center

    Kahan, David; Nicaise, Virginie; Reuben, Karen

    2013-01-01

    Purpose: More than one fifth of American preschool-aged children are classified as overweight/obese. Increasing physical activity is one means of slowing/reversing progression to overweight or obesity. Measurement of physical activity in this age group relies heavily on motion sensors such as accelerometers. Output is typically interpreted through…

  12. A Computational Pipeline to Improve Clinical Alarms Using a Parallel Computing Infrastructure

    ERIC Educational Resources Information Center

    Nguyen, Andrew V.

    2013-01-01

    Physicians, nurses, and other clinical staff rely on alarms from various bedside monitors and sensors to alert when there is a change in the patient's clinical status, typically when urgent intervention is necessary. These alarms are usually embedded directly within the sensor or monitor and lacks the context of the patient's medical history and…

  13. Comparison of detection of BVDV antigen in various types of tissue and fluid samples collected from persistently infected cattle

    USDA-ARS?s Scientific Manuscript database

    Aim. Bovine viral diarrhea viruses (BVDV) are economically important pathogens of cattle. Most new acute infections of BVDV are acquired from an animal persistently infected (PI) with BVDV. Surveillance programs typically rely on blood or skin biopsies for detection of PI cattle. PI animals have ...

  14. On the Representativeness of Behavior Observation Samples in Classrooms

    ERIC Educational Resources Information Center

    Tiger, Jeffrey H.; Miller, Sarah J.; Mevers, Joanna Lomas; Mintz, Joslyn Cynkus; Scheithauer, Mindy C.; Alvarez, Jessica

    2013-01-01

    School consultants who rely on direct observation typically conduct observational samples (e.g., 1 30-min observation per day) with the hopes that the sample is representative of performance during the remainder of the day, but the representativeness of these samples is unclear. In the current study, we recorded the problem behavior of 3 referred…

  15. A NEW SW-846 METHOD FOR THE ANALYSIS OF TOXAPHENE AND TOXAPHENE CONGENERS IN SOLID AND AQUEOUS SAMPLES USING GAS CHROMATOGRAPHY / NEGATIVE ION MASS SPECTROMETRY

    EPA Science Inventory

    US EPA SW-846 methods have typically relied on dual column gas chromatography coupled with electron capture detection (GC-ECD) for analysis of low concentrations of organochlorine pesticides, including toxaphene, in environmental samples. Toxaphene is one of the most widely appl...

  16. Transitioning Groundwater from an Extractive Resource to a Managed Water Storage Resource: Geology and Recharge in Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.

  17. Brief report: accuracy and response time for the recognition of facial emotions in a large sample of children with autism spectrum disorders.

    PubMed

    Fink, Elian; de Rosnay, Marc; Wierda, Marlies; Koot, Hans M; Begeer, Sander

    2014-09-01

    The empirical literature has presented inconsistent evidence for deficits in the recognition of basic emotion expressions in children with autism spectrum disorders (ASD), which may be due to the focus on research with relatively small sample sizes. Additionally, it is proposed that although children with ASD may correctly identify emotion expression they rely on more deliberate, more time-consuming strategies in order to accurately recognize emotion expressions when compared to typically developing children. In the current study, we examine both emotion recognition accuracy and response time in a large sample of children, and explore the moderating influence of verbal ability on these findings. The sample consisted of 86 children with ASD (M age = 10.65) and 114 typically developing children (M age = 10.32) between 7 and 13 years of age. All children completed a pre-test (emotion word-word matching), and test phase consisting of basic emotion recognition, whereby they were required to match a target emotion expression to the correct emotion word; accuracy and response time were recorded. Verbal IQ was controlled for in the analyses. We found no evidence of a systematic deficit in emotion recognition accuracy or response time for children with ASD, controlling for verbal ability. However, when controlling for children's accuracy in word-word matching, children with ASD had significantly lower emotion recognition accuracy when compared to typically developing children. The findings suggest that the social impairments observed in children with ASD are not the result of marked deficits in basic emotion recognition accuracy or longer response times. However, children with ASD may be relying on other perceptual skills (such as advanced word-word matching) to complete emotion recognition tasks at a similar level as typically developing children.

  18. White Matter Microstructure Correlates of Narrative Production in Typically Developing Children and Children with High Functioning Autism

    PubMed Central

    Mills, Brian; Lai, Janie; Brown, Timothy T.; Erhart, Matthew; Halgren, Eric; Reilly, Judy; Dale, Anders; Appelbaum, Mark; Moses, Pamela

    2013-01-01

    This study investigated the relationship between white matter microstructure and the development of morphosyntax in a spoken narrative in typically developing children (TD) and in children with high functioning autism (HFA). Autism is characterized by language and communication impairments, yet the relationship between morphosyntactic development in spontaneous discourse contexts and neural development is not well understood in either this population or typical development. Diffusion tensor imaging (DTI) was used to assess multiple parameters of diffusivity as indicators of white matter tract integrity in language-related tracts in children between 6 and 13 years of age. Children were asked to spontaneously tell a story about at time when someone made them sad, mad, or angry. The story was evaluated for morphological accuracy and syntactic complexity. Analysis of the relationship between white matter microstructure and language performance in TD children showed that diffusivity correlated with morphosyntax production in the superior longitudinal fasciculus (SLF), a fiber tract traditionally associated with language. At the anatomical level, the HFA group showed abnormal diffusivity in the right inferior longitudinal fasciculus (ILF) relative to the TD group. Within the HFA group, children with greater white matter integrity in the right ILF displayed greater morphological accuracy during their spoken narrative. Overall, the current study shows an association between white matter structure in a traditional language pathway and narrative performance in TD children. In the autism group, associations were only found in the ILF, suggesting that during real world language use, children with HFA rely less on typical pathways and instead rely on alternative ventral pathways that possibly mediate visual elements of language. PMID:23810972

  19. Influences of credibility of testimony and strength of statistical evidence on children’s and adolescents’ reasoning

    PubMed Central

    Kail, Robert V.

    2013-01-01

    According to dual-process models that include analytic and heuristic modes of processing, analytic processing is often expected to become more common with development. Consistent with this view, on reasoning problems, adolescents are more likely than children to select alternatives that are backed by statistical evidence. It is shown here that this pattern depends on the quality of the statistical evidence and the quality of the testimonial that is the typical alternative to statistical evidence. In Experiment 1, 9- and 13-year-olds (N = 64) were presented with scenarios in which solid statistical evidence was contrasted with casual or expert testimonial evidence. When testimony was casual, children relied on it but adolescents did not; when testimony was expert, both children and adolescents relied on it. In Experiment 2, 9- and 13-year-olds (N = 83) were presented with scenarios in which casual testimonial evidence was contrasted with weak or strong statistical evidence. When statistical evidence was weak, children and adolescents relied on both testimonial and statistical evidence; when statistical evidence was strong, most children and adolescents relied on it. Results are discussed in terms of their implications for dual-process accounts of cognitive development. PMID:23735681

  20. Game among interdependent networks: The impact of rationality on system robustness

    NASA Astrophysics Data System (ADS)

    Fan, Yuhang; Cao, Gongze; He, Shibo; Chen, Jiming; Sun, Youxian

    2016-12-01

    Many real-world systems are composed of interdependent networks that rely on one another. Such networks are typically designed and operated by different entities, who aim at maximizing their own payoffs. There exists a game among these entities when designing their own networks. In this paper, we study the game investigating how the rational behaviors of entities impact the system robustness. We first introduce a mathematical model to quantify the interacting payoffs among varying entities. Then we study the Nash equilibrium of the game and compare it with the optimal social welfare. We reveal that the cooperation among different entities can be reached to maximize the social welfare in continuous game only when the average degree of each network is constant. Therefore, the huge gap between Nash equilibrium and optimal social welfare generally exists. The rationality of entities makes the system inherently deficient and even renders it extremely vulnerable in some cases. We analyze our model for two concrete systems with continuous strategy space and discrete strategy space, respectively. Furthermore, we uncover some factors (such as weakening coupled strength of interdependent networks, designing a suitable topology dependence of the system) that help reduce the gap and the system vulnerability.

  1. Nanobubbles: a new paradigm for air-seeding in xylem.

    PubMed

    Schenk, H Jochen; Steppe, Kathy; Jansen, Steven

    2015-04-01

    Long-distance water transport in plants relies on a system that typically operates under negative pressure and is prone to hydraulic failure due to gas bubble formation. One primary mechanism of bubble formation takes place at nanoporous pit membranes between neighboring conduits. We argue that this process is likely to snap off nanobubbles because the local increase in liquid pressure caused by entry of air-water menisci into the complex pit membrane pores would energetically favor nanobubble formation over instant cavitation. Nanobubbles would be stabilized by surfactants and by gas supersaturation of the sap, may dissolve, fragment into smaller bubbles, or create embolisms. The hypothesis that safe and stable nanobubbles occur in plants adds a new component supporting the cohesion-tension theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Making sausage--effective management of enterprise-wide clinical IT projects.

    PubMed

    Smaltz, Detlev H; Callander, Rhonda; Turner, Melanie; Kennamer, Gretchen; Wurtz, Heidi; Bowen, Alan; Waldrum, Mike R

    2005-01-01

    Unlike most other industries in which company employees are, well, company employees, U.S. hospitals are typically run by both employees (nurses, technicians, and administrative staff) and independent entrepreneurs (physicians and nurse practitioners). Therefore, major enterprise-wide clinical IT projects can never simply be implemented by mandate. Project management processes in these environments must rely on methods that influence adoption rather than presume adoption will occur. "Build it and they will come" does not work in a hospital setting. This paper outlines a large academic medical center's experiences in managing an enterprise-wide project to replace its core clinical systems functionality. Best practices include developing a cogent optimal future-state vision, communications planning and execution, vendor validation against the optimal future-state vision, and benefits realization assessment.

  3. Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling

    NASA Technical Reports Server (NTRS)

    Ghosh, Alexander

    2016-01-01

    The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.

  4. Luminescent Solar Concentrator Daylighting

    NASA Astrophysics Data System (ADS)

    Bornstein, Jonathan G.

    1984-11-01

    Various systems that offer potential solutions to the problem of interior daylighting have been discussed in the literature. Virtually all of these systems rely on some method of tracking the sun along its azimuth and elevation, i.e., direct imaging of the solar disk. A simpler approach, however, involves a nontracking nonimaging device that effectively eliminates moving parts and accepts both the diffuse and direct components of solar radiation. Such an approach is based on a system that combines in a common luminaire the light emitted by luminescent solar concentrators (LSC), of the three primary colors, with a highly efficient artificial point source (HID metal halide) that automatically compensates for fluctuations in the LSC array via a daylight sensor and dimming ballast. A preliminary analysis suggests that this system could supply 90% of the lighting requirement, over the course of an 8 hour day, strictly from the daylight component under typical insolation con-ditions in the Southwest United States. In office buildings alone, the total aggregate energy savings may approach a half a quad annually. This indicates a very good potential for the realization of substantial savings in building electric energy consumption.

  5. Touchscreen questionnaire patient data collection in rheumatology practice: development of a highly successful system using process redesign.

    PubMed

    Newman, Eric D; Lerch, Virginia; Jones, J B; Stewart, Walter

    2012-04-01

    While questionnaires have been developed to capture patient-reported outcomes (PROs) in rheumatology practice, these instruments are not widely used. We developed a touchscreen interface designed to provide reliable and efficient data collection. Using the touchscreen to obtain PROs, we compared 2 different workflow models implemented separately in 2 rheumatology clinics. The Plan-Do-Study-Act methodology was used in 2 cycles of workflow redesign. Cycle 1 relied on off-the-shelf questionnaire builder software, and cycle 2 relied on a custom programmed software solution. During cycle 1, clinic 1 (private practice model, resource replete, simple flow) demonstrated a high completion rate at the start, averaging between 74% and 92% for the first 12 weeks. Clinic 2 (academic model, resource deficient, complex flow) did not achieve a consistent completion rate above 60%. The revised cycle 2 implementation protocol incorporated a 15-minute "nurse visit," an instant messaging system, and a streamlined authentication process, all of which contributed to substantial improvement in touchscreen questionnaire completion rates of ∼80% that were sustained without the need for any additional clinic staff support. Process redesign techniques and touchscreen technology were used to develop a highly successful, efficient, and effective process for the routine collection of PROs in a busy, complex, and resource-depleted academic practice and in typical private practice. The successful implementation required both a touchscreen questionnaire, human behavioral redesign, and other technical solutions. Copyright © 2012 by the American College of Rheumatology.

  6. Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study

    NASA Astrophysics Data System (ADS)

    van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.

    2017-02-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.

  7. Impact detection method for composite winglets based on neural network implementation

    NASA Astrophysics Data System (ADS)

    Viscardi, Massimo; Arena, Maurizio; Napolitano, Pasquale

    2018-03-01

    Maintenance tasks and safety aspects represent a strategic role in the managing of the modern aircraft fleets. The demand for reliable techniques for structural health monitoring represent so a key aspect looking forward to new generation aircraft. In particular, the use of more technologically complex materials and manufacturing methods requires anyway more efficient as well as rapid application processes to improve the design strength and service life. Actually, it is necessary to rely on survey instruments, which allow for safeguarding the structural integrity of the aircraft, especially after the wide use of composite structures highly susceptible to non-detected damages as delamination of the ply. In this paper, the authors have investigated the feasibility to implement a neural network-based algorithm to predict the impact event at low frequency, typically due to the bird collision. Relying upon a numerical model, representative of a composite flat panel, the approach has been also experimentally validated. The purpose of the work is therefore the presentation of an innovative application within the Non Destructive Testing field based upon vibration measurements. The aim of the research has been the development of a Non Destructive Test which meets most of the mandatory requirements for effective health monitoring systems while, at the same time, reducing as much as possible the complexity of the data analysis algorithm and the experimental acquisition instrumentation. Future activities will be addressed to test such technique on a more complex aeronautical system.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana L. Kelly

    Typical engineering systems in applications with high failure consequences such as nuclear reactor plants often employ redundancy and diversity of equipment in an effort to lower the probability of failure and therefore risk. However, it has long been recognized that dependencies exist in these redundant and diverse systems. Some dependencies, such as common sources of electrical power, are typically captured in the logic structure of the risk model. Others, usually referred to as intercomponent dependencies, are treated implicitly by introducing one or more statistical parameters into the model. Such common-cause failure models have limitations in a simulation environment. In addition,more » substantial subjectivity is associated with parameter estimation for these models. This paper describes an approach in which system performance is simulated by drawing samples from the joint distributions of dependent variables. The approach relies on the notion of a copula distribution, a notion which has been employed by the actuarial community for ten years or more, but which has seen only limited application in technological risk assessment. The paper also illustrates how equipment failure data can be used in a Bayesian framework to estimate the parameter values in the copula model. This approach avoids much of the subjectivity required to estimate parameters in traditional common-cause failure models. Simulation examples are presented for failures in time. The open-source software package R is used to perform the simulations. The open-source software package WinBUGS is used to perform the Bayesian inference via Markov chain Monte Carlo sampling.« less

  9. Diverse Redundant Systems for Reliable Space Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    Reliable life support systems are required for deep space missions. The probability of a fatal life support failure should be less than one in a thousand in a multi-year mission. It is far too expensive to develop a single system with such high reliability. Using three redundant units would require only that each have a failure probability of one in ten over the mission. Since the system development cost is inverse to the failure probability, this would cut cost by a factor of one hundred. Using replaceable subsystems instead of full systems would further cut cost. Using full sets of replaceable components improves reliability more than using complete systems as spares, since a set of components could repair many different failures instead of just one. Replaceable components would require more tools, space, and planning than full systems or replaceable subsystems. However, identical system redundancy cannot be relied on in practice. Common cause failures can disable all the identical redundant systems. Typical levels of common cause failures will defeat redundancy greater than two. Diverse redundant systems are required for reliable space life support. Three, four, or five diverse redundant systems could be needed for sufficient reliability. One system with lower level repair could be substituted for two diverse systems to save cost.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events thatmore » generated the phase picks.« less

  11. Rasch Analysis of Word Identification and Magnitude Estimation Scaling Responses in Measuring Naive Listeners' Judgments of Speech Intelligibility of Children with Severe-to-Profound Hearing Impairments

    ERIC Educational Resources Information Center

    Beltyukova, Svetlana A.; Stone, Gregory M.; Ellis, Lee W.

    2008-01-01

    Purpose: Speech intelligibility research typically relies on traditional evidence of reliability and validity. This investigation used Rasch analysis to enhance understanding of the functioning and meaning of scores obtained with 2 commonly used procedures: word identification (WI) and magnitude estimation scaling (MES). Method: Narrative samples…

  12. The Relationship between Visual Analysis and Five Statistical Analyses in a Simple AB Single-Case Research Design

    ERIC Educational Resources Information Center

    Brossart, Daniel F.; Parker, Richard I.; Olson, Elizabeth A.; Mahadevan, Lakshmi

    2006-01-01

    This study explored some practical issues for single-case researchers who rely on visual analysis of graphed data, but who also may consider supplemental use of promising statistical analysis techniques. The study sought to answer three major questions: (a) What is a typical range of effect sizes from these analytic techniques for data from…

  13. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    NASA Astrophysics Data System (ADS)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  14. A Simple Classroom Simulation of Heat Energy Diffusing through a Metal Bar

    ERIC Educational Resources Information Center

    Kinsler, Mark; Kinzel, Evelyn

    2007-01-01

    We present an iterative procedure that does not rely on calculus to model heat flow through a uniform bar of metal and thus avoids the use of the partial differential equation typically needed to describe heat diffusion. The procedure is based on first principles and can be done with students at the blackboard. It results in a plot that…

  15. In flight image processing on multi-rotor aircraft for autonomous landing

    NASA Astrophysics Data System (ADS)

    Henry, Richard, Jr.

    An estimated $6.4 billion was spent during the year 2013 on developing drone technology around the world and is expected to double in the next decade. However, drone applications typically require strong pilot skills, safety, responsibilities and adherence to regulations during flight. If the flight control process could be safer and more reliable in terms of landing, it would be possible to further develop a wider range of applications. The objective of this research effort is to describe the design and evaluation of a fully autonomous Unmanned Aerial system (UAS), specifically a four rotor aircraft, commonly known as quad copter for precise landing applications. The full landing autonomy is achieved by image processing capabilities during flight for target recognition by employing the open source library OpenCV. In addition, all imaging data is processed by a single embedded computer that estimates a relative position with respect to the target landing pad. Results shows a reduction on the average offset error by 67.88% in comparison to the current return to lunch (RTL) method which only relies on GPS positioning. The present work validates the need for relying on image processing for precise landing applications instead of the inexact method of a commercial low cost GPS dependency.

  16. The impact of storage on processing: how is information maintained in working memory?

    PubMed

    Vergauwe, Evie; Camos, Valérie; Barrouillet, Pierre

    2014-07-01

    Working memory is typically defined as a system devoted to the simultaneous maintenance and processing of information. However, the interplay between these 2 functions is still a matter of debate in the literature, with views ranging from complete independence to complete dependence. The time-based resource-sharing model assumes that a central bottleneck constrains the 2 functions to alternate in such a way that maintenance activities postpone concurrent processing, with each additional piece of information to be maintained resulting in an additional postponement. Using different kinds of memoranda, we examined in a series of 7 experiments the effect of increasing memory load on different processing tasks. The results reveal that, insofar as attention is needed for maintenance, processing times linearly increase at a rate of about 50 ms per verbal or visuospatial memory item, suggesting a very fast refresh rate in working memory. Our results also show an asymmetry between verbal and spatial information, in that spatial information can solely rely on attention for its maintenance while verbal information can also rely on a domain-specific maintenance mechanism independent from attention. The implications for the functioning of working memory are discussed, with a specific focus on how information is maintained in working memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. The international politics of geoengineering: The feasibility of Plan B for tackling climate change

    PubMed Central

    Corry, Olaf

    2017-01-01

    Geoengineering technologies aim to make large-scale and deliberate interventions in the climate system possible. A typical framing is that researchers are exploring a ‘Plan B’ in case mitigation fails to avert dangerous climate change. Some options are thought to have the potential to alter the politics of climate change dramatically, yet in evaluating whether they might ultimately reduce climate risks, their political and security implications have so far not been given adequate prominence. This article puts forward what it calls the ‘security hazard’ and argues that this could be a crucial factor in determining whether a technology is able, ultimately, to reduce climate risks. Ideas about global governance of geoengineering rely on heroic assumptions about state rationality and a generally pacific international system. Moreover, if in a climate engineered world weather events become something certain states can be made directly responsible for, this may also negatively affect prospects for ‘Plan A’, i.e. an effective global agreement on mitigation. PMID:29386754

  18. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  19. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Yu; Yang, Bin; Liao, Sheng-Kai; Zhang, Liang; Shen, Qi; Hu, Xiao-Fang; Wu, Jin-Cai; Yang, Shi-Ji; Jiang, Hao; Tang, Yan-Lin; Zhong, Bo; Liang, Hao; Liu, Wei-Yue; Hu, Yi-Hua; Huang, Yong-Mei; Qi, Bo; Ren, Ji-Gang; Pan, Ge-Sheng; Yin, Juan; Jia, Jian-Jun; Chen, Yu-Ao; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-05-01

    Quantum key distribution (QKD) provides the only intrinsically unconditional secure method for communication based on the principle of quantum mechanics. Compared with fibre-based demonstrations, free-space links could provide the most appealing solution for communication over much larger distances. Despite significant efforts, all realizations to date rely on stationary sites. Experimental verifications are therefore extremely crucial for applications to a typical low Earth orbit satellite. To achieve direct and full-scale verifications of our set-up, we have carried out three independent experiments with a decoy-state QKD system, and overcome all conditions. The system is operated on a moving platform (using a turntable), on a floating platform (using a hot-air balloon), and with a high-loss channel to demonstrate performances under conditions of rapid motion, attitude change, vibration, random movement of satellites, and a high-loss regime. The experiments address wide ranges of all leading parameters relevant to low Earth orbit satellites. Our results pave the way towards ground-satellite QKD and a global quantum communication network.

  20. Extended Phase-Space Methods for Enhanced Sampling in Molecular Simulations: A Review.

    PubMed

    Fujisaki, Hiroshi; Moritsugu, Kei; Matsunaga, Yasuhiro; Morishita, Tetsuya; Maragliano, Luca

    2015-01-01

    Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein, and protein-DNA/RNA interactions. Straightforward applications, however, are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD), Logarithmic Mean Force Dynamics (LogMFD), and Multiscale Enhanced Sampling (MSES) algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free-energy landscape via automatic exploration.

  1. Nondestructive ultrasonic measurement of bolt preload using the pulsed-phase locked-loop interferometer

    NASA Technical Reports Server (NTRS)

    Allison, S. G.; Heyman, J. S.

    1985-01-01

    Achieving accurate preload in threaded fasteners is an important and often critical problem which is encountered in nearly all sectors of government and industry. Conventional tensioning methods which rely on torque carry with them the disadvantage of requiring constant friction in the fastener in order to accurately correlate torque to preload. Since most of the applied torque typically overcomes friction rather than tensioning the fastener, small variations in friction can cause large variations in preload. An instrument called a pulsed phase locked loop interferometer, which was recently developed at NASA Langley, has found widespread use for measurement of stress as well as material properties. When used to measure bolt preload, this system detects changes in the fastener length and sound velocity which are independent of friction. The system is therefore capable of accurately establishing the correct change in bolt tension. This high resolution instrument has been used for precision measurement of preload in critical fasteners for numerous applications such as the space shuttle landing gear and helicopter main rotors.

  2. Thermophysical Properties of Lithium Alloys for Thermal Batteries

    NASA Astrophysics Data System (ADS)

    Swift, Geoffrey A.

    2011-10-01

    Thermal batteries are electrochemical systems primarily used in defense applications. The long-term storage capability afforded by the electrically inert low-temperature properties of the electrolyte-separator enables the use of this technology for military purposes. The current state-of-the art for thermal batteries relies upon the Li/FeS2 couple for power generation with the anode typically an Li-Si or Li-Al alloy. Thermal modeling of these primary battery systems is crucial to allowing the predictive capability of thermal evolution both in terms of the battery lifetime and thermal profile for the proper design of internal insulation and the surrounding environment. However, thermophysical properties for the anode alloys are not available in the literature. Thermophysical measurements of the alloys used in thermal batteries are essential for thermal modeling and simulation. The laser-flash method was used to determine the specific heat, thermal diffusivity, and thermal conductivity for Li-Si and Li-Al alloys as a function of temperature.

  3. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE PAGES

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; ...

    2016-02-01

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  4. Visual behavior characterization for intrusion and misuse detection

    NASA Astrophysics Data System (ADS)

    Erbacher, Robert F.; Frincke, Deborah

    2001-05-01

    As computer and network intrusions become more and more of a concern, the need for better capabilities, to assist in the detection and analysis of intrusions also increase. System administrators typically rely on log files to analyze usage and detect misuse. However, as a consequence of the amount of data collected by each machine, multiplied by the tens or hundreds of machines under the system administrator's auspices, the entirety of the data available is neither collected nor analyzed. This is compounded by the need to analyze network traffic data as well. We propose a methodology for analyzing network and computer log information visually based on the analysis of the behavior of the users. Each user's behavior is the key to determining their intent and overriding activity, whether they attempt to hide their actions or not. Proficient hackers will attempt to hide their ultimate activities, which hinders the reliability of log file analysis. Visually analyzing the users''s behavior however, is much more adaptable and difficult to counteract.

  5. Reading faces: investigating the use of a novel face-based orthography in acquired alexia.

    PubMed

    Moore, Michelle W; Brendel, Paul C; Fiez, Julie A

    2014-02-01

    Skilled visual word recognition is thought to rely upon a particular region within the left fusiform gyrus, the visual word form area (VWFA). We investigated whether an individual (AA1) with pure alexia resulting from acquired damage to the VWFA territory could learn an alphabetic "FaceFont" orthography, in which faces rather than typical letter-like units are used to represent phonemes. FaceFont was designed to distinguish between perceptual versus phonological influences on the VWFA. AA1 was unable to learn more than five face-phoneme mappings, performing well below that of controls. AA1 succeeded, however, in learning and using a proto-syllabary comprising 15 face-syllable mappings. These results suggest that the VWFA provides a "linguistic bridge" into left hemisphere speech and language regions, irrespective of the perceptual characteristics of a written language. They also suggest that some individuals may be able to acquire a non-alphabetic writing system more readily than an alphabetic writing system. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Reading faces: Investigating the use of a novel face-based orthography in acquired alexia

    PubMed Central

    Moore, Michelle W.; Brendel, Paul C.; Fiez, Julie A.

    2014-01-01

    Skilled visual word recognition is thought to rely upon a particular region within the left fusiform gyrus, the visual word form area (VWFA). We investigated whether an individual (AA1) with pure alexia resulting from acquired damage to the VWFA territory could learn an alphabetic “FaceFont” orthography, in which faces rather than typical letter-like units are used to represent phonemes. FaceFont was designed to distinguish between perceptual versus phonological influences on the VWFA. AA1 was unable to learn more than five face-phoneme mappings, performing well below that of controls. AA1 succeeded, however, in learning and using a proto-syllabary comprising 15 face-syllable mappings. These results suggest that the VWFA provides a “linguistic bridge” into left hemisphere speech and language regions, irrespective of the perceptual characteristics of a written language. They also suggest that some individuals may be able to acquire a non-alphabetic writing system more readily than an alphabetic writing system. PMID:24463310

  7. 17 CFR 39.34 - System safeguards for systemically important derivatives clearing organizations and subpart C...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... rely on the same critical transportation, telecommunications, power, water, or other critical infrastructure components the entity normally relies upon for such activities; (2) Personnel, who live and work...

  8. Introduction of a guide to enhance risk communication among low-income and minority populations: a grassroots community engagement approach.

    PubMed

    Rowel, Randy; Sheikhattari, Payam; Barber, Tanyka M; Evans-Holland, Myrtle

    2012-01-01

    Low-income populations, especially those belonging to minority groups, are among the most vulnerable groups before, during, and after a natural disaster. One of the factors that can be attributed to their vulnerability is the ineffectiveness of traditional risk communication systems in reaching this population. Many low-income populations are distrustful of government agencies and those who typically communicate risk messages. Consequently, traditional systems are not as effective in reaching these communities. Furthermore, traditional systems have been based on the social media that the general population uses and not based on social networks of disadvantaged populations which are more important than formal channels in these communities for dissemination of information. To bridge the gap, an approach is needed that relies on trusted agencies and leaders to educate and warn low-income communities about possible public health threats. A grassroots approach can enhance the capacity of the risk communication systems to more effectively reach vulnerable populations by engaging grassroots organizations in risk communication activities. The Guide to Enhance Grassroots Risk Communication Among Low-Income Populations provides strategies and guidance that can assist agencies in upgrading their systems for risk communication by building partnerships with local community stakeholders.

  9. N-ViroTech--a novel process for the treatment of nutrient limited wastewaters.

    PubMed

    Slade, A H; Gapes, D J; Stuthridge, T R; Anderson, S M; Dare, P H; Pearson, H G W; Dennis, M

    2004-01-01

    As pulp and paper wastewaters are mostly deficient in nitrogen and phosphorus, historical practice has dictated that they cannot be effectively treated using microbiological processes without the addition of supplementary nutrients, such as urea and phosphoric acid. Supplementation is a difficult step to manage efficiently, requiring extensive post-treatment monitoring and some degree of overdosing to ensure sufficient nutrient availability under all conditions. As a result, treated wastewaters usually contain excess amounts of both nutrients, leading to potential impacts on the receiving waters such as eutrophication. N-ViroTech is a highly effective alternative treatment technology which overcomes this nutrient deficiency/excess paradox. The process relies on communities of nitrogen-fixing bacteria, which are able to directly fix nitrogen from the atmosphere, thus satisfying their cellular nitrogen requirements. The process relies on manipulation of growth conditions within the biological system to maintain a nitrogen-fixing population whilst achieving target wastewater treatment performance. The technology has significant advantages over conventional activated sludge operation, including: Improved environmental performance. Nutrient loadings in the final treated effluent for selected nitrogen and phosphorus species (particularly ammonium and orthophosphate) may be reduced by over 90% compared to conventional systems; Elimination of nitrogen supplementation, and minimisation of phosphorus supplementation, thus achieving significant chemical savings and resulting in between 25% and 35% savings in operational costs for a typical system; Self-regulation of nutrient requirements, as the bacteria only use as much nitrogen as they require, allowing for substantially less operator intervention and monitoring. This paper will summarise critical performance outcomes of the N-ViroTech process utilising results from laboratory-, pilot-scale and recent alpha-adopter, full-scale trials.

