Sample records for t-b cell interactions

  1. T cell-B cell interactions in primary immunodeficiencies.

    PubMed

    Tangye, Stuart G; Deenick, Elissa K; Palendira, Umaimainthan; Ma, Cindy S

    2012-02-01

    Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes. © 2012 New York Academy of Sciences.

  2. Role of T cells in the B-cell response: glutaraldehyde-fixed T-helper hybridoma cells synergize with the lymphokine IL-4 to induce B-cell activation and proliferation.

    PubMed

    Kubota, E; McKenzie, D T; Dutton, R W; Swain, S L

    1991-01-01

    Antigen-unselected helper T-cell hybridomas (Th) which activate normal resting B cells to RNA synthesis and proliferation in the presence of concanavalin A (Con A) have been developed. The response is completely Th cell dependent, and not restricted by the haplotype of the B-cell major histocompatibility complex (MHC). Culture supernatants from the Con A-stimulated Th hybridomas contain interleukin-4 (IL-4) and IL-2, but undetectable level of IL-5. The supernatant alone, however, does not induce B-cell activation or proliferation. Although the Con A-mediated Th cell-dependent B-cell response occurs in an MHC-unrestricted manner, the response of resting B cells can be blocked by monoclonal Ia antibody specific for the surface class II molecules of the responding B cell. The response is also blocked by monoclonal antibody to L3T4. Significant activation and proliferation of resting B cells can also be triggered by glutaraldehyde-fixed Th hybridomas and Con A when exogenous IL-4 is added. The stimulation with fixed Th hybridomas plus IL-4 can be inhibited by monoclonal anti-L3T4 or anti-Ia. These results suggest that maximal B-cell activation requires a direct helper T cell-B cell interaction which depends on availability of Ia on the B cell and L3T4 on the T cell, even when Con A overcomes the requirement for MHC-restricted T-cell recognition. We suggest that this signal, in conjunction with T-cell produced lymphokine IL-4, is responsible for the activation and subsequent proliferation of the B cells which occurs following interaction with T cells.

  3. T cell-dependent antibody production by Ly-1 B cells.

    PubMed

    Taki, S; Schmitt, M; Tarlinton, D; Förster, I; Rajewsky, K

    1992-05-04

    Through the use of a SCID transfer system, we have demonstrated that under certain conditions, the production of Ig by Ly-1 B cells can be modulated by T cells. This modulation can take the form of enhanced isotype production or isotype-switch induction and to some extent appears to be dependent on the activation state of the T cells. Furthermore we have shown that Ly-1 B cells can mount an idiotypically restricted T cell-dependent immune response to the antigen PC-KLH. This result suggests that the previous failure to observe T cell-dependent responses by Ly-1 B cells has been due to these B cells being "blind" to the antigens used and is not due to some inherent property of these B cells. When one considers the previous reports of the substantial contribution of Ly-1 B cells to the natural serum immunoglobulin levels and the ability of T cells to affect Ig production by Ly-1 B cells documented in this report, it is clear that the interaction of T cells with the Ly-1 B-cell population is important in determining the "natural" serum Ig repertoire of the mouse.

  4. BCL6 interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function

    PubMed Central

    Yang, Jessica A.; Tubo, Noah J.; Gearhart, Micah D.; Bardwell, Vivian J.; Jenkins, Marc K.

    2015-01-01

    CD4+ germinal center (GC) T follicular helper (GC-Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor BCL6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the BCL6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of peptide:MHCII-specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell-expressed BCOR is critical for optimal GC-Tfh differentiation and humoral immunity. PMID:25964495

  5. γδ T Cells Shape Preimmune Peripheral B Cell Populations.

    PubMed

    Huang, Yafei; Getahun, Andrew; Heiser, Ryan A; Detanico, Thiago O; Aviszus, Katja; Kirchenbaum, Greg A; Casper, Tamara L; Huang, Chunjian; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J; Cambier, John C; O'Brien, Rebecca L; Born, Willi K

    2016-01-01

    We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. B cells and TCR avidity determine distinct functions of CD4+ T cells in retroviral infection1

    PubMed Central

    Ploquin, Mickaël J-Y; Eksmond, Urszula; Kassiotis, George

    2011-01-01

    The T-cell-dependent B-cell response relies on cognate interaction between B cells and CD4+ Th cells. However, the consequences of this interaction for CD4+ T cells are not entirely known. B cells generally promote CD4+ T-cell responses to pathogens, albeit to a variable degree. In contrast, CD4+ T-cell responses to self or tumor antigens are often suppressed by B cells. Here we demonstrated that interaction with B cells dramatically inhibited the function of virus-specific CD4+ T cells in retroviral infection. We have used Friend virus (FV) infection of mice as a model for retroviral infection, in which the behavior of virus-specific CD4+ T cells was monitored according to their TCR avidity. We report that avidity for antigen and interaction with B cells determine distinct aspects of the primary CD4+ T-cell response to FV infection. Virus-specific CD4+ T cells followed exclusive Th1 and T follicular helper (Tfh) differentiation. High avidity for antigen facilitated expansion during priming and enhanced the capacity for IFN-γ and IL-21 production. In contrast, Tfh differentiation was not affected by avidity for antigen. By reducing or preventing B-cell interaction we found that B cells promoted Tfh differentiation, induced programmed death 1 (PD-1) expression and inhibited IFN-γ production by virus-specific CD4+ T cells. Ultimately, B cells protected hosts from CD4+ T-cell-mediated immune pathology, at the detriment of CD4+ T-cell-mediated protective immunity. Our results suggest that B-cell presentation of vaccine antigens could be manipulated to direct the appropriate CD4+ T-cell response. PMID:21841129

  7. γδ T Cells Shape Pre-Immune Peripheral B Cell Populations

    PubMed Central

    Huang, Yafei; Getahun, Andrew; Heiser, Ryan A.; Detanico, Thiago O.; Aviszus, Katja; Kirchenbaum, Greg A.; Casper, Tamara L.; Huang, Chunjian; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J.; Cambier, John C.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    We previously reported that selective ablation of certain γδ T cell subsets rather than removal of all γδ T cells, strongly affects serum antibody levels in non-immunized mice. This type of manipulation also changed T cells including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4+ and Vγ6+ γδ T cells (B6.TCR-Vγ4−/−/6−/−), we observed expanded Vγ1+ cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4−/−/6−/− mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of antibody-producing cells, and serum levels of antibodies, IL-4 and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain, and their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Together, these data demonstrate the capability of γδ T cells of modulating size and productivity of pre-immune peripheral B cell populations. PMID:26582947

  8. Adenosine production by human B cells and B cell–mediated suppression of activated T cells

    PubMed Central

    Saze, Zenichiro; Schuler, Patrick J.; Hong, Chang-Sook; Cheng, Dongmei; Jackson, Edwin K.

    2013-01-01

    Antibody-independent role of B cells in modulating T-cell responses is incompletely understood. Freshly isolated or cultured B cells isolated from the peripheral blood of 30 normal donors were evaluated for CD39 and CD73 coexpression, the ability to produce adenosine 5′-monophosphate (AMP) and adenosine (ADO) in the presence of exogenous adenosine triphosphate (ATP) as well as A1, A2A, A2B, and A3 adenosine receptor (ADOR) expression. Human circulating B cells coexpress ectonucleotidases CD39 and CD73, hydrolyze exogenous ATP to 5′-AMP and ADO, and express messenger RNA for A1R, A2AR, and A3R. 2-chloroadenosine inhibited B-cell proliferation and cytokine expression, and only A3R selective antagonist restored B-cell functions. This suggested that B cells use the A3R for autocrine signaling and self-regulation. Mediated effects on B-cell growth ± ADOR antagonists or agonists were tested in carboxyfluorescein diacetate succinimidyl ester assays. In cocultures, resting B cells upregulated functions of CD4+ and CD8+ T cells. However, in vitro–activated B cells downregulated CD73 expression, mainly produced 5′-AMP, and inhibited T-cell proliferation and cytokine production. These B cells acquire the ability to restrict potentially harmful effects of activated T cells. Thus, B cells emerge as a key regulatory component of T cell–B cell interactions, and their dual regulatory activity is mediated by the products of ATP hydrolysis, 5′-AMP, and ADO. PMID:23678003

  9. APRIL modulates B and T cell immunity

    PubMed Central

    Stein, Jens V.; López-Fraga, Marta; Elustondo, Fernando A.; Carvalho-Pinto, Carla E.; Rodríguez, Dolores; Gómez-Caro, Ruth; de Jong, Joan; Martínez-A, Carlos; Medema, Jan Paul; Hahne, Michael

    2002-01-01

    The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an activation-dependent increase in APRIL mRNA expression. We therefore generated mice expressing APRIL as a transgene in T cells. These mice appeared normal and showed no signs of B cell hyperplasia. Transgenic T cells revealed a greatly enhanced survival in vitro as well as enhanced survival of staphylococcal enterotoxin B–reactive CD4+ T cells in vivo, which both directly correlate with elevated Bcl-2 levels. Analysis of humoral responses to T cell–dependent antigens in the transgenic mice indicated that APRIL affects only IgM but not IgG responses. In contrast, T cell–independent type 2 (TI-2) humoral response was enhanced in APRIL transgenic mice. As TACI was previously reported to be indispensable for TI-2 antibody formation, these results suggest a role for APRIL/TACI interactions in the generation of this response. Taken together, our data indicate that APRIL is involved in the induction and/or maintenance of T and B cell responses. PMID:12070306

  10. Tolerance without clonal expansion: self-antigen-expressing B cells program self-reactive T cells for future deletion.

    PubMed

    Frommer, Friederike; Heinen, Tobias J A J; Wunderlich, F Thomas; Yogev, Nir; Buch, Thorsten; Roers, Axel; Bettelli, Estelle; Müller, Werner; Anderton, Stephen M; Waisman, Ari

    2008-10-15

    B cells have been shown in various animal models to induce immunological tolerance leading to reduced immune responses and protection from autoimmunity. We show that interaction of B cells with naive T cells results in T cell triggering accompanied by the expression of negative costimulatory molecules such as PD-1, CTLA-4, B and T lymphocyte attenuator, and CD5. Following interaction with B cells, T cells were not induced to proliferate, in a process that was dependent on their expression of PD-1 and CTLA-4, but not CD5. In contrast, the T cells became sensitive to Ag-induced cell death. Our results demonstrate that B cells participate in the homeostasis of the immune system by ablation of conventional self-reactive T cells.

  11. Naive T-cell receptor transgenic T cells help memory B cells produce antibody

    PubMed Central

    Duffy, Darragh; Yang, Chun-Ping; Heath, Andrew; Garside, Paul; Bell, Eric B

    2006-01-01

    Injection of the same antigen following primary immunization induces a classic secondary response characterized by a large quantity of high-affinity antibody of an immunoglobulin G class produced more rapidly than in the initial response – the products of memory B cells are qualitatively distinct from that of the original naive B lymphocytes. Very little is known of the help provided by the CD4 T cells that stimulate memory B cells. Using antigen-specific T-cell receptor transgenic CD4 T cells (DO11.10) as a source of help, we found that naive transgenic T cells stimulated memory B cells almost as well (in terms of quantity and speed) as transgenic T cells that had been recently primed. There was a direct correlation between serum antibody levels and the number of naive transgenic T cells transferred. Using T cells from transgenic interleukin-2-deficient mice we showed that interleukin-2 was not required for a secondary response, although it was necessary for a primary response. The results suggested that the signals delivered by CD4 T cells and required by memory B cells for their activation were common to both antigen-primed and naive CD4 T cells. PMID:17067314

  12. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes

    PubMed Central

    Nagai, K; Takahashi, Y; Mikami, I; Fukusima, T; Oike, H; Kobori, M

    2009-01-01

    Background and purpose: Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. Experimental approach: HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-κB and MAP kinases (MAPKs) in activated HMC-1 cells. Key results: Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-κB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. Conclusions and implications: Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-κB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells. PMID:19702784

  13. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    PubMed

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  14. Altered Memory Circulating T Follicular Helper-B Cell Interaction in Early Acute HIV Infection

    PubMed Central

    Muir, Roshell; Metcalf, Talibah; Tardif, Virginie; Takata, Hiroshi; Phanuphak, Nittaya; Kroon, Eugene; Colby, Donn J.; Trichavaroj, Rapee; Valcour, Victor; Robb, Merlin L.; Michael, Nelson L.; Ananworanich, Jintanat; Trautmann, Lydie; Haddad, Elias K.

    2016-01-01

    The RV254 cohort of HIV-infected very early acute (4thG stage 1 and 2) (stage 1/2) and late acute (4thG stage 3) (stage 3) individuals was used to study T helper- B cell responses in acute HIV infection and the impact of early antiretroviral treatment (ART) on T and B cell function. To investigate this, the function of circulating T follicular helper cells (cTfh) from this cohort was examined, and cTfh and memory B cell populations were phenotyped. Impaired cTfh cell function was observed in individuals treated in stage 3 when compared to stage 1/2. The cTfh/B cell cocultures showed lower B cell survival and IgG secretion at stage 3 compared to stage 1/2. This coincided with lower IL-10 and increased RANTES and TNF-α suggesting a role for inflammation in altering cTfh and B cell responses. Elevated plasma viral load in stage 3 was found to correlate with decreased cTfh-mediated B cell IgG production indicating a role for increased viremia in cTfh impairment and dysfunctional humoral response. Phenotypic perturbations were also evident in the mature B cell compartment, most notably a decrease in resting memory B cells in stage 3 compared to stage 1/2, coinciding with higher viremia. Our coculture assay also suggested that intrinsic memory B cell defects could contribute to the impaired response despite at a lower level. Overall, cTfh-mediated B cell responses are significantly altered in stage 3 compared to stage 1/2, coinciding with increased inflammation and a reduction in memory B cells. These data suggest that early ART for acutely HIV infected individuals could prevent immune dysregulation while preserving cTfh function and B cell memory. PMID:27463374

  15. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection

    PubMed Central

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh–B cell interactions. PMID:29109730

  16. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    PubMed

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  17. Disruption of IL-21 Signaling Affects T Cell-B Cell Interactions and Abrogates Protective Humoral Immunity to Malaria

    PubMed Central

    Pérez-Mazliah, Damián; Ng, Dorothy Hui Lin; Freitas do Rosário, Ana Paula; McLaughlin, Sarah; Mastelic-Gavillet, Béatris; Sodenkamp, Jan; Kushinga, Garikai; Langhorne, Jean

    2015-01-01

    Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses. PMID:25763578

  18. Human T Cell Leukemia Virus Type I Tax-Induced IκB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells1

    PubMed Central

    Kimura, Ryuichiro; Senba, Masachika; Cutler, Samuel J; Ralph, Stephen J; Xiao, Gutian; Mori, Naoki

    2013-01-01

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκBinteracted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases. PMID:24027435

  19. Restricted T cell receptor repertoire in CLL-like monoclonal B cell lymphocytosis and early stage CLL.

    PubMed

    Blanco, Gonzalo; Vardi, Anna; Puiggros, Anna; Gómez-Llonín, Andrea; Muro, Manuel; Rodríguez-Rivera, María; Stalika, Evangelia; Abella, Eugenia; Gimeno, Eva; López-Sánchez, Manuela; Senín, Alicia; Calvo, Xavier; Abrisqueta, Pau; Bosch, Francesc; Ferrer, Ana; Stamatopoulos, Kostas; Espinet, Blanca

    2018-01-01

    Analysis of the T cell receptor (TR) repertoire of chronic lymphocytic leukemia-like monoclonal B cell lymphocytosis (CLL-like MBL) and early stage CLL is relevant for understanding the dynamic interaction of expanded B cell clones with bystander T cells. Here we profiled the T cell receptor β chain (TRB) repertoire of the CD4 + and CD8 + T cell fractions from 16 CLL-like MBL and 13 untreated, Binet stage A/Rai stage 0 CLL patients using subcloning analysis followed by Sanger sequencing. The T cell subpopulations of both MBL and early stage CLL harbored restricted TRB gene repertoire, with CD4 + T cell clonal expansions whose frequency followed the numerical increase of clonal B cells. Longitudinal analysis in MBL cases revealed clonal persistence, alluding to persistent antigen stimulation. In addition, the identification of shared clonotypes among different MBL/early stage CLL cases pointed towards selection of the T cell clones by common antigenic elements. T cell clonotypes previously described in viral infections and immune disorders were also detected. Altogether, our findings evidence that antigen-mediated TR restriction occurs early in clonal evolution leading to CLL and may further increase together with B cell clonal expansion, possibly suggesting that the T cell selecting antigens are tumor-related.

  20. Involvement of I-A-restricted B-B cell interaction in the polyclonal B cell differentiation induced by lipopolysaccharide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahama, Y.; Ono, S.; Ishihara, K.

    1990-01-01

    The present study has examined a functional role of Ia molecules expressed on murine B cells in polyclonal B cell differentiation induced by lipopolysaccharide (LPS). Reverse, IgM PFC responses of unprimed B cells induced by LPS in the apparent absence of T cells and adherent accessory cells were markedly inhibited in a haplotype-specific manner by Fab monomer fragment of anti-class II (Ia) but not anti-class I MHC monoclonal antibody (mAb). However, the degree of inhibition of LPS responses of H-2-heterozygous F1 B cells expressing both parental I-A products by either one of anti-I-A mAb was at best half that ofmore » the parental B cells. Interestingly, when (B10 x B10.-BR)F1 (H-2b/k) B cells were fractionated into adherent and nonadherent populations by their ability to bind to parental B10 B cell monolayers, LPS responses of F1 B cells adherent to and nonadherent to the B10 B cell monolayers were selectively inhibited by anti-I-Ab and anti-I-Ak mAb, respectively. These results suggest that LPS-responsive F1 B cells comprise at least two separate populations with restriction specificity for only one of the parental I-A products expressed on B cells. In addition, it was demonstrated that the I-A-restriction specificity of LPS-responsive B cells is plastic and determined by H-2-genotype of bone marrow cells present during B cell ontogeny but not by that of radiation-resistant host elements. Namely, the LPS responses of B10-derived B cells from (B10 + B10.BR) (H-2b x H - 2k)F1 radiation bone marrow chimeras but not from B10 (H-2b x H-2k)F1 chimeras became sensitive to the inhibition of anti-I-Ak mAb in the presence of mitomycin C-treated I-Ak-positive B cells, supporting a notion of receptor-Ia molecules interactions rather than like-like interactions.« less

  1. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

    PubMed Central

    Rodgers, David T.; Mazagova, Magdalena; Hampton, Eric N.; Cao, Yu; Ramadoss, Nitya S.; Hardy, Ian R.; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K.; Wright, Timothy M.; Schultz, Peter G.; Kim, Chan Hyuk; Young, Travis S.

    2016-01-01

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR–T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  2. Cell adhesion molecule-1 (CADM1) expressed on adult T-cell leukemia/lymphoma cells is not involved in the interaction with macrophages.

    PubMed

    Komohara, Yoshihiro; Ma, Chaoya; Yano, Hiromu; Pan, Cheng; Horlad, Hasita; Saito, Yoichi; Ohnishi, Koji; Fujiwara, Yukio; Okuno, Yutaka; Nosaka, Kisato; Shimosaki, Shunsuke; Morishita, Kazuhiro; Matsuoka, Masao; Wakayama, Tomohiko; Takeya, Motohiro

    2017-07-05

    Cell adhesion molecule 1 (CADM1) is a cell adhesion molecule that is expressed in brain, liver, lung, testis, and some kinds of cancer cells including adult T-cell leukemia/lymphoma (ATLL). Recent studies have indicated the involvement of CADM1 in cell-cell contact between cytotoxic T-lymphocytes and virus infected cells. We previously reported that cell-cell interaction between lymphoma cells and macrophages induces lymphoma cell proliferation. In the present study, we investigated whether CADM1 is associated with cell-cell interaction between several human lymphoma cell lines and macrophages.CADM1 expression was observed in the ATLL cell lines, ATN-1, ATL-T, and ATL-35T, and in the B cell lymphoma cell lines, TL-1, DAUDI, and SLVL, using western blotting. Significant cell-cell interaction between macrophages and ATN-1, ATL-T, ATL-35T and MT-2, DAUDI, and SLVL cells, as assessed by induction of cell proliferation, was observed. Immunohistochemical analysis of human biopsy samples indicated CADM1 expression in 10 of 14 ATLL cases; however, no case of follicular lymphoma or diffuse large B-cell lymphoma was positive for CADM1. Finally, the interaction of macrophages with cells of the CADM1-negative ED ATLL cell line and CADM1-transfected ED cells was tested. However, significant cell-cell interaction between macrophage and CADM1-transfected ED cells was not observed. We conclude that CADM1 was not associated with cell-cell interaction between lymphoma cells and macrophages, although CADM1 may be a useful marker of ATLL for diagnostic procedures.

  3. Cellular basis for neonatally induced T-suppressor activity. Primary B cell maturation is blocked by suppressor-helper interactions restricted by loci on chromosome 12

    PubMed Central

    1985-01-01

    The cellular mechanism and genetic restriction of neonatally induced HA- specific suppressor T (Ts) cells have been examined. The in vivo effect of these Ts cells on antibody production, primary B cell proliferation, B cell surface marker changes, and helper T (Th) cell priming during primary responses to HA have been determined. The results indicate that, although antigen-induced B cell proliferative responses and surface marker changes occur in the presence of Ts cells, differentiation to Ig secretion, and long-lived memory B cell production are prevented. Further, antigen-specific Th cell priming is completely ablated by Ts cells, suggesting that Ts act by preventing the delivery of Th signals required for both the later stages of primary B cell maturation, and the formation of memory B cell populations. Finally, in vivo cell mixing experiments using congenic mice indicate that this Ts-Th interaction is restricted by loci on mouse chromosome 12. PMID:2580040

  4. B cells regulate thymic CD8+T cell differentiation in lupus-prone mice.

    PubMed

    Xing, Chen; Zhu, Gaizhi; Xiao, He; Fang, Ying; Liu, Xiaoling; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Shen, Beifen; Li, Yan; Ma, Ning; Wang, Renxi

    2017-10-27

    Previous studies have shown that under normal physiological conditions thymic B cells play a critical function in T cell negative selection. We tested the effect of thymic B cells on thymic T-cell differentiation in autoimmune diseases including systemic lupus erythematosus (SLE). We found that thymic B cells and CD8 - CD4 + and CD4 - CD8 + T cells increased, whereas CD4 + CD8 + T cells decreased in lupus-prone mice. Once B cells were reduced, the change was reversed. Furthermore, we found that B cells blocked thymic immature single positive (ISP) CD4 - CD8 + CD3 lo/- RORγt - T cells progression into CD4 + CD8 + T cells. Interestingly, we found a novel population of thymic immature T cells (CD4 - CD8 + CD3 lo RORγt + ) that were induced into mature CD4 - CD8 + CD3 + RORγt + T cells by B cells in lupus-prone mice. Importantly, we found that IgG, produced by thymic B cells, played a critical role in the differentiation of thymic CD8 + ISP and mature RORγt + CD8 + T cells in lupus-prone mice. In conclusion, B cells blocked the differentiation from thymic CD8 + ISP and induced the differentiation of a novel immature CD4 - CD8 + CD3 lo RORγt + T cells into mature RORγt + CD8 + T cells by secreting IgG antibody in lupus-prone mice.

  5. Follicular B Cells Promote Atherosclerosis via T Cell-Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G.

    PubMed

    Tay, Christopher; Liu, Yu-Han; Kanellakis, Peter; Kallies, Axel; Li, Yi; Cao, Anh; Hosseini, Hamid; Tipping, Peter; Toh, Ban-Hock; Bobik, Alex; Kyaw, Tin

    2018-05-01

    B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte-induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice. Using mixed chimeric Ldlr -/- mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells. During development of atherosclerosis, these deficiencies affected T-B cell interactions, germinal center B cells, plasma cells, and IgG. As FO B cells differentiating into plasma cells require Blimp-1, we also assessed its role in the development of atherosclerosis. Blimp-1-deficient B cells greatly attenuated atherosclerosis and immunoglobulin-including IgG production, preventing IgG accumulation in atherosclerotic lesions; Blimp-1 deletion also attenuated lesion proinflammatory cytokines, apoptotic cell numbers, and necrotic core. To determine the importance of IgG for atherosclerosis, we purified IgG from atherosclerotic mice. Their transfer but not IgG from nonatherosclerotic mice into Ldlr -/- mice whose B cells are Blimp-1-deficient increased atherosclerosis; transfer was associated with IgG accumulating in atherosclerotic lesions, increased lesion inflammatory cytokines, apoptotic cell numbers, and necrotic core size. The mechanism by which FO B cells promote atherosclerosis is highly dependent on their expression of MHCII, CD40, and Blimp-1. FO B cell differentiation into IgG-producing plasma cells also is critical for their proatherogenic actions. Targeting B-T cell interactions and pathogenic IgG may provide novel therapeutic strategies to prevent atherosclerosis and its adverse cardiovascular complications. © 2018 American Heart Association, Inc.

  6. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    PubMed

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  7. T-cell/histiocyte-rich large B-cell lymphoma of stomach.

    PubMed

    Barut, Figen; Kandemir, Nilufer Onak; Gun, Banu Dogan; Ozdamar, Sukru Oguz

    2016-07-01

    T-cell/histiocyte-rich large B-cell lymphoma is an unusually encountered lymphoid neoplasm of stomach with aggressive course, and is an uncommon morphologic variant of diffuse large B-cell lymphoma. An ulcerated mass, 7x5x1 cm in size was observed within the gastrectomy specimen of a 76-year-old female patient. In cross sections, besides mature lymphoid cells displaying T-cell phenotype, a neoplastic formation composed of large, pleomorphic atypical lymphoid cells with, prominent nucleoli, vesicular nuclei and abundant eosinophilic cytoplasm displaying B-cell phenotype were observed. Meanwhile, histiocyte-like mononuclear cells and Reed-Sternberg-like multinuclear cells expressing CD68 and Mac387 were also observed. The diagnosis of the case was T cell/histiocyte-rich large B-cell lymphoma. This rarely encountered neoplasm should be kept in mind in the differential diagnosis of primary gastric lymphomas.

  8. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering.

    PubMed

    Ayala, Victor I; Deleage, Claire; Trivett, Matthew T; Jain, Sumiti; Coren, Lori V; Breed, Matthew W; Kramer, Joshua A; Thomas, James A; Estes, Jacob D; Lifson, Jeffrey D; Ott, David E

    2017-06-01

    Follicular helper CD4 T cells, T FH , residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8 hCXCR5 ) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8 hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8 hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8 hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8 hCXCR5 T cells were present throughout the follicles with some observed near infected T FH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication. IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, T FH , present inside B-cell follicles represent a

  9. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    PubMed

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  10. Analysis of the cross-talk of Epstein–Barr virus-infected B cells with T cells in the marmoset

    PubMed Central

    Dunham, Jordon; van Driel, Nikki; Eggen, Bart JL; Paul, Chaitali; ‘t Hart, Bert A; Laman, Jon D; Kap, Yolanda S

    2017-01-01

    Despite the well-known association of Epstein–Barr virus (EBV), a lymphocryptovirus (LCV), with multiple sclerosis, a clear pathogenic role for disease progression has not been established. The translationally relevant experimental autoimmune encephalomyelitis (EAE) model in marmoset monkeys revealed that LCV-infected B cells have a central pathogenic role in the activation of T cells that drive EAE progression. We hypothesized that LCV-infected B cells induce T-cell functions relevant for EAE progression. In the current study, we examined the ex vivo cross-talk between lymph node mononuclear cells (MNCs) from EAE marmosets and (semi-) autologous EBV-infected B-lymphoblastoid cell lines (B-LCLs). Results presented here demonstrate that infection with EBV B95-8 has a strong impact on gene expression profile of marmoset B cells, particularly those involved with antigen processing and presentation or co-stimulation to T cells. At the cellular level, we observed that MNC co-culture with B-LCLs induced decrease of CCR7 expression on T cells from EAE responder marmosets, but not in EAE monkeys without clinically evident disease. B-LCL interaction with T cells also resulted in significant loss of CD27 expression and reduced expression of IL-23R and CCR6, which coincided with enhanced IL-17A production. These results highlight the profound impact that EBV-infected B-LCL cells can have on second and third co-stimulatory signals involved in (autoreactive) T-cell activation. PMID:28243437

  11. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2‐interacting mediator knock‐out mice

    PubMed Central

    Wang, Y. M.; Zhang, G. Y.; Wang, Y.; Hu, M.; Zhou, J. J.; Sawyer, A.; Cao, Q.; Wang, Y.; Zheng, G.; Lee, V. W. S.; Harris, D. C. H.

    2017-01-01

    Summary Regulatory T cells (Tregs) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of Tregs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of Tregs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of Tregs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2‐interacting mediator (Bim) knock‐out mice by transient depleting Tregs. Bim is a pro‐apoptotic member of the B cell lymphoma 2 (Bcl‐2) family. Bim knock‐out (Bim–/–) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that Treg depletion in Bim–/– mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild‐type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)−2, IL‐4, IL‐6, IL‐10, IL‐17α, interferon (IFN)‐γ and tumour necrosis factor (TNF)‐α were increased significantly after Treg depletion in Bim–/– mice. This study demonstrates that transient depletion of Tregs leads to enhanced self‐reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim‐deficient mice. PMID:28152566

  12. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    PubMed

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  13. Human germinal center CD4+CD57+ T cells act differently on B cells than do classical T-helper cells.

    PubMed

    Bouzahzah, F; Bosseloir, A; Heinen, E; Simar, L J

    1995-01-01

    We have isolated two subtypes of helper T cells from human tonsils: CD4+CD57+ cells, mostly located in the germinal center (GC), and CD4+CD57- cells, distributed through the interfollicular areas but also present in the GC. In a functional study, we have compared the capacities of these T-cell subtypes to stimulate B cells in cocultures. In order to block T-cell proliferation while maintaining their activation level, we pretreated isolated T cells with mitomycin C prior to culture in the presence of B cells and added polyclonal activators such as PHA and Con A, combined or not with IL-2. Contrary to CD4+ CD57- cells, CD4+CD57+ cells did not markedly enhance B-cell proliferation. Even when sIgD.B cells typical of germinal center cells were tested, the CD4+CD57+ cells had no significant effect. This is in accordance with the location of these cells: They mainly occupy the light zones of the GC where few B cells divide. Even when added to preactivated, actively proliferating cells, CD4+CD57 cells failed to modulate B-cell multiplication. On the supernatants of B-cell-T-cell cocultures, we examined by the ELISA technique the effect of T cells on Ig synthesis. Contrary to CD57+ T cells, whose effect was strong, CD57- T cells weakly stimulated Ig synthesis. More IgM than IgG was generally found. Because CD57 antigen is a typical marker of natural killer cells, we tested the cytolytic activity of tonsillar CD4+CD57+ cells on K562 target cells. Unlike NK cells, neither CD4+CD57+ nor CD4+CD57- cells exhibit any cytotoxicity. Thus, germinal center CD4+CD57+ cells are not cytolytic and do not strongly stimulate either B-cell proliferation or Ig secretion. CD4+CD57- cells, however, enhance B-cell proliferation and differentiation, thus acting like the classical helper cells of the T-dependent areas.

  14. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    PubMed

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.

  15. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses.

    PubMed

    Balázs, Mercedesz; Martin, Flavius; Zhou, Tong; Kearney, John

    2002-09-01

    Marginal zone (MZ) and B1 B lymphocytes participate jointly in the early immune response against T-independent (TI) particulate antigens. Here we show that blood-derived neutrophil granulocytes and CD11c(lo) immature dendritic cells (DC) are the primary cells that efficiently capture and transport particulate bacteria to the spleen. In a systemic infection, CD11c(lo) DC, but not neutrophils, provide critical survival signals, which can be inhibited by TACI-Fc, to antigen-specific MZ B cells and promote their differentiation into IgM-secreting plasmablasts. In a local TI response, peritoneal cavity macrophages provide similar support to B1 B-derived Ag-specific blasts. In the absence of soluble TACI ligands, Ag-activated MZ- and B1-derived blasts lack survival signals and undergo apoptosis, resulting in severely impaired antibody responses.

  16. 2B4-SAP signaling is required for the priming of naive CD8+ T cells by antigen-expressing B cells and B lymphoma cells

    PubMed Central

    2017-01-01

    ABSTRACT Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein–Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8+ T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a−/− CD8+ T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a−/− CD8+ T cells responded equivalently to wild-type CD8+ T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8+ T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8+ T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8+ T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas. PMID:28344876

  17. 2B4-SAP signaling is required for the priming of naive CD8+ T cells by antigen-expressing B cells and B lymphoma cells.

    PubMed

    Huang, Yu-Hsuan; Tsai, Kevin; Tan, Sara Y; Kang, Sohyeong; Ford, Mandy L; Harder, Kenneth W; Priatel, John J

    2017-01-01

    Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein-Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8 + T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a - / - CD8 + T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a - / - CD8 + T cells responded equivalently to wild-type CD8 + T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8 + T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8 + T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8 + T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas.

  18. Induction of suppression through human T cell interactions.

    PubMed

    Lydyard, P M; Hayward, A R

    1980-02-01

    Concanavalin A (Con A) activated T cells, devoid of cells bearing Fc receptors for IgG (T - TG) help human B lymphocytes to differentiate into plasma cells (PC) in response to pokeweed mitogen (PWM). PC differentiation is reduced when adult T cells are added to such cultures. The radiosensitivity of suppression and the radioresistance of help enabled us to show that adult T cells include a suppressor-precursor which is activated by irradiated Con A-precultured T cells. Newborn T cells which include active suppressors, are both poor stimulators of suppressor-precursors and poor helpers of B cells. Our results suggest that at least two cells may mediate Con A-induced suppression, one which suppresses directly and is radiosensitive and another which is radioresistant and stimulates suppressor-precursors in a target population of T cells.

  19. Granzyme B mediated function of Parvovirus B19-specific CD4+ T cells

    PubMed Central

    Kumar, Arun; Perdomo, Maria F; Kantele, Anu; Hedman, Lea; Hedman, Klaus; Franssila, Rauli

    2015-01-01

    A novel conception of CD4+ T cells with cytolytic potential (CD4+ CTL) is emerging. These cells appear to have a part in controlling malignancies and chronic infections. Human parvovirus B19 can cause a persistent infection, yet no data exist on the presence of B19-specific CD4+ CTLs. Such cells could have a role in the pathogenesis of some autoimmune disorders reported to be associated with B19. We explored the cytolytic potential of human parvovirus B19-specific T cells by stimulating peripheral blood mononuclear cell (PBMC) with recombinant B19-VP2 virus-like particles. The cytolytic potential was determined by enzyme immunoassay-based quantitation of granzyme B (GrB) and perforin from the tissue culture supernatants, by intracellular cytokine staining (ICS) and by detecting direct cytotoxicity. GrB and perforin responses with the B19 antigen were readily detectable in B19-seropositive individuals. T-cell depletion, HLA blocking and ICS experiments showed GrB and perforin to be secreted by CD4+ T cells. CD4+ T cells with strong GrB responses were found to exhibit direct cytotoxicity. As anticipated, ICS of B19-specific CD4+ T cells showed expected co-expression of GrB, perforin and interferon gamma (IFN-γ). Unexpectedly, also a strong co-expression of GrB and interleukin 17 (IL-17) was detected. These cells expressed natural killer (NK) cell surface marker CD56, together with the CD4 surface marker. To our knowledge, this is the first report on virus-specific CD4+ CTLs co-expressing CD56 antigen. Our results suggest a role for CD4+ CTL in B19 immunity. Such cells could function within both immune regulation and triggering of autoimmune phenomena such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. PMID:26246896

  20. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

    PubMed

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.

  1. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    PubMed Central

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  2. T- and B-cell subpopulations in infectious mononucleosis

    PubMed Central

    Papamichail, M.; Sheldon, P. J.; Holborow, E. J.

    1974-01-01

    Mononuclear cells separated from the blood in fourteen cases of infectious mononucleosis at various intervals from the onset were tested for the presence of surface immunoglobulin and for ability to form spontaneous rosettes with washed sheep red blood cells. The mononucleosis during the acute phase of the illness consisted largely of a T lymphocytosis. The absolute count of T lymphocytes returned to the normal range approximately 2 months after the onset of the illness. B cells (bearing surface immunoglobulin) were only slightly increased in the acute phase. In four cases appreciable numbers of fluorescent rosetting cells were also present, and investigation suggested that these were T cells coated with anti-T-cell autoantibody. During the first 2 weeks of the illness responsiveness to phytohaemagglutinin was severely depressed, but thereafter returned towards normal. It is thought likely that in infectious mononucleosis the vast majority of atypical mononuclear cells are T cells proliferating in response to E-B virus-infected B cells, and cytotoxic towards them. ImagesFig. 3 PMID:4549622

  3. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation.

    PubMed

    Hobo, Willemijn; Norde, Wieger J; Schaap, Nicolaas; Fredrix, Hanny; Maas, Frans; Schellens, Karen; Falkenburg, J H Frederik; Korman, Alan J; Olive, Daniel; van der Voort, Robbert; Dolstra, Harry

    2012-07-01

    Allogeneic stem cell transplantation (allo-SCT) can cure hematological malignancies by inducing alloreactive T cell responses targeting minor histocompatibility antigens (MiHA) expressed on malignant cells. Despite induction of robust MiHA-specific T cell responses and long-term persistence of alloreactive memory T cells specific for the tumor, often these T cells fail to respond efficiently to tumor relapse. Previously, we demonstrated the involvement of the coinhibitory receptor programmed death-1 (PD-1) in suppressing MiHA-specific CD8(+) T cell immunity. In this study, we investigated whether B and T lymphocyte attenuator (BTLA) plays a similar role in functional impairment of MiHA-specific T cells after allo-SCT. In addition to PD-1, we observed higher BTLA expression on MiHA-specific CD8(+) T cells compared with that of the total population of CD8(+) effector-memory T cells. In addition, BTLA's ligand, herpes virus entry mediator (HVEM), was found constitutively expressed by myeloid leukemia, B cell lymphoma, and multiple myeloma cells. Interference with the BTLA-HVEM pathway, using a BTLA blocking Ab, augmented proliferation of BTLA(+)PD-1(+) MiHA-specific CD8(+) T cells by HVEM-expressing dendritic cells. Notably, we demonstrated that blocking of BTLA or PD-1 enhanced ex vivo proliferation of MiHA-specific CD8(+) T cells in respectively 7 and 9 of 11 allo-SCT patients. Notably, in 3 of 11 patients, the effect of BTLA blockade was more prominent than that of PD-1 blockade. Furthermore, these expanded MiHA-specific CD8(+) T cells competently produced effector cytokines and degranulated upon Ag reencounter. Together, these results demonstrate that BTLA-HVEM interactions impair MiHA-specific T cell functionality, providing a rationale for interfering with BTLA signaling in post-stem cell transplantation therapies.

  4. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    PubMed

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  5. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    PubMed

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  6. Qualitative and quantitative analysis of PMN/T-cell interactions by InFlow and super-resolution microscopy.

    PubMed

    Balta, Emre; Stopp, Julian; Castelletti, Laura; Kirchgessner, Henning; Samstag, Yvonne; Wabnitz, Guido H

    2017-01-01

    Neutrophils or polymorphonuclear cells (PMN) eliminate bacteria via phagocytosis and/or NETosis. Apart from these conventional roles, PMN also have immune-regulatory functions. They can transdifferentiate and upregulate MHCII as well as ligands for costimulatory receptors which enables them to behave as antigen presenting cells (APC). The initial step for activating T-cells is the formation of an immune synapse between T-cells and antigen-presenting cells. However, the immune synapse that develops at the PMN/T-cell contact zone is as yet hardly investigated due to the non-availability of methods for analysis of large number of PMN interactions. In order to overcome these obstacles, we introduce here a workflow to analyse the immune synapse of primary human PMN and T-cells using multispectral imaging flow cytometry (InFlow microscopy) and super-resolution microscopy. For that purpose, we used CD3 and CD66b as the lineage markers for T-cells and PMN, respectively. Thereafter, we applied and critically discussed various "masks" for identification of T-cell PMN interactions. Using this approach, we found that a small fraction of transdifferentiated PMN (CD66b + CD86 high ) formed stable PMN/T-cell conjugates. Interestingly, while both CD3 and CD66b accumulation in the immune synapse was dependent on the maturation state of the PMN, only CD3 accumulation was greatly enhanced by the presence of superantigen. The actin cytoskeleton was weakly rearranged at the PMN side on the immune synapse upon contact with a T-cell in the presence of superantigen. A more detailed analysis using super-resolution microscopy (structured-illumination microscopy, SIM) confirmed this finding. Together, we present an InFlow microscopy based approach for the large scale analysis of PMN/T-cell interactions and - combined with SIM - a possibility for an in-depth analysis of protein translocation at the site of interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

    PubMed

    Zhang, Xue-Song; Tegtmeyer, Nicole; Traube, Leah; Jindal, Shawn; Perez-Perez, Guillermo; Sticht, Heinrich; Backert, Steffen; Blaser, Martin J

    2015-02-01

    Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk.

  8. Receptor revision in CD4 T cells is influenced by follicular helper T cell formation and germinal-center interactions.

    PubMed

    Higdon, Lauren E; Deets, Katherine A; Friesen, Travis J; Sze, Kai-Yin; Fink, Pamela J

    2014-04-15

    Peripheral CD4 T cells in Vβ5 transgenic (Tg) C57BL/6J mice undergo tolerance to an endogenous superantigen encoded by mouse mammary tumor virus 8 (Mtv-8) by either deletion or T-cell receptor (TCR) revision. Revision is a process by which surface expression of the Vβ5(+) TCR is down-regulated in response to Mtv-8 and recombination activating genes are expressed to drive rearrangement of the endogenous TCRβ locus, effecting cell rescue through the expression of a newly generated, non-self-reactive TCR. In an effort to identify the microenvironment in which revision takes place, we show here that the proportion of T follicular helper cells (Tfh) and production of high-affinity antibody during a primary response are increased in Vβ5 Tg mice in an Mtv-8-dependent manner. Revising T cells have a Tfh-like surface phenotype and transcription factor profile, with elevated expression of B-cell leukemia/lymphoma 6 (Bcl-6), CXC chemokine receptor 5, programmed death-1, and other Tfh-associated markers. Efficient revision requires Bcl-6 and is inhibited by B lymphocyte-induced maturation protein-1. Revision completes less efficiently in the absence of signaling lymphocytic activation molecule-associated protein although initiation proceeds normally. These data indicate that Tfh formation is required for the initiation of revision and germinal-center interactions for its completion. The germinal center is known to provide a confined space in which B-cell antigen receptors undergo selection. Our data extend the impact of this selective microenvironment into the arena of T cells, suggesting that this fluid structure also provides a regulatory environment in which TCR revision can safely take place.

  9. Dietary Restriction and Fasting Arrest B and T Cell Development and Increase Mature B and T Cell Numbers in Bone Marrow

    PubMed Central

    Shushimita, Shushimita; de Bruijn, Marjolein J. W.; de Bruin, Ron W. F.; IJzermans, Jan N. M.; Hendriks, Rudi W.; Dor, Frank J. M. F.

    2014-01-01

    Dietary restriction (DR) delays ageing and extends life span. Both long- and short-term DR, as well as short-term fasting provide robust protection against many “neuronal and surgery related damaging phenomena” such as Parkinson’s disease and ischemia-reperfusion injury. The exact mechanism behind this phenomenon has not yet been elucidated. Its anti-inflammatory actions prompted us to thoroughly investigate the consequences of DR and fasting on B and T cell compartments in primary and secondary lymphoid organs of male C57Bl/6 mice. In BM we found that DR and fasting cause a decrease in the total B cell population and arrest early B cell development, while increasing the number of recirculating mature B cells. In the fasting group, a significant reduction in peripheral B cell counts was observed in both spleen and mesenteric lymph nodes (mLN). Thymopoiesis was arrested significantly at double negative DN2 stage due to fasting, whereas DR resulted in a partial arrest of thymocyte development at the DN4 stage. Mature CD3+ T cell populations were increased in BM and decreased in both spleen and mLN. Thus, DR arrests B cell development in the BM but increases the number of recirculating mature B cells. DR also arrests maturation of T cells in thymus, resulting in depletion of mature T cells from spleen and mLN while recruiting them to the BM. The functional relevance in relation to protection against organ damage needs to be determined. PMID:24504160

  10. Role of adapter function in oncoprotein-mediated activation of NF-kappaB. Human T-cell leukemia virus type I Tax interacts directly with IkappaB kinase gamma.

    PubMed

    Jin, D Y; Giordano, V; Kibler, K V; Nakano, H; Jeang, K T

    1999-06-18

    Mechanisms by which the human T-cell leukemia virus type I Tax oncoprotein activates NF-kappaB remain incompletely understood. Although others have described an interaction between Tax and a holo-IkappaB kinase (IKK) complex, the exact details of protein-protein contact are not fully defined. Here we show that Tax binds to neither IKK-alpha nor IKK-beta but instead complexes directly with IKK-gamma, a newly characterized component of the IKK complex. This direct interaction with IKK-gamma correlates with Tax-induced IkappaB-alpha phosphorylation and NF-kappaB activation. Thus, our findings establish IKK-gamma as a key molecule for adapting an oncoprotein-specific signaling to IKK-alpha and IKK-beta.

  11. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.

    PubMed

    Kochenderfer, James N; Rosenberg, Steven A

    2013-05-01

    Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies.

  12. Polyclonal activation of human lymphocytes in vitro-II. Reappraisal of T and B cell-specific mitogens.

    PubMed

    Dosch, H M; Schuurman, R K; Gelfand, E W

    1980-08-01

    The capacity of the T cell mitogens phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen (PWM), and Staphylococcus protein A (SpA) to induce B cell proliferation and differentiation was compared with the B cell mitogen, formalinized Staphylococcus aureus (STA). Lymphocyte subpopulations from normal donors and patients with various immunodeficiency diseases were studied. In the presence of the T cell mitogens, irradiated T cells were capable of providing a helper cell activity that enabled co-cultured B lymphocytes to proliferate in response to these mitogens and to differentiate into IgM-secreting (direct) hemolytic plaque-forming cells (PFC). In the PFC response, radioresistant T-helper and radiosensitive T-suppressor cell activities could be demonstrated. T-suppressor cell activity outweighed helper activity only in nonirradiated co-cultures stimulated with Con A. Patients with severe combined immunodeficiency lacked mitogen-induced helper T cells, whereas patients with various forms of humoral immune deficiency were normal in this respect. These findings and the tissue distribution of the helper activity is aquired early in post-thymic T cell differentiation. The data suggest that experiments with cell lineage-specific lymphocyte mitogens should be considered in the context of more complex cell-cell interactions.

  13. Increased B7-H1 expression on dendritic cells correlates with programmed death 1 expression on T cells in simian immunodeficiency virus-infected macaques and may contribute to T cell dysfunction and disease progression.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Pahar, Bapi; Moroney-Rasmussen, Terri; Alvarez, Xavier; Lackner, Andrew A; Veazey, Ronald S

    2010-12-15

    Suppression of dendritic cell (DC) function in HIV-1 infection is thought to contribute to inhibition of immune responses and disease progression, but the mechanism of this suppression remains undetermined. Using the rhesus macaque model, we show B7-H1 (programmed death [PD]-L1) is expressed on lymphoid and mucosal DCs (both myeloid DCs and plasmacytoid DCs), and its expression significantly increases after SIV infection. Meanwhile, its receptor, PD-1, is upregulated on T cells in both peripheral and mucosal tissues and maintained at high levels on SIV-specific CD8(+) T cell clones in chronic infection. However, both B7-H1 and PD-1 expression in SIV controllers was similar to that of controls. Expression of B7-H1 on both peripheral myeloid DCs and plasmacytoid DCs positively correlated with levels of PD-1 on circulating CD4(+) and CD8(+) T cells, viremia, and declining peripheral CD4(+) T cell levels in SIV-infected macaques. Importantly, blocking DC B7-H1 interaction with PD-1(+) T cells could restore SIV-specific CD4(+) and CD8(+) T cell function as evidenced by increased cytokine secretion and proliferative capacity. Combined, the results indicate that interaction of B7-H1-PD-1 between APCs and T cells correlates with impairment of CD4(+) Th cells and CTL responses in vivo, and all are associated with disease progression in SIV infection. Blockade of this pathway may have therapeutic implications for HIV-infected patients.

  14. Visualization of Cytolytic T Cell Differentiation and Granule Exocytosis with T Cells from Mice Expressing Active Fluorescent Granzyme B

    PubMed Central

    Mouchacca, Pierre; Schmitt-Verhulst, Anne-Marie; Boyer, Claude

    2013-01-01

    To evaluate acquisition and activation of cytolytic functions during immune responses we generated knock in (KI) mice expressing Granzyme B (GZMB) as a fusion protein with red fluorescent tdTomato (GZMB-Tom). As for GZMB in wild type (WT) lymphocytes, GZMB-Tom was absent from naïve CD8 and CD4 T cells in GZMB-Tom-KI mice. It was rapidly induced in most CD8 T cells and in a subpopulation of CD4 T cells in response to stimulation with antibodies to CD3/CD28. A fraction of splenic NK cells expressed GZMB-Tom ex vivo with most becoming positive upon culture in IL-2. GZMB-Tom was present in CTL granules and active as a protease when these degranulated into cognate target cells, as shown with target cells expressing a specific FRET reporter construct. Using T cells from mice expressing GZMB-Tom but lacking perforin, we show that the transfer of fluorescent GZMB-Tom into target cells was dependent on perforin, favoring a role for perforin in delivery of GZMB at the target cells’ plasma membranes. Time-lapse video microscopy showed Ca++ signaling in CTL upon interaction with cognate targets, followed by relocalization of GZMB-Tom-containing granules to the synaptic contact zone. A perforin-dependent step was next visualized by the fluorescence signal from the non-permeant dye TO-PRO-3 at the synaptic cleft, minutes before the labeling of the target cell nucleus, characterizing a previously undescribed synaptic event in CTL cytolysis. Transferred OVA-specific GZMB-Tom-expressing CD8 T cells acquired GZMB-Tom expression in Listeria monocytogenes-OVA infected mice as soon as 48h after infection. These GZMB-Tom positive CD8 T cells localized in the splenic T-zone where they interacted with CD11c positive dendritic cells (DC), as shown by GZMB-Tom granule redistribution to the T/DC contact zone. GZMB-Tom-KI mice thus also provide tools to visualize acquisition and activation of cytolytic function in vivo. PMID:23840635

  15. Induction of IgA B cell differentiation of bone marrow-derived B cells by Peyer's patch autoreactive helper T cells.

    PubMed

    Kihira, T; Kawanishi, H

    1995-08-01

    The objective of this study was to demonstrate in vitro that bone marrow-derived pro/pre-B cells bearing mu mRNA can switch their Ig heavy-chain isotype to that of alpha mRNA-expressing B cells after contact with Peyer's patches-derived activated autoreactive CD4+ T cells. Bone marrow-derived pro/pre-B cells and activated autoreactive Peyer's patch, mesenteric lymph node, or spleen CD4+ T cells were co-cultured in the presence of recombinant (r) IL-2, rIL-7, and Con A for 3 days. The mixed cultured cells were isolated for preparation of total RNA. Dot/slot hybridization, using murine C mu (pu3741) and C alpha (P alpha J558) Ig heavy-chain cDNA probes, detected C mu and C alpha Ig heavy-chain mRNA transcripts. The magnitude of each mRNA expression was measured demsitometrically. In addition, the secreted class-specific Ig contents from the co-cultured supernatants were measured. The results indicate that activated autoreactive Peyer's patch and mesenteric lymph node CD4+ T cells provide a specific Ig heavy-chain switch from mu to alpha (Peyer's patch CD4+ T cells > mesenteric lymph node CD4+ T cells) in bone marrow-derived pro/pre-B cells and also assist to develop IgA-secreting plasma cells. The alpha heavy-chain switch and IgA production do not occur in the presence of activated autoreactive spleen CD4+ T cells. These results support the view that autoreactive gut Peyer's patch CD4+ T cells, at least, regulate IgA B cell heavy-chain switching and terminal differentiation during gut mucosal B cell development.

  16. Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse.

    PubMed

    Reichardt, Peter; Dornbach, Bastian; Rong, Song; Beissert, Stefan; Gueler, Faikah; Loser, Karin; Gunzer, Matthias

    2007-09-01

    Naive B cells are ineffective antigen-presenting cells and are considered unable to activate naive T cells. However, antigen-specific contact of these cells leads to stable cell pairs that remain associated over hours in vivo. The physiologic role of such pairs has not been evaluated. We show here that antigen-specific conjugates between naive B cells and naive T cells display a mature immunologic synapse in the contact zone that is absent in T-cell-dendritic-cell (DC) pairs. B cells induce substantial proliferation but, contrary to DCs, no loss of L-selectin in T cells. Surprisingly, while DC-triggered T cells develop into normal effector cells, B-cell stimulation over 72 hours induces regulatory T cells inhibiting priming of fresh T cells in a contact-dependent manner in vitro. In vivo, the regulatory T cells home to lymph nodes where they potently suppress immune responses such as in cutaneous hypersensitivity and ectopic allogeneic heart transplant rejection. Our finding might help to explain old observations on tolerance induction by B cells, identify the mature immunologic synapse as a central functional module of this process, and suggest the use of naive B-cell-primed regulatory T cells, "bTregs," as a useful approach for therapeutic intervention in adverse adaptive immune responses.

  17. γδ T cells affect IL-4 production and B-cell tolerance

    PubMed Central

    Huang, Yafei; Heiser, Ryan A.; Detanico, Thiago O.; Getahun, Andrew; Kirchenbaum, Greg A.; Casper, Tamara L.; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Cambier, John C.; Wysocki, Lawrence J.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance. PMID:25535377

  18. γδ T cells affect IL-4 production and B-cell tolerance.

    PubMed

    Huang, Yafei; Heiser, Ryan A; Detanico, Thiago O; Getahun, Andrew; Kirchenbaum, Greg A; Casper, Tamara L; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Cambier, John C; Wysocki, Lawrence J; O'Brien, Rebecca L; Born, Willi K

    2015-01-06

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.

  19. T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates Entry into Plasma Cell or Recycling Germinal Center Cell Fate.

    PubMed

    Ise, Wataru; Fujii, Kentaro; Shiroguchi, Katsuyuki; Ito, Ayako; Kometani, Kohei; Takeda, Kiyoshi; Kawakami, Eiryo; Yamashita, Kazuo; Suzuki, Kazuhiro; Okada, Takaharu; Kurosaki, Tomohiro

    2018-04-17

    Higher- or lower-affinity germinal center (GC) B cells are directed either to plasma cell or GC recycling, respectively; however, how commitment to the plasma cell fate takes place is unclear. We found that a population of light zone (LZ) GC cells, Bcl6 lo CD69 hi expressing a transcription factor IRF4 and higher-affinity B cell receptors (BCRs) or Bcl6 hi CD69 hi with lower-affinity BCRs, favored the plasma cell or recycling GC cell fate, respectively. Mechanistically, CD40 acted as a dose-dependent regulator for Bcl6 lo CD69 hi cell formation. Furthermore, we found that expression of intercellular adhesion molecule 1 (ICAM-1) and signaling lymphocytic activation molecule (SLAM) in Bcl6 lo CD69 hi cells was higher than in Bcl6 hi CD69 hi cells, thereby affording more stable T follicular helper (Tfh)-GC B cell contacts. These data support a model whereby commitment to the plasma cell begins in the GC and suggest that stability of Tfh-GC B cell contacts is key for plasma cell-prone GC cell formation. Copyright © 2018. Published by Elsevier Inc.

  20. Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity.

    PubMed

    Guy, Thomas V; Terry, Alexandra M; Bolton, Holly A; Hancock, David G; Zhu, Erhua; Brink, Robert; McGuire, Helen M; Shklovskaya, Elena; Fazekas de St. Groth, Barbara

    2016-05-24

    The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.

  1. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma

    PubMed Central

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A.; Chen, Benjamin J.

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management. PMID:24955327

  2. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma.

    PubMed

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A; Chen, Benjamin J

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management.

  3. CD4+CD25+ T-Cells Control Autoimmunity in the Absence of B-Cells

    PubMed Central

    Mariño, Eliana; Villanueva, Jeanette; Walters, Stacey; Liuwantara, David; Mackay, Fabienne; Grey, Shane T.

    2009-01-01

    OBJECTIVE Tumor necrosis factor ligand family members B-cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) can exert powerful effects on B-cell activation and development, type 1 T-helper cell (Th1) immune responses, and autoimmunity. We examined the effect of blocking BAFF and APRIL on the development of autoimmune diabetes. RESEARCH DESIGN AND METHODS Female NOD mice were administered B-cell maturation antigen (BCMA)-Fc from 9 to 15 weeks of age. Diabetes incidence, islet pathology, and T- and B-cell populations were examined. RESULTS BCMA-Fc treatment reduced the severity of insulitis and prevented diabetes development in NOD mice. BCMA-Fc–treated mice showed reduced follicular, marginal-zone, and T2MZ B-cells. B-cell reduction was accompanied by decreased frequencies of pathogenic CD4+CD40+ T-cells and reduced Th1 cytokines IL-7, IL-15, and IL-17. Thus, T-cell activation was blunted with reduced B-cells. However, BCMA-Fc–treated mice still harbored detectable diabetogenic T-cells, suggesting that regulatory mechanisms contributed to diabetes prevention. Indeed, BCMA-Fc–treated mice accumulated increased CD4+CD25+ regulatory T-cells (Tregs) with age. CD4+CD25+ cells were essential for maintaining euglycemia because their depletion abrogated BCMA-Fc–mediated protection. BCMA-Fc did not directly affect Treg homeostasis given that CD4+CD25+Foxp3+ T-cells did not express TACI or BR3 receptors and that CD4+CD25+Foxp3+ T-cell frequencies were equivalent in wild-type, BAFF−/−, TACI−/−, BCMA−/−, and BR3−/− mice. Rather, B-cell depletion resulted in CD4+CD25+ T-cell–mediated protection from diabetes because anti-CD25 monoclonal antibody treatment precipitated diabetes in both diabetes-resistant NOD.μMT−/− and BCMA-Fc–treated mice. CONCLUSIONS BAFF/APRIL blockade prevents diabetes. BCMA-Fc reduces B-cells, subsequently blunting autoimmune activity and allowing endogenous regulatory mechanisms to preserve a

  4. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  5. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1

    PubMed Central

    1993-01-01

    The specificity of T lymphocyte activation is determined by engagement of the T cell receptor (TCR) by peptide/major histocompatibility complexes expressed on the antigen-presenting cell (APC). Lacking costimulation by accessory molecules on the APC, T cell proliferation does not occur and unresponsiveness to subsequent antigenic stimulus is induced. The B7/BB1 receptor on APCs binds CD28 and CTLA-4 on T cells, and provides a costimulus for T cell proliferation. Here, we show that prolonged, specific T cell hyporesponsiveness to antigenic restimulation is achieved by blocking the interaction between CD28 and B7/BB1 in human mixed leukocyte culture (MLC). Secondary T cell proliferative responses to specific alloantigen were inhibited by addition to the primary culture of monovalent Fab fragments of anti- CD28 monoclonal antibody (mAb) 9.3, which block interaction of CD28 with B7/BB1 without activating T cells. Hypo-responsiveness was also induced in MLC by CTLA4Ig, a chimeric immunoglobulin fusion protein incorporating the extracellular domain of CTLA-4 with high binding avidity for B7/BB1. Cells previously primed could also be made hyporesponsive, if exposed to alloantigen in the presence of CTLA4Ig. Maximal hyporesponsiveness was achieved in MLC after 2 d of incubation with CTLA4Ig, and was maintained for at least 27 d after removal of CTLA4Ig. Accumulation of interleukin 2 (IL-2) and interferon gamma but not IL-4 mRNA was blocked by CTLA4Ig in T cells stimulated by alloantigen. Antigen-specific responses could be restored by addition of exogenous IL-2 at the time of the secondary stimulation. Addition to primary cultures of the intact bivalent anti-CD28 mAb 9.3, or B7/BB1+ transfected CHO cells or exogenous IL-2, abrogated induction of hyporesponsiveness by CTLA4Ig. These data indicate that interaction of CD28 with B7/BB1 during TCR engagement with antigen is required to maintain T cell competence and that blocking such interaction can result in a state of T cell

  6. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease.

    PubMed

    Valentine, Kristen M; Davini, Dan; Lawrence, Travis J; Mullins, Genevieve N; Manansala, Miguel; Al-Kuhlani, Mufadhal; Pinney, James M; Davis, Jason K; Beaudin, Anna E; Sindi, Suzanne S; Gravano, David M; Hoyer, Katrina K

    2018-05-09

    CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. Aborted germinal center reactions and B cell memory by follicular T cells specific for a B cell receptor V region peptide.

    PubMed

    Heiser, Ryan A; Snyder, Christopher M; St Clair, James; Wysocki, Lawrence J

    2011-07-01

    A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.

  8. IL-10 Producing B Cells Ability to Induce Regulatory T Cells Is Maintained in Rheumatoid Arthritis

    PubMed Central

    Mielle, Julie; Audo, Rachel; Hahne, Michael; Macia, Laurence; Combe, Bernard; Morel, Jacques; Daien, Claire

    2018-01-01

    Despite growing evidence highlighting the relevance of increasing IL-10-producing B cells (B10+cells) in autoimmune diseases, their functions in patients are still unknown. The aim of this study was to evaluate the functions of CpG-induced B10+ cells isolated from healthy controls (HC) and rheumatoid arthritis (RA) patients, on naïve T cell differentiation. We demonstrated that CpG-induced B10+ cells from HC drove naïve T cell differentiation toward regulatory T cells (Treg cells) and IL-10-producing T cells (Tr1) through IL-10 secretion and cellular contacts. B10+ cells from HC did not decrease T helper 1 (Th1) nor and tumor necrosis factor α producing T cell (TNFα+ T cell) differentiation. We showed that in RA, B10+ cells could also induce Treg cells and Tr1 from naïve T cells. Contrary to HC, B10+ cells from RA patients increased naïve T cell conversion into Th1. Interestingly, PD-L2, a programmed death-1 (PD-1) ligand that inhibits PD-L1 and promotes Th1 differentiation, was overexpressed on RA B10+ cells compared to HC B10+ cells. Together, our findings showed that CpG-induced B10+ cells may be used to increase Treg cells in patients with RA. However, CpG may not be the most adequate stimuli as CpG-induced B10+ cells also increased inflammatory T cells in those patients. PMID:29774031

  9. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    PubMed

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  10. Copine-III interacts with ErbB2 and promotes tumor cell migration.

    PubMed

    Heinrich, C; Keller, C; Boulay, A; Vecchi, M; Bianchi, M; Sack, R; Lienhard, S; Duss, S; Hofsteenge, J; Hynes, N E

    2010-03-18

    ErbB2 amplification and overexpression in breast cancer correlates with aggressive disease and poor prognosis. To find novel ErbB2-interacting proteins, we used stable isotope labeling of amino acids in cell culture followed by peptide affinity pull-downs and identified specific binders using relative quantification by mass spectrometry. Copine-III, a member of a Ca(2+)-dependent phospholipid-binding protein family, was identified as binding to phosphorylated Tyr1248 of ErbB2. In breast cancer cells, Copine-III requires Ca(2+) for binding to the plasma membrane, where it interacts with ErbB2 upon receptor stimulation, an interaction that is dependent on receptor activity. Copine-III also binds receptor of activated C kinase 1 and colocalizes with phosphorylated focal adhesion kinase at the leading edge of migrating cells. Importantly, knockdown of Copine-III in T47D breast cancer cells causes a decrease in Src kinase activation and ErbB2-dependent wound healing. Our data suggest that Copine-III is a novel player in the regulation of ErbB2-dependent cancer cell motility. In primary breast tumors, high CPNE3 RNA levels significantly correlate with ERBB2 amplification. Moreover, in an in situ tissue microarray analysis, we detected differential protein expression of Copine-III in normal versus breast, prostate and ovarian tumors, suggesting a more general role for Copine-III in carcinogenesis.

  11. Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function.

    PubMed

    Geng, Jie; Altman, John D; Krishnakumar, Sujatha; Raghavan, Malini

    2018-05-09

    When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8 + T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8 + T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8 + T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8 + T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8 + T cell activation, mediated by the binding of empty HLA-I to CD8. © 2018, Geng et al.

  12. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity.

    PubMed

    Klotz, Luisa; Kuzmanov, Ivan; Hucke, Stephanie; Gross, Catharina C; Posevitz, Vilmos; Dreykluft, Angela; Schulte-Mecklenbeck, Andreas; Janoschka, Claudia; Lindner, Maren; Herold, Martin; Schwab, Nicholas; Ludwig-Portugall, Isis; Kurts, Christian; Meuth, Sven G; Kuhlmann, Tanja; Wiendl, Heinz

    2016-10-11

    Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood-brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4 + T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity.

  13. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells

    PubMed Central

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. PMID:25613934

  14. Constitutive CD40L Expression on B Cells Prematurely Terminates Germinal Center Response and Leads to Augmented Plasma Cell Production in T Cell Areas

    PubMed Central

    Bolduc, Anna; Long, Eugene; Stapler, Dale; Cascalho, Marilia; Tsubata, Takeshi; Koni, Pandelakis A.; Shimoda, Michiko

    2013-01-01

    CD40/CD40L engagement is essential to T cell-dependent B cell proliferation and differentiation. However, the precise role of CD40 signaling through cognate T–B interaction in the generation of germinal center and memory B cells is still incompletely understood. To address this issue, a B cell-specific CD40L transgene (CD40LBTg) was introduced into mice with B cell-restricted MHC class II deficiency. Using this mouse model, we show that constitutive CD40L expression on B cells alone could not induce germinal center differentiation of MHC class II-deficient B cells after immunization with T cell-dependent Ag. Thus, some other MHC class II-dependent T cell-derived signals are essential for the generation of germinal center B cells in response to T cell-dependent Ag. In fact, CD40LBTg mice generated a complex Ag-specific IgG1 response, which was greatly enhanced in early, but reduced in late, primary response compared with control mice. We also found that the frequency of Ag-specific germinal center B cells in CD40LBTg mice was abruptly reduced 1 wk after immunization. As a result, the numbers of Ag-specific IgG1 long-lived plasma cells and memory B cells were reduced. By histology, large numbers of Ag-specific plasma cells were found in T cell areas adjacent to Ag-specific germinal centers of CD40LBTg mice, temporarily during the second week of primary response. These results indicate that CD40L expression on B cells prematurely terminated their ongoing germinal center response and produced plasma cells. Our results support the notion that CD40 signaling is an active termination signal for germinal center reaction. PMID:20505142

  15. CD22 Promotes B-1b Cell Responses to T Cell-Independent Type 2 Antigens.

    PubMed

    Haas, Karen M; Johnson, Kristen L; Phipps, James P; Do, Cardinal

    2018-03-01

    CD22 (Siglec-2) is a critical regulator of B cell activation and survival. CD22 -/- mice generate significantly impaired Ab responses to T cell-independent type 2 (TI-2) Ags, including haptenated Ficoll and pneumococcal polysaccharides, Ags that elicit poor T cell help and activate BCR signaling via multivalent epitope crosslinking. This has been proposed to be due to impaired marginal zone (MZ) B cell development/maintenance in CD22 -/- mice. However, mice expressing a mutant form of CD22 unable to bind sialic acid ligands generated normal TI-2 Ab responses, despite significantly reduced MZ B cells. Moreover, mice treated with CD22 ligand-binding blocking mAbs, which deplete MZ B cells, had little effect on TI-2 Ab responses. We therefore investigated the effects of CD22 deficiency on B-1b cells, an innate-like B cell population that plays a key role in TI-2 Ab responses. B-1b cells from CD22 -/- mice had impaired BCR-induced proliferation and significantly increased intracellular Ca 2+ concentration responses following BCR crosslinking. Ag-specific B-1b cell expansion and plasmablast differentiation following TI-2 Ag immunization was significantly impaired in CD22 -/- mice, consistent with reduced TI-2 Ab responses. We generated CD22 -/- mice with reduced CD19 levels (CD22 -/- CD19 +/- ) to test the hypothesis that augmented B-1b cell BCR signaling in CD22 -/- mice contributes to impaired TI-2 Ab responses. BCR-induced proliferation and intracellular Ca 2+ concentration responses were normalized in CD22 -/- CD19 +/- B-1b cells. Consistent with this, TI-2 Ag-specific B-1b cell expansion, plasmablast differentiation, survival, and Ab responses were rescued in CD22 -/- CD19 +/- mice. Thus, CD22 plays a critical role in regulating TI-2 Ab responses through regulating B-1b cell signaling thresholds. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease.

