Sample records for t-cell epitopes specific

  1. Epitope Specificity Delimits the Functional Capabilities of Vaccine-Induced CD8 T Cell Populations

    PubMed Central

    Hill, Brenna J.; Darrah, Patricia A.; Ende, Zachary; Ambrozak, David R.; Quinn, Kylie M.; Darko, Sam; Gostick, Emma; Wooldridge, Linda; van den Berg, Hugo A.; Venturi, Vanessa; Larsen, Martin; Davenport, Miles P.; Seder, Robert A.

    2014-01-01

    Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2Kd epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2Dd epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2Dd specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner. PMID:25348625

  2. Cytomegalovirus (CMV) Epitope-Specific CD4+ T Cells Are Inflated in HIV+ CMV+ Subjects.

    PubMed

    Abana, Chike O; Pilkinton, Mark A; Gaudieri, Silvana; Chopra, Abha; McDonnell, Wyatt J; Wanjalla, Celestine; Barnett, Louise; Gangula, Rama; Hager, Cindy; Jung, Dae K; Engelhardt, Brian G; Jagasia, Madan H; Klenerman, Paul; Phillips, Elizabeth J; Koelle, David M; Kalams, Spyros A; Mallal, Simon A

    2017-11-01

    Select CMV epitopes drive life-long CD8 + T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4 + T cells specific for human CMV (HCMV) are elevated in HIV + HCMV + subjects. To determine whether HCMV epitope-specific CD4 + T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4 + T cells in coinfected HLA-DR7 + long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4 + T cells were inflated among these HIV + subjects compared with those from an HIV - HCMV + HLA-DR7 + cohort or with HLA-DR7-restricted CD4 + T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4 + T cells consisted of effector memory or effector memory-RA + subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX 3 CR1, CD38, or HLA-DR but less often coexpressed CD38 + and HLA-DR + The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4 + T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.

    PubMed

    Gardyan, Adriane; Osen, Wolfram; Zörnig, Inka; Podola, Lilli; Agarwal, Maria; Aulmann, Sebastian; Ruggiero, Eliana; Schmidt, Manfred; Halama, Niels; Leuchs, Barbara; von Kalle, Christof; Beckhove, Philipp; Schneeweiss, Andreas; Jäger, Dirk; Eichmüller, Stefan B

    2015-06-01

    Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 UICC.

  4. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    PubMed Central

    Kløverpris, Henrik N.; McGregor, Reuben; McLaren, James E.; Ladell, Kristin; Stryhn, Anette; Koofhethile, Catherine; Brener, Jacqui; Chen, Fabian; Riddell, Lynn; Graziano, Luzzi; Klenerman, Paul; Leslie, Alasdair; Buus, Søren; Price, David A.; Goulder, Philip

    2014-01-01

    Objectives: Although CD8+ T cells play a critical role in the control of HIV-1 infection, their antiviral efficacy can be limited by antigenic variation and immune exhaustion. The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. Design and methods: Here, we used an array of different human leukocyte antigen (HLA)-B∗15 : 03 and HLA-B∗42 : 01 tetramers to characterize inhibitory receptor expression as a function of differentiation on HIV-1-specific CD8+ T-cell populations (n = 128) spanning 11 different epitope targets. Results: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by effector memory CD8+ T cells. Conclusion: Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are influenced by peptide/HLA class I antigen exposure. PMID:24906112

  5. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes.

    PubMed

    Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi

    2015-05-01

    Identification and characterization of CD8(+) T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8(+) T cells have been only partially identified. In this study, we sought to identify CD8(+) T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8(+) T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10(-11)) and positively associated with CD4 count (P = 1.2 × 10(-11)), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8(+) T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted

  6. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes

    PubMed Central

    Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi

    2015-01-01

    ABSTRACT Identification and characterization of CD8+ T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8+ T cells have been only partially identified. In this study, we sought to identify CD8+ T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8+ T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10−11) and positively associated with CD4 count (P = 1.2 × 10−11), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8+ T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. IMPORTANCE HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52

  7. Ex vivo detection of adenovirus specific CD4{sup +} T-cell responses to HLA-DR-epitopes of the Hexon protein show a contracted specificity of T{sub HELPER} cells following stem cell transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serangeli, Celine; Bicanic, Oliver; Scheible, Michael H.

    2010-02-20

    Human adenovirus (HAdV) is a cause of significant morbidity and mortality in immunocompromised patients, especially after stem cell transplantation (SCT). Viral clearance has been attributed to CD4{sup +} T-cell responses against the Hexon-protein, but the frequency of specific T{sub HELPER} cells is extremely low or not detectable ex vivo and preference for different CD4{sup +} T-cell epitopes is variable among individuals. We therefore analyzed 44 healthy donors and 6 SCT-recipients for Hexon-specific CD4{sup +}-responses ex vivo, to identify epitopes which would be broadly applicable. We selected 19 candidate epitopes with predicted restriction to HLA-DR1/DR3/DR4/DR7; 16 were located within the highlymore » conserved regions, indicating cross-reactivity of T cells among HAdV-subspecies. Ten epitopes induced CD4{sup +}-proliferation in >50% of individuals, confirmed by intracellular IFN-gamma detection. Three SCT recipients who recovered from an infection with HAdV displayed reactivity towards only a single hexon epitope, whereas healthy individuals were responsive to two to eight epitopes (median 3). The ex vivo detection of Hexon-specific CD4{sup +} T-cells, without any long-term culture in vitro, enables the detection and generation of HAdV-specific CD4{sup +} T cells for adoptive T-cell transfer against HAdV-infection post SCT.« less

  8. Potential contribution of a novel Tax epitope-specific CD4+ T cells to graft-versus-Tax effect in adult T cell leukemia patients after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Tamai, Yotaro; Hasegawa, Atsuhiko; Takamori, Ayako; Sasada, Amane; Tanosaki, Ryuji; Choi, Ilseung; Utsunomiya, Atae; Maeda, Yasuhiro; Yamano, Yoshihisa; Eto, Tetsuya; Koh, Ki-Ryang; Nakamae, Hirohisa; Suehiro, Youko; Kato, Koji; Takemoto, Shigeki; Okamura, Jun; Uike, Naokuni; Kannagi, Mari

    2013-04-15

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for adult T cell leukemia/lymphoma (ATL) caused by human T cell leukemia virus type 1 (HTLV-1). We previously reported that Tax-specific CD8(+) cytotoxic T lymphocyte (CTL) contributed to graft-versus-ATL effects in ATL patients after allo-HSCT. However, the role of HTLV-1-specific CD4(+) T cells in the effects remains unclear. In this study, we showed that Tax-specific CD4(+) as well as CD8(+) T cell responses were induced in some ATL patients following allo-HSCT. To further analyze HTLV-1-specific CD4(+) T cell responses, we identified a novel HLA-DRB1*0101-restricted epitope, Tax155-167, recognized by HTLV-1-specific CD4(+) Th1-like cells, a major population of HTLV-1-specific CD4(+) T cell line, which was established from an ATL patient at 180 d after allo-HSCT from an unrelated seronegative donor by in vitro stimulation with HTLV-1-infected cells from the same patient. Costimulation of PBMCs with both the identified epitope (Tax155-167) and known CTL epitope peptides markedly enhanced the expansion of Tax-specific CD8(+) T cells in PBMCs compared with stimulation with CTL epitope peptide alone in all three HLA-DRB1*0101(+) patients post-allo-HSCT tested. In addition, direct detection using newly generated HLA-DRB1*0101/Tax155-167 tetramers revealed that Tax155-167-specific CD4(+) T cells were present in all HTLV-1-infected individuals tested, regardless of HSCT. These results suggest that Tax155-167 may be the dominant epitope recognized by HTLV-1-specific CD4(+) T cells in HLA-DRB1*0101(+)-infected individuals and that Tax-specific CD4(+) T cells may augment the graft-versus-Tax effects via efficient induction of Tax-specific CD8(+) T cell responses.

  9. CYTOMEGALOVIRUS VECTORS VIOLATE CD8+ T CELL EPITOPE RECOGNITION PARADIGMS

    PubMed Central

    Hansen, Scott G.; Sacha, Jonah B.; Hughes, Colette M.; Ford, Julia C.; Burwitz, Benjamin J.; Scholz, Isabel; Gilbride, Roxanne M.; Lewis, Matthew S.; Gilliam, Awbrey N.; Ventura, Abigail B.; Malouli, Daniel; Xu, Guangwu; Richards, Rebecca; Whizin, Nathan; Reed, Jason S.; Hammond, Katherine B.; Fischer, Miranda; Turner, John M.; Legasse, Alfred W.; Axthelm, Michael K.; Edlefsen, Paul T.; Nelson, Jay A.; Lifson, Jeffrey D.; Früh, Klaus; Picker, Louis J.

    2013-01-01

    CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 (US11) gene, and the promiscuous MHC class I- and class II-restricted CD8+ T cell responses only occur in the absence of the Rh157.4-.6 (UL128-131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition. PMID:23704576

  10. Identification of Novel Avian Influenza Virus Derived CD8+ T-Cell Epitopes

    PubMed Central

    Reemers, Sylvia S. N.; van Haarlem, Daphne A.; Sijts, Alice J. A. M.; Vervelde, Lonneke; Jansen, Christine A.

    2012-01-01

    Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells are associated with protection against homologous and heterologous influenza strains. In contrast to what has been described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes. MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection (dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual peptides and the production of IFNγ was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted, 3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against AIV infection in a natural host for influenza, and may be important for vaccine development. PMID:22384112

  11. Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection.

    PubMed

    Koblischke, Maximilian; Stiasny, Karin; Aberle, Stephan W; Malafa, Stefan; Tschouchnikas, Georgios; Schwaiger, Julia; Kundi, Michael; Heinz, Franz X; Aberle, Judith H

    2018-01-01

    Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.

  12. Prophylactic and therapeutic vaccination with carrier-bound Bet v 1 peptides lacking allergen-specific T cell epitopes reduces Bet v 1-specific T cell responses via blocking antibodies in a murine model for birch pollen allergy.

    PubMed

    Linhart, B; Narayanan, M; Focke-Tejkl, M; Wrba, F; Vrtala, S; Valenta, R

    2014-02-01

    Vaccines consisting of allergen-derived peptides lacking IgE reactivity and allergen-specific T cell epitopes bound to allergen-unrelated carrier molecules have been suggested as candidates for allergen-specific immunotherapy. To study whether prophylactic and therapeutic vaccination with carrier-bound peptides from the major birch pollen allergen Bet v 1 lacking allergen-specific T cell epitopes has influence on Bet v 1-specific T cell responses. Three Bet v 1-derived peptides, devoid of Bet v 1-specific T cell epitopes, were coupled to KLH and adsorbed to aluminium hydroxide to obtain a Bet v 1-specific allergy vaccine. Groups of BALB/c mice were immunized with the peptide vaccine before or after sensitization to Bet v 1. Bet v 1- and peptide-specific antibody responses were analysed by ELISA. T cell and cytokine responses to Bet v 1, KLH, and the peptides were studied in proliferation assays. The effects of peptide-specific and allergen-specific antibodies on T cell responses and allergic lung inflammation were studied using specific antibodies. Prophylactic and therapeutic vaccination with carrier-bound Bet v 1 peptides induced a Bet v 1-specific IgG antibody response without priming/boosting of Bet v 1-specific T cells. Prophylactic and therapeutic vaccination of mice with the peptide vaccine induced Bet v 1-specific antibodies which suppressed Bet v 1-specific T cell responses and allergic lung inflammation. Vaccination with carrier-bound allergen-derived peptides lacking allergen-specific T cell epitopes induces allergen-specific IgG antibodies which suppress allergen-specific T cell responses and allergic lung inflammation. © 2013 John Wiley & Sons Ltd.

  13. The avidity of cross-reactive virus-specific T cells for their viral and allogeneic epitopes is variable and depends on epitope expression.

    PubMed

    van den Heuvel, Heleen; Heutinck, Kirstin M; van der Meer-Prins, Ellen M W; Franke-van Dijk, Marry E I; van Miert, Paula P M C; Zhang, Xiaoqian; Ten Berge, Ineke J M; Claas, Frans H J

    2018-01-01

    Virus-specific T cells can recognize allogeneic HLA (allo-HLA) through cross-reactivity of their T-cell receptor (TCR). In a transplantation setting, such allo-HLA cross-reactivity may contribute to harmful immune responses towards the allograft, provided that the cross-reactive T cells get sufficiently activated upon recognition of the allo-HLA. An important determinant of T-cell activation is TCR avidity, which to date, has remained largely unexplored for allo-HLA-cross-reactive virus-specific T cells. For this purpose, cold target inhibition assays were performed using allo-HLA-cross-reactive virus-specific memory CD8 + T-cell clones as responders, and syngeneic cells loaded with viral peptide and allogeneic cells as hot (radioactively-labeled) and cold (non-radioactively-labeled) targets. CD8 dependency of the T-cell responses was assessed using interferon γ (IFNγ) enzyme-linked immunosorbent assay (ELISA) in the presence and absence of CD8-blocking antibodies. At high viral-peptide loading concentrations, T-cell clones consistently demonstrated lower avidity for allogeneic versus viral epitopes, but at suboptimal concentrations the opposite was observed. In line, anti-viral reactivity was CD8 independent at high, but not at suboptimal viral-peptide-loading concentrations. The avidity of allo-HLA-cross-reactive virus-specific memory CD8 + T cells is therefore highly dependent on epitope expression, and as a consequence, can be both higher and lower for allogeneic versus viral targets under different (patho)physiological conditions. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  14. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes.

    PubMed

    Kessler, J H; Bres-Vloemans, S A; van Veelen, P A; de Ru, A; Huijbers, I J G; Camps, M; Mulder, A; Offringa, R; Drijfhout, J W; Leeksma, O C; Ossendorp, F; Melief, C J M

    2006-10-01

    For immunotherapy of residual disease in patients with Philadelphia-positive leukemias, the BCR-ABL fusion regions are attractive disease-specific T-cell targets. We analyzed these regions for the prevalence of cytotoxic T lymphocyte (CTL) epitopes by an advanced reverse immunology procedure. Seventeen novel BCR-ABL fusion peptides were identified to bind efficiently to the human lymphocyte antigen (HLA)-A68, HLA-B51, HLA-B61 or HLA-Cw4 HLA class I molecules. Comprehensive enzymatic digestion analysis showed that 10 out of the 28 HLA class I binding fusion peptides were efficiently excised after their C-terminus by the proteasome, which is an essential requirement for efficient cell surface expression. Therefore, these peptides are prime vaccine candidates. The other peptides either completely lacked C-terminal liberation or were only inefficiently excised by the proteasome, rendering them inappropriate or less suitable for inclusion in a vaccine. CTL raised against the properly processed HLA-B61 epitope AEALQRPVA from the BCR-ABL e1a2 fusion region, expressed in acute lymphoblastic leukemia (ALL), specifically recognized ALL tumor cells, proving cell surface presentation of this epitope, its applicability for immunotherapy and underlining the accuracy of our epitope identification strategy. Our study provides a reliable basis for the selection of optimal peptides to be included in immunotherapeutic BCR-ABL vaccines against leukemia.