  10. Inertial drives for micro- and nanorobots: two novel mechanisms

    NASA Astrophysics Data System (ADS)

    Zesch, Wolfgang; Buechi, Roland; Codourey, Alain; Siegwart, Roland Y.

    1995-12-01

    In micro or nanorobotics, high precision movement in two or more degrees of freedom is one of the main problems. Firstly, the positional precision has to be increased (< 10 nm) as the object sizes decrease. On the other hand, the workspace has to have macroscopic dimensions (1 cm3) to give high maneuverability to the system and to allow suitable handling at the micro/macro-world interface. As basic driving mechanisms for the ETHZ Nanorobot Project, two new piezoelectric devices have been developed. `Abalone' is a 3-dof system that relies on the impact drive principle. The 38 mm X 33 mm X 9 mm slider can be moved to each position and orientation in a horizontal plane within a theoretically infinite workspace. In the stepping mode it achieves a speed of 1 mm/s in translation and 7 deg/s in rotation. Within the actuator's local range of 6 micrometers fine positioning is possible with a resolution better than 10 nm. `NanoCrab' is a bearingless rotational micromotor relying on the stick-slip effect. This 10 mm X 7 mm X 7 mm motor has the advantage of a relatively high torque at low rotational speed and an excellent runout. While the maximum velocity is 60 rpm, it reaches its highest torque of 0.3 mNm at 2 rpm. Another benefit is the powerless holding torque of 0.9 mNm. With a typical step of 0.1 mrad and a local resolution 3 orders of magnitude better than the step angle, NanoCrab can be very precisely adjusted. Design and measurements of the characteristics of these two mechanisms will be presented and compared with the theoretical analysis of inertial drives presented in a companion paper. Finally their integration into the Nanorobot system will be discussed.

  11. Emergency navigation without an infrastructure.

    PubMed

    Gelenbe, Erol; Bi, Huibo

    2014-08-18

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  12. Emergency Navigation without an Infrastructure

    PubMed Central

    Gelenbe, Erol; Bi, Huibo

    2014-01-01

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014

  13. Preliminary analysis of force-torque measurements for robot-assisted fracture surgery.

    PubMed

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2015-08-01

    Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.

  14. A two-magnet strategy for improved mixing and capture from biofluids

    PubMed Central

    Doyle, Andrew B.; Haselton, Frederick R.

    2016-01-01

    Magnetic beads are a popular method for concentrating biomolecules from solution and have been more recently used in multistep pre-arrayed microfluidic cartridges. Typical processing strategies rely on a single magnet, resulting in a tight cluster of beads and requiring long incubation times to achieve high capture efficiencies, especially in highly viscous patient samples. This report describes a two-magnet strategy to improve the interaction of the bead surface with the surrounding fluid inside of a pre-arrayed, self-contained assay-in-a-tube. In the two-magnet system, target biomarker capture occurs at a rate three times faster than the single-magnet system. In clinically relevant biomatrices, we find a 2.5-fold improvement in biomarker capture at lower sample viscosities with the two-magnet system. In addition, we observe a 20% increase in the amount of protein captured at high viscosity for the two-magnet configuration relative to the single magnet approach. The two-magnet approach offers a means to achieve higher biomolecule extraction yields and shorter assay times in magnetic capture assays and in self-contained processor designs. PMID:27158286

  15. Mapping the emotional face. How individual face parts contribute to successful emotion recognition.

    PubMed

    Wegrzyn, Martin; Vogt, Maria; Kireclioglu, Berna; Schneider, Julia; Kissler, Johanna

    2017-01-01

    Which facial features allow human observers to successfully recognize expressions of emotion? While the eyes and mouth have been frequently shown to be of high importance, research on facial action units has made more precise predictions about the areas involved in displaying each emotion. The present research investigated on a fine-grained level, which physical features are most relied on when decoding facial expressions. In the experiment, individual faces expressing the basic emotions according to Ekman were hidden behind a mask of 48 tiles, which was sequentially uncovered. Participants were instructed to stop the sequence as soon as they recognized the facial expression and assign it the correct label. For each part of the face, its contribution to successful recognition was computed, allowing to visualize the importance of different face areas for each expression. Overall, observers were mostly relying on the eye and mouth regions when successfully recognizing an emotion. Furthermore, the difference in the importance of eyes and mouth allowed to group the expressions in a continuous space, ranging from sadness and fear (reliance on the eyes) to disgust and happiness (mouth). The face parts with highest diagnostic value for expression identification were typically located in areas corresponding to action units from the facial action coding system. A similarity analysis of the usefulness of different face parts for expression recognition demonstrated that faces cluster according to the emotion they express, rather than by low-level physical features. Also, expressions relying more on the eyes or mouth region were in close proximity in the constructed similarity space. These analyses help to better understand how human observers process expressions of emotion, by delineating the mapping from facial features to psychological representation.

  16. Mapping the emotional face. How individual face parts contribute to successful emotion recognition

    PubMed Central

    Wegrzyn, Martin; Vogt, Maria; Kireclioglu, Berna; Schneider, Julia; Kissler, Johanna

    2017-01-01

    Which facial features allow human observers to successfully recognize expressions of emotion? While the eyes and mouth have been frequently shown to be of high importance, research on facial action units has made more precise predictions about the areas involved in displaying each emotion. The present research investigated on a fine-grained level, which physical features are most relied on when decoding facial expressions. In the experiment, individual faces expressing the basic emotions according to Ekman were hidden behind a mask of 48 tiles, which was sequentially uncovered. Participants were instructed to stop the sequence as soon as they recognized the facial expression and assign it the correct label. For each part of the face, its contribution to successful recognition was computed, allowing to visualize the importance of different face areas for each expression. Overall, observers were mostly relying on the eye and mouth regions when successfully recognizing an emotion. Furthermore, the difference in the importance of eyes and mouth allowed to group the expressions in a continuous space, ranging from sadness and fear (reliance on the eyes) to disgust and happiness (mouth). The face parts with highest diagnostic value for expression identification were typically located in areas corresponding to action units from the facial action coding system. A similarity analysis of the usefulness of different face parts for expression recognition demonstrated that faces cluster according to the emotion they express, rather than by low-level physical features. Also, expressions relying more on the eyes or mouth region were in close proximity in the constructed similarity space. These analyses help to better understand how human observers process expressions of emotion, by delineating the mapping from facial features to psychological representation. PMID:28493921

  17. Optimal information networks: Application for data-driven integrated health in populations

    PubMed Central

    Servadio, Joseph L.; Convertino, Matteo

    2018-01-01

    Development of composite indicators for integrated health in populations typically relies on a priori assumptions rather than model-free, data-driven evidence. Traditional variable selection processes tend not to consider relatedness and redundancy among variables, instead considering only individual correlations. In addition, a unified method for assessing integrated health statuses of populations is lacking, making systematic comparison among populations impossible. We propose the use of maximum entropy networks (MENets) that use transfer entropy to assess interrelatedness among selected variables considered for inclusion in a composite indicator. We also define optimal information networks (OINs) that are scale-invariant MENets, which use the information in constructed networks for optimal decision-making. Health outcome data from multiple cities in the United States are applied to this method to create a systemic health indicator, representing integrated health in a city. PMID:29423440

  18. An experimental study of permeability within an out-of-autoclave vacuum-bag-only CFRP laminate

    NASA Astrophysics Data System (ADS)

    Wallace, Landon F.

    The out-of-autoclave vacuum-bag-only (OOA-VBO) manufacturing process is a process that eliminates an autoclave when manufacturing aerospace quality carbon fiber reinforced plastics (CFRP). OOA-VBO pre-impregnated resin tow systems rely on air channel networks that guide unwanted voids out of the laminate. The air path networks can be characterized by measuring the permeability of a pre-cured laminate. Permeability results were successfully obtained for a laminate with a compaction similar to that found in a typical vacuum bagging setup. A study was done to find the relationship between compaction of the laminate and permeability. Permeability was measured as the laminate cured, using a constant temperature ramp rate. An experimental nodal analysis was performed to find the permeability at the midpoint of the in-plane direction.

  19. Influences of credibility of testimony and strength of statistical evidence on children's and adolescents' reasoning.

    PubMed

    Kail, Robert V

    2013-11-01

    According to dual-process models that include analytic and heuristic modes of processing, analytic processing is often expected to become more common with development. Consistent with this view, on reasoning problems, adolescents are more likely than children to select alternatives that are backed by statistical evidence. It is shown here that this pattern depends on the quality of the statistical evidence and the quality of the testimonial that is the typical alternative to statistical evidence. In Experiment 1, 9- and 13-year-olds (N=64) were presented with scenarios in which solid statistical evidence was contrasted with casual or expert testimonial evidence. When testimony was casual, children relied on it but adolescents did not; when testimony was expert, both children and adolescents relied on it. In Experiment 2, 9- and 13-year-olds (N=83) were presented with scenarios in which casual testimonial evidence was contrasted with weak or strong statistical evidence. When statistical evidence was weak, children and adolescents relied on both testimonial and statistical evidence; when statistical evidence was strong, most children and adolescents relied on it. Results are discussed in terms of their implications for dual-process accounts of cognitive development. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The Power of the Arts: Evaluating a Community Artist-in-Residence Program through the Lens of Studio Thinking

    ERIC Educational Resources Information Center

    Hunter-Doniger, Tracey; Berlinsky, Robin

    2017-01-01

    This article takes an analytical look at Engaging Creative Minds, a pilot community program geared to enrich learning of common core standards through a local artist-in-residence partnership with public schools. This program was designed to increase the level of engagement and student growth in classes that typically relied on rote memory and…

  1. Stalking, and Social and Romantic Functioning among Adolescents and Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Stokes, Mark; Newton, Naomi; Kaur, Archana

    2007-01-01

    We examine the nature and predictors of social and romantic functioning in adolescents and adults with ASD. Parental reports were obtained for 25 ASD adolescents and adults (13-36 years), and 38 typical adolescents and adults (13-30 years). The ASD group relied less upon peers and friends for social (OR = 52.16, p less than 0.01) and romantic…

  2. Effects of Measurement Errors on Individual Tree Stem Volume Estimates for the Austrian National Forest Inventory

    Treesearch

    Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens Schadauer

    2014-01-01

    National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...

  3. Getting Foster Youth to and through College: Successes and Challenges of the New Jersey Foster Care Scholars Program

    ERIC Educational Resources Information Center

    Davis, Maia; Losey, Elizabeth

    2008-01-01

    The popularity of the New Jersey Foster Care Scholars program is a testament to its importance. Typical college students rely on parents for financial assistance and emotional support. Youth aging out of foster care often are on their own. The scholarship program offers an opportunity for higher education that many foster youth thought they would…

  4. Time Sensitivity In Cyberweapon Reusability

    DTIC Science & Technology

    2017-12-01

    controllers , and the content that flows across and through these components” (U.S. Joint Chiefs of Staff, 2013, p. I-2). DEFINING CYBERWEAPONS B...keep the vulnerability secret, referred to as non -disclosure. This is typically done by government actors or market brokers who rely on the principle...of potential reasons for rediscovery. This article assumed that everyone who is discovering or rediscovering vulnerabilities were “white-hat” ( non

  5. Scheduled Relaxation Jacobi method: Improvements and applications

    NASA Astrophysics Data System (ADS)

    Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Aloy, M. A.

    2016-09-01

    Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficiency in the reduction of the residual increases with the number of levels employed in the algorithm. Applying the original methodology to compute the algorithm parameters with more than 5 levels notably hinders obtaining optimal SRJ schemes, as the mixed (non-linear) algebraic-differential system of equations from which they result becomes notably stiff. Here we present a new methodology for obtaining the parameters of SRJ schemes that overcomes the limitations of the original algorithm and provide parameters for SRJ schemes with up to 15 levels and resolutions of up to 215 points per dimension, allowing for acceleration factors larger than several hundreds with respect to the Jacobi method for typical resolutions and, in some high resolution cases, close to 1000. Most of the success in finding SRJ optimal schemes with more than 10 levels is based on an analytic reduction of the complexity of the previously mentioned system of equations. Furthermore, we extend the original algorithm to apply it to certain systems of non-linear ePDEs.

  6. The Effects of Concurrent Verbal and Visual Tasks on Category Learning

    ERIC Educational Resources Information Center

    Miles, Sarah J.; Minda, John Paul

    2011-01-01

    Current theories of category learning posit separate verbal and nonverbal learning systems. Past research suggests that the verbal system relies on verbal working memory and executive functioning and learns rule-defined categories; the nonverbal system does not rely on verbal working memory and learns non-rule-defined categories (E. M. Waldron…

  7. On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies

    PubMed Central

    Mumovic, D.

    2009-01-01

    Advanced naturally ventilated systems based on integration of basic natural ventilation strategies such as cross-ventilation and stack effect have been considered to be a key element of sustainable design. In this respect, there is a pressing need to explore the potential of such systems to achieve the recommended occupant comfort targets throughout their lifetime without relying on mechanical means. This study focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. PMID:27110216

  8. Sensory-motor deficits in children with fetal alcohol spectrum disorder assessed using a robotic virtual reality platform.

    PubMed

    Williams, Loriann; Jackson, Carl P T; Choe, Noreen; Pelland, Lucie; Scott, Stephen H; Reynolds, James N

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is associated with a large number of cognitive and sensory-motor deficits. In particular, the accurate assessment of sensory-motor deficits in children with FASD is not always simple and relies on clinical assessment tools that may be coarse and subjective. Here we present a new approach: using robotic technology to accurately and objectively assess motor deficits of children with FASD in a center-out reaching task. A total of 152 typically developing children and 31 children with FASD, all aged between 5 and 18 were assessed using a robotic exoskeleton device coupled with a virtual reality projection system. Children made reaching movements to 8 peripheral targets in a random order. Reach trajectories were subsequently analyzed to extract 12 parameters that had been previously determined to be good descriptors of a reaching movement, and these parameters were compared for each child with FASD to a normative model derived from the performance of the typically developing population. Compared with typically developing children, the children with FASD were found to be significantly impaired on most of the parameters measured, with the greatest deficits found in initial movement direction error. Also, children with FASD tended to fail more parameters than typically developing children: 95% of typically developing children failed fewer than 3 parameters compared with 69% of children with FASD. These results were particularly pronounced for younger children. The current study has shown that robotic technology is a sensitive and powerful tool that provides increased specificity regarding the type of motor problems exhibited by children with FASD. The high frequency of motor deficits in children with FASD suggests that interventions aimed at stimulating and/or improving motor development should routinely be considered for this population. Copyright © 2013 by the Research Society on Alcoholism.

  9. Application Layer Multicast

    NASA Astrophysics Data System (ADS)

    Allani, Mouna; Garbinato, Benoît; Pedone, Fernando

    An increasing number of Peer-to-Peer (P2P) Internet applications rely today on data dissemination as their cornerstone, e.g., audio or video streaming, multi-party games. These applications typically depend on some support for multicast communication, where peers interested in a given data stream can join a corresponding multicast group. As a consequence, the efficiency, scalability, and reliability guarantees of these applications are tightly coupled with that of the underlying multicast mechanism.

  10. Participatory Culture as a Model for How New Media Technologies Can Change Public Schools. WCER Working Paper No. 2016-7

    ERIC Educational Resources Information Center

    Halverson, Rich; Kallio, Julie; Hackett, Sarah; Halverson, Erica

    2016-01-01

    Students who have mastered the ability to create their own learning environments have an advantage over students who rely on traditional environments to structure their learning. Students who understand how to use new tools for school learning typically do not pick up these skills at school--they learn from the habits of parents and peers who work…

  11. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    PubMed

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations.

    PubMed

    Schymanski, Stanislaus J; Or, Dani; Zwieniecki, Maciej

    2013-01-01

    Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection for very short sunflecks (tens of seconds).

  13. Operational Characteristics of an Accelerator Driven Fissile Solution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimpland, Robert Herbert

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less

  14. A sensor monitoring system for telemedicine, safety and security applications

    NASA Astrophysics Data System (ADS)

    Vlissidis, Nikolaos; Leonidas, Filippos; Giovanis, Christos; Marinos, Dimitrios; Aidinis, Konstantinos; Vassilopoulos, Christos; Pagiatakis, Gerasimos; Schmitt, Nikolaus; Pistner, Thomas; Klaue, Jirka

    2017-02-01

    A sensor system capable of medical, safety and security monitoring in avionic and other environments (e.g. homes) is examined. For application inside an aircraft cabin, the system relies on an optical cellular network that connects each seat to a server and uses a set of database applications to process data related to passengers' health, safety and security status. Health monitoring typically encompasses electrocardiogram, pulse oximetry and blood pressure, body temperature and respiration rate while safety and security monitoring is related to the standard flight attendance duties, such as cabin preparation for take-off, landing, flight in regions of turbulence, etc. In contrast to previous related works, this article focuses on the system's modules (medical and safety sensors and associated hardware), the database applications used for the overall control of the monitoring function and the potential use of the system for security applications. Further tests involving medical, safety and security sensing performed in an real A340 mock-up set-up are also described and reference is made to the possible use of the sensing system in alternative environments and applications, such as health monitoring within other means of transport (e.g. trains or small passenger sea vessels) as well as for remotely located home users, over a wired Ethernet network or the Internet.

  15. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  16. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

    NASA Astrophysics Data System (ADS)

    Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka

    2017-06-01

    The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

  17. An experimental nonlinear low dynamic stiffness device for shock isolation

    NASA Astrophysics Data System (ADS)

    Francisco Ledezma-Ramirez, Diego; Ferguson, Neil S.; Brennan, Michael J.; Tang, Bin

    2015-07-01

    The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements.

  18. A cross-immunization model for the extinction of old influenza strains.

    PubMed

    Uekermann, Florian; Sneppen, Kim

    2016-05-13

    Given the frequent mutation of antigenic features, the constancy of genetic and antigenic diversity of influenza within a subtype is surprising. While the emergence of new strains and antigenic features is commonly attributed to selection by the human immune system, the mechanism that ensures the extinction of older strains remains controversial. To replicate this dynamics of replacement current models utilize mechanisms such as short-lived strain-transcending immunity, a direct competition for hosts, stochastic extinction or constrained antigenic evolution. Building on the idea of short-lived immunity we introduce a minimal model that exhibits the aforementioned dynamics of replacement. Our model relies only on competition due to an antigen specific immune-response in an unconstrained antigenic space. Furthermore the model explains the size of typical influenza epidemics as well as the tendency that new epidemics are associated with mutations of old antigens.

  19. A Mobile and Intelligent Patient Diary for Chronic Disease Self-Management.

    PubMed

    Van Woensel, William; Roy, Patrice C; Abidi, Samina R; Abidi, Syed S R

    2015-01-01

    By involving patients in their own long-term care, patient self-management approaches aim to increase self-sufficiency and reduce healthcare costs. For example, electronic patient diaries enable patients to collect health data autonomously, increasing self-reliance and reducing strain on health professionals. By deploying patient diaries on mobile platforms, health data collection can occur at any time and place, increasing the mobility of chronic patients who typically need to enter health data frequently. Importantly, an opportunity also arises for mobile clinical decision support, where health feedback is directly issued to patients without relying on connectivity or remote servers. Regardless of the specific self-management strategy, patient and healthcare provider adoption are crucial. Tailoring the system towards the particular patient and toward institution-specific clinical pathways is essential to increasing acceptance. In this paper we discuss a mobile patient diary realizing both the opportunities and challenges of mobile deployment.

  20. Photosynthetic capacity regulation is uncoupled from nutrient limitation

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Keenan, T. F.; Prentice, I. C.; Wang, H.

    2017-12-01

    Ecosystem and Earth system models need information on leaf-level photosynthetic capacity, but to date typically rely on empirical estimates and an assumed dependence on nitrogen supply. Recent evidence suggests that leaf nitrogen is actively controlled though plant responses to photosynthetic demand. Here, we propose and test a theory of demand-driven coordination of photosynthetic processes, and use it to assess the relative roles of nutrient supply and photosynthetic demand. The theory captured 63% of observed variability in a global dataset of Rubisco carboxylation capacity (Vcmax; 3,939 values at 219 sites), suggesting that environmentally regulated biophysical costs and light availability are the first-order drivers of photosynthetic capacity. Leaf nitrogen, on the other hand, was a weak secondary driver of Vcmax, explaining less than 6% of additional observed variability. We conclude that leaf nutrient allocation is primarily driven by demand. Our theory offers a simple, robust strategy for dynamically predicting leaf-level photosynthetic capacity in global models.

  1. Self-organizing periodicity in development: organ positioning in plants.

    PubMed

    Bhatia, Neha; Heisler, Marcus G

    2018-02-08

    Periodic patterns during development often occur spontaneously through a process of self-organization. While reaction-diffusion mechanisms are often invoked, other types of mechanisms that involve cell-cell interactions and mechanical buckling have also been identified. Phyllotaxis, or the positioning of plant organs, has emerged as an excellent model system to study the self-organization of periodic patterns. At the macro scale, the regular spacing of organs on the growing plant shoot gives rise to the typical spiral and whorled arrangements of plant organs found in nature. In turn, this spacing relies on complex patterns of cell polarity that involve feedback between a signaling molecule - the plant hormone auxin - and its polar, cell-to-cell transport. Here, we review recent progress in understanding phyllotaxis and plant cell polarity and highlight the development of new tools that can help address the remaining gaps in our understanding. © 2018. Published by The Company of Biologists Ltd.

  2. Possibilities of magnetotelluric methods in geophysical exploration for ore minerals

    NASA Astrophysics Data System (ADS)

    Varentsov M., Iv.; Kulikov, V. A.; Yakovlev, A. G.; Yakovlev, D. V.

    2013-05-01

    In the past decade, the applications of magnetotelluric method in the electric prospecting for ore bodies have been rapidly progressing. In the present work, we summarize the first results on this way. We discuss the specificity of the geoelectrical models in the problems of mining prospecting for ore bodies. The state-of-the-art capabilities of the method, which rely on the synchronous observation systems and the procedure of joint inversion of magnetotelluric and magnetovariational responses, are considered in the context of ore mineral exploration. The results of modeling a typical mining audio-magnetotelluric survey for ore minerals are presented. On the basis of these simulations and the data provided by in-situ soundings, the efficient approaches to the processing, analysis, and inversion of these data are discussed and illustrated. The future trends in magnetotellurics as applied to the mining prospecting are analyzed.

  3. Evidence of auditory insensitivity to vocalization frequencies in two frogs.

    PubMed

    Goutte, Sandra; Mason, Matthew J; Christensen-Dalsgaard, Jakob; Montealegre-Z, Fernando; Chivers, Benedict D; Sarria-S, Fabio A; Antoniazzi, Marta M; Jared, Carlos; Almeida Sato, Luciana; Felipe Toledo, Luís

    2017-09-21

    The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing discrimination from background noise and heterospecific calls. However, we present here evidence that two anurans, Brachycephalus ephippium and B. pitanga, are insensitive to the sound of their own calls. Both species produce advertisement calls outside their hearing sensitivity range and their inner ears are partly undeveloped, which accounts for their lack of high-frequency sensitivity. If unheard by the intended receivers, calls are not beneficial to the emitter and should be selected against because of the costs associated with signal production. We suggest that protection against predators conferred by their high toxicity might help to explain why calling has not yet disappeared, and that visual communication may have replaced auditory in these colourful, diurnal frogs.

  4. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.

    PubMed

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques.

  5. The Identity-Location Binding Problem.

    PubMed

    Howe, Piers D L; Ferguson, Adam

    2015-09-01

    The binding problem is fundamental to visual perception. It is the problem of associating an object's visual properties with itself and not with some other object. The problem is made particular difficult because different properties of an object, such as its color, shape, size, and motion, are often processed independently, sometimes in different cortical areas. The results of these separate analyses have to be combined before the object can be seen as a single coherent entity as opposed to a collection of unconnected features. Visual bindings are typically initiated and updated in a serial fashion, one object at a time. Here, we show that one type of binding, location-identity bindings, can be updated in parallel. We do this by using two complementary techniques, the simultaneous-sequential paradigm and systems factorial technology. These techniques make different assumptions and rely on different behavioral measures, yet both came to the same conclusion. Copyright © 2014 Cognitive Science Society, Inc.

  6. Information flow and work productivity through integrated information technology

    NASA Technical Reports Server (NTRS)

    Wigand, R. T.

    1985-01-01

    The work environment surrounding integrated office systems is reviewed. The known effects of automated office technologies is synthesized and their known impact on work efficiency is reviewed. These effects are explored with regard to their impact on networks, work flow/processes, as well as organizational structure and power. Particular emphasis is given to structural changes due to the introduction of newer information technologies in organizations. The new information technologies have restructed the average organization's middle banks and, as a consequence, they have shrunk drastically. Organizational pyramids have flattened with fewer levels since executives have realized that they can get ahold of the needed information via the new technologies quicker and directly and do not have to rely on middle-level managers. Power shifts are typically accompanied with the introduction of these technologies resulting in the generation of a new form of organizational power.

  7. Progress in Life Marker Chip Technology for Detection of Life on Mars

    NASA Astrophysics Data System (ADS)

    Sims, M. R.; Cullen, D. C.; Laan, E.; Borst, G.; Prak, A.; Richter, L.; Gaubert, F.; Steele, A.; Parnell, J.; Sephton, M.

    2007-12-01

    Detection of Life on Mars will rely on detection of biomarkers, physical or chemical structures that can be associated with Life. As a possible payload for the ESA ExoMars rover mission planned in 2013 and other future missions a Life Marker Chip instrument is being developed. This instrument uses immuno-assay techniques to detect the relevant biomarkers. This paper describes the typical targets it will search for, its operating principle and the status of development. 63 biomarker targets have been identified and assays have been developed for a limited subset. Assay development includes use of recombinant DNA techniques to generate the molecular receptors (antibodies). This type of instrument has applications in terrestrial research e.g. sub-glacial lakes as well as planetary exploration. Breadboard demonstrators have been built of the assay system and key components of the micro-fluidics. Results from these breadboards will be presented, along with plans for future development.

  8. Low-Thermal Conductivity Suspensions Used in the Isolation of the Salt Pills Aboard the Astro-H Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Kimball, Mark O.; Shirron, Peter J.; Wegel, Donald C.; James, Bryan L.; Galassi, Nicholas M.; Faulkner, Richard L.; San Sebastian, Marcelino

    2011-01-01

    An adiabatic demagnetization refrigerator (ADR) utilizes the magnetocholoric effect in a paramagnetic salt to produce sub-Kelvin temperatures. It is a solid-state device that has no moving parts and does not rely upon a density gradient in a working fluid. This makes it ideal for cooling space-based instruments. ·Typically the salt is enclosed in a cylindrical pill that is suspended within the bore of a magnet. The suspension between the salt pill and magnet must be robust enough to survive a launch yet have a thermal conductance that minimizes heat from the magnet that is mechanically, and thermally, anchored to a stage at a higher temperature. Here we detail such a design that uses Kevlar(Trade Mark) as the supporting media in a system that limits motion of the salt pill axial as well as laterally with respect to the magnet bore.

  9. Verification of low-Mach number combustion codes using the method of manufactured solutions

    NASA Astrophysics Data System (ADS)

    Shunn, Lee; Ham, Frank; Knupp, Patrick; Moin, Parviz

    2007-11-01

    Many computational combustion models rely on tabulated constitutive relations to close the system of equations. As these reactive state-equations are typically multi-dimensional and highly non-linear, their implications on the convergence and accuracy of simulation codes are not well understood. In this presentation, the effects of tabulated state-relationships on the computational performance of low-Mach number combustion codes are explored using the method of manufactured solutions (MMS). Several MMS examples are developed and applied, progressing from simple one-dimensional configurations to problems involving higher dimensionality and solution-complexity. The manufactured solutions are implemented in two multi-physics hydrodynamics codes: CDP developed at Stanford University and FUEGO developed at Sandia National Laboratories. In addition to verifying the order-of-accuracy of the codes, the MMS problems help highlight certain robustness issues in existing variable-density flow-solvers. Strategies to overcome these issues are briefly discussed.

  10. Slime mold uses an externalized spatial “memory” to navigate in complex environments

    PubMed Central

    Reid, Chris R.; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine

    2012-01-01

    Spatial memory enhances an organism’s navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem—a classic test of autonomous navigational ability commonly used in robotics—requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism’s ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms. PMID:23045640

  11. Slime mold uses an externalized spatial "memory" to navigate in complex environments.

    PubMed

    Reid, Chris R; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine

    2012-10-23

    Spatial memory enhances an organism's navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem--a classic test of autonomous navigational ability commonly used in robotics--requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism's ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms.

  12. Place preference and vocal learning rely on distinct reinforcers in songbirds.

    PubMed

    Murdoch, Don; Chen, Ruidong; Goldberg, Jesse H

    2018-04-30

    In reinforcement learning (RL) agents are typically tasked with maximizing a single objective function such as reward. But it remains poorly understood how agents might pursue distinct objectives at once. In machines, multiobjective RL can be achieved by dividing a single agent into multiple sub-agents, each of which is shaped by agent-specific reinforcement, but it remains unknown if animals adopt this strategy. Here we use songbirds to test if navigation and singing, two behaviors with distinct objectives, can be differentially reinforced. We demonstrate that strobe flashes aversively condition place preference but not song syllables. Brief noise bursts aversively condition song syllables but positively reinforce place preference. Thus distinct behavior-generating systems, or agencies, within a single animal can be shaped by correspondingly distinct reinforcement signals. Our findings suggest that spatially segregated vocal circuits can solve a credit assignment problem associated with multiobjective learning.

  13. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics

    PubMed Central

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  14. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    PubMed Central

    Lomnitz, Jason G.; Savageau, Michael A.

    2016-01-01

    Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count, and a negative channel that decreases the count. This example shows the power of these new automated methods to rapidly identify behaviors of interest and efficiently predict parameter values for their realization. These tools may be applied to understand complex natural circuitry and to aid in the rational design of synthetic circuits. PMID:27462346

  15. An efficient approach to imaging underground hydraulic networks

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2012-07-01

    To better locate natural resources, treat pollution, and monitor underground networks associated with geothermal plants, nuclear waste repositories, and carbon dioxide sequestration sites, scientists need to be able to accurately characterize and image fluid seepage pathways below ground. With these images, scientists can gain knowledge of soil moisture content, the porosity of geologic formations, concentrations and locations of dissolved pollutants, and the locations of oil fields or buried liquid contaminants. Creating images of the unknown hydraulic environments underfoot is a difficult task that has typically relied on broad extrapolations from characteristics and tests of rock units penetrated by sparsely positioned boreholes. Such methods, however, cannot identify small-scale features and are very expensive to reproduce over a broad area. Further, the techniques through which information is extrapolated rely on clunky and mathematically complex statistical approaches requiring large amounts of computational power.