    PubMed

    Crook, Kristen R; Jin, Mengyao; Weeks, Michael F; Rampersad, Rishi R; Baldi, Robert M; Glekas, Amy S; Shen, Yajuan; Esserman, Denise A; Little, Paul; Schwartz, Todd A; Liu, Peng

    2015-03-01

    MDSCs are a heterogeneous group of myeloid cells that suppress T cell activity in cancer and autoimmune disease. The effect of MDSCs on B cell function is not clear. Using the CIA model of autoimmune disease, we found an increase in M-MDSCs in the periphery of WT mice with CIA compared with naïve mice. These MDSCs were absent from the periphery of CCR2(-/-) mice that developed exacerbated disease. M-MDSCs, isolated from immunized mice, inhibited autologous CD4(+) T cell proliferation. The M-MDSC-mediated suppression of T cell proliferation was NO and IFN-γ dependent but IL-17 independent. Furthermore, we demonstrated for the first time that M-MDSCs from CIA mice also inhibited autologous B cell proliferation and antibody production. The suppression of B cells by M-MDSCs was dependent on the production of NO and PGE2 and required cell-cell contact. Administration of M-MDSCs rescued CCR2(-/-) mice from the exacerbated CIA phenotype and ameliorated disease in WT mice. Furthermore, adoptive transfer of M-MDSCs reduced autoantibody production by CCR2(-/-) and WT mice. In summary, M-MDSCs inhibit T cell and B cell function in CIA and may serve as a therapeutic approach in the treatment of autoimmune arthritis. © Society for Leukocyte Biology.

  17. Cellular cooperation in lymphocyte activation. III. B-cell helper effect in the enhancement of T-cell response.

    PubMed

    Kasahara, T; Kin, K; Itoh, Y; Kawai, T; Kano, Y; Shioiri-Nakano, K

    1979-01-01

    T and B cells were purified from human tonsil and peripheral blood by the removal of phagocytic cells, followed by filtration through a nylon fiber column (NC) and E-rosette formation. Purified T and B cells contained less than 1% of other cell types. The responses of T cells to concanavalin A (Con A) and soluble protein A were greatly enhanced in the presence of autologous B cells. Participation of B cells in T-cell enhancement was confirmed by the following observations: (a) purified B copulation, which was separated further from adherent B cells, retained its enhancing activity. (b) Another adherent cell-free B-cell preparation, which was purified from the NC-passed fraction, and (c) no T lymphoid but some B lymphoid cell lines, elicited strong T-cell enhancement. It was also found that the enhancing capacity of B cells required no metabolic activity, but rather an intact cell form and direct cell-to-cell contact with responding cells. The stimulatory determinants on B cells were resistant to trypsin and neuraminidase treatment. In this paper a hypothesis will be presented that at least two signals are prerequisite for the effective activation of T cells.

  18. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells.

    PubMed

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. In vitro effects of 4-hydroperoxycyclophosphamide on human immunoregulatory T subset function. I. Selective effects on lymphocyte function in T-B cell collaboration.

    PubMed

    Ozer, H; Cowens, J W; Colvin, M; Nussbaum-Blumenson, A; Sheedy, D

    1982-01-01

    The alkylating agent cyclophosphamide may suppress or enhance immune responses in vivo but is inactive in vitro unless metabolized by microsomal enzyme activation. 4-hydroperoxycyclophosphamide (4-HC) is a synthetic compound that is spontaneously converted in aqueous solution to the active metabolites. In this report, we examined the in vitro sensitivity of functional human T cell subsets to 4-HC in a polyclonal B cell differentiation assay and in the generation of mitogen-induced suppressor cells for effector B cell function. Con A-induced T suppression of B cell differentiation is completely abrogated by a 1-h pretreatment of T cells at very low concentrations of between 10(-2) and 20 nmol/ml, whereas inducer T cell function is sensitive only to concentrations in greater than 40 nmol/ml. The effects of 4-HC on suppressor T cells appear to occur at concentrations that do not result in DNA cross-linking or decreased blastogenesis. Con A-induced T suppressors are generated from within the OKT4+, OKT8- subset and are sensitive to low-dose 4-HC only before activation, whereas differentiated suppressor cells are resistant to concentrations in greater than 80 nmol/ml. Low-dose 4-HC pretreatment of the B cell population results in abrogation of immunoglobulin secretion when treated B cells are cocultured with unfractionated T cells, however, this effect is completely reversible if pretreated B cells are cocultured with T cells devoid of suppressor activity. These results demonstrate that human presuppressor cells for B-effector function differentiate in response to Con A from the OKT4+, OKT8- subset and are exquisitely sensitive to low concentrations of CYP whereas mature suppressor and inducer functions are resistant to all but very high concentrations in vitro. The differential sensitivity of functional T and B cell subsets to 4-HC in vitro can be a very useful probe in dissecting immunoregulatory interactions with man.

  20. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity

    PubMed Central

    Rubtsov, Anatoly V.; Thurman, Joshua M.; Mennona, Johanna M.; Kappler, John W.; Marrack, Philippa

    2017-01-01

    B cells contribute to multiple aspects of autoimmune disorders and may play a role in triggering disease. Thus, targeting B cells may be a promising strategy for treating autoimmune disorders. Better understanding of the B cell subsets that are responsible for the development of autoimmunity will be critical for developing efficient therapies. Here we have reported that B cells expressing the transcription factor T-bet promote the rapid appearance of autoantibodies and germinal centers in spontaneous murine models of systemic lupus erythematosus (SLE). Conditional deletion of T-bet from B cells impaired the formation of germinal centers and mitigated the development of kidney damage and rapid mortality in SLE mice. B cell–specific deletion of T-bet was also associated with lower activation of both B cells and T cells. Taken together, our results suggest that targeting T-bet–expressing B cells may be a potential target for therapy for autoimmune diseases. PMID:28240602

  1. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    PubMed

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  2. ErbB-targeted CAR T-cell immunotherapy of cancer.

    PubMed

    Whilding, Lynsey M; Maher, John

    2015-01-01

    Chimeric antigen receptor (CAR) based immunotherapy has been under development for the last 25 years and is now a promising new treatment modality in the field of cancer immunotherapy. The approach involves genetically engineering T cells to target malignant cells through expression of a bespoke fusion receptor that couples an HLA-independent antigen recognition domain to one or more intracellular T-cell activating modules. Multiple clinical trials are now underway in several centers to investigate CAR T-cell immunotherapy of diverse hematologic and solid tumor types. The most successful results have been achieved in the treatment of patients with B-cell malignancies, in whom several complete and durable responses have been achieved. This review focuses on the preclinical and clinical development of CAR T-cell immunotherapy of solid cancers, targeted against members of the ErbB family.

  3. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms.

    PubMed

    Feyerabend, Thorsten B; Terszowski, Grzegorz; Tietz, Annette; Blum, Carmen; Luche, Hervé; Gossler, Achim; Gale, Nicholas W; Radtke, Freddy; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2009-01-16

    Notch1 signaling is required for T cell development and has been implicated in fate decisions in the thymus. We showed that Notch1 deletion in progenitor T cells (pro-T cells) revealed their latent developmental potential toward becoming conventional and plasmacytoid dendritic cells. In addition, Notch1 deletion in pro-T cells resulted in large numbers of thymic B cells, previously explained by T-to-B cell fate conversion. Single-cell genotyping showed, however, that the majority of these thymic B cells arose from Notch1-sufficient cells by a cell-extrinsic pathway. Fate switching nevertheless exists for a subset of thymic B cells originating from Notch1-deleted pro-T cells. Chimeric mice lacking the Notch ligand delta-like 4 (Dll4) in thymus epithelium revealed an essential role for Dll4 in T cell development. Thus, Notch1-Dll4 signaling fortifies T cell commitment by suppressing non-T cell lineage potential in pro-T cells, and normal Notch1-driven T cell development repels excessive B cells in the thymus.

  4. Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells.

    PubMed Central

    Prieto, J; Beatty, P G; Clark, E A; Patarroyo, M

    1988-01-01

    Leucocytes interact with vascular endothelial cells (EC), and adhesion between these two cell types in vitro is modulated by phorbol ester. Monocytes were found to display the highest basal adhesion to EC, followed by Epstein-Barr virus-immortalized normal B cells (EBV-B), T cells and granulocytes. Phorbol ester treatment increased the adhesion of all types of leucocytes, except monocytes. In the presence of this compound, monoclonal antibody 60.3 to GP90 (CD18, a leucocyte-adhesion protein which is non-covalently associated to either GP160, GP155, or GP130) was found to inhibit the adhesion of the four types of leucocytes to a considerable extent, while anti-lymphocyte function-associated antigen-1 (LFA-1) antibody to GP160 (CD11a) inhibited the adhesion of T and B cells only. Antibody 60.1 to GP155 (CD11b) had a major inhibitory activity exclusively on granulocytes, while antibody LB-2, which recognizes a distinct adhesion molecule (GP84) and, in contrast to the previous antibodies, reacts with EC, mainly inhibited adhesion of EBV-B and did not increase the inhibition obtained with antibody 60.3 alone. Fab fragments of antibody 60.3 inhibited leucocyte adhesion more efficiently, in either the absence or presence of phorbol ester, than the intact antibody molecule. It is concluded the GP90, either alone or associated to the larger glycoproteins, mediates the adhesion in all types of leucocytes, while GP84 mediates the adhesion of the activated B cells. Images Figure 2 PMID:3259203

  5. Epigallocatechin-3-gallate (EGCG) up-regulates miR-15b expression thus attenuating store operated calcium entry (SOCE) into murine CD4+ T cells and human leukaemic T cell lymphoblasts.

    PubMed

    Zhang, Shaqiu; Al-Maghout, Tamer; Bissinger, Rosi; Zeng, Ni; Pelzl, Lisann; Salker, Madhuri S; Cheng, Anchun; Singh, Yogesh; Lang, Florian

    2017-10-27

    CD4 + T cells are key elements in immune responses and inflammation. Activation of T cell receptors in CD4 + T cells triggers cytosolic Ca 2+ release with subsequent store operated Ca 2+ entry (SOCE), which is accomplished by the pore forming Ca 2+ release activated Ca 2+ (CRAC) channel Orai1 and its regulator stromal cell-interaction molecule 2 (STIM2). Green tea polyphenol epigallocatechin-3-gallate (EGCG) acts as a potent anti-inflammatory and anti-oxidant agent for various types of cells including immune cells. However, how post-transcriptional gene regulators such as miRNAs are involved in the regulation of Ca 2+ influx into murine CD4 + T cells and human Jurkat T cells through EGCG is not defined. EGCG treatment of murine CD4 + T cells significantly down-regulated the expression of STIM2 and Orai1 both at mRNA and protein levels. Furthermore, EGCG significantly decreased SOCE in both murine and human T cells. EGCG treatment increased miRNA-15b (miR-15b) abundance in both murine and human T cells. Bioinformatics analysis reveals that miR-15b, which has a STIM2 binding site, is involved in the down-regulation of SOCE. Overexpression of miR-15b significantly decreased the mRNA and protein expression of STIM2 and Orai1 in murine T cells. Treatment of Jurkat T cells with 10 μM EGCG further decreased mTOR and PTEN protein levels. EGCG decreased mitochondrial membrane potential (MMP) in both human and murine T cells. In conclusion, the observations suggest that EGCG inhibits the Ca 2+ entry into murine and human T cells, an effect accomplished at least in part by up-regulation of miR-15b.

  6. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    PubMed

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  7. Towards depersonalized abacavir therapy: chemical modification eliminates HLA-B*57 : 01-restricted CD8+ T-cell activation.

    PubMed

    Naisbitt, Dean J; Yang, Emma L; Alhaidari, Mohammad; Berry, Neil G; Lawrenson, Alexandre S; Farrell, John; Martin, Philip; Strebel, Klaus; Owen, Andrew; Pye, Matthew; French, Neil S; Clarke, Stephen E; O'Neill, Paul M; Park, B Kevin

    2015-11-28

    Exposure to abacavir is associated with T-cell-mediated hypersensitivity reactions in individuals carrying human leukocyte antigen (HLA)-B57 : 01. To activate T cells, abacavir interacts directly with endogenous HLA-B57 : 01 and HLA-B57 : 01 expressed on the surface of antigen presenting cells. We have investigated whether chemical modification of abacavir can produce a molecule with antiviral activity that does not bind to HLA-B57 : 01 and activate T cells. An interdisciplinary laboratory study using samples from human donors expressing HLA-B57 : 01. Researchers were blinded to the analogue structures and modelling data. Sixteen 6-amino substituted abacavir analogues were synthesized. Computational docking studies were completed to predict capacity for analogue binding within HLA-B57 : 01. Abacavir-responsive CD8 clones were generated to study the association between HLA-B57 : 01 analogue binding and T-cell activation. Antiviral activity and the direct inhibitory effect of analogues on proliferation were assessed. Major histocompatibility complex class I-restricted CD8 clones proliferated and secreted IFNγ following abacavir binding to surface and endogenous HLA-B57 : 01. Several analogues retained antiviral activity and showed no overt inhibitory effect on proliferation, but displayed highly divergent antigen-driven T-cell responses. For example, abacavir and N-propyl abacavir were equally potent at activating clones, whereas the closely related analogues N-isopropyl and N-methyl isopropyl abacavir were devoid of T-cell activity. Docking abacavir analogues to HLA-B57 : 01 revealed a quantitative relationship between drug-protein binding and the T-cell response. These studies demonstrate that the unwanted T-cell activity of abacavir can be eliminated whilst maintaining the favourable antiviral profile. The in-silico model provides a tool to aid the design of safer antiviral agents that may not require a personalized medicines approach to therapy.

  8. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    NASA Astrophysics Data System (ADS)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  9. Endogenous antigen tunes the responsiveness of naive B cells but not T cells

    PubMed Central

    Zikherman, Julie; Parameswaran, Ramya; Weiss, Arthur

    2012-01-01

    In humans up to 75% of newly generated B cells and about 30% of mature B cells exhibit some degree of autoreactivity1. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model BCR transgenic systems have highlighted the critical role played by functional unresponsiveness or ‘anergy’2,3. Unlike T cells, evidence suggests that receptor editing and anergy, rather than deletion, account for much of B cell tolerance4,5. However, it remains unclear whether the mature diverse B cell repertoire of mice contains anergic autoreactive B cells, and if so, whether antigen was encountered during or after their development. By taking advantage of a reporter mouse in which B cell antigen receptor (BCR) signaling rapidly and robustly induces GFP expression under the control of the Nur77 regulatory region, antigen-dependent and – independent BCR signaling events in vivo during B cell maturation were visualized. Here we show that B cells encounter antigen during development in the spleen, and that this antigen exposure in turn tunes the responsiveness of BCR signaling in B cells at least partly by down-modulating expression of surface IgM but not IgD BCRs, and by modifying basal calcium levels. By contrast, no analogous process occurs in naive mature T cells. Our data demonstrate not only that autoreactive B cells persist in the mature repertoire, but that functional unresponsiveness or ‘anergy’ exists in the mature B cell repertoire along a continuum, a fact that has long been suspected, but never yet shown. These results have important implications for understanding how tolerance in T and B cells is differently imposed, and how these processes might go awry in disease. PMID:22902503

  10. A pathway of costimulation that prevents anergy in CD28- T cells: B7- independent costimulation of CD1-restricted T cells

    PubMed Central

    1995-01-01

    A class of molecules that is expressed on antigen presenting cells, exemplified by CD80 (B7), has been found to provide a necessary costimulatory signal for T cell activation and proliferation. CD28 and CTLA4 are the B7 counterreceptors and are expressed on the majority of human CD4+ T cells and many CD8+ T cells. The signal these molecules mediate is distinguished from other costimulatory signals by the finding that T cell recognition of antigen results in a prolonged state of T cell unresponsiveness or anergy, unless these costimulatory molecules are engaged. However, nearly half of the CD8+ and CD4-CD8- T cells lack CD28, and the costimulatory signals required for the activation of such cells are unknown. To understand the pathways of activation used by CD28- T cells, we have examined the costimulatory requirements of antigen-specific CD4-CD8- TCR(+)-alpha/beta circulating T cells that lack the expression of CD28. We have characterized two T cell lines, DN1 and DN6, that recognize a mycobacterial antigen, and are restricted not by major histocompatibility complex class I or II, but by CD1b or CD1c, two members of a family of major histocompatibility complex-related molecules that have been recently implicated in a distinct pathway for antigen presentation. Comparison of antigen-specific cytolytic responses of the DN1 and DN6 T cell lines against antigen-pulsed CD1+ monocytes or CD1+ B lymphoblastoid cell lines (B-LCL) demonstrated that these T cells recognized antigen presented by both types of cells. However, T cell proliferation occurred only when antigen was presented by CD1+ monocytes, indicating that the CD1+ monocytes expressed a costimulatory molecule that the B- LCL transfectants lacked. This hypothesis was confirmed by demonstrating that the T cells became anergic when incubated with the CD1(+)-transfected B-LCL in the presence of antigen, but not in the absence of antigen. The required costimulatory signal occurred by a CD28-independent mechanism since

  11. Tax-Independent Constitutive IκB Kinase Activation in Adult T-Cell Leukemia Cells1

    PubMed Central

    Hironaka, Noriko; Mochida, Kanako; Mori, Naoki; Maeda, Michiyuki; Yamamoto, Naoki; Yamaoka, Shoji

    2004-01-01

    Abstract Adult T-cell leukemia (ATL) is a fatal T-cell malignancy that arises long after infection with human T-cell leukemia virus type I (HTLV-I). We reported previously that nuclear factor-κB (NF-κB) was constitutively activated in ATL cells, although expression of the viral proteins was barely detectable, including Tax, which was known to persistently activate NF-κB. Here we demonstrate that ATL cells that do not express detectable Tax protein exhibit constitutive IκB kinase (IKK) activity. Transfection studies revealed that a dominant-negative form of IKK1, and not of IKK2 or NF-κB essential modulator (NEMO), suppressed constitutive NFκB activity in ATL cells. This IKK activity was accompanied by elevated expression of p52, suggesting that the recently described noncanonical pathway of NF-κB activation operates in ATL cells. We finally show that specific inhibition of NF-κB by a super-repressor form of IκBα (SR-IκBα) in HTLV-I-infected T cells results in cell death regardless of Tax expression, providing definitive evidence of an essential role for NF-κB in the survival of ATL cells. In conclusion, the IKK complex is constitutively activated in ATL cells through a cellular mechanism distinct from that of Tax-mediated IKK activation. Further elucidation of this cellular mechanism should contribute to establishing a rationale for treatment of ATL. PMID:15153339

  12. Using Antigen-Specific B Cells to Combine Antibody and T Cell-Based Cancer Immunotherapy.

    PubMed

    Wennhold, Kerstin; Thelen, Martin; Schlößer, Hans Anton; Haustein, Natalie; Reuter, Sabrina; Garcia-Marquez, Maria; Lechner, Axel; Kobold, Sebastian; Rataj, Felicitas; Utermöhlen, Olaf; Chakupurakal, Geothy; Theurich, Sebastian; Hallek, Michael; Abken, Hinrich; Shimabukuro-Vornhagen, Alexander; von Bergwelt-Baildon, Michael

    2017-09-01

    Cancer immunotherapy by therapeutic activation of T cells has demonstrated clinical potential. Approaches include checkpoint inhibitors and chimeric antigen receptor T cells. Here, we report the development of an alternative strategy for cellular immunotherapy that combines induction of a tumor-directed T-cell response and antibody secretion without the need for genetic engineering. CD40 ligand stimulation of murine tumor antigen-specific B cells, isolated by antigen-biotin tetramers, resulted in the development of an antigen-presenting phenotype and the induction of a tumor antigen-specific T-cell response. Differentiation of antigen-specific B cells into antibody-secreting plasma cells was achieved by stimulation with IL21, IL4, anti-CD40, and the specific antigen. Combined treatment of tumor-bearing mice with antigen-specific CD40-activated B cells and antigen-specific plasma cells induced a therapeutic antitumor immune response resulting in remission of established tumors. Human CEA or NY-ESO-1-specific B cells were detected in tumor-draining lymph nodes and were able to induce antigen-specific T-cell responses in vitro, indicating that this approach could be translated into clinical applications. Our results describe a technique for the exploitation of B-cell effector functions and provide the rationale for their use in combinatorial cancer immunotherapy. Cancer Immunol Res; 5(9); 730-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. T-Cell Artificial Focal Triggering Tools: Linking Surface Interactions with Cell Response

    PubMed Central

    Carpentier, Benoît; Pierobon, Paolo; Hivroz, Claire; Henry, Nelly

    2009-01-01

    T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy. PMID:19274104

  14. Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function

    PubMed Central

    Kin, Nicholas W.; Chen, Yao; Stefanov, Emily K.; Gallo, Richard L.; Kearney, John F.

    2011-01-01

    Mammalian antimicrobial peptides (AMPs) play an important role in host defense via direct antimicrobial activity as well as immune regulation. The mouse cathelin-related antimicrobial peptide (mCRAMP), produced from the mouse gene Camp, is the only mouse cathelicidin identified and the ortholog of the human gene encoding the peptide LL-37. This study tested the hypothesis that mouse B and T cells produce and respond to mCRAMP. We show that all mature mouse B-cell subsets, including follicular (FO), marginal zone (MZ), B1a, and B1b cells, as well as CD4+ and CD8+ T cells produce Camp mRNA and mCRAMP protein. Camp−/− B cells produced equivalent levels of IgM, IgG3, and IgG2c but less IgG1 and IgE, while Camp−/− CD4+ T cells cultured in Th2-inducing conditions produced more IL-4-expressing cells when compared with WT cells, effects that were reversed upon addition of mCRAMP. In vivo, Camp−/− mice immunized with TNP-OVA absorbed in alum produced an enhanced TNP-specific IgG1 response when compared with WT mice. ELISpot analysis revealed increased numbers of TNP-specific IgG1-secreting splenic B cells and FACS analysis revealed increased CD4+ T-cell IL-4 expression. Our results suggest that mCRAMP differentially regulates B- and T-cell function and implicate mCRAMP in the regulation of adaptive immune responses. PMID:21773974

  15. Pediatric precursor B acute lymphoblastic leukemia: are T helper cells the missing link in the infectious etiology theory?

    PubMed

    Bürgler, Simone; Nadal, David

    2017-12-01

    Precursor B acute lymphoblastic leukemia (BCP-ALL), the most common childhood malignancy, arises from an expansion of malignant B cell precursors in the bone marrow. Epidemiological studies suggest that infections or immune responses to infections may promote such an expansion and thus BCP-ALL development. Nevertheless, a specific pathogen responsible for this process has not been identified. BCP-ALL cells critically depend on interactions with the bone marrow microenvironment. The bone marrow is also home to memory T helper (Th) cells that have previously expanded during an immune response in the periphery. In secondary lymphoid organs, Th cells can interact with malignant cells of mature B cell origin, while such interactions between Th cells and malignant immature B cell in the bone marrow have not been described yet. Nevertheless, literature supports a model where Th cells-expanded during an infection in early childhood-migrate to the bone marrow and support BCP-ALL cells as they support normal B cells. Further research is required to mechanistically confirm this model and to elucidate the interaction pathways between leukemia cells and cells of the tumor microenvironment. As benefit, targeting these interactions could be included in current treatment regimens to increase therapeutic efficiency and to reduce relapses.

  16. The Role of TNF Family Molecules Light in Cellular Interaction Between Airway Smooth Muscle Cells and T Cells During Chronic Allergic Inflammation.

    PubMed

    Shi, Fei; Xiong, Yi; Zhang, Yarui; Qiu, Chen; Li, Manhui; Shan, Aijun; Yang, Ying; Li, Binbin

    2018-06-01

    Interaction between T cells and airway smooth muscle (ASM) cells has been identified as an important factor in the development of asthma. LIGHT (known as TNFSF14) -mediated signaling likely contributes to various inflammatory disorders and airway remodeling. The objective of this study was to investigate the roles of LIGHT-mediated pathways in the interaction between ASM cells and T cells during chronic allergic inflammation. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway allergic inflammation. The control group received PBS only. The histological features and LIGHT expressions in lungs were assessed in vivo. Furthermore, T cells and ASM cells derived from the model mice were co-cultured both in the presence and absence of anti-LIGHT Ab for 72 h. The effects of LIGHT blockade on expressions of downstream signaling molecules, proliferation, and apoptosis of ASM cells, differentiation of T cells, and inflammatory cytokines release were evaluated. We demonstrated that LIGHT blockade strikingly inhibited the mRNA and protein expressions of HVEM, c-JUN, and NFκB. Additionally, LIGHT blockade resulted in decreased proliferation and increased apoptosis of ASM cells. Moreover, depletion of LIGHT dramatically reduced the differentiation of CD4 + T cells into Th1, Th2, and Th17 cells, as well as inhibited inflammatory cytokines release including IL-13, TGF-β, and IFN-γ, which are associated with CD4 + T cell differentiation and ASM cell proliferation. LIGHT plays an important role in the interaction between T cells and ASM cells in chronic allergic asthma. Blockade of LIGHT markedly suppressed ASM hyperplasia and inflammatory responses, which might be modulated through HVEM-NFκB or c-JUN pathways. Therefore, targeting LIGHT is a promising therapeutic strategy for airway inflammation and remodeling in chronic allergic asthma.

  17. Integrin-mediated interactions between B cells and follicular dendritic cells influence germinal center B cell fitness1

    PubMed Central

    Wang, Xiaoming; Rodda, Lauren; Bannard, Oliver; Cyster, Jason G.

    2014-01-01

    Integrin-ligand interactions between germinal center (GC) B cells and antigen-presenting follicular dendritic cells (FDCs) have been suggested to play central roles during GC responses but their in vivo requirement has not been directly tested. Here we show that while integrins αLβ2 and α4β1 are highly expressed and functional on mouse GC B cells, removal of single integrins or their ligands had little effect on B cell participation in the GC response. Combined β2-integrin deficiency and α4-integrin blockade also did not affect the GC response against a particulate antigen. However, the combined integrin deficiency did cause B cells to be outcompeted in splenic GC responses against a soluble protein antigen and in mesenteric lymph node GC responses against gut-derived antigens. Similar findings were made for β2-deficient B cells in mice lacking VCAM1 on FDCs. The reduced fitness of the GC B cells did not appear to be due to decreased antigen acquisition, proliferation rates or pAKT levels. In summary, our findings provide evidence that αLβ2 and α4β1 play overlapping and context-dependent roles in supporting interactions with FDCs that can augment the fitness of responding GC B cells. We also find that mouse GC B cells upregulate αvβ3 and adhere to vitronectin and milk fat globule EGF-factor-8 protein. Integrin β3-deficient B cells contributed in a slightly exaggerated manner to GC responses suggesting this integrin has a regulatory function in GC B cells. PMID:24740506

  18. How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia.

    PubMed

    Ruella, Marco; Gill, Saar

    2015-06-01

    Antigen-specific T cell-based immunotherapy is getting its day in the sun. The contemporaneous development of two potent CD19-specific immunotherapeutic modalities for the treatment of B-cell malignancies provides exciting opportunities for patients, physicians and scientists alike. Patients with relapsed, refractory or poor-risk B-cell acute lymphoblastic leukemia (ALL) previously had few therapeutic options and now have two potential new lifelines. Physicians will have the choice between two powerful modalities and indeed could potentially enroll some patients on trials exploring both modalities if needed. For scientists interested in tumor immunology, the advent of chimeric antigen receptor T-cell therapy and of bispecific T-cell engagers (BiTEs) provides unprecedented opportunities to explore the promise and limitations of antigen-specific T-cell therapy in the context of human leukemia. In this article, we compare chimeric antigen receptor T cells and BiTEs targeting CD19 in B-cell ALL in the setting of the available clinical literature.

  19. Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase.

    PubMed

    Yancopoulos, G D; Blackwell, T K; Suh, H; Hood, L; Alt, F W

    1986-01-31

    We have recently proposed that a common recombinase performs all of the many variable region gene assembly events in B and T cells, and that the specificity of these joining events is mediated by regulating the "accessibility" of the involved gene segments. To test this possibility, we have introduced "accessible" T cell receptor (TCR) variable region gene segments into a pre-B cell line capable of recombining endogenous and transfected immunoglobulin (Ig) variable region gene segments. Although the corresponding "inaccessible" endogenous TCR gene segments do not rearrange in this line or in B cells in general, the introduced TCR gene segments join very frequently and, in fact, closely resemble introduced Ig gene segments in their recombination characteristics. These observations suggest a new role for conventional Ig transcriptional enhancers--recombinational enhancement. Our studies provide insight into additional aspects of the joining mechanism such as N region insertion, aberrant joining, and recombination-recognition sequence requirements for joining.

  20. Intracavitary 'T4 immunotherapy' of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells.

    PubMed

    Klampatsa, Astero; Achkova, Daniela Y; Davies, David M; Parente-Pereira, Ana C; Woodman, Natalie; Rosekilly, James; Osborne, Georgina; Thayaparan, Thivyan; Bille, Andrea; Sheaf, Michael; Spicer, James F; King, Juliet; Maher, John

    2017-05-01

    Malignant mesothelioma remains an incurable cancer. We demonstrated that mesotheliomas expressed EGFR (79.2%), ErbB4 (49.0%) and HER2 (6.3%), but lacked ErbB3. At least one ErbB family member was expressed in 88% of tumors. To exploit ErbB dysregulation in this disease, patient T-cells were engineered by retroviral transduction to express a panErbB-targeted chimeric antigen receptor (CAR), co-expressed with a chimeric cytokine receptor that allows interleukin (IL)-4 mediated CAR T-cell proliferation. This combination is referred to as T4 immunotherapy. T-cells from mesothelioma patients were uniformly amenable to T4 genetic modification and expansion/enrichment thereafter using IL-4. Patient-derived T4 + T-cells were activated upon contact with a panel of four mesothelioma cell lines, leading to cytotoxicity and cytokine release in all cases. Adoptive transfer of T4 immunotherapy to SCID Beige mice with an established bioluminescent LO68 mesothelioma xenograft was followed by regression or eradication of disease in all animals. Despite the established ability of T4 immunotherapy to elicit cytokine release syndrome in SCID Beige mice, therapy was very well tolerated. These findings provide a strong rationale for the clinical evaluation of intracavitary T4 immunotherapy to treat mesothelioma. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Activation-Induced Killer Cell Immunoglobulin-like Receptor 3DL2 Binding to HLA-B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis.

    PubMed

    Ridley, Anna; Hatano, Hiroko; Wong-Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K; Al-Mossawi, Hussein; Ladell, Kristin; Price, David A; Bowness, Paul; Kollnberger, Simon

    2016-04-01

    In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). The aim of this study was to determine the factors that induce KIR-3DL2 expression, and to characterize the relationship between HLA-B27 and the phenotype and function of KIR-3DL2-expressing CD4+ T cells in SpA. In total, 34 B27+ patients with SpA, 28 age- and sex-matched healthy controls (20 B27- and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template-switch anchored reverse transcription-polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme-linked immunosorbent assay. Cellular activation induced KIR-3DL2 expression on both naive and effector CD4+ T cells. KIR-3DL2 binding to B27+ cells promoted expression of KIR-3DL2, the Th17-specific transcription factor retinoic acid receptor-related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR-3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen-presenting cells, KIR-3DL2+CD4+ T cells produced less interleukin-2 (IL-2) but more IL-17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR-3DL2 to B27 heavy chains. KIR-3DL2 binding to HLA-B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA-B27-KIR-3DL2 interactions for the treatment of B27+ patients with SpA. © 2016 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  2. Activation‐Induced Killer Cell Immunoglobulin‐like Receptor 3DL2 Binding to HLA–B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis

    PubMed Central

    Ridley, Anna; Hatano, Hiroko; Wong‐Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K.; Al‐Mossawi, Hussein; Ladell, Kristin; Price, David A.; Bowness, Paul

    2016-01-01

    Objective In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA. Methods In total, 34 B27+ patients with SpA, 28 age‐ and sex‐matched healthy controls (20 B27− and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template‐switch anchored reverse transcription–polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme‐linked immunosorbent assay. Results Cellular activation induced KIR‐3DL2 expression on both naive and effector CD4+ T cells. KIR‐3DL2 binding to B27+ cells promoted expression of KIR‐3DL2, the Th17‐specific transcription factor retinoic acid receptor–related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR‐3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen‐presenting cells, KIR‐3DL2+CD4+ T cells produced less interleukin‐2 (IL‐2) but more IL‐17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR‐3DL2 to B27 heavy chains. Conclusion KIR‐3DL2 binding to HLA–B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA–B27–KIR‐3DL2 interactions for the treatment of B27+ patients with SpA. PMID:26841353

  3. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells.

    PubMed

    Wang, Yifeng; Shi, Jingwen; Yan, Jiacong; Xiao, Zhengtao; Hou, Xiaoxiao; Lu, Peiwen; Hou, Shiyue; Mao, Tianyang; Liu, Wanli; Ma, Yuanwu; Zhang, Lianfeng; Yang, Xuerui; Qi, Hai

    2017-08-01

    Germinal centers (GCs) support high-affinity, long-lived humoral immunity. How memory B cells develop in GCs is not clear. Through the use of a cell-cycle-reporting system, we identified GC-derived memory precursor cells (GC-MP cells) that had quit cycling and reached G0 phase while in the GC, exhibited memory-associated phenotypes with signs of affinity maturation and localized toward the GC border. After being transferred into adoptive hosts, GC-MP cells reconstituted a secondary response like genuine memory B cells. GC-MP cells expressed the interleukin 9 (IL-9) receptor and responded to IL-9. Acute treatment with IL-9 or antibody to IL-9 accelerated or retarded the positioning of GC-MP cells toward the GC edge and exit from the GC, and enhanced or inhibited the development of memory B cells, which required B cell-intrinsic responsiveness to IL-9. Follicular helper T cells (T FH cells) produced IL-9, and deletion of IL-9 from T cells or, more specifically, from GC T FH cells led to impaired memory formation of B cells. Therefore, the GC development of memory B cells is promoted by T FH cell-derived IL-9.

  4. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    PubMed

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  5. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors

    PubMed Central

    Boulassel, Mohamed-Rachid; Galal, Ahmed

    2012-01-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948

  6. Biology and clinical application of CAR T Cells for B cell malignancies

    PubMed Central

    Davila, Marco L; Sadelain, Michel

    2017-01-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma (NHL) and B cell acute lymphoblastic leukemia (B-ALL), including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors. PMID:27262700

  7. Role of T-cell-specific nuclear factor κB in islet allograft rejection.

    PubMed

    Porras, Delia Lozano; Wang, Ying; Zhou, Ping; Molinero, Luciana L; Alegre, Maria-Luisa

    2012-05-27

    Pancreatic islet transplantation has the potential to cure type 1 diabetes, a chronic lifelong disease, but its clinical applicability is limited by allograft rejection. Nuclear factor κB (NF-κB) is a transcription factor important for survival and differentiation of T cells. In this study, we tested whether NF-κB in T cells is required for the rejection of islet allografts. Mice expressing a superrepressor form of NF-κB selectively in T cells (IκBαΔN-Tg mice) with or without the antiapoptotic factor Bcl-xL, or mice with impaired T-cell receptor (TCR)- and B cell receptor-driven NF-κB activity (CARMA1-KO mice) were rendered diabetic and transplanted with islet allografts. Secondary skin transplantation in long-term acceptors of islet allografts was used to test for the development of donor-specific tolerance. Immune infiltration of the transplanted islets was examined by immunofluorescence. TCR-transgenic CD4 T cells were used to follow T-cell priming and differentiation. Islet allograft survival was prolonged in IκBαΔN-Tg mice, although the animals did not develop donor-specific tolerance. Reduced NF-κB activity did not prevent T-cell priming or differentiation but reduced survival of activated T cells, as transgenic expression of Bcl-xL restored islet allograft rejection in IκBαΔN-Tg mice. Abolishing TCR- and B cell receptor-driven activation of NF-κB selectively by CARMA1 deficiency prevented T-cell priming and islet allograft rejection. Our data suggest that T cell-NF-κB plays an important role in the rejection of islet allografts. Targeting NF-κB selectively in lymphocytes seems a promising approach to facilitate acceptance of transplanted islets.

  8. Susceptibility of Hep3B cells in different phases of cell cycle to tBid.

    PubMed

    Ma, Shi-Hong; Chen, George G; Ye, Caiguo; Leung, Billy C S; Ho, Rocky L K; Lai, Paul B S

    2011-01-01

    tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    PubMed

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers

    PubMed Central

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A.; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-01-01

    B-cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL+ MHC class-IHi CD86Hi B cells of unknown origin. Here we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. The 4BL cells induce expression of 4-1BBL and IFNγR1 on B1a cells resulting in subsequent up regulation of membrane TNFα (mTNFα) and CD86. As a result, B1a cells induce expression of granzyme B in CD8+T cells by targeting TNFR2 via mTNFα while providing co-stimulation with CD86. Thus, for the first time, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8+T cells. PMID:26983789

  11. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells.

    PubMed

    Hem, Cecilie Dahl; Sundvold-Gjerstad, Vibeke; Granum, Stine; Koll, Lise; Abrahamsen, Greger; Buday, Laszlo; Spurkland, Anne

    2015-07-11

    The Lck and Src binding adaptor protein TSAd (T cell specific adaptor) regulates actin polymerization in T cells and endothelial cells. The molecular details as to how TSAd regulates this process remain to be elucidated. To identify novel interaction partners for TSAd, we used a scoring matrix-assisted ligand algorithm (SMALI), and found that the Src homology 2 (SH2) domain of the actin regulator Non-catalytic region of tyrosine kinase adaptor protein (Nck) potentially binds to TSAd phosphorylated on Tyr(280) (pTyr(280)) and pTyr(305). These predictions were confirmed by peptide array analysis, showing direct binding of recombinant Nck SH2 to both pTyr(280) and pTyr(305) on TSAd. In addition, the SH3 domains of Nck interacted with the proline rich region (PRR) of TSAd. Pull-down and immunoprecipitation experiments further confirmed the Nck-TSAd interactions through Nck SH2 and SH3 domains. In line with this Nck and TSAd co-localized in Jurkat cells as assessed by confocal microscopy and imaging flow cytometry. Co-immunoprecipitation experiments in Jurkat TAg cells lacking TSAd revealed that TSAd promotes interaction of Nck with Lck and SLP-76, but not Vav1. TSAd expressing Jurkat cells contained more polymerized actin, an effect dependent on TSAd exon 7, which includes interactions sites for both Nck and Lck. TSAd binds to and co-localizes with Nck. Expression of TSAd increases both Nck-Lck and Nck-SLP-76 interaction in T cells. Recruitment of Lck and SLP-76 to Nck by TSAd could be one mechanism by which TSAd promotes actin polymerization in activated T cells.

  12. Chimeric antigen receptor T cells targeting Fc μ receptor selectively eliminate CLL cells while sparing healthy B cells.

    PubMed

    Faitschuk, Elena; Hombach, Andreas A; Frenzel, Lukas P; Wendtner, Clemens-Martin; Abken, Hinrich

    2016-09-29

    Adoptive cell therapy of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR)-modified T cells targeting CD19 induced lasting remission of this refractory disease in a number of patients. However, the treatment is associated with prolonged "on-target off-tumor" toxicities due to the targeted elimination of healthy B cells demanding more selectivity in targeting CLL cells. We identified the immunoglobulin M Fc receptor (FcμR), also known as the Fas apoptotic inhibitory molecule-3 or TOSO, as a target for a more selective treatment of CLL by CAR T cells. FcμR is highly and consistently expressed by CLL cells; only minor levels are detected on healthy B cells or other hematopoietic cells. T cells with a CAR specific for FcμR efficiently responded toward CLL cells, released a panel of proinflammatory cytokines and lytic factors, like soluble FasL and granzyme B, and eliminated the leukemic cells. In contrast to CD19 CAR T cells, anti-FcμR CAR T cells did not attack healthy B cells. T cells with anti-FcμR CAR delayed outgrowth of Mec-1-induced leukemia in a xenograft mouse model. T cells from CLL patients in various stages of the disease, modified by the anti-FcμR CAR, purged their autologous CLL cells in vitro without reducing the number of healthy B cells, which is the case with anti-CD19 CAR T cells. Compared with the currently used therapies, the data strongly imply a superior therapeutic index of anti-FcμR CAR T cells for the treatment of CLL. © 2016 by The American Society of Hematology.

  13. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments.

    PubMed

    Hawkins, Edwin D; Duarte, Delfim; Akinduro, Olufolake; Khorshed, Reema A; Passaro, Diana; Nowicka, Malgorzata; Straszkowski, Lenny; Scott, Mark K; Rothery, Steve; Ruivo, Nicola; Foster, Katie; Waibel, Michaela; Johnstone, Ricky W; Harrison, Simon J; Westerman, David A; Quach, Hang; Gribben, John; Robinson, Mark D; Purton, Louise E; Bonnet, Dominique; Lo Celso, Cristina

    2016-10-27

    It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment

  14. Alisertib and Romidepsin in Treating Patients With Relapsed or Refractory B-Cell or T-Cell Lymphomas

    ClinicalTrials.gov

    2018-05-02

    High Grade B-Cell Lymphoma With MYC and BCL2 or BCL6 Rearrangements; MYC Positive; Recurrent B-Cell Non-Hodgkin Lymphoma; Recurrent Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Mature T- and NK-Cell Non-Hodgkin Lymphoma; Refractory B-Cell Non-Hodgkin Lymphoma; Refractory Burkitt Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Follicular Lymphoma; Refractory Hodgkin Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma

  15. Antibody-Independent Control of γ-Herpesvirus Latency via B Cell Induction of Anti-Viral T Cell Responses

    PubMed Central

    McClellan, Kelly B; Gangappa, Shivaprakash; Speck, Samuel H; Virgin, Herbert W.

    2006-01-01

    B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL)-specific B cells can contribute to the control of murine γ-herpesvirus 68 (γHV68) latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell−/− mice during the early phase of γHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell−/− mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of γ-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection. PMID:16789842

  16. T-dependent activation of resting B cells mediated by concanavalin A.

    PubMed

    Ratcliffe, M J; Julius, M H

    1984-03-01

    In cultures containing long-term cultured lines of antigen-specific helper T (Th) cells, normal unprimed B cells and concanavalin A (Con A), induction of B cells to immunoglobulin secretion and DNA synthesis was observed. The plaque-forming cell (PFC) response was large (frequently greater than 75 000 PFC/10(6) input B cells) demonstrating the polyspecific nature of the response. Con A-mediated maturation and induction to DNA synthesis of responding B cells was completely Th cell dependent and inhibited with methyl-alpha-D-mannoside. Both resting and blasted B cells, separated by Percoll density centrifugation, were induced to DNA synthesis and immunoglobulin secretion. Responses were completely unrestricted by the B cell major histocompatibility complex, even at the level of the resting B cell. The polyclonal nature of the response taken together with the Con A-mediated bypassing of T cell specificity and restricting haplotype indicates that this response is analogous to lectin-mediated cytotoxicity.

  17. T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell

    PubMed Central

    Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.

    2014-01-01

    Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385

  18. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.

    PubMed

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-04-15

    B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells.

    PubMed

    Friedman, Kevin M; Garrett, Tracy E; Evans, John W; Horton, Holly M; Latimer, Howard J; Seidel, Stacie L; Horvath, Christopher J; Morgan, Richard A

    2018-05-01

    B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.

  20. Interactions of B16F10 melanoma cells aggregated on a cellulose substrate.

    PubMed

    Hindié, M; Vayssade, M; Dufresne, M; Quéant, S; Warocquier-Clérout, R; Legeay, G; Vigneron, P; Olivier, V; Duval, J-L; Nagel, M-D

    2006-09-01

    There is evidence that the shape of cells and their contact with a matrix direct the growth and the differentiation of both normal and cancer cells. Cells in 3D culture resemble the in vivo situation more closely than do those in conventional 2D cultures. We have studied the interactions and functions of B16F10 mouse melanoma cells, which spread and grow well on tissue culture polystyrene (tPS), when they were made to aggregate on cellulose-coated Petri dishes (CEL). This aggregation of melanoma cells on CEL was Ca2+ dependent and mediated by N-cadherins. The levels of N-cadherin and beta-catenin transcripts in cells cultured on CEL and tPS were similar, but those on CEL contained less beta-catenin protein. Immunoprecipitation and immunostaining showed that both N-cadherins and beta-catenins were present at the membranes of cells on CEL. Cells proliferated significantly more slowly after 48 h on CEL and the cellulose coating caused most of them to arrest in G1. We also compared the melanin contents and tyrosinase activity of cells on CEL and controls grown on tPS. Melanogenesis was induced in cells aggregated on CEL. A cellulose substrate thus appears to be an outstanding tool for studying cell-cell interactions and cell functions in 3D cultures.

  1. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Min Sook; Woo, Min-Yeong; Department of Biomedical Sciences, The Graduate School, Ajou University

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with themore » WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.« less

  2. Biology and clinical application of CAR T cells for B cell malignancies.

    PubMed

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  3. Anergy and suppression in B-cell responses.

    PubMed

    Elliott, J I

    1992-12-01

    Two main ideas have been put forward to explain the unexpectedly low anti-hapten antibody titres which can result from pre-priming a mouse with carrier before hapten-carrier immunization. The first involves the interaction of a network of idiotype-specific suppressor T cells, the second instead arguing for the role of intrinsic B-cell anergy. This paper proposes that the data available can equally be interpreted as reflecting the suboptimal interaction between T and B cells at differing stages of maturity, provided that memory B cells can be divided into two subsets. Further, it is suggested that these considerations must be taken into account in the analysis of B-cell anergy in receptor transgenic mice.

  4. T-cells from HLA-B*57:01+ human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms.

    PubMed

    Bell, Catherine C; Faulkner, Lee; Martinsson, Klara; Farrell, John; Alfirevic, Ana; Tugwood, Jonathan; Pirmohamed, Munir; Naisbitt, Dean J; Park, B Kevin

    2013-05-20

    Susceptibility to abacavir hypersensitivity has been attributed to possession of the specific human leukocyte antigen allele HLA-B*57:01. HLA-B*57:01-restricted activation of CD8+ T-cells provides a link between the genetic association and the iatrogenic disease. The objectives of this study were to characterize the functionality of drug-responsive CD8+ T-cell clones generated from HLA-B*57:01+ drug-naive subjects and to explore the relationship between abacavir accumulation in antigen presenting cells and the T-cell response. Seventy-four CD8+ clones expressing different Vβ receptors were shown to proliferate and kill target cells via different mechanisms when exposed to abacavir. Certain clones were activated with abacavir in the absence of antigen presenting cells. Analysis of the remaining clones revealed two pathways of drug-dependent T-cell activation. Overnight incubation of antigen presenting cells with abacavir, followed by repeated washing to remove soluble drug, activated approximately 50% of the clones, and the response was blocked by glutaraldehyde fixation. In contrast, a 1 h antigen presenting cell pulse did not activate any of the clones. Accumulation of abacavir in antigen presenting cells was rapid (less than 1 h), and the intracellular concentrations were maintained for 16 h. However, intracellular abacavir was not detectable by mass spectrometry after pulsing. These data suggest that T-cells can be activated by abacavir through a direct interaction with surface and intracellular major histocompatibility complex (MHC) molecules. With the former, abacavir seemingly participates in the MHC T-cell receptor binding interaction. In contrast, the latter pathway likely involves MHC binding peptides displayed as a consequence of abacavir exposure, but not abacavir itself.

  5. Involvement of Semaphorin (Sema4D) in T-Dependent Activation of B Cells.

    PubMed

    Kuklina, Е М; Nekrasova, I V; Valieva, Yu V

    2017-08-01

    The involvement of endogenous semaphorin (Sema4D) into the key stage of T-dependent differentiation of B cells, formation of plasmoblasts, was demonstrated in vitro in T/B cell co-culture under conditions of polyclonal activation of T cells. The effect of semaphorin was not associated with activation of high-affinity Sema4D receptor plexin B1, but involves lowaffinity receptor CD72. These data indicate that Sema4D-dependent signal regulates not only the initial stage of B-cell activation, proliferative response to the antigen, but also further differentiation of B cells into plasma cells.

  6. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia

    PubMed Central

    Paszkiewicz, Paulina J.; Fräßle, Simon P.; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C.; Riddell, Stanley R.; Busch, Dirk H.

    2016-01-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies. PMID:27760047

  7. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia.

    PubMed

    Paszkiewicz, Paulina J; Fräßle, Simon P; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Drexler, Ingo; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C; Riddell, Stanley R; Busch, Dirk H

    2016-11-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.

  8. HBV-specific and global T-cell dysfunction in chronic hepatitis B

    PubMed Central

    Park, Jang-June; Wong, David K.; Wahed, Abdus S.; Lee, William M.; Feld, Jordan J.; Terrault, Norah; Khalili, Mandana; Sterling, Richard K.; Kowdley, Kris V.; Bzowej, Natalie; Lau, Daryl T.; Kim, W. Ray; Smith, Coleman; Carithers, Robert L.; Torrey, Keith W.; Keith, James W.; Levine, Danielle L.; Traum, Daniel; Ho, Suzanne; Valiga, Mary E.; Johnson, Geoffrey S.; Doo, Edward; Lok, Anna S. F.; Chang, Kyong-Mi

    2015-01-01

    Background & Aims T cells play a critical role in in viral infection. We examined whether T-cell effector and regulatory responses can define clinical stages of chronic hepatitis B (CHB). Methods We enrolled 200 adults with CHB who participated in the NIH-supported Hepatitis B Research Network from 2011 through 2013 and 20 uninfected individuals (controls). Peripheral blood lymphocytes from these subjects were analyzed for T-cell responses (proliferation and production of interferon-γ and interleukin-10) to overlapping hepatitis B virus (HBV) peptides (preS, S, preC, core, and reverse transcriptase), influenza matrix peptides, and lipopolysaccharide. T-cell expression of regulatory markers FOXP3, programmed death-1 (PD1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA4) was examined by flow cytometry. Immune measures were compared with clinical parameters, including physician-defined immune-active, immune-tolerant, or inactive CHB phenotypes, in a blinded fashion. Results Compared to controls, patients with CHB had weak T-cell proliferative, interferon-γ, and interleukin-10 responses to HBV, with increased frequency of circulating FOXP3+CD127− regulatory T cells and CD4+ T-cell expression of PD1 and CTLA4. T-cell measures did not clearly distinguish between clinical CHB phenotypes, although the HBV core-specific T-cell response was weaker in HBeAg+ than HBeAg− patients (% responders: 3% vs 23%, P=.00008). Although in vitro blockade of PD1 or CTLA4 increased T-cell responses to HBV, the effect was weaker in HBeAg+ than HBeAg− patients. Furthermore, T-cell responses to influenza and lipopolysaccharide were weaker in CHB patients than controls. Conclusion HBV persists with virus-specific and global T-cell dysfunction mediated by multiple regulatory mechanisms including circulating HBeAg, but without distinct T-cell–based immune signatures for clinical phenotypes. These findings suggest additional T-cell independent or regulatory mechanisms of CHB

  9. TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma.

    PubMed

    Schwartz, Friederike H; Cai, Qian; Fellmann, Eva; Hartmann, Sylvia; Mäyränpää, Mikko I; Karjalainen-Lindsberg, Marja-Liisa; Sundström, Christer; Scholtysik, René; Hansmann, Martin-Leo; Küppers, Ralf

    2017-06-01

    Angioimmunoblastic T-cell lymphomas (AITLs) frequently carry mutations in the TET2 and IDH2 genes. TET2 mutations represent early genetic lesions as they had already been detected in haematopoietic precursor cells of AITL patients. We show by analysis of whole-tissue sections and microdissected PD1 + cells that the frequency of TET2-mutated AITL is presumably even higher than reported (12/13 cases in our collection; 92%). In two-thirds of informative AITLs (6/9), a fraction of B cells was also TET2-mutated. Investigation of four AITLs by TET2 and IGHV gene sequencing of single microdissected B cells showed that between 10% and 60% of polyclonal B cells in AITL lymph nodes harboured the identical TET2 mutations of the respective T-cell lymphoma clone. Thus, TET2-mutated haematopoietic precursor cells in AITL patients not only give rise to the T-cell lymphoma but also generate a large population of mutated mature B cells. Future studies will show whether this is a reason why AITL patients frequently also develop B-cell lymphomas. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node.

    PubMed

    Chtanova, Tatyana; Han, Seong-Ji; Schaeffer, Marie; van Dooren, Giel G; Herzmark, Paul; Striepen, Boris; Robey, Ellen A

    2009-08-21

    Memory T cells circulate through lymph nodes where they are poised to respond rapidly upon re-exposure to a pathogen; however, the dynamics of memory T cell, antigen-presenting cell, and pathogen interactions during recall responses are largely unknown. We used a mouse model of infection with the intracellular protozoan parasite, Toxoplasma gondii, in conjunction with two-photon microscopy, to address this question. After challenge, memory T cells migrated more rapidly than naive T cells, relocalized toward the subcapsular sinus (SCS) near invaded macrophages, and engaged in prolonged interactions with infected cells. Parasite invasion of T cells occurred by direct transfer of the parasite from the target cell into the T cell and corresponded to an antigen-specific increase in the rate of T cell invasion. Our results provide insight into cellular interactions during recall responses and suggest a mechanism of pathogen subversion of the immune response.

  11. Human T-Cell Lymphotropic Virus: A Model of NF-κB-Associated Tumorigenesis

    PubMed Central

    Qu, Zhaoxia; Xiao, Gutian

    2011-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies. PMID:21743832

  12. Tolerance induction of IgG+ memory B cells by T cell-independent type II antigens.

    PubMed

    Haniuda, Kei; Nojima, Takuya; Ohyama, Kyosuke; Kitamura, Daisuke

    2011-05-15

    Memory B cells generated during a T cell-dependent immune response rapidly respond to a secondary immunization by producing abundant IgG Abs that bind cognate Ag with high affinity. It is currently unclear whether this heightened recall response by memory B cells is due to augmented IgG-BCR signaling, which has only been demonstrated in the context of naive transgenic B cells. To address this question, we examined whether memory B cells can respond in vivo to Ags that stimulate only through BCR, namely T cell-independent type II (TI-II) Ags. In this study, we show that the TI-II Ag (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll cannot elicit the recall response in mice first immunized with the T cell-dependent Ag NP-chicken γ-globulin. Moreover, the NP-Ficoll challenge in vivo as well as in vitro significantly inhibits a subsequent recall response to NP-chicken γ-globulin in a B cell-intrinsic manner. This NP-Ficoll-mediated tolerance is caused by the preferential elimination of IgG(+) memory B cells binding to NP with high affinity. These data indicate that BCR cross-linking with a TI-II Ag does not activate IgG(+) memory B cells, but rather tolerizes them, identifying a terminal checkpoint of memory B cell differentiation that may prevent autoimmunity.

  13. B cells as accessory cells in a Con A response of a T cell clone.

    PubMed

    Takeuchi, M; Kakiuchi, T; Taira, S; Nariuchi, H

    1987-12-01

    Accessory cell (AC) function of B cells was examined in Con A response of a cloned T cell line, 22-9D, which is Thy 1+,L3T4+,Lyt2-,H-2KbDb+ and I-Ab-.22-9D cells produced IL 2 in the presence of Con A without participation of AC. For the initiation of a proliferative response to Con A, the addition of spleen cells or spleen adherent cells was required. B cells as AC were unable to induce the proliferative response. In the presence of culture supernatant of spleen cells stimulated with Con A (CAS), 22-9D cells showed proliferative response to Con A with B cell AC. The response was inhibited by a relevant monoclonal anti-I-A antibody. Although irradiated spleen cells as AC induced IL 2 receptor expression of 22-9D cells in the presence of Con A, B cells were shown to require the addition of unknown factor(s) in CAS, which was suggested to be different from IL 1, IL 2, IL 3, or IFN-gamma, for the induction of the receptor expression on 22-9D cells.

  14. Gammadelta receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro.

    PubMed

    Kahaleh, M B; Fan, P S; Otsuka, T

    1999-05-01

    In view of the documented perivascular mononuclear cell infiltration in the involved organs in scleroderma (SSc) and the reported accumulation of gammadelta-T cells in SSc skin and lung, we evaluated gammadelta-T cell interaction with endothelial cells (EC) in vitro. gammadelta- and alphabeta-T cells were isolated from BPMN of SSc patients with early diffuse disease and of matched control subjects by an immunomagnetic method after stimulation with mycobacterium lysate and interleukin-2 for 2 weeks. Lymphocyte adhesion, proliferation, and cytotoxicity to EC were investigated. SSc gammadelta-T cells adhered to cultured EC and proliferated at higher rates than control cells. Furthermore, significant EC cytotoxicity by SSc gammadelta was seen. The cytotoxicity was blocked by addition of anti-gammadelta-TCR antibody and by anti-granzyme A antibody but not by anti-MHC class I and II antibodies. Expression of granzyme A mRNA was seen in five/five SSc gammadelta-T cells and in one/five control cells. alphabeta-T cells from both SSc and control subjects were significantly less interactive with EC than gammadelta-T cells. The data demonstrate EC recognition by SSc gammadelta-T cells and propose gammadelta-T cells as a possible effector cell type in the immune pathogenesis of SSc. Copyright 1999 Academic Press.

  15. Atypical angioimmunoblastic T-cell lymphomas masquerading as systemic polyclonal B-immunoblastic proliferation.

    PubMed

    Papadi, Bhavesh; Polski, Jacek M; Clarkson, David R; Liu-Dumlao, Theresa O

    2012-09-01

    Angioimmunoblastic T cell lymphoma (AITL) is a relatively rare peripheral T cell lymphoma derived from follicular T helper cells. AITL has a varied presentation, both clinically and morphologically. AITL can pose a diagnostic challenge as it may be difficult to identify and characterize the neoplastic cells among the polymorphous infiltrates composed of polyclonal B immunoblasts and plasma cells. In AITL, the reactive B cell and plasma cell proliferation is secondary to dysregulated secretion of cytokines such as interleukin-6 by the neoplastic follicular T helper cells. SPBIP is a condition of unknown etiopathogenesis characterized by systemic involvement by polyclonal B immunoblasts and plasma cells. We report two cases of AITL, which are presented with atypical findings making it difficult to diagnose. The cases had features similar to SPBIP. Our cases highlight the importance of screening cases of polyclonal plasmacytosis and SPBIP like cases for underlying AITL.

  16. Persistence of memory B-cell and T-cell responses to the quadrivalent HPV vaccine in HIV-infected children.

    PubMed

    Weinberg, Adriana; Huang, Sharon; Moscicki, Anna-Barbara; Saah, Afred; Levin, Myron J

    2018-04-24

    To determine the magnitude and persistence of quadrivalent human papillomavirus (HPV)16 and HPV18 B-cell and T-cell memory after three or four doses of quadrivalent HPV vaccine (QHPV) in HIV-infected children. Seventy-four HIV-infected children immunized with four doses and 23 with three doses of QHPV had HPV16 and HPV18 IgG B-cell and IFNγ and IL2 T-cell ELISPOT performed at 2, 3.5 and 4-5 years after the last dose. HPV16 and HPV18 T-cell responses were similar in both treatment groups, with higher responses to HPV16 vs. HPV18. These HPV T-cell responses correlated with HIV disease characteristics at the study visits. Global T-cell function declined over time as measured by nonspecific mitogenic stimulation. B-cell memory was similar across treatment groups and HPV genotypes. There was a decline in HPV-specific B-cell memory over time that reached statistical significance for HPV16 in the four-dose group. B-cell and T-cell memory did not significantly differ after either three or four doses of QHPV in HIV-infected children. The clinical consequences of decreasing global T-cell function and HPV B-cell memory over time in HIV-infected children requires further investigation.

  17. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells.

    PubMed

    Park, Jae H; Brentjens, Renier J

    2010-04-01

    Chemotherapy-resistant B-cell hematologic malignancies may be cured with allogeneic hematopoietic stem cell transplantation (HSCT), demonstrating the potential susceptibility of these tumors to donor T-cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. For this reason, there is an urgent need for less-toxic forms of immune-based cellular therapy to treat these malignancies. Adoptive transfer of autologous T cells genetically modified to express chimeric antigen receptors (CARs) targeted to specific tumor-associated antigens represents an attractive means of overcoming the limitations of conventional HSCT. To this end, investigators have generated CARs targeted to various antigens expressed by B-cell malignancies, optimized the design of these CARs to enhance receptor mediated T cell signaling, and demonstrated significant anti-tumor efficacy of the resulting CAR modified T cells both in vitro and in vivo mouse tumor models. These encouraging preclinical data have justified the translation of this approach to the clinical setting with currently 12 open clinical trials and one completed clinical trial treating various B-cell malignancies utilizing CAR modified T cells targeted to either the CD19 or CD20 B-cell specific antigens.

  18. Monocyte:T cell interaction regulates human T cell activation through a CD28/CD46 crosstalk

    PubMed Central

    Charron, Lauren; Doctrinal, Axelle; Choileain, Siobhan Ni; Astier, Anne L.

    2015-01-01

    T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation. PMID:25787182

  19. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors.

    PubMed

    Aldoss, I; Bargou, R C; Nagorsen, D; Friberg, G R; Baeuerle, P A; Forman, S J

    2017-04-01

    Recent advances in antibody technology to harness T cells for cancer immunotherapy, particularly in the difficult-to-treat setting of relapsed/refractory acute lymphoblastic leukemia (r/r ALL), have led to innovative methods for directing cytotoxic T cells to specific surface antigens on cancer cells. One approach involves administration of soluble bispecific (or dual-affinity) antibody-based constructs that temporarily bridge T cells and cancer cells. Another approach infuses ex vivo-engineered T cells that express a surface plasma membrane-inserted antibody construct called a chimeric antigen receptor (CAR). Both bispecific antibodies and CARs circumvent natural target cell recognition by creating a physical connection between cytotoxic T cells and target cancer cells to activate a cytolysis signaling pathway; this connection allows essentially all cytotoxic T cells in a patient to be engaged because typical tumor cell resistance mechanisms (such as T-cell receptor specificity, antigen processing and presentation, and major histocompatibility complex context) are bypassed. Both the bispecific T-cell engager (BiTE) antibody construct blinatumomab and CD19-CARs are immunotherapies that have yielded encouraging remission rates in CD19-positive r/r ALL, suggesting that they might serve as definitive treatments or bridging therapies to allogeneic hematopoietic cell transplantation. With the introduction of these immunotherapies, new challenges arise related to unique toxicities and distinctive pathways of resistance. An increasing body of knowledge is being accumulated on how to predict, prevent, and manage such toxicities, which will help to better stratify patient risk and tailor treatments to minimize severe adverse events. A deeper understanding of the precise mechanisms of action and immune resistance, interaction with other novel agents in potential combinations, and optimization in the manufacturing process will help to advance immunotherapy outcomes in the r

  20. Tumor dormancy and cell signaling: anti-mu-induced apoptosis in human B-lymphoma cells is not caused by an APO-1-APO-1 ligand interaction.

    PubMed Central

    Racila, E; Hsueh, R; Marches, R; Tucker, T F; Krammer, P H; Scheuermann, R H; Uhr, J W

    1996-01-01

    Signal transduction initiated by crosslinking of antigen-specific receptors on T- and B-lymphoma cells induces apoptosis. In T-lymphoma cells, such crosslinking results in upregulation of the APO-1 ligand, which then interacts with induced or constitutively expressed APO-1, thereby triggering apoptosis. Here we show that crosslinking the membrane immunoglobulin on human lymphoma cells (Daudi) (that constitutively express APO-1) does not induce synthesis of APO-1 ligand. Further, a noncytotoxic fragment of anti-APO-1 antibody that blocks T-cell-receptor-mediated apoptosis in T-lymphoma cells does not block anti-mu-induced apoptosis. Hence, in B-lymphoma cells, apoptosis induced by signaling via membrane IgM is not mediated by the APO-1 ligand. Images Fig. 2 Fig. 3 PMID:8700902

  1. Idiotypic properties of the murine anti-arsonate antibody response: B- and T-cell influences.

    PubMed

    Conger, J D; Lewis, G K; Goodman, J W

    1985-10-01

    In a previous report characterizing the arsonate (ABA)-specific plaque-forming cell (PFC) responses of A/J mice induced by ABA-KLH, two interesting characteristics of the idiotypic (Id) profile were noted: (1) an apparent Id selectivity in the isotype switch since the earliest appearing IgG PFC in the primary response were significantly more "cross-reactive Id" (CRI)-dominant than the IgM PFC population, and, (2) a temporal waning of CRI dominance with time among IgG PFC, from 75-100% CRI+ PFC to about 25-45% CRI+ PFC in secondary responses. Experiments were performed to determine whether these effects are largely attributable to T or to B cells. Mice were immunized with a T-independent (TI) form of ABA (ABA-Brucella abortus) and apparent Id selectivity was observed; the earliest IgG PFC averaged 75% CRI+ while IgM PFC were only 39% CRI+. Due to the TI nature of the Ag, this provides suggestive, but not conclusive, evidence that the Id asymmetry in the isotype switch may be attributable to the direct interaction of Ag with B cells. Other studies addressed the temporal shift in CRI dominance. First, it was found that preexposure of mice to either KLH or to ABA (on an irrelevant carrier) resulted in diminished CRI dominance in subsequent "primary" responses to ABA-KLH. Secondly, adoptive transfer experiments with B and T cells from virgin mice (Bv, Tv) or ABA-KLH-primed mice (Bp, Tp) showed that recipients of Bv + Tp or Bp + Tv generated anti-ABA PFC responses with intermediate CRI levels. The Tv cells had some preferential tendency to activate CRI+ clones in the Bp population. The results demonstrate that CRI levels are jointly determined by the immune status of both B and T cells. A simple model is offered which accounts for early Id dominance and its gradual decline and has as its central postulate the assumption that CRI+ B cells in the virgin ABA-specific repertoire have an affinity advantage over CRI- clones.

  2. Blockade of PD-1/B7-H1 Interaction Restores Effector CD8+ T Cell Responses in a Hepatitis C Virus Core Murine Model1

    PubMed Central

    Lukens, John R.; Cruise, Michael W.; Lassen, Matthew G.; Hahn, Young S.

    2010-01-01

    The impaired function of CD8+ T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8+ T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8+ T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the albumin promoter. Using a recombinant adenovirus to deliver Ag, we demonstrated that core(+) mice failed to clear adenovirus-LacZ (Ad-LacZ) infection in the liver. The effector function of LacZ-specific CD8+ T cells was particularly impaired in the livers of core(+) mice, with suppression of IFN-γ, TNF-α, and granzyme B production by CD8+ T cells. In addition, the impaired CD8+ T cell responses in core(+) mice were accompanied by the enhanced expression of the inhibitory receptor programmed death-1 (PD-1) by LacZ-specific CD8+ T cells and its ligand B7-H1 on liver dendritic cells following Ad-LacZ infection. Importantly, blockade of the PD-1/B7-H1 inhibitory pathway (using a B7-H1 blocking antibody) in core(+) mice enhanced effector function of CD8+ T cells and cleared Ad-LacZ-infection as compared with that in mice treated with control Ab. This suggests that the regulation of the PD-1/B7-H1 inhibitory pathway is crucial for HCV core-mediated impaired T cell responses and viral persistence in the liver. This also suggests that manipulation of the PD-1/B7-H1 pathway may be a potential immunotherapy to enhance effector T cell responses during persistent HCV infection. PMID:18354211

  3. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    PubMed

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Endothelial microparticles interact with and support the proliferation of T cells.