  15. Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes.

    PubMed

    Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø; de Souza, Gustavo A; Sollid, Ludvig M

    2016-05-05

    This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells.

  16. Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes

    PubMed Central

    Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø.; de Souza, Gustavo A.; Sollid, Ludvig M.

    2016-01-01

    This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306

  17. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection.

    PubMed

    Richards, Katherine A; DiPiazza, Anthony T; Rattan, Ajitanuj; Knowlden, Zackery A G; Yang, Hongmei; Sant, Andrea J

    2018-01-01

    One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.

  18. Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic.

    PubMed

    Prickett, S R; Voskamp, A L; Phan, T; Dacumos-Hill, A; Mannering, S I; Rolland, J M; O'Hehir, R E

    2013-06-01

    Peanut allergy is a life-threatening condition; there is currently no cure. While whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions and even fatalities in peanut allergy. To identify short, HLA-degenerate CD4(+) T cell epitope-based peptides of the major peanut allergen Ara h 1 that target allergen-specific T cells without causing IgE-mediated inflammatory cell activation, as candidates for safe peanut-specific immunotherapy. Ara h 1-specific CD4(+) T cell lines (TCL) were generated from peripheral blood mononuclear cells (PBMC) of peanut-allergic subjects using CFSE-based methodology. T cell epitopes were identified using CFSE and thymidine-based proliferation assays. Epitope HLA-restriction was investigated using blocking antibodies, HLA-genotyping and epitope prediction algorithms. Functional peanut-specific IgE reactivity to peptides was assessed by basophil activation assay. A total of 145 Ara h 1-specific TCL were generated from 18 HLA-diverse peanut-allergic subjects. The TCL recognized 20-mer peptides throughout Ara h 1. Nine 20-mers containing the most frequently recognized epitopes were selected and their recognition confirmed in 18 additional peanut-allergic subjects. Ten core epitopes were mapped within these 20-mers. These were HLA-DQ and/or HLA-DR restricted, with each presented on at least two different HLA-molecules. Seven short (≤ 20 aa) non-basophil-reactive peptides encompassing all core epitopes were designed and validated in peanut-allergic donor PBMC T cell assays. Short CD4(+) T cell epitope-based Ara h 1 peptides were identified as novel candidates for a safe, T cell targeted peanut-specific immunotherapy for HLA-diverse populations. © 2013 John Wiley & Sons Ltd.

  19. Ara h 2 peptides containing dominant CD4+ T-cell epitopes: candidates for a peanut allergy therapeutic.

    PubMed

    Prickett, Sara R; Voskamp, Astrid L; Dacumos-Hill, April; Symons, Karen; Rolland, Jennifer M; O'Hehir, Robyn E

    2011-03-01

    Peanut allergy is a life-threatening condition; there is currently no cure. Although whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions, and even fatalities, in peanut allergy. This study aimed to identify short, T-cell epitope-based peptides that target allergen-specific CD4(+) T cells but do not bind IgE as candidates for safe peanut-specific immunotherapy. Multiple CD4(+) T-cell lines specific for the major peanut allergen Ara h 2 were generated from PBMCs of 16 HLA-diverse subjects with peanut allergy by using 5,6-carboxyfluorescein diacetate succinimidylester-based methodology. Proliferation and ELISPOT assays were used to identify dominant epitopes recognized by T-cell lines and to confirm recognition by peripheral blood T cells of epitope-based peptides modified for therapeutic production. HLA restriction of core epitope recognition was investigated by using anti-HLA blocking antibodies and HLA genotyping. Serum-IgE peptide-binding was assessed by dot-blot. Five dominant CD4(+) T-cell epitopes were identified in Ara h 2. In combination, these were presented by HLA-DR, HLA-DP, and HLA-DQ molecules and recognized by T cells from all 16 subjects. Three short peptide variants containing these T-cell epitopes were designed with cysteine-to-serine substitutions to facilitate stability and therapeutic production. Variant peptides showed HLA-binding degeneracy, did not bind peanut-specific serum IgE, and could directly target T(H)2-type T cells in peripheral blood of subjects with allergy. Short CD4(+) T-cell epitope-based Ara h 2 peptides were identified as novel candidates for a T-cell-targeted peanut-specific immunotherapy for an HLA-diverse population. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    PubMed

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as

  1. HLA-B*27 subtype specificity determines targeting and viral evolution of a hepatitis C virus-specific CD8+ T cell epitope.

    PubMed

    Nitschke, Katja; Barriga, Alejandro; Schmidt, Julia; Timm, Jörg; Viazov, Sergei; Kuntzen, Thomas; Kim, Arthur Y; Lauer, Georg M; Allen, Todd M; Gaudieri, Silvana; Rauch, Andri; Lange, Christian M; Sarrazin, Christoph; Eiermann, Thomas; Sidney, John; Sette, Alessandro; Thimme, Robert; López, Daniel; Neumann-Haefelin, Christoph

    2014-01-01

    HLA-B*27 is associated with spontaneous HCV genotype 1 clearance. HLA-B*27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B*27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B*27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B*27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B*27:02 and 05. The NS5B2820 epitope is only restricted by the HLA-B*27 subtype HLA-B*27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B*27 subtype B*27:05. Indeed, the epitope is very dominant in HLA-B*27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B*27:02+ chronically infected patients. The NS5B2820 epitope is immunodominant in the context of HLA-B*27:02, but is not restricted by other HLA-B*27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Antigen sensitivity of CD22-specific chimeric T cell receptors is modulated by target epitope distance from the cell membrane

    PubMed Central

    James, Scott E.; Greenberg, Philip D.; Jensen, Michael C.; Lin, Yukang; Wang, Jinjuan; Till, Brian G.; Raubitschek, Andrew A.; Forman, Stephen J.; Press, Oliver W.

    2008-01-01

    We have targeted CD22 as a novel tumor-associated antigen for recognition by human CTL genetically modified to express chimeric T cell receptors (cTCR) recognizing this surface molecule. CD22-specifc cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR+ CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR+ CTL exhibited lower levels of maximum lysis and lower antigen sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of antigen engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope but constructed as a truncated CD22 molecule to approximate the length of a TCR:pMHC complex. The reduced sensitivity of CD22-specific cTCR+ CTL for antigen-induced triggering of effector functions has potential therapeutic applications, as such cells selectively lysed B cell lymphoma lines expressing high levels of CD22 but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength – and consequently antigen sensitivity – can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate antigen density. PMID:18453625

  3. A Missing PD-L1/PD-1 Coinhibition Regulates Diabetes Induction by Preproinsulin-Specific CD8 T-Cells in an Epitope-Specific Manner

    PubMed Central

    Schuster, Cornelia; Brosi, Helen; Stifter, Katja; Boehm, Bernhard O.; Schirmbeck, Reinhold

    2013-01-01

    Coinhibitory PD-1/PD-L1 (B7-H1) interactions provide critical signals for the regulation of autoreactive T-cell responses. We established mouse models, expressing the costimulator molecule B7.1 (CD80) on pancreatic beta cells (RIP-B7.1 tg mice) or are deficient in coinhibitory PD-L1 or PD-1 molecules (PD-L1−/− and PD-1−/− mice), to study induction of preproinsulin (ppins)-specific CD8 T-cell responses and experimental autoimmune diabetes (EAD) by DNA-based immunization. RIP-B7.1 tg mice allowed us to identify two CD8 T-cell specificities: pCI/ppins DNA exclusively induced Kb/A12–21-specific CD8 T-cells and EAD, whereas pCI/ppinsΔA12–21 DNA (encoding ppins without the COOH-terminal A12–21 epitope) elicited Kb/B22–29-specific CD8 T-cells and EAD. Specific expression/processing of mutant ppinsΔA12–21 (but not ppins) in non-beta cells, targeted by intramuscular DNA-injection, thus facilitated induction of Kb/B22–29-specific CD8 T-cells. The A12–21 epitope binds Kb molecules with a very low avidity as compared with B22–29. Interestingly, immunization of coinhibition-deficient PD-L1−/− or PD-1−/− mice with pCI/ppins induced Kb/A12–21-monospecific CD8 T-cells and EAD but injections with pCI/ppinsΔA12–21 did neither recruit Kb/B22–29-specific CD8 T-cells into the pancreatic target tissue nor induce EAD. PpinsΔA12–21/(Kb/B22–29)-mediated EAD was efficiently restored in RIP-B7.1+/PD-L1−/− mice, differing from PD-L1−/− mice only in the tg B7.1 expression in beta cells. Alternatively, an ongoing beta cell destruction and tissue inflammation, initiated by ppins/(Kb/A12–21)-specific CD8 T-cells in pCI/ppins+pCI/ppinsΔA12–21 co-immunized PD-L1−/− mice, facilitated the expansion of ppinsΔA12–21/(Kb/B22–29)-specific CD8 T-cells. CD8 T-cells specific for the high-affinity Kb/B22–29- (but not the low-affinity Kb/A12–21)-epitope thus require stimulatory ´help from beta cells or inflamed islets to expand in PD-L1

  4. Identification of vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines

    PubMed Central

    Drexler, Ingo; Staib, Caroline; Kastenmüller, Wolfgang; Stevanović, Stefan; Schmidt, Burkhard; Lemonnier, François A.; Rammensee, Hans-Georg; Busch, Dirk H.; Bernhard, Helga; Erfle, Volker; Sutter, Gerd

    2003-01-01

    Despite worldwide eradication of naturally occurring variola virus, smallpox remains a potential threat to both civilian and military populations. New, safe smallpox vaccines are being developed, and there is an urgent need for methods to evaluate vaccine efficacy after immunization. Here we report the identification of an immunodominant HLA-A*0201-restricted epitope that is recognized by cytotoxic CD8+ T cells and conserved among Orthopoxvirus species including variola virus. This finding has permitted analysis and monitoring of epitope-specific T cell responses after immunization and demonstration of the identified T cell specificity in an A*0201-positive human donor. Vaccination of transgenic mice allowed us to compare the immunogenicity of several vaccinia viruses including highly attenuated, replication-deficient modified vaccinia virus Ankara (MVA). MVA vaccines elicited levels of CD8+ T cell responses that were comparable to those induced by the replication-competent vaccinia virus strains. Finally, we demonstrate that MVA vaccination is fully protective against a lethal respiratory challenge with virulent vaccinia virus strain Western Reserve. Our data provide a basis to rationally estimate immunogenicity of safe, second-generation poxvirus vaccines and suggest that MVA may be a suitable candidate. PMID:12518065

  5. New strategies for allergen T cell epitope identification: going beyond IgE

    PubMed Central

    Schulten, Véronique; Peters, Bjoern; Sette, Alessandro

    2014-01-01

    Background Type I allergy and allergic asthma are common diseases in the developed world associated with IgE antibodies and Th2 cell reactivity. To date, the only causative treatment for allergic disease is specific immunotherapy (SIT). Method Here, we review recent works from our laboratory focused on identifying human T cell epitopes associated with allergic disease and their potential use as biomarkers or therapeutic targets for SIT. In previous studies, we have mapped T cell epitopes associated with the major ten Timothy grass (Tg) allergens, defined on the basis of human IgE reactivity by ELISPOT. Results Interestingly, in about 33% of allergic donors no T cell epitopes from overlapping peptides spanning the entire sequences of these allergens were identified, despite vigorous T cell responses to the Tg extract. Using a bioinformatics-proteomic approach, we identified a set of 93 novel Tg proteins, many of which were found to elicit IL-5 production in T cells from allergic donors despite lacking IgE reactivity. Next, we assessed T cell responses to the novel Tg proteins in donors who had been treated with subcutaneous specific immunotherapy (SCIT). A subset of these proteins showed a strong reduction of IL-5 responses in donors who had received SCIT compared to allergic donors, which correlated with patient's self-reported improvement of allergic symptoms. Conclusion A bioinformatics-proteomic approach has successfully identified additional Tg-derived T cell targets independent of IgE reactivity. This method can be applied to other allergies potentially leading to the discovery of promising therapeutic targets for allergen-specific immunotherapy. PMID:25402674

  6. Broad cross-reactive T cell receptor repertoires recognizing dissimilar Epstein-Barr and influenza A virus epitopes

    PubMed Central

    Clute, Shalyn C.; Naumov, Yuri N.; Watkin, Levi B.; Aslan, Nuray; Sullivan, John L.; Thorley-Lawson, David A.; Luzuriaga, Katherine; Welsh, Raymond M.; Puzone, Roberto; Celada, Franco; Selin, Liisa K.

    2013-01-01

    Memory T cells cross-reactive with epitopes encoded by related or even unrelated viruses may alter the immune response and pathogenesis of infection by a process known as heterologous immunity. Because a challenge virus epitope may react with only a subset of the T cell repertoire in a cross-reactive epitope-specific memory pool, the vigorous cross-reactive response may be narrowly focused, or oligoclonal. We show here, by examining human T cell cross-reactivity between the HLA-A2-restricted influenza A virus-encoded M158-66 epitope (GILGFVFTL) and the dissimilar Epstein-Barr virus-encoded BMLF1280-288 epitope (GLCTLVAML), that under some conditions heterologous immunity can lead to a significant broadening rather than a narrowing of the T cell receptor repertoire. We suggest that dissimilar cross-reactive epitopes might generate a broad rather than narrow T cell repertoire if there is a lack of dominant high affinity clones, and this hypothesis is supported by computer simulation. PMID:21048112

  7. Variation at Extra-epitopic Amino Acid Residues Influences Suppression of Influenza Virus Replication by M158-66 Epitope-Specific CD8+ T Lymphocytes.