  16. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

    1983-01-01

    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  17. Two men with multiple disabilities carry out an assembly work activity with the support of a technology system.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Oliva, Doretta; Campodonico, Francesca

    2013-10-01

    To assess whether two persons with multiple disabilities could learn a work activity (i.e., assembling trolley wheels) with the support of a technology system. After an initial baseline, the study compared the effects of intervention sessions relying on the technology system (which called the participants to the different workstations and provided feedback and final stimulation) with the effects of intervention sessions carried out without technology. The two types of intervention sessions were conducted according to an alternating treatments design. Eventually, only intervention sessions relying on the technology system were used. Both participants managed to assemble wheels independently during intervention sessions relying on the technology system while they failed during sessions without the system. Their performance was strengthened during the final part of the study, in which only sessions with the system occurred. Technology may be critical in helping persons with multiple disabilities manage multi-step work activities.

  18. A recognition-free mechanism for reliable rejection of brood parasites.

    PubMed

    Anderson, Michael G; Hauber, Mark E

    2007-06-01

    Hosts often discard eggs of avian brood parasites, whereas parasitic chicks are typically accepted. This can be explained theoretically by fitness losses associated with adults learning to recognize parasitic young and mistakenly rejecting their own young. A new experimental study confirms that rejection of parasitic chicks, without relying on memory to discriminate between foreign and own young, is a feasible and potentially cost-free mechanism used by reed warblers to reject common cuckoo chicks. By abandoning broods that are in the nest longer than is typical for their own young, parents can reliably reject parasite nestlings and reduce fitness losses owing to having to care for demanding parasitic young. Discrimination without recognition has important implications for the realized trajectories of host-parasite coevolutionary arms races.

  19. SOCIAL AND NON-SOCIAL HAZARD RESPONSE IN DRIVERS WITH AUTISM SPECTRUM DISORDER

    PubMed Central

    Bishop, Haley Johnson; Biasini, Fred J.; Stavrinos, Despina

    2017-01-01

    Driving is a complex task that relies on manual, cognitive, visual and social skill. The social demands of driving may be challenging for individuals with Autism Spectrum Disorder (ASD) due to known social impairments. This study investigated how drivers with ASD respond to social (e.g., pedestrians) and non-social (e.g., vehicles) hazards in a driving simulator compared to typically developing drivers. Overall, participants responded faster to social hazards than non-social hazards. It was also found that drivers with typical development reacted faster to social hazards, while drivers with ASD showed no difference in reaction time to social versus non-social hazards. Future work should further investigate how social impairments in ASD may affect driving safety. PMID:28070791

  20. Insights to primitive replication derived from structures of small oligonucleotides

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Fox, G. E.

    1995-01-01

    Available information on the structure of small oligonucleotides is surveyed. It is observed that even small oligomers typically exhibit defined structures over a wide range of pH and temperature. These structures rely on a plethora of non-standard base-base interactions in addition to the traditional Watson-Crick pairings. Stable duplexes, though typically antiparallel, can be parallel or staggered and perfect complementarity is not essential. These results imply that primitive template directed reactions do not require high fidelity. Hence, the extensive use of Watson-Crick complementarity in genes rather than being a direct consequence of the primitive condensation process, may instead reflect subsequent selection based on the advantage of accuracy in maintaining the primitive genetic machinery once it arose.

  1. Measuring the effect of workplace health promotion interventions on "presenteeism": a potential role for biomarkers.

    PubMed

    Yamamoto, Shelby; Loerbroks, Adrian; Terris, Darcey D

    2009-05-01

    Health promotion activities to improve employee health to reduce health care costs and increase productivity are of particular importance for organizations and society. The evaluation of employee health and health promotion programs has typically focused on absenteeism, disability and increasingly, "presenteeism", which refers to an employee's presence at work with reduced performance due to illness. Existing psychometric measures of presenteeism may be subject to the effects of recall bias as they typically rely on questionnaires. Biomarkers such as heart rate variability and salivary cortisol can provide additional objective measures of illness and stress. Combining such physiologic measures of stress with assessments of presenteeism may offer a more comprehensive way to assess workplace productivity when developing health promotion programs.

  2. Improving P2P live-content delivery using SVC

    NASA Astrophysics Data System (ADS)

    Schierl, T.; Sánchez, Y.; Hellge, C.; Wiegand, T.

    2010-07-01

    P2P content delivery techniques for video transmission have become of high interest in the last years. With the involvement of client into the delivery process, P2P approaches can significantly reduce the load and cost on servers, especially for popular services. However, previous studies have already pointed out the unreliability of P2P-based live streaming approaches due to peer churn, where peers may ungracefully leave the P2P infrastructure, typically an overlay networks. Peers ungracefully leaving the system cause connection losses in the overlay, which require repair operations. During such repair operations, which typically take a few roundtrip times, no data is received from the lost connection. While taking low delay for fast-channel tune-in into account as a key feature for broadcast-like streaming applications, the P2P live streaming approach can only rely on a certain media pre-buffer during such repair operations. In this paper, multi-tree based Application Layer Multicast as a P2P overlay technique for live streaming is considered. The use of Flow Forwarding (FF), a.k.a. Retransmission, or Forward Error Correction (FEC) in combination with Scalable video Coding (SVC) for concealment during overlay repair operations is shown. Furthermore the benefits of using SVC over the use of AVC single layer transmission are presented.

  3. Dynamics and Control of Vehicles

    Science.gov Websites

    Contacts Researchers Thrust Area 1: Dynamics and Control of Vehicles Thrust Area Leader: Dr. Tulga Ersal economy, mobility, and safety of modern vehicles heavily rely on the numerous control systems that fulfill storage in electrified powertrains. All these vehicle control systems rely in turn on a solid

  4. The Relationship of PTSD and Communication with Intimate Partners in a Sample of Vietnam Veterans

    DTIC Science & Technology

    2011-08-08

    developed reactions simply in response to daily life stressors. They also noted that married veterans were typically better adjusted than unmarried men...sequences were compared based on PTSD severity, status (PTSD vs non-PTSD), and conversation topic. Increasing PTSD severity was related to fewer overall...self- report, and by coding the richer details of communication instead of relying entirely on positive vs . negative variables. This introduction

  5. Engineering and Design: Soil Vapor Extraction and Bioventing

    DTIC Science & Technology

    2002-06-03

    and Basile 1992). The most notable success of steam injection for remediation has been the Southern California Edison wood treating site in Visalia... pesticides and dioxins. Removal efficiencies using ISTD are typically very high, and since this technology relies on conduction of heat through the soil...Aroclor - 1242 c Pesticides Chlordane c Dioxins/furans 2,3,7,8-Tetrachlorodibenzo-p-dioxin c Organic cyanides c Organic corrosives c Explosives 2,4,6

  6. Development Status of the Helicon Hall Thruster

    DTIC Science & Technology

    2009-09-15

    Hall thruster , the Helicon Hall Thruster , is presented. The Helicon Hall Thruster combines the efficient ionization mechanism of a helicon source with the favorable plasma acceleration properties of a Hall thruster . Conventional Hall thrusters rely on direct current electron bombardment to ionize the flow in order to generate thrust. Electron bombardment typically results in an ionization cost that can be on the order of ten times the ionization potential, leading to reduced efficiency, particularly at low

  7. Coagulation dynamics of a blood sample by multiple scattering analysis

    NASA Astrophysics Data System (ADS)

    Faivre, Magalie; Peltié, Philippe; Planat-Chrétien, Anne; Cosnier, Marie-Line; Cubizolles, Myriam; Nougier, Christophe; Négrier, Claude; Pouteau, Patrick

    2011-05-01

    We report a new technique to measure coagulation dynamics on whole-blood samples. The method relies on the analysis of the speckle figure resulting from a whole-blood sample mixed with coagulation reagent and introduced in a thin chamber illuminated with a coherent light. A dynamic study of the speckle reveals a typical behavior due to coagulation. We compare our measured coagulation times to a reference method obtained in a medical laboratory.

  8. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  9. Quantifying radionuclide signatures from a γ-γ coincidence system.

    PubMed

    Britton, Richard; Jackson, Mark J; Davies, Ashley V

    2015-11-01

    A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ-γ system utilises fully digital electronics and list-mode acquisition to time-stamp each event, allowing coincidence matrices to be easily produced alongside typical 'singles' spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ-γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Optimal concentrations in transport systems

    PubMed Central

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  11. Estrogens and Cognition: Friends or Foes?

    PubMed Central

    Korol, Donna L.; Pisani, Samantha L.

    2015-01-01

    Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings that show the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. PMID:26149525

  12. Smart markers for watershed-based cell segmentation.

    PubMed

    Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2012-01-01

    Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.

  13. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predictedmore » carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.« less

  14. Expansion of mesenchymal stem cells under atmospheric carbon dioxide.

    PubMed

    Brodsky, Arthur Nathan; Zhang, Jing; Visconti, Richard P; Harcum, Sarah W

    2013-01-01

    Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system - which relies upon an elevated CO2 environment - typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self-renewal properties, and the ability to differentiate into multiple lineages after expansion. © 2013 American Institute of Chemical Engineers.

  15. Low-cost multispectral imaging for remote sensing of lettuce health

    NASA Astrophysics Data System (ADS)

    Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.

    2017-01-01

    In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (

  16. Handwritten-word spotting using biologically inspired features.

    PubMed

    van der Zant, Tijn; Schomaker, Lambert; Haak, Koen

    2008-11-01

    For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language and collection. We propose a biologically inspired whole-word recognition method which is used to incrementally elicit word labels in a live, web-based annotation system, named Monk. Since human labor should be minimized given the massive amount of image data, it becomes important to rely on robust perceptual mechanisms in the machine. Recent computational models of the neuro-physiology of vision are applied to isolated word classification. A primate cortex-like mechanism allows to classify text-images that have a low frequency of occurrence. Typically these images are the most difficult to retrieve and often contain named entities and are regarded as the most important to people. Usually standard pattern-recognition technology cannot deal with these text-images if there are not enough labeled instances. The results of this retrieval system are compared to normalized word-image matching and appear to be very promising.

  17. Final Report - Subcontract B623760

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, R.

    2017-11-17

    During my visit to LLNL during July 17{27, 2017, I worked on linear system solvers. The two level hierarchical solver that initiated our study was developed to solve linear systems arising from hp adaptive finite element calculations, and is implemented in the PLTMG software package, version 12. This preconditioner typically requires 3-20% of the space used by the stiffness matrix for higher order elements. It has multigrid like convergence rates for a wide variety of PDEs (self-adjoint positive de nite elliptic equations, convection dominated convection-diffusion equations, and highly indefinite Helmholtz equations, among others). The convergence rate is not independent ofmore » the polynomial degree p as p ! 1, but but remains strong for p 9, which is the highest polynomial degree allowed in PLTMG, due to limitations of the numerical quadrature rules implemented in the software package. A more complete description of the method and some numerical experiments illustrating its effectiveness appear in. Like traditional geometric multilevel methods, this scheme relies on knowledge of the underlying finite element space in order to construct the smoother and the coarse grid correction.« less

  18. Brain systems for assessing the affective value of faces

    PubMed Central

    Said, Christopher P.; Haxby, James V.; Todorov, Alexander

    2011-01-01

    Cognitive neuroscience research on facial expression recognition and face evaluation has proliferated over the past 15 years. Nevertheless, large questions remain unanswered. In this overview, we discuss the current understanding in the field, and describe what is known and what remains unknown. In §2, we describe three types of behavioural evidence that the perception of traits in neutral faces is related to the perception of facial expressions, and may rely on the same mechanisms. In §3, we discuss cortical systems for the perception of facial expressions, and argue for a partial segregation of function in the superior temporal sulcus and the fusiform gyrus. In §4, we describe the current understanding of how the brain responds to emotionally neutral faces. To resolve some of the inconsistencies in the literature, we perform a large group analysis across three different studies, and argue that one parsimonious explanation of prior findings is that faces are coded in terms of their typicality. In §5, we discuss how these two lines of research—perception of emotional expressions and face evaluation—could be integrated into a common, cognitive neuroscience framework. PMID:21536552

  19. The association between semantic dementia and surface dyslexia in Japanese.

    PubMed

    Fushimi, Takao; Komori, Kenjiro; Ikeda, Manabu; Lambon Ralph, Matthew A; Patterson, Karalyn

    2009-03-01

    One theory about reading suggests that producing the correct pronunciations of written words, particularly less familiar words with an atypical spelling-sound relationship, relies in part on knowledge of the word's meaning. This hypothesis has been supported by reports of surface dyslexia in large case-series studies of English-speaking/reading patients with semantic dementia (SD), but would have increased credibility if it applied to other languages and writing systems as well. The hypothesis predicts that, of the two systems used to write Japanese, SD patients should be unimpaired at oral reading of kana because of its invariant relationship between orthography and phonology. By contrast, oral reading of kanji should be impaired in a graded fashion depending on the consistency characteristics of the kanji target words, with worst performance on words whose component characters take 'minority' (atypical) pronunciations, especially if the words are of lower frequency. Errors in kanji reading should primarily reflect assignment of more typical readings to the component characters in these atypical words. In the largest-ever-reported case series of Japanese patients with semantic dementia, we tested and confirmed this hypothesis.

  20. Fast phase stabilization of a low frequency beat note for atom interferometry.

    PubMed

    Oh, E; Horne, R A; Sackett, C A

    2016-06-01

    Atom interferometry experiments rely on the ability to obtain a stable signal that corresponds to an atomic phase. For interferometers that use laser beams to manipulate the atoms, noise in the lasers can lead to errors in the atomic measurement. In particular, it is often necessary to actively stabilize the optical phase between two frequency components of the beams. Typically this is achieved using a time-domain measurement of a beat note between the two frequencies. This becomes challenging when the frequency difference is small and the phase measurement must be made quickly. The method presented here instead uses a spatial interference detection to rapidly measure the optical phase for arbitrary frequency differences. A feedback system operating at a bandwidth of about 10 MHz could then correct the phase in about 3 μs. This time is short enough that the phase correction could be applied at the start of a laser pulse without appreciably degrading the fidelity of the atom interferometer operation. The phase stabilization system was demonstrated in a simple atom interferometer measurement of the (87)Rb recoil frequency.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, E.; Horne, R. A.; Sackett, C. A., E-mail: sackett@virginia.edu

    Atom interferometry experiments rely on the ability to obtain a stable signal that corresponds to an atomic phase. For interferometers that use laser beams to manipulate the atoms, noise in the lasers can lead to errors in the atomic measurement. In particular, it is often necessary to actively stabilize the optical phase between two frequency components of the beams. Typically this is achieved using a time-domain measurement of a beat note between the two frequencies. This becomes challenging when the frequency difference is small and the phase measurement must be made quickly. The method presented here instead uses a spatialmore » interference detection to rapidly measure the optical phase for arbitrary frequency differences. A feedback system operating at a bandwidth of about 10 MHz could then correct the phase in about 3 μs. This time is short enough that the phase correction could be applied at the start of a laser pulse without appreciably degrading the fidelity of the atom interferometer operation. The phase stabilization system was demonstrated in a simple atom interferometer measurement of the {sup 87}Rb recoil frequency.« less

  2. Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems

    NASA Astrophysics Data System (ADS)

    Li, Mao; Ishihara, Shinsuke; Ji, Qingmin; Akada, Misaho; Hill, Jonathan P.; Ariga, Katsuhiko

    2012-10-01

    Current nanotechnology based on top-down nanofabrication may encounter a variety of drawbacks in the near future so that development of alternative methods, including the so-called bottom-up approach, has attracted considerable attention. However, the bottom-up strategy, which often relies on spontaneous self-assembly, might be inefficient in the development of the requisite functional materials and systems. Therefore, assembly processes controlled by external stimuli might be a plausible strategy for the development of bottom-up nanotechnology. In this review, we demonstrate a paradigm shift from self-assembly to commanded assembly by describing several examples of assemblies of typical functional molecules, i.e. porphyrins and fullerenes. In the first section, we describe recent progress in the design and study of self-assembled and co-assembled supramolecular architectures of porphyrins and fullerenes. Then, we show examples of assembly induced by external stimuli. We emphasize the paradigm shift from self-assembly to commanded assembly by describing the recently developed electrochemical-coupling layer-by-layer (ECC-LbL) methodology.

  3. Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture

    PubMed Central

    Zheng, Guoan; Wang, Yingmin; Yang, Changhuei

    2010-01-01

    The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull’s eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography. PMID:20721038

  4. Advances in the mechanism and understanding of site-selective noncanonical amino acid incorporation.

    PubMed

    Antonczak, Alicja K; Morris, Josephine; Tippmann, Eric M

    2011-08-01

    There are many approaches to introduce non-native functionality into proteins either translationally or post-translationally. When a noncanonical amino acid (NAA) is incorporated translationally, the host organism's existing translational machinery is relied upon to insert the amino acid by the same well-established mechanisms used by the host to achieve high fidelity insertion of its canonical amino acids. Research into the in vivo incorporation of NAAs has typically concentrated on evolving or engineering aminoacyl tRNA synthetases (aaRSs); however, new studies have increasingly focused on other members of the translational apparatus, for example entire ribosomes, in attempts to increase the fidelity and efficiency of incorporation of ever more structurally diverse NAAs. As the biochemical methods of NAA systems increase in complexity, it is informative to ask whether the 'rules' for canonical translation (i.e. aaRSs, tRNA, ribosomes, elongation factors, amino acid uptake, and metabolism) hold for NAA systems, or whether new rules are warranted. Here, recent advances in introducing novel chemical functionality into proteins are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Thermal Imaging of Convecting Opaque Fluids using Ultrasound

    NASA Technical Reports Server (NTRS)

    Xu, Hongzhou; Fife, Sean; Andereck, C. David

    2002-01-01

    An ultrasound technique has been developed to non-intrusively image temperature fields in small-scale systems of opaque fluids undergoing convection. Fluids such as molten metals, semiconductors, and polymers are central to many industrial processes, and are often found in situations where natural convection occurs, or where thermal gradients are otherwise important. However, typical thermal and velocimetric diagnostic techniques rely upon transparency of the fluid and container, or require the addition of seed particles, or require mounting probes inside the fluid, all of which either fail altogether in opaque fluids, or necessitate significant invasion of the flow and/or modification of the walls of the container to allow access to the fluid. The idea behind our work is to use the temperature dependence of sound velocity, and the ease of propagation of ultrasound through fluids and solids, to probe the thermal fields of convecting opaque fluids non-intrusively and without the use of seed particles. The technique involves the timing of the return echoes from ultrasound pulses, a variation on an approach used previously in large-scale systems.

  6. 77 FR 16907 - Special Conditions: Embraer S.A., Model EMB 505; Inflatable Side-Facing Seat Three-Point...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... inflatable portion of the restraint system will rely on sensors to electronically activate the inflator for... inflatable restraint system relies on sensors to electronically activate the inflator for deployment. These sensors could be susceptible to inadvertent activation, causing deployment in a potentially unsafe manner...

  7. Beam Steering Devices Reduce Payload Weight

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Scientists have long been able to shift the direction of a laser beam, steering it toward a target, but often the strength and focus of the light is altered. For precision applications, where the quality of the beam cannot be compromised, scientists have typically turned to mechanical steering methods, redirecting the source of the beam by swinging the entire laser apparatus toward the target. Just as the mechanical methods used for turning cars has evolved into simpler, lighter, power steering methods, so has the means by which researchers can direct lasers. Some of the typical contraptions used to redirect lasers are large and bulky, relying on steering gimbals pivoted, rotating supports to shift the device toward its intended target. These devices, some as large and awkward as a piece of heavy luggage, are subject to the same issues confronted by mechanical parts: Components rub, wear out, and get stuck. The poor reliability and bulk not to mention the power requirements to run one of the machines have made mechanical beam steering components less than ideal for use in applications where weight, bulk, and maneuverability are prime concerns, such as on an unmanned aerial vehicle (UAV) or a microscope. The solution to developing reliable, lighter weight, nonmechanical steering methods to replace the hefty steering boxes was to think outside the box, and a NASA research partner did just that by developing a new beam steering method that bends and redirects the beam, as opposed to shifting the entire apparatus. The benefits include lower power requirements, a smaller footprint, reduced weight, and better control and flexibility in steering capabilities. Such benefits are realized without sacrificing aperture size, efficiency, or scanning range, and can be applied to myriad uses: propulsion systems, structures, radiation protection systems, and landing systems.

  8. Citizen science: a new direction in canine behavior research.

    PubMed

    Hecht, Julie; Spicer Rice, Eleanor

    2015-01-01

    Researchers increasingly rely on members of the public to contribute to scientific projects-from collecting or identifying, to analyzing and disseminating data. The "citizen science" model proves useful to many thematically distinctive fields, like ornithology, astronomy, and phenology. The recent formalization of citizen science projects addresses technical issues related to volunteer participation--like data quality--so that citizen scientists can make longstanding, meaningful contributions to scientific projects. Since the late 1990s, canine science research has relied with greater frequency on the participation of the general public, particularly dog owners. These researchers do not typically consider the methods and technical issues that those conducting citizen science projects embrace and continue to investigate. As more canine science studies rely on public input, an in-depth knowledge of the benefits and challenges of citizen science can help produce relevant, high-quality data while increasing the general public's understanding of canine behavior and cognition as well as the scientific process. We examine the benefits and challenges of current citizen science models in an effort to enhance canine citizen science project preparation, execution, and dissemination. This article is part of a Special Issue entitled: Canine Behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Evaluation of the performance of a passive-active vibration isolation system

    NASA Astrophysics Data System (ADS)

    Sun, L. L.; Hansen, C. H.; Doolan, C.

    2015-01-01

    The behavior of a feedforward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions considered here comprise a combination of the vibration transmission energy and the sum of the squared control forces. The example system considered is a rigid body connected to a simply supported plate via two isolation mounts. The overall isolation performance is evaluated by numerical simulation. The results show that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. The active system with constrained control force outputs is shown to be more effective at the resonance frequencies of the supporting plate. However, in the frequency range in which rigid body modes are present, the control strategies employed using constrained actuator outputs can only achieve 5-10 dB power transmission reduction, while at off-resonance frequencies, little or no power transmission reduction can be obtained with realistic control forces. Analysis of the wave effects in the passive mounts is also presented.

  10. Metabolic systems biology: a brief primer.

    PubMed

    Edwards, Lindsay M

    2017-05-01

    In the early to mid-20th century, reductionism as a concept in biology was challenged by key thinkers, including Ludwig von Bertalanffy. He proposed that living organisms were specific examples of complex systems and, as such, they should display characteristics including hierarchical organisation and emergent behaviour. Yet the true study of complete biological systems (for example, metabolism) was not possible until technological advances that occurred 60 years later. Technology now exists that permits the measurement of complete levels of the biological hierarchy, for example the genome and transcriptome. The complexity and scale of these data require computational models for their interpretation. The combination of these - systems thinking, high-dimensional data and computation - defines systems biology, typically accompanied by some notion of iterative model refinement. Only sequencing-based technologies, however, offer full coverage. Other 'omics' platforms trade coverage for sensitivity, although the densely connected nature of biological networks suggests that full coverage may not be necessary. Systems biology models are often characterised as either 'bottom-up' (mechanistic) or 'top-down' (statistical). This distinction can mislead, as all models rely on data and all are, to some degree, 'middle-out'. Systems biology has matured as a discipline, and its methods are commonplace in many laboratories. However, many challenges remain, especially those related to large-scale data integration. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Physicians' questions concerning drug use among older patients: experience from Norwegian drug information centres (RELIS) in the period 2010-2015.

    PubMed

    Schjøtt, Jan

    2017-09-19

    Questions from physicians to regional medicines information and pharmacovigilance centres in Norway (RELIS) concerning older patients were described. Question-answer pairs (QAPs) from the RELIS database indexed with the category "older", and concerning individual patients from the period 01 Jan 2010 to 31 Dec 2015, were analysed. Two-hundred and eight QAPs categorized with "older" were retrieved from a total of 16 710 in the study period, and 122 of 208 QAPs fulfilled the inclusion criteria. The most common categories of drugs in question (n = 228) according to the ATC system were N: Nervous system (30.3%) and C: Cardiovascular system (23.7%). Questions from physicians (n = 122) were most frequently about adverse effects (41.8%) and treatment (39.3%). The majority of questions to RELIS concerning older patients came from general practice (GP). The results suggest drug information efforts to GPs in care of older patients with regard to psychopharmacology and cardiovascular pharmacology.

  12. Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2 1.9 Ga Waterberg Group, South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Bumby, Adam J.; Brümer, Jacobus J.; van der Neut, Markus

    2006-08-01

    Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean-Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06-1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories. Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450-489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to a combination of major global-scale tectono-thermal and atmospheric-palaeoclimatic events, a simpler explanation of these apparently enigmatic palaeoslope values may be pertinent. Of the two possible palaeohydrological formulae for calculating palaeoslope, one provides results close to typical fluvial gradients; the other formula relies on preserved channel-width data. We suggest that the latter will not be reliable due to problematic preservation of original channel-widths within an active braided fluvial system. We thus find no unequivocal support for a unique fluvial style for the Precambrian, beyond that generally accepted for that period and discussed briefly in the first paragraph.

  13. Improving Effectiveness of Bioremediation at DNAPL Source Zone Sites by Applying Partitioning Electron Donors (PEDs)

    DTIC Science & Technology

    2014-05-01

    as trichloroethene (TCE) and tetrachloroethene (PCE). EISB typically relies on the addition of electron donor formulations to enhance the rate of... value (NPV) cost when applied using passive (i.e., biostimulation) methods. Hence, the selection of electron donors has a major implication on EISB...Engineering Service Center NAVFACSW NAVFAC Southwest nBA n-Butyl acetate nBuOH n-Butanol nHEX n-Hexanol NPV net present value O&M operation and

  14. Clinical protein science developments for patient monitoring in hospital central laboratories.

    PubMed

    Malm, Johan; Marko-Varga, György

    2016-12-01

    Patient care relies heavily on standardized tests performed in hospital laboratories, typically including clinical chemistry, pathology and microbiology. With the introduction of personalized medicine tremendous efforts have been made to identify new biomarkers of disease with various omics technologies, often including mass spectrometry. In order to validate new biomarkers and perform clinical studies high quality biobank samples are of key importance. In this editorial different aspects of mass spectrometry in future personalized medicine are discussed.

  15. A look inside the actuarial black box.

    PubMed

    Math, S E; Youngerman, H

    1992-12-01

    Hospital executives often rely on actuaries (and their "black boxes") to determine self-insurance program liabilities and funding contributions. Typically, the hospital supplies the actuary with a myriad of statistics, and eventually the hospital receives a liability estimate and recommended funding level. The mysterious actuarial calculations that occur in between data reporting and receipt of the actuary's report are akin to a black box--a complicated device whose internal mechanism is hidden from or mysterious to the user.

  16. Cultural differences in the correction of social inferences: Does the dispositional rebound occur in an interdependent culture?

    PubMed

    Geeraert, Nicolas; Yzerbyt, Vincent Y

    2007-06-01

    Although social observers have been found to rely heavily on dispositions in their causal analysis, it has been proposed that culture strongly affects this tendency. Recent research has shown that suppressing dispositional inferences during social judgment can lead to a dispositional rebound, that is relying more on dispositional information in subsequent judgments. In the present research, we investigated whether culture also affects this rebound tendency. First, Thai and Belgian participants took part in a typical attitude attribution paradigm. Next, dispositional rebound was assessed by having participants describe a series of pictures. The dispositional rebound occurred for both Belgian and Thai participants when confronted with a forced target, but disappeared for Thai participants when the situational constraints of the target were made salient. The findings are discussed in light of the current cultural models of attribution theory.

  17. Graphene Double-Layer Capacitor with ac Line-Filtering Performance

    NASA Astrophysics Data System (ADS)

    Miller, John R.; Outlaw, R. A.; Holloway, B. C.

    2010-09-01

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

  18. Graphene double-layer capacitor with ac line-filtering performance.

    PubMed

    Miller, John R; Outlaw, R A; Holloway, B C

    2010-09-24

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

  19. Evaluation of the fidelity of feature descriptor-based specimen tracking for automatic NDE data integration

    NASA Astrophysics Data System (ADS)

    Radkowski, Rafael; Holland, Stephen; Grandin, Robert

    2018-04-01

    This research addresses inspection location tracking in the field of nondestructive evaluation (NDE) using a computer vision technique to determine the position and orientation of typical NDE equipment in a test setup. The objective is the tracking accuracy for typical NDE equipment to facilitate automatic NDE data integration. Since the employed tracking technique relies on surface curvatures of an object of interest, the accuracy can be only experimentally determined. We work with flash-thermography and conducted an experiment in which we tracked a specimen and a thermography flash hood, measured the spatial relation between both, and used the relation as input to map thermography data onto a 3D model of the specimen. The results indicate an appropriate accuracy, however, unveiled calibration challenges.

  20. 76 FR 45399 - Special Conditions: Cessna Aircraft Company, Model LC40-550FG, LC41-550FG, and LC42-550FG; AmSafe...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... lap belt. The inflatable portion of the restraint system will rely on sensors to electronically... establishing these special conditions. The inflatable restraint system relies on sensors to electronically activate the inflator for deployment. These sensors could be susceptible to inadvertent activation, causing...

  1. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    PubMed

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  2. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †

    PubMed Central

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-01-01

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612

  3. Moving magnetoencephalography towards real-world applications with a wearable system

    NASA Astrophysics Data System (ADS)

    Boto, Elena; Holmes, Niall; Leggett, James; Roberts, Gillian; Shah, Vishal; Meyer, Sofie S.; Muñoz, Leonardo Duque; Mullinger, Karen J.; Tierney, Tim M.; Bestmann, Sven; Barnes, Gareth R.; Bowtell, Richard; Brookes, Matthew J.

    2018-03-01

    Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.

  4. An approach for finding long period elliptical orbits for precursor SEI missions

    NASA Technical Reports Server (NTRS)

    Fraietta, Michael F.; Bond, Victor R.

    1993-01-01

    Precursors for Solar System Exploration Initiative (SEI) missions may require long period elliptical orbits about a planet. These orbits will typically have periods on the order of tens to hundreds of days. Some potential uses for these orbits may include the following: studying the effects of galactic cosmic radiation, parking orbits for engineering and operational test of systems, and ferrying orbits between libration points and low altitude orbits. This report presents an approach that can be used to find these orbits. The approach consists of three major steps. First, it uses a restricted three-body targeting algorithm to determine the initial conditions which satisfy certain desired final conditions in a system of two massive primaries. Then the initial conditions are transformed to an inertial coordinate system for use by a special perturbation method. Finally, using the special perturbation method, other perturbations (e.g., sun third body and solar radiation pressure) can be easily incorporated to determine their effects on the nominal trajectory. An algorithm potentially suitable for on-board guidance will also be discussed. This algorithm uses an analytic method relying on Chebyshev polynomials to compute the desired position and velocity of the satellite as a function of time. Together with navigation updates, this algorithm can be implemented to predict the size and timing for AV corrections.