    PubMed

    Wheway, Julie; Latham, Sharissa L; Combes, Valery; Grau, Georges E R

    2014-10-01

    Endothelial cells closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of endothelial cell microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, such as atherosclerosis, sepsis, multiple sclerosis, and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction. Given our recently described role for human brain microvascular endothelial cells (HBEC) in modulating immune responses, we investigated how HBEC-derived MP could interact with and support the proliferation of T cells. Like their mother cells, EMP expressed molecules important for Ag presentation and T cell costimulation, that is, β2-microglobulin, MHC II, CD40, and ICOSL. HBEC were able to take up fluorescently labeled Ags with EMP also containing fluorescent Ags, suggestive of Ag carryover from HBEC to EMP. In cocultures, fluorescently labeled EMP from resting or cytokine-stimulated HBEC formed conjugates with both CD4(+) and CD8(+) subsets, with higher proportions of T cells binding EMP from cytokine-stimulated cells. The increased binding of EMP from cytokinestimulated HBEC to T cells was VCAM-1 and ICAM-1 dependent. Finally, in CFSE T cell proliferation assays using anti-CD3 mAb or T cell mitogens, EMP promoted the proliferation of CD4(+) T cells and that of CD8(+) T cells in the absence of exogenous stimuli and in the T cell mitogenic stimulation. Our findings provide novel evidence that EMP can enhance T cell activation and potentially ensuing Ag presentation, thereby pointing toward a novel role for MP in neuroimmunological complications of infectious diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  5. Endothelial microparticles interact with and support the proliferation of T cells

    PubMed Central

    Wheway, Julie; Latham, Sharissa L; Combes, Valery; Grau, Georges ER

    2014-01-01

    Endothelial cells (EC) closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of EC microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, e.g. atherosclerosis, sepsis, multiple sclerosis and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction. Given our recently described role for human brain microvascular endothelial cells (HBEC) in modulating immune responses we investigated how HBEC-derived MP could interact with and support the proliferation of T cells. Like their mother cells, EMP expressed molecules important for antigen presentation and T cell co-stimulation, i.e., β2-microglobulin, MHC II, CD40 and ICOSL. HBEC were able to take up fluorescently labeled antigens with EMP also containing fluorescent antigens suggestive of antigen carryover from HBEC to EMP. In co-cultures, fluorescently labeled EMP from resting or cytokine-stimulated HBEC formed conjugates with both CD4+ and CD8+ subsets, with higher proportions of T cells binding EMP from cytokine stimulated cells. The increased binding of EMP from cytokine stimulated HBEC to T cells was VCAM-1 and ICAM-1-dependent. Finally, in CFSE T cell proliferation assays using anti-CD3 mAb or T cell mitogens, EMP promoted the proliferation of CD4+ T cells and that of CD8+ T cells in the absence of exogenous stimuli and in the T cell mitogenic stimulation. Our findings provide novel evidence that EMP can enhance T cell activation and potentially ensuing antigen presentation, thereby pointing towards a novel role for MP in neuro-immunological complications of infectious diseases. PMID:25187656

  6. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile

    PubMed Central

    DeFuria, Jason; Belkina, Anna C.; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R.; Markham, Douglas; Strissel, Katherine J.; Watkins, Amanda A.; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S.; McDonnell, Marie E.; Apovian, Caroline; Denis, Gerald V.; Nikolajczyk, Barbara S.

    2013-01-01

    Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell–null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell–null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D. PMID:23479618

  7. T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence

    PubMed Central

    Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A.; Edwards, David M.; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K.; Pickup, David J.; Lewinsohn, David M.; Gold, Marielle C.; Wong, Scott W.; Sacha, Jonah B.; Slifka, Mark K.; Früh, Klaus

    2014-01-01

    Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination. PMID:24832205

  8. T cell inactivation by poxviral B22 family proteins increases viral virulence.

    PubMed

    Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A; Edwards, David M; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K; Pickup, David J; Lewinsohn, David M; Gold, Marielle C; Wong, Scott W; Sacha, Jonah B; Slifka, Mark K; Früh, Klaus

    2014-05-01

    Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.

  9. Evidence for idiotypic- and antiidiotypic B-B cellular interaction with the use of cloned antiidiotypic B cell line.

    PubMed

    Bitoh, S; Fujimoto, S; Yamamoto, H

    1990-03-15

    Immunization of BALB/c mice with MOPC104E myeloma protein induces antiidiotypic B lymphocytes that have Id-specific enhancing activity on antibody production. The B-B cell interaction was restricted to both Igh and class II MHC. However, anti-Thy-1 and C-treated splenic B cells were maintained for more than 1 y in a mixture of Con A-stimulated splenocyte culture supernatant and synthetic medium. In applying the long term culture method, we have established a cloned B cell line named B19-1d, B19-1d cells are specific to MOPC104E or J558 cross-reactive Id and they express surface mu, lambda but no Ly-1. B19-1d do not spontaneously secrete Ig but produce them upon stimulation with bacterial LPS. The effect of B19-1d cell line on idiotypic antibody production was tested. Addition of only 10 to 100 B19-1d cells into dextran-immune B cell culture greatly enhanced the Id+ antidextran antibody responses. On the contrary, the antidextran antibody production was suppressed by the higher doses of B19-1d cells. The effective cooperation between dextran-immune B cells and B19-1d cloned B cells was restricted to class II MHC. The role of idiotypic- and antiidiotypic B-B cell interaction in immune regulation and repertoire generation was suggested.

  10. T suppressor cells are required for the maintenance of the antigen-induced B-cell unresponsive state in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benveniste, E.; Stevens, R.H.

    1983-04-01

    Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cellsmore » caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.« less

  11. Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation.

    PubMed

    Yu, Xin; Siegel, Rachael; Roeder, Robert G

    2006-06-02

    OCA-B is a B cell-specific transcriptional coactivator for OCT factors during the activation of immunoglobulin genes. In addition, OCA-B is crucial for B cell activation and germinal center formation. However, the molecular mechanisms for OCA-B function in these processes are not clear. Our previous studies documented two OCA-B isoforms and suggested a novel mechanism for the function of the myristoylated, membrane-bound form of OCA-B/p35 as a signaling molecule. Here, we report the identification of galectin-1, and related galectins, as a novel OCA-B-interacting protein. The interaction of OCA-B and galectin-1 can be detected both in vivo and in vitro. The galectin-1 binding domain in OCA-B has been localized to the N terminus of OCA-B. In B cells lacking OCA-B expression, increased galectin-1 expression, secretion, and cell surface association are observed. Consistent with these observations, and a reported inhibitory interaction of galectin-1 with CD45, the phosphatase activity of CD45 is reduced modestly, but significantly, in OCA-B-deficient B cells. Finally, galectin-1 is shown to negatively regulate B cell proliferation and tyrosine phosphorylation upon BCR stimulation. Together, these results raise the possibility that OCA-B may regulate BCR signaling through an association with galectin-1.

  12. Myeloid-derived suppressor cells modulate B-cell responses.

    PubMed

    Lelis, Felipe J N; Jaufmann, Jennifer; Singh, Anurag; Fromm, Katja; Teschner, Annkathrin Chiara; Pöschel, Simone; Schäfer, Iris; Beer-Hammer, Sandra; Rieber, Nikolaus; Hartl, Dominik

    2017-08-01

    Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71more » and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. - Highlights:: • Withaferin A (WA) inhibited T-cell and B-cell mediated immune responses. • WA increased basal ROS levels in lymphocytes. • WA directly interacted with GSH as studied using spectrophotometry and HPLC. • WA inhibited NF-κB nuclear translocation and binding of nuclear NF-κB to DNA. • WA inhibited induction of the graft-versus-host disease in mice.« less

  14. Regulatory T cells in the control of host-microorganism interactions (*).

    PubMed

    Belkaid, Yasmine; Tarbell, Kristin

    2009-01-01

    Each microenvironment requires a specific set of regulatory elements that are finely and constantly tuned to maintain local homeostasis. Various populations of regulatory T cells contribute to the maintenance of this equilibrium and establishment of controlled immune responses. In particular, regulatory T cells limit the magnitude of effector responses, which may result in failure to adequately control infection. However, regulatory T cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses against pathogenic microbes as well as commensals. In this review, we describe various situations in which the balance between regulatory T cells and effector immune functions influence the outcome of host-microorganism coexistence and discuss current hypotheses and points of polemic associated with the origin, target, and antigen specificity of both endogenous and induced regulatory T cells during these interactions.

  15. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination

    PubMed Central

    Brooks, Jill M.; Long, Heather M.; Tierney, Rose J.; Shannon-Lowe, Claire; Leese, Alison M.; Fitzpatrick, Martin; Taylor, Graham S.; Rickinson, Alan B.

    2016-01-01

    Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three “first wave” proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that “first wave” antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design. PMID:27096949

  16. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses.

    PubMed

    Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J

    2018-05-15

    Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (<20%). In contrast, the anti-CD20 mAb rituximab depleted >80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  18. NK Cells Restrain Spontaneous Antitumor CD8+ T Cell Priming through PD-1/PD-L1 Interactions with Dendritic Cells.

    PubMed

    Iraolagoitia, Ximena L Raffo; Spallanzani, Raul G; Torres, Nicolás I; Araya, Romina E; Ziblat, Andrea; Domaica, Carolina I; Sierra, Jessica M; Nuñez, Sol Y; Secchiari, Florencia; Gajewski, Thomas F; Zwirner, Norberto W; Fuertes, Mercedes B

    2016-08-01

    Despite the classical function of NK cells in the elimination of tumor and of virus-infected cells, evidence for a regulatory role for NK cells has been emerging in different models of autoimmunity, transplantation, and viral infections. However, this role has not been fully explored in the context of a growing tumor. In this article, we show that NK cells can limit spontaneous cross-priming of tumor Ag-specific CD8(+) T cells, leading to reduced memory responses. After challenge with MC57 cells transduced to express the model Ag SIY (MC57.SIY), NK cell-depleted mice exhibited a significantly higher frequency of SIY-specific CD8(+) T cells, with enhanced IFN-γ production and cytotoxic capability. Depletion of NK cells resulted in a CD8(+) T cell population skewed toward an effector memory T phenotype that was associated with enhanced recall responses and delayed tumor growth after a secondary tumor challenge with B16.SIY cells. Dendritic cells (DCs) from NK cell-depleted tumor-bearing mice exhibited a more mature phenotype. Interestingly, tumor-infiltrating and tumor-draining lymph node NK cells displayed an upregulated expression of the inhibitory molecule programmed death ligand 1 that, through interaction with programmed death-1 expressed on DCs, limited DC activation, explaining their reduced ability to induce tumor-specific CD8(+) T cell priming. Our results suggest that NK cells can, in certain contexts, have an inhibitory effect on antitumor immunity, a finding with implications for immunotherapy in the clinic. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. BCL11B-Mediated Epigenetic Repression Is a Crucial Target for Histone Deacetylase Inhibitors in Cutaneous T-Cell Lymphoma.

    PubMed

    Fu, Wenjing; Yi, Shengguo; Qiu, Lei; Sun, Jingru; Tu, Ping; Wang, Yang

    2017-07-01

    The treatment options for advanced cutaneous T-cell lymphoma (CTCL) are limited because of its unclear pathogenesis. Histone deacetylase (HDAC) inhibitors (HDACis) are recently developed therapeutics approved for refractory CTCL. However, the response rate is relatively low and unpredictable. Previously, we discovered that BCL11B, a key T-cell development regulator, was aberrantly overexpressed in mycosis fungoides, the most common CTCL, as compared with benign inflammatory skin. In this study, we identified a positive correlation between BCL11B expression and sensitivity to HDACi in CTCL lines. BCL11B suppression in BCL11B-high cells induced cell apoptosis by de-repressing apoptotic pathways and showed synergistic effects with suberoylanilide hydroxamic acid (SAHA), a pan-HDACi. Next, we identified the physical interaction and shared downstream genes between BCL11B and HDAC1/2 in CTCL lines. This interaction was essential in the anti-apoptosis effect of BCL11B, and the synergism between BCL11B suppression and HDACi treatment. Further, in clinical samples from 46 mycosis fungoides patients, BCL11B showed increased but varied expression in advanced tumor stage. Analysis of four patients receiving SAHA treatment suggested a positive correlation between BCL11B expression and favorable response to SAHA treatment. In conclusion, BCL11B may serve as a therapeutic target and a useful marker for improving HDACi efficacy in advanced CTCL. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice

    PubMed Central

    Bagchi, Sreya; He, Ying; Zhang, Hong; Cao, Liang; Van Rhijn, Ildiko; Moody, D. Branch; Gudjonsson, Johann E.

    2017-01-01

    A large proportion of human T cells are autoreactive to group 1 CD1 proteins, which include CD1a, CD1b, and CD1c. However, the physiological role of the CD1 proteins remains poorly defined. Here, we have generated a double-transgenic mouse model that expresses human CD1b and CD1c molecules (hCD1Tg) as well as a CD1b-autoreactive TCR (HJ1Tg) in the ApoE-deficient background (hCD1Tg HJ1Tg Apoe–/– mice) to determine the role of CD1-autoreactive T cells in hyperlipidemia-associated inflammatory diseases. We found that hCD1Tg HJ1Tg Apoe–/– mice spontaneously developed psoriasiform skin inflammation characterized by T cell and neutrophil infiltration and a Th17-biased cytokine response. Anti–IL-17A treatment ameliorated skin inflammation in vivo. Additionally, phospholipids and cholesterol preferentially accumulated in diseased skin and these autoantigens directly activated CD1b-autoreactive HJ1 T cells. Furthermore, hyperlipidemic serum enhanced IL-6 secretion by CD1b+ DCs and increased IL-17A production by HJ1 T cells. In psoriatic patients, the frequency of CD1b-autoreactive T cells was increased compared with that in healthy controls. Thus, this study has demonstrated the pathogenic role of CD1b-autoreactive T cells under hyperlipidemic conditions in a mouse model of spontaneous skin inflammation. As a large proportion of psoriatic patients are dyslipidemic, this finding is of clinical significance and indicates that self-lipid–reactive T cells might serve as a possible link between hyperlipidemia and psoriasis. PMID:28463230

  1. Cognate interactions between helper T cells and B cells. IV. Requirements for the expression of effector phase activity by helper T cells.

    PubMed

    Bartlett, W C; McCann, J; Shepherd, D M; Roy, M; Noelle, R J

    1990-12-15

    After activation with anti-CD3, activated Th (THCD3), but not resting Th, fixed with paraformaldehyde induce B cell RNA synthesis when co-cultured with resting B cells. This activity is expressed by Th of both Th1 and Th2 subtypes, as well as a third Th clone that is not classified into either subtype. It is proposed that anti-CD3 activation of Th results in the expression of Th membrane proteins that trigger B cell cycle entry. Kinetic studies reveal that 4 to 8 h of activation with anti-CD3 is sufficient for ThCD3 to express B cell-activating function. However, activation of Th with anti-CD3 for extended periods of time results in reduced Th effector activity. Inhibition of Th RNA synthesis during the anti-CD3 activation period ablates the ability of ThCD3 to induce B cell cycle entry. This indicates that de novo synthesis of proteins is required for ThCD3 to express effector function. The ability of fixed ThCD3 to induce entry of B cell into cycle is not due to an increase in expression of CD3, CD4, LFA-1, ICAM-1, class I MHC or Thy-1. Other forms of Th activation (PMA and A23187, Con A) also induced Th effector function. Furthermore, purified plasma membranes from anti-CD3 activated, but not resting Th, induced resting B cells to enter cycle. The addition of IL-4, but not IL-2, IL-5, or IFN-gamma amplified the DNA synthetic response of B cells stimulated with PM from activated Th. Taken together these data indicate that de novo expression of Th surface proteins on activated Th is required for Th to induce B cell cycle entry into G1 and the addition of IL-4 is required for the heightened progression into S phase.

  2. Folliculotropic T-cell infiltrates associated with B-cell chronic lymphocytic leukaemia or MALT lymphoma may reveal either true mycosis fungoides or pseudolymphomatous reaction: seven cases and review of the literature.

    PubMed

    Ingen-Housz-Oro, S; Franck, N; Beneton, N; Fauconneau, A; Do-Pham, G; Carlotti, A; Petit, T; Liolios, I; Bara, C; Carpentier, H; Storelli, D; Prophette, B; Garderet, L; Haioun, C; Petit, E; Delfau-Larue, M-H; Vergier, B; Chosidow, O; Beylot-Barry, M; Ortonne, N

    2015-01-01

    Mycosis fungoides (MF) and pseudo-MF (or MF simulant) can be associated with B-cell malignancies, but distinction between a true neoplasm and a reactive process may be difficult. To report seven patients with B-cell malignancy and folliculotropic MF or pseudo-MF and emphasize on criteria allowing distinction between the two conditions. We retrospectively and prospectively included seven patients with B-cell malignancy who presented skin lesions histologically consisting in a folliculotropic T-cell infiltrate and reviewed the literature on the topic. Four men and three women had a chronic lymphocytic leukaemia (n = 6) or a MALT-type lymphoma (n = 1). Five patients had localized papules, and two had patches and plaques. Histological examination showed in all cases a diffuse dermal T-cell infiltrate with folliculotropic involvement and follicular mucinosis associated with clusters of the B-cell lymphoma, without significant expression of follicular helper T-cell markers. T-cell rearrangement studies showed a polyclonal pattern in the patients with papules and a monoclonal pattern in the cases of patches and plaques. Papular lesions had an indolent evolution, whereas patches and plaques persisted or worsened into transformed MF. Folliculotropic T-cell infiltrates associated with B-cell malignancies can be either a true folliculotropic MF or a pseudo-MF. The distinction between both conditions cannot rely only on the histopathological aspect, but needs both a clinical pathological correlation and the search for a dominant T-cell clone. Whether the neoplastic T and B cells derive from a common ancestor or the T-cell proliferation is promoted by the underlying B-cell lymphoma remains unsolved, but interaction between B and T cell in the skin does not appear to be dependent on a TFH differentiation of the T-cell infiltrate. © 2014 European Academy of Dermatology and Venereology.

  3. B7-H1 expression is associated with expansion of regulatory T cells in colorectal carcinoma

    PubMed Central

    Hua, Dong; Sun, Jing; Mao, Yong; Chen, Lu-Jun; Wu, Yu-Yu; Zhang, Xue-Guang

    2012-01-01

    AIM: To investigate the expression of B7-H1 in human colorectal carcinoma (CRC) to define its regulating effects on T cells in tumor microenvironment. METHODS: One hundred and two paraffin blocks and 33 fresh samples of CRC tissues were subject to this study. Immunohistochemistry was performed for B7-H1 and CD3 staining in CRC tissues. Ficoll-Hypaque density gradient centrifugation was used to isolate peripheral blood mononuclear cells of fresh CRC tissues; flow cytometry and immunofluorescence staining were used for detection of regulatory T cells. Data was analyzed with statistical software. RESULTS: Costimulatory molecule B7-H1 was found strongly expressed in CRC tissues, localized in tumor cell membrane and cytoplasm, while weak or none expression of B7-H1 was detected in pared normal colorectal tissues. Meanwhile, CD3 positive T cells were found congregated in CRC tumor nest and stroma. Statistic analysis showed that B7-H1 expression level was negatively correlated to the total T cell density in tumor nest (P < 0.0001) and tumor stroma (P = 0.0200) of 102 cases of CRC tissues. Among the total T cells, a variable amount of regulatory T cells with a clear Foxp3+ (forkhead box P3) staining could be detected in CRC tissues and patients’ blood. Interestingly, in the 33 samples (15 cases of B7-H1high CRC tissues and 18 cases of B7-H1low CRC tissues) of freshly isolated mononuclear cells from CRC tissues, the percentages of CD4+Foxp3+ and CD8+Foxp3+ regulatory T cells were found remarkably higher in B7-H1high CRC tissues than in B7-H1low CRC tissues (P = 0.0024, P = 0.0182), indicating that B7-H1 expression was involved in proliferation of regulatory T cell. No significant difference was found in CRC peripheral blood (P = 0.0863, P = 0.0678). PD-1 is the specific ligand for B7-H1 pathway transferring inhibitory signal to T cell, which is expressed by activated T cell. Our further analysis of PD-1 expression on T cells in CRC tissues showed that conventional T cells

  4. B7-H1 expression is associated with expansion of regulatory T cells in colorectal carcinoma.

    PubMed

    Hua, Dong; Sun, Jing; Mao, Yong; Chen, Lu-Jun; Wu, Yu-Yu; Zhang, Xue-Guang

    2012-03-07

    To investigate the expression of B7-H1 in human colorectal carcinoma (CRC) to define its regulating effects on T cells in tumor microenvironment. One hundred and two paraffin blocks and 33 fresh samples of CRC tissues were subject to this study. Immunohistochemistry was performed for B7-H1 and CD3 staining in CRC tissues. Ficoll-Hypaque density gradient centrifugation was used to isolate peripheral blood mononuclear cells of fresh CRC tissues; flow cytometry and immunofluorescence staining were used for detection of regulatory T cells. Data was analyzed with statistical software. Costimulatory molecule B7-H1 was found strongly expressed in CRC tissues, localized in tumor cell membrane and cytoplasm, while weak or none expression of B7-H1 was detected in pared normal colorectal tissues. Meanwhile, CD3 positive T cells were found congregated in CRC tumor nest and stroma. Statistic analysis showed that B7-H1 expression level was negatively correlated to the total T cell density in tumor nest (P < 0.0001) and tumor stroma (P = 0.0200) of 102 cases of CRC tissues. Among the total T cells, a variable amount of regulatory T cells with a clear Foxp3⁺ (forkhead box P3) staining could be detected in CRC tissues and patients' blood. Interestingly, in the 33 samples (15 cases of B7-H1(high) CRC tissues and 18 cases of B7-H1(low) CRC tissues) of freshly isolated mononuclear cells from CRC tissues, the percentages of CD4⁺Foxp3⁺ and CD8⁺Foxp3⁺ regulatory T cells were found remarkably higher in B7-H1(high) CRC tissues than in B7-H1(low) CRC tissues (P = 0.0024, P = 0.0182), indicating that B7-H1 expression was involved in proliferation of regulatory T cell. No significant difference was found in CRC peripheral blood (P = 0.0863, P = 0.0678). PD-1 is the specific ligand for B7-H1 pathway transferring inhibitory signal to T cell, which is expressed by activated T cell. Our further analysis of PD-1 expression on T cells in CRC tissues showed that conventional T cells (CD4

  5. T Cell Post-Transcriptional miRNA-mRNA Interaction Networks Identify Targets Associated with Susceptibility/Resistance to Collagen-induced Arthritis

    PubMed Central

    Macedo, Claudia; Cunha, Thiago M.; Nascimento, Daniele C. B.; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Cunha, Fernando Q.; Passos, Geraldo A.

    2013-01-01

    Background Due to recent studies indicating that the deregulation of microRNAs (miRNAs) in T cells contributes to increased severity of rheumatoid arthritis, we hypothesized that deregulated miRNAs may interact with key mRNA targets controlling the function or differentiation of these cells in this disease. Methodology/Principal Findings To test our hypothesis, we used microarrays to survey, for the first time, the expression of all known mouse miRNAs in parallel with genome-wide mRNAs in thymocytes and naïve and activated peripheral CD3+ T cells from two mouse strains the DBA-1/J strain (MHC-H2q), which is susceptible to collagen induced arthritis (CIA), and the DBA-2/J strain (MHC-H2d), which is resistant. Hierarchical clustering of data showed the several T cell miRNAs and mRNAs differentially expressed between the mouse strains in different stages of immunization with collagen. Bayesian statistics using the GenMir++ algorithm allowed reconstruction of post-transcriptional miRNA-mRNA interaction networks for target prediction. We revealed the participation of miR-500, miR-202-3p and miR-30b*, which established interactions with at least one of the following mRNAs: Rorc, Fas, Fasl, Il-10 and Foxo3. Among the interactions that were validated by calculating the minimal free-energy of base pairing between the miRNA and the 3′UTR of the mRNA target and luciferase assay, we highlight the interaction of miR-30b*-Rorc mRNA because the mRNA encodes a protein implicated in pro-inflammatory Th17 cell differentiation (Rorγt). FACS analysis revealed that Rorγt protein levels and Th17 cell counts were comparatively reduced in the DBA-2/J strain. Conclusions/Significance This result showed that the miRNAs and mRNAs identified in this study represent new candidates regulating T cell function and controlling susceptibility and resistance to CIA. PMID:23359619

  6. T cell post-transcriptional miRNA-mRNA interaction networks identify targets associated with susceptibility/resistance to collagen-induced arthritis.

    PubMed

    Donate, Paula B; Fornari, Thais A; Macedo, Claudia; Cunha, Thiago M; Nascimento, Daniele C B; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Cunha, Fernando Q; Passos, Geraldo A

    2013-01-01

    Due to recent studies indicating that the deregulation of microRNAs (miRNAs) in T cells contributes to increased severity of rheumatoid arthritis, we hypothesized that deregulated miRNAs may interact with key mRNA targets controlling the function or differentiation of these cells in this disease. To test our hypothesis, we used microarrays to survey, for the first time, the expression of all known mouse miRNAs in parallel with genome-wide mRNAs in thymocytes and naïve and activated peripheral CD3(+) T cells from two mouse strains the DBA-1/J strain (MHC-H2q), which is susceptible to collagen induced arthritis (CIA), and the DBA-2/J strain (MHC-H2d), which is resistant. Hierarchical clustering of data showed the several T cell miRNAs and mRNAs differentially expressed between the mouse strains in different stages of immunization with collagen. Bayesian statistics using the GenMir(++) algorithm allowed reconstruction of post-transcriptional miRNA-mRNA interaction networks for target prediction. We revealed the participation of miR-500, miR-202-3p and miR-30b*, which established interactions with at least one of the following mRNAs: Rorc, Fas, Fasl, Il-10 and Foxo3. Among the interactions that were validated by calculating the minimal free-energy of base pairing between the miRNA and the 3'UTR of the mRNA target and luciferase assay, we highlight the interaction of miR-30b*-Rorc mRNA because the mRNA encodes a protein implicated in pro-inflammatory Th17 cell differentiation (Rorγt). FACS analysis revealed that Rorγt protein levels and Th17 cell counts were comparatively reduced in the DBA-2/J strain. This result showed that the miRNAs and mRNAs identified in this study represent new candidates regulating T cell function and controlling susceptibility and resistance to CIA.

  7. Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You.

    PubMed

    Ruella, Marco; June, Carl H

    2016-10-01

    Genetic redirection of T lymphocytes allows us to unleash these potent cellular immune effectors against cancer. Chimeric antigen receptor (CAR) T cells are the best-in-class example that genetic engineering of T cells can lead to deep and durable responses, as has been shown in several clinical trials for CD19+ B cell malignancies. As a consequence, in the last few years, several academic institutions and commercial partners have started developing anti-CD19 CAR T cell products. Although most of these T cell products are highly effective in vivo, basic differences among them can generate different performance characteristics and thereby impact their long-term clinical outcome. Several strategies are being implemented in order to solve the current open issues of CART19 therapy: (i) increasing efficacy against indolent B cell leukemias and lymphomas, (ii) avoiding or preventing antigen-loss relapses, (iii) reducing and managing toxicity, and (iv) bringing this CART therapy to routine clinical practice. The field of CART therapies is thriving, and exciting new avenues are opening for both scientists and patients.

  8. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma.

    PubMed

    Harhaj, Edward William; Giam, Chou-Zen

    2018-05-03

    The human T-cell leukemia virus type 1 (HTLV-1) is a complex deltaretrovirus linked to adult T-cell leukemia/lymphoma (ATLL), a fatal CD4+ malignancy in 3-5% of infected individuals. The HTLV-1 Tax regulatory protein plays indispensable roles in regulating viral gene expression and activating cellular signaling pathways that drive the proliferation and clonal expansion of T cells bearing HTLV-1 proviral integrations. Tax is a potent activator of NF-κB, a key signaling pathway that is essential for the survival and proliferation of HTLV-1 infected T cells. However, constitutive NF-κB activation by Tax also triggers a senescence response, suggesting the possibility that only T cells capable of overcoming NF-κB-induced senescence can selectively undergo clonal expansion after HTLV-1 infection. Tax expression is often silenced in the majority of ATLL due to genetic alterations in the tax gene or DNA hypermethylation of the 5'-LTR. Despite the loss of Tax, NF-κB activation remains persistently activated in ATLL due to somatic mutations in genes in the T/B-cell receptor (T/BCR) and NF-κB signaling pathways. In this review, we focus on the key events driving Tax-dependent and independent mechanisms of NF-κB activation during the multi-step process leading to ATLL. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Tumor Regression and Delayed Onset Toxicity Following B7-H4 CAR T Cell Therapy

    PubMed Central

    Smith, Jenessa B; Lanitis, Evripidis; Dangaj, Denarda; Buza, Elizabeth; Poussin, Mathilde; Stashwick, Caitlin; Scholler, Nathalie; Powell, Daniel J

    2016-01-01

    B7-H4 protein is frequently overexpressed in ovarian cancer. Here, we engineered T cells with novel B7-H4-specific chimeric antigen receptors (CARs) that recognized both human and murine B7-H4 to test the hypothesis that B7-H4 CAR T cell therapy can be applied safely in preclinical models. B7-H4 CAR T cells specifically secreted IFN-γ and lysed B7-H4(+) targets. In vivo, B7-H4 CAR T cells displayed antitumor reactivity against B7-H4(+) human ovarian tumor xenografts. Unexpectedly, B7-H4 CAR T cell treatment reproducibly showed delayed, lethal toxicity 6–8 weeks after therapy. Comprehensive assessment of murine B7-H4 protein distribution uncovered expression in ductal and mucosal epithelial cells in normal tissues. Postmortem analysis revealed the presence of widespread histologic lesions that correlated with B7-H4(+) expression, and were inconsistent with graft versus host disease. Lastly, expression patterns of B7-H4 protein in normal human tissue were comparable to distribution in mice, advancing our understanding of B7-H4. We conclude that B7-H4 CAR therapy mediates control of cancer outgrowth. However, long-term engraftment of B7-H4 CAR T cells mediates lethal, off-tumor toxicity that is likely due to wide expression of B7-H4 in healthy mouse organs. This model system provides a unique opportunity for preclinical evaluation of safety approaches that limit CAR-mediated toxicity after tumor destruction in vivo. PMID:27439899

  10. Drug Hypersensitivity: How Drugs Stimulate T Cells via Pharmacological Interaction with Immune Receptors.

    PubMed

    Pichler, Werner J; Adam, Jacqueline; Watkins, Stephen; Wuillemin, Natascha; Yun, James; Yerly, Daniel

    2015-01-01

    Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions. © 2015 The Author(s) Published by S. Karger AG, Basel.

  11. Analysis of T cell-replacing factor-like activity: potent induction of T helper activity for human B cells by residual concanavalin A and interleukin 2.

    PubMed

    Sauerwein, R W; Van der Meer, W G; Aarden, L A

    1987-08-01

    At least two factors with the capacity to induce IgM synthesis in human B cells were found to be present in the 15-20-kDa fraction of the supernatant of mononuclear cells activated with concanavalin A (Con A) and phorbol ester. Previously, it has been shown (Sauerwein, R. W. et al., Eur. J. Immunol. 1985. 15: 611) that interleukin 2 (IL2) in this material is able to induce T cell-dependent IgM secretion in normal B cells. Evidence was obtained for the presence of another factor distinct from IL2 that could replace T cells in the induction of B cell differentiation. We have analyzed this factor with the use of a neoplastic B cell population of prolymphocytic origin that was functionally nonresponsive to IL2. T cell-replacing factor (TRF)-like activity and IL2 could be separated by ion-exchange chromatography, although a small amount of IL2 was recovered in the TRF fractions. This small amount of IL2 was found to be crucial for the observed TRF activity. Moreover, a substantial amount of monomeric Con A was detected in the TRF preparation. Our studies show that Con A in the presence of IL2 can act as a potent inducer of helper function in lower numbers of T cells for normal and neoplastic B cells. Functional assays for T cell contamination in B cell suspensions are therefore of limited value because they are determined by the efficiency of the stimulating signal. Particularly in those B cell factor preparations, obtained from mitogen-activated T cells with an obligatory or unidentified role of IL2, the possible effect of a contaminating mitogen must be considered.

  12. B cells and B cell products-helping to restore cellular immunity?

    PubMed

    Cascalho, Marilia; Platt, Jeffrey L

    2006-01-01

    T cells that provide vital protection against tumors, viruses and intracellular bacteria are thought to develop independently of B cells. However, recent discoveries suggest that development of T cells depends on B cells. One way B cells promote T cell development is by providing diverse peptides that may promote positive selection of thymocytes. Diverse peptides and B cells help in diversification of the T cell receptor repertoire and may decrease cross-reactivity in the mature T cell compartment. These new insights may provide the basis for the design of novel therapeutics.

  13. CD8+ memory T-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy.

    PubMed

    Xu, Aizhang; Freywald, Andrew; Xie, Yufeng; Li, Zejun; Xiang, Jim

    2017-01-01

    Whether inflation of CD8 + memory T (mT) cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8 + T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8 + T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1) ConA-stimulated monoclonal CD8 + T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2) ConA-stimulated polyclonal CD8 + T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4 + T cell-independent and CD4 + T-cell-dependent CD8 + T-cell responses, respectively, and assessed Ova-specific CD8 + T-cell responses by flow cytometry. We found that Ova-specific CD8 + T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8 + mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8 + T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8 + mT-cell inflation renders compromised CD4 + T-cell-dependent CD8 + T-cell immunity via naïve T-cell anergy, and thus show promise for the design of efficient vaccines for elderly patients with CD8 + mT-cell inflation.

  14. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    PubMed

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Pivotal Advance: Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells

    PubMed Central

    Parra, David; Rieger, Aja M.; Li, Jun; Zhang, Yong-An; Randall, Louise M.; Hunter, Christopher A.; Barreda, Daniel R.; Sunyer, J. Oriol

    2012-01-01

    Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4+ T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4+ T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages. PMID:22058420

  16. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells.

    PubMed

    Parra, David; Rieger, Aja M; Li, Jun; Zhang, Yong-An; Randall, Louise M; Hunter, Christopher A; Barreda, Daniel R; Sunyer, J Oriol

    2012-04-01

    Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4(+) T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4(+) T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages.

  17. NK Cells and Their Ability to Modulate T Cells during Virus Infections

    PubMed Central

    Cook, Kevin D.; Waggoner, Stephen N.; Whitmire, Jason K.

    2014-01-01

    Natural killer (NK) cells are important in protection against virus infections, and many viruses have evolved mechanisms to thwart NK cell activity. NK cells respond to inflammatory signals at an early stage of virus infection, resulting in proliferation, cytokine production, and cytolytic activity that can reduce virus loads. Moreover, the rapid kinetics of the NK cell response enables NK cells to influence other populations of innate immune cells, affect the inflammatory milieu, and guide adaptive immune responses to infection. Early NK cell interactions with other leukocytes can have long-lasting effects on the number and quality of memory T cells, as well as impact the exhaustion of T cells during chronic infections. The ability of NK cells to modulate T cell responses can be mediated through direct T-NK interactions, cytokine production, or indirectly through dendritic cells and other cell types. Herein, we summarize our current understanding of how NK cells interact with T cells, dendritic cells, B cells, and other cell types involved in adaptive immune responses to virus infection. We outline several mechanisms by which NK cells enhance or suppress adaptive immune response and long-lived immunological memory. PMID:25404045

  18. In vitro Reactivity to Implant Metals Demonstrates a Person Dependent Association with both T-Cell and B-Cell Activation

    PubMed Central

    Hallab, Nadim James; Caicedo, Marco; Epstein, Rachael; McAllister, Kyron; Jacobs, Joshua J

    2009-01-01

    Hypersensitivity to metallic implants remains relatively unpredictable and poorly understood. We initially hypothesized that metal-induced lymphocyte proliferation responses to soluble metal challenge (ions) are mediated exclusively by early T-cell activation (not B-cells), typical of a Delayed-Type-Hypersensitivity response. We tested this by comparing proliferation (6-days) of primary lymphocytes with early T-cell and B-cell activation (48-hours) in three groups of subjects likely to demonstrate elevated metal-reactivity: Group 1(n=12) history of metal-sensitivity with no implant; Group 2a(n=6) well performing metal-on-metal THRs, and Group 2b(n=20) subjects with poorly performing metal-on-polymer total joint arthroplasties (TJA). Group 1 showed 100%(12/12) metal reactivity (Stimulation Index>2) to Ni. Group 2a&2b were 83%(5/6) and 75%(15/22) metal reactive (to Co, Cr or Ni) respectively. Of the n=32 metal reactive subjects to Co, Cr or Ni (SI>2), n=22/32 demonstrated >2-fold elevations in % of T-cell or B-cell activation (CD25+,CD69+) to metal challenge compared to untreated control. 18/22 metal-activated subjects demonstrated an exclusively T-cell or B-cell activation response to metal challenge, where 6/18 demonstrated exclusively B-cell activation and 12/18 demonstrated a T-cell only response, as measured by surface activation markers CD25+ and CD69+. However, there was no direct correlation (R2<0.1) between lymphocyte proliferation and % T-cell or B-cell activation (CD25+:CD69+). Proliferation assays (LTT) showed greater ability to detect metal reactivity than did subject-dependent results of flow-cytometry analysis of T-cell or B-cell activation. The high incidence of lymphocyte reactivity and activation, indicate that more complex than initially hypothesized immune responses may contribute to the etiology of debris induced osteolysis in metal-sensitive individuals. PMID:19235773

  19. Plant Hsp90 Proteins Interact with B-Cells and Stimulate Their Proliferation

    PubMed Central

    Corigliano, Mariana G.; Maglioco, Andrea; Laguía Becher, Melina; Goldman, Alejandra; Martín, Valentina; Angel, Sergio O.; Clemente, Marina

    2011-01-01

    Background The molecular chaperone heat shock protein 90 (Hsp90) plays an important role in folding stabilization and activation of client proteins. Besides, Hsp90 of mammals and mammalian pathogens displays immunostimulatory properties. Here, we investigated the role of plant-derived Hsp90s as B-cell mitogens by measuring their proliferative responses in vitro. Methodology Plant cytosolic Hsp90 isoforms from Arabidopsis thaliana (AtHsp81.2) and Nicotiana benthamiana (NbHsp90.3) were expressed in E. coli. Over-expression of recombinant plant Hsp90s (rpHsp90s) was confirmed by SDS-PAGE and western blot using and anti-AtHsp81.2 polyclonal anti-body. Both recombinant proteins were purified by Ni-NTA affinity chromatography and their identity confirmed by MALDI-TOF-TOF. Recombinant AtHsp81.2 and NbHsp90.3 proteins induced prominent proliferative responses in spleen cells form BALB/c mice. Polymyxin-B, a potent inhibitor of lipopolysaccharide (LPS), did not eliminate the rpHsp90-induced proliferation. In addition, in vitro incubation of spleen cells with rpHsp90 led to the expansion of CD19-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. This effect was confirmed by immunofluorescence analysis, where a direct binding of rpHsp90 to B- but not to T-cells was observed in cells from BALB/c and C3H/HeN mice. Finally, we examined the involvement of Toll Like Receptor 4 (TLR4) molecules in the rpHsp90s induction of B-cell proliferation. Spleen cells from C3H/HeJ mice, which carry a point mutation in the cytoplasmic region of TLR4, responded poorly to prAtHsp90. However, the interaction between rpHsp90 and B-cells from C3H/HeJ mice was not altered, suggesting that the mutation on TLR4 would be affecting the signal cascade but not the rpHsp90-TLR4 receptor interaction. Conclusions Our results show for the first time that spleen cell proliferation can be stimulated by a non-pathogen-derived Hsp90. Furthermore, our data provide a new example of

  20. Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor

    PubMed Central

    Kochenderfer, James N.; Dudley, Mark E.; Kassim, Sadik H.; Somerville, Robert P.T.; Carpenter, Robert O.; Stetler-Stevenson, Maryalice; Yang, James C.; Phan, Giao Q.; Hughes, Marybeth S.; Sherry, Richard M.; Raffeld, Mark; Feldman, Steven; Lu, Lily; Li, Yong F.; Ngo, Lien T.; Goy, Andre; Feldman, Tatyana; Spaner, David E.; Wang, Michael L.; Chen, Clara C.; Kranick, Sarah M.; Nath, Avindra; Nathan, Debbie-Ann N.; Morton, Kathleen E.; Toomey, Mary Ann; Rosenberg, Steven A.

    2015-01-01

    Purpose T cells can be genetically modified to express an anti-CD19 chimeric antigen receptor (CAR). We assessed the safety and efficacy of administering autologous anti-CD19 CAR T cells to patients with advanced CD19+ B-cell malignancies. Patients and Methods We treated 15 patients with advanced B-cell malignancies. Nine patients had diffuse large B-cell lymphoma (DLBCL), two had indolent lymphomas, and four had chronic lymphocytic leukemia. Patients received a conditioning chemotherapy regimen of cyclophosphamide and fludarabine followed by a single infusion of anti-CD19 CAR T cells. Results Of 15 patients, eight achieved complete remissions (CRs), four achieved partial remissions, one had stable lymphoma, and two were not evaluable for response. CRs were obtained by four of seven evaluable patients with chemotherapy-refractory DLBCL; three of these four CRs are ongoing, with durations ranging from 9 to 22 months. Acute toxicities including fever, hypotension, delirium, and other neurologic toxicities occurred in some patients after infusion of anti-CD19 CAR T cells; these toxicities resolved within 3 weeks after cell infusion. One patient died suddenly as a result of an unknown cause 16 days after cell infusion. CAR T cells were detected in the blood of patients at peak levels, ranging from nine to 777 CAR-positive T cells/μL. Conclusion This is the first report to our knowledge of successful treatment of DLBCL with anti-CD19 CAR T cells. These results demonstrate the feasibility and effectiveness of treating chemotherapy-refractory B-cell malignancies with anti-CD19 CAR T cells. The numerous remissions obtained provide strong support for further development of this approach. PMID:25154820

  1. Studies on B-cell memory. III. T-dependent aspect of B memory generation in mice immunized with T-independent type-2(TI-2) antigen.

    PubMed

    Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S

    1984-09-01

    The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.

  2. In Silico Prediction Analysis of Idiotope-Driven T-B Cell Collaboration in Multiple Sclerosis.

    PubMed

    Høglund, Rune A; Lossius, Andreas; Johansen, Jorunn N; Homan, Jane; Benth, Jūratė Šaltytė; Robins, Harlan; Bogen, Bjarne; Bremel, Robert D; Holmøy, Trygve

    2017-01-01

    Memory B cells acting as antigen-presenting cells are believed to be important in multiple sclerosis (MS), but the antigen they present remains unknown. We hypothesized that B cells may activate CD4 + T cells in the central nervous system of MS patients by presenting idiotopes from their own immunoglobulin variable regions on human leukocyte antigen (HLA) class II molecules. Here, we use bioinformatics prediction analysis of B cell immunoglobulin variable regions from 11 MS patients and 6 controls with other inflammatory neurological disorders (OINDs), to assess whether the prerequisites for such idiotope-driven T-B cell collaboration are present. Our findings indicate that idiotopes from the complementarity determining region (CDR) 3 of MS patients on average have high predicted affinities for disease associated HLA-DRB1*15:01 molecules and are predicted to be endosomally processed by cathepsin S and L in positions that allows such HLA binding to occur. Additionally, complementarity determining region 3 sequences from cerebrospinal fluid (CSF) B cells from MS patients contain on average more rare T cell-exposed motifs that could potentially escape tolerance and stimulate CD4 + T cells than CSF B cells from OIND patients. Many of these features were associated with preferential use of the IGHV4 gene family by CSF B cells from MS patients. This is the first study to combine high-throughput sequencing of patient immune repertoires with large-scale prediction analysis and provides key indicators for future in vitro and in vivo analyses.

  3. CD30 Expression by B and T Cells: A Frequent Finding in Angioimmunoblastic T-Cell Lymphoma and Peripheral T-Cell Lymphoma-Not Otherwise Specified.

    PubMed

    Onaindia, Arantza; Martínez, Nerea; Montes-Moreno, Santiago; Almaraz, Carmen; Rodríguez-Pinilla, Socorro M; Cereceda, Laura; Revert, Jose B; Ortega, César; Tardio, Antoni; González, Lucía; García, Sonia; Camacho, Francisca I; González-Vela, Carmen; Piris, Miguel A

    2016-03-01

    CD30 expression in peripheral T-cell lymphoma (PTCL) and angioimmunoblastic T-cell lymphoma (AITL) is currently of great interest because therapy targeting CD30 is of clinical benefit, but the clinical and therapeutic relevance of CD30 expression in these neoplasms still remains uncertain. The aim of this study was to better quantify CD30 expression in AITL and PTCL-not otherwise specified (NOS). The secondary objective was to determine whether CD30 cells exhibit a B-cell or a T-cell phenotype. Gene expression profiling was studied in a series of 37 PTCL cases demonstrating a continuous spectrum of TNFRSF8 expression. This prompted us to study CD30 immunohistochemical (IHC) expression and mRNA levels by reverse transcription polymerase chain reaction (RT-PCR) in a different series of 51 cases (43 AITLs and 8 PTCL-NOSs) in routine samples. Double stainings with PAX5/CD30, CD3/CD30, and LEF1/CD30 were performed to study the phenotype of CD30 cells. Most (90%) of the cases showed some level of CD30 expression by IHC (1% to 95%); these levels were high (>50% of tumoral cells) in 14% of cases. CD30 expression was not detected in 10% of the cases. Quantitative RT-PCR results largely confirmed these findings, demonstrating a moderately strong correlation between global CD30 IHC and mRNA levels (r=0.65, P=1.75e-7). Forty-four of the positive cases (98%) contained CD30-positive B cells (PAX5), whereas atypical CD30-positive T cells were detected in 42 cases (93%). In conclusion, our data show that most AITL and PTCL-NOS cases express CD30, exhibiting very variable levels of CD30 expression that may be measured by IHC or RT-PCR techniques.

  4. Homeostatic 'bystander' proliferation of human peripheral blood B cells in response to polyclonal T-cell stimulation in vitro.

    PubMed

    Jasiulewicz, Aleksandra; Lisowska, Katarzyna A; Pietruczuk, Krzysztof; Frąckowiak, Joanna; Fulop, Tamas; Witkowski, Jacek M

    2015-11-01

    The mechanisms of maintenance of adequate numbers of B lymphocytes and of protective levels of immunoglobulins in the absence of antigenic (re)stimulation remain not fully understood. Meanwhile, our results presented here show that both peripheral blood naive and memory B cells can be activated strongly and non-specifically (in a mitogen-like fashion) in 5-day in vitro cultures of anti-CD3- or concanavalin A (Con A)-stimulated peripheral blood mononuclear cells of healthy people. This polyclonal, bystander activation of the B cells includes multiple divisions of most of them (assessed here by the flow cytometric technique of dividing cell tracking) and significant antibody [immunoglobulin M (IgM) and IgG] secretion. Observed proliferation of the CD19(+) B cells depends on contact with stimulated T helper (Th) cells (via CD40-CD40L interaction) and on the response of B cells to secreted interleukins IL-5, IL-10 and IL-4, and is correlated with the levels of these Th-derived molecules, while it does not involve the ligation of the BCR/CD19 complex. We suggest that the effect might reflect the situation occurring in vivo as the homeostatic proliferation of otherwise non-stimulated, peripheral B lymphocytes, providing an always ready pool for efficient antibody production to any new (or cognate) antigen challenge. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Identification of B- and T-cell epitopes from glycoprotein B of herpes simplex virus 2 and evaluation of their immunogenicity and protection efficacy.

    PubMed

    Liu, Kun; Jiang, Deyu; Zhang, Liangyan; Yao, Zhidong; Chen, Zhongwei; Yu, Sanke; Wang, Xiliang

    2012-04-19

    Herpes simplex virus (HSV) infection is a major health concern worldwide. Evidence obtained from animals and humans indicates that B- and T-cell responses contribute to protective immunity against herpes virus infection. Glycoprotein B is a transmembrane envelope component of HSV-1 and HSV-2, which plays an important role in virion morphogenesis and penetration into host cells, and can induce neutralizing antibodies and protective T-cell response when it is used to immunize humans and animals. However, little is known about gB epitopes that are involved in B- and T-cell activities in vitro and in vivo. Thus, the HSV-2 gB sequence was screened using B- and T-cell epitope prediction systems, and the B-cell regions and the HLA-A*0201-restricted epitopes were identified. These B-cell epitopes elicited high IgG antibody titers in Balb/C mice, with a predominantly IgG1 subclass distribution, which indicated a Th2 bias. Specific IgGs induced by these two epitopes were evaluated as the neutralizing antibodies for virus neutralization. The predicted T-cell epitopes stabilized the HLA-A*0201 molecules on T(2) cells, and stimulate interferon-γ-secreting and cytotoxic CD8(+) T cells. Immunization with the predicted peptides reduced virus shedding and protected against lethal viral challenge in mice. The functional epitopes described herein, both B- and T-cell epitopes, are potentially implicated in vaccine development. Copyright © 2012. Published by Elsevier Ltd.

  6. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    PubMed

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  7. Homeobox protein TLX3 activates miR-125b expression to promote T-cell acute lymphoblastic leukemia

    PubMed Central

    Renou, Laurent; Boelle, Pierre-Yves; Deswarte, Caroline; Spicuglia, Salvatore; Benyoucef, Aissa; Calvo, Julien; Uzan, Benjamin; Belhocine, Mohamed; Cieslak, Agata; Landman-Parker, Judith; Baruchel, Andre; Asnafi, Vahid; Pflumio, Françoise; Ballerini, Paola

    2017-01-01

    The oncogenic mechanisms driven by aberrantly expressed transcription factors in T-cell acute leukemia (T-ALL) are still elusive. MicroRNAs (miRNAs) play an important role in normal development and pathologies. Here, we examined the expression of 738 miRNA species in 41 newly diagnosed pediatric T-ALLs and in human thymus-derived cells. We found that expression of 2 clustered miRNAs, miR-125b/99a, peaks in primitive T cells and is upregulated in the T leukemia homeobox 3 (TLX3)–positive subtype of T-ALL. Using loss- and gain-of-function approaches, we established functional relationships between TLX3 and miR-125b. Both TLX3 and miR-125b support in vitro cell growth and in vivo invasiveness of T-ALL. Besides, ectopic expression of TLX3 or miR-125b in human hematopoietic progenitor cells enhances production of T-cell progenitors and favors their accumulation at immature stages of T-cell development resembling the differentiation arrest observed in TLX3 T-ALL. Ectopic miR-125b also remarkably accelerated leukemia in a xenograft model, suggesting that miR125b is an important mediator of the TLX3-mediated transformation program that takes place in immature T-cell progenitors. Mechanistically, TLX3-mediated activation of miR-125b may impact T-cell differentiation in part via repression of Ets1 and CBFβ genes, 2 regulators of T-lineage. Finally, we established that TLX3 directly regulates miR-125b production through binding and transactivation of LINC00478, a long noncoding RNA gene, which is the host of miR-99a/Let-7c/miR-125b. Altogether, our results reveal an original functional link between TLX3 and oncogenic miR-125b in T-ALL development. PMID:29296717

  8. Human Follicular Lymphoma CD39+-Infiltrating T Cells Contribute to Adenosine-Mediated T Cell Hyporesponsiveness1

    PubMed Central

    Hilchey, Shannon P.; Kobie, James J.; Cochran, Mathew R.; Secor-Socha, Shelley; Wang, Jyh-Chiang E.; Hyrien, Ollivier; Burack, W. Richard; Mosmann, Tim R.; Quataert, Sally A.; Bernstein, Steven H.

    2010-01-01

    Our previous work has demonstrated that human follicular lymphoma (FL) infiltrating T cells are anergic, in part due to suppression by regulatory T cells. In this study, we identify pericellular adenosine, interacting with T cell-associated G protein-coupled A2A/B adenosine receptors (AR), as contributing to FL T cell hyporesponsiveness. In a subset of FL patient samples, treatment of lymph node mononuclear cells (LNMC) with specific A2A/B AR antagonists results in an increase in IFN-γ or IL-2 secretion upon anti-CD3/CD28 Ab stimulation, as compared with that seen without inhibitors. In contrast, treatment with an A1 AR antagonist had no effect on cytokine secretion. As the rate limiting step for adenosine generation from pericellular ATP is the ecto-ATPase CD39, we next show that inhibition of CD39 activity using the inhibitor ARL 67156 partially overcomes T cell hyporesponsiveness in a subset of patient samples. Phenotypic characterization of LNMC demonstrates populations of CD39-expressing CD4+ and CD8+ T cells, which are overrepresented in FL as compared with that seen in normal or reactive nodes, or normal peripheral blood. Thirty percent of the FL CD4+CD39+ T cells coexpress CD25high and FOXP3 (consistent with regulatory T cells). Finally, FL or normal LNMC hydrolyze ATP in vitro, in a dose- and time-dependent fashion, with the rate of ATP consumption being associated with the degree of CD39+ T cell infiltration. Together, these results support the finding that the ATP-ectonucleotidase-adenosine system mediates T cell anergy in a human tumor. In addition, these studies suggest that the A2A/B AR as well as CD39 are novel pharmacological targets for augmenting cancer immunotherapy. PMID:19864600

  9. Newborn screening for severe T and B cell immunodeficiency in Israel: a pilot study.

    PubMed

    Somech, Raz; Lev, Atar; Simon, Amos J; Korn, David; Garty, Ben Zion; Amariglio, Ninette; Rechavi, Gideon; Almashanu, Shlomo; Zlotogora, Joel; Etzioni, Amos

    2013-08-01

    Enumeration of T cell receptor excision circles (TREC) was recently adopted as a neonatal screening assay for severe combined immunodeficiency (SCID). Enumeration of kappa-deleting recombination excision circle (KREC) copy numbers can be similarly used for early assessment of B cell lymphopenia. To assess the ability of TREC and KREC counts to identify patients with combined T and B cell immunodeficiency in a pilot study in Israel. We studied seven children born in Israel during the years 2010-2011 and later diagnosed with SCID, and an additional patient with pure B cell immunodeficiency. TREC and KREC in peripheral blood upon diagnosis and in their neonatal Guthrie cards were analyzed using real-time quantitative polymerase chain reaction, as were Guthrie cards with dried blood spots from healthy newborns and from normal and SCID-like controls. The first features suggestive of SCID presented at age 3.1 +/- 2.4 months in all patients. Yet, the diagnosis was made 4.1 +/- 2.9 months later. Their TREC were undetectable or significantly low at their clinical diagnosis and in their originally stored Guthrie cards, irrespective of the amount of their circulating T cells. KREC were undetectable in six SCID patients who displayed B cell lymphopenia in addition to T cell lymphopenia. KREC were also undetectable in one patient with pure B cell immunodeficiency. TREC and KREC quantification are useful screening tests for severe T and B cell immunodeficiency. Implementation of these tests is highly important especially in countries such as Israel where a high frequency of consanguinity is known to exist.

  10. Analysis of predicted B and T-cell epitopes in Der p 23, allergen from Dermatophagoides pteronyssinus.

    PubMed

    Fanuel, Songwe; Tabesh, Saeideh; Sadroddiny, Esmaeil; Kardar, Gholam Ali

    2017-01-01

    House dust mite (HDM) allergy is the leading cause of IgE-mediated hypersensitivity. Therefore identifying potential epitopes in the Dermatophagoide pteronyssinus 23 (Der p 23), a major house dust mite allergen will aid in the development of therapeutic vaccines and diagnostic kits for HDM allergy. Experimental methods of epitope discovery have been widely exploited for the mapping of potential allergens. This study sought to use immunoinformatic methods to analyze the structure of Der p 23 for potential immunoreactive B and T-cell epitopes that could be useful for AIT and allergy diagnosis. We retrieved a Der p 23 allergen sequence from Genbank database and then analyzed it using a combination of web-based sequence analysis tools including the Immune Epitope Database (IEDB), Protparam, BCPREDS, ABCpred, BepiPred, Bcepred among others to predict the physiochemical properties and epitope spectra of the Der p 23 allergen. We then built 3D models of the predicted B-cell epitopes, T cell epitopes and Der p 23 for sequence structure homology analysis. Our results identified peptides 'TRWNEDE', 'TVHPTTTEQPDDK', and 'NDDDPTT' as immunogenic linear B-cell epitopes while 'CPSRFGYFADPKDPH' and 'CPGNTRWNEDEETCT' were found to be the most suitable T-cell epitopes that interacted well with a large number of MHC II alleles. Both epitopes had high population coverage as well as showing a 100% conservancy. These five Der p 23 epitopes are useful for AIT vaccines and HDM allergy diagnosis development.

  11. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    PubMed

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions.

  12. Progression of an orbital T-cell rich B-cell lymphoma to a B-cell lymphoma in a dog.

    PubMed

    Aquino, S M; Hamor, R E; Valli, V E; Kitchell, B E; Tunev, S S; Bailey, K L; Ehrhart, E J

    2000-09-01

    An 11-year-old Shetland Sheepdog was presented for exophthalmos caused by a locally extensive, poorly defined mass located behind the right eye. The primary orbital mass was identified by light microscopy and immunohistochemistry as a T-cell rich B-cell lymphoma (TCRBCL) composed predominantly of BLA.36-positive large neoplastic lymphoid cells admixed with fewer CD3- and CD79a-positive small lymphocytes. The dog was treated for lymphoma, but 6 months after presentation it was euthanatized for suspected hepatic and gastrointestinal metastasis. Gross findings revealed an enlarged liver with multiple well-demarcated, randomly distributed 0.1-1.5-cm white nodules, five firm white submucosal jejunal nodules, and ileocecal, mediastinal, and hilar lymphadenopathy. Metastatic liver lesions consisted of sheets of monomorphic large neoplastic lymphoid cells that effaced and expanded portal and centrilobular zones. These cells were morphologically similar to the large neoplastic cells of the original orbital tumor and were CD3-negative and variably BLA.36-positive, consistent with B-cell lineage. Similar cells comprised the jejunal nodules and effaced the lymph nodes. The progression of TCRBCL to a diffuse B-cell lymphoma in this case is consistent with reported human cases and has not been previously reported in the dog.

  13. Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-kappa B.

    PubMed

    Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H

    1990-11-01

    Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia.

  14. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development

    PubMed Central

    Inlay, Matthew A.; Bhattacharya, Deepta; Sahoo, Debashis; Serwold, Thomas; Seita, Jun; Karsunky, Holger; Plevritis, Sylvia K.; Dill, David L.; Weissman, Irving L.

    2009-01-01

    Common lymphoid progenitors (CLPs) clonally produce both B- and T-cell lineages, but have little myeloid potential in vivo. However, some studies claim that the upstream lymphoid-primed multipotent progenitor (LMPP) is the thymic seeding population, and suggest that CLPs are primarily B-cell-restricted. To identify surface proteins that distinguish functional CLPs from B-cell progenitors, we used a new computational method of Mining Developmentally Regulated Genes (MiDReG). We identified Ly6d, which divides CLPs into two distinct populations: one that retains full in vivo lymphoid potential and produces more thymocytes at early timepoints than LMPP, and another that behaves essentially as a B-cell progenitor. PMID:19833765

  15. K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis.

    PubMed

    Singh, Karnail; Deshpande, Pratima; Li, Guangjin; Yu, Mingcan; Pryshchep, Sergey; Cavanagh, Mary; Weyand, Cornelia M; Goronzy, Jörg J

    2012-06-19

    Autoantibodies to common autoantigens and neoantigens, such as IgG Fc and citrullinated peptides, are immunological hallmarks of rheumatoid arthritis (RA). We examined whether a failure in maintaining tolerance is mediated by defects in T-cell receptor activation threshold settings. RA T cells responded to stimulation with significantly higher ERK phosphorylation (P < 0.001). Gene expression arrays of ERK pathway members suggested a higher expression of KRAS and BRAF, which was confirmed by quantitative PCR (P = 0.003), Western blot, and flow cytometry (P < 0.01). Partial silencing of KRAS and BRAF lowered activation-induced phosphorylated ERK levels (P < 0.01). In individual cells, levels of these signaling molecules correlated with ERK phosphorylation, attesting that their concentrations are functionally important. In confocal studies, B-RAF/K-RAS clustering was increased in RA T cells 2 min after T-cell receptor stimulation (P < 0.001). Overexpression of B-RAF and K-RAS in normal CD4 T cells amplified polyclonal T-cell proliferation and facilitated responses to citrullinated peptides. We propose that increased expression of B-RAF and K-RAS lowers T-cell activation thresholds in RA T cells, enabling responses to autoantigens.

  16. Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans

    PubMed Central

    Flynn, Ryan; Du, Jing; Veenstra, Rachelle G.; Reichenbach, Dawn K.; Panoskaltsis-Mortari, Angela; Taylor, Patricia A.; Freeman, Gordon J.; Serody, Jonathan S.; Murphy, William J.; Munn, David H.; Sarantopoulos, Stefanie; Luznik, Leo; Maillard, Ivan; Koreth, John; Cutler, Corey; Soiffer, Robert J.; Antin, Joseph H.; Ritz, Jerome; Dubovsky, Jason A.; Byrd, John C.; MacDonald, Kelli P.; Hill, Geoff R.; Blazar, Bruce R.

    2014-01-01

    Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Having shown that germinal center (GC) formation and immunoglobulin deposition are required for multiorgan system cGVHD and associated bronchiolitis obliterans syndrome (BOS) in a murine model, we hypothesized that T follicular helper (Tfh) cells are necessary for cGVHD by supporting GC formation and maintenance. We show that increased frequency of Tfh cells correlated with increased GC B cells, cGVHD, and BOS. Although administering a highly depletionary anti-CD20 monoclonal antibody (mAb) to mice with established cGVHD resulted in peripheral B-cell depletion, B cells remained in the lung, and BOS was not reversed. BOS could be treated by eliminating production of interleukin-21 (IL-21) by donor T cells or IL-21 receptor (IL-21R) signaling of donor B cells. Development of BOS was dependent upon T cells expressing the chemokine receptor CXCR5 to facilitate T-cell trafficking to secondary lymphoid organ follicles. Blocking mAbs for IL-21/IL-21R, inducible T-cell costimulator (ICOS)/ICOS ligand, and CD40L/CD40 hindered GC formation and cGVHD. These data provide novel insights into cGVHD pathogenesis, indicate a role for Tfh cells in these processes, and suggest a new line of therapy using mAbs targeting Tfh cells to reverse cGVHD. PMID:24820310

  17. HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation

    PubMed Central

    Percher, Florent; Curis, Céline; Pérès, Eléonore; Artesi, Maria; Rosewick, Nicolas; Jeannin, Patricia; Gessain, Antoine; Gout, Olivier; Mahieux, Renaud; Ceccaldi, Pierre-Emmanuel; Van den Broeke, Anne; Duc Dodon, Madeleine; Afonso, Philippe V.

    2017-01-01

    The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo. PMID:28639618

  18. B Cell-Intrinsic IDO1 Regulates Humoral Immunity to T Cell-Independent Antigens.

    PubMed

    Shinde, Rahul; Shimoda, Michiko; Chaudhary, Kapil; Liu, Haiyun; Mohamed, Eslam; Bradley, Jillian; Kandala, Sridhar; Li, Xia; Liu, Kebin; McGaha, Tracy L

    2015-09-01

    Humoral responses to nonproteinaceous Ags (i.e., T cell independent [TI]) are a key component of the early response to bacterial and viral infection and a critical driver of systemic autoimmunity. However, mechanisms that regulate TI humoral immunity are poorly defined. In this study, we report that B cell-intrinsic induction of the tryptophan-catabolizing enzyme IDO1 is a key mechanism limiting TI Ab responses. When Ido1(-/-) mice were immunized with TI Ags, there was a significant increase in Ab titers and formation of extrafollicular Ab-secreting cells compared with controls. This effect was specific to TI Ags, as Ido1 disruption did not affect Ig production after immunization with protein Ags. The effect of IDO1 abrogation was confined to the B cell compartment, as adoptive transfer of Ido1(-/-) B cells to B cell-deficient mice was sufficient to replicate increased TI responses observed in Ido1(-/-) mice. Moreover, in vitro activation with TLR ligands or BCR crosslinking rapidly induced Ido1 expression and activity in purified B cells, and Ido1(-/-) B cells displayed enhanced proliferation and cell survival associated with increased Ig and cytokine production compared with wild-type B cells. Thus, our results demonstrate a novel, B cell-intrinsic, role for IDO1 as a regulator of humoral immunity that has implications for both vaccine design and prevention of autoimmunity. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    PubMed

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  20. Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine

    PubMed Central

    Fuery, Angela; Richmond, Peter C.; Currie, Andrew J.

    2015-01-01

    Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men) C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT) carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA) assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months) were significantly associated with post-boost (13 months) SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months) and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12. Conclusion: Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming. PMID:26191794

  1. T-cell receptor signaling activates an ITK/NF-κB/GATA-3 axis in T-cell lymphomas facilitating resistance to chemotherapy

    PubMed Central

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C.; Lim, Megan S.; Bailey, Nathanael G.; Wilcox, Ryan A.

    2016-01-01

    Purpose T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T-cell specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR’s role in mediating resistance to chemotherapy. Experimental Design Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following T-cell receptor (TCR) engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results Here we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3, and promotes chemotherapy resistance. Conclusions These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented activation of this signaling axis and overcame chemotherapy resistance. PMID:27780854

  2. CXCR5+CD8+ T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma.

    PubMed

    Tang, Jiahong; Zha, Jie; Guo, Xutao; Shi, Pengcheng; Xu, Bing

    2017-09-01

    Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8 + T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5 + CD8 + T cell is a novel cell subtype and share CXCR5 expression with CD19 + tumor cells. In this study, we investigated the frequency and function of existing CXCR5 + CD8 + T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5 + CD8 + T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8 + T cells as effector (E) cells and autologous CD19 + tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5 + CD8 + T cell- and CXCR5 - CD8 + T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5 + CD8 + T cells presented stronger cytotoxicity than CXCR5 - CD8 + T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5 + CD8 + T cells than in CXCR5 - CD8 + T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5 + CD8 + T cells were significantly elevated. Together, these results suggest that CXCR5 + CD8 + T cells are potential candidates of CD8 + T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression. Copyright © 2017. Published by Elsevier B.V.

  3. Memory CD4+ T cells: beyond “helper” functions

    PubMed Central

    Boonnak, Kobporn; Subbarao, Kanta

    2012-01-01

    In influenza virus infection, antibodies, memory CD8+ T cells, and CD4+ T cells have all been shown to mediate immune protection, but how they operate and interact with one another to mediate efficient immune responses against virus infection is not well understood. In this issue of the JCI, McKinstry et al. have identified unique functions of memory CD4+ T cells beyond providing “help” for B cell and CD8+ T cell responses during influenza virus infection. PMID:22820285

  4. Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-kappa B.

    PubMed Central

    Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H

    1990-01-01

    Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia. Images PMID:1976820

  5. B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma.

    PubMed

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, A K M G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-10-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.

  6. The pan-ErbB tyrosine kinase inhibitor canertinib induces caspase-mediated cell death in human T-cell leukemia (Jurkat) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinks, Cecilia, E-mail: Cecilia.trinks@liu.se; Severinsson, Emelie A., E-mail: Emelie.severinsson@liu.se; Holmlund, Birgitta, E-mail: Birgitta.holmlund@lio.se

    2011-07-08

    Highlights: {yields} Canertinib induces caspase-mediated apoptosis in T-cell leukemia cells in vitro. {yields} Canertinib mediates activation of the intrinsic apoptotic pathway. {yields} Canertinib induces apoptosis in an ErbB receptor independent manner. {yields} Lymphocyte specific proteins as well as survival kinases are inhibited. {yields} Canertinib may act as a multi-kinase inhibiting drug in human T-cell malignancies. -- Abstract: Canertinib is a novel ErbB-receptor inhibitor currently in clinical development for the treatment of solid tumors overexpressing ErbB-receptors. We have recently demonstrated that canertinib displays anti-proliferative and pro-apoptotic effects in human myeloid leukemia cells devoid of ErbB-receptors. The mechanism mediating these effects aremore » however unknown. In this study, we show that canertinib is able to act as a multi-kinase inhibitor by inhibition of several intracellular kinases involved in T-cell signaling such as Akt, Erk1/2 and Zap-70, and reduced Lck protein expression in the human T-cell leukemia cell line Jurkat. Treatment with canertinib at a concentration of 2 {mu}M caused accumulation of Jurkat cells in the G{sub 1} cell cycle phase and increased doses induced apoptosis in a time-dependent manner. Apoptotic signs of treated cells were detected by Annexin V staining and cleavage of PARP, caspase-3, -8, -9, -10 and Bid. A subset of the pro-apoptotic signals mediated by canertinib could be significantly reduced by specific caspase inhibitors. Taken together, these results demonstrate the dual ability of canertinib to downregulate important signaling pathways and to activate caspase-mediated intrinsic apoptosis pathway in human T-cell leukemia cells.« less

  7. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.