    PubMed

    van de Sandt, Carolien E; Pronk, Mark R; van Baalen, Carel A; Fouchier, Ron A M; Rimmelzwaan, Guus F

    2018-06-01

    Influenza virus-specific CD8 + T lymphocytes (CTLs) contribute to clearance of influenza virus infections and reduce disease severity. Variation at amino acid residues located in or outside CTL epitopes has been shown to affect viral recognition by virus-specific CTLs. In the present study, we investigated the effect of naturally occurring variation at residues outside the conserved immunodominant and HLA*0201-restricted M1 58-66 epitope, located in the influenza virus M1 protein, on the extent of virus replication in the presence of CTLs specific for the epitope. To this end, we used isogenic viruses with an M1 gene segment derived from either an avian or a human influenza virus, HLA-transgenic human epithelial cells, human T cell clones specific for the M1 58-66 epitope or a control epitope, and a novel, purposely developed in vitro system to coculture influenza virus-infected cells with T cells. We found that the M gene segment of a human influenza A/H3N2 virus afforded the virus the capacity to replicate better in the presence of M1 58-66 -specific CTLs than the M gene segment of avian viruses. These findings are in concordance with previously observed differential CTL activation, caused by variation at extra-epitopic residues, and may reflect an immune adaptation strategy of human influenza viruses that allows them to cope with potent CTL immunity to the M1 58-66 epitope in HLA-A*0201-positive individuals, resulting in increased virus replication and shedding and possibly increasing disease severity. IMPORTANCE Influenza viruses are among the leading causes of acute respiratory tract infections. CD8 + T lymphocytes display a high degree of cross-reactivity with influenza A viruses of various subtypes and are considered an important correlate of protection. Unraveling viral immune evasion strategies and identifying signs of immune adaptation are important for defining the role of CD8 + T lymphocytes in affording protection more accurately. Improving our insight

  8. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    PubMed Central

    2012-01-01

    Background Merkel cell carcinoma (MCC) is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV). The MCPyV-encoded large T (LT) antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT) encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT), as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the immunodominant LT epitope

  9. HLA-B*35-Restricted CD8+-T-Cell Epitope in Mycobacterium tuberculosis Rv2903c

    PubMed Central

    Klein, Michèl R.; Hammond, Abdulrahman S.; Smith, Steve M.; Jaye, Assan; Lukey, Pauline T.; McAdam, Keith P. W. J.

    2002-01-01

    Few human CD8+ T-cell epitopes in mycobacterial antigens have been described to date. Here we have identified a novel HLA-B*35-restricted CD8+ T-cell epitope in Mycobacterium tuberculosis Rv2903c based on a reverse immunogenetics approach. Peptide-specific CD8 T cells were able to kill M. tuberculosis-infected macrophages and produce gamma interferon and tumor necrosis factor alpha. PMID:11796635

  10. Identification of two novel immunodominant UreB CD4(+) T cell epitopes in Helicobacter pylori infected subjects.

    PubMed

    Yang, Wu-Chen; Chen, Li; Li, Hai-Bo; Li, Bin; Hu, Jian; Zhang, Jin-Yong; Yang, Shi-Ming; Zou, Quan-Ming; Guo, Hong; Wu, Chao

    2013-02-06

    An epitope-based vaccine is a promising option for treating Helicobacter pylori (H. pylori) infection. Epitope mapping is the first step in designing an epitope-based vaccine. A pivotal role of CD4(+) T cells in protection against H. pylori has been accepted, but few Th epitopes have been identified. In this study, two novel UreB CD4(+) T cell epitopes were identified using PBMCs obtained from two H. pylori infected subjects. We determined the restriction molecules by antibody blocking and used various Epstein-Barr virus-transformed B lymphocyte cell lines (BLCLs) with different HLA alleles as APCs to present peptides to CD4(+) T cells. These epitopes were DRB1*1404-restricted UreB(373-385) and DRB1*0803-restricted UreB(438-452). The T cells specific to these epitopes not only recognized autologous DCs loaded with recombinant UreB but also those pulsed with H. pylori whole cell lysates, suggesting that these epitope peptides are naturally processed. These epitopes have important value for designing an effective H. pylori vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen.

    PubMed

    Oseroff, Carla; Sidney, John; Kotturi, Maya F; Kolla, Ravi; Alam, Rafeul; Broide, David H; Wasserman, Stephen I; Weiskopf, Daniela; McKinney, Denise M; Chung, Jo L; Petersen, Arnd; Grey, Howard; Peters, Bjoern; Sette, Alessandro

    2010-07-15

    We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-gamma, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-gamma, IL-10, and IL-17 production.

  12. Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.

    PubMed

    Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard

    2013-04-01

    Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Influence of an immunodominant herpes simplex virus type 1 CD8+ T cell epitope on the target hierarchy and function of subdominant CD8+ T cells

    PubMed Central

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) latency in sensory ganglia such as trigeminal ganglia (TG) is associated with a persistent immune infiltrate that includes effector memory CD8+ T cells that can influence HSV-1 reactivation. In C57BL/6 mice, HSV-1 induces a highly skewed CD8+ T cell repertoire, in which half of CD8+ T cells (gB-CD8s) recognize a single epitope on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize, in varying proportions, 19 subdominant epitopes on 12 viral proteins. The gB-CD8s remain functional in TG throughout latency, while non-gB-CD8s exhibit varying degrees of functional compromise. To understand how dominance hierarchies relate to CD8+ T cell function during latency, we characterized the TG-associated CD8+ T cells following corneal infection with a recombinant HSV-1 lacking the immunodominant gB498-505 epitope (S1L). S1L induced a numerically equivalent CD8+ T cell infiltrate in the TG that was HSV-specific, but lacked specificity for gB498-505. Instead, there was a general increase of non-gB-CD8s with specific subdominant epitopes arising to codominance. In a latent S1L infection, non-gB-CD8s in the TG showed a hierarchy targeting different epitopes at latency compared to at acute times, and these cells retained an increased functionality at latency. In a latent S1L infection, these non-gB-CD8s also display an equivalent ability to block HSV reactivation in ex vivo ganglionic cultures compared to TG infected with wild type HSV-1. These data indicate that loss of the immunodominant gB498-505 epitope alters the dominance hierarchy and reduces functional compromise of CD8+ T cells specific for subdominant HSV-1 epitopes during viral latency. PMID:29206240

  14. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4+ T-cell epitopes with other tree nuts

    PubMed Central

    Archila, Luis Diego; Chow, I-Ting; McGinty, John W.; Renand, Amedee; Jeong, David; Robinson, David; Farrington, Mary L.; Kwok, William.W.

    2017-01-01

    Background Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T-cell epitopes and T-cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. Objectives In this study, we characterized cashew specific T-cell responses in cashew allergic subjects and examined cross-reactivity of these cashew specific cells toward other tree nut allergens. Methods CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T-cells was determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. Results CD4+ T-cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T-cell epitopes were then identified. These epitopes elicited either TH2 or TH2/TH17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T-cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Conclusions Phylogenetically diverse tree nut allergens can activate cashew reactive T-cells and elicit a TH2 type response at an epitope specific level. Clinical relevance Lack of cross-reactivity between walnut and cashew suggest that cashew peptide immunotherapy approach may not be most effective for walnut. PMID:27129138

  15. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4(+) T cell epitopes with other tree nuts.

    PubMed

    Archila, L D; Chow, I-T; McGinty, J W; Renand, A; Jeong, D; Robinson, D; Farrington, M L; Kwok, W W

    2016-06-01

    Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T cell epitopes and T cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. In this study, we characterized cashew-specific T cell responses in cashew-allergic subjects and examined cross-reactivity of these cashew-specific cells towards other tree nut allergens. CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T cells were determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. CD4(+) T cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T cell epitopes were then identified. These epitopes elicited either TH 2 or TH 2/TH 17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Phylogenetically diverse tree nut allergens can activate cashew-reactive T cells and elicit a TH 2-type response at an epitope-specific level. Lack of cross-reactivity between walnut and cashew suggests that cashew peptide immunotherapy approach may not be most effective for walnut. © 2016 John Wiley & Sons Ltd.

  16. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells

    NASA Astrophysics Data System (ADS)

    Bertoletti, Antonio; Sette, Alessandro; Chisari, Francis V.; Penna, Amalia; Levrero, Massimo; Carli, Marco De; Fiaccadori, Franco; Ferrari, Carlo

    1994-06-01

    IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1-4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6-8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.

  17. Antigen-specific and non-specific CD4{sup +} T cell recruitment and proliferation during influenza infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.

    To track epitope-specific CD4{sup +} T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA{sub 323-339} epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA{sub II}, replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4{sup +} T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4{sup +} T cells were recruited to the infected lung both in the presence and absence of the OVA{submore » 323-339} epitope. These data show that, when primed, CD4{sup +} T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection.« less

  18. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P; Pham, Thanh T; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-04-01

    Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8(+) T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8(+) T cells play a key role in the "natural" protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8(+) T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)). In contrast, SYMP patients had frequent less-differentiated central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8(+) T cells which responded mainly to gB342-350 and gB561-569 "ASYMP" epitopes, and simultaneously produced IFN-γ, CD107(a/b), granzyme B, and perforin. In contrast, effector CD8(+) T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17-25 and gB183-191 "SYMP" epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong CD8(+) T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8(+) TEM cells in protection against herpes and should be considered in the development of an effective vaccine. A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells

  19. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    PubMed Central

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM

  20. Identification of Fungal T Cell Epitopes by Mass Spectrometry-Based Proteomics.

    PubMed

    Roschitzki, Bernd; LeibundGut-Landmann, Salomé

    2017-01-01

    CD4 + T cells play a key role in host defense against many fungal infections. T cells are also implicated in vaccine immunity to fungi. To date, only a small number of fungal antigens have been identified. Knowing the antigenic determinants of fungi-specific T cells greatly facilitates the detection, enumeration and characterizes the antifungal T cells and it constitutes an important step toward the design and development of vaccination strategies. This chapter describes a method of MHC-II ligand elution and mass spectrometric analysis to identify naturally processed and presented fungal peptide epitopes.

  1. Grass-specific CD4(+) T-cells exhibit varying degrees of cross-reactivity, implications for allergen-specific immunotherapy.

    PubMed

    Archila, L D; DeLong, J H; Wambre, E; James, E A; Robinson, D M; Kwok, W W

    2014-07-01

    Conceptually, allergic responses may involve cross-reactivity by antibodies or T-cells. While IgE cross-reactivity among grass-pollen allergens has been observed, cross-reactivity at the allergen-specific T-cell level has been less documented. Identification of the patterns of cross-reactivity may improve our understanding, allowing optimization of better immunotherapy strategies. We use Phleum pratense as model for the studying of cross-reactivity at the allergen-specific CD4(+) T cell level among DR04:01 restricted Pooideae grass-pollen T-cell epitopes. After in vitro culture of blood mono-nucleated cells from grass-pollen-allergic subjects with specific Pooideae antigenic epitopes, dual tetramer staining with APC-labelled DR04:01/Phleum pratense tetramers and PE-labelled DR04:01/Pooideae grass homolog tetramers was assessed to identify cross-reactivity among allergen-specific DR04:01-restricted T-cells in six subjects. Direct ex vivo staining enabled the comparison of frequency and phenotype of different Pooideae grass-pollen reactive T-cells. Intracellular cytokine staining (ICS) assays were also used to examine phenotypes of these T-cells. T-cells with various degrees of cross-reactive profiles could be detected. Poa p 1 97-116 , Lol p 1 221-240 , Lol p 5a 199-218 , and Poa p 5a 199-218 were identified as minimally cross-reactive T-cell epitopes that do not show cross-reactivity to Phl p 1 and Phl p 5a epitopes. Ex vivo tetramer staining assays demonstrated T-cells that recognized these minimally cross-reactive T-cell epitopes are present in Grass-pollen-allergic subjects. Our results suggest that not all Pooideae grass epitopes with sequence homology are cross-reactive. Non-cross-reactive T-cells with comparable frequency, phenotype and functionality to Phl p-specific T-cells suggest that a multiple allergen system should be considered for immunotherapy instead of a mono-allergen system. © 2014 John Wiley & Sons Ltd.

  2. Mycobacterium tuberculosis genome-wide screen exposes multiple CD8+ T cell epitopes

    PubMed Central

    Hammond, A S; Klein, M R; Corrah, T; Fox, A; Jaye, A; McAdam, K P; Brookes, R H

    2005-01-01

    Mounting evidence suggests human leucocyte antigen (HLA) class I-restricted CD8+ T cells play a role in protective immunity against tuberculosis yet relatively few epitopes specific for the causative organism, Mycobacterium tuberculosis, are reported. Here a total genome-wide screen of M. tuberculosis was used to identify putative HLA-B*3501 T cell epitopes. Of 479 predicted epitopes, 13 with the highest score were synthesized and used to restimulate lymphocytes from naturally exposed HLA-B*3501 healthy individuals in cultured and ex vivo enzyme-linked immunospot (ELISPOT) assays for interferon (IFN)-γ. All 13 peptides elicited a response that varied considerably between individuals. For three peptides CD8+ T cell lines were expanded and four of the 13 were recognized permissively through the HLA-B7 supertype family. Although further testing is required we show the genome-wide screen to be feasible for the identification of unknown mycobacterial antigens involved in immunity against natural infection. While the mechanisms of protective immunity against M. tuberculosis infection remain unclear, conventional class I-restricted CD8+ T cell responses appear to be widespread throughout the genome. PMID:15762882

  3. Epitope diversification driven by non-tumor epitope-specific Th1 and Th17 mediates potent antitumor reactivity.

    PubMed

    Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei

    2012-09-21

    MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Mismatch in epitope specificities between IFNγ inflamed and uninflamed conditions leads to escape from T lymphocyte killing in melanoma.

    PubMed

    Woods, Katherine; Knights, Ashley J; Anaka, Matthew; Schittenhelm, Ralf B; Purcell, Anthony W; Behren, Andreas; Cebon, Jonathan

    2016-01-01

    A current focus in cancer treatment is to broaden responses to immunotherapy. One reason these therapies may prove inadequate is that T lymphocytes fail to recognize the tumor due to differences in immunogenic epitopes presented by the cancer cells under inflammatory or non-inflammatory conditions. The antigen processing machinery of the cell, the proteasome, cleaves proteins into peptide epitopes for presentation on MHC complexes. Immunoproteasomes in inflammatory melanomas, and in antigen presenting cells of the immune system, are enzymatically different to standard proteasomes expressed by tumors with no inflammation. This corresponds to alterations in protein cleavage between proteasome subtypes, and a disparate repertoire of MHC-presented epitopes. We assessed steady state and IFNγ-induced immunoproteasome expression in melanoma cells. Using epitope specific T-lymphocyte clones, we studied processing and presentation of three NY-ESO-1 HLA-Cw3 restricted epitopes by melanoma cell lines. Our experimental model allowed comparison of the processing of three distinct epitopes from a single antigen presented on the same HLA complex. We further investigated processing of these epitopes by direct inhibition, or siRNA mediated knockdown, of the immunoproteasome catalytic subunit LMP7. Our data demonstrated a profound difference in the way in which immunogenic T-lymphocyte epitopes are presented by melanoma cells under IFNγ inflammatory versus non-inflammatory conditions. These alterations led to significant changes in the ability of T-lymphocytes to recognize and target melanoma cells. Our results illustrate a little-studied mechanism of immune escape by tumor cells which, with appropriate understanding and treatment, may be reversible. These data have implications for the design of cancer vaccines and adoptive T cell therapies.