  5. Manipulating perceptual parameters in a continuous performance task.

    PubMed

    Shalev, Nir; Humphreys, Glyn; Demeyere, Nele

    2018-02-01

    Sustained attention (SA) is among the most studied faculties of human cognition, and thought to be crucial for many aspects of behavior. Measuring SA often relies on performance on a continuous, low-demanding task. Such continuous performance tasks (CPTs) have many variations, and sustained attention is typically estimated based on variability in reaction times. While relying on reaction times may be useful in some cases, it can pose a challenge when working with clinical populations. To increase interpersonal variability in task parameters that do not rely on speed, researchers have increased demands for memory and response inhibition. These approaches, however, may be confounded when used to assess populations that suffer from multiple cognitive deficits. In the current study, we propose a new approach for increasing task variability by increasing the attentional demands. In order to do so, we created a new variation of a CPT - a masked version, where inattention is more likely to cause misidentifying a target. After establishing that masking indeed decreases target detection, we further investigated which task parameter may influence response biases. To do so, we contrasted two versions of the CPT with different target/distractor ratio. We then established how perceptual parameters can be controlled independently in a CPT. Following the experimental manipulations, we tested the MCCPT with aging controls and chronic stroke patients to assure the task can be used with target populations. The results confirm the MCCPT as a task providing high sensitivity without relying on reaction speed, and feasible for patients.

  6. Extrusion shear strength between an alumina-based ceramic and three different cements.

    PubMed

    Borges, Gilberto Antonio; de Goes, Mario Fernando; Platt, Jeffrey A; Moore, Keith; de Menezes, Fernando Hueb; Vedovato, Euripedes

    2007-09-01

    Surface treatment is an essential step in bonding a ceramic to resin. Alumina ceramics are particularly difficult to prepare for adequate bonding to composite resin cements. The purpose of this study was to evaluate the bond strength between a densely sintered alumina ceramic and bovine dentin with 2 adhesive resin cements and a resin-modified glass ionomer cement using an extrusion shear strength test. Alumina cones (n=30), 4 mm in height, 3 mm in diameter at the small end, and with an 8-degree taper, were fabricated. Without any treatment, the cones were cemented in a standardized cavity in 2.5-mm-thick bovine dentin discs using 1 of 3 cement systems: Panavia F, RelyX ARC, or RelyX Luting. The cements were manipulated following the manufacturers' instructions. After 24 hours of storage at 37 degrees C, an extrusion shear test was performed in a universal testing machine at 0.5 mm/min until bonding failure. The data were analyzed using 1-way ANOVA and Tukey HSD test (alpha=.05). All fractured specimens were examined at x25 magnification and classified by fracture mode. Representative specimens were selected for SEM observation. The highest strength values were obtained with Panavia F, and they were significantly higher (P<.05) than each of the other 2 cements, which were not significantly different from each other. Panavia F resulted in predominantly mixed failure and RelyX ARC and RelyX Vitremer showed primarily adhesive failure. An MDP-containing adhesive system (Panavia F) provides better extrusion bond strength to a high-density alumina ceramic than a Bis-GMA resin luting agent system (RelyX ARC) or a resin-modified glass ionomer cement system (RelyX Luting).

  7. From the laboratory to the therapy room: National dissemination and implementation of evidence-based psychotherapies in the U.S. Department of Veterans Affairs Health Care System.

    PubMed

    Karlin, Bradley E; Cross, Gerald

    2014-01-01

    Despite their established efficacy and recommendation--often as first-line treatments--in clinical practice guidelines, evidence-based psychotherapies (EBPs) have largely failed to make their way into mainstream clinical settings. Numerous attempts over the years to promote the translation of EBPs from science to practice, typically relying on one-dimensional dissemination approaches, have yielded limited success. As part of the transformation of its mental health care system, the Veterans Health Administration (VHA) of the U.S. Department of Veterans Affairs (VA) is working to disseminate and implement a number of EBPs for various mental and behavioral health conditions throughout the VA health care system. This article examines VHA's multidimensional model and specific strategies, involving policy, provider, local systems, patient, and accountability levels, for promoting the national dissemination and implementation of EBPs in VHA. In addition, the article identifies key lessons learned and next steps for further promoting EBP delivery and sustainability in the VA health care system. Beyond promoting the availability of effective treatments for veterans returning from Iraq and Afghanistan and for veterans of previous combat eras, VHA's EBP dissemination and implementation model and key lessons learned may help to inform other private and public health care systems interested in disseminating and implementing EBPs. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Integrating diverse forage sources reduces feed gaps on mixed crop-livestock farms.

    PubMed

    Bell, L W; Moore, A D; Thomas, D T

    2017-12-04

    Highly variable climates induce large variability in the supply of forage for livestock and so farmers must manage their livestock systems to reduce the risk of feed gaps (i.e. periods when livestock feed demand exceeds forage supply). However, mixed crop-livestock farmers can utilise a range of feed sources on their farms to help mitigate these risks. This paper reports on the development and application of a simple whole-farm feed-energy balance calculator which is used to evaluate the frequency and magnitude of feed gaps. The calculator matches long-term simulations of variation in forage and metabolisable energy supply from diverse sources against energy demand for different livestock enterprises. Scenarios of increasing the diversity of forage sources in livestock systems is investigated for six locations selected to span Australia's crop-livestock zone. We found that systems relying on only one feed source were prone to higher risk of feed gaps, and hence, would often have to reduce stocking rates to mitigate these risks or use supplementary feed. At all sites, by adding more feed sources to the farm feedbase the continuity of supply of both fresh and carry-over forage was improved, reducing the frequency and magnitude of feed deficits. However, there were diminishing returns from making the feedbase more complex, with combinations of two to three feed sources typically achieving the maximum benefits in terms of reducing the risk of feed gaps. Higher stocking rates could be maintained while limiting risk when combinations of other feed sources were introduced into the feedbase. For the same level of risk, a feedbase relying on a diversity of forage sources could support stocking rates 1.4 to 3 times higher than if they were using a single pasture source. This suggests that there is significant capacity to mitigate both risk of feed gaps at the same time as increasing 'safe' stocking rates through better integration of feed sources on mixed crop-livestock farms across diverse regions and climates.

  9. A THEORETICAL INVESTIGATION OF RADIOLYTIC H2 GENERATION FROM SOLIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, M.; Sindelar, R.; Fisher, D.

    2012-02-01

    Hydrogen generation from materials in nuclear materials storage is of critical interest due to the potential for pressurization and/or flammability issues. Studies have focused on aqueous systems or those with minor amounts of physisorbed water, since conventional knowledge identifies the radiolytic decomposition of water as the source of H{sub 2} gas. Furthermore, the approach to characterize gas generation is typically strictly empirical, relying on determination of G-values from which production in systems is estimated. Interestingly, exploratory work at SRNL1 on gamma exposure to fully-dried solids with chemically-bound water that are typical of those produced on aluminium-clad nuclear fuel in reactormore » and post-discharge storage has shown a profound production of hydrogen (as the sole gaseous species) from fully dried boehmite ({gamma}-AlOOH or Al{sub 2}O{sub 3} {center_dot} H{sub 2}O) powders and no observable hydrogen from gibbsite ({gamma}-Al(OH){sub 3} or Al{sub 2}O{sub 3} {center_dot} 3H{sub 2}O) under gamma irradiation from cobalt-60. This observation is significant in that gibbsite is known to thermally decompose at 80 C whereas boehmite is stable to 400 C. Radiation damage can have various effects on solids, including heating, bond breaking, and rearrangements in the bonding structure. For example, a molecule can be ionized resulting in the generation of free electrons which can, in turn, ionize another molecule. Alternately, reactive radical species such as {lg_bullet}OH or cation species may be formed, which can go on to change bonding structures.« less

  10. Managing soil nutrients with compost in organic farms of East Georgia

    NASA Astrophysics Data System (ADS)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  11. Separate neural systems support representations for actions and objects during narrative speech in post-stroke aphasia☆

    PubMed Central

    Gleichgerrcht, Ezequiel; Fridriksson, Julius; Rorden, Chris; Nesland, Travis; Desai, Rutvik; Bonilha, Leonardo

    2015-01-01

    Background Representations of objects and actions in everyday speech are usually materialized as nouns and verbs, two grammatical classes that constitute the core elements of language. Given their very distinct roles in singling out objects (nouns) or referring to transformative actions (verbs), they likely rely on distinct brain circuits. Method We tested this hypothesis by conducting network-based lesion-symptom mapping in 38 patients with chronic stroke to the left hemisphere. We reconstructed the individual brain connectomes from probabilistic tractography applied to magnetic resonance imaging and obtained measures of production of words referring to objects and actions from narrative discourse elicited by picture naming tasks. Results Words for actions were associated with a frontal network strongly engaging structures involved in motor control and programming. Words for objects, instead, were related to a posterior network spreading across the occipital, posterior inferior temporal, and parietal regions, likely related with visual processing and imagery, object recognition, and spatial attention/scanning. Thus, each of these networks engaged brain areas typically involved in cognitive and sensorimotor experiences equivalent to the function served by each grammatical class (e.g. motor areas for verbs, perception areas for nouns). Conclusions The finding that the two major grammatical classes in human speech rely on two dissociable networks has both important theoretical implications for the neurobiology of language and clinical implications for the assessment and potential rehabilitation and treatment of patients with chronic aphasia due to stroke. PMID:26759789

  12. Applications of hybrid genetic algorithms in seismic tomography

    NASA Astrophysics Data System (ADS)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet T.; Papazachos, Constantinos

    2011-11-01

    Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem equations, adopting an iterative procedure which typically employs partial derivatives in order to optimize the starting (initial) model by minimizing a misfit (penalty) function. Unfortunately, especially for highly non-linear cases, the final model strongly depends on the initial model, hence it is prone to solution-entrapment in local minima of the misfit function, while the derivative calculation is often computationally inefficient and creates instabilities when numerical approximations are used. An alternative is to employ global techniques which do not rely on partial derivatives, are independent of the misfit form and are computationally robust. Such methods employ pseudo-randomly generated models (sampling an appropriately selected section of the model space) which are assessed in terms of their data-fit. A typical example is the class of methods known as genetic algorithms (GA), which achieves the aforementioned approximation through model representation and manipulations, and has attracted the attention of the earth sciences community during the last decade, with several applications already presented for several geophysical problems. In this paper, we examine the efficiency of the combination of the typical regularized least-squares and genetic methods for a typical seismic tomography problem. The proposed approach combines a local (LOM) and a global (GOM) optimization method, in an attempt to overcome the limitations of each individual approach, such as local minima and slow convergence, respectively. The potential of both optimization methods is tested and compared, both independently and jointly, using the several test models and synthetic refraction travel-time date sets that employ the same experimental geometry, wavelength and geometrical characteristics of the model anomalies. Moreover, real data from a crosswell tomographic project for the subsurface mapping of an ancient wall foundation are used for testing the efficiency of the proposed algorithm. The results show that the combined use of both methods can exploit the benefits of each approach, leading to improved final models and producing realistic velocity models, without significantly increasing the required computation time.

  13. Sensitivity to audio-visual synchrony and its relation to language abilities in children with and without ASD.

    PubMed

    Righi, Giulia; Tenenbaum, Elena J; McCormick, Carolyn; Blossom, Megan; Amso, Dima; Sheinkopf, Stephen J

    2018-04-01

    Autism Spectrum Disorder (ASD) is often accompanied by deficits in speech and language processing. Speech processing relies heavily on the integration of auditory and visual information, and it has been suggested that the ability to detect correspondence between auditory and visual signals helps to lay the foundation for successful language development. The goal of the present study was to examine whether young children with ASD show reduced sensitivity to temporal asynchronies in a speech processing task when compared to typically developing controls, and to examine how this sensitivity might relate to language proficiency. Using automated eye tracking methods, we found that children with ASD failed to demonstrate sensitivity to asynchronies of 0.3s, 0.6s, or 1.0s between a video of a woman speaking and the corresponding audio track. In contrast, typically developing children who were language-matched to the ASD group, were sensitive to both 0.6s and 1.0s asynchronies. We also demonstrated that individual differences in sensitivity to audiovisual asynchronies and individual differences in orientation to relevant facial features were both correlated with scores on a standardized measure of language abilities. Results are discussed in the context of attention to visual language and audio-visual processing as potential precursors to language impairment in ASD. Autism Res 2018, 11: 645-653. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Speech processing relies heavily on the integration of auditory and visual information, and it has been suggested that the ability to detect correspondence between auditory and visual signals helps to lay the foundation for successful language development. The goal of the present study was to explore whether children with ASD process audio-visual synchrony in ways comparable to their typically developing peers, and the relationship between preference for synchrony and language ability. Results showed that there are differences in attention to audiovisual synchrony between typically developing children and children with ASD. Preference for synchrony was related to the language abilities of children across groups. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Compression and information recovery in ptychography

    NASA Astrophysics Data System (ADS)

    Loetgering, L.; Treffer, D.; Wilhein, T.

    2018-04-01

    Ptychographic coherent diffraction imaging (PCDI) is a scanning microscopy modality that allows for simultaneous recovery of object and illumination information. This ability renders PCDI a suitable technique for x-ray lensless imaging and optics characterization. Its potential for information recovery typically relies on large amounts of data redundancy. However, the field of view in ptychography is practically limited by the memory and the computational facilities available. We describe techniques that achieve robust ptychographic information recovery at high compression rates. The techniques are compared and tested with experimental data.

  15. Knowledge Elicitation: Phase 1 Final Report. Volume 1

    DTIC Science & Technology

    1989-06-01

    34 i.e., superficial features such as type of apparatus, while experts rely on basic principles of physics (e.g., conservation of energy ) and generic...process. This last part of the model would typically consist of descriptions of the impact of the process on one or more of the objects. Figure 3-4...goals. The elicitor is probing for an underlying mental model. 9. Expert: To kill him before he can take any action that would impact on our forces. 10

  16. Time-Reversal Based Range Extension technique for Ultra-wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2010-01-28

    has to rely on a uni- polar sequence whose autocorrelation is typically less sharp than that of a bi-polar sequence. Optical orthogonal code (OOC...detection in multipath environments," in Proc. IEEE ICC󈧇, vol. 5, pp. 3530-3534, May 2003. [11] M. Weisenhorn and W. Hirt, "Robust Noncoherent Receiver...M. Duarte, D. Baron, S. Sarvotham, K. Kelly, and R. Baraniuk, "A New Compressive Imaging Camera Architecture using Optical -Domain Compression," in

  17. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.

    PubMed

    St-Gelais, Raphael; Bhatt, Gaurang Ravindra; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2017-03-28

    Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative heat transfer between a hot object and a photovoltaic (PV) cell could allow direct conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems-after optimization of their thermal radiation spectrum-could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm 2 generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and-by relying solely on conventional thin film materials-to provide a path for the experimental demonstration of NFTPV energy conversion.

  18. XBoard: A Framework for Integrating and Enhancing Collaborative Work Practices

    NASA Technical Reports Server (NTRS)

    Shab, Ted

    2006-01-01

    Teams typically collaborate in different modes including face-to-face meetings, meetings that are synchronous (i. e. require parties to participate at the same time) but distributed geographically, and meetings involving asynchronously working on common tasks at different times. The XBoard platform was designed to create an integrated environment for creating applications that enhance collaborative work practices. Specifically, it takes large, touch-screen enabled displays as the starting point for enhancing face-to-face meetings by providing common facilities such as whiteboarding/electronic flipcharts, laptop projection, web access, screen capture and content distribution. These capabilities are built upon by making these functions inherently distributed by allowing these sessions to be easily connected between two or more systems at different locations. Finally, an information repository is integrated into the functionality to provide facilities for work practices that involve work being done at different times, such as reports that span different shifts. The Board is designed to be extendible allowing customization of both the general functionality and by adding new functionality to the core facilities by means of a plugin architecture. This, in essence, makes it a collaborative framework for extending or integrating work practices for different mission scenarios. XBoard relies heavily on standards such as Web Services and SVG, and is built using predominately Java and well-known open-source products such as Apache and Postgres. Increasingly, organizations are geographically dispersed, and rely on "virtual teams" that are assembled from a pool of various partner organizations. These organizations often have different infrastructures of applications and workflows. The XBoard has been designed to be a good partner in these situations, providing the flexibility to integrate with typical legacy applications while providing a standards-based infrastructure that is readily accepted by most organizations. The XBoard has been used on the Mars Exploration Rovers mission at JPL, and is currently being used or considered for use in pilot projects at Johnson Space Center (JSC) Mission Control, the University of Arizona Lunar and Planetav Laboratory (Phoenix Mars Lander), and MBART (Monterey Bay Aquarium Research Institute).

  19. Traceable X,Y self-calibration at single nm level of an optical microscope used for coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Ekberg, Peter; Mattsson, Lars

    2018-03-01

    Coherence scanning interferometry used in optical profilers are typically good for Z-calibration at nm-levels, but the X,Y accuracy is often left without further notice than typical resolution limits of the optics, i.e. of the order of ~1 µm. For the calibration of metrology tools we rely on traceable artefacts, e.g. gauge blocks for traditional coordinate measurement machines, and lithographically mask made artefacts for microscope calibrations. In situations where the repeatability and accuracy of the measurement tool is much better than the uncertainty of the traceable artefact, we are bound to specify the uncertainty based on the calibration artefact rather than on the measurement tool. This is a big drawback as the specified uncertainty of a calibrated measurement may shrink the available manufacturing tolerance. To improve the uncertainty in X,Y we can use self-calibration. Then, we do not need to know anything more than that the artefact contains a pattern with some nominal grid. This also gives the opportunity to manufacture the artefact in-house, rather than buying a calibrated and expensive artefact. The self-calibration approach we present here is based on an iteration algorithm, rather than the traditional mathematical inversion, and it leads to much more relaxed constrains on the input measurements. In this paper we show how the X,Y errors, primarily optical distortions, within the field of view (FOV) of an optical coherence scanning interferometry microscope, can be reduced with a large factor. By self-calibration we achieve an X,Y consistency in the 175  ×  175 µm2 FOV of ~2.3 nm (1σ) using the 50×  objective. Besides the calibrated coordinate X,Y system of the microscope we also receive, as a bonus, the absolute positions of the pattern in the artefact with a combined uncertainty of 6 nm (1σ) by relying on a traceable 1D linear measurement of a twin artefact at NIST.

  20. Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD

    PubMed Central

    Fair, Damien A.; Bathula, Deepti; Nikolas, Molly A.; Nigg, Joel T.

    2012-01-01

    Research and clinical investigations in psychiatry largely rely on the de facto assumption that the diagnostic categories identified in the Diagnostic and Statistical Manual (DSM) represent homogeneous syndromes. However, the mechanistic heterogeneity that potentially underlies the existing classification scheme might limit discovery of etiology for most developmental psychiatric disorders. Another, perhaps less palpable, reality may also be interfering with progress—heterogeneity in typically developing populations. In this report we attempt to clarify neuropsychological heterogeneity in a large dataset of typically developing youth and youth with attention deficit/hyperactivity disorder (ADHD), using graph theory and community detection. We sought to determine whether data-driven neuropsychological subtypes could be discerned in children with and without the disorder. Because individual classification is the sine qua non for eventual clinical translation, we also apply support vector machine-based multivariate pattern analysis to identify how well ADHD status in individual children can be identified as defined by the community detection delineated subtypes. The analysis yielded several unique, but similar subtypes across both populations. Just as importantly, comparing typically developing children with ADHD children within each of these distinct subgroups increased diagnostic accuracy. Two important principles were identified that have the potential to advance our understanding of typical development and developmental neuropsychiatric disorders. The first tenet suggests that typically developing children can be classified into distinct neuropsychological subgroups with high precision. The second tenet proposes that some of the heterogeneity in individuals with ADHD might be “nested” in this normal variation. PMID:22474392

  1. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation.

    PubMed

    Gibson, Edward; Bergen, Leon; Piantadosi, Steven T

    2013-05-14

    Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be "well designed"--in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian "size principle"; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel.

  2. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation

    PubMed Central

    Gibson, Edward; Bergen, Leon; Piantadosi, Steven T.

    2013-01-01

    Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be “well designed”–in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian “size principle”; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel. PMID:23637344

  3. Histological evaluation and optimization of surgical vessel sealing systems

    NASA Astrophysics Data System (ADS)

    Lathrop, Robert; Ryan, Thomas; Gaspredes, Jonathan; Woloszko, Jean; Coad, James E.

    2017-02-01

    Surgical vessel sealing systems are widely used to achieve hemostasis and dissection in open surgery and minimally invasive, laparoscopic surgery. This enabling technology was developed about 17 years ago and continues to evolve with new devices and systems achieving improved outcomes. Histopathological assessment of thermally sealed tissues is a valuable tool for refining and comparing performance among surgical vessel sealing systems. Early work in this field typically assessed seal time, burst rate, and failure rate (in-situ). Later work compared histological staining methods with birefringence to assess the extent of thermal damage to tissues adjacent to the device. Understanding the microscopic architecture of a sealed vessel is crucial to optimizing the performance of power delivery algorithms and device design parameters. Manufacturers rely on these techniques to develop new products. A system for histopathological evaluation of vessels and sealing performance was established, to enable the direct assessment of a treatment's tissue effects. The parameters included the commonly used seal time, pressure burst rate and failure rate, as well as extensions of the assessment to include its likelihood to form steam vacuoles, adjacent thermal effect near the device, and extent of thermally affected tissue extruded back into the vessel lumen. This comprehensive assessment method provides an improved means of assessing the quality of a sealed vessel and understanding the exact mechanisms which create an optimally sealed vessel.

  4. A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    NASA Technical Reports Server (NTRS)

    Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.

    2017-01-01

    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. ?Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods ?Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. ?However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) ?Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR)

  5. Rainwater harvesting in the South American Dry Chaco

    NASA Astrophysics Data System (ADS)

    Magliano, P. N.; Baldi, G.; Murray, F.; Aurand, S.; Paez, R. A.; Jobbagy, E. G.

    2014-12-01

    A vast fraction of the South American Dry Chaco ecoregion still relies on rainwater harvesting (RWH) to support, not only livestock production, but domestic and industrial uses as well. As a result, water capture and storage infrastructure is widely disseminated throughout the region. In this work we characterized the most typical RWH systems in two contrastingly developed sub-regions of Dry Chaco ranging from extensive ranching to intensive beef and dairy production (central Argentina and western Paraguay, respectively). In each sub-region, we quantified RWH density, spatial distribution and associations with landscape features; by other hand, we illustrated how the daily dynamic of water stock in a typical RWH system contributes to assess their capture and storage efficiency. We found that randomly distributed, low-tech RWH systems prevail in central Argentina, while clustered and hi-tech systems do it in western Paraguay. Their density was highly contrasting between sub-regions (0.098 vs. 0.94 units/ km2 in central Argentina and western Paraguay, respectively), being exponentially associated with land cleared fraction and proximity to villages. The daily monitoring of water level suggested a positive but complex response of water capture to precipitation. The elongated catchment area, created by roads and trails, could have partially decoupled local precipitation and water yield of the impoundment, favouring the capture of remote precipitation events and generating highly variable water yield under large local precipitation events. Once stored, the rates of water level decline suggested that infiltration exceeded evaporation as a water output pathway (59 vs. 41%, respectively, of total losses). Across both study areas, RWH accounts for less than 1% of the annual precipitation, playing a minor role on the regional water balance; however at a local level, they can affect several hydrological fluxes including the onset of groundwater recharge and the mitigation of extreme runoff events along roads and trails.

  6. Seeing the Future of Middle Level Education Requires a Mirror Rather than a Crystal Ball

    ERIC Educational Resources Information Center

    Springer, Mark A.

    2009-01-01

    As the world changes, education must also change. People can no longer afford to rely on a 19th century or even a 20th century education system any more than they can afford to rely on 19th century transportation, communication, or medical systems. This author discusses the obligation of educators to foster for their students the knowledge and…

  7. Effect of post-annealing on sputtered MoS2 films

    NASA Astrophysics Data System (ADS)

    Wong, W. C.; Ng, S. M.; Wong, H. F.; Cheng, W. F.; Mak, C. L.; Leung, C. W.

    2017-12-01

    Typical routes for fabricating MoS2-based electronic devices rely on the transfer of as-prepared flakes to target substrates, which is incompatible with conventional device fabrication methods. In this work we investigated the preparation of MoS2 films by magnetron sputtering. By subjecting room-temperature sputtered MoS2 films to post-annealing at mild conditions (450 °C in a nitrogen flow), crystalline MoS2 films were formed. To demonstrate the compatibility of the technique with typical device fabrication processes, MoS2 was prepared on epitaxial magnetic oxide films of La0.7Sr0.3MnO3, and the magnetic behavior of the films were unaffected by the post-annealing process. This work demonstrates the possibility of fabricating electronic and spintronic devices based on continuous MoS2 films prepared by sputtering deposition.

  8. Brief Report: Methods for Acquiring Structural MRI Data in Very Young Children with Autism Without the Use of Sedation

    PubMed Central

    Simon, Tony J.; Zierhut, Cynthia; Solomon, Marjorie; Rogers, Sally J.; Amaral, David G.

    2016-01-01

    We describe a protocol with which we achieved a 93% success rate in acquiring high quality MRI scans without the use of sedation in 2.5–4.5 year old children with autism, developmental delays, and typical development. Our main strategy was to conduct MRIs during natural nocturnal sleep in the evenings after the child's normal bedtime. Alternatively, with some older and higher functioning children, the MRI was conducted while the child was awake and watching a video. Both strategies relied heavily on the creation of a child and family friendly MRI environment and the involvement of parents as collaborators in the project. Scanning very young children with autism, typical development, and developmental delays without the use of sedation or anesthesia was possible in the majority of cases. PMID:18157624

  9. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy.

    PubMed

    Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C

    2016-01-27

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.

  10. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy

    PubMed Central

    Yi, X.; Vahala, K.; Li, J.; Diddams, S.; Ycas, G.; Plavchan, P.; Leifer, S.; Sandhu, J.; Vasisht, G.; Chen, P.; Gao, P.; Gagne, J.; Furlan, E.; Bottom, M.; Martin, E. C.; Fitzgerald, M. P.; Doppmann, G.; Beichman, C.

    2016-01-01

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope. PMID:26813804

  11. High spatial and temporal resolution cell manipulation techniques in microchannels.

    PubMed

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  12. Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.

    1996-01-01

    Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  14. Ontology Design Patterns as Interfaces (invited)

    NASA Astrophysics Data System (ADS)

    Janowicz, K.

    2015-12-01

    In recent years ontology design patterns (ODP) have gained popularity among knowledge engineers. ODPs are modular but self-contained building blocks that are reusable and extendible. They minimize the amount of ontological commitments and thereby are easier to integrate than large monolithic ontologies. Typically, patterns are not directly used to annotate data or to model certain domain problems but are combined and extended to form data and purpose-driven local ontologies that serve the needs of specific applications or communities. By relying on a common set of patterns these local ontologies can be aligned to improve interoperability and enable federated queries without enforcing a top-down model of the domain. In previous work, we introduced ontological views as layer on top of ontology design patterns to ease the reuse, combination, and integration of patterns. While the literature distinguishes multiple types of patterns, e.g., content patterns or logical patterns, we propose to use them as interfaces here to guide the development of ontology-driven systems.

  15. Detection of Hand-to-Mouth Gestures Using a RF Operated Proximity Sensor for Monitoring Cigarette Smoking.

    PubMed

    Lopez-Meyer, Paulo; Patil, Yogendra; Tiffany, Tiffany; Sazonov, Edward

    2013-01-01

    Common methods for monitoring of cigarette smoking, such as portable puff-topography instruments or self-report questionnaires, tend to be biased due to conscious or unconscious underreporting. Additionally, these methods may change the natural smoking behavior of individuals. Our long term objective is the development of a wearable non-invasive monitoring system (Personal Automatic Cigarette Tracker - PACT) to reliably monitor cigarette smoking behavior under free living conditions. PACT monitors smoking by observing characteristic breathing patterns of smoke inhalations that follow a cigarette-to-mouth hand gesture. As envisioned, PACT does not rely on self-report or require any conscious effort from the user. A major element of the PACT is a proximity sensor that detects typical cigarette-to-mouth gesture during cigarette smoking. This study describes the design and validation of a prototype RF proximity sensor that captures hand-to-mouth gestures with a high sensitivity (0.90), and a methodology that can reject up to 68% of artifacts gestures originating from activities other than cigarette smoking.

  16. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing

    NASA Astrophysics Data System (ADS)

    Lind, Johan U.; Busbee, Travis A.; Valentine, Alexander D.; Pasqualini, Francesco S.; Yuan, Hongyan; Yadid, Moran; Park, Sung-Jin; Kotikian, Arda; Nesmith, Alexander P.; Campbell, Patrick H.; Vlassak, Joost J.; Lewis, Jennifer A.; Parker, Kevin K.

    2017-03-01

    Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

  17. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    NASA Astrophysics Data System (ADS)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  18. Aerodynamic Tests on a Static California Sea Lion Flipper

    NASA Astrophysics Data System (ADS)

    Kulkarni, Aditya A.; Leftwich, Megan C.

    2017-11-01

    Unlike most biological swimmers that use BCF swimming, the California sea lion relies on its foreflippers for thrust production. This unique swimming style, which lacks a characteristic oscillation frequency, allows the sea lion to leave less traceable wake while also producing high amounts of thrust. While the swimming energetics of the animal have been studied, almost nothing is known about the fluid dynamics of the system. To overcome this lack of basic understanding, a three-dimensional model of the flipper was developed using structured light-based scanners. Cross sections of the flipper model resemble the shape of the airfoils typically found in wings with thickness ratios, 11% - 37%. Wind tunnel testing conducted on static flipper revealed that positive lift was being generated at negative angles of attack. This is hypothesized to help the sea lions considerably in perform tight maneuvers with a small turning radius. The wake structure downstream of the flipper was captured using Particle Image Velocimetry (PIV).

  19. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  20. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  1. Droplet based microfluidics.

    PubMed

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  2. Performance of Trajectory Models with Wind Uncertainty

    NASA Technical Reports Server (NTRS)

    Lee, Alan G.; Weygandt, Stephen S.; Schwartz, Barry; Murphy, James R.