    PubMed

    Pappritz, Kathleen; Savvatis, Konstantinos; Miteva, Kapka; Kerim, Bahtiyar; Dong, Fengquan; Fechner, Henry; Müller, Irene; Brandt, Christine; Lopez, Begoña; González, Arantxa; Ravassa, Susana; Klingel, Karin; Diez, Javier; Reinke, Petra; Volk, Hans-Dieter; Van Linthout, Sophie; Tschöpe, Carsten

    2018-06-04

    Regulatory T (T reg ) cells offer new therapeutic options for controlling undesired systemic and local immune responses. The aim of the current study was to determine the impact of therapeutic T reg administration on systemic and cardiac inflammation and remodeling in coxsackievirus B3 (CVB3) -induced myocarditis. Therefore, syngeneic T reg cells were applied intravenously in CVB3-infected mice 3 d after infection. Compared with CVB3 + PBS mice, CVB3 + T reg mice exhibited lower left ventricular (LV) chemokine expression, accompanied by reduced cardiac presence of proinflammatory Ly6C high CCR2 high Cx3Cr1 low monocytes and higher retention of proinflammatory Ly6C mid CCR2 high Cx3Cr1 low monocytes in the spleen. In addition, splenic myelopoiesis was reduced in CVB3 + T reg compared with CVB3 + PBS mice. Coculture of T reg cells with splenocytes isolated from mice 3 d post-CVB3 infection further demonstrated the ability of T reg cells to modulate monocyte differentiation in favor of the anti-inflammatory Ly6C low CCR2 low Cx3Cr1 high subset. T reg -mediated immunomodulation was paralleled by lower collagen 1 protein expression and decreased levels of soluble and insoluble collagen in LV of CVB3 + T reg compared with CVB3 + PBS mice. In agreement with these findings, LV systolic and diastolic function was improved in CVB3 + T reg mice compared with CVB3 + PBS mice. In summary, adoptive T reg transfer in the inflammatory phase of viral-induced myocarditis protects the heart against inflammatory damage and fibrosis via modulation of monocyte subsets.-Pappritz, K., Savvatis, K., Miteva, K., Kerim, B., Dong, F., Fechner, H., Müller, I., Brandt, C., Lopez, B., González, A., Ravassa, S., Klingel, K., Diez, J., Reinke, P., Volk, H.-D., Van Linthout, S., Tschöpe, C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.

  8. B and T Cell Epitope-Based Peptides Predicted from Evolutionarily Conserved and Whole Protein Sequences of Ebola Virus as Vaccine Targets.

    PubMed

    Yasmin, T; Nabi, A H M Nurun

    2016-05-01

    Ebola virus (EBV) has become a serious threat to public health. Different approaches were applied to predict continuous and discontinuous B cell epitopes as well as T cell epitopes from the sequence-based and available three-dimensional structural analyses of each protein of EBV. Peptides '(79) VPSATKRWGFRSGVPP(94) ' from GP1 and '(515) LHYWTTQDEGAAIGLA(530) ' from GP2 of Ebola were found to be the consensus peptidic sequences predicted as linear B cell epitope of which the latter contains a region (519) TTQDEG(524) that fulfilled all the criteria of accessibility, hydrophilicity, flexibility and beta turn region for becoming an ideal B cell epitope. Different nonamers as T cell epitopes were obtained that interacted with different numbers of MHC class I and class II alleles with a binding affinity of <100 nm. Interestingly, these alleles also bound to the MHC class I alleles mostly prevalent in African and South Asian regions. Of these, 'LANETTQAL' and 'FLYDRLAST' nonamers were predicted to be the most potent T cell epitopes and they, respectively, interacted with eight and twelve class I alleles that covered 63.79% and 54.16% of world population, respectively. These nonamers were found to be the core sequences of 15mer peptides that interacted with the most common class II allele, HLA-DRB1*01:01. They were further validated for their binding to specific class I alleles using docking technique. Thus, these predicted epitopes may be used as vaccine targets against EBV and can be validated in model hosts to verify their efficacy as vaccine. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  9. Mechanisms of B cell activation in patients with acquired immunodeficiency syndrome and related disorders. Contribution of antibody-producing B cells, of Epstein-Barr virus-infected B cells, and of immunoglobulin production induced by human T cell lymphotropic virus, type III/lymphadenopathy-associated virus.

    PubMed Central

    Yarchoan, R; Redfield, R R; Broder, S

    1986-01-01

    Patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex (ARC) have hyperimmunoglobulinemia and increased numbers of circulating immunoglobulin-secreting cells. In this paper, we studied the basis for this B cell hyperactivity. Limiting dilution studies of B cells from seven patients with ARC and four with AIDS revealed that some B cells spontaneously produced antibodies to human T cell lymphotropic virus, type III/lymphadenopathy-associated virus (HTLV-III/LAV) (39:10(6) and 7:10(6) B cells, respectively), suggesting that chronic antigenic stimulation by HTLV-III/LAV was one contributing factor. The patients also had an increased number of spontaneously outgrowing B cells than did normals (6:10(6) vs. less than 2:10(6) B cells), suggesting that they had an increased number of Epstein-Barr virus (EBV)-infected B cells. However, fewer B cells from patients were immortalized by exogenously added EBV than were B cells from normals. In additional studies, HTLV-III/LAV induced immunoglobulin secretion (mean 2,860 ng/ml) by peripheral blood mononuclear cells from normals; this HTLV-III/LAV-induced immunoglobulin secretion required the presence of both B and T cells. Thus, antigenic stimulation by HTLV-III/LAV, increased numbers of EBV-infected B cells, and HTLV-III/LAV-induced T cell-dependent B cell activation all contribute to the B cell hyperactivity in patients with HTLV-III/LAV disease. PMID:3016028

  10. Mouse Cytotoxic T Cell-derived Granzyme B Activates the Mitochondrial Cell Death Pathway in a Bim-dependent Fashion*

    PubMed Central

    Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián

    2015-01-01

    Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735

  11. BCL11B is frequently downregulated in HTLV-1-infected T-cells through Tax-mediated proteasomal degradation.

    PubMed

    Permatasari, Happy Kurnia; Nakahata, Shingo; Ichikawa, Tomonaga; Morishita, Kazuhiro

    2017-08-26

    Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia-lymphoma (ATLL). The HTLV-1-encoded protein Tax plays important roles in the proliferation of HTLV-1-infected T-cells by affecting cellular proteins. In this study, we showed that Tax transcriptionally and post-transcriptionally downregulates the expression of the tumor suppressor gene B-cell leukemia/lymphoma 11B (BCL11B), which encodes a lymphoid-related transcription factor. BCL11B expression was downregulated in HTLV-1-infected T-cell lines at the mRNA and protein levels, and forced expression of BCL11B suppressed the proliferation of these cells. The proteasomal inhibitor MG132 increased BCL11B expression in HTLV-1-infected cell lines, and colocalization of Tax with BCL11B was detected in the cytoplasm of HTLV-1-infected T-cells following MG132 treatment. shRNA knock-down of Tax expression also increased the expression of BCL11B in HTLV-1-infected cells. Moreover, we found that Tax physically binds to BCL11B protein and induces the polyubiquitination of BCL11B and proteasome-dependent degradation of BCL11B. Thus, inactivation of BCL11B by Tax protein may play an important role in the Tax-mediated leukemogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Interconnected subsets of memory follicular helper T cells have different effector functions.

    PubMed

    Asrir, Assia; Aloulou, Meryem; Gador, Mylène; Pérals, Corine; Fazilleau, Nicolas

    2017-10-10

    Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.

  13. A dynamic T cell–limited checkpoint regulates affinity-dependent B cell entry into the germinal center

    PubMed Central

    Schwickert, Tanja A.; Victora, Gabriel D.; Fooksman, David R.; Kamphorst, Alice O.; Mugnier, Monica R.; Gitlin, Alexander D.; Dustin, Michael L.

    2011-01-01

    The germinal center (GC) reaction is essential for the generation of the somatically hypermutated, high-affinity antibodies that mediate adaptive immunity. Entry into the GC is limited to a small number of B cell clones; however, the process by which this limited number of clones is selected is unclear. In this study, we demonstrate that low-affinity B cells intrinsically capable of seeding a GC reaction fail to expand and become activated in the presence of higher-affinity B cells even before GC coalescence. Live multiphoton imaging shows that selection is based on the amount of peptide–major histocompatibility complex (pMHC) presented to cognate T cells within clusters of responding B and T cells at the T–B border. We propose a model in which T cell help is restricted to the B cells with the highest amounts of pMHC, thus allowing for a dynamic affinity threshold to be imposed on antigen-binding B cells. PMID:21576382

  14. B cells flying solo.

    PubMed

    Groom, Joanna; Mackay, Fabienne

    2008-01-01

    Systemic autoimmunity such as systemic lupus erythematosus (SLE) is associated with the loss of B-cell tolerance, B-cell dysregulation and autoantibody production. While some autoantibodies may contribute to the pathology seen with SLE, numerous studies have shown that dysregulation of T-cell function is another critical aspect driving disease. The positive results obtained in clinical trials using T-cell- or B-cell-specific treatments have suggested that cooperation between T and B cells probably underlies disease progression in many patients. A similar cooperative mechanism seemed to explain SLE developing in mice overexpressing the B-cell-activating factor from the tumor necrosis factor family (BAFF). However, surprisingly, T-cell-deficient BAFF transgenic (Tg) mice develop SLE similar to T-cell-sufficient BAFF Tg mice, and the disease was linked to innate activation of B cells and production of proinflammatory autoantibody isotypes. In conclusion, dysregulated innate activation of B cells alone can drive disease independently of T cells, and as such this aspect represents a new pathogenic mechanism in autoimmunity.

  15. Circulating CXCR5+CD4+ T Follicular-Like Helper Cell and Memory B Cell Responses to Human Papillomavirus Vaccines

    PubMed Central

    Matsui, Ken; Adelsberger, Joseph W.; Kemp, Troy J.; Baseler, Michael W.; Ledgerwood, Julie E.; Pinto, Ligia A.

    2015-01-01

    Through the interaction of T follicular helper (Tfh) cells and B cells, efficacious vaccines can generate high-affinity, pathogen-neutralizing antibodies, and memory B cells. Using CXCR5, CXCR3, CCR6, CCR7, PD1, and ICOS as markers, Tfh-like cells can be identified in the circulation and be classified into three functionally distinct subsets that are PD1+ICOS+, PD1+ ICOS-, or PD1-ICOS-. We used these markers to identify different subsets of CXCR5+CD4+ Tfh-like cells in response to highly immunogenic and efficacious vaccines for human papillomaviruses (HPV): Cervarix and Gardasil. In this small study, we used PBMC samples from 11 Gardasil recipients, and 8 Cervarix recipients from the Vaccine Research Center 902 Study to examine the induction of circulating Tfh-like cells and IgD-CD38HiCD27+ memory B cells by flow cytometry. PD1+ICOS+ CXCR3+CCR6-CXCR5+CD4+ (Tfh1-like) cells were induced and peaked on Day (D) 7 post-first vaccination, but not as much on D7 post-third vaccination. We also observed a trend toward increase in PD1+ICOS+ CXCR3-CCR6-CXCR5+CD4+ (Tfh2-like) cells for both vaccines, and PD1+ICOS+ CXCR3-CCR6+CXCR5+CD4+ (Tfh17-like) subset was induced by Cervarix post-first vaccination. There were also minimal changes in the other cellular subsets. In addition, Cervarix recipients had more memory B cells post-first vaccination than did Gardasil recipients at D14 and D30. We found frequencies of memory B cells at D30 correlated with anti-HPV16 and 18 antibody titers from D30, and the induction levels of memory B cells at D30 and PD1+ICOS+Tfh1-like cells at D7 post-first vaccination correlated for Cervarix. Our study showed that induction of circulating CXCR5+CD4+ Tfh-like subsets can be detected following immunization with HPV vaccines, and potentially be useful as a marker of immunogenicity of vaccines. However, further investigations should be extended to different cohorts with larger sample size to better understand the functions of these T cells, as well as

  16. [Regulatory B cells activated by CpG-ODN combined with anti-CD40 monoclonal antibody inhibit CD4(+)T cell proliferation].

    PubMed

    Wang, Keng; Tao, Lei; Su, Jianbing; Zhang, Yueyang; Zou, Binhua; Wang, Yiyuan; Li, Xiaojuan

    2016-09-01

    Objective To observe the immunosuppressive function of regulatory B cells (Bregs) in vitro after activated by CpG oligodeoxynucleotide (CpG-ODN) and anti-CD40 mAb. Methods Mice splenic CD5(+)CD1d(high)B cells and CD5(-)CD1d(low)B cells were sorted by flow cytometry. These B cells were first stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours, and then co-cultured with purified CD4(+)T cells. The interleukin 10 (IL-10) expression in the activated Bregs and other B cell subset, as well as the proliferation and interferon γ (IFN-γ) expression in the CD4(+) T cells activated by anti-CD3 mAb plus anti-CD28 mAb were determined by flow cytometry. Results CD5(+)CD1d(high) B cells activated by CpG-ODN plus anti-CD40 mAb blocked the up-regulated CD4(+)T proliferation and significantly reduced the IFN-γ level. At the same time, activated CD5(-)CD1d(low)B cells showed no inhibitory effect on CD4(+)T cells. Further study revealed that IL-10 expression in the CD5(+)CD1d(high) B cells were much higher than that in the CD5(-)CD1d(low)B cells after stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours. Conclusion CD5(+)CD1d(high) B cells activated by CpG-ODN combined with anti-CD40 mAb have immune inhibitory effects on CD4(+)T cell activation in vitro , which possibly due to IL-10 secretion.

  17. The ubiquitin ligase Cbl-b limits Pseudomonas aeruginosa exotoxin T-mediated virulence.

    PubMed

    Balachandran, Priya; Dragone, Leonard; Garrity-Ryan, Lynne; Lemus, Armando; Weiss, Arthur; Engel, Joanne

    2007-02-01

    Pseudomonas aeruginosa, an important cause of opportunistic infections in humans, delivers bacterial cytotoxins by type III secretion directly into the host cell cytoplasm, resulting in disruption of host cell signaling and host innate immunity. However, little is known about the fate of the toxins themselves following injection into the host cytosol. Here, we show by both in vitro and in vivo studies that the host ubiquitin ligase Cbl-b interacts with the type III-secreted effector exotoxin T (ExoT) and plays a key role in vivo in limiting bacterial dissemination mediated by ExoT. We demonstrate that, following polyubiquitination, ExoT undergoes regulated proteasomal degradation in the host cell cytosol. ExoT interacts with the E3 ubiquitin ligase Cbl-b and Crk, the substrate for the ExoT ADP ribosyltransferase (ADPRT) domain. The efficiency of degradation is dependent upon the activity of the ADPRT domain. In mouse models of acute pneumonia and systemic infection, Cbl-b is specifically required to limit the dissemination of ExoT-producing bacteria whereas c-Cbl plays no detectable role. To the best of our knowledge, this represents the first identification of a mammalian gene product that is specifically required for in vivo resistance to disease mediated by a type III-secreted effector.

  18. Defective B cell response to T-dependent immunization in lupus-prone mice

    PubMed Central

    Niu, Haitao; Sobel, Eric S.; Morel, Laurence

    2009-01-01

    Lupus anti-nuclear Abs show the characteristics of Ag-driven T cell-dependent (TD) humoral responses. If autoAgs elicit the same response as exogenous Ags, lupus should enhance humoral responses to immunization. Blunted responses to various immunizations have, however, been reported in a significant portion of lupus patients. In this study, we show that lupus-prone B6.Sle1.Sle2.Sle3 (B6.TC) mice produce significantly less Ab in response to TD immunization than congenic controls, while producing significantly more total Ig. This blunted Ab response to TD Ag could be reconstituted with B6.TC B and CD4+ T cells. Multiple defects were found in the B6.TC response to NP-KLH as compared to total Ig, including a smaller percentage of B cells participating to the NP-response, a reduced entry into germinal centers, and highly defective production of NP-specific long-lived plasma cells in the bone marrow. B6.TC plasma cells expressed reduced levels of FcγRIIb, which suggests that reduced apoptosis in resident plasma cells prevents the establishment of newly-formed NP-specific plasma cells in bone marrow niches. Overall, these results show that lupus-prone mice responded differently to auto- and exogenous antigens and suggest that low FcγRIIb, hypergammaglobulinemia and high autoantibody production would be predictive of a poor response to immunization in lupus patients. PMID:18924209

  19. CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients

    PubMed Central

    Turtle, Cameron J.; Hanafi, Laïla-Aïcha; Berger, Carolina; Gooley, Theodore A.; Cherian, Sindhu; Hudecek, Michael; Sommermeyer, Daniel; Melville, Katherine; Pender, Barbara; Budiarto, Tanya M.; Robinson, Emily; Steevens, Natalia N.; Chaney, Colette; Soma, Lorinda; Chen, Xueyan; Li, Daniel; Cao, Jianhong; Heimfeld, Shelly; Jensen, Michael C.; Riddell, Stanley R.; Maloney, David G.

    2016-01-01

    BACKGROUND. T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR–T cell products were prepared from unselected T cells. METHODS. We conducted a clinical trial to evaluate CD19 CAR–T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy. RESULTS. The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry. We established that high CAR–T cell doses and tumor burden increase the risks of severe cytokine release syndrome and neurotoxicity. Moreover, we identified serum biomarkers that allow testing of early intervention strategies in patients at the highest risk of toxicity. Risk-stratified CAR–T cell dosing based on BM disease burden decreased toxicity. CD8+ T cell–mediated anti-CAR transgene product immune responses developed after CAR–T cell infusion in some patients, limited CAR–T cell persistence, and increased relapse risk. Addition of fludarabine to the lymphodepletion regimen improved CAR–T cell persistence and disease-free survival. CONCLUSION. Immunotherapy with a CAR–T cell product of defined composition enabled identification of factors that correlated with CAR–T cell expansion, persistence, and toxicity and facilitated design of lymphodepletion and CAR–T cell dosing strategies that mitigated toxicity and improved disease-free survival. TRIAL REGISTRATION. ClinicalTrials.gov NCT01865617. FUNDING. R01-CA136551; Life Science Development Fund; Juno Therapeutics; Bezos Family Foundation. PMID:27111235

  20. Proteins that interact with calgranulin B in the human colon cancer cell line HCT-116.

    PubMed

    Myung, Jae Kyung; Yeo, Seung-Gu; Kim, Kyung Hee; Baek, Kwang-Soo; Shin, Daye; Kim, Jong Heon; Cho, Jae Youl; Yoo, Byong Chul

    2017-01-24

    Calgranulin B is released from immune cells and can be internalized into colon cancer cells to prevent proliferation. The present study aimed to identify proteins that interact with calgranulin B to suppress the proliferation of colon cancer cells, and to obtain information on the underlying anti-tumor mechanism(s) of calgranulin B. Calgranulin B expression was induced in colon cancer cell line HCT-116 by infection with calgranulin B-FLAG expressing lentivirus, and it led to a significant suppression of cell proliferation. Proteins that interacted with calgranulin B were obtained by immunoprecipitation using whole homogenate of lentivirus-infected HCT-116 cells which expressing calgranulin B-FLAG, and identified using liquid chromatography-mass spectrometry/mass spectrometry analysis. A total of 454 proteins were identified that potentially interact with calgranulin B, and most identified proteins were associated with RNA processing, post-transcriptional modifications and the EIF2 signaling pathway. Direct interaction of calgranulin B with flotillin-1, dynein intermediate chain 1, and CD59 glycoprotein has been confirmed, and the molecules N-myc proto-oncogene protein, rapamycin-insensitive companion of mTOR, and myc proto-oncogene protein were shown to regulate calgranulin B-interacting proteins. Our results provide new insight and useful information to explain the possible mechanism(s) underlying the role of calgranulin B as an anti-tumor effector in colon cancer cells.

  1. Adoptive immunotherapy utilizing anti-CD19 chimeric antigen receptor T-cells for B-cell malignancies.

    PubMed

    Oh, Iekuni; Oh, Yukiko; Ohmine, Ken

    2016-01-01

    Genetically modified T-cells with forced expression of anti-CD19 chimeric antigen receptor (CD19 CAR) have demonstrated promising clinical results for relapsed and refractory B cell malignancies in early clinical trial settings. The first beneficial tumor regressions were identified among approximately half of CLL patients in 2011. Similarly, CD19 CAR T-cells achieved remissions in about 80% of aggressive B-cell lymphomas in 2012. Furthermore, in 2013 this cellular therapy showed an extremely high rate of efficacy against refractory CD19 positive acute lymphoid leukemia, which had been regarded as the most difficult to treat hematologic disease. Recently, despite the absence of CD19 expression by neoplastic plasma cells, patients with refractory multiple myeloma achieved stringent complete remission after this therapy coupled with high dose chemotherapy and autologous stem cell transplantation. However, there are significant toxicities. Cytokine releasing syndrome and neurotoxicity are recognized as life-threatening adverse events. Although phase I/II clinical trials have just started in Japan, given the exciting results obtained to date, this cellular therapy is expected to be a novel breakthrough immunotherapy for treating refractory B-cell malignancies.

  2. cAMP is an essential signal in the induction of antibody production by B cells but inhibits helper function of T cells.

    PubMed

    Gilbert, K M; Hoffmann, M K

    1985-09-01

    Dibutyryl cAMP and IL 1 were found to stimulate antigen-specific and polyclonal antibody production when added together to cultures of highly purified B cells. We propose that IL 1 and an elevation in cytoplasmic cAMP represent minimal signal requirements for B cell activation. In contrast to its effect on B cells, dibutyryl cAMP inhibited helper T cell activity. Cyclic AMP suppressed the production of IL 2 and T cell replacing factor (TRF) by T cells and thus abrogated the ability of helper T cells to enhance SRBC-specific antibody production by B cells. Cyclic AMP did not inhibit the generation by T cells of B cell growth factor (BCGF). BCGF, not normally detected in Con A supernatant, was found in the culture supernatant of spleen cells that were stimulated with Con A in the presence of cAMP. Our findings indicate that cAMP blocks the production of an inhibitor of BCGF activity. cAMP had no effect on the production by macrophages of IL 1.

  3. Involvement and prognosis value of CD8(+) T cells in giant cell arteritis.

    PubMed

    Samson, Maxime; Ly, Kim Heang; Tournier, Benjamin; Janikashvili, Nona; Trad, Malika; Ciudad, Marion; Gautheron, Alexandrine; Devilliers, Hervé; Quipourt, Valérie; Maurier, François; Meaux-Ruault, Nadine; Magy-Bertrand, Nadine; Manckoundia, Patrick; Ornetti, Paul; Maillefert, Jean-Francis; Besancenot, Jean-François; Ferrand, Christophe; Mesturoux, Laura; Labrousse, François; Fauchais, Anne-Laure; Saas, Philippe; Martin, Laurent; Audia, Sylvain; Bonnotte, Bernard

    2016-08-01

    CD8(+) T cells participate in the pathogenesis of some vasculitides. However, little is known about their role in Giant Cell Arteritis (GCA). This study was conducted to investigate CD8(+) T cell involvement in the pathogenesis of GCA. Analyses were performed at diagnosis and after 3 months of glucocorticoid treatment in 34 GCA patients and 26 age-matched healthy volunteers. Percentages of CD8(+) T-cell subsets, spectratype analysis of the TCR Vβ families of CD8(+) T cells, levels of cytokines and chemokines and immunohistochemistry of temporal artery biopsies (TAB) were assessed. Among total CD8(+) T cells, percentages of circulating cytotoxic CD8 T lymphocytes (CTL, CD3(+)CD8(+)perforin(+)granzymeB(+)), Tc17 (CD3(+)CD8(+)IL-17(+)), CD63(+)CD8(+) T cells and levels of soluble granzymes A and B were higher in patients than in controls, whereas the percentage of Tc1 cells (CD3(+)CD8(+)IFN-γ(+)) was similar. Moreover, CD8(+) T cells displayed a restricted TCR repertoire in GCA patients. Percentages of circulating CTL, Tc17 and soluble levels of granzymes A and B decreased after treatment. CXCR3 expression on CD8(+) T cells and its serum ligands (CXCL9, -10, -11) were higher in patients. Analyses of TAB revealed high expression of CXCL9 and -10 associated with infiltration by CXCR3(+)CD8(+) T cells expressing granzyme B and TiA1. The intensity of the CD8 T-cell infiltrate in TAB was predictive of the severity of the disease. This study demonstrates the implication and the prognostic value of CD8(+) T-cells in GCA and suggests that CD8(+) T-cells are recruited within the vascular wall through an interaction between CXCR3 and its ligands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. B cell depleting therapy regulates splenic and circulating T follicular helper cells in immune thrombocytopenia.

    PubMed

    Audia, Sylvain; Rossato, Marzia; Trad, Malika; Samson, Maxime; Santegoets, Kim; Gautheron, Alexandrine; Bekker, Cornelis; Facy, Olivier; Cheynel, Nicolas; Ortega-Deballon, Pablo; Boulin, Mathieu; Berthier, Sabine; Leguy-Seguin, Vanessa; Martin, Laurent; Ciudad, Marion; Janikashvili, Nona; Saas, Philippe; Radstake, Timothy; Bonnotte, Bernard

    2017-02-01

    B cells are involved in immune thrombocytopenia (ITP) pathophysiology by producing antiplatelet auto-antibodies. However more than a half of ITP patients do not respond to B cell depletion induced by rituximab (RTX). The persistence of splenic T follicular helper cells (TFH) that we demonstrated to be expanded during ITP and to support B cell differentiation and antiplatelet antibody-production may participate to RTX inefficiency. Whereas it is well established that the survival of TFH depends on B cells in animal models, nothing is known in humans yet. To determine the effect of B cell depletion on human TFH, we quantified B cells and TFH in the spleen and in the blood from ITP patients treated or not with RTX. We showed that B cell depletion led to a dramatic decrease in splenic TFH and in CXCL13 and IL-21, two cytokines predominantly produced by TFH. The absolute count of circulating TFH and serum CXCL13 also decreased after RTX treatment, whatever the therapeutic response. Therefore, we showed that the maintenance of TFH required B cells and that TFH are not involved in the inefficiency of RTX in ITP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Increased CD8 T-cell granzyme B in COPD is suppressed by treatment with low-dose azithromycin.

    PubMed

    Hodge, Sandra; Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N

    2015-01-01

    Corticosteroid resistance in chronic obstructive pulmonary disease (COPD) is a major challenge. We have reported increased bronchial epithelial cell apoptosis and increased airway CD8 T-cell numbers in COPD. Apoptosis can be induced via the serine protease, granzyme B. However, glucocorticosteroids fail to adequately suppress granzyme B production by CD8 T cells. We previously showed that low-dose azithromycin reduced airways inflammation in COPD subjects and we hypothesized that it would also reduce granzyme B production by CD8 T cells. We administered 250 mg azithromycin daily for 5 days then twice weekly (total 12 weeks) to 11 COPD subjects (five current smokers; six ex-smokers) and assessed granzyme B in the airway (bronchoalveolar lavage), intra-epithelial compartment and peripheral blood, collected before and following administration of azithromycin. To then dissect the effects of on CD4 and CD8 T-cell subsets, we applied an in vitro assay and physiologically relevant concentrations of azithromycin (and, for comparison, n-acetyl cysteine) and stimulation of peripheral blood mononuclear cells from five healthy subjects with CD3/CD28 T-cell expander. T-cell granzyme B production in both airway and intra-epithelial compartments was reduced in COPD patients following 12 weeks of azithromycin treatment, with no significant effect in blood. Both azithromycin and n-acetyl cysteine suppressed CD4 T-cell granzyme B production, but only azithromycin was effective at reducing CD8+ T-cell granzyme B production in vitro. We provide further evidence for the application of low-dose azithromycin as an attractive adjunct treatment option for controlling epithelial cell apoptosis, abnormal airway repair and chronic inflammation in COPD. © 2014 Asian Pacific Society of Respirology.

  6. Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis.

    PubMed

    Chen, Ching-Wen; Mittal, Rohit; Klingensmith, Nathan J; Burd, Eileen M; Terhorst, Cox; Martin, Greg S; Coopersmith, Craig M; Ford, Mandy L

    2017-09-15

    Sepsis is a leading cause of death in the United States, but the mechanisms underlying sepsis-induced immune dysregulation remain poorly understood. 2B4 (CD244, SLAM4) is a cosignaling molecule expressed predominantly on NK cells and memory CD8 + T cells that has been shown to regulate T cell function in models of viral infection and autoimmunity. In this article, we show that 2B4 signaling mediates sepsis lymphocyte dysfunction and mortality. 2B4 expression is increased on CD4 + T cells in septic animals and human patients at early time points. Importantly, genetic loss or pharmacologic inhibition of 2B4 significantly increased survival in a murine cecal ligation and puncture model. Further, CD4-specific conditional knockouts showed that 2B4 functions on CD4 + T cell populations in a cell-intrinsic manner and modulates adaptive and innate immune responses during sepsis. Our results illuminate a novel role for 2B4 coinhibitory signaling on CD4 + T cells in mediating immune dysregulation. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome.

    PubMed

    Curriu, Marta; Carrillo, Jorge; Massanella, Marta; Rigau, Josepa; Alegre, José; Puig, Jordi; Garcia-Quintana, Ana M; Castro-Marrero, Jesus; Negredo, Eugènia; Clotet, Bonaventura; Cabrera, Cecilia; Blanco, Julià

    2013-03-20

    Chronic Fatigue Syndrome (CFS) is a debilitating neuro-immune disorder of unknown etiology diagnosed by an array of clinical manifestations. Although several immunological abnormalities have been described in CFS, their heterogeneity has limited diagnostic applicability. Immunological features of CFS were screened in 22 CFS diagnosed individuals fulfilling Fukuda criteria and 30 control healthy individuals. Peripheral blood T, B and NK cell function and phenotype were analyzed by flow cytometry in both groups. CFS diagnosed individuals showed similar absolute numbers of T, B and NK cells, with minor differences in the percentage of CD4+ and CD8+ T cells. B cells showed similar subset frequencies and proliferative responses between groups. Conversely, significant differences were observed in T cell subsets. CFS individuals showed increased levels of T regulatory cells (CD25+/FOXP3+) CD4 T cells, and lower proliferative responses in vitro and in vivo. Moreover, CD8 T cells from the CFS group showed significantly lower activation and frequency of effector memory cells. No clear signs of T-cell immunosenescence were observed. NK cells from CFS individuals displayed higher expression of NKp46 and CD69 but lower expression of CD25 in all NK subsets defined. Overall, T cell and NK cell features clearly clustered CFS individuals. Our findings suggest that alterations in T-cell phenotype and proliferative response along with the specific signature of NK cell phenotype may be useful to identify CFS individuals. The striking down modulation of T cell mediated immunity may help to understand intercurrent viral infections in CFS.

  8. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome

    PubMed Central

    2013-01-01

    Background Chronic Fatigue Syndrome (CFS) is a debilitating neuro-immune disorder of unknown etiology diagnosed by an array of clinical manifestations. Although several immunological abnormalities have been described in CFS, their heterogeneity has limited diagnostic applicability. Methods Immunological features of CFS were screened in 22 CFS diagnosed individuals fulfilling Fukuda criteria and 30 control healthy individuals. Peripheral blood T, B and NK cell function and phenotype were analyzed by flow cytometry in both groups. Results CFS diagnosed individuals showed similar absolute numbers of T, B and NK cells, with minor differences in the percentage of CD4+ and CD8+ T cells. B cells showed similar subset frequencies and proliferative responses between groups. Conversely, significant differences were observed in T cell subsets. CFS individuals showed increased levels of T regulatory cells (CD25+/FOXP3+) CD4 T cells, and lower proliferative responses in vitro and in vivo. Moreover, CD8 T cells from the CFS group showed significantly lower activation and frequency of effector memory cells. No clear signs of T-cell immunosenescence were observed. NK cells from CFS individuals displayed higher expression of NKp46 and CD69 but lower expression of CD25 in all NK subsets defined. Overall, T cell and NK cell features clearly clustered CFS individuals. Conclusions Our findings suggest that alterations in T-cell phenotype and proliferative response along with the specific signature of NK cell phenotype may be useful to identify CFS individuals. The striking down modulation of T cell mediated immunity may help to understand intercurrent viral infections in CFS. PMID:23514202

  9. The role of Ia molecules in the activation of T lymphocytes. I. The activation of an IL 1-dependent IL 2-producing T cell hybridoma by Con A requires an interaction, which is not H-2-restricted, with an Ia-bearing accessory cell.

    PubMed

    Rock, K L

    1982-10-01

    A model of accessory cell-dependent lectin-mediated T cell activation was investigated by utilizing a mitogen-inducible T cell hybridoma. A continuous MHC-restricted antigen-specific T cell line was fused with the azaguanine-resistant AKR thymoma BW5147. A hybrid, RF1.16B, was identified that is minimally inducible by Con A stimulation alone but is stimulated by Con A in the presence of T cell-depleted accessory cells to produce interleukin 2. The accessory cell function can be replaced by the monokine interleukin 1. Thus the lectin is a sufficient trigger for the hybrid in the absence of MHC restriction elements. The accessory cell function from splenocytes is provided by a non-B, non-T, predominantly Ia-bearing radioresistant cell. The interaction between the RF1.16B hybrid and the accessory cell population is not H-2-restricted. Control experiments, including the use of a cloned source of accessory cells, ruled out contaminating T cells or direct lectin effects as an explanation for the lack of H-2 restriction. The finding that an Ia-bearing cell is required for activation in an MHC-nonrestricted manner is discussed, and a hypothesis is raised that Ia antigens may play a role in addition to that of being a restriction element.

  10. At the Bench: Chimeric antigen receptor (CAR) T cell therapy for the treatment of B cell malignancies.

    PubMed

    Daniyan, Anthony F O; Brentjens, Renier J

    2016-12-01

    The chimeric antigen receptor (CAR) represents the epitome of cellular engineering and is one of the best examples of rational biologic design of a synthetic molecule. The CAR is a single polypeptide with modular domains, consisting of an antibody-derived targeting moiety, fused in line with T cell-derived signaling domains, allowing for T cell activation upon ligand binding. T cells expressing a CAR are able to eradicate selectively antigen-expressing tumor cells in a MHC-independent fashion. CD19, a tumor-associated antigen (TAA) present on normal B cells, as well as most B cell-derived malignancies, was an early target of this technology. Through years of experimental refinement and preclinical optimization, autologously derived CD19-targeting CAR T cells have been successfully, clinically deployed, resulting in dramatic and durable antitumor responses but not without therapy-associated toxicity. As CD19-targeted CAR T cells continue to show clinical success, work at the bench continues to be undertaken to increase further the efficacy of this therapy, while simultaneously minimizing the risk for treatment-related morbidities. In this review, we cover the history and evolution of CAR technology and its adaptation to targeting CD19. Furthermore, we discuss the future of CAR T cell therapy and the need to ask, as well as answer, critical questions as this treatment modality is being translated to the clinic. © Society for Leukocyte Biology.

  11. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells.

    PubMed

    Takada, Honami; Imadome, Ken-Ichi; Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako

    2017-01-01

    Epstein-Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.

  12. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells

    PubMed Central

    Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu

    2017-01-01

    Epstein–Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells. PMID:28346502

  13. T-cell Receptor Signaling Activates an ITK/NF-κB/GATA-3 axis in T-cell Lymphomas Facilitating Resistance to Chemotherapy.

    PubMed

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C; Lim, Megan S; Bailey, Nathanael G; Wilcox, Ryan A

    2017-05-15

    Purpose: T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T cell-specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR's role in mediating resistance to chemotherapy. Experimental Design: Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following TCR engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results: Here, we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3 and promotes chemotherapy resistance. Conclusions: These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented the activation of this signaling axis and overcame chemotherapy resistance. Clin Cancer Res; 23(10); 2506-15. ©2016 AACR . ©2016 American Association for Cancer Research.

  14. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  15. Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

    PubMed

    Circosta, Paola; Elia, Angela Rita; Landra, Indira; Machiorlatti, Rodolfo; Todaro, Maria; Aliberti, Sabrina; Brusa, Davide; Deaglio, Silvia; Chiaretti, Sabina; Bruna, Riccardo; Gottardi, Daniela; Massaia, Massimo; Giacomo, Filomena Di; Guarini, Anna Rita; Foà, Robin; Kyriakides, Peter W; Bareja, Rohan; Elemento, Olivier; Chichili, Gurunadh R; Monteleone, Emanuele; Moore, Paul A; Johnson, Syd; Bonvini, Ezio; Cignetti, Alessandro; Inghirami, Giorgio

    2018-01-01

    Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4 + cells into cytotoxic effectors required the presence of CD8 + cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.

  16. A High Frequency of HIV-Specific Circulating Follicular Helper T Cells Is Associated with Preserved Memory B Cell Responses in HIV Controllers.

    PubMed

    Claireaux, M; Galperin, M; Benati, D; Nouël, A; Mukhopadhyay, M; Klingler, J; de Truchis, P; Zucman, D; Hendou, S; Boufassa, F; Moog, C; Lambotte, O; Chakrabarti, L A

    2018-05-08

    Follicular helper T cells (Tfh) play an essential role in the affinity maturation of the antibody response by providing help to B cells. To determine whether this CD4 + T cell subset may contribute to the spontaneous control of HIV infection, we analyzed the phenotype and function of circulating Tfh (cTfh) in patients from the ANRS CO21 CODEX cohort who naturally controlled HIV-1 replication to undetectable levels and compared them to treated patients with similarly low viral loads. HIV-specific cTfh (Tet + ), detected by Gag-major histocompatibility complex class II (MHC-II) tetramer labeling in the CD45RA - CXCR5 + CD4 + T cell population, proved more frequent in the controller group ( P = 0.002). The frequency of PD-1 expression in Tet + cTfh was increased in both groups (median, >75%) compared to total cTfh (<30%), but the intensity of PD-1 expression per cell remained higher in the treated patient group ( P = 0.02), pointing to the persistence of abnormal immune activation in treated patients. The function of cTfh, analyzed by the capacity to promote IgG secretion in cocultures with autologous memory B cells, did not show major differences between groups in terms of total IgG production but proved significantly more efficient in the controller group when measuring HIV-specific IgG production. The frequency of Tet + cTfh correlated with HIV-specific IgG production ( R = 0.71 for Gag-specific and R = 0.79 for Env-specific IgG, respectively). Taken together, our findings indicate that key cTfh-B cell interactions are preserved in controlled HIV infection, resulting in potent memory B cell responses that may play an underappreciated role in HIV control. IMPORTANCE The rare patients who spontaneously control HIV replication in the absence of therapy provide a unique model to identify determinants of an effective anti-HIV immune response. HIV controllers show signs of particularly efficient antiviral T cell responses, while their humoral response was until recently

  17. Abnormal Interactions between Perifollicular Mast Cells and CD8+ T-Cells May Contribute to the Pathogenesis of Alopecia Areata

    PubMed Central

    Bertolini, Marta; Zilio, Federica; Rossi, Alfredo; Gilhar, Amos; Keren, Aviad; Meyer, Katja C.; Wang, Eddy; Funk, Wolfgang; McElwee, Kevin; Paus, Ralf

    2014-01-01

    Alopecia areata (AA) is a CD8+ T-cell dependent autoimmune disease of the hair follicle (HF) in which the collapse of HF immune privilege (IP) plays a key role. Mast cells (MCs) are crucial immunomodulatory cells implicated in the regulation of T cell-dependent immunity, IP, and hair growth. Therefore, we explored the role of MCs in AA pathogenesis, focusing on MC interactions with CD8+ T-cells in vivo, in both human and mouse skin with AA lesions. Quantitative (immuno-)histomorphometry revealed that the number, degranulation and proliferation of perifollicular MCs are significantly increased in human AA lesions compared to healthy or non-lesional control skin, most prominently in subacute AA. In AA patients, perifollicular MCs showed decreased TGFβ1 and IL-10 but increased tryptase immunoreactivity, suggesting that MCs switch from an immuno-inhibitory to a pro-inflammatory phenotype. This concept was supported by a decreased number of IL-10+ and PD-L1+ MCs, while OX40L+, CD30L+, 4–1BBL+ or ICAM-1+ MCs were increased in AA. Lesional AA-HFs also displayed significantly more peri- and intrafollicular- CD8+ T-cells as well as more physical MC/CD8+ T-cell contacts than healthy or non-lesional human control skin. During the interaction with CD8+ T-cells, AA MCs prominently expressed MHC class I and OX40L, and sometimes 4–1BBL or ICAM-1, suggesting that MC may present autoantigens to CD8+ T-cells and/or co-stimulatory signals. Abnormal MC numbers, activities, and interactions with CD8+ T-cells were also seen in the grafted C3H/HeJ mouse model of AA and in a new humanized mouse model for AA. These phenomenological in vivo data suggest the novel AA pathobiology concept that perifollicular MCs are skewed towards pro-inflammatory activities that facilitate cross-talk with CD8+ T-cells in this disease, thus contributing to triggering HF-IP collapse in AA. If confirmed, MCs and their CD8+ T-cell interactions could become a promising new therapeutic target in the future

  18. γδT Cells Exacerbate Podocyte Injury via the CD28/B7-1-Phosphor-SRC Kinase Pathway

    PubMed Central

    Chen, Wanbing; Zhang, Gaofu; Wang, Mo; Yang, Haiping

    2018-01-01

    Primary nephrotic syndrome (PNS) is a devastating pediatric disorder. However, its mechanism remains unclear. Previous studies detected B7-1 in podocytes; meanwhile, γδT cells play pivotal roles in immune diseases. Therefore, this study aimed to assess whether and how γδT cells impact podocytes via the CD28/B7-1 pathway. WT and TCRδ−/− mice were assessed. LPS was used to induce nephropathy. Total γδT and CD28+γδT cells were quantitated in mouse spleen and kidney samples. B7-1 and phosphor-SRC levels in the kidney were detected as well. In vitro, γδT cells from the mouse spleen were cocultured with mouse podocytes, and apoptosis rate and phosphor-SRC expression in podocytes were assessed. Compared with control mice, WT mice with LPS nephropathy showed increased amounts of γδT cells in the kidney. Kidney injury was alleviated in TCRδ−/− mice. Meanwhile, B7-1 and phosphor-SRC levels were increased in the kidney from WT mice with LPS nephropathy. CD28+γδT cells were decreased, indicating CD28 may play a role in LPS nephropathy. Immunofluorescence colocalization analysis revealed a tight association of γδT cells with B7-1 in the kidney. High B7-1 expression was detected in podocytes treated with LPS. Podocytes cocultured with γδT cells showed higher phosphor-SRC and apoptosis rate than other cell groups. Furthermore, CD28/B7-1 blockage with CTLA4-Ig in vitro relieved podocyte injury. γδT cells exacerbate podocyte injury via CD28/B7-1 signaling, with downstream involvement of phosphor-SRC. The CD28/B7-1 blocker CTLA4-Ig prevented progressive podocyte injury, providing a potential therapeutic tool for PNS. PMID:29862277

  19. Impaired Control of Epstein-Barr Virus Infection in B-Cell Expansion with NF-κB and T-Cell Anergy Disease.

    PubMed

    Arjunaraja, Swadhinya; Angelus, Pamela; Su, Helen C; Snow, Andrew L

    2018-01-01

    B -cell e xpansion with N F-κB and T -cell a nergy (BENTA) disease is a B-cell-specific lymphoproliferative disorder caused by germline gain-of-function mutations in CARD11 . These mutations force the CARD11 scaffold into an open conformation capable of stimulating constitutive NF-κB activation in lymphocytes, without requiring antigen receptor engagement. Many BENTA patients also suffer from recurrent infections, with 7 out of 16 patients exhibiting chronic, low-grade Epstein-Barr virus (EBV) viremia. In this mini-review, we discuss EBV infection in the pathogenesis and clinical management of BENTA disease, and speculate on mechanisms that could explain inadequate control of viral infection in BENTA patients.

  20. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    NASA Astrophysics Data System (ADS)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  1. Activation of B cells by non-canonical helper signals

    PubMed Central

    Cerutti, Andrea; Cols, Montserrat; Puga, Irene

    2012-01-01

    Cognate interaction between T and B lymphocytes of the adaptive immune system is essential for the production of high-affinity antibodies against microbes, and for the establishment of long-term immunological memory. Growing evidence shows that—in addition to presenting antigens to T and B cells—macrophages, dendritic cells and other cells of the innate immune system provide activating signals to B cells, as well as survival signals to antibody-secreting plasma cells. Here, we discuss how these innate immune cells contribute to the induction of highly diversified and temporally sustained antibody responses, both systemically and at mucosal sites of antigen entry. PMID:22868664

  2. Mechanisms regulating enhanced HLA class II-mediated CD4+ T cell recognition of human B-cell lymphoma by resveratrol

    PubMed Central

    RADWAN, FAISAL F. Y.; ZHANG, LIXIA; HOSSAIN, AZIM; DOONAN, BENTLY P.; GOD, JASON; HAQUE, AZIZUL

    2015-01-01

    Malignant B-cells express measurable levels of HLA class II proteins, but often escape immune recognition by CD4+ T cells. Resveratrol (Resv) has been the focus of numerous investigations due to its potential chemopreventive and anti-cancer effects, but it has never been tested in the regulation of immune components in B-cell tumors. Here, we show for the first time that Resv treatment enhances HLA class II-mediated immune detection of B-cell lymphomas by altering immune components and class II presentation in tumor cells. Resv treatment induced an upregulation of both classical and non-classical HLA class II proteins (DR and DM) in B-lymphoma cells. Resv also altered endolysosomal cathepsins (Cat S, B and D) and a thiol reductase (GILT), increasing HLA class II-mediated antigen (Ag) processing in B-cell lymphomas and their subsequent recognition by CD4+ T cells. Mechanistic study demonstrated that Resv treatment activated the recycling class II pathway of Ag presentation through upregulation of Rab 4B protein expression in B-lymphoma cells. These findings suggest that HLA class II-mediated immune recognition of malignant B-cells can be improved by Resv treatment, thus encouraging its potential use in chemoimmunotherapy of B-cell lymphoma. PMID:21854084

  3. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangtum, Natapol; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700; Junking, Mutita

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{supmore » -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.« less

  4. Trypanosoma congolense: tissue distribution of long-term T- and B-cell responses in cattle.

    PubMed

    Lutje, V; Taylor, K A; Boulangé, A; Authié, E

    1995-11-01

    Memory T- and B-cell responses to trypanosome antigens were measured in peripheral blood mononuclear cells, spleen and lymph node cells obtained from four trypanotolerant N'Dama cattle which had been exposed to six experimental infections with Trypanosoma congolense. These cattle were treated with trypanocidal drugs following each infection and had remained aparasitemic for 3 years prior to this study. The antigens used were whole trypanosome lysate, variable surface glycoprotein, a 33-kDa cysteine protease (congopain) and a 70-kDa heat-shock protein. As parameters of T-cell-mediated immunity, we measured T-cell proliferation and IFN-gamma production. Lymph node cells, spleen cells and peripheral blood mononuclear cells all proliferated to a mitogenic stimulus (concanavalin A) but only lymph node cells responded to trypanosome antigens. Similarly, IFN-gamma was produced by both lymph node and spleen cells stimulated with concanavalin A but only by lymph node cells stimulated with variable surface glycoprotein and whole trypanosome lysate. T. congolense-specific antibodies were detected in sera and in supernatants of cultured lymph node and spleen cells after in vitro stimulation with lipopolysaccharide and recombinant bovine interleukin-2. In conclusion, we have demonstrated that memory T- and B-cell responses are detectable in various lymphoid organs in cattle 3 years following infection and treatment with T. congolense.

  5. EBV-Positive Lymphoproliferations of B- T- and NK-Cell Derivation in Non-Immunocompromised Hosts

    PubMed Central

    Fend, Falko

    2018-01-01

    The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored. PMID:29518976

  6. Synovial T cell hyporesponsiveness to myeloid dendritic cells is reversed by preventing PD-1/PD-L1 interactions.

    PubMed

    Moret, Frederique M; van der Wurff-Jacobs, Kim M G; Bijlsma, Johannes W J; Lafeber, Floris P J G; van Roon, Joel A G

    2014-11-30

    The aim of this study was to investigate PD-1/PD-L1 involvement in the hyporesponsiveness of rheumatoid arthritis (RA) synovial fluid (SF) CD4 T cells upon stimulation by thymic stromal lymphopoietin (TSLP)-primed CD1c myeloid dendritic cells (mDCs). Expression of PD-1 on naïve (Tn), central memory (Tcm) and effector memory (Tem) CD4 T cell subsets was assessed by flow cytometry. PD-L1 expression and its regulation upon TSLP stimulation of mDCs from peripheral blood (PB) and SF of RA patients were investigated by quantitative RT-PCR and flow cytometry. The involvement of PD-1/PD-L1 interactions in SF T cell hyporesponsiveness upon (TSLP-primed) mDC activation was determined by cell culture in the presence of PD-1 blocking antibodies, with or without interleukin 7 (IL-7) as a recognized suppressor of PD-1 expression. PD-1 expression was increased on CD4 T cells derived from SF compared with PB of RA patients. TSLP increased PD-L1 mRNA expression in both PB and SF mDCs. PD-L1 protein expression was increased on SF mDCs compared with PB mDCs and was associated with T cell hyporesponsiveness. Blockade of PD-1, as well as IL-7 stimulation, during cocultures of memory T cells and (TSLP-primed) mDCs from RA patients significantly recovered T cell proliferation. SF T cell hyporesponsiveness upon (TSLP-primed) mDC stimulation in RA joints is partially dependent on PD-1/PD-L1 interactions, as PD-1 and PD-L1 are both highly expressed on SF T cells and mDCs, respectively, and inhibiting PD-1 availability restores T cell proliferation. The potential of IL-7 to robustly reverse this hyporesponsiveness suggests that such proinflammatory cytokines in RA joints strongly contribute to memory T cell activation.

  7. Restoring homeostasis of CD4+ T cells in hepatitis-B-virus-related liver fibrosis

    PubMed Central

    Cheng, Li-Sha; Liu, Yun; Jiang, Wei

    2015-01-01

    Immune-mediated liver injury is widely seen during hepatitis B virus (HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis (HBVLF), occurring as a result of HBV-induced chronic hepatitis, is a reversible, intermediate stage of chronic hepatitis B (CHB) and liver cirrhosis. Therefore, defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently, the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms, in this review, we systematically retrospect the impacts of different CD4+ T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T (Treg) and T helper 17 (Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin (IL)-17, IL-22, IL-21, IL-23, IL-10, IL-35 and IL-33, as well as surface molecules such as programmed cell death protein 1, cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF. PMID:26478664

  8. Involvement of two classes of binding sites in the interactions of cyclophilin B with peripheral blood T-lymphocytes.

    PubMed

    Denys, A; Allain, F; Carpentier, M; Spik, G

    1998-12-15

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway, and is released in biological fluids. We recently reported that CyPB specifically binds to T-lymphocytes and promotes enhanced incorporation of CsA. The interactions with cellular binding sites involved, at least in part, the specific N-terminal extension of the protein. In this study, we intended to specify further the nature of the CyPB-binding sites on peripheral blood T-lymphocytes. We first provide evidence that the CyPB binding to heparin-Sepharose is prevented by soluble sulphated glycosaminoglycans (GAG), raising the interesting possibility that such interactions may occur on the T-cell surface. We then characterized CyPB binding to T-cell surface GAG and found that these interactions involved the N-terminal extension of CyPB, but not its conserved CsA-binding domain. In addition, we determined the presence of a second CyPB binding site, which we termed a type I site, in contrast with type II for GAG interactions. The two binding sites exhibit a similar affinity but the expression of the type I site was 3-fold lower. The conclusion that CyPB binding to the type I site is distinct from the interactions with GAG was based on the findings that it was (1) resistant to NaCl wash and GAG-degrading enzyme treatments, (2) reduced in the presence of CsA or cyclophilin C, and (3) unmodified in the presence of either the N-terminal peptide of CyPB or protamine. Finally, we showed that the type I binding sites were involved in an endocytosis process, supporting the hypothesis that they may correspond to a functional receptor for CyPB.

  9. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: implications for disease pathogenesis and treatment

    PubMed Central

    ten Hacken, Elisa; Burger, Jan A.

    2015-01-01

    Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. PMID:26193078

  10. Rabbit spleen B lymphocytes as helper cells in lymphocyte activation by concanavalin A and phytohaemagglutinin.

    PubMed

    Cavaillon, J M; Udupa, T N; Chou, C T; Cinader, B; Dubiski, S

    1982-01-01

    Using rosetting methods, we have purified rabbit B cells and studied their interactions with T cells purified by passage over an anti-immunoglobulin-coated Degalan beads column. B cells enhance the response of T cells to concanavalin A (Con A) and phytohaemagglutinin. In regulation of the response to Con A, an adherent cell is a third participating cell. B-cell preparation contain a minority of cells that can respond to T mitogens with the help of non-proliferating T cells, but the proportion of these responding cells is small, and the involvement of the T-cell impurity cannot be excluded.

  11. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells

    PubMed Central

    Luckey, Chance John; Bhattacharya, Deepta; Goldrath, Ananda W.; Weissman, Irving L.; Benoist, Christophe; Mathis, Diane

    2006-01-01

    The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8+ T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augmented in memory CD8+ T cells relative to naïve and effector T cells were selectively enriched in long-term hematopoietic stem cells and were progressively lost in their short-term and lineage-committed counterparts. Furthermore, transcripts selectively decreased in memory CD8+ T cells were selectively down-regulated in long-term hematopoietic stem cells and progressively increased with differentiation. To confirm that this pattern was a general property of immunologic memory, we turned to independently generated gene expression profiles of memory, naïve, germinal center, and plasma B cells. Once again, memory-enriched and -depleted transcripts were also appropriately augmented and diminished in long-term hematopoietic stem cells, and their expression correlated with progressive loss of self-renewal function. Thus, there appears to be a common signature of both up- and down-regulated transcripts shared between memory T cells, memory B cells, and long-term hematopoietic stem cells. This signature was not consistently enriched in neural or embryonic stem cell populations and, therefore, appears to be restricted to the hematopoeitic system. These observations provide evidence that the shared phenotype of self-renewal in the hematopoietic system is linked at the molecular level. PMID:16492737

  12. Expression of Master Regulators of T-cell, Helper T-cell and Follicular Helper T-cell Differentiation in Angioimmunoblastic T-cell Lymphoma.

    PubMed

    Matsumoto, Yosuke; Nagoshi, Hisao; Yoshida, Mihoko; Kato, Seiichi; Kuroda, Junya; Shimura, Kazuho; Kaneko, Hiroto; Horiike, Shigeo; Nakamura, Shigeo; Taniwaki, Masafumi

    2017-11-01

    Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.

  13. Changes in T and B blood lymphocytes after splenectomy.

    PubMed Central

    Millard, R E; Banerjee, D K

    1979-01-01

    The blood lymphocytes of 37 splenectomised patients were analysed by means of T and B lymphocyte surface markers. Sixteen patients had had a splenectomy for non-haematological and 21 for haematological reasons. The results show that 15 had normal numbers of T and B cells; decreased T cells were found in two patients, raised B cells in seven, raised T and B cells in eight, and raised T cells in five patients. Increased numbers of 'null' cells were observed in some patients, especially in those with raised B cells. Follow-up studies indicate that raised levels of T and B cells can be established by one to three months post-splenectomy and may persist, although in some patients the cells fall to normal levels. The lymphocyte proliferative response to phytohaemagglutinin and Concanavalin A in vitro was normal in eight out of nine patients with raised T cells and was depressed in one patient, possibly due to an intrinsic cell defect. PMID:316436

  14. Clinicopathological Study of 30 Cases of Peripheral T-cell Lymphoma with Hodgkin and Reed-Sternberg-like B-cells from Japan.

    PubMed

    Eladl, Ahmed E; Satou, Akira; Elsayed, Ahmed Ali; Suzuki, Yuka; Kato, Seiichi; Asano, Naoko; Nakamura, Shigeo

    2017-04-01

    The presence of Hodgkin and Reed-Sternberg (HRS)-like B-cells in peripheral T-cell lymphoma (PTCL) is rare and its clinicopathological features still remain unclear. Here, we describe 30 cases of PTCL with HRS-like B-cells from Japan. Twenty-three cases (77%) presented evidence of follicular T-helper phenotype (TFH) derivation: 12 were angioimmunoblastic T-cell lymphoma and 11 PTCL with TFH phenotype (PTCL-TFH). The remaining seven cases were diagnosed as PTCL, not otherwise specified (PTCL-NOS). Epstein-Barr virus (EBV) reactivation was detected in 25 cases (83%), but HRS-like B-cells were EBER in only 20 cases (67%). The median age at diagnosis was 77 years (range, 39-91 y), including 24 patients (80%) were older than 60 years of age. Most of the patients presented at an advanced clinical stage and were associated with higher risk according to the International Prognostic Index. The 3-year overall and progression-free survival rates were 44% and 27%, respectively. No significant clinicopathological differences were detected between PTCL-TFH, PTCL-NOS and the angioimmunoblastic cases. Cases with EBER HRS-like B-cells were associated with inferior overall and progression-free survival compared to those with EBER HRS-like B-cells, but the difference was not significant. In conclusion, HRS-like B-cells were found in a subset of T-cell lymphomas, especially in association with the TFH phenotype and EBV reactivation. These cells have a tendency to affect elderly patients and to be associated with advanced clinical stages and dismal prognosis. The EBV status of HRS-like B-cells does not seem to affect the clinicopathological features of this group of PTCLs.

  15. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Tomuleasa, Ciprian; Fuji, Shigeo; Berce, Cristian; Onaciu, Anca; Chira, Sergiu; Petrushev, Bobe; Micu, Wilhelm-Thomas; Moisoiu, Vlad; Osan, Ciprian; Constantinescu, Catalin; Pasca, Sergiu; Jurj, Ancuta; Pop, Laura; Berindan-Neagoe, Ioana; Dima, Delia; Kitano, Shigehisa

    2018-01-01

    Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects. PMID:29515572

  16. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Tomuleasa, Ciprian; Fuji, Shigeo; Berce, Cristian; Onaciu, Anca; Chira, Sergiu; Petrushev, Bobe; Micu, Wilhelm-Thomas; Moisoiu, Vlad; Osan, Ciprian; Constantinescu, Catalin; Pasca, Sergiu; Jurj, Ancuta; Pop, Laura; Berindan-Neagoe, Ioana; Dima, Delia; Kitano, Shigehisa

    2018-01-01

    Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.

  17. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    PubMed

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The role of T and B cells in human atherosclerosis and atherothrombosis

    PubMed Central

    Ammirati, E; Moroni, F; Magnoni, M; Camici, P G

    2015-01-01

    Far from being merely a passive cholesterol accumulation within the arterial wall, the development of atherosclerosis is currently known to imply both inflammation and immune effector mechanisms. Adaptive immunity has been implicated in the process of disease initiation and progression interwined with traditional cardiovascular risk factors. Although the body of knowledge regarding the correlation between atherosclerosis and immunity in humans is growing rapidly, a relevant proportion of it derives from studies carried out in animal models of cardiovascular disease (CVD). However, while the mouse is a well-suited model, the results obtained therein are not fully transferrable to the human setting due to intrinsic genomic and environmental differences. In the present review, we will discuss mainly human findings, obtained either by examination of post-mortem and surgical atherosclerotic material or through the analysis of the immunological profile of peripheral blood cells. In particular, we will discuss the findings supporting a pro-atherogenic role of T cell subsets, such as effector memory T cells or the potential protective function of regulatory T cells. Recent studies suggest that traditional T cell-driven B2 cell responses appear to be atherogenic, while innate B1 cells appear to exert a protective action through the secretion of naturally occurring antibodies. The insights into the immune pathogenesis of atherosclerosis can provide new targets in the quest for novel therapeutic targets to abate CVD morbidity and mortality. PMID:25352024

  19. CD72 ligation regulates defective naive newborn B cell responses.

    PubMed

    Howard, L M; Reen, D J

    1997-02-01

    The biological basis for reduced Ig production by naive newborn B cells compared to adult peripheral blood B cells is not fully understood. In a Con A + IL-2 T cell-dependent system using "competent" adult T cells, adult B cells produced large amounts of IgM, IgG, and IgA, while cord B cells were restricted to low levels of only IgM production. Cord B cell activation was also diminished. The contribution of specific B-T cell contact-mediated events to the diminished cord B cell response in this system, using mAbs to CD40, CD28, CD80, and CD72, were investigated, as well as regulation of B cell Ig production by cytokines. alphaCD72 ligation increased cord B cell activation and IgM production, but did not affect adult B cells. Blocking alphaCD40 mAb inhibited cord B cell Ig production completely, but only partly inhibited adult B cell Ig production even at high concentration, suggesting a greater sensitivity of cord B cells to disruption of the CD40-CD40L interaction. Addition of IL-10 did not increase cord B cell Ig production, while adult B cell Ig production was increased. However, combined addition of IL-10 and alphaCD72 significantly increased cord B cell Ig production over that in the presence of either alphaCD72 or IL-10 alone, but had no effect on adult B cells over that of IL-10 alone. These data suggest that the diminished T cell-dependent response of cord B cells is due to reduced or absent CD72 ligation. CD72 ligation plays an important role in the induction of primary responses by naive B cells. CD72 modulation of naive B cell sensitivity to IL-10 stimulation may have implications in the induction of class switch, which is deficient in newborn B cells. Since all T cells express CD5 constitutively, these data also suggest the existence of another ligand for CD72.

  20. Human CD134 (OX40) expressed on T cells plays a key role for human herpesvirus 6B replication after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Nagamata, Satoshi; Nagasaka, Miwako; Kawabata, Akiko; Kishimoto, Kenji; Hasegawa, Daiichiro; Kosaka, Yoshiyuki; Mori, Takeshi; Morioka, Ichiro; Nishimura, Noriyuki; Iijima, Kazumoto; Yamada, Hideto; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Matsuoka, Hiroshi; Mori, Yasuko

    2018-05-01

    CD134 (OX40), which is a cellular receptor for human herpesvirus-6B (HHV-6B) and expresses on activated T cells, may play a key role for HHV-6B replication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Therefore, we examined the CD134 expression on T cells and HHV-6B replication after allo-HSCT, and analyzed the correlation between them. Twenty-three patients after allo-HSCT were enrolled. The percentages of CD134-positive cells within the CD4 + and CD8 + cell populations were measured by flow cytometry, and the viral copy number of HHV-6B was simultaneously quantified by real-time PCR. The correlation between CD134 and HHV-6B viral load was then statistically analyzed. HHV-6B reactivation occurred in 11 of 23 patients (47.8%). CD134 expression was seen on T cells and was coincident with the time of peak viral load. The percentage of CD134-positive cells decreased significantly when HHV-6B DNA disappeared (p = .005 in CD4 + T cells, p = .02 in CD8 + T cells). In the 4 patients who underwent umbilical cord blood transplantation (UCBT), the viral load varied with the percentage of CD134-positive cells. In the comparison between the HHV-6B reactivation group and non-reactivation group, maximum percentages of CD134-positive cells among CD4 + T cells in reactivation group were significantly higher than those in non-reactivation group (p = .04). This is the first study to show that a correlation of CD134 expression on T cells with HHV-6B replication after allo-HSCT, especially in UCBT. The results possibly indicate that CD134 on T cells plays a key role for HHV-6B replication after allo-HSCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Follicular helper T cell in immunity and autoimmunity.

    PubMed

    Mesquita, D; Cruvinel, W M; Resende, L S; Mesquita, F V; Silva, N P; Câmara, N O S; Andrade, L E C

    2016-01-01

    The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  2. Similar disturbances in B cell activity and regulatory T cell function in Henoch-Schonlein purpura and systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beale, M.G.; Nash, G.S.; Bertovich, M.J.

    1982-01-01

    The immunoglobulin synthesizing activities of peripheral mononuclear cells (MNC) from five patients with Henoch-Schonlein purpura (HSP) and eight patients with active systemic lupus erythematosus (SLE) were compared. Cumulative amounts of IgM, IgG, and IgA synthesized and secreted by unstimulated and PWM-stimulated patient cells over a 12-day period were determied in a solid-phase radioimmunoassay. In unstimulated control cultures mean rates of IgM, IgG, and IgA synthesis were less than 250 ng/ml. The synthetic activities of patient MNC were markedly increased. In HSP cultures IgA was the major immunoglobulin class produced (2810 x/divide 1.33 ng/ml) followed by IgG (1754 x/divide 1.32 ng/ml)more » and IgM (404 x/divide 1.16 ng/ml). In SLE cultures IgA and IgG syntheses were equally elevated (4427 x/divide 1.20 and 4438 x/divide 1.49 ng/ml, respectively) whereas IgM synthesis averaged 967 x/divide 1.66 ng/ml. PWM stimulation of pateient MNC caused a sharp decline in the synthesis of all three immunoglobulin classes. After T cell depletion B cell-enriched fractions from HSP and SLE patients maintained high levels of IgA and IgG synthesis that were inhibited by PWM and by normal allogeneic but not autologous T cells. In PWM-stimulted co-cultures, patient T cells nonspecifically suppressed the synthetic activities of autologous and control B cells. in contrast patient B cells achieved normal levels of immunoglobulin synthesis when cultured with control T cells plus PWM. In longitudinal studies patient B and T cell disturbances persisted despite clinical improvement.« less

  3. Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK

    PubMed Central

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M.; Wojcik, Jerome; Kozyrev, Sergey V.; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R.; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A.; Merrill, Joan T.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Moser, Kathy; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A.; D’Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B.; Gaffney, Patrick; Martin, Javier; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.

    2012-01-01

    Objectives Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis. Methods We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Results Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. Conclusions Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway. PMID:21978998

  4. Engineered fusokine GIFT4 licenses the ability of B cells to trigger a tumoricidal T cell response

    PubMed Central

    Deng, Jiusheng; Yuan, Shala; Pennati, Andrea; Murphy, Jordan; Wu, Jian Hui; Lawson, David; Galipeau, Jacques

    2014-01-01

    Engineered chimeric cytokines can generate gain-of-function activity in immune cells. Here we report potent antitumor activity for a novel fusion cytokine generated by N-terminal coupling of GM-CSF to IL-4, generating a fusokine termed GIFT4. B cells treated with GIFT4 clustered GM-CSF and IL-4 receptors on the cell surface and displayed a pan-STAT hyperphosphorylation associated with acquisition of a distinct phenotype and function described to date. In C57BL/6J mice, administration of GIFT4 expanded endogenous B cells and suppressed the growth of B16F0 melanoma cells. Further, B16F0 melanoma cells engineered to secrete GIFT4 were rejected immunologically in a B cell-dependent manner. This effect was abolished when GIFT4-expressing B16F0 cells were implanted in B cell-deficient mice, confirming a B cell-dependent antitumor effect. Human GIFT4-licensed B cells primed cytotoxic T cells and specifically killed melanoma cells in vitro and in vivo. Taken together, our results demonstrated that GIFT4 could mediate expansion of B cells with potent antigen-specific effector function. GIFT4 may offer a novel immunotherapeutic tool and define a previously unrecognized potential for B cells in melanoma immunotherapy. PMID:24938765

  5. Dysfunctional BLK in common variable immunodeficiency perturbs B-cell proliferation and ability to elicit antigen-specific CD4+ T-cell help.