  5. T cell epitope immunotherapy ameliorates allergic responses in a murine model of shrimp allergy.

    PubMed

    Wai, C Y Y; Leung, N Y H; Leung, P S C; Chu, K H

    2016-03-01

    Shellfish allergy is one of the most common food hypersensitivities worldwide but allergen-specific immunotherapy for shellfish allergy is not yet available. We believe that T cell peptide-based immunotherapy holds the potential for modulating allergic responses without IgE cross-linking. We sought to identify the immunodominant T cell epitopes of tropomyosin, the major shrimp allergen of Metapenaeus ensis (Met e 1), and to evaluate their therapeutic effects in a Balb/c mouse model of Met e 1 hypersensitivity. T cell epitopes of Met e 1 were first identified based on the proliferation and cytokine responses of splenocytes isolated from Met e 1-sensitized Balb/c mice upon stimulation by 18 synthetic peptides that span the full-length Met e 1. The immunodominant T cell peptides identified were then fed orally to Met e 1-sensitized Balb/c mice twice a week for four weeks. Allergic responses, serological antibody levels, intestinal histology and systemic and local cytokine profiles were compared between the treated and the untreated groups. Six major Met e 1 T cell epitopes were identified. Mice treated with the T cell epitope peptide mixture demonstrated an amelioration of systemic allergic symptoms and a significant reduction in Th2-associated antibody and cytokine responses. These benefits were accompanied by a shift to a balanced Th1/Th2 response, induction of IgG2a antibodies possessing in vitro and in vivo blocking activities and the induction of regulatory T cell responses. T cell epitope-based oral immunotherapy is effective in reducing allergic responses towards shrimp tropomyosin. This is a novel strategy for clinical management of shellfish allergy and is a model for mechanistic studies of oral immunotherapy. © 2015 John Wiley & Sons Ltd.

  6. Identification of helper T cell epitopes of dengue virus E-protein.

    PubMed

    Leclerc, C; Dériaud, E; Megret, F; Briand, J P; Van Regenmortel, M H; Deubel, V

    1993-05-01

    The T cell proliferative response to dengue 2 (Jamaica) E-glycoprotein (495 amino acids) was analyzed in vitro using either killed virus or E-protein fragments or synthetic peptides. Inactivated dengue virus stimulated dengue-specific lymph node (LN) CD4+T cell proliferation in BALB/c (H-2d), C3H (H-2k) and DBA/1 (H-2q) but not in C57BL/6 (H-2b) mice. Moreover, LN cells from dengue-virus primed BALB/c mice proliferated in vitro in response to three purified non-overlapping E-protein fragments expressed in E. coli as polypeptides fused to trpE (f22-205, f267-354, f366-424). To further determine T cell epitopes in the E-protein, synthetic peptides were selected using prediction algorithms for T cell epitopes. Highest proliferative responses were obtained after in vitro exposure of virus-primed LN cells to peptides p135-157, p270-298, p295-307 and p337-359. Peptide p59-78 was able to induce specific B and T cell responses in peptide-primed mice of H-2d, H-2q and H-2k haplotypes. Two peptides p59-78 corresponding to two dengue (Jamaica and Sri Lanka) isolates and differing only at position 71 cross-reacted at the B but not at the T cell level in H-2b mice. This analysis of murine T helper cell response to dengue E-protein may be of use in dengue subunit vaccine design.

  7. Expression mapping using a retroviral vector for CD8+ T cell epitopes: definition of a Mycobacterium tuberculosis peptide presented by H2-Dd.

    PubMed

    Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio

    2005-03-01

    Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.

  8. Superior Control of HIV-1 Replication by CD8+ T Cells Targeting Conserved Epitopes: Implications for HIV Vaccine Design

    PubMed Central

    Kunwar, Pratima; Hawkins, Natalie; Dinges, Warren L.; Liu, Yi; Gabriel, Erin E.; Swan, David A.; Stevens, Claire E.; Maenza, Janine; Collier, Ann C.; Mullins, James I.; Hertz, Tomer; Yu, Xuesong; Horton, Helen

    2013-01-01

    A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that

  9. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Limited Variation in BK Virus T-Cell Epitopes Revealed by Next-Generation Sequencing

    PubMed Central

    Sahoo, Malaya K.; Tan, Susanna K.; Chen, Sharon F.; Kapusinszky, Beatrix; Concepcion, Katherine R.; Kjelson, Lynn; Mallempati, Kalyan; Farina, Heidi M.; Fernández-Viña, Marcelo; Tyan, Dolly; Grimm, Paul C.; Anderson, Matthew W.; Concepcion, Waldo

    2015-01-01

    BK virus (BKV) infection causing end-organ disease remains a formidable challenge to the hematopoietic cell transplant (HCT) and kidney transplant fields. As BKV-specific treatments are limited, immunologic-based therapies may be a promising and novel therapeutic option for transplant recipients with persistent BKV infection. Here, we describe a whole-genome, deep-sequencing methodology and bioinformatics pipeline that identify BKV variants across the genome and at BKV-specific HLA-A2-, HLA-B0702-, and HLA-B08-restricted CD8 T-cell epitopes. BKV whole genomes were amplified using long-range PCR with four inverse primer sets, and fragmentation libraries were sequenced on the Ion Torrent Personal Genome Machine (PGM). An error model and variant-calling algorithm were developed to accurately identify rare variants. A total of 65 samples from 18 pediatric HCT and kidney recipients with quantifiable BKV DNAemia underwent whole-genome sequencing. Limited genetic variation was observed. The median number of amino acid variants identified per sample was 8 (range, 2 to 37; interquartile range, 10), with the majority of variants (77%) detected at a frequency of <5%. When normalized for length, there was no statistical difference in the median number of variants across all genes. Similarly, the predominant virus population within samples harbored T-cell epitopes similar to the reference BKV strain that was matched for the BKV genotype. Despite the conservation of epitopes, low-level variants in T-cell epitopes were detected in 77.7% (14/18) of patients. Understanding epitope variation across the whole genome provides insight into the virus-immune interface and may help guide the development of protocols for novel immunologic-based therapies. PMID:26202116

  11. Definition and characterization of novel HLA-*A02-restricted CD8+ T cell epitopes derived from JCV polyomavirus with clinical relevance

    PubMed Central

    Mani, Jiju; Wang, Lei; Hückelhoven, Angela G.; Schmitt, Anita; Gedvilaite, Alma; Jin, Nan; Kleist, Christian; Ho, Anthony D; Schmitt, Michael

    2017-01-01

    Human JC and BK polyomaviruses (JCV/BKV) can establish a latent infection without any clinical symptoms in healthy individuals. In immunocompromised hosts infection or reactivation of JCV and BKV can cause lethal progressive multifocal leukoencephalopathy (PML) and hemorrhagic cystitis, respectively. Vaccination with JCV/BKV derived antigen epitope peptides or adoptive transfer of virus-specific T cells would constitute an elegant approach to clear virus-infected cells. Furthermore, donor leukocyte infusion (DLI) is another therapeutic approach which could be helpful for patients with JCV/BKV infections. So far, only few immunodominant T cell epitopes of JCV and BKV have been described and therefore is a fervent need for the definition of novel epitopes. In this study, we identified novel T cell epitopes by screening libraries of overlapping peptides derived from the major capsid protein VP1 of JCV. Virus like particles (VLPs) were used to confirm naturally processing. Two human leucocyte antigen (HLA)-A*02-restricted epitopes were characterized by fine mapping with overlapping peptides and nonamer peptide sequences were identified. Cytokine release profile of the epitope-specific T cells was analyzed by enzyme-linked immunospot (ELISPOT) assays and by flow cytometry. We demonstrated that T cell responses were of polyfunctional nature with the potential of epitope-specific killing and cross-reactivity between JCV and BKV. These novel epitopes might constitute a new potential tool to design effective diagnostic and therapeutic approaches against both polyomaviruses. PMID:27705933

  12. Definition and characterization of novel HLA-*A02-restricted CD8+ T cell epitopes derived from JCV polyomavirus with clinical relevance.

    PubMed

    Mani, Jiju; Wang, Lei; Hückelhoven, Angela G; Schmitt, Anita; Gedvilaite, Alma; Jin, Nan; Kleist, Christian; Ho, Anthony D; Schmitt, Michael

    2017-01-10

    Human JC and BK polyomaviruses (JCV/BKV) can establish a latent infection without any clinical symptoms in healthy individuals. In immunocompromised hosts infection or reactivation of JCV and BKV can cause lethal progressive multifocal leukoencephalopathy (PML) and hemorrhagic cystitis, respectively. Vaccination with JCV/BKV derived antigen epitope peptides or adoptive transfer of virus-specific T cells would constitute an elegant approach to clear virus-infected cells. Furthermore, donor leukocyte infusion (DLI) is another therapeutic approach which could be helpful for patients with JCV/BKV infections.So far, only few immunodominant T cell epitopes of JCV and BKV have been described and therefore is a fervent need for the definition of novel epitopes. In this study, we identified novel T cell epitopes by screening libraries of overlapping peptides derived from the major capsid protein VP1 of JCV. Virus like particles (VLPs) were used to confirm naturally processing. Two human leucocyte antigen (HLA)-A*02-restricted epitopes were characterized by fine mapping with overlapping peptides and nonamer peptide sequences were identified. Cytokine release profile of the epitope-specific T cells was analyzed by enzyme-linked immunospot (ELISPOT) assays and by flow cytometry. We demonstrated that T cell responses were of polyfunctional nature with the potential of epitope-specific killing and cross-reactivity between JCV and BKV. These novel epitopes might constitute a new potential tool to design effective diagnostic and therapeutic approaches against both polyomaviruses.

  13. High Throughput T Epitope Mapping and Vaccine Development

    PubMed Central

    Li Pira, Giuseppina; Ivaldi, Federico; Moretti, Paolo; Manca, Fabrizio

    2010-01-01

    Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th) and by cytolytic T lymphocytes (CTL) is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP) approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost. PMID:20617148

  14. Myelin-reactive “type B” T cells and T cells specific for low-affinity MHC-binding myelin peptides escape tolerance in HLA-DR transgenic mice

    PubMed Central

    Kawamura, Kazuyuki; McLaughlin, Katherine A.; Weissert, Robert; Forsthuber, Thomas G.

    2009-01-01

    Genes of the major histocompatibility complex (MHC) show the strongest genetic association with multiple sclerosis (MS) but the underlying mechanisms have remained unresolved. Here, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401 contribute to autoimmune central nervous system (CNS) demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon backcrossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific “type B” T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific “type B” T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and “type B” T cells can escape the induction of T cell tolerance and may promote MS. PMID:18713991

  15. T cell epitope-specific defects in the immune response to cat allergen in patients with atopic dermatitis.

    PubMed

    Carneiro, Raquel; Reefer, Amanda; Wilson, Barbara; Hammer, Juergen; Platts-Mills, Thomas; Custis, Natalie; Woodfolk, Judith

    2004-04-01

    Atopic dermatitis (AD) is often associated with high titer IgE antibodies (ab) to allergens, and IL-10-mediated regulation of IFN-gamma has been proposed to contribute to this IgE ab production. However, the relevance of IL-10 and IFN-gamma to IgE associated with AD has not been examined in the context of an allergen-specific system. Analysis of PBMC responses in vitro showed deficient T cell proliferation to overlapping IL-10- (peptide (P) 2:1) and IFN-gamma- (P2:2) inducing chain 2 major epitopes of cat allergen (Fel d 1) in cultures from sensitized AD patients (mean IgE to cat=20.9 IU/ml). Diminished IFN-gamma induction by Fel d 1 and P2:2, along with elevated peptide-induced IL-10 (except for P2:1) was observed in PBMC cultures from AD subjects compared with non-AD (sensitized and non-sensitized) subjects. Neither T cell proliferation nor IFN-gamma production to chain 2 epitopes could be restored by anti-IL-10 mAb in cultures from sensitized AD subjects. Moreover, allergen avoidance was associated with a paradoxical decrease in both IL-10 and IFN-gamma in peptide-stimulated PBMC from these subjects. Control of IFN-gamma production to chain 2 epitopes by IL-10 may be relevant to sensitization status. Development of high titer IgE ab in AD could reflect a failure of this mechanism.

  16. The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference.

    PubMed

    Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern

    2016-02-15

    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Distinct HIV-1 escape patterns selected by cytotoxic T cells with identical epitope specificity.

    PubMed

    Yagita, Yuichi; Kuse, Nozomi; Kuroki, Kimiko; Gatanaga, Hiroyuki; Carlson, Jonathan M; Chikata, Takayuki; Brumme, Zabrina L; Murakoshi, Hayato; Akahoshi, Tomohiro; Pfeifer, Nico; Mallal, Simon; John, Mina; Ose, Toyoyuki; Matsubara, Haruki; Kanda, Ryo; Fukunaga, Yuko; Honda, Kazutaka; Kawashima, Yuka; Ariumi, Yasuo; Oka, Shinichi; Maenaka, Katsumi; Takiguchi, Masafumi

    2013-02-01

    Pol283-8-specific, HLA-B*51:01-restricted, cytotoxic T cells (CTLs) play a critical role in the long-term control of HIV-1 infection. However, these CTLs select for the reverse transcriptase (RT) I135X escape mutation, which may be accumulating in circulating HIV-1 sequences. We investigated the selection of the I135X mutation by CTLs specific for the same epitope but restricted by HLA-B*52:01. We found that Pol283-8-specific, HLA-B*52:01-restricted CTLs were elicited predominantly in chronically HIV-1-infected individuals. These CTLs had a strong ability to suppress the replication of wild-type HIV-1, though this ability was weaker than that of HLA-B*51:01-restricted CTLs. The crystal structure of the HLA-B*52:01-Pol283-8 peptide complex provided clear evidence that HLA-B*52:01 presents the peptide similarly to HLA-B*51:01, ensuring the cross-presentation of this epitope by both alleles. Population level analyses revealed a strong association of HLA-B*51:01 with the I135T mutant and a relatively weaker association of HLA-B*52:01 with several I135X mutants in both Japanese and predominantly Caucasian cohorts. An in vitro viral suppression assay revealed that the HLA-B*52:01-restricted CTLs failed to suppress the replication of the I135X mutant viruses, indicating the selection of these mutants by the CTLs. These results suggest that the different pattern of I135X mutant selection may have resulted from the difference between these two CTLs in the ability to suppress HIV-1 replication.