    2009-01-01

    Typical aircraft trajectory predictors use wind forecasts but do not account for the forecast uncertainty. A method for generating estimates of wind prediction uncertainty is described and its effect on aircraft trajectory prediction uncertainty is investigated. The procedure for estimating the wind prediction uncertainty relies uses a time-lagged ensemble of weather model forecasts from the hourly updated Rapid Update Cycle (RUC) weather prediction system. Forecast uncertainty is estimated using measures of the spread amongst various RUC time-lagged ensemble forecasts. This proof of concept study illustrates the estimated uncertainty and the actual wind errors, and documents the validity of the assumed ensemble-forecast accuracy relationship. Aircraft trajectory predictions are made using RUC winds with provision for the estimated uncertainty. Results for a set of simulated flights indicate this simple approach effectively translates the wind uncertainty estimate into an aircraft trajectory uncertainty. A key strength of the method is the ability to relate uncertainty to specific weather phenomena (contained in the various ensemble members) allowing identification of regional variations in uncertainty.

  3. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    NASA Astrophysics Data System (ADS)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  4. A comparison of the impact of CPOE implementation and organizational determinants on doctor-nurse communications and cooperation.

    PubMed

    Pelayo, Sylvia; Anceaux, Françoise; Rogalski, Janine; Elkin, Peter; Beuscart-Zephir, Marie-Catherine

    2013-12-01

    To compare the impact of CPOE implementation and of the workplace organizational determinants on the doctor-nurse cooperation and communication processes. A first study was undertaken in eight different wards aimed to identify the different workplace organizations that support doctor-nurse communications'. A second study compared the impact of these organizations and of a CPOE on medication-related doctor-nurse communications. The doctor-nurse communications could be structured into three typical workplace organizations: the common round, the briefing and the opportunistic exchange organizations. The results (i) confirmed the impact of the organizational determinants on the cooperative activities and (ii) demonstrated the CPOE system has no significant impact within a given workplace organization. The success of the implementation of HIT applications relies partly on the identification of the actual (and sometimes hidden) structuring variables of teamwork and ultimately on their control at the time of implementation to ensure the quality and safety of the patient care provided. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Coordinating complex decision support activities across distributed applications

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  6. Direct-Y: Fast Acquisition of the GPS PPS Signal

    NASA Technical Reports Server (NTRS)

    Namoos, Omar M.; DiEsposti, Raymond S.

    1996-01-01

    The NAVSTAR Global Positioning System (GPS) provides positioning and time information to military users via the Precise Positioning Service (PPS) which typically allows users a significant margin of precision over the commercially available Standard Positioning Service (SPS), Military sets that rely on first acquiring the SPS Coarse Acquisition (C/A) code, read from the data message the handover word (HOW) that provides the time-of-signal transmission needed to acquire and lock onto the PPS Y-code. Under extreme battlefield conditions, the use of GPS would be denied to the warfighter who cannot pick up the un-encrypted C/A code. Studies are underway at the GPS Joint Program Office (JPO) at the Space and Missile Center, Los Angeles Air Force Base that are aimed at developing the capability to directly acquire Y-code without first acquiring C/A code. This paper briefly outlines efforts to develop 'direct-Y' acquisition, and various approaches to solving this problem. The potential ramifications of direct-Y to military users are also discussed.

  7. Importance of public relations in recycling strategies: principles and case studies.

    PubMed

    Salhofer, Stefan; Isaac, Nicole A

    2002-07-01

    The separate collection of waste, and especially of recyclables with specific collection systems, would not be possible without the involvement of the users. Apart from the physical installations such as collection containers, collection points, etc., the motivation of the users is an essential component. Motivation can be reinforced through public relations work. In addition to the underlying technical considerations, this paper describes the difference between communication in general and public relations and specifically examines public involvement in recycling. Through the use of examples, we look at the targeted users and typical media employed. Furthermore, we analyzes the development of public involvement. The examples show that public relations for recycling strategies relies to a great extent on attitudes, habits, and access to the target group. Thus, standardized procedures cannot be developed. For these reasons, public relation activities must be planned carefully and professionally and include an analysis of the target group, choice of media, and verification of success.

  8. APOLLO clock performance and normal point corrections

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Murphy, T. W., Jr.; Colmenares, N. R.; Battat, J. B. R.

    2017-12-01

    The Apache point observatory lunar laser-ranging operation (APOLLO) has produced a large volume of high-quality lunar laser ranging (LLR) data since it began operating in 2006. For most of this period, APOLLO has relied on a GPS-disciplined, high-stability quartz oscillator as its frequency and time standard. The recent addition of a cesium clock as part of a timing calibration system initiated a comparison campaign between the two clocks. This has allowed correction of APOLLO range measurements—called normal points—during the overlap period, but also revealed a mechanism to correct for systematic range offsets due to clock errors in historical APOLLO data. Drift of the GPS clock on  ∼1000 s timescales contributed typically 2.5 mm of range error to APOLLO measurements, and we find that this may be reduced to  ∼1.6 mm on average. We present here a characterization of APOLLO clock errors, the method by which we correct historical data, and the resulting statistics.

  9. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    PubMed

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  10. Water resources management: Hydrologic characterization through hydrograph simulation may bias streamflow statistics

    NASA Astrophysics Data System (ADS)

    Farmer, W. H.; Kiang, J. E.

    2017-12-01

    The development, deployment and maintenance of water resources management infrastructure and practices rely on hydrologic characterization, which requires an understanding of local hydrology. With regards to streamflow, this understanding is typically quantified with statistics derived from long-term streamgage records. However, a fundamental problem is how to characterize local hydrology without the luxury of streamgage records, a problem that complicates water resources management at ungaged locations and for long-term future projections. This problem has typically been addressed through the development of point estimators, such as regression equations, to estimate particular statistics. Physically-based precipitation-runoff models, which are capable of producing simulated hydrographs, offer an alternative to point estimators. The advantage of simulated hydrographs is that they can be used to compute any number of streamflow statistics from a single source (the simulated hydrograph) rather than relying on a diverse set of point estimators. However, the use of simulated hydrographs introduces a degree of model uncertainty that is propagated through to estimated streamflow statistics and may have drastic effects on management decisions. We compare the accuracy and precision of streamflow statistics (e.g. the mean annual streamflow, the annual maximum streamflow exceeded in 10% of years, and the minimum seven-day average streamflow exceeded in 90% of years, among others) derived from point estimators (e.g. regressions, kriging, machine learning) to that of statistics derived from simulated hydrographs across the continental United States. Initial results suggest that the error introduced through hydrograph simulation may substantially bias the resulting hydrologic characterization.

  11. Addressing criticisms of existing predictive bias research: cognitive ability test scores still overpredict African Americans' job performance.

    PubMed

    Berry, Christopher M; Zhao, Peng

    2015-01-01

    Predictive bias studies have generally suggested that cognitive ability test scores overpredict job performance of African Americans, meaning these tests are not predictively biased against African Americans. However, at least 2 issues call into question existing over-/underprediction evidence: (a) a bias identified by Aguinis, Culpepper, and Pierce (2010) in the intercept test typically used to assess over-/underprediction and (b) a focus on the level of observed validity instead of operational validity. The present study developed and utilized a method of assessing over-/underprediction that draws on the math of subgroup regression intercept differences, does not rely on the biased intercept test, allows for analysis at the level of operational validity, and can use meta-analytic estimates as input values. Therefore, existing meta-analytic estimates of key parameters, corrected for relevant statistical artifacts, were used to determine whether African American job performance remains overpredicted at the level of operational validity. African American job performance was typically overpredicted by cognitive ability tests across levels of job complexity and across conditions wherein African American and White regression slopes did and did not differ. Because the present study does not rely on the biased intercept test and because appropriate statistical artifact corrections were carried out, the present study's results are not affected by the 2 issues mentioned above. The present study represents strong evidence that cognitive ability tests generally overpredict job performance of African Americans. (c) 2015 APA, all rights reserved.

  12. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer.

    PubMed

    Rankin, Keegan; Mabury, Scott A

    2015-05-19

    The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.

  13. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  14. Investigation of Weibel-filament growth in the nonlinear regime using laser-irradiated foils of different materials

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2017-10-01

    M.J.-E. MANUEL GENERAL ATOMICS, C.M. HUNTINGTON, D.P. HIGGINSON, B.B. POLLOCK, B.A. REMINGTON, H. RINDERKNECHT, J.S. ROSS, D. RYUTOV, G. SWADLING, S. WILKS, A.B. ZYLSTRA, H.-S. PARK LLNL, F. FIUZA, S. TOTORICASLAC, G. GREGORIOXFORD, J. PARK, A. SPITKOVSKYPRINCETON, Y. SAKAWA, H. TAKABEOSAKA, H. SIOMIT, A.B. ZYLSTRALANL. The Weibel instability is presently the leading mechanism proposed to amplify magnetic fields necessary to form `collisionless' shocks in weakly magnetized astrophysical systems, including young supernova remnants and gamma-ray bursts. These systems rely on the presence of strong self-generated magnetic fields to mediate shock formation since the typical collisional mean-free-path is much larger than the system size. The work presented here investigates the development of the Weibel instability in the nonlinear regime through experimental variation of plasma parameters using different ion species and separation distances. Our goal is to investigate the underlying physical mechanism that may allow the formation of collisionless shocks in astrophysical objects. Recent experimental and computational results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and in collaboration with LLNL under contract DE-AC52-07NA27344.

  15. Clapping in time parallels literacy and calls upon overlapping neural mechanisms in early readers.

    PubMed

    Bonacina, Silvia; Krizman, Jennifer; White-Schwoch, Travis; Kraus, Nina

    2018-05-12

    The auditory system is extremely precise in processing the temporal information of perceptual events and using these cues to coordinate action. Synchronizing movement to a steady beat relies on this bidirectional connection between sensory and motor systems, and activates many of the auditory and cognitive processes used when reading. Here, we use Interactive Metronome, a clinical intervention technology requiring an individual to clap her hands in time with a steady beat, to investigate whether the links between literacy and synchronization skills, previously established in older children, are also evident in children who are learning to read. We tested 64 typically developing children (ages 5-7 years) on their synchronization abilities, neurophysiological responses to speech in noise, and literacy skills. We found that children who have lower variability in synchronizing have higher phase consistency, higher stability, and more accurate envelope encoding-all neurophysiological response components linked to language skills. Moreover, performing the same task with visual feedback reveals links with literacy skills, notably processing speed, phonological processing, word reading, spelling, morphology, and syntax. These results suggest that rhythm skills and literacy call on overlapping neural mechanisms, supporting the idea that rhythm training may boost literacy in part by engaging sensory-motor systems. © 2018 New York Academy of Sciences.

  16. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    PubMed

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  17. Identification of approximately duplicate material records in ERP systems

    NASA Astrophysics Data System (ADS)

    Zong, Wei; Wu, Feng; Chu, Lap-Keung; Sculli, Domenic

    2017-03-01

    The quality of master data is crucial for the accurate functioning of the various modules of an enterprise resource planning (ERP) system. This study addresses specific data problems arising from the generation of approximately duplicate material records in ERP databases. Such problems are mainly due to the firm's lack of unique and global identifiers for the material records, and to the arbitrary assignment of alternative names for the same material by various users. Traditional duplicate detection methods are ineffective in identifying such approximately duplicate material records because these methods typically rely on string comparisons of each field. To address this problem, a machine learning-based framework is developed to recognise semantic similarity between strings and to further identify and reunify approximately duplicate material records - a process referred to as de-duplication in this article. First, the keywords of the material records are extracted to form vectors of discriminating words. Second, a machine learning method using a probabilistic neural network is applied to determine the semantic similarity between these material records. The approach was evaluated using data from a real case study. The test results indicate that the proposed method outperforms traditional algorithms in identifying approximately duplicate material records.

  18. Graphene on a curved substrate with a controllable curvature: Device fabrication and transport measurements

    NASA Astrophysics Data System (ADS)

    Chen, Yixuan; Mills, Shaun; Liu, Ying

    In monolayer graphene, the local deviation of carbon positions from the perfect lattice has been predicted to lead to a pseudo magnetic field with measurable effects. A striking confirmation of this effect is the observation of Landau levels that are attributed to a pseudo magnetic field in excess of 300 T in graphene nanobubbles. However, typical experimental methods of generating such local deviations in graphene rely on strain accompanied by a surface curvature. Whether a surface curvature alone can produce measurable effects in graphene has not been explored experimentally. It is therefore of interest to study graphene in a system that decouples strain from surface curvature. Of particular interest is its response to an external magnetic field. We developed a grayscale electron beam lithography technique for preparing PMMA substructures with a continuously variable radius of curvature from ~100 nm to ~1 μm. Magnetoelectrical transport measurements on exfoliated graphene supported by these substructures are being carried out. The flexibility of this process may be further exploited in the study of the bilayer and trilayer graphene systems. We will also study hybrid structures of 2D superconductors and graphene.

  19. EVOLUTION AND EPISODIC MEMORY: AN ANALYSIS AND DEMONSTRATION OF A SOCIAL FUNCTION OF EPISODIC RECOLLECTION

    PubMed Central

    Klein, Stanley B.; Cosmides, Leda; Gangi, Cynthia E.; Jackson, Betsy; Tooby, John; Costabile, Kristi A.

    2013-01-01

    Over the past two decades, an abundance of evidence has shown that individuals typically rely on semantic summary knowledge when making trait judgments about self and others (for reviews, see Klein, 2004; Klein, Robertson, Gangi, & Loftus, 2008). But why form trait summaries if one can consult the original episodes on which the summary was based? Conversely, why retain episodes after having abstracted a summary representation from them? Are there functional reasons to have trait information represented in two different, independently retrievable databases? Evolution does not produce new phenotypic systems that are complex and functionally organized by chance. Such systems acquire their functional organization because they solved some evolutionarily recurrent problems for the organism. In this article we explore some of the functional properties of episodic memory. Specifically, in a series of studies we demonstrate that maintaining a database of episodic memories enables its owner to reevaluate an individual’s past behavior in light of new information, sometimes drastically changing one’s impression in the process. We conclude that some of the most important functions of episodic memory have to do with its role in human social interaction. PMID:23378680

  20. Real-Time, Digital Pulse-Shape Discrimination in Non-Hazardous Fast Liquid Scintillation Detectors: Prospects for Safety and Security

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Aspinall, Michael D.; Cave, Francis D.; Lavietes, Anthony D.

    2012-08-01

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and γ rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/γ-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flashpoint and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/γ-ray separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 × 106 events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous.

  1. Refrigerant Performance Evaluation Including Effects of Transport Properties and Optimized Heat Exchangers.

    PubMed

    Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A

    2017-08-01

    Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.

  2. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals

    NASA Astrophysics Data System (ADS)

    Orlova, Tetiana; Lancia, Federico; Loussert, Charles; Iamsaard, Supitchaya; Katsonis, Nathalie; Brasselet, Etienne

    2018-04-01

    Molecular machines operated by light have been recently shown to be able to produce oriented motion at the molecular scale1,2 as well as do macroscopic work when embedded in supramolecular structures3-5. However, any supramolecular movement irremediably ceases as soon as the concentration of the interconverting molecular motors or switches reaches a photo-stationary state6,7. To circumvent this limitation, researchers have typically relied on establishing oscillating illumination conditions—either by modulating the source intensity8,9 or by using bespoke illumination arrangements10-13. In contrast, here we report a supramolecular system in which the emergence of oscillating patterns is encoded at the molecular level. Our system comprises chiral liquid crystal structures that revolve continuously when illuminated, under the action of embedded light-driven molecular motors. The rotation at the supramolecular level is sustained by the diffusion of the motors away from a localized illumination area. Above a critical irradiation power, we observe a spontaneous symmetry breaking that dictates the directionality of the supramolecular rotation. The interplay between the twist of the supramolecular structure and the diffusion14 of the chiral molecular motors creates continuous, regular and unidirectional rotation of the liquid crystal structure under non-equilibrium conditions.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, M. J.; Aspinall, M. D.; Cave, F. D.

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and {gamma} rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/{gamma}-ray separation. Moreover, the scintillation media on whichmore » the technique relies usually have a low flash point and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/{gamma} separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 x 10{sup 6} events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous. (authors)« less

  4. Peripheral facial weakness (Bell's palsy).

    PubMed

    Basić-Kes, Vanja; Dobrota, Vesna Dermanović; Cesarik, Marijan; Matovina, Lucija Zadro; Madzar, Zrinko; Zavoreo, Iris; Demarin, Vida

    2013-06-01

    Peripheral facial weakness is a facial nerve damage that results in muscle weakness on one side of the face. It may be idiopathic (Bell's palsy) or may have a detectable cause. Almost 80% of peripheral facial weakness cases are primary and the rest of them are secondary. The most frequent causes of secondary peripheral facial weakness are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immune disorders, drugs, degenerative diseases of the central nervous system, etc. The diagnosis relies upon the presence of typical signs and symptoms, blood chemistry tests, cerebrospinal fluid investigations, nerve conduction studies and neuroimaging methods (cerebral MRI, x-ray of the skull and mastoid). Treatment of secondary peripheral facial weakness is based on therapy for the underlying disorder, unlike the treatment of Bell's palsy that is controversial due to the lack of large, randomized, controlled, prospective studies. There are some indications that steroids or antiviral agents are beneficial but there are also studies that show no beneficial effect. Additional treatments include eye protection, physiotherapy, acupuncture, botulinum toxin, or surgery. Bell's palsy has a benign prognosis with complete recovery in about 80% of patients, 15% experience some mode of permanent nerve damage and severe consequences remain in 5% of patients.

  5. A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks.

    PubMed

    Wang, Changhan; Yan, Xinchen; Smith, Max; Kochhar, Kanika; Rubin, Marcie; Warren, Stephen M; Wrobel, James; Lee, Honglak

    2015-01-01

    Wound surface area changes over multiple weeks are highly predictive of the wound healing process. Furthermore, the quality and quantity of the tissue in the wound bed also offer important prognostic information. Unfortunately, accurate measurements of wound surface area changes are out of reach in the busy wound practice setting. Currently, clinicians estimate wound size by estimating wound width and length using a scalpel after wound treatment, which is highly inaccurate. To address this problem, we propose an integrated system to automatically segment wound regions and analyze wound conditions in wound images. Different from previous segmentation techniques which rely on handcrafted features or unsupervised approaches, our proposed deep learning method jointly learns task-relevant visual features and performs wound segmentation. Moreover, learned features are applied to further analysis of wounds in two ways: infection detection and healing progress prediction. To the best of our knowledge, this is the first attempt to automate long-term predictions of general wound healing progress. Our method is computationally efficient and takes less than 5 seconds per wound image (480 by 640 pixels) on a typical laptop computer. Our evaluations on a large-scale wound database demonstrate the effectiveness and reliability of the proposed system.

  6. Desiderata for ontologies to be used in semantic annotation of biomedical documents.

    PubMed

    Bada, Michael; Hunter, Lawrence

    2011-02-01

    A wealth of knowledge valuable to the translational research scientist is contained within the vast biomedical literature, but this knowledge is typically in the form of natural language. Sophisticated natural-language-processing systems are needed to translate text into unambiguous formal representations grounded in high-quality consensus ontologies, and these systems in turn rely on gold-standard corpora of annotated documents for training and testing. To this end, we are constructing the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-text biomedical journal articles that are being manually annotated with the entire sets of terms from select vocabularies, predominantly from the Open Biomedical Ontologies (OBO) library. Our efforts in building this corpus has illuminated infelicities of these ontologies with respect to the semantic annotation of biomedical documents, and we propose desiderata whose implementation could substantially improve their utility in this task; these include the integration of overlapping terms across OBOs, the resolution of OBO-specific ambiguities, the integration of the BFO with the OBOs and the use of mid-level ontologies, the inclusion of noncanonical instances, and the expansion of relations and realizable entities. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Language and False-Belief Task Performance in Children With Autism Spectrum Disorder.

    PubMed

    Jeffrey Farrar, M; Seung, Hye Kyeung; Lee, Hyeonjin

    2017-07-12

    Language is related to false-belief (FB) understanding in both typically developing children and children with autism spectrum disorder (ASD). The current study examined the role of complementation and general language in FB understanding. Of interest was whether language plays similar or different roles in the groups' FB performance. Participants were 16 typically developing children (mean age = 5.0 years; mental age = 6.7) and 18 with ASD (mean age = 7.3 years; mental age = 8.3). Children were administered FB and language tasks (say- and think-complements), receptive and expressive vocabulary tests, and relative clauses. When mental age and receptive and expressive vocabulary were used as separate covariates, the typical control group outperformed the children with ASD in FB task performance. Chi-square analyses indicated that passing both complementation tasks was linked to the FB understanding of children with ASD. Children with ASD who passed FB tasks all passed say- and think-complement tasks. However, some children in the control group were able to pass the FB tasks, even if they failed the say- and think-complement tasks. The results indicate that children with ASD relied more on complement understanding to pass FB than typically developing children. Results are discussed regarding the developmental pathways for FB understanding.

  8. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The systemmore » was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.« less

  9. Strategic search from long-term memory: an examination of semantic and autobiographical recall.

    PubMed

    Unsworth, Nash; Brewer, Gene A; Spillers, Gregory J

    2014-01-01

    Searching long-term memory is theoretically driven by both directed (search strategies) and random components. In the current study we conducted four experiments evaluating strategic search in semantic and autobiographical memory. Participants were required to generate either exemplars from the category of animals or the names of their friends for several minutes. Self-reported strategies suggested that participants typically relied on visualization strategies for both tasks and were less likely to rely on ordered strategies (e.g., alphabetic search). When participants were instructed to use particular strategies, the visualization strategy resulted in the highest levels of performance and the most efficient search, whereas ordered strategies resulted in the lowest levels of performance and fairly inefficient search. These results are consistent with the notion that retrieval from long-term memory is driven, in part, by search strategies employed by the individual, and that one particularly efficient strategy is to visualize various situational contexts that one has experienced in the past in order to constrain the search and generate the desired information.

  10. Differential Contribution of Low- and High-level Image Content to Eye Movements in Monkeys and Humans.

    PubMed

    Wilming, Niklas; Kietzmann, Tim C; Jutras, Megan; Xue, Cheng; Treue, Stefan; Buffalo, Elizabeth A; König, Peter

    2017-01-01

    Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free-viewing task. Our data-driven clustering analyses revealed distinct human and macaque clusters, indicating species-specific selection strategies. Yet, cross-species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on computational models of visual saliency indicate that such cross-species commonalities in free viewing are largely due to similar low-level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans. © The Author 2017. Published by Oxford University Press.

  11. Differential Contribution of Low- and High-level Image Content to Eye Movements in Monkeys and Humans

    PubMed Central

    Wilming, Niklas; Kietzmann, Tim C.; Jutras, Megan; Xue, Cheng; Treue, Stefan; Buffalo, Elizabeth A.; König, Peter

    2017-01-01

    Abstract Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free-viewing task. Our data-driven clustering analyses revealed distinct human and macaque clusters, indicating species-specific selection strategies. Yet, cross-species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on computational models of visual saliency indicate that such cross-species commonalities in free viewing are largely due to similar low-level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans. PMID:28077512

  12. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  13. Terrestrial Planet Formation from an Annulus -- Revisited

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Walsh, Kevin J.; Kretke, Katherine A.; Levison, Harold F.

    2018-04-01

    Numerous recent theories of terrestrial planet formation suggest that, in order to reproduce the observed large Earth to Mars mass ratio, planets formed from an annulus of material within 1 au. The success of these models typically rely on a Mars sized embryo being scattered outside 1 au (to ~1.5 au) and starving, while those remaining inside 1 au continue growing, forming Earth and Venus. In some models the scattering is instigated by the migration of giant planets, while in others an embryo-instability naturally occurs due to the dissipation of the gaseous solar nebula. While these models can typically succeed in reproducing the overall mass ratio among the planets, the final angular momentum deficit (AMD) of the present terrestrial planets in our Solar System, and their radial mass concentration (RMC), namely the position where Mars end up in the simulations, are not always well reproduced. Assuming that the gas nebula may not be entirely dissipated when such an embryo-instability happens, here, we study the effects that the time of such an instability can have on the final AMD and RMC. In addition, we also included energy dissipation within embryo-embryo collisions by assuming a given coefficient of restitution for collisions. Our results show that: i) dissipation within embryo-embryo collisions do not play any important role in the final terrestrial planetary system; ii) the final AMD decreases only when the number of final planets formed increases; iii) the RMC tends to always be lower than the present value no matter the number of final planets; and iv) depending on the time that the embryo-instability happen, if too early, with too much gas still present, a second instability will generally happen after the dissipation of the gas nebula.

  14. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    DOE PAGES

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; ...

    2016-02-06

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  15. Piezoelectric-based actuators for improved tractor-trailer performance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Menicovich, David; Amitay, Michael; Gallardo, Daniele

    2017-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers and to improve thermal mixing in refrigerated trailers was explored on full-scale tests. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. The actuators are operated in a closed feedback loop based on inputs received from the tractor's electronic control unit, various system components and environmental sensors. The data are collected and processed on-board and transmitted to a cloud-based data management platform for further big data analytics and diagnostics. The system functions as a smart connected product through the interchange of data between the physical truck-mounted system and its cloud platform.

  16. Contaminants in ventilated filling boxes

    NASA Astrophysics Data System (ADS)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  17. Engineered cell-cell communication via DNA messaging

    PubMed Central

    2012-01-01

    Background Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically “regulate transcription.” Results We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis. Conclusions We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia. PMID:22958599

  18. Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime

    NASA Astrophysics Data System (ADS)

    Sabater, A. B.; Rhoads, J. F.

    2017-02-01

    The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.

  19. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    NASA Astrophysics Data System (ADS)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  20. Validation of Commercial Fiber Optic Components for Aerospace Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2005-01-01

    Full qualification for commercial photonic parts as defined by the Military specification system in the past, is not feasible. Due to changes in the photonic components industry and the Military specification system that NASA had relied upon so heavily in the past, an approach to technology validation of commercial off the shelf parts had to be devised. This approach involves knowledge of system requirements, environmental requirements and failure modes of the particular components under consideration. Synthesizing the criteria together with the major known failure modes to formulate a test plan is an effective way of establishing knowledge based "qualification". Although this does not provide the type of reliability assurance that the Military specification system did in the past, it is an approach that allows for increased risk mitigation. The information presented will introduce the audience to the technology validation approach that is currently applied at NASA for the usage of commercial-off-the-shelf (COTS) fiber optic components for space flight environments. The focus will be on how to establish technology validation criteria for commercial fiber products such that continued reliable performance is assured under the harsh environmental conditions of typical missions. The goal of this presentation is to provide the audience with an approach to formulating a COTS qualification test plan for these devices. Examples from past NASA missions will be discussed.

  1. 'Scalp coordinate system': a new tool to accurately describe cutaneous lesions on the scalp: a pilot study.

    PubMed

    Alexander, William; Miller, George; Alexander, Preeya; Henderson, Michael A; Webb, Angela

    2018-06-12

    Skin cancers are extremely common and the incidence increases with age. Care for patients with multiple or complicated skin cancers often require multidisciplinary input involving a general practitioner, dermatologist, plastic surgeon and/or radiation oncologist. Timely, efficient care of these patients relies on precise and effective communication between all parties. Until now, descriptions regarding the location of lesions on the scalp have been inaccurate, which can lead to error with the incorrect lesion being excised or biopsied. A novel technique for accurately and efficiently describing the location of lesions on the scalp, using a coordinate system, is described (the 'scalp coordinate system' (SCS)). This method was tested in a pilot study by clinicians typically involved in the care of patients with cutaneous malignancies. A mannequin scalp was used in the study. The SCS significantly improved the accuracy in the ability to both describe and locate lesions on the scalp. This improved accuracy comes at a minor time cost. The direct and indirect costs arising from poor communication between medical subspecialties (particularly relevant in surgical procedures) are immense. An effective tool used by all involved clinicians is long overdue particularly in patients with scalps with extensive actinic damage, scarring or innocuous biopsy sites. The SCS provides the opportunity to improve outcomes for both the patient and healthcare system. © 2018 Royal Australasian College of Surgeons.

  2. Evaluating Water Demand Using Agent-Based Modeling

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.

    2004-12-01

    The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage based on its own condition and the condition of the world around it. For example, residential agents can make decisions to convert to or from xeriscaping and/or low-flow appliances based on policy implementation, economic status, weather, and climatic conditions. Agricultural agents may vary their usage by making decisions on crop distribution and irrigation design. Preliminary results show that water usage can be highly irrational under certain conditions. Results also identify sub-sectors within each group that have the highest influence on ensemble group behavior, providing a means for policy makers to target their efforts. Finally, the model is able to predict the impact of low-probability, high-impact events such as catastrophic denial of service due to natural and/or man-made events.

  3. Low-coherence interferometric tip-clearance probe

    NASA Astrophysics Data System (ADS)

    Kempe, Andreas; Schlamp, Stefan; Rösgen, Thomas; Haffner, Ken

    2003-08-01

    We propose an all-fiber, self-calibrating, economical probe that is capable of near-real-time, single-port, simultaneous blade-to-blade tip-clearance measurements with submillimeter accuracy (typically <100 μm, absolute) in the first stages of a gas turbine. Our probe relies on the interference between backreflected light from the blade tips during the 1-μs blade passage time and a frequency-shifted reference with variable time delay, making use of a low-coherence light source. A single optical fiber of arbitrary length connects the self-contained optics and electronics to the turbine.

  4. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    PubMed

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  5. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast

    PubMed Central

    Ding, Lin; Laor, Dana; Weisman, Ronit; Forsburg, Susan L

    2014-01-01

    Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically this exploits temperature sensitive mutations, or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the Anchor Away technique, originally designed in budding yeast (Haruki et al., 2008a). This method relies on a rapamycin-mediated interaction between the FRB and FKBP12 binding domains, to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof-of-principle. PMID:24733494

  6. A Fully Automated Stage for Optical Waveguide Measurements

    DTIC Science & Technology

    1993-09-01

    method, as in the case of the out-of-plane method, also relies on a certain level of uniformity in the waveguide. Accurate loss measurements over a...2 . The S1227-66BQ has a response from 190 nm to 1000 nm with a peak at 720 nm and a typical radiant sensitivity of 0.35 A/W at the peak wavelength 3... levels . The current generated in the detector due to incident light is converted to a voltage at the output of the operational amplifier (op-amp

  7. Satellite altitude determination uncertainties

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.

  8. Method for a microfluidic weaklink device

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Duncan, Matthew P [Augusta, GA

    2009-12-01

    The present invention relates to an electrokinetic (EK) pump capable of creating high pressures electroosmotically, and capable of retaining high pressures. Both pressure creation and retention are accomplished without the need for moving parts. The EK pump uses a polymerizable fluid that creates the pressure-retaining seal within the EK pump when polymerization is initiated, typically by exposure to UV radiation. Weaklink devices are advantageously constructed including such a pressure-retaining EK pump since, among other advantages, the response of the weaklink device relies on predictable and reliable chemical polymerization reactions.