    PubMed

    Compeer, Ewoud B; Janssen, Willemijn; van Royen-Kerkhof, Annet; van Gijn, Marielle; van Montfrans, Joris M; Boes, Marianne

    2015-05-10

    Common Variable Immunodeficiency (CVID) is the most prevalent primary antibody deficiency, and characterized by defective generation of high-affinity antibodies. Patients have therefore increased risk to recurrent infections of the respiratory and intestinal tract. Development of high-affinity antigen-specific antibodies involves two key actions of B-cell receptors (BCR): transmembrane signaling through BCR-complexes to induce B-cell differentiation and proliferation, and BCR-mediated antigen internalization for class-II MHC-mediated presentation to acquire antigen-specific CD4(+) T-cell help.We identified a variant (L3P) in the B-lymphoid tyrosine kinase (BLK) gene of 2 related CVID-patients, which was absent in healthy relatives. BLK belongs to the Src-kinases family and involved in BCR-signaling. Here, we sought to clarify BLK function in healthy human B-cells and its association to CVID.BLK expression was comparable in patient and healthy B-cells. Functional analysis of L3P-BLK showed reduced BCR crosslinking-induced Syk phosphorylation and proliferation, in both primary B-cells and B-LCLs. B-cells expressing L3P-BLK showed accelerated destruction of BCR-internalized antigen and reduced ability to elicit CD40L-expression on antigen-specific CD4(+) T-cells.In conclusion, we found a novel BLK gene variant in CVID-patients that causes suppressed B-cell proliferation and reduced ability of B-cells to elicit antigen-specific CD4(+) T-cell responses. Both these mechanisms may contribute to hypogammaglobulinemia in CVID-patients.

  6. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain.

    PubMed

    Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria

    2018-01-01

    T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.

  7. A role for B cells in the development of T cell helper function in a malaria infection in mice

    PubMed Central

    Langhorne, Jean; Cross, Caroline; Seixas, Elsa; Li, Ching; von der Weid, Thierry

    1998-01-01

    B cell knockout mice are unable to clear a primary erythrocytic infection of Plasmodium chabaudi chabaudi. However, the early acute infection is controlled to some extent, giving rise to a chronic relapsing parasitemia that can be reduced either by drug treatment or by adoptive transfer of B cells. Similar to mice rendered B-cell deficient by lifelong treatment with anti-μ antibodies, B cell knockout mice (μMT) retain a predominant CD4+ Th1-like response to malarial antigens throughout a primary infection. This contrasts with the response seen in control C57BL/6 mice in which the CD4+ T-cell response has switched to that characteristic of Th2 cells at the later stages of infection, manifesting efficient help for specific antibodies in vitro and interleukin 4 production. Both chloroquine and adoptive transfer of immune B cells reduced parasite load. However, the adoptive transfer of B cells resulted in a Th2 response in recipient μMT mice, as indicated by a relative increase in the precursor frequency of helper cells for antibody production. These data support the idea that B cells play a role in the regulation of CD4+ T subset responses. PMID:9465085

  8. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism

    PubMed Central

    Welty, Nathan E.; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J.; Igyártó, Botond Z.

    2013-01-01

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103+ subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103+CD11b+ LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC–T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβfl/fl mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103+CD11b+ DCs. huLangerin-DTA x BatF3−/− mice lacked both CD103+ LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103+ LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms. PMID:24019552

  9. Complex T Cell Interactions Contribute to Helicobacter pylori Gastritis in Mice

    PubMed Central

    Gray, Brian M.; Fontaine, Clinton A.; Poe, Sara A.

    2013-01-01

    Disease due to the gastric pathogen Helicobacter pylori varies in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model of H. pylori gastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that while H. pylori-specific CD4+ T cells and IFN-γ are both essential for induction of gastritis due to H. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due to H. pylori is associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway. PMID:23264048

  10. Enhancement of CD8+ T-cell memory by removal of a vaccinia virus nuclear factor-κB inhibitor

    PubMed Central

    Ren, Hongwei; Ferguson, Brian J; de Motes, Carlos Maluquer; Sumner, Rebecca P; Harman, Laura E R; Smith, Geoffrey L

    2015-01-01

    Factors influencing T-cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8+ T cells and this correlates with its inhibition of nuclear factor-κB (NF-κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF-κB resulted in increased central and memory CD8+ T-cell populations, increased CD8+ T-cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8+ memory T-cell function was increased following infection with vN1.I6E, with more interferon-γ production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8+ T cells from mice infected with wild-type virus (vN1.WT). This demonstrates the importance of NF-κB activation within infected cells for long-term CD8+ T-cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8+ T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety. PMID:25382035

  11. Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions

    PubMed Central

    Schwarz, Sandra; West, T. Eoin; Boyer, Frédéric; Chiang, Wen-Chi; Carl, Mike A.; Hood, Rachel D.; Rohmer, Laurence; Tolker-Nielsen, Tim; Skerrett, Shawn J.; Mougous, Joseph D.

    2010-01-01

    Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections. PMID:20865170

  12. Non-specific factor enhancement of human in vitro antigen-dependent antibody synthesis: role of B cell activation and T cell help.

    PubMed Central

    Brenner, M K; North, M E; Chadda, H R; Farrant, J

    1984-01-01

    Lectin-free supernatants obtained from PWM-stimulated lymphocytes, enable B cells to proliferate and secrete immunoglobulin. Both functions are augmented by the addition of irradiated T cells. In the presence of antigen, these supernatants also enhance specific anti-tetanus toxoid antibody production. The components of the supernatant responsible for these activities have a molecular weight between 30,000 and 60,000, and have the characteristics of non-specific factors: they are genetically unrestricted, and do not bind to either antigen or anti-DR affinity columns. There is no evidence that the partial T dependency of these factors is an indication that their target is a T cell. Instead, T cells appear necessary to move the B cell into a state of activation in which it becomes responsive to the factor. Alternative activation signals such as Staph. A. Cowan can substitute for T cell help in the proliferative response, but not for immunoglobulin or antibody synthesis. The implications of these results for the approaches used to detect and classify B cell growth factors are discussed. PMID:6608488

  13. Suppression of unprimed T and B cells in antibody responses by irradiation-resistant and plastic-adherent suppressor cells in Toxoplasma gondii-infected mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Y.; Kobayashi, A.

    1983-04-01

    In the acute phase of Toxoplasma infection, the function of both helper T and B cells was suppressed in primary antibody responses to dinitrophenol (DNP)-conjugated protein antigens. During the course of infection, the suppressive effect on T cells seems to continue longer than that on B cells, since suppression in responses to sheep erythrocytes, a T-dependent antigen, persisted longer than those to DNP-Ficoll, a T-independent antigen. Plastic-adherent cells from the spleens of Toxoplasma-infected and X-irradiated (400 rads) mice had strong suppressor activity in primary anti-sheep erythrocyte antibody responses of normal mouse spleen cells in vitro. These data suggest that themore » activation of irradiation-resistant and plastic-adherent suppressor cells causes the suppression of both T and B cells in Toxoplasma-infected mice.« less

  14. Identification of two novel immunodominant UreB CD4(+) T cell epitopes in Helicobacter pylori infected subjects.

    PubMed

    Yang, Wu-Chen; Chen, Li; Li, Hai-Bo; Li, Bin; Hu, Jian; Zhang, Jin-Yong; Yang, Shi-Ming; Zou, Quan-Ming; Guo, Hong; Wu, Chao

    2013-02-06

    An epitope-based vaccine is a promising option for treating Helicobacter pylori (H. pylori) infection. Epitope mapping is the first step in designing an epitope-based vaccine. A pivotal role of CD4(+) T cells in protection against H. pylori has been accepted, but few Th epitopes have been identified. In this study, two novel UreB CD4(+) T cell epitopes were identified using PBMCs obtained from two H. pylori infected subjects. We determined the restriction molecules by antibody blocking and used various Epstein-Barr virus-transformed B lymphocyte cell lines (BLCLs) with different HLA alleles as APCs to present peptides to CD4(+) T cells. These epitopes were DRB1*1404-restricted UreB(373-385) and DRB1*0803-restricted UreB(438-452). The T cells specific to these epitopes not only recognized autologous DCs loaded with recombinant UreB but also those pulsed with H. pylori whole cell lysates, suggesting that these epitope peptides are naturally processed. These epitopes have important value for designing an effective H. pylori vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus

    PubMed Central

    Yakhnina, Anastasiya A.; Gitai, Zemer

    2014-01-01

    Summary In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA over-expression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors. PMID:22804814

  16. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus.

    PubMed

    Yakhnina, Anastasiya A; Gitai, Zemer

    2012-09-01

    In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA overexpression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors. © 2012 Blackwell Publishing Ltd.

  17. B7-H1 limits the entry of effector CD8(+) T cells to the memory pool by upregulating Bim.

    PubMed

    Gibbons, Rachel M; Liu, Xin; Pulko, Vesna; Harrington, Susan M; Krco, Christopher J; Kwon, Eugene D; Dong, Haidong

    2012-10-01

    Protective T‑cell immunity against cancer and infections is dependent on the generation of a durable effector and memory T‑cell pool. Studies from cancer and chronic infections reveal that B7-H1 (PD-L1) engagement with its receptor PD-1 promotes apoptosis of effector T cells. It is not clear how B7-H1 regulates T‑cell apoptosis and the subsequent impact of B7-H1 on the generation of memory T cells. In immunized B7-H1-deficient mice, we detected an increased expansion of effector CD8(+) T cells and a delayed T‑cell contraction followed by the emergence of a protective CD8(+) T‑cell memory capable of completely rejecting tumor metastases in the lung. Intracellular staining revealed that antigen-primed CD8(+) T cells in B7-H1-deficient mice express lower levels of the pro-apoptotic molecule Bim. The engagement of activated CD8(+) T cells by a plate-bound B7-H1 fusion protein led to the upregulation of Bim and increased cell death. Assays based on blocking antibodies determined that both PD-1 and CD80 are involved in the B7-H1-mediated regulation of Bim in activated CD8(+) T cells. Our results suggest that B7-H1 may negatively regulate CD8(+) T‑cell memory by enhancing the depletion of effector CD8(+) T cells through the upregulation of Bim. Our findings may provide a new strategy for targeting B7-H1 signaling in effector CD8(+) T cells to achieve protective antitumor memory responses.

  18. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells.

    PubMed

    Kochenderfer, James N; Yu, Zhiya; Frasheri, Dorina; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-11

    Adoptive T-cell therapy with anti-CD19 chimeric antigen receptor (CAR)-expressing T cells is a new approach for treating advanced B-cell malignancies. To evaluate anti-CD19-CAR-transduced T cells in a murine model of adoptive T-cell therapy, we developed a CAR that specifically recognized murine CD19. We used T cells that were retrovirally transduced with this CAR to treat mice bearing a syngeneic lymphoma that naturally expressed the self-antigen murine CD19. One infusion of anti-CD19-CAR-transduced T cells completely eliminated normal B cells from mice for at least 143 days. Anti-CD19-CAR-transduced T cells eradicated intraperitoneally injected lymphoma cells and large subcutaneous lymphoma masses. The antilymphoma efficacy of anti-CD19-CAR-transduced T cells was critically dependent on irradiation of mice before anti-CD19-CAR-transduced T-cell infusion. Anti-CD19-CAR-transduced T cells had superior antilymphoma efficacy compared with the anti-CD19 monoclonal antibody from which the anti-CD19 CAR was derived. Our results demonstrated impressive antilymphoma activity and profound destruction of normal B cells caused by anti-CD19-CAR-transduced T cells in a clinically relevant murine model.

  19. Engineered fusokine GIFT4 licenses the ability of B cells to trigger a tumoricidal T-cell response.

    PubMed

    Deng, Jiusheng; Yuan, Shala; Pennati, Andrea; Murphy, Jordan; Wu, Jian Hui; Lawson, David; Galipeau, Jacques

    2014-08-01

    Engineered chimeric cytokines can generate gain-of-function activity in immune cells. Here, we report potent antitumor activity for a novel fusion cytokine generated by N-terminal coupling of GM-CSF to IL4, generating a fusokine termed GIFT4. B cells treated with GIFT4 clustered GM-CSF and IL4 receptors on the cell surface and displayed a pan-STAT hyperphosphorylation associated with acquisition of a distinct phenotype and function described to date. In C57BL/6J mice, administration of GIFT4 expanded endogenous B cells and suppressed the growth of B16F0 melanoma cells. Furthermore, B16F0 melanoma cells engineered to secrete GIFT4 were rejected immunologically in a B-cell-dependent manner. This effect was abolished when GIFT4-expressing B16F0 cells were implanted in B-cell-deficient mice, confirming a B-cell-dependent antitumor effect. Human GIFT4-licensed B cells primed cytotoxic T cells and specifically killed melanoma cells in vitro and in vivo. Taken together, our results demonstrated that GIFT4 could mediate expansion of B cells with potent antigen-specific effector function. GIFT4 may offer a novel immunotherapeutic tool and define a previously unrecognized potential for B cells in melanoma immunotherapy. ©2014 American Association for Cancer Research.

  20. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.

    PubMed

    Davila, Marco L; Riviere, Isabelle; Wang, Xiuyan; Bartido, Shirley; Park, Jae; Curran, Kevin; Chung, Stephen S; Stefanski, Jolanta; Borquez-Ojeda, Oriana; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; He, Qing; Fink, Mitsu; Shinglot, Himaly; Youssif, Maher; Satter, Mark; Wang, Yongzeng; Hosey, James; Quintanilla, Hilda; Halton, Elizabeth; Bernal, Yvette; Bouhassira, Diana C G; Arcila, Maria E; Gonen, Mithat; Roboz, Gail J; Maslak, Peter; Douer, Dan; Frattini, Mark G; Giralt, Sergio; Sadelain, Michel; Brentjens, Renier

    2014-02-19

    We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome-positive (Ph(+)) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy.

  1. Activation of B Cells by a Dendritic Cell-Targeted Oral Vaccine

    PubMed Central

    Sahay, Bikash; Owen, Jennifer L.; Yang, Tao; Zadeh, Mojgan; Lightfoot, Yaíma L.; Ge, Jun-Wei; Mohamadzadeh, Mansour

    2015-01-01

    Production of long-lived, high affinity humoral immunity is an essential characteristic of successful vaccination and requires cognate interactions between T and B cells in germinal centers. Within germinal centers, specialized T follicular helper cells assist B cells and regulate the antibody response by mediating the differentiation of B cells into memory or plasma cells after exposure to T cell-dependent antigens. It is now appreciated that local immune responses are also essential for protection against infectious diseases that gain entry to the host by the mucosal route; therefore, targeting the mucosal compartments is the optimum strategy to induce protective immunity. However, because the gastrointestinal mucosae are exposed to large amounts of environmental and dietary antigens on a daily basis, immune regulatory mechanisms exist to favor tolerance and discourage autoimmunity at these sites. Thus, mucosal vaccination strategies must ensure that the immunogen is efficiently taken up by the antigen presenting cells, and that the vaccine is capable of activating humoral and cellular immunity, while avoiding the induction of tolerance. Despite significant progress in mucosal vaccination, this potent platform for immunotherapy and disease prevention must be further explored and refined. Here we discuss recent progress in the understanding of the role of different phenotypes of B cells in the development of an efficacious mucosal vaccine against infectious disease. PMID:24372255

  2. Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix

    PubMed Central

    Allain, Fabrice; Vanpouille, Christophe; Carpentier, Mathieu; Slomianny, Marie-Christine; Durieux, Sandrine; Spik, Geneviève

    2002-01-01

    Cyclophilins A and B (CyPA and CyPB) are cyclosporin A-binding proteins that are involved in inflammatory events. We have reported that CyPB interacts with two types of cell-surface-binding sites. The first site corresponds to a functional receptor and requires interaction with the central core of CyPB. This region is highly conserved in cyclophilins, suggesting that CyPA and CyPB might share biological activities mediated by interaction with this receptor. The second site is identified with glycosaminoglycans (GAGs), the binding region located in the N terminus of CyPB. The difference in the N-terminal extensions of CyPA and CyPB suggests that a unique interaction with GAGs might account for selective activity of CyPB. To explore this hypothesis, we analyzed the lymphocyte responses triggered by CyPA, CyPB, and CyPBKKK−, a mutant unable to interact with GAGs. The three ligands seemed capable enough to elicit calcium signal and chemotaxis by binding to the same signaling receptor. In contrast, only CyPB enhanced firm adhesion of T cells to the extracellular matrix. This activity depended on the interactions with GAGs and signaling receptor. CyPB-mediated adhesion required CD147 presumably because it was a costimulatory molecule and was related to an activation of α4β1 and α4β7 integrins. Finally, we showed that CyPB was capable mainly to enhance T cell adhesion of the CD4+CD45RO+ subset. The present data indicate that CyPB rather than CyPA is a proinflammatory factor for T lymphocytes and highlight the crucial role of CyPB–GAG interaction in the chemokine-like activity of this protein. PMID:11867726

  3. Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix.

    PubMed

    Allain, Fabrice; Vanpouille, Christophe; Carpentier, Mathieu; Slomianny, Marie-Christine; Durieux, Sandrine; Spik, Geneviève

    2002-03-05

    Cyclophilins A and B (CyPA and CyPB) are cyclosporin A-binding proteins that are involved in inflammatory events. We have reported that CyPB interacts with two types of cell-surface-binding sites. The first site corresponds to a functional receptor and requires interaction with the central core of CyPB. This region is highly conserved in cyclophilins, suggesting that CyPA and CyPB might share biological activities mediated by interaction with this receptor. The second site is identified with glycosaminoglycans (GAGs), the binding region located in the N terminus of CyPB. The difference in the N-terminal extensions of CyPA and CyPB suggests that a unique interaction with GAGs might account for selective activity of CyPB. To explore this hypothesis, we analyzed the lymphocyte responses triggered by CyPA, CyPB, and CyPB(KKK-), a mutant unable to interact with GAGs. The three ligands seemed capable enough to elicit calcium signal and chemotaxis by binding to the same signaling receptor. In contrast, only CyPB enhanced firm adhesion of T cells to the extracellular matrix. This activity depended on the interactions with GAGs and signaling receptor. CyPB-mediated adhesion required CD147 presumably because it was a costimulatory molecule and was related to an activation of alpha4beta1 and alpha4beta7 integrins. Finally, we showed that CyPB was capable mainly to enhance T cell adhesion of the CD4+CD45RO+ subset. The present data indicate that CyPB rather than CyPA is a proinflammatory factor for T lymphocytes and highlight the crucial role of CyPB-GAG interaction in the chemokine-like activity of this protein.

  4. Low-Dose Palliative Radiotherapy for Cutaneous B- and T-Cell Lymphomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelis, Karen J.; Schimmel, Erik C.; Vermeer, Maarten H.

    Purpose: To determine the efficacy of low-dose palliative radiotherapy for both low-grade malignant cutaneous B-cell lymphomas (CBCLs) and cutaneous T-cell lymphomas (mycosis fungoides). Methods and Materials: A total of 18 patients with low-grade CBCL (10 primary cutaneous marginal zone B-cell and 8 primary cutaneous follicle center lymphomas) with 44 symptomatic plaques and tumors underwent low-dose (4 Gy in two fractions) local radiotherapy. A total of 31 patients with mycosis fungoides were treated at 82 symptomatic sites, initially with 4 Gy and later with 8 Gy in two fractions. Results: The complete response rate for CBCL lesions was 72%. Of themore » 44 B-cell lymphoma lesions, 13 were re-treated to the same site after a median of 6.3 months because of persistent (n = 8) or recurrent (n = 5) symptomatic disease. Of the mycosis fungoides patients treated with 4 Gy in two fractions (17 lesions), 70% failed to respond. Increasing the dose to 8 Gy in two fractions yielded a complete response rate of 92% (60 of 65 lesions). The patients in whom low-dose radiotherapy failed were retreated with 20 Gy in eight fractions. Conclusion: Our results have demonstrated that low-dose involved-field radiotherapy induces a high response rate in both CBCL and cutaneous T-cell lymphoma lesions without any toxicity. Therefore, this treatment is now our standard palliative treatment. At progression, it is safe and feasible to apply greater radiation doses.« less

  5. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    PubMed

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  6. Effective adoptive transfer of haploidentical tumor-specific T cells in B16-melanoma bearing mice.

    PubMed

    Cui, Nai-peng; Xie, Shao-jian; Han, Jin-sheng; Ma, Zhen-feng; Chen, Bao-ping; Cai, Jian-hui

    2012-03-01

    Adoptive transfer of allogeneic tumor-specific T cells often results in severe graft-versus-host disease (GVHD). Here, we sought to maximize graft-versus-tumor and minimize GVHD by using haploidentical T cells in pre-irradiated B16-melanoma bearing mice. C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0, 5, or 7 Gy total body irradiation (TBI), or 7 Gy TBI plus bone marrow transplantation. Tumor areas were measured every 3 days to assess the influence of irradiation treatment on tumor regression. B16-melanoma bearing mice were irradiated with 7 Gy TBI; sera and spleens were harvested at days 1, 3, 5, 7, 9, 11, and 13 after irradiation. White blood cell levels were measured and transforming growth factor β1 (TGF-b1) and interleukin 10 (IL-10) levels in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were performed to test TGF-b1, IL-10 and Foxp3 mRNA levels and the proportion of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) in spleens. B16-melanoma bearing C57BL/6 mice were irradiated with 7 Gy TBI followed by syngeneic (Syn1/Syn2) or haploidentical (Hap1/Hap2), dendritic cell-induced cytotoxic T lymphocytes (DC-CTLs) treatment, tumor areas and system GVHD were observed every 3 days. Mice were killed 21 days after the DC-CTLs adoptive transfer; histologic analyses of eyes, skin, liver, lungs, and intestine were then performed. Irradiation with 7 Gy TBI on the B16-melanoma-bearing mice did not influence tumor regression compared to the control group; however, it down-regulated the proportion of Tregs in spleens and the TGF-b1 and IL-10 levels in sera and spleens, suggesting inhibition of autoimmunity and intervention of tumor microenvironment. Adoptive transfer of haploidentical DC-CTLs significantly inhibited B16-melanoma growth. GVHD assessment and histology analysis showed no significant difference among the groups. Adoptive transfer of

  7. HLA-B*35-Restricted CD8+-T-Cell Epitope in Mycobacterium tuberculosis Rv2903c

    PubMed Central

    Klein, Michèl R.; Hammond, Abdulrahman S.; Smith, Steve M.; Jaye, Assan; Lukey, Pauline T.; McAdam, Keith P. W. J.

    2002-01-01

    Few human CD8+ T-cell epitopes in mycobacterial antigens have been described to date. Here we have identified a novel HLA-B*35-restricted CD8+ T-cell epitope in Mycobacterium tuberculosis Rv2903c based on a reverse immunogenetics approach. Peptide-specific CD8 T cells were able to kill M. tuberculosis-infected macrophages and produce gamma interferon and tumor necrosis factor alpha. PMID:11796635

  8. Tumor cell-released TLR4 ligands stimulate Gr-1+CD11b+F4/80+ cells to induce apoptosis of activated T cells.

    PubMed

    Liu, Yan-Yan; Sun, Ling-Cong; Wei, Jing-Jing; Li, Dong; Yuan, Ye; Yan, Bin; Liang, Zhi-Hui; Zhu, Hui-Fen; Xu, Yong; Li, Bo; Song, Chuan-Wang; Liao, Sheng-Jun; Lei, Zhang; Zhang, Gui-Mei; Feng, Zuo-Hua

    2010-09-01

    Gr-1(+)CD11b(+)F4/80(+) cells play important roles in tumor development and have a negative effect on tumor immunotherapy. So far, the mechanisms underlying the regulation of their immunosuppressive phenotype by classical and alternative macrophage activation stimuli are not well elucidated. In this study, we found that molecules from necrotic tumor cells (NTC-Ms) stimulated Gr-1(+)CD11b(+)F4/80(+) cells to induce apoptosis of activated T cells but not nonstimulated T cells. The apoptosis-inducing capacity was determined by higher expression levels of arginase I and IL-10 relative to those of NO synthase 2 and IL-12 in Gr-1(+)CD11b(+)F4/80(+) cells, which were induced by NTC-Ms through TLR4 signaling. The apoptosis-inducing capacity of NTC-Ms-stimulated Gr-1(+)CD11b(+)F4/80(+) cells could be enhanced by IL-10. IFN-gamma may reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells only if their response to IFN-gamma was not attenuated. However, the potential of Gr-1(+)CD11b(+)F4/80(+) cells to express IL-12 in response to IFN-gamma could be attenuated by tumor, partially due to the existence of active STAT3 in Gr-1(+)CD11b(+)F4/80(+) cells and NTC-Ms from tumor. In this situation, IFN-gamma could not effectively reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells. Tumor immunotherapy with 4-1BBL/soluble programmed death-1 may significantly reduce, but not abolish the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells in local microenvironment. Blockade of TLR4 signaling could further reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and enhance the suppressive effect of 4-1BBL/soluble form of programmed death-1 on tumor growth. These findings indicate the relationship of distinct signaling pathways with apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and emphasize the importance of blocking TLR4 signaling to prevent the induction of T cell apoptosis by Gr-1(+)CD11b(+)F4/80(+) cells.

  9. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia

    PubMed Central

    Minici, Claudia; Gounari, Maria; Übelhart, Rudolf; Scarfò, Lydia; Dühren-von Minden, Marcus; Schneider, Dunja; Tasdogan, Alpaslan; Alkhatib, Alabbas; Agathangelidis, Andreas; Ntoufa, Stavroula; Chiorazzi, Nicholas; Jumaa, Hassan; Stamatopoulos, Kostas; Ghia, Paolo; Degano, Massimo

    2017-01-01

    Cell-autonomous B-cell receptor (BcR)-mediated signalling is a hallmark feature of the neoplastic B lymphocytes in chronic lymphocytic leukaemia (CLL). Here we elucidate the structural basis of autonomous activation of CLL B cells, showing that BcR immunoglobulins initiate intracellular signalling through homotypic interactions between epitopes that are specific for each subgroup of patients with homogeneous clinicobiological profiles. The molecular details of the BcR–BcR interactions apparently dictate the clinical course of disease, with stronger affinities and longer half-lives in indolent cases, and weaker, short-lived contacts mediating the aggressive ones. The diversity of homotypic BcR contacts leading to cell-autonomous signalling reconciles the existence of a shared pathogenic mechanism with the biological and clinical heterogeneity of CLL and offers opportunities for innovative treatment strategies. PMID:28598442

  10. The distribution of IL-13 receptor alpha1 expression on B cells, T cells and monocytes and its regulation by IL-13 and IL-4.

    PubMed

    Graber, P; Gretener, D; Herren, S; Aubry, J P; Elson, G; Poudrier, J; Lecoanet-Henchoz, S; Alouani, S; Losberger, C; Bonnefoy, J Y; Kosco-Vilbois, M H; Gauchat, J F

    1998-12-01

    To study the expression of IL-13 receptor alpha1 (IL-13Ralpha1), specific monoclonal antibodies (mAb) were generated. Surface expression of the IL-13Ralpha1 on B cells, monocytes and T cells was assessed by flow cytometry using these specific mAb. Among tonsillar B cells, the expression was the highest on the IgD+ CD38- B cell subpopulation which is believed to represent naive B cells. Expression was also detectable on a large fraction of the IgD-CD38- B cells but not on CD38+ B cells. Activation under conditions which promote B cell Ig class switching up-regulated the expression of the receptor. However, the same stimuli had an opposite effect for IL-13Ralpha1 expression levels on monocytes. While IL-13Ralpha1 mRNA was clearly detectable in T cell preparations, no surface expression was detected. However, permeabilization of the T cells showed a clear intracellular expression of the receptor. A soluble form of the receptor was immunoprecipitated from the supernatant of activated peripheral T cells, suggesting that T cell IL-13Ralpha1 might have functions unrelated to the capacity to form a type II IL-4/IL-13R with IL-4Ralpha.

  11. Oct1 and OCA-B are selectively required for CD4 memory T cell function

    PubMed Central

    Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N.; Snook, Jeremy; Kuchroo, Vijay K.; Yosef, Nir; Chan, Raymond C.; Regev, Aviv

    2015-01-01

    Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory. PMID:26481684

  12. Oct1 and OCA-B are selectively required for CD4 memory T cell function.

    PubMed

    Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N; Snook, Jeremy; Kuchroo, Vijay K; Yosef, Nir; Chan, Raymond C; Regev, Aviv; Williams, Matthew A; Tantin, Dean

    2015-11-16

    Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4(+) memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4(+) T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4(+) T cell memory. © 2015 Shakya et al.

  13. Molecular analysis of antigen-independent adhesion forces between T and B lymphocytes.

    PubMed Central

    Amblard, F; Auffray, C; Sekaly, R; Fischer, A

    1994-01-01

    The low-affinity interactions underlying antigen recognition by T-cell receptors (TCRs) are thought to involve antigen-independent adhesion mechanisms. Using a hydrodynamic approach, we found that antigen-independent adhesion occurred between human B cells and resting T cells in a transient and temperature-dependent fashion. The mean cell-cell adhesion force was 0.32 x 10(-9) N and was generated by similar contributions (0.16 x 10(-9) N) of the LFA-1- and CD2-dependent adhesion pathways. After T-cell stimulation with a phorbol ester, the force contributed by LFA-1 was drastically increased, while that of CD2 was unaffected. We propose that weak receptor-mediated adhesion initiates antigen-independent intercellular contacts required for antigen recognition by the TCR and is upregulated following TCR engagement. The method used permits adhesion forces between living cells to be resolved at the molecular level and should prove valuable for the rapid assessment of interaction forces between various types of cells and cell-sized particles. Images PMID:7909604

  14. Exposure of a distinct PDCA-1+ (CD317) B cell population to agonistic anti-4-1BB (CD137) inhibits T and B cell responses both in vitro and in vivo.

    PubMed

    Vinay, Dass S; Lee, Seung J; Kim, Chang H; Oh, Ho Sik; Kwon, Byoung S

    2012-01-01

    4-1BB (CD137) is an important T cell activating molecule. Here we report that it also promotes development of a distinct B cell subpopulation co-expressing PDCA-1. 4-1BB is expressed constitutively, and its expression is increased when PDCA-1(+) B cells are activated. We found that despite a high level of surface expression of 4-1BB on PDCA-1(+) B cells, treatment of these cells with agonistic anti-4-1BB mAb stimulated the expression of only a few activation markers (B7-2, MHC II, PD-L2), cytokines (IL-12p40/p70), and chemokines (MCP-1, RANTES), as well as sTNFR1, and the immunosuppressive enzyme, IDO. Although the PDCA-1(+) B cells stimulated by anti-4-1BB expressed MHC II at high levels and took up antigens efficiently, Ig class switching was inhibited when they were pulsed with T-independent (TI) or T-dependent (TD) Ags and adoptively transferred into syngeneic recipients. Furthermore, when anti-4-1BB-treated PDCA-1(+) B cells were pulsed with OVA peptide and combined with Vα2(+)CD4(+) T cells, Ag-specific cell division was inhibited both in vitro and in vivo. Our findings suggest that the 4-1BB signal transforms PDCA-1(+) B cells into propagators of negative immune regulation, and establish an important role for 4-1BB in PDCA-1(+) B cell development and function.

  15. Cutting Edge: Increased Autoimmunity Risk in Glycogen Storage Disease Type 1b Is Associated with a Reduced Engagement of Glycolysis in T Cells and an Impaired Regulatory T Cell Function.

    PubMed

    Melis, Daniela; Carbone, Fortunata; Minopoli, Giorgia; La Rocca, Claudia; Perna, Francesco; De Rosa, Veronica; Galgani, Mario; Andria, Generoso; Parenti, Giancarlo; Matarese, Giuseppe

    2017-05-15

    Glycogen storage disease type 1b (GSD-1b) is an autosomal-recessive disease caused by mutation of glucose-6-phosphate transporter and characterized by altered glycogen/glucose homeostasis. A higher frequency of autoimmune diseases has been observed in GSD-1b patients, but the molecular determinants leading to this phenomenon remain unknown. To address this question, we investigated the effect of glucose-6-phosphate transporter mutation on immune cell homeostasis and CD4 + T cell functions. In GSD-1b subjects, we found lymphopenia and a reduced capacity of T cells to engage glycolysis upon TCR stimulation. These phenomena associated with reduced expression of the FOXP3 transcription factor, lower suppressive function in peripheral CD4 + CD25 + FOXP3 + regulatory T cells, and an impaired capacity of CD4 + CD25 - conventional T cells to induce expression of FOXP3 after suboptimal TCR stimulation. These data unveil the metabolic determinant leading to an increased autoimmunity risk in GSD-1b patients. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. CD1d expression on chronic lymphocytic leukemia B cells affects disease progression and induces T cell skewing in CD8 positive and CD4CD8 double negative T cells.

    PubMed

    Zaborsky, Nadja; Gassner, Franz Josef; Asslaber, Daniela; Reinthaler, Petra; Denk, Ursula; Flenady, Sabine; Hofbauer, Josefina Piñón; Danner, Barbara; Rebhandl, Stefan; Harrer, Andrea; Geisberger, Roland; Greil, Richard; Egle, Alexander

    2016-08-02

    Chronic lymphocytic leukemia develops within a complex network driven by genetic mutations and microenvironmental interactions. Among the latter a complex interplay with the immune system is established by the clone. Next to a proposed recruitment of support from T and myeloid cells, potential anti-CLL immune reactions need to be subverted. By using TCL1 mice as a CLL model, we show that TCR-Vβ7+ NK1.1+ T cells are overrepresented in this disease model and constitute a main subset of peripheral CD3+ cells with biased TCR usage, showing that these cells account for a major part for T cell skewing in TCL1 mice. Moreover, we show that overrepresentation is dependent on CD1d expression in TCL1 mice, implicating that these cells belong to a NKT-like cell fraction which are restricted to antigen presented by the MHC-like surface marker CD1d. Accordingly, we observed a high fraction of CD161+ cells within overrepresented T cells in CLL patients and we found downregulation of CD1d on the surface of CLL cells, both in TCL1 mice and patients. Finally, we show that in TCL1 mice, CD1d deficiency resulted in shortened overall survival. Our results point to an interaction between CLL and CD161+ T cells that may represent a novel therapeutic target for immune modulation.

  17. Decoy receptor 3 attenuates collagen-induced arthritis by modulating T cell activation and B cell expansion.

    PubMed

    Cheng, Chia-Pi; Sytwu, Huey-Kang; Chang, Deh-Ming

    2011-12-01

    To investigate the immune-modulated effects of decoy receptor 3 (DCR3) in an experimental model of rheumatoid arthritis (RA). We delivered DCR3 plasmid into collagen-induced arthritis (CIA) mice using the hydrodynamic method and evaluated the serum level of DCR3 protein by ELISA. After immunization, we assessed disease severity of arthritis incidence, arthritis scores, paw thickness, and means of arthritic limbs, and used hematoxylin and eosin staining to observe synovial hyperplasia. We analyzed numbers of murine splenocytes and inguinal lymphocyte cells, cell populations, and serum proinflammatory cytokines by flow cytometry. We investigated B cell proliferation by carboxyfluorescein succinimidyl ester assay. We evaluated serum levels of total IgG2a and type II collagen-specific IgG and IgG2a using ELISA. DCR3 expression in sera significantly attenuated disease severity in CIA mice. We found that DCR3 inhibited the volume of inguinal lymph nodes, numbers of CD19+ B cells, and populations of interferon-γ, interleukin 4 (IL-4), IL-17A, and Foxp3-producing CD4+ T cell in vivo. We found that DCR3 inhibited Pam3CSK4 (Toll-like receptor 1/2 ligand)-induced B220+ B cell proliferation in vitro. DCR3 treatment reduced the serum level of IL-6, total IgG2a, and CII-specific IgG2a antibody. We postulated that the protective effects of DCR3 in CIA resulted from modulation of the immune system by maintaining the B/T cell balance and decreasing lymphocyte expansion. We suggest DCR3 as a prophylactic and potential therapeutic agent in the treatment of RA.

  18. T-dependence of human B lymphocyte proliferative response to mitogens.

    PubMed

    Brochier, J; Samarut, C; Gueho, J P; Revillard, J P

    1976-01-01

    Human peripheral blood and tonsil lymphocytes were fractionated on anti-Ig-coated Sephadex columns or by centrifugation after rosetting with native sheep erythrocytes. Both methods allowed the recovery of B and T-enriched populations the purity of which was checked by fluorescein-labelled anti-Ig serum, E and EAC rosette formation, and heterologous antisera specific for B or T lymphocytes. The proliferative response of T cells to PHA, Con A, PWM, and ALS was not found different from that of unfractionated cells, whereas no response of the B cells could be observed to these mitogens providing that no contaminating T cells were present. Addition of T lymphocytes to these unresponsive B cells allowed them to respond to phytomitogens, but not to ALS. X-irradiated T cells could, to some extent, replace the diving T lymphocytes; no T-replacing factor could be found in cell-free supernatants from T cells, whether or not they had been activated by mitrogens. This model of B-T cooperation appears useful for studying the differentiation and maturation of human B lymphocytes.

  19. Restricted Protein Phosphatase 2A Targeting by Merkel Cell Polyomavirus Small T Antigen

    PubMed Central

    Kwun, Hyun Jin; Shuda, Masahiro; Camacho, Carlos J.; Gamper, Armin M.; Thant, Mamie; Chang, Yuan

    2015-01-01

    ABSTRACT Merkel cell polyomavirus (MCV) is a newly discovered human cancer virus encoding a small T (sT) oncoprotein. We performed MCV sT FLAG-affinity purification followed by mass spectroscopy (MS) analysis, which identified several protein phosphatases (PP), including PP2A A and C subunits and PP4C, as potential cellular interacting proteins. PP2A targeting is critical for the transforming properties of nonhuman polyomaviruses, such as simian virus 40 (SV40), but is not required for MCV sT-induced rodent cell transformation. We compared similarities and differences in PP2A binding between MCV and SV40 sT. While SV40 sT coimmunopurified with subunits PP2A Aα and PP2A C, MCV sT coimmunopurified with PP2A Aα, PP2A Aβ, and PP2A C. Scanning alanine mutagenesis at 29 sites across the MCV sT protein revealed that PP2A-binding domains lie on the opposite molecular surface from a previously described large T stabilization domain (LSD) loop that binds E3 ligases, such as Fbw7. MCV sT-PP2A interactions can be functionally distinguished by mutagenesis from MCV sT LSD-dependent 4E-BP1 hyperphosphorylation and viral DNA replication enhancement. MCV sT has a restricted range for PP2A B subunit substitution, inhibiting only the assembly of B56α into the phosphatase holoenzyme. In contrast, SV40 sT inhibits the assembly of B55α, B56α and B56ε into PP2A. We conclude that MCV sT is required for Merkel cell carcinoma growth, but its in vitro transforming activity depends on LSD interactions rather than PP2A targeting. IMPORTANCE Merkel cell polyomavirus is a newly discovered human cancer virus that promotes cancer, in part, through expression of its small T (sT) oncoprotein. Animal polyomavirus sT oncoproteins have been found to cause experimental tumors by blocking the activities of a group of phosphatases called protein phosphatase 2A (PP2A). Our structural analysis reveals that MCV sT also displaces the B subunit of PP2A to inhibit PP2A activity. MCV sT, however, only

  20. The proliferative response of cloned Peyer's patch switch T cells to syngeneic and allogeneic stimuli.

    PubMed

    Kawanishi, H; Ozato, K; Strober, W

    1985-06-01

    We previously defined a concanavalin A (Con A)-induced cloned T cell population in Peyer's patches (PP) that causes sIgM-bearing B cells to switch to sIgA-bearing B cells. In the present study we show that such IgA-specific switch T cells proliferate when exposed to syngeneic stimulator cells, i.e., the switch T cells are autoreactive. Detailed study of this phenomenon disclosed that both B cells and macrophages were capable of causing switch T cell proliferation, and in both cases, stimulation was enhanced by preactivation of the stimulator cells with lipopolysaccharide (LPS). In addition, fresh T cells can act as stimulators, but only if preactivated with Con A. Finally, it was clearly shown in blocking studies with the use of various antibodies directed at class II MHC specificities that class II MHC antigens were the stimulatory determinants. These studies suggest that IgA-specific switch T cells arise in PP as a result of autologous cell-cell interactions with activated (antigen-stimulated) B cells, macrophages, or T cells.

  1. CD147 stimulates hepatoma cells escaping from immune surveillance of T cells by interaction with Cyclophilin A.

    PubMed

    Ren, Yi-Xin; Wang, Shu-Jing; Fan, Jian-Hui; Sun, Shi-Jie; Li, Xia; Padhiar, Arshad Ahmed; Zhang, Jia-Ning

    2016-05-01

    T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. B cell helper factors. II. Synergy among three helper factors in the response of T cell- and macrophage-depleted B cells.

    PubMed

    Liebson, H J; Marrack, P; Kappler, J

    1982-10-01

    The concanavalin A- (Con A) stimulated supernatant of normal spleen cells (normal Con A SN) was shown to contain a set of helper factors sufficient to allow T cell- and macrophage- (M phi) depleted murine splenic B cells to produce a plaque-forming cell response to the antigen sheep red blood cells (SRBC). The activity of normal Con A SN could be reconstituted by a mixture of three helper factor preparations. The first was the interleukin 2- (IL 2) containing Con A SN of the T cell hybridoma, FS6-14.13. The second was a normal Con A SN depleted of IL 2 by extended culture with T cell blasts from which the 30,000 to 50,000 m.w. factors were isolated (interleukin X, IL X). The third was a SN either from the M phi tumor cell line P388D1 or from normal M phi taken from Corynebacterium parvum-immune mice. The combination of all three helper factor preparations was required to equal the activity of normal Con A SN; however, the M phi SN had the least overall effect. The M phi SN and IL 2 had to be added at the initiation of the culture period for a maximal effect, but the IL X preparation was most effective when added 24 hr after the initiation of culture. These results indicate that at least three nonspecific helper factors contribute to the helper activity in normal Con A SN.

  3. TCRγδ+CD4−CD8− T Cells Suppress the CD8+ T-Cell Response to Hepatitis B Virus Peptides, and Are Associated with Viral Control in Chronic Hepatitis B

    PubMed Central

    Lai, Qintao; Ma, Shiwu; Ge, Jun; Huang, Zuxiong; Huang, Xuan; Jiang, Xiaotao; Li, Yongyin; Zhang, Mingxia; Zhang, Xiaoyong; Sun, Jian; Abbott, William G. H.; Hou, Jinlin

    2014-01-01

    The immune mechanisms underlying failure to achieve hepatitis B e antigen (HBeAg) seroconversion associated with viral control in chronic hepatitis B (CHB) remain unclear. Here we investigated the role of CD4−CD8− T (double-negative T; DNT) cells including TCRαβ+ DNT (αβ DNT) and TCRγδ+ DNT (γδ DNT) cells. Frequencies of circulating DNT cell subsets were measured by flow cytometry in a retrospective cohort of 51 telbivudine-treated HBeAg-positive CHB patients, 25 immune tolerant carriers (IT), 33 inactive carriers (IC), and 37 healthy controls (HC). We found that γδ DNT cell frequencies did not significantly change during treatment, being lower at baseline (P = 0.019) in patients with HBeAg seroconversion after 52 weeks of antiviral therapy (n = 20) than in those without (n = 31), and higher in the total CHB and IT than IC and HC groups (P<0.001). αβ DNT cell frequencies were similar for all groups. In vitro, γδ DNT cells suppressed HBV core peptide-stimulated interferon-γ and tumor necrosis factor-α production in TCRαβ+CD8+ T cells, which may require cell–cell contact, and could be partially reversed by anti-NKG2A. These findings suggest that γδ DNT cells limit CD8+ T cell response to HBV, and may impede HBeAg seroconversion in CHB. PMID:24551107

  4. Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes.

    PubMed

    McKinsey, T A; Chu, Z; Tedder, T F; Ballard, D W

    2000-01-01

    The immunoglobulin superfamily member CD83 is expressed on the surface of mature dendritic cells that present processed antigens to T lymphocytes. In addition, T cells acquire CD83 expression following mitogenic stimulation in vitro. Here we report two lines of evidence demonstrating that this inducible lymphocyte response is genetically programmed by transcription factor NF-kappaB and contingent upon proteolytic breakdown of its cytoplasmic inhibitor IkappaBalpha. First, signal-dependent induction of CD83 mRNA expression is blocked in both transformed and primary T cells harboring a degradation-resistant mutant of IkappaBalpha that constitutively represses NF-kappaB. Second, as revealed in gel retardation assays, the IkappaBalpha constitutive repressor prevents the inducible interaction of NF-kappaB with consensus recognition sites identified in the CD83 promoter. Given that IkappaBalpha is functionally coupled to the T-cell antigen receptor, these findings suggest that the downstream transcription unit for CD83 is triggered by NF-kappaB during an adaptive immune response.

  5. CD19/CD22 Chimeric Antigen Receptor T Cells and Chemotherapy in Treating Patients With Recurrent or Refractory CD19 Positive Diffuse Large B-Cell Lymphoma or B Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2018-01-25

    B Acute Lymphoblastic Leukemia; CD19 Positive; Diffuse Large B-Cell Lymphoma Associated With Chronic Inflammation; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; Epstein-Barr Virus Positive Diffuse Large B-Cell Lymphoma of the Elderly; Minimal Residual Disease; Philadelphia Chromosome Positive; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; T-Cell/Histiocyte-Rich Large B-Cell Lymphoma

  6. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells

    PubMed Central

    Alexander-Savino, Carolina V.; Hayden, Matthew S.; Richardson, Christopher; Zhao, Jiyong; Poligone, Brian

    2016-01-01

    Cutaneous T-cell Lymphoma (CTCL) is a rare non-Hodgkin's lymphoma that can affect the skin, blood, and lymph nodes, and can metastasize at late stages. Novel therapies that target all affected disease compartments and provide longer lasting responses while being safe are needed. One potential therapeutic target is NF-λB, a regulator of immune responses and an important participant in carcinogenesis and cancer progression. As a transcription factor, NF-λB targets genes that promote cell proliferation and survival. Constitutive or aberrant activation of NF-λB is encountered in many types of cancer, including CTCL. Recently, while analyzing gene-expression profiles of a variety of small molecule compounds that target NF-λB, we discovered the tetracycline family of antibiotics, including doxycycline, to be potent inhibitors of the NF-λB pathway. Doxycycline is well-tolerated, safe, and inexpensive; and is commonly used as an antibiotic and anti-inflammatory for the treatment a multitude of medical conditions. In our current study, we show that doxycycline induces apoptosis in a dose dependent manner in multiple different cell lines from patients with the two most common subtypes of CTCL, Mycosis Fungoides (MF) and Sézary Syndrome (SS). Similar results were found using primary CD4+ T cells from a patient with SS. Doxycycline inhibits TNF induced NF-λB activation and reduces expression of NF-λB dependent anti-apoptotic proteins, such as BCL2α. Furthermore, we have identified that doxycycline induces apoptosis through reactive oxygen species. PMID:27732942

  7. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells.

    PubMed

    Alexander-Savino, Carolina V; Hayden, Matthew S; Richardson, Christopher; Zhao, Jiyong; Poligone, Brian

    2016-11-15

    Cutaneous T-cell Lymphoma (CTCL) is a rare non-Hodgkin's lymphoma that can affect the skin, blood, and lymph nodes, and can metastasize at late stages. Novel therapies that target all affected disease compartments and provide longer lasting responses while being safe are needed. One potential therapeutic target is NF-κB, a regulator of immune responses and an important participant in carcinogenesis and cancer progression. As a transcription factor, NF-κB targets genes that promote cell proliferation and survival. Constitutive or aberrant activation of NF-κB is encountered in many types of cancer, including CTCL.Recently, while analyzing gene-expression profiles of a variety of small molecule compounds that target NF-κB, we discovered the tetracycline family of antibiotics, including doxycycline, to be potent inhibitors of the NF-κB pathway. Doxycycline is well-tolerated, safe, and inexpensive; and is commonly used as an antibiotic and anti-inflammatory for the treatment a multitude of medical conditions.In our current study, we show that doxycycline induces apoptosis in a dose dependent manner in multiple different cell lines from patients with the two most common subtypes of CTCL, Mycosis Fungoides (MF) and Sézary Syndrome (SS). Similar results were found using primary CD4+ T cells from a patient with SS. Doxycycline inhibits TNF induced NF-κB activation and reduces expression of NF-κB dependent anti-apoptotic proteins, such as BCL2α. Furthermore, we have identified that doxycycline induces apoptosis through reactive oxygen species.

  8. Deficient EBV-specific B- and T-cell response in patients with chronic fatigue syndrome.

    PubMed

    Loebel, Madlen; Strohschein, Kristin; Giannini, Carolin; Koelsch, Uwe; Bauer, Sandra; Doebis, Cornelia; Thomas, Sybill; Unterwalder, Nadine; von Baehr, Volker; Reinke, Petra; Knops, Michael; Hanitsch, Leif G; Meisel, Christian; Volk, Hans-Dieter; Scheibenbogen, Carmen

    2014-01-01

    Epstein-Barr virus (EBV) has long been discussed as a possible cause or trigger of Chronic Fatigue Syndrome (CFS). In a subset of patients the disease starts with infectious mononucleosis and both enhanced and diminished EBV-specific antibody titers have been reported. In this study, we comprehensively analyzed the EBV-specific memory B- and T-cell response in patients with CFS. While we observed no difference in viral capsid antigen (VCA)-IgG antibodies, EBV nuclear antigen (EBNA)-IgG titers were low or absent in 10% of CFS patients. Remarkably, when analyzing the EBV-specific memory B-cell reservoir in vitro a diminished or absent number of EBNA-1- and VCA-antibody secreting cells was found in up to 76% of patients. Moreover, the ex vivo EBV-induced secretion of TNF-α and IFN-γ was significantly lower in patients. Multicolor flow cytometry revealed that the frequencies of EBNA-1-specific triple TNF-α/IFN-γ/IL-2 producing CD4(+) and CD8(+) T-cell subsets were significantly diminished whereas no difference could be detected for HCMV-specific T-cell responses. When comparing EBV load in blood immune cells, we found more frequently EBER-DNA but not BZLF-1 RNA in CFS patients compared to healthy controls suggesting more frequent latent replication. Taken together, our findings give evidence for a deficient EBV-specific B- and T-cell memory response in CFS patients and suggest an impaired ability to control early steps of EBV reactivation. In addition the diminished EBV response might be suitable to develop diagnostic marker in CFS.

  9. Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300.

    PubMed

    Bex, F; Yin, M J; Burny, A; Gaynor, R B

    1998-04-01

    The human T-cell leukemia virus type 1 Tax protein transforms human T lymphocytes, which can lead to the development of adult T-cell leukemia. Tax transformation is related to its ability to activate gene expression via the ATF/CREB and the NF-kappaB pathways. Transcriptional activation of these pathways is mediated by the actions of the related coactivators CREB binding protein (CBP) and p300. In this study, immunocytochemistry and confocal microscopy were used to localize CBP and p300 in cells expressing wild-type Tax or Tax mutants that are able to selectively activate gene expression from either the NF-kappaB or ATF/CREB pathway. Wild-type Tax colocalized with both CBP and p300 in nuclear bodies which also contained ATF-1 and the RelA subunit of NF-kappaB. However, a Tax mutant that selectively activates gene expression from only the ATF/CREB pathway colocalized with CBP but not p300, while a Tax mutant that selectively activates gene expression from only the NF-kappaB pathway colocalized with p300 but not CBP. In vitro and in vivo protein interaction studies indicated that the integrity of two independent domains of Tax delineated by these mutants was involved in the direct interaction of Tax with either CBP or p300. These studies are consistent with a model in which activation of either the NF-kappaB or the ATF/CREB pathway by specific Tax mutants is mediated by distinct interactions with related coactivator proteins.

  10. Donor Vδ1+ γδ T cells expand after allogeneic hematopoietic stem cell transplantation and show reactivity against CMV-infected cells but not against progressing B-CLL.

    PubMed

    Prinz, Immo; Thamm, Kristina; Port, Matthias; Weissinger, Eva M; Stadler, Michael; Gabaev, Ildar; Jacobs, Roland; Ganser, Arnold; Koenecke, Christian

    2013-05-11

    γδ T lymphocytes play an important role in immune reactions towards infections and malignancies. In particular, Vγ9-Vδ1+ T lymphocytes are thought to play protective antiviral roles in human CMV infection. Recently, Vδ1+ T lymphocytes were proposed to also have anti- B-CLL reactivity. Here we report a case of 48-year-old man who received allogeneic stem cell transplantation for progressive B-CLL. Within one year after transplantation, lymphoma relapsed despite a dramatic increase of Vδ1+ T cells in the patient's blood. In vitro killing assays revealed activity of patient's γδ cells against CMV target cells, but not against the relapsing lymphoma-cells. This argues for a contribution of Vδ1+ cells in the immune reaction against CMV reactivation, but does not support a strong correlation of expanded Vδ1+ T cells and favorable disease outcome in B-CLL patients.

  11. Interaction of rotavirus with human peripheral blood mononuclear cells: plasmacytoid dendritic cells play a role in stimulating memory rotavirus specific T cells in vitro.

    PubMed

    Mesa, Martha C; Rodríguez, Luz-Stella; Franco, Manuel A; Angel, Juana

    2007-09-15

    We studied the interaction of RV with human peripheral blood mononuclear cells (PBMC) from adult volunteers. After exposure of PBMC to rhesus RV (RRV), T and B lymphocytes, NK cells, monocytes, and myeloid and plasmacytoid dendritic cells expressed RV non-structural proteins, at variable levels. Expression of these RV proteins was abolished if infection was done in the presence of anti-VP7 neutralizing antibodies or 10% autologous serum. Supernatants of RRV exposed PBMC contained TNF-alpha, IL-6, IFN-alpha, IFN-gamma, IL-2 and IL-10. Plasmacytoid DC were found to be the main source of IFN-alpha production, and in their absence the production of IFN-gamma and the frequency of RV specific T cells that secrete IFN-gamma diminished. Finally, we could not detect RV-antigen associated with the PBMC or expression of RV non-structural proteins in PBMC of acutely RV-infected children. Thus, although PBMC are susceptible to the initial steps of RV infection, most PBMC of children with RV-gastroenteritis are not infected.

  12. Heat shock protein 70 (Hsp70) interacts with the Notch1 intracellular domain and contributes to the activity of Notch signaling in myelin-reactive CD4 T cells.

    PubMed

    Juryńczyk, Maciej; Lewkowicz, Przemysław; Domowicz, Małgorzata; Mycko, Marcin P; Selmaj, Krzysztof W

    2015-10-15

    Notch receptors (Notch1-4) are involved in the differentiation of CD4 T cells and the development of autoimmunity. Mechanisms regulating Notch signaling in CD4 T cells are not fully elucidated. In this study we investigated potential crosstalk between Notch pathway molecules and heat shock protein 70 (Hsp70), the major intracellular chaperone involved in the protein transport during immune responses and other stress conditions. Using Hsp70(-/-) mice we found that Hsp70 is critical for up-regulation of NICD1 and induction of Notch target genes in Jagged1- and Delta-like1-stimulated CD4 T cells. Co-immunoprecipitation analysis of wild-type CD4 T cells stimulated with either Jagged1 or Delta-like1 showed a direct interaction between NICD1 and Hsp70. Both molecules co-localized within the nucleus of CD4 T cells stimulated with Notch ligands. Molecular interaction and nuclear colocalization of NICD1 and Hsp70 were also detected in CD4 T cells reactive against myelin oligodendrocyte glycoprotein (MOG)35-55, which showed Hsp70-dependent up-regulation of both NICD1 and Notch target genes. In conclusion, we demonstrate for the first time that Hsp70 interacts with NICD1 and contributes to the activity of Notch signaling in CD4 T cells. Interaction between Hsp70 and NICD1 may represent a novel mechanism regulating Notch signaling in activated CD4 T cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Homeostatic regulation of T cell trafficking by a B cell-derived peptide is impaired in autoimmune and chronic inflammatory disease.

    PubMed

    Chimen, Myriam; McGettrick, Helen M; Apta, Bonita; Kuravi, Sahithi J; Yates, Clara M; Kennedy, Amy; Odedra, Arjun; Alassiri, Mohammed; Harrison, Matthew; Martin, Ashley; Barone, Francesca; Nayar, Saba; Hitchcock, Jessica R; Cunningham, Adam F; Raza, Karim; Filer, Andrew; Copland, David A; Dick, Andrew D; Robinson, Joseph; Kalia, Neena; Walker, Lucy S K; Buckley, Christopher D; Nash, Gerard B; Narendran, Parth; Rainger, G Ed

    2015-05-01

    During an inflammatory response, lymphocyte recruitment into tissue must be tightly controlled because dysregulated trafficking contributes to the pathogenesis of chronic disease. Here we show that during inflammation and in response to adiponectin, B cells tonically inhibit T cell trafficking by secreting a peptide (PEPITEM) proteolytically derived from 14.3.3 zeta delta (14.3.3.ζδ) protein. PEPITEM binds cadherin-15 on endothelial cells, promoting synthesis and release of sphingosine-1 phosphate, which inhibits trafficking of T cells without affecting recruitment of other leukocytes. Expression of adiponectin receptors on B cells and adiponectin-induced PEPITEM secretion wanes with age, implying immune senescence of the pathway. Additionally, these changes are evident in individuals with type 1 diabetes or rheumatoid arthritis, and circulating PEPITEM in patient serum is reduced compared to that of healthy age-matched donors. In both diseases, tonic inhibition of T cell trafficking across inflamed endothelium is lost. Control of patient T cell trafficking is re-established by treatment with exogenous PEPITEM. Moreover, in animal models of peritonitis, hepatic ischemia-reperfusion injury, Salmonella infection, uveitis and Sjögren's syndrome, PEPITEM reduced T cell recruitment into inflamed tissues.

  14. Homeostatic regulation of T cell trafficking by a B cell derived peptide is impaired in autoimmune and chronic inflammatory disease

    PubMed Central

    Apta, Bonita; Kuravi, Sahithi J.; Yates, Clara M.; Kennedy, Amy; Odedra, Arjun; Alassiri, Mohammed; Harrison, Matthew; Martin, Ashley; Barone, Francesca; Nayar, Saba; Hitchcock, Jessica R.; Cunningham, Adam F.; Raza, Karim; Filer, Andrew; Copland, David A.; Dick, Andrew D.; Robinson, Joseph; Kalia, Neena; Walker, Lucy S. K.; Buckley, Christopher D.; Nash, Gerard B.; Narendran, Parth; Rainger, G. Ed.

    2015-01-01

    During an inflammatory response, lymphocyte recruitment into tissue must be tightly controlled because dysregulated trafficking contributes to the pathogenesis of chronic disease. Here we show that during inflammation and in response to adiponectin, B cells tonically inhibit T cell trafficking by secreting a peptide (PEPITEM) proteolytically derived from 14.3.3.ζδ protein. PEPITEM binds cadherin-15 on endothelial cells, promoting synthesis and release of sphingosine-1 phosphate, which inhibits trafficking of T cells without affecting recruitment of other leukocytes. Expression of adiponectin receptors on B cells and adiponectin induced PEPITEM secretion wanes with age, implying immune senescence of the pathway. Additionally, these changes are evident in individuals with type-1-diabetes or rheumatoid arthritis, and circulating PEPITEM in patient serum is reduced compared to healthy age matched donors. In both diseases, tonic inhibition of T cell trafficking across inflamed endothelium is lost. Importantly, control of patient T cell trafficking is re-established by exogenous PEPITEM. Moreover, in animal models of peritonitis, hepatic I/R injury, Salmonella infection, Uveitis and Sjögren’s Syndrome, PEPITEM could reduce T cell recruitment into inflamed tissues. PMID:25894827

  15. The interaction of gamma delta T cells with activated macrophages is a property of the V gamma 1 subset.

    PubMed

    Dalton, Jane E; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2003-12-15

    Immunoregulation is an emerging paradigm of gammadelta T cell function. The mechanisms by which gammadelta T cells mediate this function, however, are not clear. Studies have identified a direct role for gammadelta T cells in resolving the host immune response to infection, by eliminating populations of activated macrophages. The aim of this study was to identify macrophage-reactive gammadelta T cells and establish the requirements/outcomes of macrophage-gammadelta T cell interactions during the immune response to the intracellular bacterium, Listeria monocytogenes (Lm). Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta(-/-) mice were incubated with splenocytes from naive and Lm-infected alphabeta/gammadelta T cell-deficient and wild-type mice, the ability to bind macrophages was shown to be restricted to gammadelta T cells and the GV5S1 (Vgamma1) subset of gammadelta T cells. Macrophage adherence resulted in a 4- to 10-fold enrichment of Vgamma1(+) T cells. Enrichment of Vgamma1 T cells was dependent upon the activation status of macrophages, but independent of the activation status of gammadelta T cells. Vgamma1 T cells were cytotoxic for activated macrophages with both the binding to and killing of macrophages being TCR dependent because anti-TCRgammadelta Abs inhibited both Vgamma1 binding and killing activities. These studies establish the identity of macrophage cytotoxic gammadelta T cells, the conditions under which this interaction occurs, and the outcome of this interaction. These findings are concordant with the involvement of Vgamma1 T cells in macrophage homeostasis during the resolution of pathogen-mediated immune responses.

  16. Investigation of the Cry4B-prohibitin interaction in Aedes aegypti cells.

    PubMed

    Kuadkitkan, Atichat; Smith, Duncan R; Berry, Colin

    2012-10-01

    Bacillus thuringiensis (Bt) produces insecticidal toxins active against insects. Cry4B, one of the major insecticidal toxins produced by Bt subsp. israelensis, is highly toxic to mosquitoes in the genus Aedes: the major vectors of dengue, yellow fever, and chikungunya. Previous work has shown that Cry4B binds to several mid-gut membrane proteins in Aedes aegypti larvae including prohibitin, a protein recently identified as a receptor that also mediates entry of dengue virus into Aedes cells. This study confirms the interaction between Cry4B and prohibitin by co-immunoprecipitation analysis and demonstrates colocalization of prohibitin and Cry4B by confocal microscopy. While activated Cry4B toxin showed high larvicidal activity, it was not cytotoxic to two Aedes cell lines, allowing determination of its effect on dengue virus infectivity in the absence of Cry4B-induced cell lysis. Pre-exposure of Aedes cells to Cry4B resulted in a significant reduction in the number of infected cells compared to untreated cells.

  17. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Zhanshan; Qian, Guangfang; Zang, Yan

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis ofmore » primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.« less

  18. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response.

    PubMed

    Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark

    2003-08-15

    NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.

  19. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    PubMed

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  20. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    PubMed

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. B cells in T Follicular Helper Cell Development and Function: Separable Roles in Delivery of ICOS Ligand and Antigen

    PubMed Central

    Weinstein, Jason S.; Bertino, Sarah A.; Hernandez, Sairy G.; Poholek, Amanda C.; Teplitzky, Taylor B.; Nowyhed, Heba N.; Craft, Joe

    2014-01-01

    B cells are required for follicular helper T (Tfh) cell development, as is the ligand for ICOS (ICOS-L); however, the separable contributions of Ag and ICOS-L delivery by cognate B cells to Tfh-cell development and function are unknown. We find that Tfh-cell and germinal center differentiation are dependent upon cognate B-cell display of ICOS-L, but only when Ag presentation by the latter is limiting, with the requirement for B-cell expression of ICOS-L overcome by robust Ag delivery. These findings demonstrate that Ag-specific B cells provide different, yet compensatory signals for Tfh-cell differentiation, while reconciling conflicting data indicating a requirement for ICOS-L expression on cognate B cells for Tfh-cell development with those demonstrating this requirement could be bypassed in lieu of that tendered by non-cognate B cells. Our findings clarify the separable roles of delivery of Ag and ICOS-L by cognate B cells for Tfh-cell maturation and function, and have implications for using therapeutic ICOS blockade in settings of abundantly available Ag, such as in systemic autoimmunity. PMID:24610013

  2. Dynamic Interaction- and Phospho-Proteomics Reveal Lck as a Major Signaling Hub of CD147 in T Cells.

    PubMed

    Supper, Verena; Hartl, Ingrid; Boulègue, Cyril; Ohradanova-Repic, Anna; Stockinger, Hannes

    2017-03-15

    Numerous publications have addressed CD147 as a tumor marker and regulator of cytoskeleton, cell growth, stress response, or immune cell function; however, the molecular functionality of CD147 remains incompletely understood. Using affinity purification, mass spectrometry, and phosphopeptide enrichment of isotope-labeled peptides, we examined the dynamic of the CD147 microenvironment and the CD147-dependent phosphoproteome in the Jurkat T cell line upon treatment with T cell stimulating agents. We identified novel dynamic interaction partners of CD147 such as CD45, CD47, GNAI2, Lck, RAP1B, and VAT1 and, furthermore, found 76 CD147-dependent phosphorylation sites on 57 proteins. Using the STRING protein network database, a network between the CD147 microenvironment and the CD147-dependent phosphoproteins was generated and led to the identification of key signaling hubs around the G proteins RAP1B and GNB1, the kinases PKCβ, PAK2, Lck, and CDK1, and the chaperone HSPA5. Gene ontology biological process term analysis revealed that wound healing-, cytoskeleton-, immune system-, stress response-, phosphorylation- and protein modification-, defense response to virus-, and TNF production-associated terms are enriched within the microenvironment and the phosphoproteins of CD147. With the generated signaling network and gene ontology biological process term grouping, we identify potential signaling routes of CD147 affecting T cell growth and function. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    PubMed Central

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID

  4. Phage display of functional αβ single-chain T-cell receptor molecules specific for CD1b:Ac₂SGL complexes from Mycobacterium tuberculosis-infected cells.

    PubMed

    Camacho, Frank; Huggett, Jim; Kim, Louise; Infante, Juan F; Lepore, Marco; Perez, Viviana; Sarmiento, María E; Rook, Graham; Acosta, Armando

    2013-01-01

    The development of molecules specific for M. tuberculosis-infected cells has important implications, as these tools may facilitate understanding of the mechanisms regulating host pathogen interactions in vivo. In addition, development of new tools capable to targeting M. tuberculosis-infected cells may have potential applications to diagnosis, treatment, and prevention of tuberculosis (TB). Due to the lack of CD1b polymorphism, M. tuberculosis lipid-CD1b complexes could be considered as universal tuberculosis infection markers. The aim of the present study was to display on the PIII surface protein of m13 phage, a human αβ single-chain T-cell receptor molecule specific for CD1b:2-stearoyl-3-hydroxyphthioceranoyl-2´-sulfate-α-α´-D-trehalose (Ac₂SGL) which is a complex presented by human cells infected with M. tuberculosis. The results showed the pIII fusion particle was successfully displayed on the phage surface. The study of the recognition of the recombinant phage in ELISA and immunohistochemistry showed the recognition of CD1b:Ac₂SGL complexes and cells in human lung tissue from a tuberculosis patient respectively, suggesting the specific recognition of the lipid-CD1b complex.

  5. Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK.

    PubMed

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M; Wojcik, Jerome; Kozyrev, Sergey V; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Moser, Kathy L; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B; Gaffney, Patrick M; Martin, Javier; Guthridge, Joel M; Alarcón-Riquelme, Marta E

    2012-01-01

    Altered signalling in B cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signalling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterise the role of BANK1 and BLK in SLE, a genetic interaction analysis was performed hypothesising that genetic interactions could reveal functional pathways relevant to disease pathogenesis. The GPAT16 method was used to analyse the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localisation, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, the possibility that BANK1 and BLK could also show a protein-protein interaction was tested. The co-immunoprecipitation and co-localisation of BLK and BANK1 were demonstrated. In a Daudi cell line and primary naive B cells endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. This study shows a genetic interaction between BANK1 and BLK, and demonstrates that these molecules interact physically. The results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signalling pathway.

  6. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication.

    PubMed

    Zhou, Jing; Bethune, Michael T; Malkova, Natalia; Sutherland, Alexander M; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni; Heath, James R

    2018-01-01

    For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell-T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma.