  18. Distinct HIV-1 Escape Patterns Selected by Cytotoxic T Cells with Identical Epitope Specificity

    PubMed Central

    Yagita, Yuichi; Kuse, Nozomi; Kuroki, Kimiko; Gatanaga, Hiroyuki; Carlson, Jonathan M.; Chikata, Takayuki; Brumme, Zabrina L.; Murakoshi, Hayato; Akahoshi, Tomohiro; Pfeifer, Nico; Mallal, Simon; John, Mina; Ose, Toyoyuki; Matsubara, Haruki; Kanda, Ryo; Fukunaga, Yuko; Honda, Kazutaka; Kawashima, Yuka; Ariumi, Yasuo; Oka, Shinichi; Maenaka, Katsumi

    2013-01-01

    Pol283-8-specific, HLA-B*51:01-restricted, cytotoxic T cells (CTLs) play a critical role in the long-term control of HIV-1 infection. However, these CTLs select for the reverse transcriptase (RT) I135X escape mutation, which may be accumulating in circulating HIV-1 sequences. We investigated the selection of the I135X mutation by CTLs specific for the same epitope but restricted by HLA-B*52:01. We found that Pol283-8-specific, HLA-B*52:01-restricted CTLs were elicited predominantly in chronically HIV-1-infected individuals. These CTLs had a strong ability to suppress the replication of wild-type HIV-1, though this ability was weaker than that of HLA-B*51:01-restricted CTLs. The crystal structure of the HLA-B*52:01-Pol283-8 peptide complex provided clear evidence that HLA-B*52:01 presents the peptide similarly to HLA-B*51:01, ensuring the cross-presentation of this epitope by both alleles. Population level analyses revealed a strong association of HLA-B*51:01 with the I135T mutant and a relatively weaker association of HLA-B*52:01 with several I135X mutants in both Japanese and predominantly Caucasian cohorts. An in vitro viral suppression assay revealed that the HLA-B*52:01-restricted CTLs failed to suppress the replication of the I135X mutant viruses, indicating the selection of these mutants by the CTLs. These results suggest that the different pattern of I135X mutant selection may have resulted from the difference between these two CTLs in the ability to suppress HIV-1 replication. PMID:23236061

  19. Identification of HLA-A2 restricted T-cell epitopes within the conserved region of the immunoglobulin G heavy-chain in patients with multiple myeloma.

    PubMed

    Belle, Sebastian; Han, Fang; Condomines, Maud; Christensen, Olaf; Witzens-Harig, Mathias; Kasper, Bernd; Kleist, Christian; Terness, Peter; Moos, Marion; Cremer, Friedrich; Hose, Dirk; Ho, Anthony D; Goldschmidt, Hartmut; Klein, Bernard; Hundemer, Michael

    2008-07-01

    The aim of this study is the identification of HLA-A2 restricted T-cell epitopes in the conserved region of the immunoglobulin-G-heavy-chain (IgGH) that can be used for immunotherapy in multiple myeloma (MM) patients. After the IgGH gene sequence was scanned for HLA-A2 restricted T-cell epitopes with a high binding affinity to the MHC-I-complex, promising nona-peptides were synthesized. Peptide specific CD8+ T-cells were generated from peripheral blood mononuclear cells (PBMC) of healthy donors (HD) and patients with MM using peptide pulsed dendritic cells (DC) in vitro. The activation and cytotoxicity of CD8+ T-cells was analyzed by IFN-alpha ELISpot-assay and 51Chromium release-assay. HLA-A2 restriction was proven by blocking T-cell activation with anti-HLA-A2 antibodies. Two HLA-A2 restricted T-cell epitopes-TLVTVSSAS derived from the IgGH-framework-region 4 (FR4) and LMISRTPEV from the constant region (CR)-induced expansion of specific CD8+ T-cells from PBMC in two of three (TLVTVSSAS) and one of three (LMISRTPEV) HD respectively. Specific T-cells were induced from PBMC in two of six (TLVTVSSAS) and eight of 19 (LMISRTPEV) patients with MM. Specific CD8+ T-cells also lysed peptide-pulsed target cells in 51Chromium release-assay. LMISRTPEV specific CD8+ T-cells from MM patients lysed specifically the HLA-A2+ IgG myeloma cell line XG-6. We identified two HLA-A2 restricted T-cell epitopes-TLVTVSSAS and LMISRTPEV--which can yield an expansion of CD8+ T-cells with the ability to kill peptide-loaded target cells and HLA-A2+ IgG+ myeloma cells. We conclude that TLVTVSSAS and LMISRTPEV could be T-cell epitopes for immunotherapy in MM patients.

  20. Phase I Trial of a CD8+ T-Cell Peptide Epitope-Based Vaccine for Infectious Mononucleosis▿

    PubMed Central

    Elliott, Suzanne L.; Suhrbier, Andreas; Miles, John J.; Lawrence, Greg; Pye, Stephanie J.; Le, Thuy T.; Rosenstengel, Andrew; Nguyen, Tam; Allworth, Anthony; Burrows, Scott R.; Cox, John; Pye, David; Moss, Denis J.; Bharadwaj, Mandvi

    2008-01-01

    A single blind, randomized, placebo-controlled, single-center phase I clinical trial of a CD8+ T-cell peptide epitope vaccine against infectious mononucleosis was conducted with 14 HLA B*0801-positive, Epstein-Barr virus (EBV)-seronegative adults. The vaccine comprised the HLA B*0801-restricted peptide epitope FLRGRAYGL and tetanus toxoid formulated in a water-in-oil adjuvant, Montanide ISA 720. FLRGRAYGL-specific responses were detected in 8/9 peptide-vaccine recipients and 0/4 placebo vaccine recipients by gamma interferon enzyme-linked immunospot assay and/or limiting-dilution analysis. The same T-cell receptor Vβ CDR3 sequence that is found in FLRGRAYGL-specific T cells from most EBV-seropositive individuals could also be detected in the peripheral blood of vaccine recipients. The vaccine was well tolerated, with the main side effect being mild to moderate injection site reactions. After a 2- to 12-year follow-up, 1/2 placebo vaccinees who acquired EBV developed infectious mononucleosis, whereas 4/4 vaccinees who acquired EBV after completing peptide vaccination seroconverted asymptomatically. Single-epitope vaccination did not predispose individuals to disease, nor did it significantly influence development of a normal repertoire of EBV-specific CD8+ T-cell responses following seroconversion. PMID:18032491

  1. Automatic Generation of Validated Specific Epitope Sets.

    PubMed

    Carrasco Pro, Sebastian; Sidney, John; Paul, Sinu; Lindestam Arlehamn, Cecilia; Weiskopf, Daniela; Peters, Bjoern; Sette, Alessandro

    2015-01-01

    Accurate measurement of B and T cell responses is a valuable tool to study autoimmunity, allergies, immunity to pathogens, and host-pathogen interactions and assist in the design and evaluation of T cell vaccines and immunotherapies. In this context, it is desirable to elucidate a method to select validated reference sets of epitopes to allow detection of T and B cells. However, the ever-growing information contained in the Immune Epitope Database (IEDB) and the differences in quality and subjects studied between epitope assays make this task complicated. In this study, we develop a novel method to automatically select reference epitope sets according to a categorization system employed by the IEDB. From the sets generated, three epitope sets (EBV, mycobacteria and dengue) were experimentally validated by detection of T cell reactivity ex vivo from human donors. Furthermore, a web application that will potentially be implemented in the IEDB was created to allow users the capacity to generate customized epitope sets.

  2. Specificities of Human CD4+ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction

    PubMed Central

    Schwaiger, Julia; Aberle, Judith H.; Stiasny, Karin; Knapp, Bernhard; Schreiner, Wolfgang; Fae, Ingrid; Fischer, Gottfried; Scheinost, Ondrej; Chmelik, Vaclav

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4+ T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4+ T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4+ T cell epitopes. IMPORTANCE Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and

  3. An MSI Tumor Specific Frameshift Mutation in a Coding Microsatellite of MSH3 Encodes for HLA-A0201-Restricted CD8+ Cytotoxic T Cell Epitopes

    PubMed Central

    Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael

    2011-01-01

    Background Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI+ colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. Methodology/Principal Findings FSP-specific CD8+ T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI+ colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. Conclusions We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were 386-FLLALWECSL (FSP18) and 387-LLALWECSL (FSP19) as well as 403-IVSRTLLLV (FSP23) and 402-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI+-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or –even more important– preventive purposes. PMID:22110587

  4. An MSI tumor specific frameshift mutation in a coding microsatellite of MSH3 encodes for HLA-A0201-restricted CD8+ cytotoxic T cell epitopes.

    PubMed

    Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael

    2011-01-01

    Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI(+) colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. FSP-specific CD8(+) T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI(+) colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were (386)-FLLALWECSL (FSP18) and (387)-LLALWECSL (FSP19) as well as (403)-IVSRTLLLV (FSP23) and (402)-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI(+)-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or--even more important--preventive purposes.

  5. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Robinson, H.; Wang, R.

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  6. Definition of natural T cell antigens with mimicry epitopes obtained from dedicated synthetic peptide libraries.

    PubMed

    Hiemstra, H S; van Veelen, P A; Schloot, N C; Geluk, A; van Meijgaarden, K E; Willemen, S J; Leunissen, J A; Benckhuijsen, W E; Amons, R; de Vries, R R; Roep, B O; Ottenhoff, T H; Drijfhout, J W

    1998-10-15

    Progress has recently been made in the use of synthetic peptide libraries for the identification of T cell-stimulating ligands. T cell epitopes identified from synthetic libraries are mimics of natural epitopes. Here we show how the mimicry epitopes obtained from synthetic peptide libraries enable unambiguous identification of natural T cell Ags. Synthetic peptide libraries were screened with Mycobacterium tuberculosis-reactive and -autoreactive T cell clones. In two cases, database homology searches with mimicry epitopes isolated from a dedicated synthetic peptide library allowed immediate identification of the natural antigenic protein. In two other cases, an amino acid pattern that reflected the epitope requirements of the T cell was determined by substitution and omission mixture analysis. Subsequently, the natural Ag was identified from databases using this refined pattern. This approach opens new perspectives for rapid and reliable Ag definition, representing a feasible alternative to the biochemical and genetic approaches described thus far.

  7. Chemical Control over T-Cell Activation in Vivo Using Deprotection of trans-Cyclooctene-Modified Epitopes.

    PubMed

    van der Gracht, Anouk M F; de Geus, Mark A R; Camps, Marcel G M; Ruckwardt, Tracy J; Sarris, Alexi J C; Bremmers, Jessica; Maurits, Elmer; Pawlak, Joanna B; Posthoorn, Michelle M; Bonger, Kimberly M; Filippov, Dmitri V; Overkleeft, Herman S; Robillard, Marc S; Ossendorp, Ferry; van Kasteren, Sander I

    2018-06-15

    Activation of a cytotoxic T-cell is a complex multistep process, and tools to study the molecular events and their dynamics that result in T-cell activation in situ and in vivo are scarce. Here, we report the design and use of conditional epitopes for time-controlled T-cell activation in vivo. We show that trans-cyclooctene-protected SIINFEKL (with the lysine amine masked) is unable to elicit the T-cell response characteristic for the free SIINFEKL epitope. Epitope uncaging by means of an inverse-electron demand Diels-Alder (IEDDA) event restored T-cell activation and provided temporal control of T-cell proliferation in vivo.

  8. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications

    PubMed Central

    Testa, James S; Philip, Ramila

    2013-01-01

    Prophylactic and therapeutic vaccines against viral infections have advanced in recent years from attenuated live vaccines to subunit-based vaccines. An ideal prophylactic vaccine should mimic the natural immunity induced by an infection, in that it should generate long-lasting adaptive immunity. To complement subunit vaccines, which primarily target an antibody response, different methodologies are being investigated to develop vaccines capable of driving cellular immunity. T-cell epitope discovery is central to this concept. In this review, the significance of T-cell epitope-based vaccines for prophylactic and therapeutic applications is discussed. Additionally, methodologies for the discovery of T-cell epitopes, as well as recent developments in the clinical testing of these vaccines for various viral infections, are explained. PMID:23630544

  9. Antigen-Specific CD8+ T Cells Fail To Respond to Shigella flexneri ▿

    PubMed Central

    Jehl, Stephanie P.; Doling, Amy M.; Giddings, Kara S.; Phalipon, Armelle; Sansonetti, Philippe J.; Goldberg, Marcia B.; Starnbach, Michael N.

    2011-01-01

    CD8+ T lymphocytes often play a primary role in adaptive immunity to cytosolic microbial pathogens. Surprisingly, CD8+ T cells are not required for protective immunity to the enteric pathogen Shigella flexneri, despite the ability of Shigella to actively secrete proteins into the host cytoplasm, a location from which antigenic peptides are processed for presentation to CD8+ T cells. To determine why CD8+ T cells fail to play a role in adaptive immunity to S. flexneri, we investigated whether antigen-specific CD8+ T cells are primed during infection but are unable to confer protection or, alternatively, whether T cells fail to be primed. To test whether Shigella is capable of stimulating an antigen-specific CD8+ T-cell response, we created an S. flexneri strain that constitutively secretes a viral CD8+ T-cell epitope via the Shigella type III secretion system and characterized the CD8+ T-cell response to this strain both in mice and in cultured cells. Surprisingly, no T cells specific for the viral epitope were stimulated in mice infected with this strain, and cells infected with the recombinant strain were not targeted by epitope-specific T cells. Additionally, we found that the usually robust T-cell response to antigens artificially introduced into the cytoplasm of cultured cells was significantly reduced when the antigen-presenting cell was infected with Shigella. Collectively, these results suggest that antigen-specific CD8+ T cells are not primed during S. flexneri infection and, as a result, afford little protection to the host during primary or subsequent infection. PMID:21357720

  10. T-cell epitope analysis using subtracted expression libraries (TEASEL): application to a 38-kDA autoantigen recognized by T cells from an insulin-dependent diabetic patient.