  9. Maslov indices, Poisson brackets, and singular differential forms

    NASA Astrophysics Data System (ADS)

    Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.

    2014-06-01

    Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.

  10. Calculation of the acoustical properties of triadic harmonies.

    PubMed

    Cook, Norman D

    2017-12-01

    The author reports that the harmonic "tension" and major/minor "valence" of pitch combinations can be calculated directly from acoustical properties without relying on concepts from traditional harmony theory. The capability to compute the well-known types of harmonic triads means that their perception is not simply a consequence of learning an arbitrary cultural "idiom" handed down from the Italian Renaissance. On the contrary, for typical listeners familiar with diatonic music, attention to certain, definable, acoustical features underlies the perception of the valence (modality) and the inherent tension (instability) of three-tone harmonies.

  11. Blade selection for a modern axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Wright, L. C.

    1974-01-01

    The procedures leading to successful design of an axial flow compressor are discussed. The three related approaches to cascade selection are: (1) experimental approach which relies on the use of experimental results from identical cascades to satisfy the velocity diagrams calculated, (2) a purely analytical procedure whereby blade shapes are calculated from the theoretical cascade and viscous flow equations, and (3) a semiempirical procedure which used experimental data together with the theoretically derived functional relations to relate the cascade parameters. Diagrams of typical transonic blade sections with uncambered leading edges are presented.

  12. Self-localization of wireless sensor networks using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Ertin, Emre; Priddy, Kevin L.

    2005-03-01

    Recently there has been a renewed interest in the notion of deploying large numbers of networked sensors for applications ranging from environmental monitoring to surveillance. In a typical scenario a number of sensors are distributed in a region of interest. Each sensor is equipped with sensing, processing and communication capabilities. The information gathered from the sensors can be used to detect, track and classify objects of interest. For a number of locations the sensors location is crucial in interpreting the data collected from those sensors. Scalability requirements dictate sensor nodes that are inexpensive devices without a dedicated localization hardware such as GPS. Therefore the network has to rely on information collected within the network to self-localize. In the literature a number of algorithms has been proposed for network localization which uses measurements informative of range, angle, proximity between nodes. Recent work by Patwari and Hero relies on sensor data without explicit range estimates. The assumption is that the correlation structure in the data is a monotone function of the intersensor distances. In this paper we propose a new method based on unsupervised learning techniques to extract location information from the sensor data itself. We consider a grid consisting of virtual nodes and try to fit grid in the actual sensor network data using the method of self organizing maps. Then known sensor network geometry can be used to rotate and scale the grid to a global coordinate system. Finally, we illustrate how the virtual nodes location information can be used to track a target.

  13. Feature-based and spatial attentional selection in visual working memory.

    PubMed

    Heuer, Anna; Schubö, Anna

    2016-05-01

    The contents of visual working memory (VWM) can be modulated by spatial cues presented during the maintenance interval ("retrocues"). Here, we examined whether attentional selection of representations in VWM can also be based on features. In addition, we investigated whether the mechanisms of feature-based and spatial attention in VWM differ with respect to parallel access to noncontiguous locations. In two experiments, we tested the efficacy of valid retrocues relying on different kinds of information. Specifically, participants were presented with a typical spatial retrocue pointing to two locations, a symbolic spatial retrocue (numbers mapping onto two locations), and two feature-based retrocues: a color retrocue (a blob of the same color as two of the items) and a shape retrocue (an outline of the shape of two of the items). The two cued items were presented at either contiguous or noncontiguous locations. Overall retrocueing benefits, as compared to a neutral condition, were observed for all retrocue types. Whereas feature-based retrocues yielded benefits for cued items presented at both contiguous and noncontiguous locations, spatial retrocues were only effective when the cued items had been presented at contiguous locations. These findings demonstrate that attentional selection and updating in VWM can operate on different kinds of information, allowing for a flexible and efficient use of this limited system. The observation that the representations of items presented at noncontiguous locations could only be reliably selected with feature-based retrocues suggests that feature-based and spatial attentional selection in VWM rely on different mechanisms, as has been shown for attentional orienting in the external world.

  14. Developing a Passive Time-Activity Triage System In support of Consumer Ingredient Exposure Prioritization.

    EPA Science Inventory

    Chemical Hazard/toxicity assessment of chemicals relies on droves of chemical-biological data at the organism, tissue, cell, and biomolecular level of resolution. Big data in the context of exposure science relies on a comprehensive knowledge of societies’ and community act...

  15. Developing a Passive Time-Activity Triage System In support of Consumer Ingredient Exposure Prioritization

    EPA Science Inventory

    Chemical Hazard/toxicity assessment of chemicals relies on droves of chemical-biological data at the organism, tissue, cell, and biomolecular level of resolution. Big data in the context of exposure science relies on a comprehensive knowledge of societies’ and community activity ...

  16. Beyond Self-Report: Tools to Compare Estimated and Real-World Smartphone Use

    PubMed Central

    Andrews, Sally; Ellis, David A.; Shaw, Heather; Piwek, Lukasz

    2015-01-01

    Psychologists typically rely on self-report data when quantifying mobile phone usage, despite little evidence of its validity. In this paper we explore the accuracy of using self-reported estimates when compared with actual smartphone use. We also include source code to process and visualise these data. We compared 23 participants’ actual smartphone use over a two-week period with self-reported estimates and the Mobile Phone Problem Use Scale. Our results indicate that estimated time spent using a smartphone may be an adequate measure of use, unless a greater resolution of data are required. Estimates concerning the number of times an individual used their phone across a typical day did not correlate with actual smartphone use. Neither estimated duration nor number of uses correlated with the Mobile Phone Problem Use Scale. We conclude that estimated smartphone use should be interpreted with caution in psychological research. PMID:26509895

  17. Heat flux sensor research and development: The cool film calorimeter

    NASA Technical Reports Server (NTRS)

    Abtahi, A.; Dean, P.

    1990-01-01

    The goal was to meet the measurement requirement of the NASP program for a gauge capable of measuring heat flux into a 'typical' structure in a 'typical' hypersonic flight environment. A device is conceptually described that has fast response times and is small enough to fit in leading edge or cowl lip structures. The device relies heavily on thin film technology. The main conclusion is the description of the limitations of thin film technology both in the art of fabrication and in the assumption that thin films have the same material properties as the original bulk material. Three gauges were designed and fabricated. Thin film deposition processes were evaluated. The effect of different thin film materials on the performance and fabrication of the gauge was studied. The gauges were tested in an arcjet facility. Survivability and accuracy were determined under various hostile environment conditions.

  18. Beyond Self-Report: Tools to Compare Estimated and Real-World Smartphone Use.

    PubMed

    Andrews, Sally; Ellis, David A; Shaw, Heather; Piwek, Lukasz

    2015-01-01

    Psychologists typically rely on self-report data when quantifying mobile phone usage, despite little evidence of its validity. In this paper we explore the accuracy of using self-reported estimates when compared with actual smartphone use. We also include source code to process and visualise these data. We compared 23 participants' actual smartphone use over a two-week period with self-reported estimates and the Mobile Phone Problem Use Scale. Our results indicate that estimated time spent using a smartphone may be an adequate measure of use, unless a greater resolution of data are required. Estimates concerning the number of times an individual used their phone across a typical day did not correlate with actual smartphone use. Neither estimated duration nor number of uses correlated with the Mobile Phone Problem Use Scale. We conclude that estimated smartphone use should be interpreted with caution in psychological research.

  19. Climate Sensitivity Controls Uncertainty in Future Terrestrial Carbon Sink

    NASA Astrophysics Data System (ADS)

    Schurgers, Guy; Ahlström, Anders; Arneth, Almut; Pugh, Thomas A. M.; Smith, Benjamin

    2018-05-01

    For the 21st century, carbon cycle models typically project an increase of terrestrial carbon with increasing atmospheric CO2 and a decrease with the accompanying climate change. However, these estimates are poorly constrained, primarily because they typically rely on a limited number of emission and climate scenarios. Here we explore a wide range of combinations of CO2 rise and climate change and assess their likelihood with the climate change responses obtained from climate models. Our results demonstrate that the terrestrial carbon uptake depends critically on the climate sensitivity of individual climate models, representing a large uncertainty of model estimates. In our simulations, the terrestrial biosphere is unlikely to become a strong source of carbon with any likely combination of CO2 and climate change in the absence of land use change, but the fraction of the emissions taken up by the terrestrial biosphere will decrease drastically with higher emissions.

  20. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present recirculating design utilizes the available laser light more efficiently, making it possible to trap more atoms at a given laser power or the same number of atoms at a lower laser power. The present design is also simpler in that it requires fewer optical fibers, fiber couplings, and collimators, and fewer photodiodes for monitoring beam powers. Additionally, the present design alleviates the difficulty of maintaining constant ratios among power levels of the beams within each "up" or "down" triplet.

  1. Physics of Tokamak Plasma Start-up

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  2. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine.

    PubMed

    Becker, Judith; Schäfer, Rudolf; Kohlstedt, Michael; Harder, Björn J; Borchert, Nicole S; Stöveken, Nadine; Bremer, Erhard; Wittmann, Christoph

    2013-11-15

    The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is growing interest in uncoupling the production of ectoines from the typical conditions required for their synthesis, and instead design strains that naturally release ectoines into the medium without the need for osmotic changes, since the use of high-salinity media in the fermentation process imposes notable constraints on the costs, design, and durability of fermenter systems. Here, we used a Corynebacterium glutamicum strain as a cellular chassis to establish a microbial cell factory for the biotechnological production of ectoines. The implementation of a mutant aspartokinase enzyme ensured efficient supply of L-aspartate-beta-semialdehyde, the precursor for ectoine biosynthesis. We further engineered the genome of the basic C. glutamicum strain by integrating a codon-optimized synthetic ectABCD gene cluster under expressional control of the strong and constitutive C. glutamicum tuf promoter. The resulting recombinant strain produced ectoine and excreted it into the medium; however, lysine was still found as a by-product. Subsequent inactivation of the L-lysine exporter prevented the undesired excretion of lysine while ectoine was still exported. Using the streamlined cell factory, a fed-batch process was established that allowed the production of ectoine with an overall productivity of 6.7 g L(-1) day(-1) under growth conditions that did not rely on the use of high-salinity media. The present study describes the construction of a stable microbial cell factory for recombinant production of ectoine. We successfully applied metabolic engineering strategies to optimize its synthetic production in the industrial workhorse C. glutamicum and thereby paved the way for further improvements in ectoine yield and biotechnological process optimization.

  3. The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects.

    PubMed

    Freud, Erez; Avidan, Galia; Ganel, Tzvi

    2015-02-01

    Holistic processing, the decoding of a stimulus as a unified whole, is a basic characteristic of object perception. Recent research using Garner's speeded classification task has shown that this processing style is utilized even for impossible objects that contain an inherent spatial ambiguity. In particular, similar Garner interference effects were found for possible and impossible objects, indicating similar holistic processing styles for the two object categories. In the present study, we further investigated the perceptual mechanisms that mediate such holistic representation of impossible objects. We relied on the notion that, whereas information embedded in the high-spatial-frequency (HSF) content supports fine-detailed processing of object features, the information conveyed by low spatial frequencies (LSF) is more crucial for the emergence of a holistic shape representation. To test the effects of image frequency on the holistic processing of impossible objects, participants performed the Garner speeded classification task on images of possible and impossible cubes filtered for their LSF and HSF information. For images containing only LSF, similar interference effects were observed for possible and impossible objects, indicating that the two object categories were processed in a holistic manner. In contrast, for the HSF images, Garner interference was obtained only for possible, but not for impossible objects. Importantly, we provided evidence to show that this effect could not be attributed to a lack of sensitivity to object possibility in the LSF images. Particularly, even for full-spectrum images, Garner interference was still observed for both possible and impossible objects. Additionally, performance in an object classification task revealed high sensitivity to object possibility, even for LSF images. Taken together, these findings suggest that the visual system can tolerate the spatial ambiguity typical to impossible objects by relying on information embedded in LSF, whereas HSF information may underlie the visual system's susceptibility to distortions in objects' spatial layouts.

  4. Plasmoid Instability in Forming Current Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comisso, L.; Lingam, M.; Huang, Y. -M.

    The plasmoid instability has revolutionized our understanding of magnetic reconnection in astrophysical environments. By preventing the formation of highly elongated reconnection layers, it is crucial in enabling the rapid energy conversion rates that are characteristic of many astrophysical phenomena. Most previous studies have focused on Sweet–Parker current sheets, which are unattainable in typical astrophysical systems. Here we derive a general set of scaling laws for the plasmoid instability in resistive and visco-resistive current sheets that evolve over time. Our method relies on a principle of least time that enables us to determine the properties of the reconnecting current sheet (aspect ratio and elapsed time) and the plasmoid instability (growth rate, wavenumber, inner layer width) at the end of the linear phase. After this phase the reconnecting current sheet is disrupted and fast reconnection can occur. The scaling laws of the plasmoid instability are not simple power laws, and they depend on the Lundquist number (S), the magnetic Prandtl number (P m), the noise of the system (more » $${\\psi }_{0}$$), the characteristic rate of current sheet evolution ($$1/\\tau $$), and the thinning process. We also demonstrate that previous scalings are inapplicable to the vast majority of astrophysical systems. Furthermore, we explore the implications of the new scaling relations in astrophysical systems such as the solar corona and the interstellar medium. In both of these systems, we show that our scaling laws yield values for the growth rate, wavenumber, and aspect ratio that are much smaller than the Sweet–Parker–based scalings.« less

  5. Plasmoid Instability in Forming Current Sheets

    DOE PAGES

    Comisso, L.; Lingam, M.; Huang, Y. -M.; ...

    2017-11-28

    The plasmoid instability has revolutionized our understanding of magnetic reconnection in astrophysical environments. By preventing the formation of highly elongated reconnection layers, it is crucial in enabling the rapid energy conversion rates that are characteristic of many astrophysical phenomena. Most previous studies have focused on Sweet–Parker current sheets, which are unattainable in typical astrophysical systems. Here we derive a general set of scaling laws for the plasmoid instability in resistive and visco-resistive current sheets that evolve over time. Our method relies on a principle of least time that enables us to determine the properties of the reconnecting current sheet (aspect ratio and elapsed time) and the plasmoid instability (growth rate, wavenumber, inner layer width) at the end of the linear phase. After this phase the reconnecting current sheet is disrupted and fast reconnection can occur. The scaling laws of the plasmoid instability are not simple power laws, and they depend on the Lundquist number (S), the magnetic Prandtl number (P m), the noise of the system (more » $${\\psi }_{0}$$), the characteristic rate of current sheet evolution ($$1/\\tau $$), and the thinning process. We also demonstrate that previous scalings are inapplicable to the vast majority of astrophysical systems. Furthermore, we explore the implications of the new scaling relations in astrophysical systems such as the solar corona and the interstellar medium. In both of these systems, we show that our scaling laws yield values for the growth rate, wavenumber, and aspect ratio that are much smaller than the Sweet–Parker–based scalings.« less

  6. A WBAN System for Ambulatory Monitoring of Physical Activity and Health Status: Applications and Challenges.

    PubMed

    Jovanov, E; Milenkovic, A; Otto, C; De Groen, P; Johnson, B; Warren, S; Taibi, G

    2005-01-01

    Recent technological advances in sensors, low-power integrated circuits, and wireless communications have enabled the design of low-cost, miniature, lightweight, intelligent physiological sensor platforms that can be seamlessly integrated into a body area network for health monitoring. Wireless body area networks (WBANs) promise unobtrusive ambulatory health monitoring for extended periods of time and near real-time updates of patients' medical records through the Internet. A number of innovative systems for health monitoring have recently been proposed. However, they typically rely on custom communication protocols and hardware designs, lacking generality and flexibility. The lack of standard platforms, system software support, and standards makes these systems expensive. Bulky sensors, high price, and frequent battery changes are all likely to limit user compliance. To address some of these challenges, we prototyped a WBAN utilizing a common off-the-shelf wireless sensor platform with a ZigBee-compliant radio interface and an ultra low-power microcontroller. The standard platform interfaces to custom sensor boards that are equipped with accelerometers for motion monitoring and a bioamplifier for electrocardiogram or electromyogram monitoring. Software modules for on-board processing, communication, and network synchronization have been developed using the TinyOS operating system. Although the initial WBAN prototype targets ambulatory monitoring of user activity, the developed sensors can easily be adapted to monitor other physiological parameters. In this paper, we discuss initial results, implementation challenges, and the need for standardization in this dynamic and promising research field.

  7. A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    NASA Technical Reports Server (NTRS)

    Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.

    2015-01-01

    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant post-processing. Example technologies used in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3-Dimensional Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR).

  8. Allometric shape change of the lower pharyngeal jaw correlates with a dietary shift to piscivory in a cichlid fish.

    PubMed

    Hellig, Christoph J; Kerschbaumer, Michaela; Sefc, Kristina M; Koblmüller, Stephan

    2010-07-01

    The morphological versatility of the pharyngeal jaw of cichlid fishes is assumed to represent a key factor facilitating their unparalleled trophic diversification and explosive radiation. It is generally believed that the functional design of an organism relates to its ecology, and thus, specializations to different diets are typically associated with distinct morphological designs, especially manifested in the cichlids' pharyngeal jaw apparatus. Thereby, the lower pharyngeal jaw (LPJ) incorporates some of the most predictive features for distinct diet-related morphotypes. Thus, considering that piscivorous cichlids experience an ontogenetic dietary shift from typically various kinds of invertebrates to fish, concomitant morphological changes in the LPJ are expected. Using Lepidiolamprologus elongatus, a top predator in the shallow rocky habitat of Lake Tanganyika, as model, and applying geometric and traditional morphometric techniques, we demonstrate an allometric change in ontogenetic LPJ shape development coinciding with the completion of the dietary shift toward piscivory. The piscivorous LPJ morphotype is initiated in juvenile fish by increasing elongation and narrowing of the LPJ and--when the fish reach a size of 80-90 mm standard length--further refined by the elongation of the posterior muscular processes, which serve as insertion for the fourth musculus levator externus. The enlarged muscular processes of the fully mature piscivorous morphotype provide for the construction of a powerful lever system, which allows the large individuals to process large prey fish and rely on exclusive piscivory.

  9. Structure, Function and Floristic Relationships of Plant Communities in Stressful Habitats Marginal to the Brazilian Atlantic Rainforest

    PubMed Central

    SCARANO, FABIO R.

    2002-01-01

    The Brazilian Atlantic rainforest consists of a typical tropical rainforest on mountain slopes, and stands out as a biodiversity hotspot for its high species richness and high level of species endemism. This forest is bordered by plant communities with lower species diversity, due mostly to more extreme environmental conditions than those found in the mesic rainforest. Between the mountain slopes and the sea, the coastal plains have swamp forests, dry semi‐deciduous forests and open thicket vegetation on marine sand deposits. At the other extreme, on top of the mountains (>2000 m a.s.l.), the rainforest is substituted by high altitude fields and open thicket vegetation on rocky outcrops. Thus, the plant communities that are marginal to the rainforest are subjected either to flooding, drought, oceanicity or cold winter temperatures. It was found that positive interactions among plants play an important role in the structuring and functioning of a swamp forest, a coastal sandy vegetation and a cold, high altitude vegetation in the state of Rio de Janeiro. Moreover, only a few species seem to adopt this positive role and, therefore, the functioning of these entire systems may rely on them. Curiously, these nurse plants are often epiphytes in the rainforest, and at the study sites are typically terrestrial. Many exhibit crassulacean acid metabolism. Conservation initiatives must treat the Atlantic coastal vegetation as a complex rather than a rainforest alone. PMID:12324276

  10. Licensed physicians who work in prisons: a profile.

    PubMed Central

    Lichtenstein, R L; Rykwalder, A

    1983-01-01

    A profile of the personal and professional characteristics of the physicians who work in America's prisons was obtained by analyzing data from a larger study of all licensed physicians in the United States who worked in a prison at least 12 hours a month during the fall of 1979. Psychiatrists were not included, nor were physicians working in jails. The population of 382 prison physicians comprised two major groups--those who worked in prisons full time and those who worked in them part time. Part-time physicians, who represented the majority of physicians involved in prison work (58 percent), were found to resemble closely the typical physician in the United States; they were predominantly trained in America, specialized, and board certified. In contrast, full-time prison physicians, who accounted for 73 percent of the total hours physicians spent working in prisons, differed significantly from the typical U.S. physician. They were older, less specialized, less likely to be board certified, and more likely to be graduates of non-U.S. medical schools. The professional characteristics of the full-time prison physicians raise serious questions about the quality of medical care they are likely to provide. It would seem, based on their professional attributes, that the part-time physicians are able to provide better quality care than their full-time colleagues. Prison health system could thus assure higher quality care to inmates by relying primarily on part-time rather than full-time practitioners. PMID:6419274

  11. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  12. Allometric shape change of the lower pharyngeal jaw correlates with a dietary shift to piscivory in a cichlid fish

    NASA Astrophysics Data System (ADS)

    Hellig, Christoph J.; Kerschbaumer, Michaela; Sefc, Kristina M.; Koblmüller, Stephan

    2010-07-01

    The morphological versatility of the pharyngeal jaw of cichlid fishes is assumed to represent a key factor facilitating their unparalleled trophic diversification and explosive radiation. It is generally believed that the functional design of an organism relates to its ecology, and thus, specializations to different diets are typically associated with distinct morphological designs, especially manifested in the cichlids’ pharyngeal jaw apparatus. Thereby, the lower pharyngeal jaw (LPJ) incorporates some of the most predictive features for distinct diet-related morphotypes. Thus, considering that piscivorous cichlids experience an ontogenetic dietary shift from typically various kinds of invertebrates to fish, concomitant morphological changes in the LPJ are expected. Using Lepidiolamprologus elongatus, a top predator in the shallow rocky habitat of Lake Tanganyika, as model, and applying geometric and traditional morphometric techniques, we demonstrate an allometric change in ontogenetic LPJ shape development coinciding with the completion of the dietary shift toward piscivory. The piscivorous LPJ morphotype is initiated in juvenile fish by increasing elongation and narrowing of the LPJ and—when the fish reach a size of 80-90 mm standard length—further refined by the elongation of the posterior muscular processes, which serve as insertion for the fourth musculus levator externus. The enlarged muscular processes of the fully mature piscivorous morphotype provide for the construction of a powerful lever system, which allows the large individuals to process large prey fish and rely on exclusive piscivory.

  13. Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Myungsoo; Markel, Anthony J

    Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehiclesmore » is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.« less

  14. Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnel, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    The operation of the thermo-mechanical unit of a cryogenic cooler may originate a resonant excitation of the spacecraft frame, optical bench or components of the optical train. This may result in degraded functionality of the inherently vibration sensitive space-borne infrared imager directly associated with the cooler or neighboring instrumentation typically requiring a quiet micro-g environment. The best practice for controlling cooler induced vibration relies on the principle of active momentum cancellation. In particular, the pressure wave generator typically contains two oppositely actuated piston compressors, while the single piston expander is counterbalanced by an auxiliary active counter-balancer. Active vibration cancellation is supervised by a dedicated DSP feed-forward controller, where the error signals are delivered by the vibration sensors (accelerometers or load cells). This can result in oversized, overweight and overpriced cryogenic coolers with degraded electromechanical performance and impaired reliability. The authors are advocating a reliable, compact, cost and power saving approach capitalizing on the combined application of a passive tuned dynamic absorber and a low frequency vibration isolator. This concept appears to be especially suitable for low budget missions involving mini and micro satellites, where price, size, weight and power consumption are of concern. The authors reveal the results of theoretical study and experimentation on the attainable performance using a fullscale technology demonstrator relying on a Ricor model K527 tactical split Stirling cryogenic cooler. The theoretical predictions are in fair agreement with the experimental data. From experimentation, the residual vibration export is quite suitable for demanding wide range of aerospace applications. The authors give practical recommendations on heatsinking and further maximizing performance.

  15. Explicit and Implicit Second Language Training Differentially Affect the Achievement of Native-like Brain Activation Patterns

    PubMed Central

    Morgan-Short, Kara; Steinhauer, Karsten; Sanz, Cristina; Ullman, Michael T.

    2013-01-01

    It is widely believed that adults cannot learn a foreign language in the same way that children learn a first language. However, recent evidence suggests that adult learners of a foreign language can come to rely on native-like language brain mechanisms. Here, we show that the type of language training crucially impacts this outcome. We used an artificial language paradigm to examine longitudinally whether explicit training (that approximates traditional grammar-focused classroom settings) and implicit training (that approximates immersion settings) differentially affect neural (electrophysiological) and behavioral (performance) measures of syntactic processing. Results showed that performance of explicitly and implicitly trained groups did not differ at either low or high proficiency. In contrast, electrophysiological (ERP) measures revealed striking differences between the groups’ neural activity at both proficiency levels in response to syntactic violations. Implicit training yielded an N400 at low proficiency, whereas at high proficiency, it elicited a pattern typical of native speakers: an anterior negativity followed by a P600 accompanied by a late anterior negativity. Explicit training, by contrast, yielded no significant effects at low proficiency and only an anterior positivity followed by a P600 at high proficiency. Although the P600 is reminiscent of native-like processing, this response pattern as a whole is not. Thus, only implicit training led to an electrophysiological signature typical of native speakers. Overall, the results suggest that adult foreign language learners can come to rely on native-like language brain mechanisms, but that the conditions under which the language is learned may be crucial in attaining this goal. PMID:21861686

  16. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms.

    PubMed

    Reuter, Eva-Maria; Cunnington, Ross; Mattingley, Jason B; Riek, Stephan; Carroll, Timothy J

    2016-11-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153-167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. Copyright © 2016 the American Physiological Society.

  17. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms

    PubMed Central

    Cunnington, Ross; Mattingley, Jason B.; Riek, Stephan; Carroll, Timothy J.

    2016-01-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153–167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. PMID:27582293

  18. Central tendency effects in time interval reproduction in autism

    PubMed Central

    Karaminis, Themelis; Cicchini, Guido Marco; Neil, Louise; Cappagli, Giulia; Aagten-Murphy, David; Burr, David; Pellicano, Elizabeth

    2016-01-01

    Central tendency, the tendency of judgements of quantities (lengths, durations etc.) to gravitate towards their mean, is one of the most robust perceptual effects. A Bayesian account has recently suggested that central tendency reflects the integration of noisy sensory estimates with prior knowledge representations of a mean stimulus, serving to improve performance. The process is flexible, so prior knowledge is weighted more heavily when sensory estimates are imprecise, requiring more integration to reduce noise. In this study we measure central tendency in autism to evaluate a recent theoretical hypothesis suggesting that autistic perception relies less on prior knowledge representations than typical perception. If true, autistic children should show reduced central tendency than theoretically predicted from their temporal resolution. We tested autistic and age- and ability-matched typical children in two child-friendly tasks: (1) a time interval reproduction task, measuring central tendency in the temporal domain; and (2) a time discrimination task, assessing temporal resolution. Central tendency reduced with age in typical development, while temporal resolution improved. Autistic children performed far worse in temporal discrimination than the matched controls. Computational simulations suggested that central tendency was much less in autistic children than predicted by theoretical modelling, given their poor temporal resolution. PMID:27349722

  19. Patterns of client behavior with their most recent male escort: an application of latent class analysis.

    PubMed

    Grov, Christian; Starks, Tyrel J; Wolff, Margaret; Smith, Michael D; Koken, Juline A; Parsons, Jeffrey T

    2015-05-01

    Research examining interactions between male escorts and clients has relied heavily on data from escorts, men working on the street, and behavioral data aggregated over time. In the current study, 495 clients of male escorts answered questions about sexual behavior with their last hire. Latent class analysis identified four client sets based on these variables. The largest (n = 200, 40.4 %, labeled Typical Escort Encounter) included men endorsing behavior prior research found typical of paid encounters (e.g., oral sex and kissing). The second largest class (n = 157, 31.7 %, Typical Escort Encounter + Erotic Touching) included men reporting similar behaviors, but with greater variety along a spectrum of touching (e.g., mutual masturbation and body worship). Those classed BD/SM and Kink (n = 76, 15.4 %) reported activity along the kink spectrum (BD/SM and role play). Finally, men classed Erotic Massage Encounters (n = 58, 11.7 %) primarily engaged in erotic touch. Clients reporting condomless anal sex were in the minority (12.2 % overall). Escorts who engage in anal sex with clients might be appropriate to train in HIV prevention and other harm reduction practices-adopting the perspective of "sex workers as sex educators."

  20. A Drawing Task to Assess Emotion Inference in Language-Impaired Children.

    PubMed

    Vendeville, Nathalie; Blanc, Nathalie; Brechet, Claire

    2015-10-01

    Studies investigating the ability of children with language impairment (LI) to infer emotions rely on verbal responses (which can be challenging for these children) and/or the selection of a card representing an emotion (which limits the response range). In contrast, a drawing task might allow a broad spectrum of responses without involving language. This study used a drawing task to compare the ability to make emotional inferences in children with and without LI. Twenty-two children with LI and 22 typically developing children ages 6 to 10 years were assessed in school during 3 sessions. They were asked to listen to audio stories. At specific moments, the experimenter stopped the recording and asked children to complete the drawing of a face to depict the emotion felt by the story's character. Three adult study-blind judges were subsequently asked to evaluate the expressiveness of the drawings. Children with LI had more difficulty than typically developing children making emotional inferences. Children with LI also made more errors of different valence than their typically developing peers. Our findings confirm that children with LI show difficulty in producing emotional inferences, even when performing a drawing task--a relatively language-free response mode.

  1. Generation and evaluation of typical meteorological year datasets for greenhouse and external conditions on the Mediterranean coast.

    PubMed

    Fernández, M D; López, J C; Baeza, E; Céspedes, A; Meca, D E; Bailey, B

    2015-08-01

    A typical meteorological year (TMY) represents the typical meteorological conditions over many years but still contains the short term fluctuations which are absent from long-term averaged data. Meteorological data were measured at the Experimental Station of Cajamar 'Las Palmerillas' (Cajamar Foundation) in Almeria, Spain, over 19 years at the meteorological station and in a reference greenhouse which is typical of those used in the region. The two sets of measurements were subjected to quality control analysis and then used to create TMY datasets using three different methodologies proposed in the literature. Three TMY datasets were generated for the external conditions and two for the greenhouse. They were assessed by using each as input to seven horticultural models and comparing the model results with those obtained by experiment in practical trials. In addition, the models were used with the meteorological data recorded during the trials. A scoring system was used to identify the best performing TMY in each application and then rank them in overall performance. The best methodology was that of Argiriou for both greenhouse and external conditions. The average relative errors between the seasonal values estimated using the 19-year dataset and those using the Argiriou greenhouse TMY were 2.2 % (reference evapotranspiration), -0.45 % (pepper crop transpiration), 3.4 % (pepper crop nitrogen uptake) and 0.8 % (green bean yield). The values obtained using the Argiriou external TMY were 1.8 % (greenhouse reference evapotranspiration), 0.6 % (external reference evapotranspiration), 4.7 % (greenhouse heat requirement) and 0.9 % (loquat harvest date). Using the models with the 19 individual years in the historical dataset showed that the year to year weather variability gave results which differed from the average values by ± 15 %. By comparison with results from other greenhouses it was shown that the greenhouse TMY is applicable to greenhouses which have a solar radiation transmission of approximately 65 % and rely on manual control of ventilation which constitute the majority in the south-east of Spain and in most Mediterranean greenhouse areas.