  7. Bromodomain and Extraterminal (BET) Protein Inhibition Suppresses Human T Cell Leukemia Virus 1 (HTLV-1) Tax Protein-mediated Tumorigenesis by Inhibiting Nuclear Factor κB (NF-κB) Signaling*

    PubMed Central

    Wu, Xuewei; Qi, Jun; Bradner, James E.; Xiao, Gutian; Chen, Lin-Feng

    2013-01-01

    The etiology of human T cell leukemia virus 1 (HTLV-1)-mediated adult T cell leukemia is associated with the ability of viral oncoprotein Tax to induce sustained NF-κB activation and the expression of many NF-κB target genes. Acetylation of the RelA subunit of NF-κB and the subsequent recruitment of bromodomain-containing factor Brd4 are important for the expression of NF-κB target genes in response to various stimuli. However, their contributions to Tax-mediated NF-κB target gene expression and tumorigenesis remain unclear. Here we report that Tax induced the acetylation of lysine 310 of RelA and the binding of Brd4 to acetylated RelA to facilitate Tax-mediated transcriptional activation of NF-κB. Depletion of Brd4 down-regulated Tax-mediated NF-κB target gene expression and cell proliferation. Inhibiting the interaction of Brd4 and acetylated RelA with the bromodomain extraterminal protein inhibitor JQ1 suppressed the proliferation of Tax-expressing rat fibroblasts and Tax-positive HTLV-1-infected cells and Tax-mediated cell transformation and tumorigenesis. Moreover, JQ1 attenuated the Tax-mediated transcriptional activation of NF-κB, triggering the polyubiquitination and proteasome-mediated degradation of constitutively active nuclear RelA. Our results identify Brd4 as a key regulator for Tax-mediated NF-κB gene expression and suggest that targeting epigenetic regulators such as Brd4 with the bromodomain extraterminal protein inhibitor might be a potential therapeutic strategy for cancers and other diseases associated with HTLV-1 infection. PMID:24189064

  8. BTLA interaction with HVEM expressed on CD8(+) T cells promotes survival and memory generation in response to a bacterial infection.

    PubMed

    Steinberg, Marcos W; Huang, Yujun; Wang-Zhu, Yiran; Ware, Carl F; Cheroutre, Hilde; Kronenberg, Mitchell

    2013-01-01

    The B and T lymphocyte attenuator (BTLA) is an Ig super family member that binds to the herpes virus entry mediator (HVEM), a TNF receptor super family (TNFRSF) member. Engagement of BTLA by HVEM triggers inhibitory signals, although recent evidence indicates that BTLA also may act as an activating ligand for HVEM. In this study, we reveal a novel role for the BTLA-HVEM pathway in promoting the survival of activated CD8(+) T cells in the response to an oral microbial infection. Our data show that both BTLA- and HVEM-deficient mice infected with Listeria monocytogenes had significantly reduced numbers of primary effector and memory CD8(+) T cells, despite normal proliferation and expansion compared to controls. In addition, blockade of the BTLA-HVEM interaction early in the response led to significantly reduced numbers of antigen-specific CD8(+) T cells. HVEM expression on the CD8(+) T cells as well as BTLA expression on a cell type other than CD8(+) T lymphocytes, was required. Collectively, our data demonstrate that the function of the BTLA-HVEM pathway is not limited to inhibitory signaling in T lymphocytes, and instead, that BTLA can provide crucial, HVEM-dependent signals that promote survival of antigen activated CD8(+) T cell during bacterial infection.

  9. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition

    PubMed Central

    Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily

    2016-01-01

    B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040

  10. Cell wall mannoprotein of Candida albicans induces cell cycle alternation and inhibits apoptosis of HaCaT cells via NF-κB signal pathway.

    PubMed

    Han, Yang; Jiang, Hang-Hang; Zhang, Yu-Jing; Hao, Xing-Jia; Sun, Yu-Zhe; Qi, Rui-Qun; Chen, Hong-Duo; Gao, Xing-Hua

    2017-10-01

    Candida albicans (C. albicans) is a commensal organism in human and a well-known dimorphic opportunistic pathogenic fungus. Though plenty of researches on the pathogenesis of C. albicans have been performed, the mechanism is not fully understood. The cell wall components of C. albicans have been documented to play important roles in its pathogenic processes. To further study the infectious mechanism of C. albicans, we investigated the potential functional role of its cell wall mannoprotein in cell cycle and apoptosis of HaCaT cells. We found that mannoprotein could promote the transition of cell cycle from G1/G0 to S phase, in which Cyclin D1, CDK4 and p-Rb, the major regulators of the cell cycle progression, showed significant upregulation, and CDKN1A (cyclin dependent kinase inhibitor 1A (p21)) showed significant downregulation. Mannoprotein also could inhibit apoptosis of HaCaT cells, which was well associated with increased expression of BCL2 (Bcl-2). Moreover, mannoprotein could increase the phosphorylation levels of RELA (p65) and NFKBIA (IκBα), as the key factors of NF-κB signal pathway in HaCaT cells, suggesting the activation of NF-κB signal pathway. Additionally, a NF-κB specific inhibitor, PDTC, could rescue the effect of mannoprotein on cell cycle and apoptosis of HaCaT cells, which suggested that mannoprotein could activate NF-κB signal pathway to mediate cell cycle alternation and inhibit apoptosis. Copyright © 2017. Published by Elsevier Ltd.

  11. Inactivation of IkappaBbeta by the tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-kappaB.

    PubMed

    McKinsey, T A; Brockman, J A; Scherer, D C; Al-Murrani, S W; Green, P L; Ballard, D W

    1996-05-01

    In resting T lymphocytes, the transcription factor NF-kappaB is sequestered in the cytoplasm via interactions with members of the I kappa B family of inhibitors, including IkappaBalpha and IkappaBbeta. During normal T-cell activation, IkappaBalpha is rapidly phosphorylated, ubiquitinated, and degraded by the 26S proteasome, thus permitting the release of functional NF-kappaB. In contrast to its transient pattern of nuclear induction during an immune response, NF-kappaB is constitutively activated in cells expressing the Tax transforming protein of human T-cell leukemia virus type I (HTLV-1). Recent studies indicate that HTLV-1 Tax targets IkappaBalpha to the ubiquitin-proteasome pathway. However, it remains unclear how this viral protein induces a persistent rather than transient NF-kappaB response. In this report, we provide evidence that in addition to acting on IkappaBalpha, Tax stimulates the turnover Of IkappaBbeta via a related targeting mechanism. Like IkappaBalpha, Tax-mediated breakdown of IkappaBbeta in transfected T lymphocytes is blocked either by cell-permeable proteasome inhibitors or by mutation Of IkappaBbeta at two serine residues present within its N-terminal region. Despite the dual specificity of HTLV-1 Tax for IkappaBalpha and IkappaBbeta at the protein level, Tax selectively stimulates NF-kappaB-directed transcription of the IkappaBalpha gene. Consequently, IkappaBbeta protein expression is chronically downregulated in HTLV-1-infected T lymphocytes. These findings with IkappaBbeta provide a potential mechanism for the constitutive activation of NF-kappaB in Tax-expressing cells.

  12. Cathepsin B-Deficient Mice Resolve Leishmania major Inflammation Faster in a T Cell-Dependent Manner

    PubMed Central

    Mériaux, Véronique; Khan, Erin M.; Borde, Chloé; Ciulean, Ioana S.; Fitting, Catherine; Manoury, Bénédicte; Cavaillon, Jean-Marc; Doyen, Noëlle

    2016-01-01

    A critical role for intracellular TLR9 has been described in recognition and host resistance to Leishmania parasites. As TLR9 requires endolysosomal proteolytic cleavage to achieve signaling functionality, we investigated the contribution of different proteases like asparagine endopeptidase (AEP) or cysteine protease cathepsins B (CatB), L (CatL) and S (CatS) to host resistance during Leishmania major (L. major) infection in C57BL/6 (WT) mice and whether they would impact on TLR9 signaling. Unlike TLR9-/-, which are more susceptible to infection, AEP-/-, CatL-/- and CatS-/- mice are as resistant to L. major infection as WT mice, suggesting that these proteases are not individually involved in TLR9 processing. Interestingly, we observed that CatB-/- mice resolve L. major lesions significantly faster than WT mice, however we did not find evidence for an involvement of CatB on either TLR9-dependent or independent cytokine responses of dendritic cells and macrophages or in the innate immune response to L. major infection. We also found no difference in antigen presenting capacity. We observed a more precocious development of T helper 1 responses accompanied by a faster decline of inflammation, resulting in resolution of footpad inflammation, reduced IFNγ levels and decreased parasite burden. Adoptive transfer experiments into alymphoid RAG2-/-γc-/- mice allowed us to identify CD3+ T cells as responsible for the immune advantage of CatB-/- mice towards L. major. In vitro data confirmed the T cell intrinsic differences between CatB-/- mice and WT. Our study brings forth a yet unappreciated role for CatB in regulating T cell responses during L. major infection. PMID:27182703

  13. Bcl11b, a novel GATA3-interacting protein, suppresses Th1 while limiting Th2 cell differentiation.

    PubMed

    Fang, Difeng; Cui, Kairong; Hu, Gangqing; Gurram, Rama Krishna; Zhong, Chao; Oler, Andrew J; Yagi, Ryoji; Zhao, Ming; Sharma, Suveena; Liu, Pentao; Sun, Bing; Zhao, Keji; Zhu, Jinfang

    2018-05-07

    GATA-binding protein 3 (GATA3) acts as the master transcription factor for type 2 T helper (Th2) cell differentiation and function. However, it is still elusive how GATA3 function is precisely regulated in Th2 cells. Here, we show that the transcription factor B cell lymphoma 11b (Bcl11b), a previously unknown component of GATA3 transcriptional complex, is involved in GATA3-mediated gene regulation. Bcl11b binds to GATA3 through protein-protein interaction, and they colocalize at many important cis-regulatory elements in Th2 cells. The expression of type 2 cytokines, including IL-4, IL-5, and IL-13, is up-regulated in Bcl11b -deficient Th2 cells both in vitro and in vivo; such up-regulation is completely GATA3 dependent. Genome-wide analyses of Bcl11b- and GATA3-regulated genes (from RNA sequencing), cobinding patterns (from chromatin immunoprecipitation sequencing), and Bcl11b-modulated epigenetic modification and gene accessibility suggest that GATA3/Bcl11b complex is involved in limiting Th2 gene expression, as well as in inhibiting non-Th2 gene expression. Thus, Bcl11b controls both GATA3-mediated gene activation and repression in Th2 cells. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  14. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    PubMed

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Immobilization of methotrexate anticancer drug onto the graphene surface and interaction with calf thymus DNA and 4T1 cancer cells.

    PubMed

    Karimi Shervedani, Reza; Mirhosseini, Hadiseh; Samiei Foroushani, Marzieh; Torabi, Mostafa; Rahsepar, Fatemeh Rahnemaye; Norouzi-Barough, Leila

    2018-02-01

    Immobilization of methotrexate (MTX) anticancer drug onto the graphene surface is reported through three methods, including either covalent linkage via (a) EDC/NHS organic activators and (b) electrografting of MTX diazonium salt, or (c) noncovalent bonding, resulting in three different systems. To evaluate the interaction ability of the immobilized MTX with biological species, calf thymus DNA (ctDNA), mouse 4T1 breast tumor, and Human foreskin fibroblast (hFF) cells as models of the primary intracellular target of anticancer drugs, cancer and normal cells, respectively, are examined. The features of the constructed systems and their interactions with ctDNA are followed by surface analysis techniques and electrochemical methods. The results indicate that (i) the amount of the immobilized MTX on the graphene surface is affected by type of the immobilization method; and a maximum value of (Γ=9.3±0.9pmolcm -2 ) is found via electrografting method, (ii) graphene-modified-MTX has high affinity for ctDNA in a wide dynamic range of concentrations, and (iii) the nature of the interaction is of electrostatic and/or hydrogen bonding type, formed most probably between OH, NH and CO groups of MTX and different DNA functions. Finally, electrochemical impedance spectroscopy results approved the high affinity of the systems for 4T1 cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Integrins in T Cell Physiology

    PubMed Central

    Alabiso, Oscar; Galetto, Alessandra Silvia; Baldanzi, Gianluca

    2018-01-01

    From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research. PMID:29415483

  17. Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma

    ClinicalTrials.gov

    2018-04-10

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Primary Cutaneous B-Cell Non-Hodgkin Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Non-Hodgkin Lymphoma; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  18. T Cell Intrinsic Function of the Noncanonical NF-κB Pathway in the Regulation of GM-CSF Expression and EAE Pathogenesis

    PubMed Central

    Yu, Jiayi; Zhou, Xiaofei; Nakaya, Mako; Jin, Wei; Cheng, Xuhong; Sun, Shao-Cong

    2014-01-01

    The Noncanonical NF-κB pathway induces processing of the NF-κB2 precursor protein p100 and, thereby, mediates activation of p52-containing NF-κB complexes. This pathway is crucial for B-cell maturation and humoral immunity, but its role in regulating T-cell function is less clear. Using mutant mice that express a non-processible p100, NF-κB2lym1, we show that the noncanonical NF-κB pathway has a T cell-intrinsic role in regulating the pathogenesis of a T cell-mediated autoimmunity, experimental autoimmune encephalomyelitis (EAE). Although the lym1 mutation does not interfere with naïve T-cell activation, it renders the Th17 cells defective in the production of inflammatory effector molecules, particularly the cytokine GM-CSF. We provide evidence that p52 binds to the promoter of the GM-CSF-encoding gene (Csf2) and cooperates with c-Rel in the transactivation of this target gene. Introduction of exogenous p52 or GM-CSF to the NF-κB2lym1 mutant T cells partially restores their ability to induce EAE. These results suggest that the noncanonical NF-κB pathway mediates induction of EAE by regulating the effector function of inflammatory T cells. PMID:24899500

  19. Cytotoxic T lymphocyte recognition of HLA-A/B antigens introduced into EL4 cells by cell-liposome fusion.

    PubMed

    Engelhard, V H; Powers, G A; Moore, L C; Holterman, M J; Correa-Freire, M C

    1984-01-01

    HLA-A2 and -B7 antigens were introduced into EL4 (H-2b) cells by cell-liposome fusion and were used as targets or stimulators for cytotoxic T lymphocytes (CTL) generated in C57B1/6 (H-2b) mice. It was found that such EL4-HLA cells were not recognized by CTL that had been raised against either a human cell line bearing these HLA antigens or the purified HLA-A2 and -B7 antigens reconstituted into liposomes. In addition, EL4-HLA cells were not capable of inducing CTL that could recognize a human cell line bearing HLA-A2 and -B7 antigens. Instead, EL4-HLA cells induced CTL that specifically lysed EL4-HLA cells and not human cells expressing HLA-A2 and -B7. CTL recognition required the presence of HLA antigens on the EL4 cell surface and was inhibited by antibodies against either H-2b or HLA-A/B. Monoclonal antibody binding studies showed that the expected polymorphic determinants of the HLA-A2 and -B7 antigens were still present on EL4-HLA cells. However, the specificity of CTL or their precursors that are capable of recognizing HLA-A2 or -B7 was altered after these antigens became associated with the EL4 surface. Possible explanations for these results are discussed.

  20. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver.

    PubMed

    Funken, Dominik; Ishikawa-Ankerhold, Hellen; Uhl, Bernd; Lerchenberger, Maximilian; Rentsch, Markus; Mayr, Doris; Massberg, Steffen; Werner, Jens; Khandoga, Andrej

    2017-11-01

    CD4 + T cells recruited to the liver play a key role in the pathogenesis of ischemia/reperfusion (I/R) injury. The mechanism of their activation during alloantigen-independent I/R is not completely understood. We hypothesized that liver-resident dendritic cells (DCs) interact with CD4 + T cells in the postischemic liver and that modulation of DCs or T-cell-DC interactions attenuates liver inflammation. In mice, warm hepatic I/R (90/120-240 min) was induced. Tolerogenic DCs were generated in situ by pretreatment of animals with the vitamin D analog paricalcitol. A mAb-CD44 was used for blockade of CD4 + T-cell-DC interactions. As shown by 2-photon in vivo microscopy as well as confocal microscopy, CD4 + T cells were closely colocalized with DCs in the postischemic liver. Pretreatment with paricalcitol attenuated I/R-induced maturation of DCs (flow cytometry), CD4 + T-cell recruitment into the liver (intravital microscopy), and hepatocellular/microvascular damage (intravital microscopy, alanine aminotransferase/aspartate aminotransferase, histology). However, interruption of T-cell-DC interaction increased proinflammatory DC maturation and even enhanced tissue damage. Simultaneous treatment with an anti-CD44mAb completely abolished the beneficial effect of paricalcitol on T-cell migration and tissue injury. Our study demonstrates for the first time that hepatic DCs interact with CD4 + T cells in the postischemic liver in vivo ; modulation of DCs and/or generation of tolerogenic DCs attenuates intrahepatic CD4 + T-cell recruitment and reduces I/R injury; and interruption of CD44-dependent CD4 + T-cell-DC interactions enhances tissue injury by preventing the modulatory effect of hepatic DCs on T cells, especially type 1 T helper effector cells. Thus, hepatic DCs are strongly involved in the promotion of CD4 + T-cell-dependent postischemic liver inflammation.-Funken, D., Ishikawa-Ankerhold, H., Uhl, B., Lerchenberger, M., Rentsch, M., Mayr, D., Massberg, S., Werner, J

  1. Anergic self-reactive B cells present self antigen and respond normally to CD40-dependent T-cell signals but are defective in antigen-receptor-mediated functions.

    PubMed Central

    Eris, J M; Basten, A; Brink, R; Doherty, K; Kehry, M R; Hodgkin, P D

    1994-01-01

    B-cell tolerance to soluble protein self antigens such as hen egg lysozyme (HEL) is mediated by clonal anergy. Anergic B cells fail to mount antibody responses even in the presence of carrier-primed T cells, suggesting an inability to activate or respond to T helper cells. To investigate the nature of this defect, B cells from tolerant HEL/anti-HEL double-transgenic mice were incubated with a membrane preparation from activated T-cell clones expressing the CD40 ligand. These membranes, together with interleukin 4 and 5 deliver the downstream antigen-independent CD40-dependent B-cell-activating signals required for productive T-B collaboration. Anergic B cells responded to this stimulus by proliferating and secreting antibody at levels comparable to or better than control B cells. Furthermore, anergic B cells presented HEL acquired in vivo and could present the unrelated antigen, conalbumin, targeted for processing via surface IgD. In contrast, the low immunoglobulin receptor levels on anergic B cells were associated with reduced de novo presentation of HEL and a failure to upregulate costimulatory ligands for CD28. These defects in immunoglobulin-receptor-mediated functions could be overcome in vivo, suggesting a number of mechanisms for induction of autoantibody responses. Images PMID:7514304

  2. A novel differentiation pathway from CD4+ T cells to CD4− T cells for maintaining immune system homeostasis

    PubMed Central

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-01-01

    CD4+ T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4+ T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4−CD8−NK1.1− double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4+ rather than CD8+ T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4+ T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases. PMID:27077809

  3. Comparison of clinical outcome after autologous stem cell transplantation between patients with peripheral T-cell lymphomas and diffuse large B-cell lymphoma.

    PubMed

    Sohn, B S; Park, I; Kim, E K; Yoon, D H; Lee, S S; Kang, B W; Jang, G; Choi, Y H; Kim, C; Lee, D H; Kim, S; Huh, J; Suh, C

    2009-09-01

    Although patients with T-cell phenotype lymphomas are generally accepted to have worse prognosis than B-cell phenotype lymphomas, the studies comparing outcomes after autologous stem cell transplantation (ASCT) between peripheral T-cell lymphomas (PTCLs) and with diffuse large B-cell lymphoma (DLBCL) are few. In this study, we compared outcomes after ASCT between 23 patients with PTCLs and 54 patients with DLBCL. Univariate analysis showed that the timing of ASCT, complete response (CR) at ASCT, favorable lactate dehydrogenase/performance/stage, low/low-intermediate (L-LI) International Prognostic Index (IPI) and L-LI age-adjusted IPI (aaIPI) at ASCT were significant predictors of both OS and EFS. Multivariate analysis showed that CR and L-LI aaIPI at ASCT were favorable for both OS (hazard ratio (HR), 0.34; 95% CI, 0.14-0.81; P=0.016 and HR, 0.27; 95% CI, 0.12-0.57; P=0.001) and EFS (HR, 0.38; 95% CI, 0.17-0.85; P=0.020 and HR, 0.36; 95% CI, 0.17-0.77; P=0.008). B-cell or T-cell phenotype, however, had no impact on OS (HR, 0.56; 95% CI, 0.27-1.18; P=0.126) or EFS (HR, 0.62; 95% CI, 0.30-1.30; P=0.206). In conclusion, when compared to patients with DLBCL, patients with PTCLs did not have inferior outcomes after ASCT. T-cell phenotype itself may not have an effect on outcomes of PTCL patients who underwent ASCT.

  4. Interactions between peripheral blood CD8 T lymphocytes and intestinal epithelial cells (iEC).

    PubMed

    Arosa, F A; Irwin, C; Mayer, L; de Sousa, M; Posnett, D N

    1998-05-01

    Intestinal intraepithelial lymphocytes (iIEL) are primarily CD8 cells and most of them have a CD28- phenotype, the phenotype of effector cytotoxic T cells. We asked whether the predominance of CD8+CD28- T cells in the gut may result from peripheral blood T cells preferentially migrating to the iIEL compartment and adhering to iEC. Compared with CD4 cells, adhesion of resting CD8+ T cells to iEC cell lines was significantly higher. Adhesion could be blocked with a MoAb to gp180, a molecule expressed on iEC which is known to interact with CD8/lck. No significant difference in the level of adhesion was observed between CD8+CD28+ and CD8+CD28- T cells. Thus CD8 cells may preferentially migrate to the iIEL compartment, but loss of CD28 expression could occur in situ after migration. Consistent with this hypothesis, the CD8+CD28- cells became enriched after co-culturing T cells with iEC cell lines and primary iEC. Induction of the CD8+CD28- phenotype in cord blood and adult T cells was observed in co-cultures with iEC and also with mitogens and superantigens. In the latter case, CD28 down-modulation was seen specifically in the Vbeta subset targeted by the superantigen, indicating that loss of CD28 expression is a direct result of T cell receptor (TCR)-mediated stimulation. The combined results suggest that CD8+CD28- T cells are antigen experienced T cells, and that they may have a survival advantage in the presence of gut epithelial cells in vitro. This may contribute to the predominance of CD8+CD28- T cells in the iIEL compartment.

  5. Interactions between peripheral blood CD8 T lymphocytes and intestinal epithelial cells (iEC)

    PubMed Central

    Arosa, F A; Irwin, C; Mayer, L; De Sousa, M; Posnett, D N

    1998-01-01

    Intestinal intraepithelial lymphocytes (iIEL) are primarily CD8 cells and most of them have a CD28− phenotype, the phenotype of effector cytotoxic T cells. We asked whether the predominance of CD8+ CD28− T cells in the gut may result from peripheral blood T cells preferentially migrating to the iIEL compartment and adhering to iEC. Compared with CD4 cells, adhesion of resting CD8+ T cells to iEC cell lines was significantly higher. Adhesion could be blocked with a MoAb to gp180, a molecule expressed on iEC which is known to interact with CD8/lck. No significant difference in the level of adhesion was observed between CD8+ CD28+ and CD8+ CD28− T cells. Thus CD8 cells may preferentially migrate to the iIEL compartment, but loss of CD28 expression could occur in situ after migration. Consistent with this hypothesis, the CD8+ CD28− cells became enriched after co-culturing T cells with iEC cell lines and primary iEC. Induction of the CD8+ CD28− phenotype in cord blood and adult T cells was observed in co-cultures with iEC and also with mitogens and superantigens. In the latter case, CD28 down-modulation was seen specifically in the Vβ subset targeted by the superantigen, indicating that loss of CD28 expression is a direct result of T cell receptor (TCR)-mediated stimulation. The combined results suggest that CD8+ CD28− T cells are antigen experienced T cells, and that they may have a survival advantage in the presence of gut epithelial cells in vitro. This may contribute to the predominance of CD8+ CD28− T cells in the iIEL compartment. PMID:9649184

  6. B Cell allogeneic responses after hematopoietic cell transplantation: is it time to address this issue?

    PubMed

    Perruche, Sylvain; Kleinclauss, François; Tiberghien, Pierre; Saas, Philippe

    2005-02-15

    To date, B cell responses have retained less attention than T, natural killer or dendritic cell responses in the alloreactive conflict after allogeneic hematopoietic cell transplantation (HCT). Here, we discuss recent clinical and experimental data supporting a role of allogeneic B cell responses in graft-host interactions after HCT. We report results in a murine model of reduced intensity conditioning transplantation (RICT) showing that host B cells can be involved in chronic graft-versus-host disease occurrence. We also describe the control of antidonor alloresponses by intravenous simultaneous infusion of apoptotic cells with allogeneic hematopoietic grafts.

  7. Treatment for moderate to severe atopic dermatitis in alpine and moderate maritime climates differentially affects helper T cells and memory B cells in children.

    PubMed

    Heeringa, J J; Fieten, K B; Bruins, F M; van Hoffen, E; Knol, E F; Pasmans, S G M A; van Zelm, M C

    2018-06-01

    Treatment of atopic dermatitis (AD) is focused on topical anti-inflammatory therapy, epidermal barrier repair and trigger avoidance. Multidisciplinary treatment in both moderate maritime and alpine climates can successfully reduce disease activity in children with AD. However, it remains unclear whether abnormalities in B cell and T cell memory normalize and whether this differs between treatment strategies. To determine whether successful treatment in maritime and alpine climates normalizes B- and T lymphocytes in children with moderate to severe AD. The study was performed in the context of a trial (DAVOS trial, registered at Current Controlled Trials ISCRTN88136485) in which eighty-eight children with moderate to severe AD were randomized to 6 weeks of treatment in moderate maritime climate (outpatient setting) or in the alpine climate (inpatient setting). Before and directly after treatment, disease activity was determined with SA-EASI and serum TARC, and T cell and B cell subsets were quantified in blood. Both treatment protocols achieved a significant decrease in disease activity, which was accompanied by a reduction in circulating memory Treg, transitional B cell and plasmablast numbers. Alpine climate treatment had a significantly greater effect on disease activity and was accompanied by a reduction in blood eosinophils and increases in memory B cells, CD8+ TemRO, CD4+ Tcm and CCR7+ Th2 subsets. Clinically successful treatment of AD induces changes in blood B- and T cell subsets reflecting reduced chronic inflammation. In addition, multidisciplinary inpatient treatment in the alpine climate specifically affects memory B cells, CD8+ T cells and Th2 cells. These cell types could represent good markers for treatment efficacy. © 2018 John Wiley & Sons Ltd.

  8. Role of B7 costimulatory molecules in immune responses and T-helper cell differentiation in response to recombinant HagB from Porphyromonas gingivalis.

    PubMed

    Zhang, Ping; Martin, Michael; Yang, Qiu-Bo; Michalek, Suzanne M; Katz, Jannet

    2004-02-01

    In addition to antigen-specific signals mediated through the T-cell receptor, T cells also require antigen nonspecific costimulation for activation. The B7 family of molecules on antigen-presenting cells, which include B7-1 (CD80) and B7-2 (CD86), play important roles in providing costimulatory signals required for development of antigen-specific immune responses. Hemagglutinin B (HagB) is a nonfimbrial adhesin of the periodontopathic microorganism Porphyromonas gingivalis and is thought to be involved in the attachment of the bacterium to host tissues. However, the immune mechanisms involved in responses to HagB and their roles in pathogenesis have yet to be elucidated. Therefore, the purpose of this study was to determine the role of B7 costimulatory molecules on T-helper-cell differentiation for the induction of immune responses to HagB. Mice deficient in either or both of the costimulatory molecules B7-1 and B7-2 were used to explore their role in immune responses to HagB after subcutaneous immunization. B7-1(-/-) mice had levels of immunoglobulin G (IgG) anti-HagB antibody activity in serum similar to those of wild-type mice, whereas lower serum IgG anti-HagB antibody responses were seen in B7-2(-/-) mice. Moreover, significantly lower numbers of IgG antibody-secreting cells and lower levels of CD4(+)-T-cell proliferation were observed in B7-2(-/-) mice compared to wild-type mice. No serum IgG response to HagB was detected in B7-1/B7-2(-/-) mice. Analysis of the subclass of the serum IgG responses and the cytokines induced in response to HagB revealed that B7-2(-/-) mice had significantly lower IgG1 and higher IgG2a anti-HagB antibody responses compared to wild-type mice. The B7-2(-/-) mice also had significantly reduced levels of interleukin-4 (IL-4) and IL-5 and enhanced level of gamma interferon. Furthermore, assessment of B7-1 and B7-2 expression on B cells and macrophages derived from wild-type BALB/c mice after in vitro stimulation with HagB revealed a

  9. Antigen-specific and nonspecific mediators of T cell/B cell cooperation. III. Characterization of the nonspecific mediator(s) from different sources.

    PubMed

    Harwell, L; Kappler, J W; Marrack, P

    1976-05-01

    T cell-containing lymphoid populations produce a nonantigen-specific mediator(s) (NSM) which can replace T cell helper function in vitro in the response of B cells to sheep red blood cells (SRBC), but not to the hapten-protein conjugate, trinitrophenyl-keyhole limpet hemocyanin, (TNP-KLH). NSM produced under three conditions: 1) stimulation of KLH-primed cells with KLH; 2) allogeneic stimulation of normal spleen cells; and 3) stimulation of normal spleen cells with Con A (but not PHA) are indistinguishable on the basis of their biologic activity and m.w., estimated as 30 to 40,000 daltons by G-200 chromatography. Production of NSM is dependent on the presence of T cells. The action of NSM on B cells responding to SRBC in the presence of 2-mercaptoethanol is unaffected by severe macrophage depletion. Extensive absorption of NSM with SRBC failed to remove its activity, confirming its nonantigen-specific nature.

  10. Design of short peptides to block BTLA/HVEM interactions for promoting anticancer T-cell responses

    PubMed Central

    Spodzieja, Marta; Lach, Sławomir; Iwaszkiewicz, Justyna; Cesson, Valérie; Kalejta, Katarzyna; Olive, Daniel; Michielin, Olivier; Speiser, Daniel E.; Zoete, Vincent

    2017-01-01

    Antibody based immune-checkpoint blockade therapy is a major breakthrough in oncology, leading to clinical benefit for cancer patients. Among the growing family of inhibitory receptors, the B and T lymphocyte attenuator (BTLA), which interacts with herpes virus entry mediator (HVEM), is a promising target for immunotherapy. Indeed, BTLA inhibits T-cell proliferation and cytokine production. The crystal structure of the BTLA/HVEM complex has shown that the HVEM(26–38) fragment is directly involved in protein binding. We designed and analyzed the capacity of several analogs of this fragment to block the ligation between BTLA and HVEM, using competitive ELISA and cellular assay. We found that the HVEM(23–39) peptide can block BTLA/HVEM ligation. However, the blocking ability was due to the Cys encompassed in this peptide and that even free cysteine targeted the BTLA protein and blocked its interaction with HVEM. These data highlight a Cys-related artefact in vitro, which should be taken in consideration for future development of BTLA/HVEM blocking compounds. PMID:28594868

  11. Impact of immune-metabolic interactions on age-related thymic demise and T cell senescence.

    PubMed

    Dixit, Vishwa Deep

    2012-10-01

    Emerging evidence indicates that the immune and metabolic interactions control several aspects of the aging process and associated chronic diseases. Among several sites of immune-metabolic interactions, thymic demise represents a particularly puzzling phenomenon because even in metabolically healthy middle-aged individuals the majority of thymic space is replaced with ectopic lipids. The new T cell specificities can only be generated in a functional thymus and, peripheral proliferation of pre-existing T cell clones provides limited immune-vigilance in the elderly. Therefore, it is hypothesized that the strategies that enhance thymic-lymphopoiesis may extend healthspan. Recent data suggest that byproducts of thymic fatty acids and lipids result in accumulation of 'lipotoxic DAMPs' (damage associated molecular patterns), which triggers the innate immune-sensing mechanism like inflammasome activation which links aging to thymic demise. The immune-metabolic interaction within the aging thymus produces a local pro-inflammatory state that directly compromises the thymic stromal microenvironment, thymic-lymphopoiesis and serves a precursor of systemic immune-dysregulation in the elderly. New evidence also suggests that ectopic thymic adipocytes may develop from specific intrathymic stromal cell precursors instead of a passive process that is simply a consequence of thymic lymphopenia. Thus the complex bidirectional interactions between metabolic and immune systems may link aging to health, T cell senescence, and associated diseases. This review discusses the immune-metabolic mechanisms during aging - with implications for developing future therapeutic strategies for living well beyond the expected. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Bacterially activated B-cells drive T cell differentiation towards Tr1 through PD-1/PD-L1 expression.

    PubMed

    Said, Sawsan Sudqi; Barut, Guliz Tuba; Mansur, Nesteren; Korkmaz, Asli; Sayi-Yazgan, Ayca

    2018-04-01

    Regulatory B cells (Bregs) play a crucial role in immunological tolerance primarily through the production of IL-10 in many diseases including autoimmune disorders, allergy, infectious diseases, and cancer. To date, various Breg subsets with overlapping phenotypes have been identified. However, the roles of Bregs in Helicobacter infection are largely unknown. In the present study, we investigate the phenotype and function of Helicobacter -stimulated B cells. Our results demonstrate that Helicobacter felis -stimulated IL-10- producing B cells (Hf stim - IL-10 + B) are composed of B10 and Transitional 2 Marginal Zone Precursor (T2-MZP) cells with expression of CD9, Tim-1, and programmed death 1 (PD-1). On the other hand, Helicobacter felis -stimulated IL-10- nonproducing B (Hf stim - IL-10 - B) cells are mainly marginal zone (MZ) B cells that express PD-L1 and secrete TGF-β, IL-6, and TNF-α, and IgM and IgG2b. Furthermore, we show that both Hf stim - IL-10 + B cells and Hf stim - IL-10 - B cells induce CD49b + LAG-3 + Tr1 cells. Here, we describe a novel mechanism for PD-1/PD-L1- driven B cell-dependent Tr1 cell differentiation. Finally, we explore the capability of Hf stim - IL-10 - B cells to induce Th17 cell differentiation, which we find to be dependent on TGF-β. Taken together, the current study demonstrates that Hf stim - B cells induce Tr1 cells through the PD-1/PD-L1 axis and Th17 cells by secreting TGF-β. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Interaction effects of enniatin B, deoxinivalenol and alternariol in Caco-2 cells.

    PubMed

    Fernández-Blanco, Celia; Font, Guillermina; Ruiz, Maria-Jose

    2016-01-22

    Enniatin B (ENN B), deoxinivalenol (DON) and alternariol (AOH) are secondary metabolites of filamentous fungi. These mycotoxins are contaminants of vegetables and cereals. They are cytotoxic and their effects are enhanced by their mixtures. The objectives of this study were to compare the cytotoxicity of ENN B, DON and AOH alone or in combination in human adenocarcinoma (Caco-2) cells and to evaluate the type of interactions of mycotoxin mixtures by the isobologram analysis. Cells were treated with concentrations ranging from 1.85 to 90μM (AOH) and from 0.312 to 10μM (for ENN B and DON), individually and in combination of two and three mycotoxins (from 1.85 to 30μM for AOH and from 0.312 to 5μM for ENN B and DON). The relation ratios between the mixtures DON+ENN B was 1:1; AOH+DON and ENN B+AOH was 1:6, and for the tertiary combination DON, ENN B and AOH 1:1:6. The IC50 value of ENN B and DON were 3.87 and 5.54μM, respectively. No IC50 values were obtained for the AOH at any time tested in Caco-2 cells. With the isobologram the type of interaction between mycotoxin was evaluated. Synergistic, antagonistic and addictive effect was observed for the combination studied depending on the concentration affected. Mycotoxins combinations reduce cellular viability in the following increasing order: (DON+ENN B)>(ENN B+AOH)>(DON+AOH)>(DON+AOH+ENN B). Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Low CD4+ T-cell levels and B-cell apoptosis in vertically HIV-exposed noninfected children and adolescents.

    PubMed

    Miyamoto, Maristela; Pessoa, Silvana D; Ono, Erika; Machado, Daisy M; Salomão, Reinaldo; Succi, Regina C de M; Pahwa, Savita; de Moraes-Pinto, Maria Isabel

    2010-12-01

    Lymphocyte subsets, activation markers and apoptosis were assessed in 20 HIV-exposed noninfected (ENI) children born to HIV-infected women who were or not exposed to antiretroviral (ARV) drugs during pregnancy and early infancy. ENI children and adolescents were aged 6-18 years and they were compared to 25 age-matched healthy non-HIV-exposed children and adolescents (Control). ENI individuals presented lower CD4(+) T cells/mm(3) than Control group (control: 1120.3 vs. ENI: 876.3; t-test, p = 0.030). ENI individuals had higher B-cell apoptosis than Control group (Control: 36.6%, ARV exposed: 82.3%, ARV nonexposed: 68.5%; Kruskal-Wallis, p < 0.05), but no statistical difference was noticed between those exposed and not exposed to ARV. Immune activation in CD4(+) T, CD8(+) T and in B cells was comparable in ENI and in Control children and adolescents. Subtle long-term immune alterations might persist among ENI individuals, but the clinical consequences if any are unknown, and these children require continued monitoring.

  15. B-Cell and T-Cell Immune Responses to Experimental Helicobacter pylori Infection in Humans

    PubMed Central

    Nurgalieva, Zhannat Z.; Conner, Margaret E.; Opekun, Antone R.; Zheng, Carl Q.; Elliott, Susan N.; Ernst, Peter B.; Osato, Michael; Estes, Mary K.; Graham, David Y.

    2005-01-01

    The acute antibody and T-cell immune response to Helicobacter pylori infection in humans has not been studied systematically. Serum from H. pylori-naive volunteers challenged with H. pylori and cured after 4 or 12 weeks was tested by enzyme-linked immunosorbent assays for anti-H. pylori-specific immunoglobulin M (IgM) and IgA established using bacterial lysates from homologous (the infecting strain) and heterologous H. pylori. Proteins recognized by IgM antibody were identified by mass spectrometry of immunoreactive bands separated by two-dimensional gel electrophoresis. Mucosal T-cell subsets (CD4, CD8, CD3, and CD30 cells) were assessed by immunohistochemistry. All 18 infected volunteers developed H. pylori-specific IgM responses to both homologous or heterologous H. pylori antigens. H. pylori antigens reacted with IgM antibody at 4 weeks postinfection. IgM Western blotting showed immunoreactivity of postinfection serum samples to multiple H. pylori proteins with molecular weights ranging between 9,000 (9K) to 150K with homologous strains but only a 70K band using heterologous antigens. Two-dimensional electrophoresis demonstrated that production of H. pylori-specific IgM antibodies was elicited by H. pylori flagellins A and B, urease B, ABC transporter binding protein, heat shock protein 70 (DnaK), and alkyl hydroperoxide reductase. Mucosal CD3, CD4, and CD8 T-cell numbers increased following infection. IgM antibody responses were detected to a range of homologous H. pylori antigens 2 to 4 weeks postchallenge. The majority of H. pylori proteins were those involved in motility and colonization and may represent targets for vaccine development. PMID:15845507

  16. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication

    PubMed Central

    Zhou, Jing; Bethune, Michael T.; Malkova, Natalia; Sutherland, Alexander M.; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni

    2018-01-01

    For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell—T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma. PMID:29360859

  17. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    PubMed

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Anti-TNF and thiopurine therapy in pregnant IBD patients does not significantly alter a panel of B-cell and T-cell subsets in 1-year-old infants.

    PubMed

    Kattah, Michael G; Milush, Jeffrey M; Burt, Trevor; McCabe, Robert P; Whang, Michael I; Ma, Averil; Mahadevan, Uma

    2018-04-03

    Infants exposed to combination therapy with anti-tumor necrosis factor (anti-TNF) agents and thiopurines may exhibit increased infections at 1 year of age compared to unexposed infants. We hypothesized that this increased risk of infection is due to abnormal development of the newborn immune system. We immunophenotyped B-cell and T-cell subsets using multiparameter flow cytometry in 1-year-old infants whose mothers were exposed to therapeutic agents for IBD. We analyzed samples from infants exposed to infliximab (IFX) or adalimumab (ADA) monotherapy (IFX/ADA, n = 11), certolizumab pegol (CZP) monotherapy (CZP, n = 4), IFX or ADA plus thiopurine combination therapy (IFX/ADA + IM, n = 4), and CZP plus thiopurine combination therapy (CZP + IM, n = 2). Percentages of B cells, CD4 + T helper cells, T regulatory cells (T regs ), and CD8 + cytotoxic T cells, were similar among the groups. Infants exposed to combination therapy (IFX/ADA + IM) exhibited trends toward fewer CD27 + B cells, switched memory B cells, plasmablasts, interferon gamma (IFNγ)-producing CD4 + and CD8 + T cells, and CCR5 + CD4 + T cells, but these did not reach statistical significance. Multiparameter immunophenotyping of major B-cell and T-cell subsets suggests that the adaptive newborn immune system develops largely unaltered after exposure to combination therapy as compared to anti-TNF monotherapy.

  19. Human immunodeficiency virus type 1 Nef protein inhibits NF-kappa B induction in human T cells.

    PubMed Central

    Niederman, T M; Garcia, J V; Hastings, W R; Luria, S; Ratner, L

    1992-01-01

    Human immunodeficiency virus type 1 (HIV-1) can establish a persistent and latent infection in CD4+ T lymphocytes (W. C. Greene, N. Engl. J. Med. 324:308-317, 1991; S. M. Schnittman, M. C. Psallidopoulos, H. C. Lane, L. Thompson, M. Baseler, F. Massari, C. H. Fox, N. P. Salzman, and A. S. Fauci, Science 245:305-308, 1989). Production of HIV-1 from latently infected cells requires host cell activation by T-cell mitogens (T. Folks, D. M. Powell, M. M. Lightfoote, S. Benn, M. A. Martin, and A. S. Fauci, Science 231:600-602, 1986; D. Zagury, J. Bernard, R. Leonard, R. Cheynier, M. Feldman, P. S. Sarin, and R. C. Gallo, Science 231:850-853, 1986). This activation is mediated by the host transcription factor NF-kappa B [G. Nabel and D. Baltimore, Nature (London) 326:711-717, 1987]. We report here that the HIV-1-encoded Nef protein inhibits the induction of NF-kappa B DNA-binding activity by T-cell mitogens. However, Nef does not affect the DNA-binding activity of other transcription factors implicated in HIV-1 regulation, including SP-1, USF, URS, and NF-AT. Additionally, Nef inhibits the induction of HIV-1- and interleukin 2-directed gene expression, and the effect on HIV-1 transcription depends on an intact NF-kappa B-binding site. These results indicate that defective recruitment of NF-kappa B may underlie Nef's negative transcriptional effects on the HIV-1 and interleukin 2 promoters. Further evidence suggests that Nef inhibits NF-kappa B induction by interfering with a signal derived from the T-cell receptor complex. Images PMID:1527859

  20. Bacterial Pathogens Induce Abscess Formation by CD4+ T-Cell Activation via the CD28–B7-2 Costimulatory Pathway

    PubMed Central

    Tzianabos, Arthur O.; Chandraker, Anil; Kalka-Moll, Wiltrud; Stingele, Francesca; Dong, Victor M.; Finberg, Robert W.; Peach, Robert; Sayegh, Mohamed H.

    2000-01-01

    Abscesses are a classic host response to infection by many pathogenic bacteria. The immunopathogenesis of this tissue response to infection has not been fully elucidated. Previous studies have suggested that T cells are involved in the pathologic process, but the role of these cells remains unclear. To delineate the mechanism by which T cells mediate abscess formation associated with intra-abdominal sepsis, the role of T-cell activation and the contribution of antigen-presenting cells via CD28-B7 costimulation were investigated. T cells activated in vitro by zwitterionic bacterial polysaccharides (Zps) known to induce abscess formation required CD28-B7 costimulation and, when adoptively transferred to the peritoneal cavity of naïve rats, promoted abscess formation. Blockade of T-cell activation via the CD28-B7 pathway in animals with CTLA4Ig prevented abscess formation following challenge with different bacterial pathogens, including Staphylococcus aureus, Bacteroides fragilis, and a combination of Enterococcus faecium and Bacteroides distasonis. In contrast, these animals had an increased abscess rate following in vivo T-cell activation via CD28 signaling. Abscess formation in vivo and T-cell activation in vitro required costimulation by B7-2 but not B7-1. These results demonstrate that abscess formation by pathogenic bacteria is under the control of a common effector mechanism that requires T-cell activation via the CD28–B7-2 pathway. PMID:11083777

  1. How chimeric antigen receptor design affects adoptive T cell therapy

    PubMed Central

    Gacerez, Albert T.; Arellano, Benjamine; Sentman, Charles L.

    2016-01-01

    Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR’s function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. PMID:27163336

  2. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia

    PubMed Central

    Espinosa, Lluis; Cathelin, Severine; D’Altri, Teresa; Trimarchi, Thomas; Statnikov, Alexander; Guiu, Jordi; Rodilla, Veronica; Inglés-Esteve, Julia; Nomdedeu, Josep; Bellosillo, Beatriz; Besses, Carles; Abdel-Wahab, Omar; Kucine, Nicole; Sun, Shao-Cong; Song, Guangchan; Mullighan, Charles C.; Levine, Ross L.; Rajewsky, Klaus; Aifantis, Iannis; Bigas, Anna

    2010-01-01

    SUMMARY It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo. PMID:20832754

  3. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia.

    PubMed

    Espinosa, Lluis; Cathelin, Severine; D'Altri, Teresa; Trimarchi, Thomas; Statnikov, Alexander; Guiu, Jordi; Rodilla, Veronica; Inglés-Esteve, Julia; Nomdedeu, Josep; Bellosillo, Beatriz; Besses, Carles; Abdel-Wahab, Omar; Kucine, Nicole; Sun, Shao-Cong; Song, Guangchan; Mullighan, Charles C; Levine, Ross L; Rajewsky, Klaus; Aifantis, Iannis; Bigas, Anna

    2010-09-14

    It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. miR-2909-mediated regulation of KLF4: a novel molecular mechanism for differentiating between B-cell and T-cell pediatric acute lymphoblastic leukemias

    PubMed Central

    2014-01-01

    Background microRNAs (miRNAs) play both oncogenic and oncostatic roles in leukemia. However, the molecular details underlying miRNA-mediated regulation of their target genes in pediatric B- and T-cell acute lymphoblastic leukemias (ALLs) remain unclear. The present study investigated the relationship between miR-2909 and Kruppel-like factor 4 (KLF4), and its functional relevance to cell cycle progression and immortalization in patients with pediatric ALL. Methods Elevated levels of miR-2909 targeted the tumor suppressor gene KLF4 in pediatric B-cell, but not pediatric T-cell ALL, as detected by pMIR-GFP reporter assay. Expression levels of genes including apoptosis-antagonizing transcription factor (AATF), MYC, B-cell lymphoma (BCL3), P21 CIP , CCND1 and SP1 in B- and T-cells from patients with pediatric ALL were compared with control levels using real-time quantitative reverse transcription polymerase chain reaction, western blotting, and reporter assays. Results We identified two novel mutations in KLF4 in pediatric T-ALL. A mutation in the 3′ untranslated region of the KLF4 gene resulted in loss of miR-2909-mediated regulation, while mutation in its first or third zinc-finger motif (Zf1/Zf3) rendered KLF4 transcriptionally inactive. This mutation was a frameshift mutation resulting in alteration of the Zf3 motif sequence in the mutant KLF4 protein in all pediatric T-ALL samples. Homology models, docking studies and promoter activity of its target gene P21 CIP confirmed the lack of function of the mutant KLF4 protein in pediatric T-ALL. Moreover, the inability of miR-2909 to regulate KLF4 and its downstream genes controlling cell cycle and apoptosis in T-cell but not in B-ALL was verified by antagomiR-2909 transfection. Comprehensive sequence analysis of KLF4 identified the predominance of isoform 1 (~55 kDa) in most patients with pediatric B-ALL, while those with pediatric T-ALL expressed isoform 2 (~51 kDa). Conclusions This study identified a novel mi

  5. Natural killer cells regulate T cell immune responses in primary biliary cirrhosis.

    PubMed

    Shimoda, Shinji; Hisamoto, Satomi; Harada, Kenichi; Iwasaka, Sho; Chong, Yong; Nakamura, Minoru; Bekki, Yuki; Yoshizumi, Tomoharu; Shirabe, Ken; Ikegami, Toru; Maehara, Yoshihiko; He, Xiao-Song; Gershwin, M Eric; Akashi, Koichi

    2015-12-01

    The hallmark of primary biliary cirrhosis (PBC) is the presence of autoreactive T- and B-cell responses that target biliary epithelial cells (BECs). Biliary cell cytotoxicity is dependent upon initiation of innate immune responses followed by chronic adaptive, as well as bystander, mechanisms. Critical to these mechanisms are interactions between natural killer (NK) cells and BECs. We have taken advantage of the ability to isolate relatively pure viable preparations of liver-derived NK cells, BECs, and endothelial cells, and studied interactions between NK cells and BECs and focused on the mechanisms that activate autoreactive T cells, their dependence on interferon (IFN)-γ, and expression of BEC major histocompatibility complex (MHC) class I and II molecules. Here we show that at a high NK/BEC ratio, NK cells are cytotoxic for autologous BECs, but are not dependent on autoantigen, yet still activate autoreactive CD4(+) T cells in the presence of antigen presenting cells. In contrast, at a low NK/BEC ratio, BECs are not lysed, but IFN-γ production is induced, which facilitates expression of MHC class I and II molecules on BEC and protects them from lysis upon subsequent exposure to autoreactive NK cells. Furthermore, IFN-γ secreted from NK cells after exposure to autologous BECs is essential for this protective function and enables autoreactive CD4(+) T cells to become cytopathic. NK cell-mediated innate immune responses are likely critical at the initial stage of PBC, but also facilitate and maintain the chronic cytopathic effect of autoantigen-specific T cells, essential for progression of disease. © 2015 by the American Association for the Study of Liver Diseases.

  6. The combination of two Sle2 lupus-susceptibility loci and Cdkn2c deficiency leads to T cell-mediated pathology in B6.Faslpr mice

    PubMed Central

    Xu, Zhiwei; Croker, Byron P.; Morel, Laurence

    2013-01-01

    The NZM2410 Sle2c1 lupus susceptibility locus is responsible for the expansion of the B1a cell compartment and for the induction of T-cell induced renal and skin pathology on a CD95 deficient (Faslpr)-background. We have previously shown that deficiency in cyclin-dependent kinase inhibitor p18INK4c (p18) was responsible for the B1a cell expansion but was not sufficient to account for the pathology in B6.lpr mice. This study was designed to map the additional Sle2c1 loci responsible for autoimmune pathology when co-expressed with CD95 deficiency. The production, fine-mapping and phenotypic characterization of five recombinant intervals indicated that three interacting sub-loci were responsive for inducting autoimmune pathogenesis in B6.lpr mice. One of these sub-loci corresponds most likely to p18-deficiency. Another major locus mapping to a 2 Mb region at the telomeric end of Sle2c1 is necessary to both renal and skin pathology. Finally, a third locus centromeric to p18 enhances the severity of lupus nephritis. These results provide new insights into the genetic interactions leading to SLE disease presentation, and represent a major step towards the identification of novel susceptibility genes involved in T-cell mediated organ damage. PMID:23698709

  7. PD-1(HIGH) Follicular CD4 T Helper Cell Subsets Residing in Lymph Node Germinal Centers Correlate with B Cell Maturation and IgG Production in Rhesus Macaques.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2014-01-01

    CD4+ T follicular helper (TFH) cells guide development and maturation of B cells and are crucial for effective antibody responses. Here we found rhesus macaque TFH cells, defined as CXCR5+CD4 T cells, contain two major populations: PD-1(INT) and PD-1(HIGH) cells. Of these, PD-1(HIGH)CD4+ T cells highly co-express ICOS but little CCR7, and reside in lymph node germinal centers (GCs), but not in blood. These cells secrete IL-21 and express transcriptional factor Bcl-6 at higher levels than CXCR5+PD-1(INT)CD4+ T cells. In addition, the frequency of PD-1(HIGH)CD4+ T cells is low in lymph nodes of newborns, but increases with age. Levels of PD-1(HIGH)CD4+ T cells correlate with mature B cells in lymph nodes, and PD-1 blockade in PD-1(HIGH)CD4+ T and B cell co-cultures significantly inhibits IgG production. In summary, PD-1(HIGH)CD4+ T cells residing in GC represent a specific TFH subset that contributes to maturation of B cells and IgG production.

  8. PD-1HIGH Follicular CD4 T Helper Cell Subsets Residing in Lymph Node Germinal Centers Correlate with B Cell Maturation and IgG Production in Rhesus Macaques

    PubMed Central

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A.; Veazey, Ronald S.

    2014-01-01

    CD4+ T follicular helper (TFH) cells guide development and maturation of B cells and are crucial for effective antibody responses. Here we found rhesus macaque TFH cells, defined as CXCR5+CD4 T cells, contain two major populations: PD-1INT and PD-1HIGH cells. Of these, PD-1HIGHCD4+ T cells highly co-express ICOS but little CCR7, and reside in lymph node germinal centers (GCs), but not in blood. These cells secrete IL-21 and express transcriptional factor Bcl-6 at higher levels than CXCR5+PD-1INTCD4+ T cells. In addition, the frequency of PD-1HIGHCD4+ T cells is low in lymph nodes of newborns, but increases with age. Levels of PD-1HIGHCD4+ T cells correlate with mature B cells in lymph nodes, and PD-1 blockade in PD-1HIGHCD4+ T and B cell co-cultures significantly inhibits IgG production. In summary, PD-1HIGHCD4+ T cells residing in GC represent a specific TFH subset that contributes to maturation of B cells and IgG production. PMID:24678309

  9. A Critical Role for IL-17RB Signaling in HTLV-1 Tax-Induced NF-κB Activation and T-Cell Transformation

    PubMed Central

    Lavorgna, Alfonso; Matsuoka, Masao; Harhaj, Edward William

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein functions as a potent viral oncogene that constitutively activates the NF-κB transcription factor to transform T cells; however, the underlying mechanisms remain obscure. Here, using next-generation RNA sequencing we identified the IL-25 receptor subunit IL-17RB as an aberrantly overexpressed gene in HTLV-1 immortalized T cells. Tax induced the expression of IL-17RB in an IκB kinase (IKK) and NF-κB-dependent manner. Remarkably, Tax activation of the canonical NF-κB pathway in T cells was critically dependent on IL-17RB expression. IL-17RB and IL-25 were required for HTLV-1-induced immortalization of primary T cells, and the constitutive NF-κB activation and survival of HTLV-1 transformed T cells. IL-9 was identified as an important downstream target gene of the IL-17RB pathway that drives the proliferation of HTLV-1 transformed cells. Furthermore, IL-17RB was overexpressed in leukemic cells from a subset of ATL patients and also regulated NF-κB activation in some, but not all, Tax-negative ATL cell lines. Together, our results support a model whereby Tax instigates an IL-17RB-NF-κB feed-forward autocrine loop that is obligatory for HTLV-1 leukemogenesis. PMID:25340344

  10. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli.

    PubMed

    Fenton, Andrew K; Gerdes, Kenn

    2013-07-03

    How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin-MreB while cell division is governed by tubulin-FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB-FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.

  11. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells

    PubMed Central

    Goetz, Benjamin; An, Wei; Mohapatra, Bhopal; Zutshi, Neha; Iseka, Fany; Storck, Matthew D.; Meza, Jane; Sheinin, Yuri; Band, Vimla; Band, Hamid

    2016-01-01

    CBL-family ubiquitin ligases are critical negative regulators of tyrosine kinase signaling, with a clear redundancy between CBL and CBL-B evident in the immune cell and hematopoietic stem cell studies. Since CBL and CBL-B are negative regulators of immune cell activation, elimination of their function to boost immune cell activities could be beneficial in tumor immunotherapy. However, mutations of CBL are associated with human leukemias, pointing to tumor suppressor roles of CBL proteins; hence, it is critical to assess the tumor-intrinsic roles of CBL and CBL-B in cancers. This has not been possible since the only available whole-body CBL-B knockout mice exhibit constitutive tumor rejection. We engineered a new CBL-Bflox/flox mouse, combined this with an existing CBLflox/flox mouse to generate CBLflox/flox; CBL-Bflox/flox mice, and tested the tissue-specific concurrent deletion of CBL and CBL-B using the widely-used CD4-Cre transgenic allele to produce a T-cell-specific double knockout. Altered T-cell development, constitutive peripheral T-cell activation, and a lethal multi-organ immune infiltration phenotype largely resembling the previous Lck-Cre driven floxed-CBL deletion on a CBL-B knockout background establish the usefulness of the new model for tissue-specific CBL/CBL-B deletion. Unexpectedly, CD4-Cre-induced deletion in a small fraction of hematopoietic stem cells led to expansion of certain non-T-cell lineages, suggesting caution in the use of CD4-Cre for T-cell-restricted gene deletion. The establishment of a new model of concurrent tissue-selective CBL/CBL-B deletion should allow a clear assessment of the tumor-intrinsic roles of CBL/CBL-B in non-myeloid malignancies and help test the potential for CBL/CBL-B inactivation in immunotherapy of tumors. PMID:27276677

  12. Glomerular common gamma chain confers B- and T-cell-independent protection against glomerulonephritis.

    PubMed

    Luque, Yosu; Cathelin, Dominique; Vandermeersch, Sophie; Xu, Xiaoli; Sohier, Julie; Placier, Sandrine; Xu-Dubois, Yi-Chun; Louis, Kevin; Hertig, Alexandre; Bories, Jean-Christophe; Vasseur, Florence; Campagne, Fabien; Di Santo, James P; Vosshenrich, Christian; Rondeau, Eric; Mesnard, Laurent

    2017-05-01

    Crescentic glomerulonephritis is a life-threatening renal disease that has been extensively studied by the experimental anti-glomerular basement membrane glomerulonephritis (anti-GBM-GN) model. Although T cells have a significant role in this model, athymic/nude mice and rats still develop severe renal disease. Here we further explored the contribution of intrinsic renal cells in the development of T-cell-independent GN lesions. Anti-GBM-GN was induced in three strains of immune-deficient mice (Rag2 -/- , Rag2 -/- Il2rg -/- , and Rag2 -/- Il2rb -/- ) that are devoid of either T/B cells or T/B/NK cells. The Rag2 -/- Il2rg -/- or Rag2 -/- Il2rb -/- mice harbor an additional deletion of either the common gamma chain (γC) or the interleukin-2 receptor β subunit (IL-2Rβ), respectively, impairing IL-15 signaling in particular. As expected, all these strains developed severe anti-GBM-GN. Additionally, bone marrow replenishment experiments allowed us to deduce a protective role for the glomerular-expressed γC during anti-GBM-GN. Given that IL-15 has been found highly expressed in nephritic kidneys despite the absence of lymphocytes, we then studied this cytokine in vitro on primary cultured podocytes from immune-deficient mice (Rag2 -/- Il2rg -/- and Rag2 -/- Il2rb -/- ) compared to controls. IL-15 induced downstream activation of JAK1/3 and SYK in primary cultured podocytes. IL-15-dependent JAK/SYK induction was impaired in the absence of γC or IL-2Rβ. We found γC largely induced on podocytes during human glomerulonephritis. Thus, renal lesions are indeed modulated by intrinsic glomerular cells through the γC/IL-2Rβ receptor response, to date classically described only in immune cells. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Bioinformatics and immunologic investigation on B and T cell epitopes of Cur l 3, a major allergen of Curvularia lunata.

    PubMed

    Sharma, Vidhu; Singh, Bhanu P; Gaur, Shailendra N; Pasha, Santosh; Arora, Naveen

    2009-06-01

    The knowledge on epitopes of proteins can help in devising new therapeutic modalities for allergic disorders. In the present study, five B (P1-P5) and five T cell (P6-P10) epitopes were predicted in silico based on sequence homology model of Cur l 3, a major allergen of Curvularia lunata. Peptides (epitopes) were synthesized and assessed for biological activity by ELISA, competitive ELISA, lymphoproliferation and cytokine profiling using Curvularia allergic patients' sera. B cell peptides showed higher IgE binding by ELISA than T cell epitopes except P6. Peptides P1-P6 achieved EC(50) at 100 ng, whereas P7-P10 required 10 mug in inhibition assays. Peripheral blood mononuclear cells from Curvularia allergic patients (n = 20) showed higher lymphoproliferation for T cell epitopes than B cell epitopes except P6 confirming the properties of B and T cell prediction. The supernatant from these patients show highest interleukin-4 release on stimulation with P6 followed by B cell peptides. P4 and P6 together identified 35/37 of Curvularia positive patients by skin tests. In summary, experimental analysis confirmed in silico predicted epitopes containing important antigenic regions of Cur l 3. P6, a predicted T cell epitope, showed the presence of a cryptic B cell epitope. Peptides P4 and P6 have potential for clinical application. The approach used here is relevant and may be used to delineate epitopes of other proteins.

  14. Interaction between C/EBPbeta and Tax down-regulates human T-cell leukemia virus type I transcription.

    PubMed

    Hivin, P; Gaudray, G; Devaux, C; Mesnard, J-M

    2004-01-20

    The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein beta (C/EBPbeta) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPbeta has also been found to interact with Tax, we analyzed the effects of C/EBPbeta on viral Tax-dependent transcription. We show here that C/EBPbeta represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPbeta. We also analyzed the physical interactions between Tax and C/EBPbeta and found that the central region of C/EBPbeta, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPbeta would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPbeta was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPbeta may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response.

  15. Eight color immunophenotyping of T-, B- and NK-cell subpopulations for characterization of chronic immunodeficiencies.

    PubMed

    A, Boldt; S, Borte; S, Fricke; K, Kentouche; F, Emmrich; M, Borte; F, Kahlenberg; U, Sack

    2014-01-16

    Background: The heterogeneity of primary and secondary immunodeficiencies demands for the development of a comprehensive flow cytometric screening system, based on reference values that support a standardized immunophenotypic characterization of most lymphocyte subpopulations. Methods: Peripheral blood samples from healthy adult volunteers (n=25) were collected and split into eight panel fractions (100µl each). Subsequently, pre-mixed 8-color antibody cocktails were incubated per specific panel of whole blood to detect and differentiate cell subsets of: (i) a general lymphocyte overviews, (ii) B-cell subpopulations, (iii) CD4+ subpopulations, (iv) CD8+ subpopulations, (v) regulatory T-cells, (vi) recent thymic emigrants, (vii) NK-cell subpopulations, (viii) NK-cell activation markers. All samples were lysed, washed and measured by flow cytometry. FACS DIVA software was used for data analysis and calculation of quadrant statistics (mean values, standard error of mean, percentile ranges). Results: Whole blood staining of lymphocytes provided the analysis of: (i) CD3+, 4+, 8+, 19+, 16/56+, and activated CD4/8 cells; (ii) immature, naïve, non-switched/switched, memory, (activated) CD21 low , transitional B-cells, plasmablasts/plasmacells; (iii and iv) naïve, central memory, effector, effector memory, TH1/TH2/TH17-like and CCR5+CD8-cells; (v) CD25+, regulatory T-cells (naïve/memory, HLA-DR+); (vi) α/β- and γ/δ-T-cells, recent thymic emigrants in CD4/CD8 cells; (vii) immature/mature CD56 bright , CD94/NKG2D+ NK-cells; and (viii) Nkp30, 44, 46 and CD57+NK-cells. Clinical examples and quadrant statistics are provided. Conclusion: The present study represents a practical approach to standardize the immunophenotyping of most T-, B- and NK-cell subpopulations. That allows differentiating, whether abnormalities or developmental shifts observed in lymphocyte subpopulations originates either from primary or secondary immunological disturbance. © 2014 Clinical Cytometry

  16. Effect of dietary selenium and cancer cell xenograft on peripheral T and B lymphocytes in adult nude mice.

    PubMed

    Cheng, Wen-Hsing; Holmstrom, Alexandra; Li, Xiangdong; Wu, Ryan T Y; Zeng, Huawei; Xiao, Zhengguo

    2012-05-01

    Selenium (Se) is known to regulate tumorigenesis and immunity at the nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8(+) and CD4(+) T cells, we investigated whether B and T cell maturation could be modulated by dietary Se and by tumorigenesis in nude mice. Fifteen homozygous nude mice were fed a Se-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se+) or 1.0 (Se++) mg Se/kg (as Na(2)SeO(4)) for 6 months, followed by a 7-week time course of PC-3 prostate cancer cell xenograft (2 × 10(6) cells/site, 2 sites/mouse). Here, we show that peripheral B cell levels decreased in nude mice fed the Se -  or Se++ diet and the CD4(+) T cell levels increased in mice fed the Se++ diet. During the PC-3 cell tumorigenesis, dietary Se status did not affect peripheral CD4(+) or CD8(+) T cells in nude mice whereas mice fed with the Se++ diet appeared to exhibit greater peripheral CD25(+)CD4(+) T cells on day 9. Dietary Se status did not affect spleen weight in nude mice 7 weeks after the xenograft. Spleen weight was associated with frequency of peripheral CD4(+), but not CD8(+) T cells. Taken together, dietary Se at the nutritional and supranutritional levels regulates peripheral B and T cells in adult nude mice before and after xenograft with PC-3 prostate cancer cells.

  17. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    PubMed Central

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  18. Angioimmunoblastic T-cell lymphoma: more than a disease of T follicular helper cells.

    PubMed

    Lemonnier, François; Mak, Tak W

    2017-08-01

    Angioimmunoblastic T-cell lymphoma (AITL) is one of the most frequent entities of peripheral T-cell lymphoma. An AITL has two components: the AITL tumour cells, which have a T follicular helper (TFH) cell phenotype, and a surrounding and extensive tumour microenvironment that is populated with various reactive cell types, including B cells. Recurrent TET2 mutations have been described in 50-80% of AITLs, possibly occurring in a haematopoietic progenitor cell. An article published recently in the Journal of Pathology describes the use of microdissection to isolate PD1 + AITL tumour cells and CD20 + B cells from the AITL microenvironment, and to show that TET2 mutations are actually more frequent in these diseases than previously thought. Whereas TET2 mutations were detected in only six of 13 AITLs, 12 of 13 samples of microdissected PD1 + AITL tumour cells possessed this mutation. Moreover, TET2 mutations were detected in CD20 + B cells from the AITL microenvironment in six of nine informative cases. These results confirm that TET2 mutation is an early event in the majority of AITL cases, and that the driving molecular anomalies are not restricted to the T lineage tumour cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Subpopulations of M-MDSCs from mice infected by an immunodeficiency-causing retrovirus and their differential suppression of T- vs B-cell responses.

    PubMed

    O'Connor, Megan A; Fu, Whitney W; Green, Kathy A; Green, William R

    2015-11-01

    Monocytic (CD11b(+)Ly6G(±/Lo)Ly6C(+)) myeloid derived suppressor cells (M-MDSCs) expand following murine retroviral LP-BM5 infection and suppress ex vivo polyclonal T-cell and B-cell responses. M-MDSCs 3 weeks post LP-BM5 infection have decreased suppression of T-cell, but not B-cell, responses and alterations in the degree of iNOS/NO dependence of suppression. M-MDSCs from LP-BM5 infected mice were sorted into four quadrant populations (Ly6C/CD11b density): all quadrants suppressed B-cell responses, but only M-MDSCs expressing the highest levels of Ly6C and CD11b (Q2) significantly suppressed T-cell responses. Further subdivision of this Q2 population revealed the Ly6C(+/Hi) M-MDSC subpopulation as the most suppressive, inhibiting T- and B-cell responses in a full, or partially, iNOS/NO-dependent manner, respectively. In contrast, the lower/moderate levels of suppression by the Ly6C(+/Lo) and Ly6C(+/Mid) M-MDSC Q2 subpopulations, whether versus T- and/or B-cells, displayed little/no iNOS dependency for suppression. These results highlight differential phenotypic and functional immunosuppressive M-MDSC subsets in a retroviral immunodeficiency model. Published by Elsevier Inc.