    PubMed Central

    Neophytou, P I; Roep, B O; Arden, S D; Muir, E M; Duinkerken, G; Kallan, A; de Vries, R R; Hutton, J C

    1996-01-01

    Studies on circulating T cells and antibodies in newly diagnosed type 1 diabetic patients and rodent models of autoimmune diabetes suggest that beta-cell membrane proteins of 38 kDa may be important molecular targets of autoimmune attack. Biochemical approaches to the isolation and identification of the 38-kDa autoantigen have been hampered by the restricted availability of islet tissue and the low abundance of the protein. A procedure of epitope analysis for CD4+ T cells using subtracted expression libraries (TEASEL) was developed and used to clone a 70-amino acid pancreatic beta-cell peptide incorporating an epitope recognized by a 38-kDa-reactive CD4+ T-cell clone (1C6) isolated from a human diabetic patient. The minimal epitope was mapped to a 10-amino acid synthetic peptide containing a DR1 consensus binding motif. Data base searches did not reveal the identity of the protein, though a weak homology to the bacterial superantigens SEA (Streptococcus pyogenes exotoxin A) and SEB (Staphylococcus aureus enterotoxin B) (23% identity) was evident. The TEASEL procedure might be used to identify epitopes of other autoantigens recognized by CD4+ T cells in diabetes as well as be more generally applicable to the study low-abundance autoantigens in other tissue-specific autoimmune diseases. PMID:8700877

  11. Definition of a pool of epitopes that recapitulates the T cell reactivity against major house dust mite allergens.

    PubMed

    Hinz, D; Oseroff, C; Pham, J; Sidney, J; Peters, B; Sette, A

    2015-10-01

    Allergens from house dust mites (HDM) are a common cause of asthma. Der p and Der f from Dermatophagoides sp. are strong immunogens in humans. Allergen extracts are used to study T helper (Th2) cell responses to HDM, which are implicated in the development and regulation of allergic disease. To define an epitope mixture that recapitulates, and might substitute for, HDM extract in terms of detecting and characterizing Th2 cell responses. Peripheral blood mononuclear cells (PBMC) from 52 HDM allergic and 10 non-allergic individuals were stimulated with HDM extracts and assayed with a set of 178 peptides spanning mite allergens group Der p 1, 2, 23 and Der f group 1 and 2 allergens. A pool of the most dominant T cell epitopes identified in the present study and from published literature was assembled and tested for ex vivo T cell responses. Correlation with HDM-specific IgE titres was examined. Patterns of T cell reactivity to Der p and Der f - derived peptides revealed a large number of epitopes. Clear patterns of immunodominance were apparent, with HDM allergen group 1 and 2 dominant over group 23. Furthermore, within a given antigen, 6-11 epitopes accounted for the vast majority of responses. Based on these results and published data, a comprehensive dust mite pool (DMP) of epitopes was designed and found to allow detection of ex vivo T cell responses. DMP ex vivo reactivity correlated with HDM-specific IgE titres and was similar to that detected with commonly used HDM extracts. Ex vivo DMP stimulation was associated with a predominant Th2 response in allergic donors, and minor reactivity of T cells producing IFNγ, IL17 and IL10. A detailed map of Der p and Der f antigens defined a pool of epitopes that can be used to detect ex vivo HDM responses. © 2015 John Wiley & Sons Ltd.

  12. T-cell epitope-containing hypoallergenic β-lactoglobulin for oral immunotherapy in milk allergy.

    PubMed

    Ueno, Hiroshi M; Kato, Teruhiko; Ohnishi, Hidenori; Kawamoto, Norio; Kato, Zenichiro; Kaneko, Hideo; Kondo, Naomi; Nakano, Taku

    2016-12-01

    Optimally hydrolyzed β-Lactoglobulin (βLg) is a promising milk oral immunotherapy (OIT) candidate with respect to showing reduced B-cell reactivity but retaining the T-cell epitope. To demonstrate that an edible hypoallergenic βLg hydrolysate containing the T-cell epitope is suitable for OIT. We tested how chymotrypsin affected the retention of the T-cell epitope of βLg when preparing βLg hydrolysates using food-grade trypsin. We investigated the effect of chymotrypsin activity on the formation of the T-cell epitope-containing peptide of βLg (βLg 102-124 ) and prepared an edible βLg hydrolysate containing βLg 102-124 using screened food-grade trypsins. B-cell reactivity was determined using immunoassays in which ELISA was performed with anti-βLg rabbit IgG and Western blotting was performed with a milk-specific IgE antiserum. In βLg hydrolysis performed by varying the activity of trypsin and chymotrypsin, chymotrypsin activity inhibited the formation of βLg 102-124 with an increase in hydrolysis time in a dose-dependent manner. βLg 102-124 was generated by two of five food-grade trypsins used at a ratio of 1:50 (w/w, enzyme/substrate) for 20 h at 40°C. The edible βLg hydrolysate retained βLg 102-124 and showed a reduction in molecular weight distribution and antigenicity against IgG and IgE. Chymotrypsin activity inhibited the formation of βLg 102-124 in the trypsin hydrolysate of βLg. This βLg trypsin hydrolysate is a novel candidate for peptide-based OIT in cow's milk allergy for safely inducing desensitization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. 21-Hydroxylase epitopes are targeted by CD8 T cells in autoimmune Addison's disease.

    PubMed

    Rottembourg, Diane; Deal, Cheri; Lambert, Marion; Mallone, Roberto; Carel, Jean-Claude; Lacroix, André; Caillat-Zucman, Sophie; le Deist, Françoise

    2010-12-01

    In autoimmune adrenal deficiency, autoantibodies target the 21-hydroxylase (21OH) protein. However, it is presumed that autoreactive T cells, rather than antibodies, are the main effectors of adrenal gland destruction, but their identification is still lacking. We performed a T-cell epitope mapping study using 49 overlapping 20mer peptides covering the 21OH sequence in patients with isolated Addison's disease, Autoimmune Polyendocrine Syndrome 1 and 2. IFNγ ELISPOT responses against these peptides were stronger, broader and more prevalent among patients than in controls, whatever the disease presentation. Five peptides elicited T-cell responses in patients only (68% sensitivity, 100% specificity). Blocking experiments identified IFNγ-producing cells as CD8 T lymphocytes, with two peptides frequently recognized in HLA-B8+ patients and a third one targeted in HLA-B35+ subjects. In particular, the 21OH(431-450) peptide was highly immunodominant, as it was recognized in more than 30% of patients, all carrying the HLA-B8 restriction element. This 21OH(431-450) region contained an EPLARLEL octamer (21OH(431-438)) predicted to bind to HLA-B8 with high affinity. Indeed, circulating EPLARLEL-specific CD8 T cells were detected at significant frequencies in HLA-B8+ patients but not in controls by HLA tetramer staining. This report enlightens disease-specific T-cell biomarkers and epitopes targeted in autoimmune adrenal deficiency. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. ‘Multi-Epitope-Targeted’ Immune-Specific Therapy for a Multiple Sclerosis-Like Disease via Engineered Multi-Epitope Protein Is Superior to Peptides

    PubMed Central

    Zilkha-Falb, Rina; Yosef-Hemo, Reut; Cohen, Lydia; Ben-Nun, Avraham

    2011-01-01

    Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope

  15. In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model

    PubMed Central

    Gutiérrez, Andres H.; Loving, Crystal; Moise, Leonard; Terry, Frances E.; Brockmeier, Susan L.; Hughes, Holly R.; Martin, William D.; De Groot, Anne S.

    2016-01-01

    Swine influenza is a highly contagious respiratory viral infection in pigs that is responsible for significant financial losses to pig farmers annually. Current measures to protect herds from infection include: inactivated whole-virus vaccines, subunit vaccines, and alpha replicon-based vaccines. As is true for influenza vaccines for humans, these strategies do not provide broad protection against the diverse strains of influenza A virus (IAV) currently circulating in U.S. swine. Improved approaches to developing swine influenza vaccines are needed. Here, we used immunoinformatics tools to identify class I and II T cell epitopes highly conserved in seven representative strains of IAV in U.S. swine and predicted to bind to Swine Leukocyte Antigen (SLA) alleles prevalent in commercial swine. Epitope-specific interferon-gamma (IFNγ) recall responses to pooled peptides and whole virus were detected in pigs immunized with multi-epitope plasmid DNA vaccines encoding strings of class I and II putative epitopes. In a retrospective analysis of the IFNγ responses to individual peptides compared to predictions specific to the SLA alleles of cohort pigs, we evaluated the predictive performance of PigMatrix and demonstrated its ability to distinguish non-immunogenic from immunogenic peptides and to identify promiscuous class II epitopes. Overall, this study confirms the capacity of PigMatrix to predict immunogenic T cell epitopes and demonstrate its potential for use in the design of epitope-driven vaccines for swine. Additional studies that match the SLA haplotype of animals with the study epitopes will be required to evaluate the degree of immune protection conferred by epitope-driven DNA vaccines in pigs. PMID:27411061

  16. Identification of B- and T-cell epitopes from glycoprotein B of herpes simplex virus 2 and evaluation of their immunogenicity and protection efficacy.

    PubMed

    Liu, Kun; Jiang, Deyu; Zhang, Liangyan; Yao, Zhidong; Chen, Zhongwei; Yu, Sanke; Wang, Xiliang

    2012-04-19

    Herpes simplex virus (HSV) infection is a major health concern worldwide. Evidence obtained from animals and humans indicates that B- and T-cell responses contribute to protective immunity against herpes virus infection. Glycoprotein B is a transmembrane envelope component of HSV-1 and HSV-2, which plays an important role in virion morphogenesis and penetration into host cells, and can induce neutralizing antibodies and protective T-cell response when it is used to immunize humans and animals. However, little is known about gB epitopes that are involved in B- and T-cell activities in vitro and in vivo. Thus, the HSV-2 gB sequence was screened using B- and T-cell epitope prediction systems, and the B-cell regions and the HLA-A*0201-restricted epitopes were identified. These B-cell epitopes elicited high IgG antibody titers in Balb/C mice, with a predominantly IgG1 subclass distribution, which indicated a Th2 bias. Specific IgGs induced by these two epitopes were evaluated as the neutralizing antibodies for virus neutralization. The predicted T-cell epitopes stabilized the HLA-A*0201 molecules on T(2) cells, and stimulate interferon-γ-secreting and cytotoxic CD8(+) T cells. Immunization with the predicted peptides reduced virus shedding and protected against lethal viral challenge in mice. The functional epitopes described herein, both B- and T-cell epitopes, are potentially implicated in vaccine development. Copyright © 2012. Published by Elsevier Ltd.

  17. Using a combined computational-experimental approach to predict antibody-specific B cell epitopes.

    PubMed

    Sela-Culang, Inbal; Benhnia, Mohammed Rafii-El-Idrissi; Matho, Michael H; Kaever, Thomas; Maybeno, Matt; Schlossman, Andrew; Nimrod, Guy; Li, Sheng; Xiang, Yan; Zajonc, Dirk; Crotty, Shane; Ofran, Yanay; Peters, Bjoern

    2014-04-08

    Antibody epitope mapping is crucial for understanding B cell-mediated immunity and required for characterizing therapeutic antibodies. In contrast to T cell epitope mapping, no computational tools are in widespread use for prediction of B cell epitopes. Here, we show that, utilizing the sequence of an antibody, it is possible to identify discontinuous epitopes on its cognate antigen. The predictions are based on residue-pairing preferences and other interface characteristics. We combined these antibody-specific predictions with results of cross-blocking experiments that identify groups of antibodies with overlapping epitopes to improve the predictions. We validate the high performance of this approach by mapping the epitopes of a set of antibodies against the previously uncharacterized D8 antigen, using complementary techniques to reduce method-specific biases (X-ray crystallography, peptide ELISA, deuterium exchange, and site-directed mutagenesis). These results suggest that antibody-specific computational predictions and simple cross-blocking experiments allow for accurate prediction of residues in conformational B cell epitopes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Honda; R Wang; W Kong

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  19. Immune Control of Burkholderia pseudomallei––Common, High-Frequency T-Cell Responses to a Broad Repertoire of Immunoprevalent Epitopes

    PubMed Central

    Nithichanon, Arnone; Rinchai, Darawan; Buddhisa, Surachat; Saenmuang, Pornpun; Kewcharoenwong, Chidchamai; Kessler, Bianca; Khaenam, Prasong; Chetchotisakd, Ploenchan; Maillere, Bernard; Robinson, John; Reynolds, Catherine J.; Boyton, Rosemary J.; Altmann, Daniel M.; Lertmemongkolchai, Ganjana

    2018-01-01

    Burkholderia pseudomallei (Bp) is an environmental bacterial pathogen that causes potentially lethal sepsis in susceptible individuals and is considered a Category B, Tier-1 biothreat agent. As such, it is crucial to gain an improved understanding of protective immunity and potential vaccine candidates. The nature of immune correlates dictating why most exposed individuals in endemic regions undergo asymptomatic seroconversion while others succumb to life-threatening sepsis is largely uncharted. Bp seroreactive, immunogenic proteins have previously been identified by antigen microarray. We here set out to conduct an analysis of T-cell recognition of the Bp immunome using serodominant antigens represented in the original antigen microarray, examining immune correlates of disease in healthy seropositive individuals and those with acute disease or in convalescence. By screening a library of 739 overlapping peptides representing the sequences of 20 different Bp antigens, we aimed to define immune correlates of protection at the level of immunoprevalent T-cell epitopes. Responses to a large number of epitopes were common in healthy seropositive individuals: we found remarkably broad responsiveness to Bp epitopes, with 235 of 739 peptides recognized by ≥80% of all tested donors. The cumulative response to Bp epitopes in healthy, seropositive, donors from this endemic region were of the order of thousands of spot forming cells per million cells, making Bp recognition a significant component of the T-cell repertoire. Noteworthy among our findings, analysis revealed 10 highly immunoprevalent T-cell epitopes, able to induce Bp-specific IFNγ responses that were high in responding T-cell frequency within the repertoire, and also common across individuals with different human leukocyte antigen types. Acute melioidosis patients showed poor T-cell responses to the immunoprevalent epitopes, but acquired responsiveness following recovery from infection. Our findings suggest

  20. Defining epitope coverage requirements for T cell-based HIV vaccines: Theoretical considerations and practical applications

    PubMed Central

    2011-01-01

    Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products) is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated) and depth (the variant coverage within a T cell epitope) analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1) epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2) increasing the valency (number of T cell epitope variants present) of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3) considering multiple-hit models (more than one exact epitope match with an incoming HIV strain) places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming viruses important

  1. Relationship between Functional Profile of HIV-1 Specific CD8 T Cells and Epitope Variability with the Selection of Escape Mutants in Acute HIV-1 Infection

    PubMed Central

    Goonetilleke, Nilu; Liu, Michael K. P.; Turnbull, Emma L.; Salazar-Gonzalez, Jesus F.; Hawkins, Natalie; Self, Steve; Watson, Sydeaka; Betts, Michael R.; Gay, Cynthia; McGhee, Kara; Pellegrino, Pierre; Williams, Ian; Tomaras, Georgia D.; Haynes, Barton F.; Gray, Clive M.; Borrow, Persephone; Roederer, Mario; McMichael, Andrew J.; Weinhold, Kent J.