  2. Generation and evaluation of typical meteorological year datasets for greenhouse and external conditions on the Mediterranean coast

    NASA Astrophysics Data System (ADS)

    Fernández, M. D.; López, J. C.; Baeza, E.; Céspedes, A.; Meca, D. E.; Bailey, B.

    2015-08-01

    A typical meteorological year (TMY) represents the typical meteorological conditions over many years but still contains the short term fluctuations which are absent from long-term averaged data. Meteorological data were measured at the Experimental Station of Cajamar `Las Palmerillas' (Cajamar Foundation) in Almeria, Spain, over 19 years at the meteorological station and in a reference greenhouse which is typical of those used in the region. The two sets of measurements were subjected to quality control analysis and then used to create TMY datasets using three different methodologies proposed in the literature. Three TMY datasets were generated for the external conditions and two for the greenhouse. They were assessed by using each as input to seven horticultural models and comparing the model results with those obtained by experiment in practical trials. In addition, the models were used with the meteorological data recorded during the trials. A scoring system was used to identify the best performing TMY in each application and then rank them in overall performance. The best methodology was that of Argiriou for both greenhouse and external conditions. The average relative errors between the seasonal values estimated using the 19-year dataset and those using the Argiriou greenhouse TMY were 2.2 % (reference evapotranspiration), -0.45 % (pepper crop transpiration), 3.4 % (pepper crop nitrogen uptake) and 0.8 % (green bean yield). The values obtained using the Argiriou external TMY were 1.8 % (greenhouse reference evapotranspiration), 0.6 % (external reference evapotranspiration), 4.7 % (greenhouse heat requirement) and 0.9 % (loquat harvest date). Using the models with the 19 individual years in the historical dataset showed that the year to year weather variability gave results which differed from the average values by ± 15 %. By comparison with results from other greenhouses it was shown that the greenhouse TMY is applicable to greenhouses which have a solar radiation transmission of approximately 65 % and rely on manual control of ventilation which constitute the majority in the south-east of Spain and in most Mediterranean greenhouse areas.

  3. Exploring the market for third-party-owned residential photovoltaic systems: insights from lease and power-purchase agreement contract structures and costs in California

    DOE PAGES

    Davidson, Carolyn; Steinberg, Daniel; Margolis, Robert

    2015-02-04

    We report that over the past several years, third-party-ownership (TPO) structures for residential photovoltaic (PV) systems have become the predominant ownership model in the US residential market. Under a TPO contract, the PV system host typically makes payments to the third-party owner of the system. Anecdotal evidence suggests that the total TPO contract payments made by the customer can differ significantly from payments in which the system host directly purchases the system. Furthermore, payments can vary depending on TPO contract structure. To date, a paucity of data on TPO contracts has precluded studies evaluating trends in TPO contract cost. Thismore » study relies on a sample of 1113 contracts for residential PV systems installed in 2010–2012 under the California Solar Initiative to evaluate how the timing of payments under a TPO contract impacts the ultimate cost of the system to the customer. Furthermore, we evaluate how the total cost of TPO systems to customers has changed through time, and the degree to which contract costs have tracked trends in the installed costs of a PV system. We find that the structure of the contract and the timing of the payments have financial implications for the customer: (1) power-purchase contracts, on average, cost more than leases, (2) no-money-down contracts are more costly than prepaid contracts, assuming a customer's discount rate is lower than 17% and (3) contracts that include escalator clauses cost more, for both power-purchase agreements and leases, at most plausible discount rates. Additionally, all contract costs exhibit a wide range, and do not parallel trends in installed costs over time.« less

  4. Exploring the market for third-party-owned residential photovoltaic systems: insights from lease and power-purchase agreement contract structures and costs in California

    NASA Astrophysics Data System (ADS)

    Davidson, Carolyn; Steinberg, Daniel; Margolis, Robert

    2015-02-01

    Over the past several years, third-party-ownership (TPO) structures for residential photovoltaic (PV) systems have become the predominant ownership model in the US residential market. Under a TPO contract, the PV system host typically makes payments to the third-party owner of the system. Anecdotal evidence suggests that the total TPO contract payments made by the customer can differ significantly from payments in which the system host directly purchases the system. Furthermore, payments can vary depending on TPO contract structure. To date, a paucity of data on TPO contracts has precluded studies evaluating trends in TPO contract cost. This study relies on a sample of 1113 contracts for residential PV systems installed in 2010-2012 under the California Solar Initiative to evaluate how the timing of payments under a TPO contract impacts the ultimate cost of the system to the customer. Furthermore, we evaluate how the total cost of TPO systems to customers has changed through time, and the degree to which contract costs have tracked trends in the installed costs of a PV system. We find that the structure of the contract and the timing of the payments have financial implications for the customer: (1) power-purchase contracts, on average, cost more than leases, (2) no-money-down contracts are more costly than prepaid contracts, assuming a customer’s discount rate is lower than 17% and (3) contracts that include escalator clauses cost more, for both power-purchase agreements and leases, at most plausible discount rates. In addition, all contract costs exhibit a wide range, and do not parallel trends in installed costs over time.

  5. Exploring the market for third-party-owned residential photovoltaic systems: insights from lease and power-purchase agreement contract structures and costs in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Carolyn; Steinberg, Daniel; Margolis, Robert

    We report that over the past several years, third-party-ownership (TPO) structures for residential photovoltaic (PV) systems have become the predominant ownership model in the US residential market. Under a TPO contract, the PV system host typically makes payments to the third-party owner of the system. Anecdotal evidence suggests that the total TPO contract payments made by the customer can differ significantly from payments in which the system host directly purchases the system. Furthermore, payments can vary depending on TPO contract structure. To date, a paucity of data on TPO contracts has precluded studies evaluating trends in TPO contract cost. Thismore » study relies on a sample of 1113 contracts for residential PV systems installed in 2010–2012 under the California Solar Initiative to evaluate how the timing of payments under a TPO contract impacts the ultimate cost of the system to the customer. Furthermore, we evaluate how the total cost of TPO systems to customers has changed through time, and the degree to which contract costs have tracked trends in the installed costs of a PV system. We find that the structure of the contract and the timing of the payments have financial implications for the customer: (1) power-purchase contracts, on average, cost more than leases, (2) no-money-down contracts are more costly than prepaid contracts, assuming a customer's discount rate is lower than 17% and (3) contracts that include escalator clauses cost more, for both power-purchase agreements and leases, at most plausible discount rates. Additionally, all contract costs exhibit a wide range, and do not parallel trends in installed costs over time.« less

  6. Estrogens and cognition: Friends or foes?: An evaluation of the opposing effects of estrogens on learning and memory.

    PubMed

    Korol, Donna L; Pisani, Samantha L

    2015-08-01

    This article is part of a Special Issue "Estradiol and cognition". Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings showing that the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Spatial dynamics of invasion: the geometry of introduced species.

    PubMed

    Korniss, Gyorgy; Caraco, Thomas

    2005-03-07

    Many exotic species combine low probability of establishment at each introduction with rapid population growth once introduction does succeed. To analyse this phenomenon, we note that invaders often cluster spatially when rare, and consequently an introduced exotic's population dynamics should depend on locally structured interactions. Ecological theory for spatially structured invasion relies on deterministic approximations, and determinism does not address the observed uncertainty of the exotic-introduction process. We take a new approach to the population dynamics of invasion and, by extension, to the general question of invasibility in any spatial ecology. We apply the physical theory for nucleation of spatial systems to a lattice-based model of competition between plant species, a resident and an invader, and the analysis reaches conclusions that differ qualitatively from the standard ecological theories. Nucleation theory distinguishes between dynamics of single- and multi-cluster invasion. Low introduction rates and small system size produce single-cluster dynamics, where success or failure of introduction is inherently stochastic. Single-cluster invasion occurs only if the cluster reaches a critical size, typically preceded by a number of failed attempts. For this case, we identify the functional form of the probability distribution of time elapsing until invasion succeeds. Although multi-cluster invasion for sufficiently large systems exhibits spatial averaging and almost-deterministic dynamics of the global densities, an analytical approximation from nucleation theory, known as Avrami's law, describes our simulation results far better than standard ecological approximations.

  8. A dual-light reporter system to determine the efficiency of protein–protein interactions in mammalian cells

    PubMed Central

    Nasim, M. T.; Trembath, R. C.

    2005-01-01

    Methods for determining protein–protein interactions in mammalian cells typically rely on single reporter functions and are susceptible to variations between samples particularly in regard to levels of transcription, processing and translation. A method has been developed for determining protein–protein interactions in mammalian cells, which bypasses these variables confounding single reporter assays. The approach utilizes two units of gene expression linked to reporter functions that are interposed by a deactivation–activation unit in such a way that the downstream expression unit is switched off. Hence upstream expression occurs regardless of protein–protein interaction, leading to the production of the upstream reporter. In the event of protein–protein interactions, the downstream expression unit is switched on leading to dual reporter read outs. Thus, the ratio of the two reporter activities provides a measure to determine the efficiency of protein–protein interactions. To access the system we screened a mutant of BMPR2 where the interaction between BMPR-II and LIMK is abrogated. BMPR-II is a type II receptor of the TGFβ superfamily and plays a key role in the pathogenesis of familial pulmonary arterial hypertension. This system has potential for high-throughput screening of libraries (peptide, chemical, cDNA, etc.) to isolate agents that are capable of interfering with highly selective protein–protein interaction. PMID:15824058

  9. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control

    NASA Astrophysics Data System (ADS)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele

    2016-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  10. Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing

    NASA Astrophysics Data System (ADS)

    Edri, Yuval; Bozovic, Dolores; Yochelis, Arik

    2016-10-01

    The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.

  11. Manufacture of composite test specimens for delamination studies

    NASA Technical Reports Server (NTRS)

    Sumich, M.

    1989-01-01

    This paper describes the process for manufacturing high-quality test specimens for uses in evaluations of interlaminar tensile strength of laminated composites. The chosen specimen configuration is a curved beam which experiences interlaminar tension in the region of greatest curvature when the beam is subjected to 'opening' forces. The manufacturing process uses a lock-mold tooling approach, the principle of which relies upon the difference in coefficients of thermal expansion between the internal rubber mandrel and the surrounding steel female mold. With this method, compaction pressures above those provided by a typical autoclave can be achieved.

  12. The Epidemiology and Diagnosis of Invasive Candidiasis Among Premature Infants

    PubMed Central

    Kelly, Matthew S.; Benjamin, Daniel K.; Smith, P. Brian

    2015-01-01

    Invasive candidiasis is a leading infectious cause of morbidity and mortality in premature infants. Improved recognition of modifiable risk factors and antifungal prophylaxis have contributed to the recent decline in the incidence of this infection among infants. Invasive candidiasis typically occurs in the first six weeks of life and presents with non-specific signs of sepsis. Definitive diagnosis relies on growth of Candida in blood culture or cultures from other normally sterile sites, but this may identify fewer than half of cases. Improved diagnostics are needed to guide initiation of antifungal therapy in premature infants. PMID:25677999

  13. New Technologies for Rapid Bacterial Identification and Antibiotic Resistance Profiling.

    PubMed

    Kelley, Shana O

    2017-04-01

    Conventional approaches to bacterial identification and drug susceptibility testing typically rely on culture-based approaches that take 2 to 7 days to return results. The long turnaround times contribute to the spread of infectious disease, negative patient outcomes, and the misuse of antibiotics that can contribute to antibiotic resistance. To provide new solutions enabling faster bacterial analysis, a variety of approaches are under development that leverage single-cell analysis, microfluidic concentration and detection strategies, and ultrasensitive readout mechanisms. This review discusses recent advances in this area and the potential of new technologies to enable more effective management of infectious disease.

  14. Catalytic Carbonyl Allylation, Propargylation and Vinylation from the Alcohol or Aldehyde Oxidation Level via C-C Bond Forming Hydrogenation and Transfer Hydrogenation: A Departure from Preformed Organometallic Reagents**

    PubMed Central

    Bower, John F.; Kim, In Su; Patman, Ryan L.; Krische, Michael J.

    2009-01-01

    Classical protocols for carbonyl allylation, propargylation and vinylation typically rely upon the use of preformed allyl metal, allenyl metal and vinyl metal reagents, respectively, mandating stoichiometric generation of metallic byproducts. Through transfer hydrogenative C-C coupling, carbonyl addition may be achieved from the aldehyde or alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Here, we review transfer hydrogenative methods for carbonyl addition, which encompass the first cataltyic protocols enabling direct C–H functionalization of alcohols. PMID:19040235

  15. Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference

    NASA Astrophysics Data System (ADS)

    Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2018-03-01

    Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

  16. Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer.

    PubMed

    Isbaner, Sebastian; Karedla, Narain; Kaminska, Izabela; Ruhlandt, Daja; Raab, Mario; Bohlen, Johann; Chizhik, Alexey; Gregor, Ingo; Tinnefeld, Philip; Enderlein, Jörg; Tsukanov, Roman

    2018-04-11

    Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.

  17. Tensile strength of cementing agents on the CeraOne system of dental prosthesis on implants.

    PubMed

    Montenegro, Alexandre Campos; Machado, Aldir Nascimento; Depes Gouvêa, Cresus Vinicius

    2008-12-01

    The aim of this in vitro study was to evaluate the tensile strength of titanium cylinders cemented on stainless steel abutment mock-ups by the Cerazone system. Four types of cements were used: glass ionomer, Fuji I (GC); zinc phosphate, Cimento LS (Vigodent); zinc oxide without eugenol, Rely x Temp NE (3M ESPE); and resin cement, Rely x ARC (3M ESPE). Four experimental groups were formed, each composed of 5 test specimens. Each test specimen consisted of a set of 1 cylinder and 1 stainless steel abutment mock-up. All cements tested were manipulated in accordance with manufacturers' instructions. A static load of 5 Newtons (N) for 2 minutes was used to standardize the procedure. The tensile tests were performed by a mechanical universal testing machine (EMIC DL500MF) at a crosshead speed of 0.5 mm/min. The highest bonding values resulting from the experiment were obtained by Cimento LS (21.86 MPa mean), followed by the resin cement Rely x ARC (12.95 MPa mean), Fuji I (6.89 MPa mean), and Rely x Temp NE (4.71 MPa mean). The results were subjected to analysis of variance (ANOVA) and the Student's t test. The cements differed amongst them as regards tensile strength, with the highest bonding levels recorded with zinc phosphate (Cimento LS) and the lowest with the zinc oxide without eugenol (Rely x Temp NE).

  18. Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

    Science.gov Websites

    electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a Fueling StationsA> Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail system. For information about this project, contact Denver Metro Clean Cities Coalition. Download

  19. Data-driven Applications for the Sun-Earth System

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.

    2016-12-01

    Advances in observational and data mining techniques allow extracting information from the large volume of Sun-Earth observational data that can be assimilated into first principles physical models. However, equations governing Sun-Earth phenomena are typically nonlinear, complex, and high-dimensional. The high computational demand of solving the full governing equations over a large range of scales precludes the use of a variety of useful assimilative tools that rely on applied mathematical and statistical techniques for quantifying uncertainty and predictability. Effective use of such tools requires the development of computationally efficient methods to facilitate fusion of data with models. This presentation will provide an overview of various existing as well as newly developed data-driven techniques adopted from atmospheric and oceanic sciences that proved to be useful for space physics applications, such as computationally efficient implementation of Kalman Filter in radiation belts modeling, solar wind gap-filling by Singular Spectrum Analysis, and low-rank procedure for assimilation of low-altitude ionospheric magnetic perturbations into the Lyon-Fedder-Mobarry (LFM) global magnetospheric model. Reduced-order non-Markovian inverse modeling and novel data-adaptive decompositions of Sun-Earth datasets will be also demonstrated.

  20. A probabilistic method for the estimation of residual risk in donated blood.

    PubMed

    Bish, Ebru K; Ragavan, Prasanna K; Bish, Douglas R; Slonim, Anthony D; Stramer, Susan L

    2014-10-01

    The residual risk (RR) of transfusion-transmitted infections, including the human immunodeficiency virus and hepatitis B and C viruses, is typically estimated by the incidence[Formula: see text]window period model, which relies on the following restrictive assumptions: Each screening test, with probability 1, (1) detects an infected unit outside of the test's window period; (2) fails to detect an infected unit within the window period; and (3) correctly identifies an infection-free unit. These assumptions need not hold in practice due to random or systemic errors and individual variations in the window period. We develop a probability model that accurately estimates the RR by relaxing these assumptions, and quantify their impact using a published cost-effectiveness study and also within an optimization model. These assumptions lead to inaccurate estimates in cost-effectiveness studies and to sub-optimal solutions in the optimization model. The testing solution generated by the optimization model translates into fewer expected infections without an increase in the testing cost. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. In Situ Solid Particle Generator

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    Particle seeding is a key diagnostic component of filter testing and flow imaging techniques. Typical particle generators rely on pressurized air or gas sources to propel the particles into the flow field. Other techniques involve liquid droplet atomizers. These conventional techniques have drawbacks that include challenging access to the flow field, flow and pressure disturbances to the investigated flow, and they are prohibitive in high-temperature, non-standard, extreme, and closed-system flow conditions and environments. In this concept, the particles are supplied directly within a flow environment. A particle sample cartridge containing the particles is positioned somewhere inside the flow field. The particles are ejected into the flow by mechanical brush/wiper feeding and sieving that takes place within the cartridge chamber. Some aspects of this concept are based on established material handling techniques, but they have not been used previously in the current configuration, in combination with flow seeding concepts, and in the current operational mode. Unlike other particle generation methods, this concept has control over the particle size range ejected, breaks up agglomerates, and is gravity-independent. This makes this device useful for testing in microgravity environments.

  2. Comparing the microbial risks associated with household drinking water supplies used in peri-urban communities of Phnom Penh, Cambodia.

    PubMed

    Thomas, K; McBean, E; Shantz, A; Murphy, H M

    2015-03-01

    Most Cambodians lack access to a safe source of drinking water. Piped distribution systems are typically limited to major urban centers in Cambodia, and the remaining population relies on a variety of surface, rain, and groundwater sources. This study examines the household water supplies available to Phnom Penh's resettled peri-urban residents through a case-study approach of two communities. A quantitative microbial risk assessment is performed to assess the level of diarrheal disease risk faced by community members due to microbial contamination of drinking water. Risk levels found in this study exceed those associated with households consuming piped water. Filtered and boiled rain and tank water stored in a kettle, bucket/cooler, bucket with spigot or a 500 mL bottle were found to provide risk levels within one order-of-magnitude to the piped water available in Phnom Penh. Two primary concerns identified are the negation of the risk reductions gained by boiling due to prevailing poor storage practices and the use of highly contaminated source water.

  3. Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control.

    PubMed

    Woodroffe, Rosie; Donnelly, Christl A; Ham, Cally; Jackson, Seth Y B; Moyes, Kelly; Chapman, Kayna; Stratton, Naomi G; Cartwright, Samantha J

    2016-10-01

    Effective management of infectious disease relies upon understanding mechanisms of pathogen transmission. In particular, while models of disease dynamics usually assume transmission through direct contact, transmission through environmental contamination can cause different dynamics. We used Global Positioning System (GPS) collars and proximity-sensing contact-collars to explore opportunities for transmission of Mycobacterium bovis [causal agent of bovine tuberculosis] between cattle and badgers (Meles meles). Cattle pasture was badgers' most preferred habitat. Nevertheless, although collared cattle spent 2914 collar-nights in the home ranges of contact-collared badgers, and 5380 collar-nights in the home ranges of GPS-collared badgers, we detected no direct contacts between the two species. Simultaneous GPS-tracking revealed that badgers preferred land > 50 m from cattle. Very infrequent direct contact indicates that badger-to-cattle and cattle-to-badger M. bovis transmission may typically occur through contamination of the two species' shared environment. This information should help to inform tuberculosis control by guiding both modelling and farm management. © 2016 John Wiley & Sons Ltd/CNRS.

  4. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2016-04-29

    We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less

  5. Clinical Decision Support-based Quality Measurement (CDS-QM) Framework: Prototype Implementation, Evaluation, and Future Directions

    PubMed Central

    Kukhareva, Polina V; Kawamoto, Kensaku; Shields, David E; Barfuss, Darryl T; Halley, Anne M; Tippetts, Tyler J; Warner, Phillip B; Bray, Bruce E; Staes, Catherine J

    2014-01-01

    Electronic quality measurement (QM) and clinical decision support (CDS) are closely related but are typically implemented independently, resulting in significant duplication of effort. While it seems intuitive that technical approaches could be re-used across these two related use cases, such reuse is seldom reported in the literature, especially for standards-based approaches. Therefore, we evaluated the feasibility of using a standards-based CDS framework aligned with anticipated EHR certification criteria to implement electronic QM. The CDS-QM framework was used to automate a complex national quality measure (SCIP-VTE-2) at an academic healthcare system which had previously relied on time-consuming manual chart abstractions. Compared with 305 manually-reviewed reference cases, the recall of automated measurement was 100%. The precision was 96.3% (CI:92.6%-98.5%) for ascertaining the denominator and 96.2% (CI:92.3%-98.4%) for the numerator. We therefore validated that a standards-based CDS-QM framework can successfully enable automated QM, and we identified benefits and challenges with this approach. PMID:25954389

  6. Burning mouth syndrome

    PubMed Central

    Gurvits, Grigoriy E; Tan, Amy

    2013-01-01

    Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and metabolic disorders, as well as drug reactions. BMS has clear predisposition to peri-/post menopausal females. Its pathophysiology has not been fully elucidated and involves peripheral and central neuropathic pathways. Clinical diagnosis relies on careful history taking, physical examination and laboratory analysis. Treatment is often tedious and is aimed at correction of underlying medical conditions, supportive therapy, and behavioral feedback. Drug therapy with alpha lipoic acid, clonazepam, capsaicin, and antidepressants may provide symptom relief. Psychotherapy may be helpful. Short term follow up data is promising, however, long term prognosis with treatment is lacking. BMS remains an important medical condition which often places a recognizable burden on the patient and health care system and requires appropriate recognition and treatment. PMID:23429751

  7. Burning mouth syndrome.

    PubMed

    Gurvits, Grigoriy E; Tan, Amy

    2013-02-07

    Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and metabolic disorders, as well as drug reactions. BMS has clear predisposition to peri-/post menopausal females. Its pathophysiology has not been fully elucidated and involves peripheral and central neuropathic pathways. Clinical diagnosis relies on careful history taking, physical examination and laboratory analysis. Treatment is often tedious and is aimed at correction of underlying medical conditions, supportive therapy, and behavioral feedback. Drug therapy with alpha lipoic acid, clonazepam, capsaicin, and antidepressants may provide symptom relief. Psychotherapy may be helpful. Short term follow up data is promising, however, long term prognosis with treatment is lacking. BMS remains an important medical condition which often places a recognizable burden on the patient and health care system and requires appropriate recognition and treatment.

  8. Microscopic pick-and-place teleoperation

    NASA Astrophysics Data System (ADS)

    Bhatti, Pamela; Hannaford, Blake; Marbot, Pierre-Henry

    1993-03-01

    A three degree-of-freedom direct drive mini robot has been developed for biomedical applications. The design approach of the mini robot relies heavily upon electromechanical components from the Winchester disk drive industry. In the current design, the first joint is driven by actuators from a 5.25' drive, and the following joints are driven by actuators typical of 3.5' drives. The system has 5 - 10 micrometers of position repeatability and resolution in all three axes. A mini gripper attachment has been fabricated for the robot to explore manipulation of objects ranging from 50 micrometers to 500 micrometers . Mounted on the robot, the gripper has successfully performed pick and place operations under teleoperated control. The mini robot serves to precisely position the gripper, and a needle-like finger of the gripper deflects so the fingers can grip a target object. The gripper finger capable of motion is fabricated with a piezoelectric bimorph crystal which deflects with an applied DC voltage. The experimental results are promising, and the mini gripper may be modified for future biomedical and micro assembly applications.

  9. Behavior of the maximum likelihood in quantum state tomography

    NASA Astrophysics Data System (ADS)

    Scholten, Travis L.; Blume-Kohout, Robin

    2018-02-01

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.

  10. Peeling-angle dependence of the stick-slip instability during adhesive tape peeling.

    PubMed

    Dalbe, Marie-Julie; Santucci, Stéphane; Vanel, Loïc; Cortet, Pierre-Philippe

    2014-12-28

    The influence of peeling angle on the dynamics observed during the stick-slip peeling of an adhesive tape has been investigated. This study relies on a new experimental setup for peeling at a constant driving velocity while keeping constant the peeling angle and peeled tape length. The thresholds of the instability are shown to be associated with a subcritical bifurcation and bistability of the system. The velocity onset of the instability is moreover revealed to strongly depend on the peeling angle. This could be the consequence of peeling angle dependance of either the fracture energy of the adhesive-substrate joint or the effective stiffness at play between the peeling front and the point at which the peeling is enforced. The shape of the peeling front velocity fluctuations is finally shown to progressively change from typical stick-slip relaxation oscillations to nearly sinusoidal oscillations as the peeling angle is increased. We suggest that this transition might be controlled by inertial effects possibly associated with the propagation of the peeling force fluctuations through elongation waves in the peeled tape.

  11. The early botanical medical movement as a reflection of life, liberty, and literacy in Jacksonian America*

    PubMed Central

    Flannery, Michael A.

    2002-01-01

    This paper describes a popular, grassroots health crusade initiated by Samuel Thomson (1769–1843) in the early decades of the nineteenth century and the ways the Thomsonians exemplified the inherent contradictions within the larger context of their own sociopolitical environment. Premised upon a unique brand of frontier egalitarianism exemplified in the Tennessee war-hero Andrew Jackson (1767–1845), the age that bore Jackson's name was ostensibly anti-intellectual, venerating “intuitive wisdom” and “common sense” over book learning and formal education. Likewise, the Thomsonian movement eschewed schooling and science for an empirical embrace of nature's apothecary, a populist rhetoric that belied its own complex and extensive infrastructure of polemical literature. Thus, Thomsonians, in fact, relied upon a literate public to explain and disseminate their system of healing. This paper contributes to the historiography of literacy in the United States that goes beyond typical census-data, probate-record, or will-signature analyses to look at how a popular medical cult was both heir to and promoter of a functionally literate populace. PMID:12398251

  12. Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak

    NASA Astrophysics Data System (ADS)

    Labate, C.; Di Gironimo, G.; Renno, F.

    2015-09-01

    Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.

  13. Behavior of the maximum likelihood in quantum state tomography

    DOE PAGES

    Blume-Kohout, Robin J; Scholten, Travis L.

    2018-02-22

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  14. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    PubMed Central

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  15. Ultrafast creation of large Schrödinger cat states of an atom.

    PubMed

    Johnson, K G; Wong-Campos, J D; Neyenhuis, B; Mizrahi, J; Monroe, C

    2017-09-26

    Mesoscopic quantum superpositions, or Schrödinger cat states, are widely studied for fundamental investigations of quantum measurement and decoherence as well as applications in sensing and quantum information science. The generation and maintenance of such states relies upon a balance between efficient external coherent control of the system and sufficient isolation from the environment. Here we create a variety of cat states of a single trapped atom's motion in a harmonic oscillator using ultrafast laser pulses. These pulses produce high fidelity impulsive forces that separate the atom into widely separated positions, without restrictions that typically limit the speed of the interaction or the size and complexity of the resulting motional superposition. This allows us to quickly generate and measure cat states larger than previously achieved in a harmonic oscillator, and create complex multi-component superposition states in atoms.Generation of mesoscopic quantum superpositions requires both reliable coherent control and isolation from the environment. Here, the authors succeed in creating a variety of cat states of a single trapped atom, mapping spin superpositions into spatial superpositions using ultrafast laser pulses.

  16. Optical chromatographic sample separation of hydrodynamically focused mixtures

    PubMed Central

    Terray, A.; Hebert, C. G.; Hart, S. J.

    2014-01-01

    Optical chromatography relies on the balance between the opposing optical and fluid drag forces acting on a particle. A typical configuration involves a loosely focused laser directly counter to the flow of particle-laden fluid passing through a microfluidic device. This equilibrium depends on the intrinsic properties of the particle, including size, shape, and refractive index. As such, uniquely fine separations are possible using this technique. Here, we demonstrate how matching the diameter of a microfluidic flow channel to that of the focusing laser in concert with a unique microfluidic platform can be used as a method to fractionate closely related particles in a mixed sample. This microfluidic network allows for a monodisperse sample of both polystyrene and poly(methyl methacrylate) spheres to be injected, hydrodynamically focused, and completely separated. To test the limit of separation, a mixed polystyrene sample containing two particles varying in diameter by less than 0.5 μm was run in the system. The analysis of the resulting separation sets the framework for continued work to perform ultra-fine separations. PMID:25553179

  17. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition.

    PubMed

    Gong, Zhaoyuan; Walls, Jamie D

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoyuan; Walls, Jamie D.

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.

  19. Behavior of the maximum likelihood in quantum state tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  20. Advanced texture filtering: a versatile framework for reconstructing multi-dimensional image data on heterogeneous architectures

    NASA Astrophysics Data System (ADS)

    Zellmann, Stefan; Percan, Yvonne; Lang, Ulrich

    2015-01-01

    Reconstruction of 2-d image primitives or of 3-d volumetric primitives is one of the most common operations performed by the rendering components of modern visualization systems. Because this operation is often aided by GPUs, reconstruction is typically restricted to first-order interpolation. With the advent of in situ visualization, the assumption that rendering algorithms are in general executed on GPUs is however no longer adequate. We thus propose a framework that provides versatile texture filtering capabilities: up to third-order reconstruction using various types of cubic filtering and interpolation primitives; cache-optimized algorithms that integrate seamlessly with GPGPU rendering or with software rendering that was optimized for cache-friendly "Structure of Array" (SoA) access patterns; a memory management layer (MML) that gracefully hides the complexities of extra data copies necessary for memory access optimizations such as swizzling, for rendering on GPGPUs, or for reconstruction schemes that rely on pre-filtered data arrays. We prove the effectiveness of our software architecture by integrating it into and validating it using the open source direct volume rendering (DVR) software DeskVOX.