  20. Anti-HBV response to toll-like receptor 7 agonist GS-9620 is associated with intrahepatic aggregates of T cells and B cells.

    PubMed

    Li, Li; Barry, Vivian; Daffis, Stephane; Niu, Congrong; Huntzicker, Erik; French, Dorothy M; Mikaelian, Igor; Lanford, Robert E; Delaney, William E; Fletcher, Simon P

    2018-05-01

    GS-9620, an oral agonist of toll-like receptor 7, is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the chimpanzee and woodchuck models of CHB. Herein, we investigated the immunomodulatory mechanisms underlying these antiviral effects. Archived liver biopsies and paired peripheral blood mononuclear cell samples from a previous chimpanzee study were analyzed by RNA sequencing, quantitative reverse transcription PCR, immunohistochemistry (IHC) and in situ hybridization (ISH). GS-9620 treatment of CHB chimpanzees induced an intrahepatic transcriptional profile significantly enriched with genes associated with hepatitis B virus (HBV) clearance in acutely infected chimpanzees. Type I and II interferon, CD8 + T cell and B cell transcriptional signatures were associated with treatment response, together with evidence of hepatocyte death and liver regeneration. IHC and ISH confirmed an increase in intrahepatic CD8 + T cell and B cell numbers during treatment, and revealed that GS-9620 transiently induced aggregates predominantly comprised of CD8 + T cells and B cells in portal regions. There were no follicular dendritic cells or IgG-positive cells in these lymphoid aggregates and very few CD11b + myeloid cells. There was no change in intrahepatic natural killer cell number during GS-9620 treatment. The antiviral response to GS-9620 treatment in CHB chimpanzees was associated with an intrahepatic interferon response and formation of lymphoid aggregates in the liver. Our data indicate these intrahepatic structures are not fully differentiated follicles containing germinal center reactions. However, the temporal correlation between development of these T and B cell aggregates and the antiviral response to treatment suggests they play a role in promoting an effective immune response against HBV. New therapies to treat chronic hepatitis B (CHB) are urgently

  1. Generation of protective T cell-independent antiviral antibody responses in SCID mice reconstituted with follicular or marginal zone B cells.

    PubMed

    Guay, Heath M; Mishra, Rabinarayan; Garcea, Robert L; Welsh, Raymond M; Szomolanyi-Tsuda, Eva

    2009-07-01

    B cells generated in the bone marrow of adult mice enter the periphery as transitional B cells and subsequently differentiate into one of two phenotypically and functionally distinct subsets, marginal zone (MZ) or follicular (Fo) B cells. Recent reports indicate, however, that in response to environmental cues, such as lymphopenia, mature Fo B cells can change to display phenotypic markers characteristic of MZ B cells. Previously, we found that splenic B cells transferred to SCID mice responded to polyoma virus (PyV) infection with T cell-independent (TI) IgM and IgG secretion, reducing the viral load and protecting mice from the lethal effect of the infection. The contribution of MZ and Fo B cell subsets to this antiviral TI-2 response, however, has not been addressed. In this study, we show that both sort-purified MZ and Fo B cells generate protective TI Ab responses to PyV infection when transferred into SCID mice. Moreover, the transferred Fo B cells in the spleens of the PyV-infected SCID mice change phenotype, with many of them displaying MZ B cell characteristics. These findings demonstrate the plasticity of the B cell subsets in virus-infected hosts and show for the first time that B cells derived exclusively from Fo B cells can effectively function in antiviral TI-2 responses.

  2. Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease.

    PubMed

    Brudno, Jennifer N; Somerville, Robert P T; Shi, Victoria; Rose, Jeremy J; Halverson, David C; Fowler, Daniel H; Gea-Banacloche, Juan C; Pavletic, Steven Z; Hickstein, Dennis D; Lu, Tangying L; Feldman, Steven A; Iwamoto, Alexander T; Kurlander, Roger; Maric, Irina; Goy, Andre; Hansen, Brenna G; Wilder, Jennifer S; Blacklock-Schuver, Bazetta; Hakim, Frances T; Rosenberg, Steven A; Gress, Ronald E; Kochenderfer, James N

    2016-04-01

    Progressive malignancy is the leading cause of death after allogeneic hematopoietic stem-cell transplantation (alloHSCT). After alloHSCT, B-cell malignancies often are treated with unmanipulated donor lymphocyte infusions (DLIs) from the transplant donor. DLIs frequently are not effective at eradicating malignancy and often cause graft-versus-host disease, a potentially lethal immune response against normal recipient tissues. We conducted a clinical trial of allogeneic T cells genetically engineered to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. Patients with B-cell malignancies that had progressed after alloHSCT received a single infusion of CAR T cells. No chemotherapy or other therapies were administered. The T cells were obtained from each recipient's alloHSCT donor. Eight of 20 treated patients obtained remission, which included six complete remissions (CRs) and two partial remissions. The response rate was highest for acute lymphoblastic leukemia, with four of five patients obtaining minimal residual disease-negative CR. Responses also occurred in chronic lymphocytic leukemia and lymphoma. The longest ongoing CR was more than 30 months in a patient with chronic lymphocytic leukemia. New-onset acute graft-versus-host disease after CAR T-cell infusion developed in none of the patients. Toxicities included fever, tachycardia, and hypotension. Peak blood CAR T-cell levels were higher in patients who obtained remissions than in those who did not. Programmed cell death protein-1 expression was significantly elevated on CAR T cells after infusion. Presence of blood B cells before CAR T-cell infusion was associated with higher postinfusion CAR T-cell levels. Allogeneic anti-CD19 CAR T cells can effectively treat B-cell malignancies that progress after alloHSCT. The findings point toward a future when antigen-specific T-cell therapies will play a central role in alloHSCT. © 2016 by American Society of Clinical Oncology.

  3. Lipid-Antigen Presentation by CD1d+ B Cells Is Essential for the Maintenance of Invariant Natural Killer T Cells

    PubMed Central

    Bosma, Anneleen; Abdel-Gadir, Azza; Isenberg, David A.; Jury, Elizabeth C.; Mauri, Claudia

    2012-01-01

    Summary B cells perform many immunological functions, including presenting lipid antigen to CD1d-restricted invariant natural killer T (iNKT) cells, known to contribute to maintaining tolerance in autoimmunity. Patients with systemic lupus erythematous (SLE) display dysregulated B cell responses and reduced peripheral iNKT cell frequencies. The significance of these defects and how they relate to SLE pathogenesis remain elusive. We report that B cells are essential for iNKT cell expansion and activation in healthy donors but fail to exert a similar effect in SLE patients. Defective B cell-mediated stimulation of iNKT cells in SLE patients was associated with altered CD1d recycling, a defect recapitulated in B cells from healthy donors after stimulation with interferon-α (IFN-α) and anti-immunoglobulin (Ig). iNKT cell number and function were restored in SLE patients responding to anti-CD20 treatment upon normalization of CD1d expression exclusively in repopulated immature B cells. We propose that healthy B cells are pivotal for iNKT cell homeostasis. PMID:22406267

  4. T Cell Allorecognition via Molecular Mimicry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdonald, Whitney A.; Chen, Zhenjun; Gras, Stephanie

    T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B*0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B*4402 and HLA-B*4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B*0801, HLA-B*4402, and HLA-B*4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did notmore » alloreact against HLA-B*4403, and the single residue polymorphism between HLA-B*4402 and HLA-B*4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.« less

  5. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen specific Interleukin 17 response

    PubMed Central

    Zeng, Xun; Wei, Yu-ling; Huang, Jun; Newell, Evan W.; Yu, Hongxiang; Kidd, Brian A.; Kuhns, Michael S.; Waters, Ray W.; Davis, Mark M.; Weaver, Casey T.; Chien, Yueh-hsiu

    2012-01-01

    Summary γδ T cells contribute uniquely to host immune defense. However, how they function remains an enigma. Although it is unclear what most γδ T cells recognize, common dogma asserts that they recognize self-antigens. While they are the major initial Interleukin-17 (IL-17) producers in infections, it is unclear what is required to trigger these cells to act. Here, we report that a noted B cell antigen, the algae protein-phycoerythrin (PE) is an antigen for murine and human γδ T cells. PE also stained specific bovine γδ T cells. Employing this specificity, we demonstrated that antigen recognition, but not extensive clonal expansion, was required to activate naïve γδ T cells to make IL-17. In this activated state, γδ T cells gained the ability to respond to cytokine signals that perpetuated the IL-17 production. These results underscore the adaptability of lymphocyte antigen receptors and suggest a previously unrecognized antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  6. How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy.

    PubMed

    Gacerez, Albert T; Arellano, Benjamine; Sentman, Charles L

    2016-12-01

    Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Suppressor cell hyperactivity relative to allogeneic lymphocyte proliferation as a manifestation of defective T-T-cell interactions in systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenina, M.A.; Potapova, A.A.; Biryukov, A.V.

    1987-01-01

    The authors study the state of immunoregulatory process in patients with systemic lupus erythematosus at the T-T-cell interaction level and seek to test the possibility of the pharmacological modulation of this process. The proliferative activity of mononuclear lymphocytes, extracted from the blood of ten lupus patients, was assessed by measuring the incorporation of tritiated thymidine into cultures stimulated by phytohemagglutinin, concanavalin, and theophylline. The comparative effects of each of these agents on the immunoregulatory and proliferative activity of the lymphocytes are reported.

  8. Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology.

    PubMed

    Butler, John E; Sinkora, Marek; Wertz, Nancy; Holtmeier, Wolfgang; Lemke, Caitlin D

    2006-01-01

    Birth in all higher vertebrates is at the center of the critical window of development in which newborns transition from dependence on innate immunity to dependence on their own adaptive immunity, with passive maternal immunity bridging this transition. Therefore we have studied immunological development through fetal and early neonatal life. In swine, B cells appear earlier in fetal development than T cells. B cell development begins in the yolk sac at the 20th day of gestation (DG20), progresses to fetal liver at DG30 and after DG45 continues in bone marrow. The first wave of developing T cells is gammadelta cells expressing a monomorphic Vdelta rearrangement. Thereafter, alphabeta T cells predominate and at birth, at least 19 TRBV subgroups are expressed, 17 of which appear highly homologous with those in humans. In contrast to the T cell repertoire and unlike humans and mice, the porcine pre-immune VH (IGHV-D-J) repertoire is highly restricted, depending primarily on CDR3 for diversity. The V-KAPPA (IGKV-J) repertoire and apparently also the V-LAMBDA (IGLV-J) repertoire, are also restricted. Diversification of the pre-immune B cell repertoire of swine and the ability to respond to both T-dependent and T-independent antigen depends on colonization of the gut after birth in which colonizing bacteria stimulate with Toll-like receptor ligands, especially bacterial DNA. This may explain the link between repertoire diversification and the anatomical location of primary lymphoid tissue like the ileal Peyers patches. Improper development of adaptive immunity can be caused by infectious agents like the porcine reproductive and respiratory syndrome virus that causes immune dysregulation resulting in immunological injury and autoimmunity.

  9. Impact of lipid rafts on the T -cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions

    NASA Astrophysics Data System (ADS)

    Li, Long; Xu, Guang-Kui; Song, Fan

    2017-01-01

    The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.

  10. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response

    PubMed Central

    Barinov, Aleksandr; Galgano, Alessia; Krenn, Gerald; Tanchot, Corinne; Vasseur, Florence

    2017-01-01

    CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation. PMID:28686740

  11. γδ T cell and other immune cells crosstalk in cellular immunity.

    PubMed

    He, Ying; Wu, Kangni; Hu, Yongxian; Sheng, Lixia; Tie, Ruxiu; Wang, Binsheng; Huang, He

    2014-01-01

    γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell.

  12. FADD and the NF-κB family member Bcl-3 regulate complementary pathways to control T-cell survival and proliferation

    PubMed Central

    Rangelova, Svetla; Kirschnek, Susanne; Strasser, Andreas; Häcker, Georg

    2008-01-01

    Fas-associated protein with death domain/mediator of receptor induced toxicity (FADD/MORT1) was first described as a transducer of death receptor signalling but was later recognized also to be important for proliferation of T cells. B-cell lymphoma 3 (Bcl-3) is a relatively little understood member of the nuclear factor (NF)-κB family of transcription factors. We recently found that Bcl-3 is up-regulated in T cells from mice where FADD function is blocked by a dominant negative transgene (FADD-DN). To understand the importance of this, we generated FADD-DN/bcl-3−/− mice. Here, we report that T cells from these mice show massive cell death and severely reduced proliferation in response to T-cell receptor (TCR) stimulation in vitro. Transgenic co-expression of Bcl-2 (FADD-DN/bcl-3−/−/vav-bcl-2 mice) rescued the survival but not the proliferation of T cells. FADD-DN/bcl-3−/− mice had normal thymocyte numbers but reduced numbers of peripheral T cells despite an increase in cycling T cells in vivo. However, activation of the classical NF-κB and extracellular regulated kinase (ERK) pathways and expression of interleukin (IL)-2 mRNA upon stimulation were normal in T cells from FADD-DN/bcl-3−/− mice. These data suggest that FADD and Bcl-3 regulate separate pathways that both contribute to survival and proliferation in mouse T cells. PMID:18557791

  13. PREFACE: Cell-substrate interactions Cell-substrate interactions

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    system, is strongly modulated by mechanosensing on substrates of varying stiffness [21]. Mogilner and Rubinstein present a theoretical systems analysis for the shape of rapidly migrating keratocytes [22]. Saez et al show, with microfabricated pillar assays, how force is distributed within a layer of epithelial cells [23]. For three-dimensional tissue models, new techniques have to be developed to characterize the complex mechanics of hydrogels. Levental et al [24] and Kotlarchyk et al [25] approach this challenge with mechanical and optical methods, respectively. Narayanan et al combine experiments and continuum models to explore how chemo-mechanical interactions influence tumor growth [26]. References [1] Chen C S, Mrksich M, Huang S, Whitesides G M and Ingber D E 1997 Geometric control of cell life and death Science 276 1425 [2] Pelham R J Jr and Wang Y-L 1997 Cell locomotion and focal adhesions are regulated by substrate flexibility Proc. Natl. Acad. Sci. USA 94 13661 [3] Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677-89 [4] Geiger B, Spatz J P and Bershadsky A D 2009 Environmental sensing through focal adhesions Nat. Rev. Mol. Cell Biol. 10 21 [5] Boettiger D and Wehrle-Haller B 2010 Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy J. Phys.: Condens. Matter 22 194101 [6] Chirasatitsin S and Engler A J 2010 Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping J. Phys.: Condens. Matter 22 194102 [7] Scrimgeour J, Kodali V K, Kovari D T and Curtis J E 2010 Photobleaching-activated micropatterning on self-assembled monolayers J. Phys.: Condens. Matter 22 194103 [8] Stricker J, Sabass B, Schwarz U S and Gardel M L 2010 Optimization of traction force microscopy for micron-sized focal adhesions J. Phys.: Condens. Matter 22 194104 [9] Metzner C, Raupach C, Mierke C T and Fabry B 2010 Fluctuations of

  14. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses.

    PubMed

    Pardi, Norbert; Hogan, Michael J; Naradikian, Martin S; Parkhouse, Kaela; Cain, Derek W; Jones, Letitia; Moody, M Anthony; Verkerke, Hans P; Myles, Arpita; Willis, Elinor; LaBranche, Celia C; Montefiori, David C; Lobby, Jenna L; Saunders, Kevin O; Liao, Hua-Xin; Korber, Bette T; Sutherland, Laura L; Scearce, Richard M; Hraber, Peter T; Tombácz, István; Muramatsu, Hiromi; Ni, Houping; Balikov, Daniel A; Li, Charles; Mui, Barbara L; Tam, Ying K; Krammer, Florian; Karikó, Katalin; Polacino, Patricia; Eisenlohr, Laurence C; Madden, Thomas D; Hope, Michael J; Lewis, Mark G; Lee, Kelly K; Hu, Shiu-Lok; Hensley, Scott E; Cancro, Michael P; Haynes, Barton F; Weissman, Drew

    2018-06-04

    T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4 + T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses. © 2018 Pardi et al.

  15. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL.

    PubMed

    Duell, J; Dittrich, M; Bedke, T; Mueller, T; Eisele, F; Rosenwald, A; Rasche, L; Hartmann, E; Dandekar, T; Einsele, H; Topp, M S

    2017-10-01

    Blinatumomab can induce a complete haematological remission in patients in 46.6% with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL) resulting in a survival benefit when compared with chemotherapy. Only bone marrow blast counts before therapy have shown a weak prediction of response. Here we investigated the role of regulatory T cells (Tregs), measured by CD4/CD25/FOXP3 expression, in predicting the outcome of immunotherapy with the CD19-directed bispecific T-cell engager construct blinatumomab. Blinatumomab responders (n=22) had an average of 4.82% Tregs (confidence interval (CI): 1.79-8.34%) in the peripheral blood, whereas non-responders (n=20) demonstrated 10.25% Tregs (CI: 3.36-65.9%). All other tested markers showed either no prediction value or an inferior prediction level including blast BM counts and the classical enzyme marker lactate dehydrogenase. With a cutoff of 8.525%, Treg enumeration can identify 100% of all blinatumomab responders and exclude 70% of the non-responders. The effect is facilitated by blinatumomab-activated Tregs, leading to interleukin-10 production, resulting in suppression of T-cell proliferation and reduced CD8-mediated lysis of ALL cells. Proliferation of patients' T cells can be restored by upfront removal of Tregs. Thus, enumeration of Treg identifies r/r ALL patients with a high response rate to blinatumomab. Therapeutic removal of Tregs may convert blinatumomab non-responders to responders.

  16. IL-7 and CD4 T Follicular Helper Cells in HIV-1 Infection

    PubMed Central

    Chiodi, Francesca; Bekele, Yonas; Lantto Graham, Rebecka; Nasi, Aikaterini

    2017-01-01

    IL-7 was previously shown to upregulate the expression of molecules important for interaction of CD4+ T cells with B cells. It is poorly studied whether IL-7 has a role in the biology of T follicular helper (Tfh) cells and whether IL-7 dysregulates the expression of B-cell costimulatory molecules on Tfh cells. We review the literature and provide arguments in favor of IL-7 being involved in the biology of human Tfh cells. The CD127 IL-7 receptor is expressed on circulating Tfh and non-Tfh cells, and we show that IL-7, but not IL-6 or IL-21, upregulates the expression of CD70 and PD-1 on these cells. We conclude that IL-7, a cytokine whose level is elevated during HIV-1 infection, may have a role in increased expression of B cell costimulatory molecules on Tfh cells and lead to abnormal B cell differentiation. PMID:28473831

  17. IL-7 and CD4 T Follicular Helper Cells in HIV-1 Infection.

    PubMed

    Chiodi, Francesca; Bekele, Yonas; Lantto Graham, Rebecka; Nasi, Aikaterini

    2017-01-01

    IL-7 was previously shown to upregulate the expression of molecules important for interaction of CD4+ T cells with B cells. It is poorly studied whether IL-7 has a role in the biology of T follicular helper (Tfh) cells and whether IL-7 dysregulates the expression of B-cell costimulatory molecules on Tfh cells. We review the literature and provide arguments in favor of IL-7 being involved in the biology of human Tfh cells. The CD127 IL-7 receptor is expressed on circulating Tfh and non-Tfh cells, and we show that IL-7, but not IL-6 or IL-21, upregulates the expression of CD70 and PD-1 on these cells. We conclude that IL-7, a cytokine whose level is elevated during HIV-1 infection, may have a role in increased expression of B cell costimulatory molecules on Tfh cells and lead to abnormal B cell differentiation.

  18. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin's Lymphomas.

    PubMed

    Onea, Alexandra S; Jazirehi, Ali R

    2016-01-01

    Recovery rates for B-cell Non-Hodgkin's Lymphoma (NHL) are up to 70% with current standard-of-care treatments including rituximab (chimeric anti-CD20 monoclonal antibody) in combination with chemotherapy (R-CHOP). However, patients who do not respond to first-line treatment or develop resistance have a very poor prognosis. This signifies the need for the development of an optimal treatment approach for relapsed/refractory B-NHL. Novel CD19- chimeric antigen receptor (CAR) T-cell redirected immunotherapy is an attractive option for this subset of patients. Anti-CD19 CAR T-cell therapy has already had remarkable efficacy in various leukemias as well as encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. In going forward with additional clinical trials, complementary treatments that may circumvent potential resistance mechanisms should be used alongside anti-CD19 T-cells in order to prevent relapse with resistant strains of disease. Some such supplementary tactics include conditioning with lymphodepletion agents, sensitizing with kinase inhibitors and Bcl-2 inhibitors, enhancing function with multispecific CAR T-cells and CD40 ligand-expressing CAR T-cells, and safeguarding with lymphoma stem cell-targeted treatments. A therapy regimen involving anti-CD19 CAR T-cells and one or more auxiliary treatments could dramatically improve prognoses for patients with relapsed/refractory B-cell NHL. This approach has the potential to revolutionize B-NHL salvage therapy in much the same way rituximab did for first-line treatments.

  19. Invariant NKT cells provide innate and adaptive help for B cells

    PubMed Central

    Vomhof-DeKrey, Emilie E.; Yates, Jennifer; Leadbetter, Elizabeth A.

    2014-01-01

    B cells rely on CD4+ T cells helper signals to optimize their responses to T-dependent antigens. Recently another subset of T cells has been identified which provides help for B cells, invariant natural killer T (iNKT) cells. INKT cells are unique because they provide both innate and adaptive forms of help to B cells, with divergent outcomes. iNKT cells are widely distributed throughout the spleen at rest, consolidate in the marginal zone of the spleen early after activation, and are later found in germinal centers. Understanding the activation requirements for iNKT cells has led to the development of glycolipid containing nanoparticles which efficiently activate iNKT cells, enhance their cooperation with B cells, and which hold promise for vaccine development. PMID:24514004

  20. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearingmore » mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.« less

  1. Expression of progesterone receptor B is associated with G0/G1 arrest of the cell cycle and growth inhibition in NIH3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Shinji; Kato, Kiyoko; Suga, Shin

    2005-05-01

    Previously, we found a significant reduction of progesterone receptor B (PR-B) expression levels in the Ras-mediated NIH3T3 cell transformation, and re-expression of exogenous PR-B eliminated the tumorigenic potential. We hypothesized that this reduction is of biological significance in cell transformation. In the present study, we determined the correlation between PR-B expression and cell cycle progression. In synchronized NIH3T3 cells, we found an increase in PR-B protein and p27 CDK inhibitor levels in the G0/G1 phase and a reduction due to redistribution in the S and G2/M phases. The MEK inhibitor or cAMP stimulation arrested NIH3T3 cells in the G0/G1 phasemore » of the cell cycle. The expression of PR-B and p27 CDK inhibitors was up-regulated by treatment with both the MEK inhibitor and cAMP. Treatment of synchronized cells with a PKA inhibitor in the presence of 1% calf serum resulted in a significant reduction in both PR-B and p27 levels. The decrease in the PR-B levels caused by anti-sense oligomers or siRNA corresponded to the reduction in p27 levels. PR-B overexpression by adenovirus infection induced p27 and suppressed cell growth. Finally, we showed that PR-B modulation involved in the regulation of NIH3T3 cell proliferation was independent of nuclear estrogen receptor (ER) activity but dependent on non-genomic ER activity.« less

  2. Selective Depletion of αβ T Cells and B Cells for Human Leukocyte Antigen-Haploidentical Hematopoietic Stem Cell Transplantation. A Three-Year Follow-Up of Procedure Efficiency.

    PubMed

    Li Pira, Giuseppina; Malaspina, David; Girolami, Elia; Biagini, Simone; Cicchetti, Elisabetta; Conflitti, Gianpiero; Broglia, Manuel; Ceccarelli, Stefano; Lazzaro, Stefania; Pagliara, Daria; Meschini, Antonella; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2016-11-01

    HLA-haploidentical family donors represent a valuable option for children requiring allogeneic hematopoietic stem cell transplantation (HSCT). Because graft-versus-host diseases (GVHD) is a major complication of HLA-haploidentical HSCT because of alloreactive T cells in the graft, different methods have been used for ex vivo T cell depletion. Removal of donor αβ T cells, the subset responsible for GVHD, and of B cells, responsible for post-transplantation lymphoproliferative disorders, have been recently developed for HLA-haploidentical HSCT. This manipulation preserves, in addition to CD34 +  progenitors, natural killer, γδ T, and monocytes/dendritic cells, contributing to anti-leukemia activity and protection against infections. We analyzed depletion efficiency and cell yield in 200 procedures performed in the last 3 years at our center. Donors underwent CD34 +   hematopoietic stem cell (HSC) peripheral blood mobilization with granulocyte colony-stimulating factor (G-CSF). Poor CD34 +  cell mobilizers (48 of 189, 25%) received plerixafor in addition to G-CSF. Aphereses containing a median of 52.5 × 10 9 nucleated cells and 494 × 10 6 CD34 +  HSC were manipulated using the CliniMACS device. In comparison to the initial product, αβ T cell depletion produced a median 4.1-log reduction (range, 3.1 to 5.5) and B cell depletion led to a median 3.4-log reduction (range, 2.0 to 4.7). Graft products contained a median of 18.5 × 10 6 CD34 +  HSC/kg recipient body weight, with median values of residual αβ T cells and B cells of 29 × 10 3 /kg and 33 × 10 3 /kg, respectively. Depletion efficiency monitored at 6-month intervals demonstrated steady performance, while improved recovery of CD34 +  cells was observed after the first year (P = .0005). These data indicate that αβ T cell and B cell depletion of HSC grafts from HLA-haploidentical donors was efficient and reproducible. Copyright © 2016 The American Society for Blood and Marrow

  3. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy.

    PubMed

    Li Pira, Giuseppina; Di Cecca, Stefano; Biagini, Simone; Girolami, Elia; Cicchetti, Elisabetta; Bertaina, Valentina; Quintarelli, Concetta; Caruana, Ignazio; Lucarelli, Barbarella; Merli, Pietro; Pagliara, Daria; Brescia, Letizia Pomponia; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2017-01-01

    Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification.

  4. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy

    PubMed Central

    Li Pira, Giuseppina; Di Cecca, Stefano; Biagini, Simone; Girolami, Elia; Cicchetti, Elisabetta; Bertaina, Valentina; Quintarelli, Concetta; Caruana, Ignazio; Lucarelli, Barbarella; Merli, Pietro; Pagliara, Daria; Brescia, Letizia Pomponia; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2017-01-01

    Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification. PMID:28386262

  5. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    PubMed

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  6. Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities

    PubMed Central

    Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839

  7. Bone marrow stromal-B cell interactions in polycyclic aromatic hydrocarbon-induced pro/pre-B cell apoptosis.

    PubMed

    Allan, Lenka L; Mann, Koren K; Matulka, Raymond A; Ryu, Heui-Young; Schlezinger, Jennifer J; Sherr, David H

    2003-12-01

    Environmental polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons are immunotoxic in a variety of systems. In a model system of B lymphopoiesis, PAH exposure rapidly induces apoptosis in CD43- pre-B and CD43+ pro/pre-B cells. Apoptosis induction by 7,12-dimethylbenzo[a]anthracene (DMBA) is dependent upon AhR+ bone marrow stromal cells and likely involves DMBA metabolism within the stromal cell. However, it is not known if PAH-treated stromal cells release free metabolites or soluble factors that may directly induce B cell death or if the effector death signal is delivered by stromal cell-B cell contact. Here, we demonstrate that supernatants from DMBA-treated bone marrow stromal cells contain an activity capable of inducing apoptosis in pro/pre-B cells cocultured with stromal cells. This activity (1) is not produced when stromal cells are cotreated with DMBA and alpha-naphthoflavone (alpha-NF), an aryl hydrocarbon receptor (AhR) and cytochrome P-450 inhibitor, (2) is > or = 50 kDa, (3) is trypsin and heat sensitive, and (4) is dependent on AhR+ stromal cells, which in turn deliver the effector death signal to pro/pre-B cells. The results (1) argue against a role for a soluble, stromal cell-derived cytokine as the effector of PAH-induced pro/pre-B cell death, (2) exclude the possibility of a free metabolite acting directly on AhR- pro/pre-B cell targets, and (3) suggest the elaboration by stromal cells of a relatively stable, DMBA metabolite-protein complex capable of acting on other stromal cells at some distance. Collectively, these studies suggest that, while stromal cell products, e.g., metabolite-protein complexes, may affect the function of distant stromal cells, the effector death signal delivered by stromal cells to bone marrow B cells is mediated by cell-cell contact.

  8. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells.

    PubMed

    Machado-Santos, Joana; Saji, Etsuji; Tröscher, Anna R; Paunovic, Manuela; Liblau, Roland; Gabriely, Galina; Bien, Christian G; Bauer, Jan; Lassmann, Hans

    2018-06-04

    Multiple sclerosis is an inflammatory demyelinating disease in which active demyelination and neurodegeneration are associated with lymphocyte infiltrates in the brain. However, so far little is known regarding the phenotype and function of these infiltrating lymphocyte populations. In this study, we performed an in-depth phenotypic characterization of T and B cell infiltrates in a large set of multiple sclerosis cases with different disease and lesion stages and compared the findings with those seen in inflammatory, non-inflammatory and normal human controls. In multiple sclerosis lesions, we found a dominance of CD8+ T cells and a prominent contribution of CD20+ B cells in all disease courses and lesion stages, including acute multiple sclerosis cases with very short disease duration, while CD4+ T cells were sparse. A dominance of CD8+ T cells was also seen in other inflammatory controls, such as Rasmussen's encephalitis and viral encephalitis, but the contribution of B cells in these diseases was modest. Phenotypic analysis of the CD8+ T cells suggested that part of the infiltrating cells in active lesions proliferate, show an activated cytotoxic phenotype and are in part destroyed by apoptosis. Further characterization of the remaining cells suggest that CD8+ T cells acquire features of tissue-resident memory cells, which may be focally reactivated in active lesions of acute, relapsing and progressive multiple sclerosis, while B cells, at least in part, gradually transform into plasma cells. The loss of surface molecules involved in the egress of leucocytes from inflamed tissue, such as S1P1 or CCR7, and the upregulation of CD103 expression may be responsible for the compartmentalization of the inflammatory response in established lesions. Similar phenotypic changes of tissue-infiltrating CD8+ T cells were also seen in Rasmussen's encephalitis. Our data underline the potential importance of CD8+ T lymphocytes and B cells in the inflammatory response in

  9. A rare case of hepatic T-cell rich B-cell lymphoma (TCRBCL) in a juvenile dog.

    PubMed

    Chung, Tae-Ho; Lamm, Catherine; Choi, Young-Chul; Lee, Jung-Woo; Yu, Dohyeon; Choi, Ul-Soo

    2014-10-01

    A 7-month-old castrated male French Bull dog was presented with vomiting, lethargy, anorexia and weight loss of 2 weeks duration. The patient's history and clinical manifestations of suspected hepatopathy were subjected to ultrasonography, radiography, biochemical investigations and cytology of hepatic lesion. The cytologic impression was hepatic lymphoma, which was later confirmed by histopathology. The neoplastic cells were strongly diffusely immunoreactive for PAX5, but not immunoreactive for CD3, and B lymphocyte specific clonal proliferation was detected using by assay of antigen receptor rearrangement. Large numbers of immunoreactive mature non-neoplastic lymphocytes were admixed with the neoplastic cell population. Therefore, the immunohistochemical results were definitively consistent with a T-cell rich B-cell lymphoma (TCRBCL). This is the first description of a hepatic TCRBCL in a juvenile dog showing a poor response to aggressive chemotherapy.

  10. A Rare Case of Hepatic T-Cell Rich B-Cell Lymphoma (TCRBCL) in a Juvenile Dog

    PubMed Central

    CHUNG, Tae-Ho; LAMM, Catherine; CHOI, Young-Chul; LEE, Jung-Woo; YU, Dohyeon; CHOI, Ul-Soo

    2014-01-01

    ABSTRACT A 7-month-old castrated male French Bull dog was presented with vomiting, lethargy, anorexia and weight loss of 2 weeks duration. The patient’s history and clinical manifestations of suspected hepatopathy were subjected to ultrasonography, radiography, biochemical investigations and cytology of hepatic lesion. The cytologic impression was hepatic lymphoma, which was later confirmed by histopathology. The neoplastic cells were strongly diffusely immunoreactive for PAX5, but not immunoreactive for CD3, and B lymphocyte specific clonal proliferation was detected using by assay of antigen receptor rearrangement. Large numbers of immunoreactive mature non-neoplastic lymphocytes were admixed with the neoplastic cell population. Therefore, the immunohistochemical results were definitively consistent with a T-cell rich B-cell lymphoma (TCRBCL). This is the first description of a hepatic TCRBCL in a juvenile dog showing a poor response to aggressive chemotherapy. PMID:25283946

  11. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies.

    PubMed

    Kebriaei, Partow; Huls, Helen; Jena, Bipulendu; Munsell, Mark; Jackson, Rineka; Lee, Dean A; Hackett, Perry B; Rondon, Gabriela; Shpall, Elizabeth; Champlin, Richard E; Cooper, Laurence J N

    2012-05-01

    Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR(+) T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR(+) T-cell infusions derived from allogeneic sources.

  12. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli

    PubMed Central

    Fenton, Andrew K; Gerdes, Kenn

    2013-01-01

    How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin–MreB while cell division is governed by tubulin–FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB–FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB. PMID:23756461

  13. TLR4- and TRIF-dependent stimulation of B lymphocytes by peptide liposomes enables T cell-independent isotype switch in mice.

    PubMed

    Pihlgren, Maria; Silva, Alberto B; Madani, Rime; Giriens, Valérie; Waeckerle-Men, Ying; Fettelschoss, Antonia; Hickman, David T; López-Deber, María Pilar; Ndao, Dorin Mlaki; Vukicevic, Marija; Buccarello, Anna Lucia; Gafner, Valérie; Chuard, Nathalie; Reis, Pedro; Piorkowska, Kasia; Pfeifer, Andrea; Kündig, Thomas M; Muhs, Andreas; Johansen, Pål

    2013-01-03

    Immunoglobulin class switching from IgM to IgG in response to peptides is generally T cell-dependent and vaccination in T cell-deficient individuals is inefficient. We show that a vaccine consisting of a dense array of peptides on liposomes induced peptide-specific IgG responses totally independent of T-cell help. Independency was confirmed in mice lacking T cells and in mice deficient for MHC class II, CD40L, and CD28. The IgG titers were high, long-lived, and comparable with titers obtained in wild-type animals, and the antibody response was associated with germinal center formation, expression of activation-induced cytidine deaminase, and affinity maturation. The T cell-independent (TI) IgG response was strictly dependent on ligation of TLR4 receptors on B cells, and concomitant TLR4 and cognate B-cell receptor stimulation was required on a single-cell level. Surprisingly, the IgG class switch was mediated by TIR-domain-containing adapter inducing interferon-β (TRIF), but not by MyD88. This study demonstrates that peptides can induce TI isotype switching when antigen and TLR ligand are assembled and appropriately presented directly to B lymphocytes. A TI vaccine could enable efficient prophylactic and therapeutic vaccination of patients with T-cell deficiencies and find application in diseases where induction of T-cell responses contraindicates vaccination, for example, in Alzheimer disease.

  14. In vitro generation of helper T cells and suppressor T cells that regulate the cytolytic T lymphocyte response to trinitrophenyl-modified syngeneic cells.

    PubMed

    Gualde, N; Weinberger, O; Ratnofsky, S; Benacerraf, B; Burakoff, S J

    1982-04-01

    Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observed with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.

  15. In vitro generation of helper T cells and suppressor T cells that regulate the cytolytic T lymphocyte response to trinitrophenyl-modified syngeneic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Weinberger, O.; Ratnofsky, S.

    1982-04-01

    Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observedmore » with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.« less

  16. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells

    PubMed Central

    Sanghvi, Viraj; Amin, Rada; Oricchio, Elisa; Jiang, Man; Mottok, Anja; Denis-Lagache, Nicolas; Ciriello, Giovanni; Tam, Wayne; Teruya-Feldstein, Julie; de Stanchina, Elisa; Chan, Wing C.; Malek, Sami N.; Ennishi, Daisuke; Brentjens, Renier J.; Gascoyne, Randy D.; Cogne, Michel; Tarte, Karin; Wendel, Hans-Guido

    2016-01-01

    The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM deficient lymphoma B cells also induce a tumor supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (TFH) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T Lymphocyte Attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM(P37-V202)) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development and our study illustrates the use of CAR-T cells as ‘micro-pharmacies’ able to deliver an anti-cancer protein. PMID:27693350

  17. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB.

    PubMed

    Heller, Danielle M; Tavag, Mrinalini; Hochschild, Ann

    2017-09-01

    The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.

  18. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB

    PubMed Central

    Heller, Danielle M.; Tavag, Mrinalini

    2017-01-01

    The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PMID:28931012

  19. B and T Cell Phenotypic Profiles of African HIV-Infected and HIV-Exposed Uninfected Infants: Associations with Antibody Responses to the Pentavalent Rotavirus Vaccine.

    PubMed

    Weinberg, Adriana; Lindsey, Jane; Bosch, Ronald; Persaud, Deborah; Sato, Paul; Ogwu, Anthony; Asmelash, Aida; Bwakura-Dangarambezi, Mutsa; Chi, Benjamin H; Canniff, Jennifer; Lockman, Shahin; Gaseitsiwe, Simani; Moyo, Sikhulile; Smith, Christiana Elizabeth; Moraka, Natasha O; Levin, Myron J

    2017-01-01

    We examined associations between B and T cell phenotypic profiles and antibody responses to the pentavalent rotavirus vaccine (RV5) in perinatally HIV-infected (PHIV) infants on antiretroviral therapy and in HIV-exposed uninfected (PHEU) infants enrolled in International Maternal Pediatric Adolescent AIDS Clinical Trials P1072 study (NCT00880698). Of 17 B and T cell subsets analyzed, PHIV and PHEU differed only in the number of CD4+ T cells and frequency of naive B cells, which were higher in PHEU than in PHIV. In contrast, the B and T cell phenotypic profiles of PHIV and PHEU markedly differed from those of geographically matched contemporary HIV-unexposed infants. The frequency of regulatory T and B cells (Treg, Breg) of PHIV and PHEU displayed two patterns of associations: FOXP3+ CD25+ Treg positively correlated with CD4+ T cell numbers; while TGFβ+ Treg and IL10+ Treg and Breg positively correlated with the frequencies of inflammatory and activated T cells. Moreover, the frequencies of activated and inflammatory T cells of PHIV and PHEU positively correlated with the frequency of immature B cells. Correlations were not affected by HIV status and persisted over time. PHIV and PHEU antibody responses to RV5 positively correlated with CD4+ T cell counts and negatively with the proportion of immature B cells, similarly to what has been previously described in chronic HIV infection. Unique to PHIV and PHEU, anti-RV5 antibodies positively correlated with CD4+/CD8+FOXP3+CD25+% and negatively with CD4+IL10+% Tregs. In conclusion, PHEU shared with PHIV abnormal B and T cell phenotypic profiles. PHIV and PHEU antibody responses to RV5 were modulated by typical HIV-associated immune response modifiers except for the association between CD4+/CD8+FOXP3+CD25+Treg and increased antibody production.

  20. B and T Cell Phenotypic Profiles of African HIV-Infected and HIV-Exposed Uninfected Infants: Associations with Antibody Responses to the Pentavalent Rotavirus Vaccine

    PubMed Central

    Weinberg, Adriana; Lindsey, Jane; Bosch, Ronald; Persaud, Deborah; Sato, Paul; Ogwu, Anthony; Asmelash, Aida; Bwakura-Dangarambezi, Mutsa; Chi, Benjamin H.; Canniff, Jennifer; Lockman, Shahin; Gaseitsiwe, Simani; Moyo, Sikhulile; Smith, Christiana Elizabeth; Moraka, Natasha O.; Levin, Myron J.; Fane, Charles

    2018-01-01

    We examined associations between B and T cell phenotypic profiles and antibody responses to the pentavalent rotavirus vaccine (RV5) in perinatally HIV-infected (PHIV) infants on antiretroviral therapy and in HIV-exposed uninfected (PHEU) infants enrolled in International Maternal Pediatric Adolescent AIDS Clinical Trials P1072 study (NCT00880698). Of 17 B and T cell subsets analyzed, PHIV and PHEU differed only in the number of CD4+ T cells and frequency of naive B cells, which were higher in PHEU than in PHIV. In contrast, the B and T cell phenotypic profiles of PHIV and PHEU markedly differed from those of geographically matched contemporary HIV-unexposed infants. The frequency of regulatory T and B cells (Treg, Breg) of PHIV and PHEU displayed two patterns of associations: FOXP3+ CD25+ Treg positively correlated with CD4+ T cell numbers; while TGFβ+ Treg and IL10+ Treg and Breg positively correlated with the frequencies of inflammatory and activated T cells. Moreover, the frequencies of activated and inflammatory T cells of PHIV and PHEU positively correlated with the frequency of immature B cells. Correlations were not affected by HIV status and persisted over time. PHIV and PHEU antibody responses to RV5 positively correlated with CD4+ T cell counts and negatively with the proportion of immature B cells, similarly to what has been previously described in chronic HIV infection. Unique to PHIV and PHEU, anti-RV5 antibodies positively correlated with CD4+/CD8+FOXP3+CD25+% and negatively with CD4+IL10+% Tregs. In conclusion, PHEU shared with PHIV abnormal B and T cell phenotypic profiles. PHIV and PHEU antibody responses to RV5 were modulated by typical HIV-associated immune response modifiers except for the association between CD4+/CD8+FOXP3+CD25+Treg and increased antibody production. PMID:29403482

  1. The effects of tissue processing on markers for T and B cells from solid tissues.

    PubMed

    Millard, P R; Rabin, B S; Whiteside, T L; Hubbard, J D

    1977-03-01

    Suspensions of lymphoid cells from tissues have been used for the determination of the quantitative relationship between the T and B cell populations. The distribution of the lymphocytes within a given tissue, however, cannot be demonstrated once such a suspension has been prepared. Various methods of characterizing lymphocytes within tissues were evaluated. The method of tissue preparation can alter the capability of detecting the lymphocyte markers. Fluorescein-labeled anti-immunoglobulin sera reacted equally well with lymphocytes in tissue regardless of the method of tissue preparation. Complement-coated sheep erythrocytes were less effective in detecting lymphocyte markers in tissue sections than in cell suspensions. Quantitative assays of lymphocytes could be done in suspensions only. Unaltered sheep erythrocytes did not bind to T lymphocytes in tissue. T lymphocytes could be identified in tissue sections, however, by the use of anti-human T cell serum.

  2. Somatic mutations and affinity maturation are impaired by excessive numbers of T follicular helper cells and restored by Treg cells or memory T cells.

    PubMed

    Preite, Silvia; Baumjohann, Dirk; Foglierini, Mathilde; Basso, Camilla; Ronchi, Francesca; Fernandez Rodriguez, Blanca M; Corti, Davide; Lanzavecchia, Antonio; Sallusto, Federica

    2015-11-01

    We previously reported that Cd3e-deficient mice adoptively transferred with CD4(+) T cells generate high numbers of T follicular helper (Tfh) cells, which go on to induce a strong B-cell and germinal center (GC) reaction. Here, we show that in this system, GC B cells display an altered distribution between the dark and light zones, and express low levels of activation-induced cytidine deaminase. Furthermore, GC B cells from Cd3e(-/-) mice accumulate fewer somatic mutations as compared with GC B cells from wild-type mice, and exhibit impaired affinity maturation and reduced differentiation into long-lived plasma cells. Reconstitution of Cd3e(-/-) mice with regulatory T (Treg) cells restored Tfh-cell numbers, GC B-cell numbers and B-cell distribution within dark and light zones, and the rate of antibody somatic mutations. Tfh-cell numbers and GC B-cell numbers and dynamics were also restored by pre-reconstitution of Cd3e(-/-) mice with Cxcr5(-/-) Treg cells or non-regulatory, memory CD4(+) T cells. Taken together, these findings underline the importance of a quantitatively regulated Tfh-cell response for an efficient and long-lasting serological response. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress.

    PubMed

    Liow, K Y; Chow, Sek C

    2018-01-01

    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.

  4. Escherichia coli heat-labile enterotoxin B subunit prevents autoimmune arthritis through induction of regulatory CD4+ T cells.

    PubMed

    Luross, Jeffrey A; Heaton, Tricia; Hirst, Timothy R; Day, Michael J; Williams, Neil A

    2002-06-01

    The receptor-binding B subunit of Escherichia coli heat-labile enterotoxin (EtxB) is a highly stable, nontoxic protein that is capable of modulating immune responses. This study was conducted to determine whether mucosal administration of EtxB can block collagen-induced arthritis (CIA) and to investigate the mechanisms involved. Clinical arthritis in DBA/1 mice was monitored following mucosal administration of EtxB on 4 occasions. The dependence of disease prevention on receptor binding by EtxB and the associated alterations to the immune response to type II collagen (CII) were assessed. Adoptive transfer experiments and lymph node cell cocultures were used to investigate the underlying mechanisms. Both intranasal and intragastric delivery of EtxB were effective in preventing CIA; a 1-microg dose of EtxB was protective after intranasal administration. A non-receptor-binding mutant of EtxB failed to prevent disease. Intranasal EtxB lowered both the incidence and severity of arthritis when given either at the time of disease induction or 25 days later. EtxB markedly reduced levels of anti-CII IgG2a antibodies and interferon-gamma (IFNgamma) production while not affecting levels of IgG1, interleukin-4 (IL-4), or IL-10. Disease protection could be transferred by CD4+ T cells from treated mice, an effect that was abrogated upon depletion of the CD25+ population. In addition, CD4+CD25+ T cells from treated mice were able to suppress anti-CII IFNgamma production by CII-primed lymph node cells. Mucosal administration of EtxB can be used to prevent or treat CIA. Modulation of the anti-CII immune response by EtxB is associated with a reduction in Th1 cell reactivity without a concomitant shift toward Th2. Instead, EtxB mediates its effects through enhancing the activity of a population of CD4+ regulatory T cells.

  5. CD8-positive T-cell lymphoproliferative disorder associated with Epstein-Barr virus-infected B-cells in a rheumatoid arthritis patient under methotrexate treatment.

    PubMed

    Koji, Hitoshi; Yazawa, Takuya; Nakabayashi, Kimimasa; Fujioka, Yasunori; Kamma, Hiroshi; Yamada, Akira

    2016-01-01

    We report a 48-year-old female who developed lymphoproliferative disorder (LPD) during treatment of rheumatoid arthritis (RA) with methotrexate (MTX). She presented with multiple tumors in the cervical lymph nodes (LNs), multiple lung shadows and round shadows in both kidneys with pancytopenia and a high CRP level. The LN showed CD8-positive T-cell LPD associated with Epstein-Barr (EB) virus-infected B-cells. Clonality assays for immunoglobulin (Ig) heavy chain and T-cell receptor gamma (TCRγ) were negative. The cessation of MTX without chemotherapy resulted in the complete disappearance of the tumors and abnormal clinical features. We compared this case with previously published ones and discuss the pathological findings, presuming that the proliferation of CD8 T-cells was a reactive manifestation to reactivated EB virus-infected B-cells.

  6. B and T Lymphocyte Attenuator Down-regulation by HIV-1 Depends on Type I Interferon and Contributes to T-Cell Hyperactivation

    PubMed Central

    Zhang, Zheng; Xu, Xiangsheng; Lu, Jiyun; Zhang, Shuye; Gu, Lanlan; Fu, Junliang; Jin, Lei; Li, Haiying; Zhao, Min; Zhang, Jiyuan; Wu, Hao; Su, Lishan; Fu, Yang-Xin

    2011-01-01

    Background. Nonspecific T-cell hyperactivation is the main driving force for human immunodeficiency virus (HIV)–1 disease progression, but the reasons why the excess immune response is not properly shut off are poorly defined. Methods. Eighty-five HIV-1–infected individuals were enrolled to characterize B and T lymphocyte attenuator (BTLA) expression and function. Infection and blockade assays were used to dissect the factors that influenced BTLA signaling in vitro. Results. BTLA expression on overall CD4+ and CD8+ T cells was progressively decreased in HIV-1 infection, which was directly correlated with disease progression and CD4+ T-cell differentiation and activation. BTLA+CD4+ T cells from HIV-1–infected patients also displayed an altered immune status, which was indicated by reduced expression of naive markers but increased activation and exhaustion markers. Cross-linking of BTLA can substantially decrease CD4+ T-cell activation in vitro. This responsiveness of CD4+ T cells to BTLA-mediated inhibitory signaling was further found to be impaired in HIV-1–infected patients. Furthermore, HIV-1 NL4-3 down-regulated BTLA expression on CD4+ T cells dependent on plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α. Blockade of IFN-α or depletion of pDCs prevents HIV-1-induced BTLA down-regulation. Conclusions. HIV-1 infection potentially impairs BTLA-mediated signaling dependent on pDC-derived IFN-α, which may contribute to broad T-cell hyperactivation induced by chronic HIV-1 infection. PMID:21592997

  7. Taci Is a Traf-Interacting Receptor for Tall-1, a Tumor Necrosis Factor Family Member Involved in B Cell Regulation

    PubMed Central

    Xia, Xing-Zhong; Treanor, James; Senaldi, Giorgio; Khare, Sanjay D.; Boone, Tom; Kelley, Michael; Theill, Lars E.; Colombero, Anne; Solovyev, Irina; Lee, Frances; McCabe, Susan; Elliott, Robin; Miner, Kent; Hawkins, Nessa; Guo, Jane; Stolina, Marina; Yu, Gang; Wang, Judy; Delaney, John; Meng, Shi-Yuan; Boyle, William J.; Hsu, Hailing

    2000-01-01

    We and others recently reported tumor necrosis factor (TNF) and apoptosis ligand–related leukocyte-expressed ligand 1 (TALL-1) as a novel member of the TNF ligand family that is functionally involved in B cell proliferation. Transgenic mice overexpressing TALL-1 have severe B cell hyperplasia and lupus-like autoimmune disease. Here, we describe expression cloning of a cell surface receptor for TALL-1 from a human Burkitt's lymphoma RAJI cell library. The cloned receptor is identical to the previously reported TNF receptor (TNFR) homologue transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI). Murine TACI was subsequently isolated from the mouse B lymphoma A20 cells. Human and murine TACI share 54% identity overall. Human TACI exhibits high binding affinities to both human and murine TALL-1. Soluble TACI extracellular domain protein specifically blocks TALL-1–mediated B cell proliferation without affecting CD40- or lipopolysaccharide-mediated B cell proliferation in vitro. In addition, when injected into mice, soluble TACI inhibits antibody production to both T cell–dependent and –independent antigens. By yeast two-hybrid screening of a B cell library with TACI intracellular domain, we identified that, like many other TNFR family members, TACI intracellular domain interacts with TNFR-associated factor (TRAF)2, 5, and 6. Correspondingly, TACI activation in a B cell line results in nuclear factor κB and c-Jun NH2-terminal kinase activation. The identification and characterization of the receptor for TALL-1 provides useful information for the development of a treatment for B cell–mediated autoimmune diseases such as systemic lupus erythematosus. PMID:10880535

  8. KIR3DL2 binds to HLA-B27 dimers and free heavy chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis

    PubMed Central

    Wong-Baeza, Isabel; Ridley, Anna; Shaw, Jackie; Hatano, Hiroko; Rysnik, Oliwia; McHugh, Kirsty; Piper, Christopher; Brackenbridge, Simon; Fernandes, Ricardo; Chan, Anthoni; Bowness, Paul; Kollnberger, Simon

    2013-01-01

    1Abstract The Human Leukocyte Antigen HLA-B27(B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of antigen presenting cells (APC) as both classical β2m-associated B27 and as B27 free heavy chain forms (FHC) including disulphide-bonded heavy chain homodimers (termed B272). B27 FHC forms but not classical B27 bind to KIR3DL2. HLA-A3 which is not associated with spondyloarthritis (SpA) is also a ligand for KIR3DL2. Here we show that B272 and B27 FHC bind more strongly to KIR3DL2 than other HLA-class I, including HLA-A3. B272 tetramers bound KIR3DL2 transfected cells more strongly than HLA-A3. KIR3DL2Fc bound to HLA-B27-transfected cells more strongly than to cells transfected with other HLA-class I. KIR3DL2Fc pulled down multimeric, dimeric and monomeric free heavy chains from HLA-B27 expressing cell lines. Binding to B272 and B27 FHC stimulated greater KIR3DL2 phosphorylation than HLA-A3. B272 and B27 FHC stimulated KIR3DL2CD3ε–transduced T cell IL-2 production to a greater extent than control HLA-class I. KIR3DL2 binding to B27 inhibited NK IFNγ secretion and promoted greater survival of KIR3DL2+CD4 T and NK cells than binding to other HLA-class I. KIR3DL2+ T cells from B27+SpA patients proliferated more in response to antigen presented by syngeneic APC than the same T cell subset from healthy and disease controls. Our results suggest that expansion of KIR3DL2-expressing leukocytes observed in B27+ SpA may be explained by the stronger interaction of KIR3DL2 with B27 FHC. PMID:23440420

  9. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.

    PubMed

    Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K

    2015-08-20

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. © 2015 by The American Society of Hematology.

  10. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas

    PubMed Central

    Onea, Alexandra S; Jazirehi, Ali R

    2016-01-01

    Recovery rates for B-cell Non-Hodgkin’s Lymphoma (NHL) are up to 70% with current standard-of-care treatments including rituximab (chimeric anti-CD20 monoclonal antibody) in combination with chemotherapy (R-CHOP). However, patients who do not respond to first-line treatment or develop resistance have a very poor prognosis. This signifies the need for the development of an optimal treatment approach for relapsed/refractory B-NHL. Novel CD19- chimeric antigen receptor (CAR) T-cell redirected immunotherapy is an attractive option for this subset of patients. Anti-CD19 CAR T-cell therapy has already had remarkable efficacy in various leukemias as well as encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. In going forward with additional clinical trials, complementary treatments that may circumvent potential resistance mechanisms should be used alongside anti-CD19 T-cells in order to prevent relapse with resistant strains of disease. Some such supplementary tactics include conditioning with lymphodepletion agents, sensitizing with kinase inhibitors and Bcl-2 inhibitors, enhancing function with multispecific CAR T-cells and CD40 ligand-expressing CAR T-cells, and safeguarding with lymphoma stem cell-targeted treatments. A therapy regimen involving anti-CD19 CAR T-cells and one or more auxiliary treatments could dramatically improve prognoses for patients with relapsed/refractory B-cell NHL. This approach has the potential to revolutionize B-NHL salvage therapy in much the same way rituximab did for first-line treatments. PMID:27186412

  11. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells

    PubMed Central

    Dudley, Mark E.; Feldman, Steven A.; Wilson, Wyndham H.; Spaner, David E.; Maric, Irina; Stetler-Stevenson, Maryalice; Phan, Giao Q.; Hughes, Marybeth S.; Sherry, Richard M.; Yang, James C.; Kammula, Udai S.; Devillier, Laura; Carpenter, Robert; Nathan, Debbie-Ann N.; Morgan, Richard A.; Laurencot, Carolyn; Rosenberg, Steven A.

    2012-01-01

    We conducted a clinical trial to assess adoptive transfer of T cells genetically modified to express an anti-CD19 chimeric Ag receptor (CAR). Our clinical protocol consisted of chemotherapy followed by an infusion of anti–CD19-CAR–transduced T cells and a course of IL-2. Six of the 8 patients treated on our protocol obtained remissions of their advanced, progressive B-cell malignancies. Four of the 8 patients treated on the protocol had long-term depletion of normal polyclonal CD19+ B-lineage cells. Cells containing the anti-CD19 CAR gene were detected in the blood of all patients. Four of the 8 treated patients had prominent elevations in serum levels of the inflammatory cytokines IFNγ and TNF. The severity of acute toxicities experienced by the patients correlated with serum IFNγ and TNF levels. The infused anti–CD19-CAR–transduced T cells were a possible source of these inflammatory cytokines because we demonstrated peripheral blood T cells that produced TNF and IFNγ ex vivo in a CD19-specific manner after anti–CD19-CAR–transduced T-cell infusions. Anti–CD19-CAR–transduced T cells have great promise to improve the treatment of B-cell malignancies because of a potent ability to eradicate CD19+ cells in vivo; however, reversible cytokine-associated toxicities occurred after CAR–transduced T-cell infusions. This trial was registered with ClinicalTrials.gov as NCT00924326. PMID:22160384

  12. Impact of Chronic Viral Infection on T-Cell Dependent Humoral Immune Response.

    PubMed

    Rodriguez, Stéphane; Roussel, Mikaël; Tarte, Karin; Amé-Thomas, Patricia

    2017-01-01

    During the last decades, considerable efforts have been done to decipher mechanisms supported by microorganisms or viruses involved in the development, differentiation, and function of immune cells. Pathogens and their associated secretome as well as the continuous inflammation observed in chronic infection are shaping both innate and adaptive immunity. Secondary lymphoid organs are functional structures ensuring the mounting of adaptive immune response against microorganisms and viruses. Inside these organs, germinal centers (GCs) are the specialized sites where mature B-cell differentiation occurs leading to the release of high-affinity immunoglobulin (Ig)-secreting cells. Different steps are critical to complete B-cell differentiation process, including proliferation, somatic hypermutations in Ig variable genes, affinity-based selection, and class switch recombination. All these steps require intense interactions with cognate CD4 + helper T cells belonging to follicular helper lineage. Interestingly, pathogens can disturb this subtle machinery affecting the classical adaptive immune response. In this review, we describe how viruses could act directly on GC B cells, either through B-cell infection or by their contribution to B-cell cancer development and maintenance. In addition, we depict the indirect impact of viruses on B-cell response through infection of GC T cells and stromal cells, leading to immune response modulation.

  13. Eosinophils Regulate Peripheral B Cell Numbers in Both Mice and Humans

    PubMed Central

    Wong, Tina W.; Doyle, Alfred D.; Lee, James J.; Jelinek, Diane F.

    2014-01-01

    The view of eosinophils (Eos) as solely effector cells involved in host parasite defense and in the pathophysiology of allergic diseases has been challenged in recent years. In fact, there is a growing realization that these cells interact with other components of innate and adaptive immunity. For example, mouse Eos were recently demonstrated to promote plasma cell retention in the bone marrow. However, it remains unknown whether Eos influence the biology of normal B lymphocytes. In this study, we specifically assessed the effect of Eos on B cell survival, proliferation, and immunoglobulin secretion. Our data first revealed that the genetic deletion of Eos from NJ1638 IL-5 transgenic hypereosinophilic mice (previously shown to display profound B cell expansion) resulted in the near abolishment of the B cell lymphocytosis. In vitro studies using human tissues demonstrated Eos’ proximity to B cell follicles and their ability to promote B cell survival, proliferation, and immunoglobulin secretion via a contact-independent mechanism(s). Additionally, this ability of Eos to enhance B cell responsiveness was observed in both T-independent and T-dependent B cell activation and appears to be independent of the Eos’ activation state. Finally, a retrospective clinical study of hypereosinophilic patients revealed for the first time a direct correlation between peripheral blood eosinophil levels and B cell numbers. Taken together, our study identifies a novel role for Eos in the regulation of humoral immunity via their impact on B cell homeostasis and proliferation upon activation. PMID:24616476

  14. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia

    PubMed Central

    Bueno, Clara; Prieto, Cristina; Acha, Pamela; Stam, Ronald W.; Marschalek, Rolf; Menéndez, Pablo

    2015-01-01

    Infant B-cell acute lymphoblastic leukemia (B-ALL) accounts for 10% of childhood ALL. The genetic hallmark of most infant B-ALL is chromosomal rearrangements of the mixed-lineage leukemia (MLL) gene. Despite improvement in the clinical management and survival (∼85-90%) of childhood B-ALL, the outcome of infants with MLL-rearranged (MLL-r) B-ALL remains dismal, with overall survival <35%. Among MLL-r infant B-ALL, t(4;11)+ patients harboring the fusion MLL-AF4 (MA4) display a particularly poor prognosis and a pro-B/mixed phenotype. Studies in monozygotic twins and archived blood spots have provided compelling evidence of a single cell of prenatal origin as the target for MA4 fusion, explaining the brief leukemia latency. Despite its aggressiveness and short latency, current progress on its etiology, pathogenesis, and cellular origin is limited as evidenced by the lack of mouse/human models recapitulating the disease phenotype/latency. We propose this is because infant cancer is from an etiologic and pathogenesis standpoint distinct from adult cancer and should be seen as a developmental disease. This is supported by whole-genome sequencing studies suggesting that opposite to the view of cancer as a “multiple-and-sequential-hit” model, t(4;11) alone might be sufficient to spawn leukemia. The stable genome of these patients suggests that, in infant developmental cancer, one “big-hit” might be sufficient for overt disease and supports a key contribution of epigenetics and a prenatal cell of origin during a critical developmental window of stem cell vulnerability in the leukemia pathogenesis. Here, we revisit the biology of t(4;11)+ infant B-ALL with an emphasis on its origin, genetics, and disease models. PMID:26463423

  15. CXCR5+CD8+ T cells infiltrate the colorectal tumors and nearby lymph nodes, and are associated with enhanced IgG response in B cells.

    PubMed

    Xing, Junjie; Zhang, Chenxin; Yang, Xiaohong; Wang, Shaoxuan; Wang, Zhongchuan; Li, Xu; Yu, Enda

    2017-07-01

    Colorectal cancer is the third most prevalent cancer type worldwide and contributes to a significant percentage of cancer-related mortality. Recent studies have shown that the CXCR5 + CD8 + T cells present more potent proinflammatory function than CXCR5 - CD8 + T cells in chronic virus infections and in follicular lymphoma, but the role of CXCR5 + CD8 + T cells in colorectal cancer is yet unclear. In this study, we demonstrated that CXCR5 + CD8 + T cells were very rare in peripheral blood mononuclear cells from healthy and colorectal cancer individuals, but were significantly enriched in resected tumors and tumor-associated lymph nodes. Compared to CXCR5 - CD8 + T cells, the CXCR5 + CD8 + T cells demonstrated significantly higher Bcl-6 expression and lower Blimp1 expression, suggesting that CXCR5 + CD8 + T cells might represent a memory CD8 + T cell subset. CXCR5 + CD8 + T cells also enhanced the IgG expression by autologous B cells. Under ex vivo condition, the CXCR5 + CD8 + T cells demonstrated lower degranulation, TNFα expression and IFNγ expression than CXCR5 - CD8 + T cells. However, after PMA + ionomycin stimulation, the degranulation and TNFα expression by CXCR5 + CD8 + T cells were significantly elevated to a level comparable with CXCR5 - CD8 + T cells, whereas the IFNγ expression by PMA + ionomycin-stimulated CXCR5 + CD8 + T cells were significantly higher than that by CXCR5 - CD8 + T cells. Following long-term TCR-stimulation, CXCR5 + CD8 + T cells demonstrated significantly more potent proliferation capacity and higher IFNγ expression than CXCR5 - CD8 + T cells. TCR-stimulated CXCR5 + CD8 + T cells also showed a gradual downregulation in CXCR5 expression. We further found that TCR-stimulated CXCR5 + CD8 + T cells demonstrated higher granzyme B production and induced more specific lysis of autologous tumor cells than CXCR5 - CD8 + T cells. Together, these data demonstrate that CXCR5 + CD8 + T cells represent a significant CD8 + T cell subset in

  16. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    NASA Astrophysics Data System (ADS)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  17. T-cell costimulatory pathways in allograft rejection and tolerance.

    PubMed

    Rothstein, David M; Sayegh, Mohamed H

    2003-12-01

    The destiny of activated T cells is critical to the ultimate fate of immune response. After encountering antigen, naïve T cells receive signal 1 through the T-cell receptor (TCR)-major histocompatibility complex (MHC) plus antigenic peptide complex and signal 2 through "positive" costimulatory molecules leading to full activation. "Negative" T-cell costimulatory pathways, on the other hand, function to downregulate immune responses. The purpose of this article is to review the current state of knowledge and recent advances in our understanding of the functions of the positive and negative T-cell costimulatory pathways in alloimmune responses. Specifically, we discuss the functions of the CD28:B7 and the tumor necrosis factor receptor (TNFR):tumor necrosis factor (TNF) family of molecules in allograft rejection and tolerance. We address the following important questions: are T-cell costimulatory pathways merely redundant or do they provide distinct and unique functions? What are the important and unique interactions between the various pathways? And, what are the effects and mechanisms of targeting of these pathways in different types and patterns of allograft rejection and tolerance models?

  18. Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies

    DTIC Science & Technology

    2014-08-01

    PARP1, PHB2 4 Background B cell neoplasms account for over 90% of lymphoid tumors worldwide, and comprise >50% of blood cancers. Despite recent... cells examined include common lymphoid progenitor, pre-pro-B, pro-B, pre-B, newly-formed B, and transitional (T1, T2 and T3) B cells . The data in...factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007, 27:253-267. 13. Moore CR, Liu Y, Shao CS, Covey LR

  19. Intratumoral CpG-B promotes anti-tumoral neutrophil, cDC, and T cell cooperation without reprograming tolerogenic pDC.

    PubMed

    Humbert, Marion; Guery, Leslie; Brighouse, Dale; Lemeille, Sylvain; Hugues, Stephanie

    2018-03-27

    Cancer immunotherapies utilize distinct mechanisms to harness the power of the immune system to eradicate cancer cells. Therapeutic vaccines, aimed at inducing active immune responses against an existing cancer, are highly dependent on the immunological microenvironment, where many immune cell types display high levels of plasticity and, depending on the context, promote very different immunological outcomes. Among them, plasmacytoid dendritic cells (pDC), known to be highly immunogenic upon inflammation, are maintained in a tolerogenic state by the tumor microenvironment. Here we report that intratumoral (i.t.) injection of established solid tumors with CpG oligonucleotides-B (CpG-B) inhibits tumor growth. Interestingly, control of tumor growth was independent of tumor-associated (TA) pDC, which remained refractory to CpG-B stimulation and whose depletion did not alter the efficacy of the treatment. Instead, tumor growth inhibition subsequent to i.t. CpG-B injection depended on the recruitment of neutrophils into the milieu, resulting in the activation of conventional dendritic cells (cDC), subsequent increased anti-tumor T cell priming in draining lymph nodes, and enhanced effector T cell infiltration in the tumor microenvironment. These results reinforce the concept that intratumoral delivery of TLR9 agonists alters the tumor microenvironment by improving the anti-tumor activity of both innate and adaptive immune cells. Copyright ©2018, American Association for Cancer Research.

  20. KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis.

    PubMed

    Wong-Baeza, Isabel; Ridley, Anna; Shaw, Jackie; Hatano, Hiroko; Rysnik, Oliwia; McHugh, Kirsty; Piper, Christopher; Brackenbridge, Simon; Fernandes, Ricardo; Chan, Anthoni; Bowness, Paul; Kollnberger, Simon

    2013-04-01

    The human leukocyte Ag HLA-B27 (B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of APC as both classical β2-microglobulin-associated B27 and B27 free H chain forms (FHC), including disulfide-bonded H chain homodimers (termed B27(2)). B27 FHC forms, but not classical B27, bind to KIR3DL2. HLA-A3, which is not associated with spondyloarthritis (SpA), is also a ligand for KIR3DL2. In this study, we show that B27(2) and B27 FHC bind more strongly to KIR3DL2 than other HLA-class I, including HLA-A3. B27(2) tetramers bound KIR3DL2-transfected cells more strongly than HLA-A3. KIR3DL2Fc bound to HLA-B27-transfected cells more strongly than to cells transfected with other HLA-class I. KIR3DL2Fc pulled down multimeric, dimeric, and monomeric FHC from HLA-B27-expressing cell lines. Binding to B27(2) and B27 FHC stimulated greater KIR3DL2 phosphorylation than HLA-A3. B27(2) and B27 FHC stimulated KIR3DL2CD3ε-transduced T cell IL-2 production to a greater extent than control HLA-class I. KIR3DL2 binding to B27 inhibited NK IFN-γ secretion and promoted greater survival of KIR3DL2(+) CD4 T and NK cells than binding to other HLA-class I. KIR3DL2(+) T cells from B27(+) SpA patients proliferated more in response to Ag presented by syngeneic APC than the same T cell subset from healthy and disease controls. Our results suggest that expansion of KIR3DL2-expressing leukocytes observed in B27(+) SpA may be explained by the stronger interaction of KIR3DL2 with B27 FHC.