    2011-01-01

    In the present study, we analyzed the functional profile of CD8+ T-cell responses directed against autologous transmitted/founder HIV-1 isolates during acute and early infection, and examined whether multifunctionality is required for selection of virus escape mutations. Seven anti-retroviral therapy-naïve subjects were studied in detail between 1 and 87 weeks following onset of symptoms of acute HIV-1 infection. Synthetic peptides representing the autologous transmitted/founder HIV-1 sequences were used in multiparameter flow cytometry assays to determine the functionality of HIV-1-specific CD8+ T memory cells. In all seven patients, the earliest T cell responses were predominantly oligofunctional, although the relative contribution of multifunctional cell responses increased significantly with time from infection. Interestingly, only the magnitude of the total and not of the poly-functional T-cell responses was significantly associated with the selection of escape mutants. However, the high contribution of MIP-1β-producing CD8+ T-cells to the total response suggests that mechanisms not limited to cytotoxicity could be exerting immune pressure during acute infection. Lastly, we show that epitope entropy, reflecting the capacity of the epitope to tolerate mutational change and defined as the diversity of epitope sequences at the population level, was also correlated with rate of emergence of escape mutants. PMID:21347345

  2. Identification and characterization of enhancer agonist human cytotoxic T-cell epitopes of the human papillomavirus type 16 (HPV16) E6/E7

    PubMed Central

    Tsang, Kwong Y.; Fantini, Massimo; Fernando, Romaine I.; Palena, Claudia; David, Justin M.; Hodge, James W.; Gabitzsch, Elizabeth S.; Jones, Frank R.; Schlom, Jeffrey

    2017-01-01

    Human papillomavirus (HPV) is associated with the etiology of cervical carcinoma, head and neck squamous cell carcinoma, and several other cancer types. Vaccines directed against HPV virus-like particles and coat proteins have been extremely successful in the prevention of cervical cancer through the activation of host HPV-specific antibody responses; however, HPV-associated cancers remain a major public health problem. The development of a therapeutic vaccine will require the generation of T-cell responses directed against early HPV proteins (E6/E7) expressed in HPV-infected tumor cells. Clinical studies using various vaccine platforms have demonstrated that both HPV-specific human T cells can be generated and patient benefit can be achieved. However, no HPV therapeutic vaccine has been approved by the Food and Drug Administration to date. One method of enhancing the potential efficacy of a therapeutic vaccine is the generation of agonist epitopes. We report the first description of enhancer cytotoxic T lymphocyte agonist epitopes for HPV E6 and E7. While the in silico algorithm revealed six epitopes with potentially improved binding to human leukocyte antigen–A2 allele (HLA-A2)–Class I, 5/6 demonstrated enhanced binding to HLA-Class I in cell-based assays and only 3/6 had a greater ability to activate HPV-specific T cells which could lyse tumor cells expressing native HPV, compared to their native epitope counterparts. These agonist epitopes have potential for use in a range of HPV therapeutic vaccine platforms and for use in HPV-specific adoptive T- or natural killer–cell platforms. PMID:28389098

  3. Lack of Heterologous Cross-reactivity toward HLA-A*02:01 Restricted Viral Epitopes Is Underpinned by Distinct αβT Cell Receptor Signatures.

    PubMed

    Grant, Emma J; Josephs, Tracy M; Valkenburg, Sophie A; Wooldridge, Linda; Hellard, Margaret; Rossjohn, Jamie; Bharadwaj, Mandvi; Kedzierska, Katherine; Gras, Stephanie

    2016-11-18

    αβT cell receptor (TCR) genetic diversity is outnumbered by the quantity of pathogenic epitopes to be recognized. To provide efficient protective anti-viral immunity, a single TCR ideally needs to cross-react with a multitude of pathogenic epitopes. However, the frequency, extent, and mechanisms of TCR cross-reactivity remain unclear, with conflicting results on anti-viral T cell cross-reactivity observed in humans. Namely, both the presence and lack of T cell cross-reactivity have been reported with HLA-A*02:01-restricted epitopes from the Epstein-Barr and influenza viruses (BMLF-1 and M1 58 , respectively) or with the hepatitis C and influenza viruses (NS3 1073 and NA 231 , respectively). Given the high sequence similarity of these paired viral epitopes (56 and 88%, respectively), the ubiquitous nature of the three viruses, and the high frequency of the HLA-A*02:01 allele, we selected these epitopes to establish the extent of T cell cross-reactivity. We combined ex vivo and in vitro functional assays, single-cell αβTCR repertoire sequencing, and structural analysis of these four epitopes in complex with HLA-A*02:01 to determine whether they could lead to heterologous T cell cross-reactivity. Our data show that sequence similarity does not translate to structural mimicry of the paired epitopes in complexes with HLA-A*02:01, resulting in induction of distinct αβTCR repertoires. The differences in epitope architecture might be an obstacle for TCR recognition, explaining the lack of T cell cross-reactivity observed. In conclusion, sequence similarity does not necessarily result in structural mimicry, and despite the need for cross-reactivity, antigen-specific TCR repertoires can remain highly specific. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Analysis of predicted B and T-cell epitopes in Der p 23, allergen from Dermatophagoides pteronyssinus.

    PubMed

    Fanuel, Songwe; Tabesh, Saeideh; Sadroddiny, Esmaeil; Kardar, Gholam Ali

    2017-01-01

    House dust mite (HDM) allergy is the leading cause of IgE-mediated hypersensitivity. Therefore identifying potential epitopes in the Dermatophagoide pteronyssinus 23 (Der p 23), a major house dust mite allergen will aid in the development of therapeutic vaccines and diagnostic kits for HDM allergy. Experimental methods of epitope discovery have been widely exploited for the mapping of potential allergens. This study sought to use immunoinformatic methods to analyze the structure of Der p 23 for potential immunoreactive B and T-cell epitopes that could be useful for AIT and allergy diagnosis. We retrieved a Der p 23 allergen sequence from Genbank database and then analyzed it using a combination of web-based sequence analysis tools including the Immune Epitope Database (IEDB), Protparam, BCPREDS, ABCpred, BepiPred, Bcepred among others to predict the physiochemical properties and epitope spectra of the Der p 23 allergen. We then built 3D models of the predicted B-cell epitopes, T cell epitopes and Der p 23 for sequence structure homology analysis. Our results identified peptides 'TRWNEDE', 'TVHPTTTEQPDDK', and 'NDDDPTT' as immunogenic linear B-cell epitopes while 'CPSRFGYFADPKDPH' and 'CPGNTRWNEDEETCT' were found to be the most suitable T-cell epitopes that interacted well with a large number of MHC II alleles. Both epitopes had high population coverage as well as showing a 100% conservancy. These five Der p 23 epitopes are useful for AIT vaccines and HDM allergy diagnosis development.

  5. CD8+ T cell recognition of an endogenously processed epitope is regulated primarily by residues within the epitope

    PubMed Central

    1992-01-01

    Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides associated with cell surface class I major histocompatibility complex (MHC) molecules. This association presumably occurs between newly synthesized class I MHC molecules and peptide fragments in a pre-Golgi compartment. Little is known about the factors that regulate the formation of these antigenic peptide fragments within the cell. To examine the role of residues within a core epitope and in the flanking sequences for the generation and presentation of the newly synthesized peptide fragment recognized by CD8+ CTL, we have mutagenized the coding sequence for the CTL epitope spanning residues 202-221 in the influenza A/Japan/57 hemagglutinin (HA). In this study over 60 substitution mutations in the epitope were tested for their effects on target cell sensitization using a cytoplasmic viral expression system. The HA202- 221 site contains two overlapping subsites defined by CTL clones 11-1 and 40-2. Mutations in HA residues 204-213 or residues 210-219 often abolished target cell lysis by CTL clones 11-1 and 40-2, respectively. Although residues outside the core epitope did not usually affect the ability to be lysed by CTL clones, substitution of a Gly residue for Val-214 abolished lysis by clone 11-1. These data suggest that residues within a site that affect MHC binding and T cell receptor recognition appear to play the predominant role in dictating the formation of the antigenic complex recognized by CD8+ CTL, and therefore the antigenicity of the protein antigen presented to CD8+ T cells. Most alterations in residues flanking the endogenously expressed epitope do not appreciably affect the generation and recognition of the site. PMID:1383384

  6. Multiple discrete encephalitogenic epitopes of the autoantigen myelin basic protein include a determinant for I-E class II-restricted T cells

    PubMed Central

    1988-01-01

    Immunization with the autoantigen myelin basic protein (MBP) causes experimental allergic encephalomyelitis (EAE). Initial investigations indicated that encephalitogenic murine determinants of MBP were located only within MBP 1-37 and MBP 89-169. Encephalitogenic T cell epitopes within these fragments have been identified. Each epitope is recognized by T cells in association with separate allelic I-A molecules. A hybrid I-E-restricted T cell clone that recognizes intact mouse (self) MBP has been examined. The epitope recognized by this clone includes MBP residues 35-47. When tested in vivo, p35-47 causes EAE. T cell recognition of p35-47 occurs only in association with I-E molecules. These results provide the first clear example that antigen-specific T cells restricted by I-E class II molecules participate in murine autoimmune disease. Furthermore, it is clear that there are multiple (at least three) discrete encephalitogenic T cell epitopes of this autoantigen, each recognized in association with separate allelic class II molecules. These results may be relevant to human autoimmune diseases whose susceptibility is associated with more than one HLA-D molecule. PMID:2459291

  7. The link between CD8⁺ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate.

    PubMed

    Lissina, Anna; Fastenackels, Solène; Inglesias, Maria C; Ladell, Kristin; McLaren, James E; Briceño, Olivia; Gostick, Emma; Papagno, Laura; Autran, Brigitte; Sauce, Delphine; Price, David A; Saez-Cirion, Asier; Appay, Victor

    2014-02-20

    Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.

  8. Immunogenicity of porcine P[6], P[7]-specific △VP8* rotavirus subunit vaccines with a tetanus toxoid universal T cell epitope.

    PubMed

    Wen, Xiaobo; Wei, Xiaoman; Ran, Xuhua; Ni, Hongbo; Cao, Si; Zhang, Yao

    2015-08-26

    Currently, commercial porcine rotavirus vaccines remain varied limitations. The objective of this study is to develop an alternative porcine rotavirus subunit vaccine candidate by parenteral administration, which enables to elicit robust immune responses against most prevalence porcine rotavirus strains. The bacterially-expressed porcine rotavirus P[6]- or P[7]-specific truncated VP8* (aa 64-223) recombinant protein with or without a universal tetanus toxoid CD4(+) T cell epitope P2 was generated. All the recombinant subunit proteins △VP8*s or P2-△VP8*s were of high solubility and high yields. The immunogenicity of each purified △VP8* and P2-△VP8* was evaluated in mice (10 μg/dose) or guinea pigs (20 μg/dose) immunized IM with 600 μg aluminum hydroxide three times at 2-week interval. The introduction of P2T cell epitope to P[7]-△VP8* elicited significantly higher IgG titer in mice than its absence. Comparatively, P2 epitope slightly enhanced the immunogenicity of P[6]-△VP8*. P2-P[7]△VP8* elicited high titer of neutralizing antibody against heterotypic P[7]-specific rotaviruses with varied G type combination. Our data indicated that two subunit vaccines could be plausible bivalent rotavirus vaccine candidate to provide antigenic coverage of porcine rotavirus strains of global or regional importance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An inducible transgenic mouse breast cancer model for the analysis of tumor antigen specific CD8+ T-cell responses

    PubMed Central

    Bruns, Michael; Wanger, Jara; Utermöhlen, Olaf; Deppert, Wolfgang

    2015-01-01

    In Simian virus 40 (SV40) transgenic BALB/c WAP-T mice tumor development and progression is driven by SV40 tumor antigens encoded by inducible transgenes. WAP-T mice constitute a well characterized mouse model for breast cancer with strong similarities to the corresponding human disease. BALB/c mice mount only a weak cellular immune response against SV40 T-antigen (T-Ag). For studying tumor antigen specific CD8+ T-cell responses against transgene expressing cells, we created WAP-TNP mice, in which the transgene additionally codes for the NP118–126-epitope contained within the nucleoprotein of lymphocytic choriomeningitis virus (LCMV), the immune-dominant T-cell epitope in BALB/c mice. We then investigated in WAP-TNP mice the immune responses against SV40 tumor antigens and the NP-epitope within the chimeric T-Ag/NP protein (T-AgNP). Analysis of the immune-reactivity against T-Ag in WAP-T and of T-AgNP in WAP-TNP mice revealed that, in contrast to wild type (wt) BALB/c mice, WAP-T and WAP-TNP mice were non-reactive against T-Ag. However, like wtBALB/c mice, WAP-T as well as WAP-TNP mice were highly reactive against the immune-dominant LCMV NP-epitope, thereby allowing the analysis of NP-epitope specific cellular immune responses in WAP-TNP mice. LCMV infection of WAP-TNP mice induced a strong, LCMV NP-epitope specific CD8+ T-cell response, which was able to specifically eliminate T-AgNP expressing mammary epithelial cells both prior to tumor formation (i.e. in cells of lactating mammary glands), as well as in invasive tumors. Elimination of tumor cells, however, was only transient, even after repeated LCMV infections. Further studies showed that already non-infected WAP-TNP tumor mice contained LCMV NP-epitope specific CD8+ T-cells, albeit with strongly reduced, though measurable activity. Functional impairment of these ‘endogenous’ NP-epitope specific T-cells seems to be caused by expression of the programmed death-1 protein (PD1), as anti-PD1 treatment of

  10. Immuno-informatics based approaches to identify CD8+ T cell epitopes within the Leishmania donovani 3-ectonucleotidase in cured visceral leishmaniasis subjects.