  1. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    NASA Astrophysics Data System (ADS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V.

    2013-07-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy.

  2. Implementing system simulation of C3 systems using autonomous objects

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1987-01-01

    The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.

  3. Generic dynamical phase transition in one-dimensional bulk-driven lattice gases with exclusion

    NASA Astrophysics Data System (ADS)

    Lazarescu, Alexandre

    2017-06-01

    Dynamical phase transitions are crucial features of the fluctuations of statistical systems, corresponding to boundaries between qualitatively different mechanisms of maintaining unlikely values of dynamical observables over long periods of time. They manifest themselves in the form of non-analyticities in the large deviation function of those observables. In this paper, we look at bulk-driven exclusion processes with open boundaries. It is known that the standard asymmetric simple exclusion process exhibits a dynamical phase transition in the large deviations of the current of particles flowing through it. That phase transition has been described thanks to specific calculation methods relying on the model being exactly solvable, but more general methods have also been used to describe the extreme large deviations of that current, far from the phase transition. We extend those methods to a large class of models based on the ASEP, where we add arbitrary spatial inhomogeneities in the rates and short-range potentials between the particles. We show that, as for the regular ASEP, the large deviation function of the current scales differently with the size of the system if one considers very high or very low currents, pointing to the existence of a dynamical phase transition between those two regimes: high current large deviations are extensive in the system size, and the typical states associated to them are Coulomb gases, which are highly correlated; low current large deviations do not depend on the system size, and the typical states associated to them are anti-shocks, consistently with a hydrodynamic behaviour. Finally, we illustrate our results numerically on a simple example, and we interpret the transition in terms of the current pushing beyond its maximal hydrodynamic value, as well as relate it to the appearance of Tracy-Widom distributions in the relaxation statistics of such models. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Alexandre Lazarescu was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  4. a Brief Climatology of Cirrus LIDAR Ratios Measured by High Spectral Resolution LIDAR

    NASA Astrophysics Data System (ADS)

    Kuehn, R.; Holz, R.; Hair, J. W.; Vaughan, M. A.; Eloranta, E. W.

    2015-12-01

    Our ability to detect and probe the vertical extent of cirrus was hugely improved with the launch of the NASA-CNES CALIPSO mission in April 2006. However, our skill at retrieving the optical properties of the cirrus detected by the CALIPSO lidar is not yet commensurate with our detection abilities. As with any new observing system, CALIPSO faces challenges and uncertainties in the retrieval of the geophysical parameters from its fundamental measurements. Specifically, extinction and optical depth retrievals for elastic backscatter lidars like CALIPSO typically rely on a priori assumptions about layer-mean extinction-to-backscatter ratios (AKA lidar ratios), which can vary regionally and for which uncertainties are high. To improve CALIPSO optical properties retrievals, we show High Spectral Resolution Lidar (HSRL) measurements acquired with systems from the University of Wisconsin and NASA Langley. HSRLs can directly determine ice cloud extinction and lidar ratio by separately measuring the molecular and particulate components of the total backscattered signal, thus largely eliminating many of the uncertainties inherent in elastic backscatter retrievals. These measurements were acquired during the SEAC4RS (Huntsville, AL, USA and Singapore), and FRAPPE/DISCOVER-AQ 2014 (BAO tower near Boulder, CO, USA) field campaigns, and an intensive operations period in Hampton, VA, USA.

  5. A cooperative positioning algorithm for DSRC enabled vehicular networks

    NASA Astrophysics Data System (ADS)

    Efatmaneshnik, M.; Kealy, A.; Alam, N.; Dempster, A. G.

    2011-12-01

    Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an inter-vehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.

  6. Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.

    2017-12-01

    Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.

  7. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    PubMed Central

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  8. Methane Leaks from Natural Gas Systems Follow Extreme Distributions.

    PubMed

    Brandt, Adam R; Heath, Garvin A; Cooley, Daniel

    2016-11-15

    Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4 ) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ∼15 000 measurements from 18 prior studies, we show that all available natural gas leakage data sets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of the total leakage volume. While prior studies used log-normal model distributions, we show that log-normal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of data sets to increase sample size is not recommended due to apparent deviation between sampled populations. Understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.

  9. Natural approach to quantum dissipation

    NASA Astrophysics Data System (ADS)

    Taj, David; Öttinger, Hans Christian

    2015-12-01

    The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.

  10. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  11. Methane Leaks from Natural Gas Systems Follow Extreme Distributions

    DOE PAGES

    Brandt, Adam R.; Heath, Garvin A.; Cooley, Daniel

    2016-10-14

    Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ~15,000 measurements from 18 prior studies, we show that all available natural gas leakage datasets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of themore » total leakage volume. While prior studies used lognormal model distributions, we show that lognormal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of datasets to increase sample size is not recommended due to apparent deviation between sampled populations. Finally, understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.« less

  12. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  13. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  14. Methane Leaks from Natural Gas Systems Follow Extreme Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Adam R.; Heath, Garvin A.; Cooley, Daniel

    Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ~15,000 measurements from 18 prior studies, we show that all available natural gas leakage datasets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of themore » total leakage volume. While prior studies used lognormal model distributions, we show that lognormal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of datasets to increase sample size is not recommended due to apparent deviation between sampled populations. Finally, understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.« less

  15. Making connections for life: an in vivo map of the yeast interactome.

    PubMed

    Kast, Juergen

    2008-10-01

    Proteins are the true workhorses of any cell. To carry out specific tasks, they frequently bind other molecules in their surroundings. Due to their structural complexity and flexibility, the most diverse array of interactions is seen with other proteins. The different geometries and affinities available for such interactions typically bestow specific functions on proteins. Having available a map of protein-protein interactions is therefore of enormous importance for any researcher interested in gaining insight into biological systems at the level of cells and organisms. In a recent report, a novel approach has been employed that relies on the spontaneous folding of complementary enzyme fragments fused to two different proteins to test whether these interact in their actual cellular context [Tarassov et al., Science 320, 1465-1470 (2008)]. Genome-wide application of this protein-fragment complementation assay has resulted in the first map of the in vivo interactome of Saccharomyces cerevisiae. The current data show striking similarities but also significant differences to those obtained using other large-scale approaches for the same task. This warrants a general discussion of the current state of affairs of protein-protein interaction studies and foreseeable future trends, highlighting their significance for a variety of applications and their potential to revolutionize our understanding of the architecture and dynamics of biological systems.

  16. Making connections for life: an in vivo map of the yeast interactome

    PubMed Central

    Kast, Juergen

    2008-01-01

    Proteins are the true workhorses of any cell. To carry out specific tasks, they frequently bind other molecules in their surroundings. Due to their structural complexity and flexibility, the most diverse array of interactions is seen with other proteins. The different geometries and affinities available for such interactions typically bestow specific functions on proteins. Having available a map of protein–protein interactions is therefore of enormous importance for any researcher interested in gaining insight into biological systems at the level of cells and organisms. In a recent report, a novel approach has been employed that relies on the spontaneous folding of complementary enzyme fragments fused to two different proteins to test whether these interact in their actual cellular context [Tarassov et al., Science 320, 1465–1470 (2008)]. Genome-wide application of this protein-fragment complementation assay has resulted in the first map of the in vivo interactome of Saccharomyces cerevisiae. The current data show striking similarities but also significant differences to those obtained using other large-scale approaches for the same task. This warrants a general discussion of the current state of affairs of protein–protein interaction studies and foreseeable future trends, highlighting their significance for a variety of applications and their potential to revolutionize our understanding of the architecture and dynamics of biological systems. PMID:19404434

  17. The Installation of Satellite Modems on SEIS-UK Supported Remote Seismic Deployments

    NASA Astrophysics Data System (ADS)

    Horleston, A. C.; Brisbourne, A.; Hawthorn, D.

    2006-12-01

    SEIS-UK, as the UK's NERC funded national seismic equipment facility, is frequently involved in large, often remote, temporary seismic networks (running for up to 2 years). Up till now all these deployments have been managed solely by on-site maintenance but now SEIS-UK is investing in a number of satellite modems. The Michrosat 2400 OEM Modems, provided by Wireless Innovations Ltd, will be integrated within Guralp DCM data-logger units and will be used to provide regular state-of-health reports from remote networks. They will also provide the user the facility to communicate with the deployed systems, apply configuration changes and request system re-boots. This should lead to less instrument down-time and allow for more focussed site visits and thus, hopefully, reduce the cost (and servicing time) of remote installations. The Michrosat Modems are relatively low-powered and draw a maximum current of 2.5A (at 4.4v) for a few microseconds when initialising a call, dropping to bursts of approximately 1A when transmitting. This makes them ideally suited to temporary deployments relying on solar charged battery power. We will present examples of the configuration and typical deployment of the modems and the types of data transmitted.

  18. Coronary artery abnormalities in children with systemic-onset juvenile idiopathic arthritis.

    PubMed

    Lefèvre-Utile, Alain; Galeotti, Caroline; Koné-Paut, Isabelle

    2014-05-01

    Still's disease (Systemic-onset Juvenile Idiopathic Arthritis: SoJIA) is characterised by high-spiking daily fevers, arthritis and evanescent rashes. Diagnosis of Still's disease is often challenging. Infectious diseases and other inflammatory conditions, especially in young children, Kawasaki disease may look similar. Clinicians often rely on echocardiographic evidence of coronary artery abnormalities to differentiate between Kawasaki disease and Still's disease. Coronary artery dilation would typically favour the diagnosis of Kawasaki disease. We present four children with Still's disease and coronary artery abnormalities who were initially misdiagnosed as Kawasaki disease. The first patient had pericarditis and an irregular wall of the left coronary artery, without dilation on echocardiography. The second patient had a left coronary artery dilatation and a pericarditis. The third patient had thickened left coronary artery walls, and the fourth patient had a hyperechogenicity of the left and right coronary arteries. They received IVIG without success. The diagnosis of Still's disease was made secondary with evidence of persistent arthritis. All but one patient finally needed biologic treatments. Coronary abnormalities may be observed during various febrile conditions and do not exclude the diagnosis of Still's disease. Copyright © 2013 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  19. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning

    USGS Publications Warehouse

    Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.

    2018-01-01

    Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.

  20. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    PubMed

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Evaluation of CFD to Determine Two-Dimensional Airfoil Characteristics for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Smith, Marilyn J.; Wong, Tin-Chee; Potsdam, Mark; Baeder, James; Phanse, Sujeet

    2004-01-01

    The efficient prediction of helicopter rotor performance, vibratory loads, and aeroelastic properties still relies heavily on the use of comprehensive analysis codes by the rotorcraft industry. These comprehensive codes utilize look-up tables to provide two-dimensional aerodynamic characteristics. Typically these tables are comprised of a combination of wind tunnel data, empirical data and numerical analyses. The potential to rely more heavily on numerical computations based on Computational Fluid Dynamics (CFD) simulations has become more of a reality with the advent of faster computers and more sophisticated physical models. The ability of five different CFD codes applied independently to predict the lift, drag and pitching moments of rotor airfoils is examined for the SC1095 airfoil, which is utilized in the UH-60A main rotor. Extensive comparisons with the results of ten wind tunnel tests are performed. These CFD computations are found to be as good as experimental data in predicting many of the aerodynamic performance characteristics. Four turbulence models were examined (Baldwin-Lomax, Spalart-Allmaras, Menter SST, and k-omega).

  2. A Note on the Usefulness of the Behavioural Rasch Selection Model for Causal Inference in the Social Sciences

    NASA Astrophysics Data System (ADS)

    Rabbitt, Matthew P.

    2016-11-01

    Social scientists are often interested in examining causal relationships where the outcome of interest is represented by an intangible concept, such as an individual's well-being or ability. Estimating causal relationships in this scenario is particularly challenging because the social scientist must rely on measurement models to measure individual's properties or attributes and then address issues related to survey data, such as omitted variables. In this paper, the usefulness of the recently proposed behavioural Rasch selection model is explored using a series of Monte Carlo experiments. The behavioural Rasch selection model is particularly useful for these types of applications because it is capable of estimating the causal effect of a binary treatment effect on an outcome that is represented by an intangible concept using cross-sectional data. Other methodology typically relies of summary measures from measurement models that require additional assumptions, some of which make these approaches less efficient. Recommendations for application of the behavioural Rasch selection model are made based on results from the Monte Carlo experiments.

  3. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  4. Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study

    NASA Astrophysics Data System (ADS)

    Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald

    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.

  5. Role of sentence-final particles and prosody in irony comprehension in Cantonese-speaking children with and without Autism Spectrum Disorders.

    PubMed

    Li, Jackie P W; Law, Thomas; Lam, Gary Y H; To, Carol K S

    2013-01-01

    English-speaking children with Autism Spectrum Disorders (ASD) are less capable of using prosodic cues such as intonation for irony comprehension. Prosodic cues, in particular intonation, in Cantonese are relatively restricted while sentence-final particles (SFPs) may be used for this pragmatic function. This study investigated the use of prosodic cues and SFPs in irony comprehension in Cantonese-speaking children with and without ASD. Thirteen children with ASD (8;3-12;9) were language-matched with 13 typically developing (TD) peers. By manipulating prosodic cues and SFPs, 16 stories with an ironic remark were constructed. Participants had to judge the speaker's belief and intention. Both groups performed similarly well in judging the speaker's belief. For the speaker's intention, the TD group relied more on SFPs. The ASD group performed significantly poorer and did not rely on either cue. SFPs may play a salient role in Cantonese irony comprehension. The differences between the two groups were discussed by considering the literature on theory of mind.

  6. Unveiling the truth: warnings reduce the repetition-based truth effect.

    PubMed

    Nadarevic, Lena; Aßfalg, André

    2017-07-01

    Typically, people are more likely to consider a previously seen or heard statement as true compared to a novel statement. This repetition-based "truth effect" is thought to rely on fluency-truth attributions as the underlying cognitive mechanism. In two experiments, we tested the nature of the fluency-attribution mechanism by means of warning instructions, which informed participants about the truth effect and asked them to prevent it. In Experiment 1, we instructed warned participants to consider whether a statement had already been presented in the experiment to avoid the truth effect. However, warnings did not significantly reduce the truth effect. In Experiment 2, we introduced control questions and reminders to ensure that participants understood the warning instruction. This time, warning reduced, but did not eliminate the truth effect. Assuming that the truth effect relies on fluency-truth attributions, this finding suggests that warned participants could control their attributions but did not disregard fluency altogether when making truth judgments. Further, we found no evidence that participants overdiscount the influence of fluency on their truth judgments.

  7. Defining and estimating causal direct and indirect effects when setting the mediator to specific values is not feasible

    PubMed Central

    Lok, Judith J.

    2016-01-01

    Natural direct and indirect effects decompose the effect of a treatment into the part that is mediated by a covariate (the mediator) and the part that is not. Their definitions rely on the concept of outcomes under treatment with the mediator “set” to its value without treatment. Typically, the mechanism through which the mediator is set to this value is left unspecified, and in many applications it may be challenging to fix the mediator to particular values for each unit or patient. Moreover, how one sets the mediator may affect the distribution of the outcome. This article introduces “organic” direct and indirect effects, which can be defined and estimated without relying on setting the mediator to specific values. Organic direct and indirect effects can be applied for example to estimate how much of the effect of some treatments for HIV/AIDS on mother-to-child transmission of HIV infection is mediated by the effect of the treatment on the HIV viral load in the blood of the mother. PMID:27229743

  8. Objectified quantification of uncertainties in Bayesian atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Berchet, A.; Pison, I.; Chevallier, F.; Bousquet, P.; Bonne, J.-L.; Paris, J.-D.

    2015-05-01

    Classical Bayesian atmospheric inversions process atmospheric observations and prior emissions, the two being connected by an observation operator picturing mainly the atmospheric transport. These inversions rely on prescribed errors in the observations, the prior emissions and the observation operator. When data pieces are sparse, inversion results are very sensitive to the prescribed error distributions, which are not accurately known. The classical Bayesian framework experiences difficulties in quantifying the impact of mis-specified error distributions on the optimized fluxes. In order to cope with this issue, we rely on recent research results to enhance the classical Bayesian inversion framework through a marginalization on a large set of plausible errors that can be prescribed in the system. The marginalization consists in computing inversions for all possible error distributions weighted by the probability of occurrence of the error distributions. The posterior distribution of the fluxes calculated by the marginalization is not explicitly describable. As a consequence, we carry out a Monte Carlo sampling based on an approximation of the probability of occurrence of the error distributions. This approximation is deduced from the well-tested method of the maximum likelihood estimation. Thus, the marginalized inversion relies on an automatic objectified diagnosis of the error statistics, without any prior knowledge about the matrices. It robustly accounts for the uncertainties on the error distributions, contrary to what is classically done with frozen expert-knowledge error statistics. Some expert knowledge is still used in the method for the choice of an emission aggregation pattern and of a sampling protocol in order to reduce the computation cost. The relevance and the robustness of the method is tested on a case study: the inversion of methane surface fluxes at the mesoscale with virtual observations on a realistic network in Eurasia. Observing system simulation experiments are carried out with different transport patterns, flux distributions and total prior amounts of emitted methane. The method proves to consistently reproduce the known "truth" in most cases, with satisfactory tolerance intervals. Additionally, the method explicitly provides influence scores and posterior correlation matrices. An in-depth interpretation of the inversion results is then possible. The more objective quantification of the influence of the observations on the fluxes proposed here allows us to evaluate the impact of the observation network on the characterization of the surface fluxes. The explicit correlations between emission aggregates reveal the mis-separated regions, hence the typical temporal and spatial scales the inversion can analyse. These scales are consistent with the chosen aggregation patterns.

  9. Understanding reliance on automation: effects of error type, error distribution, age and experience

    PubMed Central

    Sanchez, Julian; Rogers, Wendy A.; Fisk, Arthur D.; Rovira, Ericka

    2015-01-01

    An obstacle detection task supported by “imperfect” automation was used with the goal of understanding the effects of automation error types and age on automation reliance. Sixty younger and sixty older adults interacted with a multi-task simulation of an agricultural vehicle (i.e. a virtual harvesting combine). The simulator included an obstacle detection task and a fully manual tracking task. A micro-level analysis provided insight into the way reliance patterns change over time. The results indicated that there are distinct patterns of reliance that develop as a function of error type. A prevalence of automation false alarms led participants to under-rely on the automation during alarm states while over relying on it during non-alarms states. Conversely, a prevalence of automation misses led participants to over-rely on automated alarms and under-rely on the automation during non-alarm states. Older adults adjusted their behavior according to the characteristics of the automation similarly to younger adults, although it took them longer to do so. The results of this study suggest the relationship between automation reliability and reliance depends on the prevalence of specific errors and on the state of the system. Understanding the effects of automation detection criterion settings on human-automation interaction can help designers of automated systems make predictions about human behavior and system performance as a function of the characteristics of the automation. PMID:25642142

  10. Understanding reliance on automation: effects of error type, error distribution, age and experience.

    PubMed

    Sanchez, Julian; Rogers, Wendy A; Fisk, Arthur D; Rovira, Ericka

    2014-03-01

    An obstacle detection task supported by "imperfect" automation was used with the goal of understanding the effects of automation error types and age on automation reliance. Sixty younger and sixty older adults interacted with a multi-task simulation of an agricultural vehicle (i.e. a virtual harvesting combine). The simulator included an obstacle detection task and a fully manual tracking task. A micro-level analysis provided insight into the way reliance patterns change over time. The results indicated that there are distinct patterns of reliance that develop as a function of error type. A prevalence of automation false alarms led participants to under-rely on the automation during alarm states while over relying on it during non-alarms states. Conversely, a prevalence of automation misses led participants to over-rely on automated alarms and under-rely on the automation during non-alarm states. Older adults adjusted their behavior according to the characteristics of the automation similarly to younger adults, although it took them longer to do so. The results of this study suggest the relationship between automation reliability and reliance depends on the prevalence of specific errors and on the state of the system. Understanding the effects of automation detection criterion settings on human-automation interaction can help designers of automated systems make predictions about human behavior and system performance as a function of the characteristics of the automation.

  11. Visual and vestibular induced eye movements in verbal children and adults with autism

    PubMed Central

    Furman, Joseph M.; Osorio, Maria Joana; Minshew, Nancy J.

    2016-01-01

    This study investigated several types of eye movements that rely on the function of brainstem-cerebellar pathways specifically (vestibular-ocular reflexes) or on widely distributed pathways of the brain (horizontal pursuit and saccade eye movements). Although eye movements that rely on higher brain regions have been studies fairly extensively in autism, eye movements dependent on brainstem and cerebellum have not. This study involved 79 individuals with autism and 62 typical controls aged 5 to 52 years with IQ scores above 70. No differences between the autism and control groups were present on the measures of vestibular ocular reflexes, or on saccade velocity or accuracy. The autism group was significantly slower to initiate saccades, which was most prominent in the 8-18 year old age range. These findings provide the most substantial evidence to date of the functional integrity of brainstem and cerebellar pathways in autism, suggesting that the histopathological abnormalities described in these structures may not be associated with intrinsic dysfunction but rather reflect developmental alterations related to forebrain cortical systems formation. The increase in saccade latency adds to the substantial evidence of altered function and maturation of cortical systems in autism. Objective This study assessed the functionality of vestibular, pursuit and saccade circuitry in autism across a wide age range. Methods Subjects were 79 individuals with autism (AUT) and 62 controls (CON) aged 5 to 52 years with IQ scores > 70. For vestibular testing, earth-vertical axis rotation was performed in darkness and in a lighted visual surround with a fixation target. Ocular motor testing included assessment of horizontal saccades and horizontal smooth pursuit. Results No between-group differences were found in vestibular reflexes or in mean saccade velocity or accuracy. Saccade latency was increased in the AUT group with significant age-related effects in the 8-18 year old subgroups. There was a trend toward decreased pursuit gain without age effects. Conclusions Normal vestibular-induced eye movements and normal saccade accuracy and velocity provide the most substantial evidence to date of the functional integrity of brainstem and cerebellar pathways in autism, suggesting that the histopathological abnormalities described in these structures may not be associated with intrinsic dysfunction but rather reflect developmental alterations related to forebrain cortical systems formation. Increased saccade latency with age effects adds to the extensive existing evidence of altered function and maturation of cortical systems in autism. PMID:25846907

  12. Failure Investigation of an Intra-Manifold Explosion in a Horizontally-Mounted 870 lbf Reaction Control Thruster

    NASA Technical Reports Server (NTRS)

    Durning, Joseph G., III; Westover, Shayne C.; Cone, Darren M.

    2011-01-01

    In June 2010, an 870 lbf Space Shuttle Orbiter Reaction Control System Primary Thruster experienced an unintended shutdown during a test being performed at the NASA White Sands Test Facility. Subsequent removal and inspection of the thruster revealed permanent deformation and misalignment of the thruster valve mounting plate. Destructive evaluation determined that after three nominal firing sequences, the thruster had experienced an energetic event within the fuel (monomethylhydrazine) manifold at the start of the fourth firing sequence. The current understanding of the phenomenon of intra-manifold explosions in hypergolic bipropellant thrusters is documented in literature where it is colloquially referred to as a ZOT. The typical ZOT scenario involves operation of a thruster in a gravitational field with environmental pressures above the triple point pressure of the propellants. Post-firing, when the thruster valves are commanded closed, there remains a residual quantity of propellant in both the fuel and oxidizer (nitrogen tetroxide) injector manifolds known as the "dribble volume". In an ambient ground test configuration, these propellant volumes will drain from the injector manifolds but are impeded by the local atmospheric pressure. The evacuation of propellants from the thruster injector manifolds relies on the fluids vapor pressure to expel the liquid. The higher vapor pressure oxidizer will evacuate from the manifold before the lower vapor pressure fuel. The localized cooling resulting from the oxidizer boiling during manifold draining can result in fuel vapor migration and condensation in the oxidizer passage. The liquid fuel will then react with the oxidizer that enters the manifold during the next firing and may produce a localized high pressure reaction or explosion within the confines of the oxidizer injector manifold. The typical ZOT scenario was considered during this failure investigation, but was ultimately ruled out as a cause of the explosion. Converse to the typical ZOT failure mechanism, the failure of this particular thruster was determined to be the result of liquid oxidizer being present within the fuel manifold.

  13. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.

    PubMed

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-11-01

    When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Different macaque models of cognitive aging exhibit task-dependent behavioral disparities.

    PubMed

    Comrie, Alison E; Gray, Daniel T; Smith, Anne C; Barnes, Carol A

    2018-05-15

    Deficits in cognitive functions that rely on the integrity of the frontal and temporal lobes are characteristic of normative human aging. Due to similar aging phenotypes and homologous cortical organization between nonhuman primates and humans, several species of macaque monkeys are used as models to explore brain senescence. These macaque species are typically regarded as equivalent models of cognitive aging, yet no direct comparisons have been made to support this assumption. Here we used adult and aged rhesus and bonnet macaques (Macaca mulatta and Macaca radiata) to characterize the effect of age on acquisition and retention of information across delays in a battery of behavioral tasks that rely on prefrontal cortex and medial temporal lobe networks. The cognitive functions that were tested include visuospatial short-term memory, object recognition memory, and object-reward association memory. In general, bonnet macaques at all ages outperformed rhesus macaques on tasks thought to rely primarily on the prefrontal cortex, and were more resilient to age-related deficits in these behaviors. On the other hand, both species were comparably impaired by age on tasks thought to preferentially engage the medial temporal lobe. Together, these results suggest that rhesus and bonnet macaques are not equivalent models of cognitive aging and highlight the value of cross-species comparisons. These observations should enable improved design and interpretation of future experiments aimed at understanding changes in cognition across the lifespan. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Passive versus active hazard detection and avoidance systems

    NASA Astrophysics Data System (ADS)

    Neveu, D.; Mercier, G.; Hamel, J.-F.; Simard Bilodeau, V.; Woicke, S.; Alger, M.; Beaudette, D.

    2015-06-01

    Upcoming planetary exploration missions will require advanced guidance, navigation and control technologies to reach landing sites with high precision and safety. Various technologies are currently in development to meet that goal. Some technologies rely on passive sensors and benefit from the low mass and power of such solutions while others rely on active sensors and benefit from an improved robustness and accuracy. This paper presents two different hazard detection and avoidance (HDA) system design approaches. The first architecture relies only on a camera as the passive HDA sensor while the second relies, in addition, on a Lidar as the active HDA sensor. Both options use in common an innovative hazard map fusion algorithm aiming at identifying the safest landing locations. This paper presents the simulation tools and reports the closed-loop software simulation results obtained using each design option. The paper also reports the Monte Carlo simulation campaign that was used to assess the robustness of each design option. The performance of each design option is compared against each other in terms of performance criteria such as percentage of success, mean distance to nearest hazard, etc. The applicability of each design option to planetary exploration missions is also discussed.

  16. Environmental evaluation of municipal waste prevention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H., E-mail: thho@env.dtu.dk

    Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail,more » beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.« less

  17. Researchers’ Intuitions About Power in Psychological Research

    PubMed Central

    Bakker, Marjan; Hartgerink, Chris H. J.; Wicherts, Jelte M.; van der Maas, Han L. J.

    2016-01-01

    Many psychology studies are statistically underpowered. In part, this may be because many researchers rely on intuition, rules of thumb, and prior practice (along with practical considerations) to determine the number of subjects to test. In Study 1, we surveyed 291 published research psychologists and found large discrepancies between their reports of their preferred amount of power and the actual power of their studies (calculated from their reported typical cell size, typical effect size, and acceptable alpha). Furthermore, in Study 2, 89% of the 214 respondents overestimated the power of specific research designs with a small expected effect size, and 95% underestimated the sample size needed to obtain .80 power for detecting a small effect. Neither researchers’ experience nor their knowledge predicted the bias in their self-reported power intuitions. Because many respondents reported that they based their sample sizes on rules of thumb or common practice in the field, we recommend that researchers conduct and report formal power analyses for their studies. PMID:27354203

  18. Assessment of the intraday variability of anthropometric measurements in the work environment: a pilot study.

    PubMed

    Bragança, Sara; Arezes, Pedro; Carvalho, Miguel; Ashdown, Susan P; Leão, Celina

    2017-05-19

    Sitting for long periods of time, both during work and leisure times, is the typical behavior of the modern society. Especially at work, where there is not much flexibility, adopting the sitting posture for the entire day can cause some short-term and long-term effects. As workers' productivity and well-being relies on working conditions, evaluating the effects caused by work postures assumes a very important role. The purpose of this article was to evaluate the variation of some anthropometric measurements during one typical workday to understand whether the known long-term effects can also be seen and quantified in an 8-h period. Twenty participants were measured before and after work, using traditional anthropometry equipment. The data from the two repetitions were compared using statistical tests. The results showed a slight variation in the anthropometric measurements, some with a tendency to increase over time and others with a tendency to decrease.

  19. Researchers' Intuitions About Power in Psychological Research.

    PubMed

    Bakker, Marjan; Hartgerink, Chris H J; Wicherts, Jelte M; van der Maas, Han L J

    2016-08-01

    Many psychology studies are statistically underpowered. In part, this may be because many researchers rely on intuition, rules of thumb, and prior practice (along with practical considerations) to determine the number of subjects to test. In Study 1, we surveyed 291 published research psychologists and found large discrepancies between their reports of their preferred amount of power and the actual power of their studies (calculated from their reported typical cell size, typical effect size, and acceptable alpha). Furthermore, in Study 2, 89% of the 214 respondents overestimated the power of specific research designs with a small expected effect size, and 95% underestimated the sample size needed to obtain .80 power for detecting a small effect. Neither researchers' experience nor their knowledge predicted the bias in their self-reported power intuitions. Because many respondents reported that they based their sample sizes on rules of thumb or common practice in the field, we recommend that researchers conduct and report formal power analyses for their studies. © The Author(s) 2016.

  20. Simple and efficient self-healing strategy for damaged complex networks

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Fefferman, Nina H.

    2015-11-01

    The process of destroying a complex network through node removal has been the subject of extensive interest and research. Node loss typically leaves the network disintegrated into many small and isolated clusters. Here we show that these clusters typically remain close to each other and we suggest a simple algorithm that is able to reverse the inflicted damage by restoring the network's functionality. After damage, each node decides independently whether to create a new link depending on the fraction of neighbors it has lost. In addition to relying only on local information, where nodes do not need knowledge of the global network status, we impose the additional constraint that new links should be as short as possible (i.e., that the new edge completes a shortest possible new cycle). We demonstrate that this self-healing method operates very efficiently, both in model and real networks. For example, after removing the most connected airports in the USA, the self-healing algorithm rejoined almost 90% of the surviving airports.

Top