  1. Functional analysis of T cells expressing Ia antigens. I. Demonstration of helper T-cell heterogeneity.

    PubMed

    Swierkosz, J E; Marrack, P; Kappler, J W

    1979-12-01

    We have examined the expression of I-region antigens on functional subpopulations of murine T cells. A.TH anti-A.TL (anti-Ik, Sk, Gk) alloantiserum was raised by immunization of recipients with concanavalin A (Con A) stimulated thymic and peripheral T-cell blasts. In contrast to similar antisera made by conventional methods, the anti-Ia blast serum was highly cytotoxic for purified T lymphocytes. Moreover, it reacted in a specific fashion with T cells having particular functions. Treatment of keyhole limpet hemocyanin (KLH)-primed B10.A (H-2 alpha) T cells with this antiserum plus complement resulted in the elimination of helper activity for B-cell responses to trinitrophenyl-KLH. Inhibition was shown to be a result of the selective killing of one type of helper T cell whose activity could be replaced by a factor(s) found in the supernate of Con A-activated spleen cells. A second type of helper cell required for responses to protein-bound antigens appeared to be Ia-. By absorption and analysis on H-2 recombinants, at least two specificities were detectable on helper T cells; one mapping in the I-A subregion and a second in a region(s) to the right of I-J. In addition, the helper T cell(s) involved in the generation of alloreactive cytotoxic lymphocytes was shown to be Ia+, whereas cytotoxic effector cells and their precursors were Ia- with this antiserum. These results provide strong evidence for the selective expression of I-region determinants on T-cell subsets and suggest that T-cell-associated Ia antigens may play an important role in T-lymphocyte function.

  2. T cell costimulation by chemokine receptors.

    PubMed

    Molon, Barbara; Gri, Giorgia; Bettella, Monica; Gómez-Moutón, Concepción; Lanzavecchia, Antonio; Martínez-A, Carlos; Mañes, Santos; Viola, Antonella

    2005-05-01

    Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.

  3. Genetic interaction between two insulin-dependent diabetes susceptibility loci, Idd2 and Idd13, in determining immunoregulatory DN T cell proportion.

    PubMed

    Collin, Roxanne; Doyon, Kathy; Mullins-Dansereau, Victor; Karam, Martin; Chabot-Roy, Geneviève; Hillhouse, Erin E; Orthwein, Alexandre; Lesage, Sylvie

    2018-04-25

    Several immune regulatory cell types participate in the protection against autoimmune diseases such as autoimmune diabetes. Of these immunoregulatory cells, we and others have shown that peripheral CD4 - CD8 - double negative (DN) T cells can induce antigen-specific immune tolerance. Particularly, we have described that diabetes-prone mice exhibit a lower number of peripheral DN T cells compared to diabetes-resistant mice. Identifying the molecular pathways that influence the size of the DN T cell pool in peripheral lymphoid organs may thus be of interest for maintaining antigen-specific immune tolerance. Hence, through immunogenetic approaches, we found that two genetic loci linked to autoimmune diabetes susceptibility, namely Idd2 and Idd13, independently contribute to the partial restoration of DN T cell proportion in secondary lymphoid organs. We now extend these findings to show an interaction between the Idd2 and Idd13 loci in determining the number of DN T cells in secondary lymphoid organs. Using bioinformatics tools, we link potential biological pathways arising from interactions of genes encoded within the two loci. By focusing on cell cycle, we validate that both the Idd2 and Idd13 loci influence RAD51 expression as well as DN T cell progression through the cell cycle. Altogether, we find that genetic interactions between Idd2 and Idd13 loci modulate cell cycle progression, which contributes, at least in part, to defining the proportion of DN T cells in secondary lymphoid organs.

  4. Hydroxyframoside B, a secoiridoid of Fraxinus rhynchophylla, inhibits adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Choi, Kyeong-Mi; Shin, Eunjin; Liu, Qing; Yoo, Hwan-Soo; Kim, Young Choong; Sung, Sang Hyun; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-07-01

    Fraxinus rhynchophylla showed significant inhibitory activity on adipocyte differentiation in the 3T3-L1 preadipocyte cell line as assessed by measuring fat accumulation using Oil Red O staining. Further fractionation led to the isolation of two secoiridoids, oleuropein and hydroxyframoside B. Hydroxyframoside B significantly reduced fat accumulation and triglyceride content in differentiated 3T3-L1 cells without affecting cell viability, whereas oleuropein showed little effect. Further studies with interval treatment demonstrated that hydroxyframoside B exerted inhibitory activity on adipocyte differentiation when treated within 2 days (days 0-2) after differentiation induction. In addition, hydroxyframoside B significantly blocked the induction of adipogenic transcription factors such as C/EBP α, C/EBP β, and PPAR γ. Taken together, these results suggest that hydroxyframoside B inhibited early/middle stage of adipogenic differentiation, in part, via inhibition of C/EBP α, C/EBP β, and PPAR γ-dependent pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  5. T Cell Calcium Signaling Regulation by the Co-Receptor CD5

    PubMed Central

    Freitas, Claudia M. Tellez

    2018-01-01

    Calcium influx is critical for T cell effector function and fate. T cells are activated when T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions between the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and enhance Ca2+ signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ signaling and inhibit T cell activation. Immune checkpoint therapies block inhibitory co-receptors, such as cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), to increase T cell Ca2+ signaling and promote T cell survival. Similar to CTLA-4 and PD-1, the co-receptor CD5 has been known to act as a negative regulator of T cell activation and to alter Ca2+ signaling and T cell function. Though much is known about the role of CD5 in B cells, recent research has expanded our understanding of CD5 function in T cells. Here we review these recent findings and discuss how our improved understanding of CD5 Ca2+ signaling regulation could be useful for basic and clinical research. PMID:29701673

  6. Computerized image analysis of cell-cell interactions in human renal tissue by using multi-channel immunoflourescent confocal microscopy

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Liarski, Vladimir M.; Kaverina, Natalya; Clark, Marcus R.; Giger, Maryellen L.

    2012-03-01

    Analysis of interactions between B and T cells in tubulointerstitial inflammation is important for understanding human lupus nephritis. We developed a computer technique to perform this analysis, and compared it with manual analysis. Multi-channel immunoflourescent-microscopy images were acquired from 207 regions of interest in 40 renal tissue sections of 19 patients diagnosed with lupus nephritis. Fresh-frozen renal tissue sections were stained with combinations of immunoflourescent antibodies to membrane proteins and counter-stained with a cell nuclear marker. Manual delineation of the antibodies was considered as the reference standard. We first segmented cell nuclei and cell membrane markers, and then determined corresponding cell types based on the distances between cell nuclei and specific cell-membrane marker combinations. Subsequently, the distribution of the shortest distance from T cell nuclei to B cell nuclei was obtained and used as a surrogate indicator of cell-cell interactions. The computer and manual analyses results were concordant. The average absolute difference was 1.1+/-1.2% between the computer and manual analysis results in the number of cell-cell distances of 3 μm or less as a percentage of the total number of cell-cell distances. Our computerized analysis of cell-cell distances could be used as a surrogate for quantifying cell-cell interactions as either an automated and quantitative analysis or for independent confirmation of manual analysis.

  7. Eupatilin inhibits T-cell activation by modulation of intracellular calcium flux and NF-kappaB and NF-AT activity.

    PubMed

    Kim, Young-Dae; Choi, Suck-Chei; Oh, Tae-Young; Chun, Jang-Soo; Jun, Chang-Duk

    2009-09-01

    Eupatilin, one of the pharmacologically active ingredients of Artemisia princeps, exhibits a potent anti-ulcer activity, but its effects on T-cell immunity have not been investigated. Here, we show that eupatilin has a profound inhibitory effect on IL-2 production in Jurkat T cells as well as in human peripheral blood leukocytes. Eupatilin neither influenced clustering of CD3 and LFA-1 to the immunological synapse nor inhibited conjugate formation between T cells and B cells in the presence or absence of superantigen (SEE). Eupatilin also failed to inhibit T-cell receptor (TCR) internalization, thereby, suggesting that eupatilin does not interfere with TCR-mediated signals on the membrane proximal region. In unstimulated T cells, eupatilin significantly induced apoptotic cell death, as evidenced by an increased population of annexin V(+)/PI(+) cells and cleavage of caspase-3 and PARP. To our surprise, however, once cells were activated, eupatilin had little effect on apoptosis, and instead slightly protected cells from activation-induced cell death, suggesting that apoptosis also is not a mechanism for eupatilin-induced T-cell suppression. On the contrary, eupatilin dramatically inhibited I-kappaBalpha degradation and NF-AT dephosphorylation and, consequently, inhibited NF-kappaB and NF-AT promoter activities in PMA/A23187-stimulated T cells. Interestingly, intracellular calcium flux was significantly perturbed in cells pre-treated with eupatilin, suggesting that calcium-dependent cascades might be targets for eupatilin action. Collectively, our results provide evidence for dual regulatory functions of eupatilin: (1) a pro-apoptotic effect on resting T cells and (2) an immunosuppressive effect on activated T cells, presumably through modulation of Ca(2+) flux. (c) 2009 Wiley-Liss, Inc.

  8. T cell virological synapses and HIV-1 pathogenesis.

    PubMed

    Chen, Benjamin K

    2012-12-01

    Human immunodeficiency virus type 1 is the cause of a modern global pandemic associated with progressive acquired immune deficiency. The infection is characterized by the loss of the primary target of viral infection, the CD4+ T cell. The measurement of plasma viremia in patients can predict the rate of CD4+ cell decline; however, it is not clear whether this cell-free plasma virus represents the engine that drives viral spread. Active viral replication is mainly observed within lymphoid tissues that are hotbeds of cell-cell interactions that initiate and organize immune responses. It is well established that cell-cell interactions enhance viral spread in vitro. Dendritic cell-T cell interactions, which lie at the heart of adaptive immune responses, enhance viral infection in vitro. Interactions between infected and uninfected CD4+ T cells are a dominant route of viral spread in vitro and are likely to play a central role in viral dissemination in vivo. Future studies will test existing paradigms of HIV-1 dissemination to determine whether virus-transmitting contacts between infected and uninfected T cells called virological synapses are the dominant mode of viral spread in vivo. Here, we review the status of our understanding of this mode of infection with a focus on T cell-T cell interactions and examine how it may explain resistance to neutralizing antibodies and or the generation of genetic diversity of HIV.

  9. Intrathymic lymphopoiesis: stromal cell-associated proliferation of T cells is independent of lymphocyte genotype.

    PubMed

    Kyewski, B A; Travis, M; Kaplan, H S

    1984-09-01

    We analyzed the genetic restriction of direct cell-cell interactions between thymocytes and a) cortical epithelial cells, b) macrophages, and c) medullary dendritic cells in the mouse thymus. Thymectomized (C3H X C57BL/Ka)F1 hybrid mice were doubly grafted with P1 and P2 neonatal thymus grafts, were lethally irradiated, and were reconstituted with a mixture of P1 and P2 bone marrow cells which differed in the Thy-1 locus. The contributions of both parental inocula to the composition of the free and stromal cell-associated T cell compartments were analyzed separately in thymic grafts of each parental strain. The lymphoid composition in both compartments essentially reflected the peripheral T cell-chimerism in the host. The development of lymphostromal complexes was not restricted by the genotype of the partner cells. Statistical analysis of the distributions of P1 and P2 T cells among free thymocytes and within individual lymphostromal complexes, however, suggests that the T cells of an individual complex are the progeny of oligoclonal proliferation. Thus, both epithelial cells and bone marrow-derived stromal cells seem to be involved in different stages of intrathymic lymphopoiesis.

  10. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells

    NASA Astrophysics Data System (ADS)

    Bertoletti, Antonio; Sette, Alessandro; Chisari, Francis V.; Penna, Amalia; Levrero, Massimo; Carli, Marco De; Fiaccadori, Franco; Ferrari, Carlo

    1994-06-01

    IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1-4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6-8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.

  11. Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation

    PubMed Central

    Alcázar, Isabela; Marqués, Miriam; Kumar, Amit; Hirsch, Emilio; Wymann, Matthias; Carrera, Ana C.; Barber, Domingo F.

    2007-01-01

    Class I phosphoinositide 3–kinases (PI3Ks) constitute a family of enzymes that generates 3-phosphorylated polyphosphoinositides at the cell membrane after stimulation of protein tyrosine (Tyr) kinase–associated receptors or G protein–coupled receptors (GPCRs). The class I PI3Ks are divided into two types: class IA p85/p110 heterodimers, which are activated by Tyr kinases, and the class IB p110γ isoform, which is activated by GPCR. Although the T cell receptor (TCR) is a protein Tyr kinase–associated receptor, p110γ deletion affects TCR-induced T cell stimulation. We examined whether the TCR activates p110γ, as well as the consequences of interfering with p110γ expression or function for T cell activation. We found that after TCR ligation, p110γ interacts with Gαq/11, lymphocyte-specific Tyr kinase, and ζ-associated protein. TCR stimulation activates p110γ, which affects 3-phosphorylated polyphosphoinositide levels at the immunological synapse. We show that TCR-stimulated p110γ controls RAS-related C3 botulinum substrate 1 activity, F-actin polarization, and the interaction between T cells and antigen-presenting cells, illustrating a crucial role for p110γ in TCR-induced T cell activation. PMID:17998387

  12. The arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09

    PubMed Central

    Shaw, Jacqueline; Giles, Joanna; Hatano, Hiroko; Rysnik, Oliwia; Payeli, Sravan; McHugh, Kirsty; Dessole, Grazia; Porru, Giovanni; Desogus, Elisabetta; Fiedler, Sarah; Hölper, Soraya; Carette, Amanda; Blanco-Gelaz, Miguel Angel; Vacca, Alessandra; Piga, Matteo; Ibba, Valentina; Garau, Pietro; La Nasa, Giorgio; López-Larrea, Carlos; Mathieu, Alessandro; Renner, Christoph; Bowness, Paul; Kollnberger, Simon

    2013-01-01

    Objectives. HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of β2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:09 and their binding to KIR immunoreceptors. Methods. We studied the formation of HLA-B*27:05 and HLA-B*27:09 heterotrimers and FHC forms including dimers in vitro and in transfected cells. We investigated HLA-B*27:05 and HLA-B*27:09 binding to KIR3DL1, KIR3DL2 and LILRB2 by FACS staining with class I tetramers and by quantifying interactions with KIR3DL2CD3ε-reporter cells and KIR3DL2-expressing NK cells. We also measured KIR expression on peripheral blood NK and CD4 T cells from 18 HLA-B*27:05 AS patients, 8 HLA-B27 negative and 12 HLA-B*27:05+ and HLA-B*27:09+ healthy controls by FACS staining. Results. HLA-B*27:09 formed less B272 and FHC than HLA-B*27:05. HLA-B*27:05-expressing cells stimulated KIR3DL2CD3ε-reporter T cells more effectively. Cells expressing HLA-B*27:05 promoted KIR3DL2+ NK cell survival more strongly than HLA-B*27:09. HLA-B*27:05 and HLA-B*27:09 dimer tetramers stained KIR3DL1, KIR3DL2 and LILRB2 equivalently. Increased proportions of NK and CD4 T cells expressed KIR3DL2 in HLA-B*27:05+ AS patients compared with HLA-B*27:05+, HLA-B*27:09+ and HLA-B27− healthy controls. Conclusion. Differences in the formation of FHC ligands for KIR3DL2 by HLA-B*27:05 and HLA-B*27:09 could contribute to the differential association of these alleles with AS. PMID:23804219

  13. Environmental and T cell-intrinsic factors limit the expansion of neonatal follicular T helper cells but may be circumvented by specific adjuvants.

    PubMed

    Mastelic, Béatris; Kamath, Arun T; Fontannaz, Paola; Tougne, Chantal; Rochat, Anne-Françoise; Belnoue, Elodie; Combescure, Christophe; Auderset, Floriane; Lambert, Paul-Henri; Tacchini-Cottier, Fabienne; Siegrist, Claire-Anne

    2012-12-15

    Follicular Th (T(FH)) cells have emerged as a new Th subset providing help to B cells and supporting their differentiation into long-lived plasma cells or memory B cells. Their differentiation had not yet been investigated following neonatal immunization, which elicits delayed and limited germinal center (GC) responses. We demonstrate that neonatal immunization induces CXCR5(high)PD-1(high) CD4(+) T(FH) cells that exhibit T(FH) features (including Batf, Bcl6, c-Maf, ICOS, and IL-21 expression) and are able to migrate into the GCs. However, neonatal T(FH) cells fail to expand and to acquire a full-blown GC T(FH) phenotype, as reflected by a higher ratio of GC T(FH)/non-GC CD4(+) T cells in immunized adults than neonates (3.8 × 10(-3) versus 2.2 × 10(-3), p = 0.01). Following the adoptive transfer of naive adult OT-II CD4(+) T cells, OT-II T(FH) cells expand in the vaccine-draining lymph nodes of immunized adult but not infant recipients, whereas naive 2-wk-old CD4(+) OT-II cells failed to expand in adult hosts, reflecting the influence of both environmental and T cell-intrinsic factors. Postponing immunization to later in life increases the number of T(FH) cells in a stepwise manner, in direct correlation with the numbers of GC B cells and plasma cells elicited. Remarkably, adjuvantation with CpG oligonucleotides markedly increased GC T(FH) and GC B cell neonatal responses, up to adult levels. To our knowledge, this is the first demonstration that the T(FH) cell development limits early life GC responses and that adjuvants/delivery systems supporting T(FH) differentiation may restore adultlike early life GC B cell responses.

  14. Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells.

    PubMed

    Boice, Michael; Salloum, Darin; Mourcin, Frederic; Sanghvi, Viraj; Amin, Rada; Oricchio, Elisa; Jiang, Man; Mottok, Anja; Denis-Lagache, Nicolas; Ciriello, Giovanni; Tam, Wayne; Teruya-Feldstein, Julie; de Stanchina, Elisa; Chan, Wing C; Malek, Sami N; Ennishi, Daisuke; Brentjens, Renier J; Gascoyne, Randy D; Cogné, Michel; Tarte, Karin; Wendel, Hans-Guido

    2016-10-06

    The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (T FH ) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM (P37-V202) ) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. PI3Kδ promotes CD4(+) T-cell interactions with antigen-presenting cells by increasing LFA-1 binding to ICAM-1.

    PubMed

    Garçon, Fabien; Okkenhaug, Klaus

    2016-05-01

    Activation of T lymphocytes by peptide/major histocompatibility complex on antigen-presenting cells (APCs) involves dynamic contacts between the two cells, during which T cells undergo marked morphological changes. These interactions are facilitated by integrins. Activation of the T cells increases the binding of the integrin lymphocyte function-associated antigen 1 (LFA-1) expressed by T cells to intercellular adhesion molecule (ICAM)-1 and ICAM-2 expressed by APCs. The signalling pathways that control integrin affinities are incompletely defined. The phosphoinositide 3-kinases (PI3Ks) generate second-messenger signalling molecules that control cell growth, proliferation, differentiation and trafficking. Here we show that in T cells, PI3Kδ attenuates the activation of Rac1, but sustains the activation of Rap1. Consequently, PI3Kδ increases LFA-1-dependent adhesion to form stable conjugates with APCs. Increased Rap1 activity and LFA-1 adhesion were only in part mediated by the downstream kinase Akt, suggesting the involvement of additional phosphatidylinositol(3,4,5)P3-binding proteins. These results establish a link between PI3K activity, cytoskeletal changes and integrin binding and help explain the impaired T-cell-dependent immune responses in PI3Kδ-deficient mice.

  16. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities

    PubMed Central

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-01-01

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives. PMID:29163850

  17. Human T-Cell Leukemia Virus Type 1 (HTLV-1) Tax Requires CADM1/TSLC1 for Inactivation of the NF-κB Inhibitor A20 and Constitutive NF-κB Signaling

    PubMed Central

    Thomas, Remy; van der Weyden, Louise; Rauch, Dan; Ratner, Lee; Nyborg, Jennifer K.; Ramos, Juan Carlos; Takai, Yoshimi; Shembade, Noula

    2015-01-01

    Persistent activation of NF-κB by the Human T-cell leukemia virus type 1 (HTLV-1) oncoprotein, Tax, is vital for the development and pathogenesis of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). K63-linked polyubiquitinated Tax activates the IKK complex in the plasma membrane-associated lipid raft microdomain. Tax also interacts with TAX1BP1 to inactivate the NF-κB negative regulatory ubiquitin-editing A20 enzyme complex. However, the molecular mechanisms of Tax-mediated IKK activation and A20 protein complex inactivation are poorly understood. Here, we demonstrated that membrane associated CADM1 (Cell adhesion molecule1) recruits Ubc13 to Tax, causing K63-linked polyubiquitination of Tax, and IKK complex activation in the membrane lipid raft. The c-terminal cytoplasmic tail containing PDZ binding motif of CADM1 is critical for Tax to maintain persistent NF-κB activation. Finally, Tax failed to inactivate the NF-κB negative regulator ubiquitin-editing enzyme A20 complex, and activate the IKK complex in the lipid raft in absence of CADM1. Our results thus indicate that CADM1 functions as a critical scaffold molecule for Tax and Ubc13 to form a cellular complex with NEMO, TAX1BP1 and NRP, to activate the IKK complex in the plasma membrane-associated lipid rafts, to inactivate NF-κB negative regulators, and maintain persistent NF-κB activation in HTLV-1 infected cells. PMID:25774694

  18. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells.

    PubMed

    Dalton, Jane E; Howell, Gareth; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2004-09-15

    Gammadelta T cells have a direct role in resolving the host immune response to infection by eliminating populations of activated macrophages. Macrophage reactivity resides within the Vgamma1/Vdelta6.3 subset of gammadelta T cells, which have the ability to kill activated macrophages following infection with Listeria monocytogenes (Lm). However, it is not known how gammadelta T cell macrophage cytocidal activity is regulated, or what effector mechanisms gammadelta T cells use to kill activated macrophages. Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta-/- mice were incubated with splenocytes from wild-type and Fas ligand (FasL)-deficient mice (gld), the ability of Vgamma1 T cells to bind macrophages was shown to be dependent upon Fas-FasL interactions. Combinations of anti-TCR and FasL Abs completely abolished binding to and killing of activated macrophages by Vgamma1 T cells. In addition, confocal microscopy showed that Fas and the TCR colocalized on Vgamma1 T cells at points of contact with macrophages. Collectively, these studies identify an accessory or coreceptor-like function for Fas-FasL that is essential for the interaction of Vgamma1 T cells with activated macrophages and their elimination during the resolution stage of pathogen-induced immune responses. Copyright 2004 The American Association of Immunologists, Inc.

  19. Systemic Inflammation in Progressive Multiple Sclerosis Involves Follicular T-Helper, Th17- and Activated B-Cells and Correlates with Progression

    PubMed Central

    Christensen, Jeppe Romme; Börnsen, Lars; Ratzer, Rikke; Piehl, Fredrik; Khademi, Mohsen; Olsson, Tomas; Sørensen, Per Soelberg; Sellebjerg, Finn

    2013-01-01

    Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4+ and CD8+T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS+TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor+CD4+T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN+ and CD83+B-cells in SPMS. ICOS+TFH-cells and DC-SIGN+B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4+T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies

  20. Nanopatterned polystyrene-b-poly(acrylic acid) surfaces to modulate cell-material interaction.

    PubMed

    Lizundia, Erlantz; Sáenz-Pérez, Míriam; Patrocinio, David; Aurrekoetxea, Iskander; dM Vivanco, Maria; Vilas, José Luis

    2017-06-01

    In this work we explore the effect of surface nanoarchitecture of polystyrene (PS) and polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer films on cell viability. PS and PS-b-PAA have been nanopatterned at temperatures of 110, 120 and 140°C using nanoporous aluminium oxide membranes (AAO) as a template. Surface architecture strongly depends on the infiltration temperature and the nature of the infiltrated polymer. High patterning temperatures yield hollow fibre shape architecture at the nanoscale level, which substantially modifies the surface hydrophobicity of the resulting materials. Up to date very scarce reports could be found in the literature dealing with the interaction of microstructured/nanostructured polymeric surfaces with cancer cells. Therefore, MCF-7 breast cancer cells have been selected as a model to conduct cell viability assays. The findings reveal that the fine-tuning of the surface nanoarchitecture contributes to the modification of its biocompatibility. Overall, this study highlights the potential of AAO membranes to obtain well-defined tailored morphologies at nanoscale level and its importance to develop novel soft functional surfaces to be used in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette.

    PubMed

    Driver, John P; Scheuplein, Felix; Chen, Yi-Guang; Grier, Alexandra E; Wilson, S Brian; Serreze, David V

    2010-02-01

    In part, activation of invariant natural killer T (iNKT)-cells with the superagonist alpha-galactosylceramide (alpha-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development. We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complex-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells. Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell-induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2(g7) mice. This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans.

  2. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse

    PubMed Central

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J.; Baldari, Cosima T.

    2015-01-01

    ABSTRACT IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11+ endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR+ endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis. PMID:26034069

  3. Human T-Cell Leukemia Virus Type 1 Tax Induction of NF-κB Involves Activation of the IκB Kinase α (IKKα) and IKKβ Cellular Kinases

    PubMed Central

    Geleziunas, Romas; Ferrell, Sharon; Lin, Xin; Mu, Yajun; Cunningham, Emmett T.; Grant, Mark; Connelly, Margery A.; Hambor, John E.; Marcu, Kenneth B.; Greene, Warner C.

    1998-01-01

    Tax corresponds to a 40-kDa transforming protein from the pathogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) that activates nuclear expression of the NF-κB/Rel family of transcription factors by an unknown mechanism. Tax expression promotes N-terminal phosphorylation and degradation of IκBα, a principal cytoplasmic inhibitor of NF-κB. Our studies now demonstrate that HTLV-1 Tax activates the recently identified cellular kinases IκB kinase α (IKKα) and IKKβ, which normally phosphorylate IκBα on both of its N-terminal regulatory serines in response to tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) stimulation. In contrast, a mutant of Tax termed M22, which does not induce NF-κB, fails to activate either IKKα or IKKβ. Furthermore, endogenous IKK enzymatic activity was significantly elevated in HTLV-1-infected and Tax-expressing T-cell lines. Transfection of kinase-deficient mutants of IKKα and IKKβ into either human Jurkat T or 293 cells also inhibits NF-κB-dependent reporter gene expression induced by Tax. Similarly, a kinase-deficient mutant of NIK (NF-κB-inducing kinase), which represents an upstream kinase in the TNF-α and IL-1 signaling pathways leading to IKKα and IKKβ activation, blocks Tax induction of NF-κB. However, plasma membrane-proximal elements in these proinflammatory cytokine pathways are apparently not involved since dominant negative mutants of the TRAF2 and TRAF6 adaptors, which effectively block signaling through the cytoplasmic tails of the TNF-α and IL-1 receptors, respectively, do not inhibit Tax induction of NF-κB. Together, these studies demonstrate that HTLV-1 Tax exploits a distal part of the proinflammatory cytokine signaling cascade leading to induction of NF-κB. The pathological alteration of this cytokine pathway leading to NF-κB activation by Tax may play a central role in HTLV-1-mediated transformation of human T cells, clinically manifested as the adult T-cell leukemia. PMID

  4. Disorders of B cells and helper T cells in the pathogenesis of the immunoglobulin deficiency of patients with ataxia telangiectasia.

    PubMed Central

    Waldmann, T A; Broder, S; Goldman, C K; Frost, K; Korsmeyer, S J; Medici, M A

    1983-01-01

    The pathogenesis of the immunoglobulin deficiency of 20 patients with ataxia telangiectasia was studied using an in vitro immunoglobulin biosynthesis system. 10 patients had no detectable IgA in their serum as assessed by radial diffusion in agar and 3 had a reduced serum IgA concentration. The peripheral blood mononuclear cells of 17 of the patients and 17 normal controls were cultured with pokeweed mitogen for 12 d and the immunoglobulin in the supernatants measured. The immunoglobulin synthesis was below the lower limit of the normal 95% confidence interval for IgM in 5 patients, for IgG in 8, and for IgA in 14. The mononuclear cells from 9 of the 10 patients with a serum IgA concentration less than 0.1 mg/ml failed to synthesize IgA in vitro. None of the patients manifested excessive suppressor cell activity. All patients had reduced but measurable helper T cell activity for immunoglobulin synthesis by co-cultured normal pokeweed mitogen-stimulated B cells (geometric mean 22% of normal). Furthermore, the addition of normal irradiated T cells to patient peripheral blood mononuclear cells led to an augmentation of IgM synthesis in 15 of 17 and to increased IgG synthesis in 9 of the 17 patients studied, including 9 of the 12 patients who had synthesized IgG before the addition of the irradiated T cells. In addition, IgA synthesis was increased in all eight patients examined that had serum IgA concentrations greater than 0.1 mg/ml. These studies suggest that a helper T cell defect contributes to the diminished immunoglobulin synthesis. However, a helper T cell defect does not appear to be the sole cause since there was no IgA synthesis by the peripheral blood mononuclear cells of 9 of the 10 patients with a profoundly reduced serum IgA even when co-cultured with normal T cells. Furthermore, the cells of the nine patients with profoundly reduced IgA levels examined also failed to produce IgA when stimulated with the relatively helper T cell-independent polyclonal

  5. The lymphotoxin promoter is stimulated by HTLV-I tax activation of NF-kappa B in human T-cell lines.

    PubMed

    Paul, N L; Millet, I; Ruddle, N H

    1993-07-01

    The HTLV-I transcriptional activator tax was used to gain insight into the mechanism of lymphotoxin (LT; TNF-beta) gene induction. Tax-expressing cell lines produce LT biologic activity. An LT promoter (LT-293) CAT construct that contained an NF-kappa B site was active in the LT-producing C81-66-45 cell line, which contains defective HTLV-I but expresses tax. The observation that a mutated LT-kappa B construct (M1-CAT) was inactive in C81-66-45, confirmed the importance of NF-kappa B in LT gene expression. Tax was transfected into HTLV-I-negative human T-cell lines. Jurkat T cells stably expressing tax contained elevated levels of NF-kappa B that directly bound to the LT-kappa B site. Tax co-transfected with reporter constructs into Jurkat cells maximally activated HTLV-I-LTR-CAT and kappa B-fos-CAT and also activated LT-293 to a lesser extent. In JM T cells, tax induced LT-293 activity by two- to four-fold, though there was no induction of M1-CAT. The increase in LT-293 CAT activity mirrored the increase in LT biologic activity seen under these conditions. These studies, the first to demonstrate induction of LT promoter activity over basal levels, indicate that HTLV-I tax causes low-level activation of both endogenous LT and the LT promoter, at least in part through activation of NF-kappa B.

  6. Venetoclax and Vincristine Liposomal in Treating Patients With Relapsed or Refractory T-cell or B-cell Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2018-06-07

    B Acute Lymphoblastic Leukemia; Lymphoblasts 5 Percent or More of Bone Marrow Nucleated Cells; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Acute Lymphoblastic Leukemia; T Acute Lymphoblastic Leukemia

  7. Collective Genetic Interaction Effects and the Role of Antigen Presenting Cells in Autoimmune Diseases

    DTIC Science & Technology

    2017-01-12

    RESEARCH ARTICLE Collective Genetic Interaction Effects and the Role of Antigen-Presenting Cells in Autoimmune Diseases Hyung Jun Woo*, Chenggang Yu...autoimmunity. Genetic predispositions center around the major histocompatibility complex (MHC) class II loci involved in antigen presentation, the key...helper and regulatory T cells showing strong dis- ease-associated interactions with B cells. Our results provide direct genetic evidence point- ing to

  8. Interleukin-4-dependent innate collaboration between iNKT cells and B-1 B cells controls adaptative contact sensitivity

    PubMed Central

    Campos, Regis A; Szczepanik, Marian; Itakura, Atsuko; Lisbonne, Mariette; Dey, Neelendu; Leite-de-Moraes, Maria C; Askenase, Philip W

    2006-01-01

    We showed that hepatic Vα14+ invariant natural killer T (iNKT) cells, via their rapid interleukin (IL)-4 production, activate B-1 cells to initiate contact sensitivity (CS). This innate collaboration was absent in IL-4–/– and signal transducer and activator of transcription (STAT)-6–/– mice and was inhibited by anti-IL-4 treatment. These mice have defective CS because they fail to locally recruit the sensitized effector T cells of acquired immunity. Their CS is reconstituted by transfer of downstream-acting 1-day immune B-1 cells from wild-type mice. Responses were not reconstituted with B-1 cells from IL-4 receptor-α–/– or STAT-6–/– mice, nor by IL-4 treatment of B cell-deficient mice at immunization. Finally, IL-4 was preferentially and transiently produced by hepatic iNKT cells within 7 min after sensitization to mediate collaboration between innate-like iNKT cells and the B-1 B cells that participate in the recruitment of effector T cells in vivo. PMID:16556268

  9. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand.

    PubMed

    Ray, Avijit; Basu, Sreemanti; Williams, Calvin B; Salzman, Nita H; Dittel, Bonnie N

    2012-04-01

    B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.

  10. Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei

    Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alonemore » or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies.« less

  11. Impaired removal of Vβ8(+) lymphocytes aggravates colitis in mice deficient for B cell lymphoma-2-interacting mediator of cell death (Bim).

    PubMed

    Leucht, K; Caj, M; Fried, M; Rogler, G; Hausmann, M

    2013-09-01

    We investigated the role of B cell lymphoma (BCL)-2-interacting mediator of cell death (Bim) for lymphocyte homeostasis in intestinal mucosa. Lymphocytes lacking Bim are refractory to apoptosis. Chronic colitis was induced in Bim-deficient mice (Bim(-/-) ) with dextran sulphate sodium (DSS). Weight loss and colonoscopic score were increased significantly in Bim(-/-) mice compared to wild-type mice. As Bim is induced for the killing of autoreactive cells we determined the role of Bim in the regulation of lymphocyte survival at mucosal sites. Upon chronic dextran sulphate sodium (DSS)-induced colitis, Bim(-/-) animals exhibited an increased infiltrate of lymphocytes into the mucosa compared to wild-type mice. The number of autoreactive T cell receptor (TCR) Vβ8(+) lymphocytes was significantly higher in Bim(-/-) mice compared to wild-type controls. Impaired removal of autoreactive lymphocytes in Bim(-/-) mice upon chronic DSS-induced colitis may therefore contribute to aggravated mucosal inflammation. © 2013 British Society for Immunology.

  12. One base pair change abolishes the T cell-restricted activity of a kB-like proto-enhancer element from the interleukin 2 promoter.

    PubMed Central

    Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E

    1991-01-01

    The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879

  13. Why do human B cells secrete granzyme B? Insights into a novel B-cell differentiation pathway.

    PubMed

    Hagn, Magdalena; Jahrsdörfer, Bernd

    2012-11-01

    B cells are generally believed to operate as producers of high affinity antibodies to defend the body against microorganisms, whereas cellular cytotoxicity is considered as an exclusive prerogative of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). In conflict with this dogma, recent studies have demonstrated that the combination of interleukin-21 (IL-21) and B-cell receptor (BCR) stimulation enables B cells to produce and secrete the active form of the cytotoxic serine protease granzyme B (GrB). Although the production of GrB by B cells is not accompanied by that of perforin as in the case of many other GrB-secreting cells, recent findings suggest GrB secretion by B cells may play a significant role in early antiviral immune responses, in the regulation of autoimmune responses, and in cancer immunosurveillance. Here, we discuss in detail how GrB-secreting B cells may influence a variety of immune processes. A better understanding of the role that GrB-secreting B cells are playing in the immune system may allow for the development and improvement of novel immunotherapeutic approaches against infectious, autoimmune and malignant diseases.

  14. High percentage of regulatory T cells before and after vitamin B12 treatment in patients with pernicious anemia.

    PubMed

    Watanabe, Satoru; Ide, Norifumi; Ogawara, Hatsue; Yokohama, Akihiko; Mitsui, Takeki; Handa, Hiroshi; Koiso, Hiromi; Tsukamoto, Norifumi; Saitoh, Takayuki; Murakami, Hirokazu

    2015-01-01

    In some previous studies, vitamin B12 treatment showed immunomodulatory effects and restored the immunological abnormalities in patients with pernicious anemia (PA). In the present study, peripheral blood T cell subsets, including regulatory T cells (T(reg)s), were examined before and after vitamin B12 treatment in PA patients. The percentages of CD4, CD8, Th1, Th2 and T(reg)s were examined in 23 PA patients before vitamin B12 treatment, in 23 other PA patients after vitamin B12 treatment and in 28 healthy controls. The mean percentage of CD8+ T cells was significantly higher in the control group (23.0%; 95% CI, 20.4-25.6%) than in the pre- (16.0%; 95% CI, 12.1-20.0%) and posttreatment groups (15.2%; 95% CI, 11.8-18.6%; p < 0.05). The CD4/CD8 ratio was significantly lower in the control group (2.01; 95% CI, 1.66-2.34) than in the pre- (3.45; 95% CI, 2.55-7.80) and posttreatment groups (2.97; 95% CI, 2.22-3.72; p < 0.05). There was no significant difference in the mean Th1/Th2 ratio among these groups. There were significant increases in the mean percentage of T(reg)s in the pre- (6.29%; 95% CI, 5.04-7.54%) and posttreatment groups (7.77%; 95% CI, 6.34-9.20%) compared with the control group (4.18%; 95% CI, 3.92-4.47%; p < 0.05). The percentage of T(reg)s was significantly higher in PA patients than in normal subjects, and this high T(reg) percentage was not different before and after vitamin B12 treatment. Other immunological alterations also did not recover after vitamin B12 treatment, so that these immunological changes appear to be the cause of PA and are not induced by vitamin B12 deficiency. © 2014 S. Karger AG, Basel.

  15. HLA-DR4-associated T and B cell responses to specific determinants on the IA-2 autoantigen in type 1 diabetes.

    PubMed

    McLaughlin, Kerry A; Gulati, Kavita; Richardson, Carolyn C; Morgan, Diana; Bodansky, H Jonathan; Feltbower, Richard G; Christie, Michael R

    2014-11-01

    Autoantibodies to IA-2 in type 1 diabetes are associated with HLA-DR4, suggesting influences of HLA-DR4-restricted T cells on IA-2-specific B cell responses. The aim of this study was to investigate possible T-B cell collaboration by determining whether autoantibodies to IA-2 epitopes are associated with T cell responses to IA-2 peptides presented by DR4. T cells secreting the cytokines IFN-γ and IL-10 in response to seven peptides known to elicit T cell responses in type 1 diabetes were quantified by cytokine ELISPOT in HLA-typed patients characterized for Abs to IA-2 epitopes. T cell responses were detected to all peptides tested, but only IL-10 responses to 841-860 and 853-872 peptides were associated with DR4. Phenotyping by RT-PCR of FACS-sorted CD45RO(hi) T cells secreting IL-10 in response to these two peptides indicated that these expressed GATA-3 or T-bet, but not FOXP3, consistent with these being Th2 or Th1 memory T cells rather than of regulatory phenotype. T cell responses to the same two peptides were also associated with specific Abs: those to 841-860 peptide with Abs to juxtamembrane epitopes, which appear early in prediabetes, and those to peptide 853-872 with Abs to an epitope located in the 831-862 central region of the IA-2 tyrosine phosphatase domain. Abs to juxtamembrane and central region constructs were both DR4 associated. This study identifies a region of focus for B and T cell responses to IA-2 in HLA-DR4 diabetic patients that may explain HLA associations of IA-2 autoantibodies, and this region may provide a target for future immune intervention to prevent disease. Copyright © 2014 by The American Association of Immunologists, Inc.

  16. Vav1-phospholipase C-γ1 (Vav1-PLC-γ1) pathway initiated by T cell antigen receptor (TCRγδ) activation is required to overcome inhibition by ubiquitin ligase Cbl-b during γδT cell cytotoxicity.

    PubMed

    Yin, Shanshan; Zhang, Jianmin; Mao, Yujia; Hu, Yu; Cui, Lianxian; Kang, Ning; He, Wei

    2013-09-13

    T cell antigen receptor γδ (TCRγδ) and natural killer group 2, member D (NKG2D) are two crucial receptors for γδT cell cytotoxicity. Compelling evidences suggest that γδT cell cytotoxicity is TCRγδ-dependent and can be co-stimulated by NKG2D. However, the molecular mechanism of underlying TCRγδ-dependent activation of γδT cells remains unclear. In this study we demonstrated that TCRγδ but not NKG2D engagement induced lytic granule polarization and promoted γδT cell cytotoxicity. TCRγδ activation alone was sufficient to trigger Vav1-dependent phospholipase C-γ1 signaling, resulting in lytic granule polarization and effective killing, whereas NKG2D engagement alone failed to trigger cytotoxicity-related signaling to overcome the inhibitory effect of Cbl-b; therefore, NKG2D engagement alone could not induce effective killing. However, NKG2D ligation augmented the activation of γδT cell cytotoxicity through the Vav1-phospholipase C-γ1 pathway. Vav1 overexpression or Cbl-b knockdown not only enhanced TCRγδ activation-initiated killing but also enabled NKG2D activation alone to induce γδT cell cytotoxicity. Taken together, our results suggest that the activation of γδT cell cytotoxicity requires a strong activation signal to overcome the inhibitory effect of Cbl-b. Our finding provides new insights into the molecular mechanisms underlying the initiation of γδT cell cytotoxicity and likely implications for optimizing γδT cell-based cancer immunotherapy.

  17. Critical role of dendritic cells in T cell retention in the interfollicular region of Peyer's patches.

    PubMed

    Obata, Takashi; Shibata, Naoko; Goto, Yoshiyuki; Ishikawa, Izumi; Sato, Shintaro; Kunisawa, Jun; Kiyono, Hiroshi

    2013-07-15

    Peyer's patches (PPs) simultaneously initiate active and quiescent immune responses in the gut. The immunological function is achieved by the rigid regulation of cell distribution and trafficking, but how the cell distribution is maintained remains to be elucidated. In this study, we show that binding of stromal cell-derived lymphoid chemokines to conventional dendritic cells (cDCs) is essential for the retention of naive CD4(+) T cells in the interfollicular region (IFR) of PPs. Transitory depletion of CD11c(high) cDCs in mice rapidly impaired the IFR structure in the PPs without affecting B cell follicles or germinal centers, lymphoid chemokine production from stromal cells, or the immigration of naive T cells into the IFRs of PPs. The cDC-orchestrated retention of naive T cells was mediated by heparinase-sensitive molecules that were expressed on cDCs and bound the lymphoid chemokine CCL21 produced from stromal cells. These data collectively reveal that interactions among cDCs, stromal cells, and naive T cells are necessary for the formation of IFRs in the PPs.

  18. Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection

    PubMed Central

    Martins, Flaviano S.; Dalmasso, Guillaume; Arantes, Rosa M. E.; Doye, Anne; Lemichez, Emmanuel; Lagadec, Patricia; Imbert, Veronique; Peyron, Jean-François; Rampal, Patrick; Nicoli, Jacques R.; Czerucka, Dorota

    2010-01-01

    Background Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal Findings In this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. Conclusions Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. PMID:20111723

  19. Regulatory CD8+CD122+ T-cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B-cells

    PubMed Central

    Lapato, Andrew; Vandenbark, Arthur A.; Murphy, Stephanie J.; Saugstad, Julie A.; Offner, Halina

    2014-01-01

    Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that transfer of IL-10+ B-cells reduced infarct volume in male C57BL/6J (wild-type, WT) recipient mice when given 24 h prior to or 4 h after middle cerebral artery occlusion (MCAO). The purpose of this study was to determine if passively transferred IL-10+ B-cells can exert therapeutic and immunoregulatory effects when injected 24 hours after MCAO induction in B-cell-sufficient male WT mice. The results demonstrated that IL-10+ B-cell treated mice had significantly reduced infarct volumes in the ipsilateral cortex and hemisphere and improved neurological deficits vs. Vehicle-treated control mice after 60 min occlusion and 96 h of reperfusion. The MCAO-protected B-cell recipient mice had less splenic atrophy and reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres compared with Vehicle-treated control mice. These immunoregulatory changes occurred in concert with the predominant appearance of IL-10-secreting CD8+CD122+ Treg cells in both the spleen and the MCAO-affected brain hemisphere. This study for the first time demonstrates a major neuroprotective role for IL-10+ B-cells in treating MCAO in male WT mice at a time point well beyond the ~4 h tPA treatment window, leading to the generation of a dominant IL-10+CD8+CD122+ Treg population associated with spleen preservation and reduced CNS inflammation. PMID:25537181

  20. Immune Tolerance Maintained by Cooperative Interactions between T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire

    PubMed Central

    Best, Katharine; Chain, Benny; Watkins, Chris

    2015-01-01

    The T cell population in an individual needs to avoid harmful activation by self peptides while maintaining the ability to respond to an unknown set of foreign peptides. This property is acquired by a combination of thymic and extra-thymic mechanisms. We extend current models for the development of self/non-self discrimination to consider the acquisition of self-tolerance as an emergent system level property of the overall T cell receptor repertoire. We propose that tolerance is established at the level of the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative interactions between T cells of different specificities. The threshold for self-reactivity is therefore imposed at a population level, and not at the level of the individual T cell/antigen encounter. Mathematically, the model can be formulated as a linear programing optimization problem that can be implemented as a multiplicative update algorithm, which shows a rapid convergence to a stable state. The model constrains self-reactivity within a predefined threshold, but maintains repertoire diversity and cross reactivity which are key characteristics of human T cell immunity. We show further that the size of individual clones in the model repertoire becomes heterogeneous, and that new clones can establish themselves even when the repertoire has stabilized. Our study combines the salient features of the “danger” model of self/non-self discrimination with the concepts of quorum sensing, and extends repertoire generation models to encompass the establishment of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which underlies tolerance in this model, suggests opportunities for therapeutic intervention to achieve long-term tolerance following transplantation. PMID:26300880

  1. Lymphocytes and Macrophages Are Infected by Theileria equi, but T Cells and B Cells Are Not Required to Establish Infection In Vivo

    PubMed Central

    Ramsay, Joshua D.; Ueti, Massaro W.; Johnson, Wendell C.; Scoles, Glen A.; Knowles, Donald P.; Mealey, Robert H.

    2013-01-01

    Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed

  2. Lymphocytes and macrophages are infected by Theileria equi, but T cells and B cells are not required to establish infection in vivo.

    PubMed

    Ramsay, Joshua D; Ueti, Massaro W; Johnson, Wendell C; Scoles, Glen A; Knowles, Donald P; Mealey, Robert H

    2013-01-01

    Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed

  3. Activation Loop Dynamics Determine the Different Catalytic Efficiencies of B Cell- and T Cell-Specific Tec Kinases

    PubMed Central

    Joseph, Raji E.; Kleino, Iivari; Wales, Thomas E.; Xie, Qian; Fulton, D. Bruce; Engen, John R.; Berg, Leslie J.; Andreotti, Amy H.

    2014-01-01

    Itk and Btk are nonreceptor tyrosine kinases of the Tec family that signal downstream of the T cell receptor (TCR) and B cell receptor (BCR), respectively. Despite their high sequence similarity and related signaling roles, Btk is a substantially more active kinase than Itk. We showed that substitution of six of the 619 amino acid residues of Itk with those of Btk was sufficient to completely switch the activities of Itk and Btk. The substitutions responsible for the swap in activity are all localized to the activation segment of the kinase domain. Nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry analyses revealed that Itk and Btk had distinct protein dynamics in this region, which could explain the observed differences in catalytic efficiency between these kinases. Introducing Itk with enhanced activity into T cells led to enhanced and prolonged TCR signaling compared to that in cells with wild-type Itk. These findings imply that evolutionary pressures have led to Tec kinases having distinct enzymatic properties depending on the cellular context. We suggest that the weaker catalytic activities observed for T cell–specific kinases is one mechanism to regulate cellular activation and prevent aberrant immune responses. PMID:23982207

  4. A hybrid of B and T lymphoblastic cell line could potentially substitute dendritic cells to efficiently expand out Her-2/neu-specific cytotoxic T lymphocytes from advanced breast cancer patients in vitro.

    PubMed

    Chen, Sheng; Gu, Feifei; Li, Kang; Zhang, Kai; Liu, Yangyang; Liang, Jinyan; Gao, Wei; Wu, Gang; Liu, Li

    2017-02-28

    Adoptive transfer of cytotoxic T lymphocytes (CTLs) holds promises to cure cancer. However, this treatment is hindered by lacking a robust way to specifically expand out CTLs. Here, we developed a hybrid of B lymphoblastic cell line and T lymphoblastic cell line (T2 cells) as a substitute of dendritic cells, together with irradiated autologous peripheral blood mononuclear cell (PBMC) as feeder cells and rhIL-2, to activate and expand Her-2/neu-specific CD8 + T cells from human epidermal growth factor receptor 2 (Her-2/neu) and human leukocyte antigen (HLA)-A2 double positive advanced breast cancer patients in vitro. These Her-2/neu-loaded T2 cells reproducibly activated and expanded out Her-2/neu-specific CD8 + T cells to 10 7 in 8 weeks. Furthermore, these Her-2/neu-specific CD8 + T cells had good sensitivity of recognition and killing Her-2/neu-overexpressed breast cancer cell line SK.BR.3. This technique gives us another insight on how to rapidly obtain sufficient CTLs for adoptive cancer immunotherapy.

  5. CAR-T cells and allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia.

    PubMed

    Liu, Jun; Zhang, Xi; Zhong, Jiang F; Zhang, Cheng

    2017-10-01

    Relapsed/refractory acute lymphoblastic leukemia (ALL) has a low remission rate after chemotherapy, a high relapse rate and poor long-term survival even when allogeneic hematopoietic stem cell transplantation (allo-HSCT) is performed. Chimeric antigen receptors redirected T cells (CAR-T cells) can enhance disease remission with a favorable outcome for relapsed/refractory ALL, though some cases quickly relapsed after CAR-T cell treatment. Thus, treatment with CAR-T cells followed by allo-HSCT may be the best way to treat relapsed/refractory ALL. In this review, we first discuss the different types of CAR-T cells. We then discuss the treatment of relapsed/refractory ALL using only CAR-T cells. Finally, we discuss the use of CAR-T cells, followed by allo-HSCT, for the treatment of relapsed/refractory ALL.

  6. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: Roles of PAH interactions and PAH metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spink, David C.; Wu, Susan J.; Spink, Barbara C.

    2008-02-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 {mu}M benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17{beta}-estradiol (E{sub 2}) metabolism, whereas BKF levels greater than 1 {mu}M inhibited E{sub 2} metabolism. Time course studies showed that induction of CYP1-catalyzed E{sub 2} metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays tomore » induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity.« less

  7. HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4+ T cells

    PubMed Central

    Kawatsuki, A; Yasunaga, J-i; Mitobe, Y; Green, PL; Matsuoka, M

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4+ T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3+ T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4+ T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4+ T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4+ T cells infected with HTLV-1. PMID:26804169

  8. The expression and significance of T helper cell subsets and regulatory T cells CD₄⁺ CD₂₅⁺ in peripheral blood of patients with human leukocyte antigen B27-positive acute anterior uveitis.

    PubMed

    Zou, Wenjun; Wu, Zhifeng; Xiang, Xiaoli; Sun, Song; Zhang, Jie

    2014-04-01

    Human leukocyte antigen B27 (HLA-B27)-associated uveitis is the most common reason for non-infectious uveitis. This purpose of the research was to study the expression and significance of T lymphocyte subsets and CD₄⁺ CD₂₅⁺ T regulatory (Treg) cells in peripheral blood of patients with Human leukocyte antigen B27-positive acute anterior uveitis (HLA-B27-positive AAU). The concentrations of Th1, Th2, Th17, CD₄⁺ CD₂₅⁺and CD₄⁺ CD₂₅⁺FOXP3⁺ Treg cells in peripheral blood were tested by flow cytometry. C-reactive protein (CRP) in peripheral blood was detected by immunoturbidimetry (ITM). Spearman's rank correlation was used to analyze the relationships between the concentration of Th1, Th2, Th17, CD₄⁺ CD₂₅⁺, and CD₄⁺ CD₂₅⁺ FOXP3(+) Treg cells in peripheral blood and disease activity score and CRP content. The ratio of both γ [interferon (IFN)-γ] (+)CD4⁺Th1 cells and CD4⁺IL-17⁺Th17 cells in peripheral blood of patients with HLA-B27-positive AAU (P = 0.041) was higher than that of the control group (P = 0.002). The concentration of CD₄⁺ CD₂₅⁺ FOXP3(+) T cells in peripheral blood of patients with AAU was lower than that of the control group (P = 0.026). The concentration of Th1 cells in peripheral blood of the patients had no correlation with disease activity score (P = 0.50) or CRP content (P = 0.383). This was also true of the concentration of Th2 cells (Disease activity score: R = 0.068, P = 0.817; CRP content: R = 0.439, P = 0.116). Th17 cell concentration positively correlated with disease activity score (R = 0.805, P = 0.001). The concentration of CD₄⁺ CD₂₅⁺ T cells showed no correlation with disease activity score (R =-0.209, P = 0.472) or CRP content (R =-0.169, P = 0.563), whereas the concentration of CD4⁺ CD25⁺ FOXP3⁺ T cells negatively correlated with disease activity score but did not correlate with CRP (R =-0.248, P

  9. The interaction between HIV-1 Nef and adaptor protein-2 reduces Nef-mediated CD4+ T cell apoptosis.

    PubMed

    Jacob, Rajesh Abraham; Johnson, Aaron L; Pawlak, Emily N; Dirk, Brennan S; Van Nynatten, Logan R; Haeryfar, S M Mansour; Dikeakos, Jimmy D

    2017-09-01

    Acquired Immune Deficiency Syndrome is characterized by a decline in CD4 + T cells. Here, we elucidated the mechanism underlying apoptosis in Human Immunodeficiency Virus-1 (HIV-1) infection by examining host apoptotic pathways hijacked by the HIV-1 Nef protein in the CD4 + T-cell line Sup-T1. Using a panel of Nef mutants unable to bind specific host proteins we uncovered that Nef generates pro- and anti-apoptotic signals. Apoptosis increased upon mutating the motifs involved in the interaction of Nef:AP-1 (Nef M20A or Nef EEEE62-65AAAA ) or Nef:AP-2 (Nef LL164/165AA ), implying these interactions limit Nef-mediated apoptosis. In contrast, disrupting the Nef:PAK2 interaction motifs (Nef H89A or Nef F191A ) reduced apoptosis. To validate further, apoptosis was measured after short-hairpin RNA knock-down of AP-1, AP-2 and PAK2. AP-2α depletion enhanced apoptosis, demonstrating that disrupting the Nef:AP-2α interaction limits Nef-mediated apoptosis. Collectively, we describe a mechanism by which HIV-1 regulates cell survival and demonstrate the consequence of interfering with Nef:host protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Adenosine A(2B) receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells.

    PubMed

    Kaji, Wakako; Tanaka, Satomi; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2014-04-01

    Regulatory T cells (Treg) play a role in suppression of immune response, including anti-tumor immunity. We have recently reported that treatment of naïve CD4 T cells with adenosine A(2B) receptor antagonist PSB603 under Treg-skewing conditions inhibits expression of Foxp3, a marker of differentiation to Treg, without blocking IL-2 production or CD25 expression, which are activation markers, in CD4 T cells. We hypothesized that PSB603 suppresses cancer growth and metastasis by inhibiting induction of Treg, thereby facilitating anti-tumor immunity. In this study, we first examined the effect of PSB603 on tumor growth in B16 melanoma-bearing C57BL/6 mice. Administration of PSB603 significantly suppressed the increase of tumor volume as well as the increase of Treg population in these mice. The populations of CD4 and CD8 T cells were higher and splenic lymphocyte-mediated cytotoxicity towards B16 melanoma was significantly increased in PSB603-treated mice. We confirmed that PSB603 did not reduce the viability of B16 melanoma cells in vitro. Moreover, we also examined the effect of PSB603 on tumor metastasis in pulmonary metastasis model mice intravenously injected with B16 melanoma cells. The metastasis was also suppressed in PSB603-treated mice, in which the population of Treg was significantly lower. Overall, our results suggest that A(2B) receptor antagonist PSB603 enhances anti-tumor immunity by inhibiting differentiation to Treg, resulting in a delay of tumor growth and a suppression of metastasis.

  11. Feasibility and Safety of RNA-transfected CD20-specific Chimeric Antigen Receptor T Cells in Dogs with Spontaneous B Cell Lymphoma.

    PubMed

    Panjwani, M Kazim; Smith, Jenessa B; Schutsky, Keith; Gnanandarajah, Josephine; O'Connor, Colleen M; Powell, Daniel J; Mason, Nicola J

    2016-09-01

    Preclinical murine models of chimeric antigen receptor (CAR) T cell therapy are widely applied, but are greatly limited by their inability to model the complex human tumor microenvironment and adequately predict safety and efficacy in patients. We therefore sought to develop a system that would enable us to evaluate CAR T cell therapies in dogs with spontaneous cancers. We developed an expansion methodology that yields large numbers of canine T cells from normal or lymphoma-diseased dogs. mRNA electroporation was utilized to express a first-generation canine CD20-specific CAR in expanded T cells. The canine CD20 (cCD20) CAR expression was efficient and transient, and electroporated T cells exhibited antigen-specific interferon-gamma (IFN-γ) secretion and lysed cCD20+ targets. In a first-in-canine study, autologous cCD20-ζ CAR T cells were administered to a dog with relapsed B cell lymphoma. Treatment was well tolerated and led to a modest, but transient, antitumor activity, suggesting that stable CAR expression will be necessary for durable clinical remissions. Our study establishes the methodologies necessary to evaluate CAR T cell therapy in dogs with spontaneous malignancies and lays the foundation for use of outbred canine cancer patients to evaluate the safety and efficacy of next-generation CAR therapies and their optimization prior to translation into humans.

  12. Feasibility and Safety of RNA-transfected CD20-specific Chimeric Antigen Receptor T Cells in Dogs with Spontaneous B Cell Lymphoma

    PubMed Central

    Panjwani, M Kazim; Smith, Jenessa B; Schutsky, Keith; Gnanandarajah, Josephine; O'Connor, Colleen M; Powell, Daniel J; Mason, Nicola J

    2016-01-01

    Preclinical murine models of chimeric antigen receptor (CAR) T cell therapy are widely applied, but are greatly limited by their inability to model the complex human tumor microenvironment and adequately predict safety and efficacy in patients. We therefore sought to develop a system that would enable us to evaluate CAR T cell therapies in dogs with spontaneous cancers. We developed an expansion methodology that yields large numbers of canine T cells from normal or lymphoma-diseased dogs. mRNA electroporation was utilized to express a first-generation canine CD20-specific CAR in expanded T cells. The canine CD20 (cCD20) CAR expression was efficient and transient, and electroporated T cells exhibited antigen-specific interferon-gamma (IFN-γ) secretion and lysed cCD20+ targets. In a first-in-canine study, autologous cCD20-ζ CAR T cells were administered to a dog with relapsed B cell lymphoma. Treatment was well tolerated and led to a modest, but transient, antitumor activity, suggesting that stable CAR expression will be necessary for durable clinical remissions. Our study establishes the methodologies necessary to evaluate CAR T cell therapy in dogs with spontaneous malignancies and lays the foundation for use of outbred canine cancer patients to evaluate the safety and efficacy of next-generation CAR therapies and their optimization prior to translation into humans. PMID:27401141

  13. NF-κB is involved in the LPS-mediated proliferation and apoptosis of MAC-T epithelial cells as part of the subacute ruminal acidosis response in cows.

    PubMed

    Fan, Wen-Jie; Li, He-Ping; Zhu, He-Shui; Sui, Shi-Ping; Chen, Pei-Ge; Deng, Yue; Sui, Tong-Ming; Wang, Yue-Ying

    2016-11-01

    To determine the effect of NF-κB on cell proliferation and apoptosis, we investigate the expression of inflammation and apoptosis-related factors in the bovine mammary epithelial cell line, MAC-T. MAC-T cells were cultured in vitro and MTT and LDH assays used to determine the effects of lipopolysaccharide (LPS) on proliferation and cytotoxicity respectively. RT-PCR and western blotting were used to evaluate the effect of LPS and NF-κB inhibition [pyrrolidine dithiocarbamate (PDTC) treatment] on the expression of inflammation and apoptosis-related factors. LPS significantly inhibited MAC-T cell proliferation in a dose- and time-dependent manner. Furthermore, LPS promoted apoptosis while the NF-кB inhibitor PDTC attenuated this effect. After LPS treatment, the NF-кB signaling pathway was activated, and the expression of inflammation and apoptosis-related factors increased. When PDTC blocked NF-кB signaling, the expression of inflammation and apoptosis-related factors were decreased in MAC-T cells. LPS activates the TLR4/NF-κB signaling pathway, inhibits proliferation and promotes apoptosis in MAC-T cells. NF-кB inhibition attenuates MAC-T cell apoptosis and TLR4/NF-κB signaling pathway. NF-кB inhibitor alleviating MAC-T cell apoptosis is presumably modulated by NF-кB.

  14. Lubrol-RAFTs in melanoma cells: a molecular platform for tumor-promoting ephrin-B2-integrin-beta1 interaction.

    PubMed

    Meyer, Stefanie; Orsó, Evelyn; Schmitz, Gerd; Landthaler, Michael; Vogt, Thomas

    2007-07-01

    Ephrins control cell motility and matrix adhesion. These functions play a pivotal role in cancer progression, for example, in malignant melanomas. We have previously shown that the ephrin-B2-tumor-promoting action is partly mediated by integrin-beta1 interaction. However, the subcellular prerequisites for molecular interaction like molecular proximity and co-compartmentalization have not been elucidated yet. Specific cholesterol-rich microdomains, termed lipid rafts (RAFTs), are known to be essential for functional ephrin-B2 signalling and integrin-mediated effects. Therefore, we addressed the question whether RAFT co-compartmentalization of both molecules could provide the molecular platform for their tumor-promoting interaction. In this study, we show that overexpressed ephrin-B2 is not only compartmentalized to classical Triton X-100 RAFTs in B16 melanoma cells, but also to the recently defined Lubrol-RAFTs. Interestingly, in the melanoma cells investigated, integrin-beta1 is also preferentially detected in such Lubrol-RAFTs. Accordingly, the presence of ephrin-B2 and integrin-beta1 in RAFTs and their function in cell migration and matrix attachment are highly sensitive to RAFT disruption by cholesterol depletion. Confocal fluorescence microscopy analyses also support the concept of a close molecular proximity and functional interplay of ephrin-B2 and integrin-beta1 in the plasma membrane. We conclude that Lubrol-RAFTs probably represent the platform for tumor-promoting ephrin-B2-integrin-beta1 interaction, which could become an interesting target for future antitumoral therapies.

  15. A monoclonal antibody that recognizes B cells and B cell precursors in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffman, R.L.; Weissman, I.L.

    1981-02-01

    The monoclonal antibody, RA3-2C2, appears to be specific for cells within the B cell lineage. This antibody does not recognize thymocytes, peripheral T cells, or nonlymphoid hematopoietic cells in the spleen or bone marrow. Nor does it recognize the pluripotent hematopoietic stem cells, the spleen colony-forming unit, All sIg+ B cells and most plasma cells are RA3-2C2+. In addition, approximately 20% of nucleated bone marrow cells are RA3-2C2+ but sIg-. This population contains B cell precursors that can give rise to sIg+ cells within 2 d in vitro.

  16. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients

    PubMed Central

    Acevedo, Gonzalo R.; Longhi, Silvia A.; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P.; Santos, Radleigh

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host’s immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient’s memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells. PMID:28552984

  17. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients.

    PubMed

    Acevedo, Gonzalo R; Longhi, Silvia A; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P; Santos, Radleigh; Judkowski, Valeria A; Pinilla, Clemencia; Gómez, Karina A

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.

  18. TIF-IA and Ebp1 regulate RNA synthesis in T cells.

    PubMed

    Saudemont, Aurore

    2015-04-16

    In this issue of Blood, Nguyen et al show that mycophenolic acid (MPA) induces GTP depletion, which inhibits the function of transcription initiation factor I (TIF-IA) and impacts the interaction of TIF-IA with ErbB3-binding protein 1 (Ebp1), a key in regulating proliferating cell nuclear antigen (PCNA) expression and ribosomal RNA (rRNA) synthesis in T cells during activation.

  19. B cell activation. III. B cell plasma membrane depolarization and hyper- Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled

    PubMed Central

    1983-01-01

    We report investigation of the relationship between ligand-induced B cell plasma membrane depolarization and increased expression of membrane-associated, I-A subregion encoded (mI-A) antigens. Results demonstrate that equal frequencies of B cells are stimulated to undergo membrane depolarization and to increase mI-A expression in response to mitogen, anti-Ig, and thymus-independent (TI) or thymus-dependent (TD) antigens. Further, a cause-and-effect relationship between these two events is suggested by results that demonstrate that inhibition of anti- Fab--induced depolarization by valinomycin also inhibits the subsequent increase in mI-A antigen expression and "passive" (non-ligand-mediated) depolarization of murine B cells by K+ results in hyper-mI-A antigen expression. Based upon these results we hypothesize that antigen- mediated receptor cross-linking results in signal transduction via membrane depolarization, which is resultant in increased mI-A antigen synthesis and cell surface expression. This increase in mI-A antigen density may render the B cell more receptive to subsequent interaction with I-region-restricted helper T cells. PMID:6415207

  20. Nogo-B (Reticulon-4B) functions as a negative regulator of the apoptotic pathway through the interaction with c-FLIP in colorectal cancer cells.

    PubMed

    Kawaguchi, Nao; Tashiro, Keitaro; Taniguchi, Kohei; Kawai, Masaru; Tanaka, Keitaro; Okuda, Junji; Hayashi, Michihiro; Uchiyama, Kazuhisa

    2018-08-01

    Nogo-B is a member of the Nogo/Reticulon-4 family and has been reported to be an inducer of apoptosis in certain types of cancer cells. However, the role of Nogo-B in human cancer remains less understood. Here, we demonstrated the functions of Nogo-B in colorectal cancer cells. In clinical colorectal cancer specimens, Nogo-B was obviously overexpressed, as determined by immunohistochemistry; and Western blot analysis showed its expression level to be significantly up-regulated. Furthermore, knockdown of Nogo-B in two colorectal cancer cell lines, SW480 and DLD-1, by transfection with si-RNA (siR) resulted in significantly reduced cell viability and a dramatic increase in apoptosis with insistent overexpression of cleaved caspase-8 and cleaved PARP. The transfection with Nogo-B plasmid cancelled that apoptosis induced by siRNogoB in SW480 cells. Besides, combinatory treatment with siR-Nogo-B/staurosporine (STS) or siR-Nogo-B/Fas ligand (FasL) synergistically reduced cell viability and increased the expression of apoptotic signaling proteins in colorectal cancer cells. These results strongly support our contention that Nogo-B most likely played an oncogenic role in colorectal cancer cells, mainly by negatively regulating the extrinsic apoptotic pathway in them. Finally, we revealed that suppression of Nogo-B caused down-regulation of c-FLIP, known as a major anti-apoptotic protein, and activation of caspase-8 in the death receptor pathway. Interaction between Nogo-B and c-FLIP was shown by immunoprecipitation and immunofluorescence studies. In conclusion, Nogo-B was shown to play an important negative role in apoptotic signaling through its interaction with c-FLIP in colorectal cancer cells, and may thus become a novel therapeutic target for colorectal cancer. Copyright © 2018 Elsevier B.V. All rights reserved.