    PubMed

    Vijayamahantesh; Amit, Ajay; Dikhit, Manas R; Singh, Ashish K; Venkateshwaran, T; Das, V N R; Das, Pradeep; Bimal, Sanjiva

    2017-06-01

    Leishmaniases are vector-borne diseases for which no vaccine exists. These diseases are caused by the Leishmania species complex. Activation of the CD8 + T cell is crucial for protection against intracellular pathogens, and peptide antigens are attractive strategies for the precise activation of CD8 + T in vaccine development against intracellular infections. The traditional approach to mine the epitopes is an arduous task. However, with the advent of immunoinformatics, in silico epitope prediction tools are available to expedite epitope identification. In this study, we employ different immunoinformatics tools to predict CD8 + T cell specific 9 mer epitopes presented by HLA-A*02 and HLA-B40 within the highly conserved 3'-ectonucleotidase of Leishmania donovani. We identify five promiscuous epitopes, which have no homologs in humans, theoretically cover 85% of the world's population and are highly conserved (100%) among Leishmania species. Presentation of selected peptides was confirmed by T2 cell line based HLA-stabilization assay, and three of them were found to be strong binders. The in vitro peptide stimulation of peripheral blood mononuclear cells (PBMC) from cured HLA-A02 + visceral leishmaniasis (VL) subjects produced significantly higher IFN-γ, IL-2 and IL-12 compared to no peptide control healthy subjects. Further, CD8 + cells from treated VL subjects produced significantly higher intracellular IFN-γ, lymphocyte proliferation and cytotoxic activity against selected peptides from the PBMCs of treated HLA-A02 + VL subjects. Thus, the CD8 + T cell specific epitopes shown in this study will speed up the development of polytope vaccines for leishmaniasis. Copyright © 2017. Published by Elsevier Masson SAS.

  11. Therapeutic Vaccination against the Rhesus Lymphocryptovirus EBNA-1 Homologue, rhEBNA-1, Elicits T Cell Responses to Novel Epitopes in Rhesus Macaques

    PubMed Central

    Silveira, Eduardo L. V.; Fogg, Mark H.; Leskowitz, Rachel M.; Ertl, Hildegund C.; Wiseman, Roger W.; O'Connor, David H.; Lieberman, Paul; Wang, Fred

    2013-01-01

    Epstein-Barr virus (EBV) is a vaccine/immunotherapy target due to its association with several human malignancies. EBNA-1 is an EBV protein consistently expressed in all EBV-associated cancers. Herein, EBNA-1-specific T cell epitopes were evaluated after AdC–rhEBNA-1 immunizations in chronically lymphocryptovirus-infected rhesus macaques, an EBV infection model. Preexisting rhEBNA-1-specific responses were augmented in 4/12 animals, and new epitopes were recognized in 5/12 animals after vaccinations. This study demonstrated that EBNA-1-specific T cells can be expanded by vaccination. PMID:24089556

  12. Direct ex vivo detection of HLA-DR3-restricted cytomegalovirus- and Mycobacterium tuberculosis-specific CD4+ T cells.

    PubMed

    Bronke, Corine; Palmer, Nanette M; Westerlaken, Geertje H A; Toebes, Mireille; van Schijndel, Gijs M W; Purwaha, Veenu; van Meijgaarden, Krista E; Schumacher, Ton N M; van Baarle, Debbie; Tesselaar, Kiki; Geluk, Annemieke

    2005-09-01

    In order to detect epitope-specific CD4+ T cells in mycobacterial or viral infections in the context of human class II major histocompatibility complex protein human leukocyte antigen (HLA)-DR3, two HLA-DR3 tetrameric molecules were successfully produced. One contained an immunodominant HLA-DR3-restricted T-cell epitope derived from the 65-kDa heat-shock protein of Mycobacterium tuberculosis, peptide 1-13. For the other tetramer, we used an HLA-DR3-restricted T-cell epitope derived from cytomegalovirus (CMV) pp65 lower matrix protein, peptide 510-522, which induced high levels of interferon (IFN)-gamma-producing CD4+ T cells in three of four HLA-DR3-positive CMV-seropositive individuals up to 0.84% of CD4+ T cells by intracellular cytokine staining. In peripheral blood mononuclear cells from M. tuberculosis-exposed, Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated, or CMV-seropositive individuals, we were able to directly detect with both tetramers epitope-specific T cells up to 0.62% and 0.45% of the CD4+ T-cell population reactive to M. tuberculosis and CMV, respectively. After a 6-day culture with peptide p510-522, the frequency of CMV-specific tetramer-binding T cells was expanded up to 9.90% tetramer+ CFSElow (5,6-carboxyfluorescein diacetate succinimidyl ester) cells within the CD4+ T-cell population, further confirming the specificity of the tetrameric molecules. Thus, HLA-DR3/peptide tetrameric molecules can be used to investigate HLA-DR3-restricted antigen-specific CD4+ T cells in clinical disease or after vaccination.

  13. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes.

    PubMed

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  14. Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species.

    PubMed

    Rahman, K Shamsur; Chowdhury, Erfan U; Poudel, Anil; Ruettger, Anke; Sachse, Konrad; Kaltenboeck, Bernhard

    2015-05-01

    Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Defining Species-Specific Immunodominant B Cell Epitopes for Molecular Serology of Chlamydia Species

    PubMed Central

    Rahman, K. Shamsur; Chowdhury, Erfan U.; Poudel, Anil; Ruettger, Anke; Sachse, Konrad

    2015-01-01

    Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens. PMID:25761461

  16. Bioinformatics and immunologic investigation on B and T cell epitopes of Cur l 3, a major allergen of Curvularia lunata.

    PubMed

    Sharma, Vidhu; Singh, Bhanu P; Gaur, Shailendra N; Pasha, Santosh; Arora, Naveen

    2009-06-01

    The knowledge on epitopes of proteins can help in devising new therapeutic modalities for allergic disorders. In the present study, five B (P1-P5) and five T cell (P6-P10) epitopes were predicted in silico based on sequence homology model of Cur l 3, a major allergen of Curvularia lunata. Peptides (epitopes) were synthesized and assessed for biological activity by ELISA, competitive ELISA, lymphoproliferation and cytokine profiling using Curvularia allergic patients' sera. B cell peptides showed higher IgE binding by ELISA than T cell epitopes except P6. Peptides P1-P6 achieved EC(50) at 100 ng, whereas P7-P10 required 10 mug in inhibition assays. Peripheral blood mononuclear cells from Curvularia allergic patients (n = 20) showed higher lymphoproliferation for T cell epitopes than B cell epitopes except P6 confirming the properties of B and T cell prediction. The supernatant from these patients show highest interleukin-4 release on stimulation with P6 followed by B cell peptides. P4 and P6 together identified 35/37 of Curvularia positive patients by skin tests. In summary, experimental analysis confirmed in silico predicted epitopes containing important antigenic regions of Cur l 3. P6, a predicted T cell epitope, showed the presence of a cryptic B cell epitope. Peptides P4 and P6 have potential for clinical application. The approach used here is relevant and may be used to delineate epitopes of other proteins.

  17. Specific T-cell activation in an unspecific T-cell repertoire.

    PubMed

    Van Den Berg, Hugo A; Molina-París, Carmen; Sewell, Andrew K

    2011-01-01

    T-cells are a vital type of white blood cell that circulate around our bodies, scanning for cellular abnormalities and infections. They recognise disease-associated antigens via a surface receptor called the T-cell antigen receptor (TCR). If there were a specific TCR for every single antigen, no mammal could possibly contain all the T-cells it needs. This is clearly absurd and suggests that T-cell recognition must, to the contrary, be highly degenerate. Yet highly promiscuous TCRs would appear to be equally impossible: they are bound to recognise self as well as non-self antigens. We review how contributions from mathematical analysis have helped to resolve the paradox of the promiscuous TCR. Combined experimental and theoretical work shows that TCR degeneracy is essentially dynamical in nature, and that the T-cell can differentially adjust its functional sensitivity to the salient epitope, "tuning up" sensitivity to the antigen associated with disease and "tuning down" sensitivity to antigens associated with healthy conditions. This paradigm of continual modulation affords the TCR repertoire, despite its limited numerical diversity, the flexibility to respond to almost any antigenic challenge while avoiding autoimmunity.

  18. Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing.

    PubMed

    Walker, Andreas; Skibbe, Kathrin; Steinmann, Eike; Pfaender, Stephanie; Kuntzen, Thomas; Megger, Dominik A; Groten, Svenja; Sitek, Barbara; Lauer, Georg M; Kim, Arthur Y; Pietschmann, Thomas; Allen, Todd M; Timm, Joerg

    2016-01-01

    epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8(+) T cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Identification of a T-helper cell epitope on the rotavirus VP6 protein.

    PubMed Central

    Baños, D M; Lopez, S; Arias, C F; Esquivel, F R

    1997-01-01

    In this work, we have studied the T-helper (Th)-cell response against rotavirus, in a mouse model. Adult BALB/c mice were inoculated parenterally with porcine rotavirus YM, and the Th-cell response from spleen cells against the virus and two overlapping fragments of the major capsid protein VP6 (VP6(1-192) and VP6(171-397)) were evaluated in vitro. The Th cells recognized the YM virus and the two protein fragments, suggesting that there are at least two Th-cell epitopes on the VP6 molecule. To study the specificity of Th cells against VP6 at the clonal level, we established two Th-cell hybridomas cross-reactive for the VP6 protein of rotavirus strains YM and SA11. Both hybridomas recognized the VP6(171-397) polypeptide, and a synthetic peptide comprising the amino acids 289 to 302 (RLSFQLVRPPNMTP) of YM VP6 in the context of the major histocompatibility complex class II IEd molecule. The Th-cell hybridomas recognized rotavirus VP6 in a highly cross-reactive fashion, since they could be stimulated by eight different strains of rotavirus, including the murine rotavirus EDIM, that represent five G serotypes and at least two subgroups. The amino acid sequence of the VP6 epitope is highly conserved in most group A rotavirus strains sequenced so far. On the other hand, it was found that Th cells specific for the VP6 epitope may constitute an important proportion of the total polyclonal Th-cell response against rotavirus YM in spleen cells. These results demonstrate that VP6 can be a target for highly cross-reactive Th cells. PMID:8985366

  20. Prediction of Pan-Specific B-Cell Epitopes From Nucleocapsid Protein of Hantaviruses Causing Hantavirus Cardiopulmonary Syndrome.

    PubMed

    Kalaiselvan, Sagadevan; Sankar, Sathish; Ramamurthy, Mageshbabu; Ghosh, Asit Ranjan; Nandagopal, Balaji; Sridharan, Gopalan

    2017-08-01

    Hantaviruses are emerging viral pathogens that causes hantavirus cardiopulmonary syndrome (HCPS) in the Americas, a severe, sometimes fatal, respiratory disease in humans with a case fatality rate of ≥50%. IgM and IgG-based serological detection methods are the most common approaches used for laboratory diagnosis of hantaviruses. Such emerging viral pathogens emphasizes the need for improved rapid diagnostic devices and vaccines incorporating pan-specific epitopes of genotypes. We predicted linear B-cell epitopes for hantaviruses that are specific to genotypes causing HCPS in humans using in silico prediction servers. We modeled the Andes and Sin Nombre hantavirus nucleocapsid protein to locate the identified epitopes. Based on the mean percent prediction probability score, epitope IMASKSVGS/TAEEKLKKKSAF was identified as the best candidate B-cell epitope specific for hantaviruses causing HCPS. Promiscuous epitopes were identified in the C-terminal of the protein. Our study for the first time has reported pan-specific B-cell epitopes for developing immunoassays in the detection of antibodies to hantaviruses causing HCPS. Identification of epitopes with pan-specific recognition of all genotypes causing HCPS could be valuable for the development of immunodiagnositic tools toward pan-detection of hantavirus antibodies in ELISA. J. Cell. Biochem. 118: 2320-2324, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Identification of epitopes recognised by mucosal CD4(+) T-cell populations from cattle experimentally colonised with Escherichia coli O157:H7.

    PubMed

    Corbishley, Alexander; Connelley, Timothy K; Wolfson, Eliza B; Ballingall, Keith; Beckett, Amy E; Gally, David L; McNeilly, Tom N

    2016-09-02

    Vaccines targeting enterohaemorrhagic Escherichia coli (EHEC) O157:H7 shedding in cattle are only partially protective. The correlates of protection of these vaccines are unknown, but it is probable that they reduce bacterial adherence at the mucosal surface via the induction of blocking antibodies. Recent studies have indicated a role for cellular immunity in cattle during colonisation, providing an impetus to understand the bacterial epitopes recognised during this response. This study mapped the epitopes of 16 EHEC O157:H7 proteins recognised by rectal lymph node CD4(+) T-cells from calves colonised with Shiga toxin producing EHEC O157:H7 strains. 20 CD4(+) T-cell epitopes specific to E. coli from 7 of the proteins were identified. The highly conserved N-terminal region of Intimin, including the signal peptide, was consistently recognised by mucosal CD4(+) T-cell populations from multiple animals of different major histocompatibility complex class II haplotypes. These T-cell epitopes are missing from many Intimin constructs used in published vaccine trials, but are relatively conserved across a range of EHEC serotypes, offering the potential to develop cross protective vaccines. Antibodies recognising H7 flagellin have been consistently identified in colonised calves; however CD4(+) T-cell epitopes from H7 flagellin were not identified in this study, suggesting that H7 flagellin may act as a T-cell independent antigen. This is the first time that the epitopes recognised by CD4(+) T-cells following colonisation with an attaching and effacing pathogen have been characterised in any species. The findings have implications for the design of antigens used in the next generation of EHEC O157:H7 vaccines.

  2. Persistence, immune specificity, and functional ability of murine mutant ras epitope-specific CD4(+) and CD8(+) T lymphocytes following in vivo adoptive transfer.

    PubMed

    Bristol, J A; Schlom, J; Abrams, S I

    1999-05-25

    Adoptive T-cell transfer has been shown to be a potentially effective strategy for cellular immunotherapy in some murine models of disease. However, several issues remain unresolved regarding some of the basic features involved in effective adoptive transfer, such as the influence of specific peptide antigen (Ag) boost after T-cell transfer, the addition of IL-2 post-T-cell transfer, the trafficking of transferred T cells to lymphoid and nonlymphoid tissues, and the functional stability of recoverable CD4(+) and CD8(+) T cells. We investigated several of these parameters, particularly as they relate to the persistence and maintenance of effector functions of murine CD4(+) and/or CD8(+) T lymphocytes after adoptive cellular transfer into partially gamma-irradiated syngeneic hosts. Our laboratory previously identified murine (H-2(d)) immunogenic CD4(+) and CD8(+) T-cell peptide epitopes reflecting codon 12 ras mutations as tumor-specific Ag. Therefore, the model system chosen here employed epitope-specific MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells produced from previously immunized BALB/c mice. Between 2 and 7 days after T-cell transfer, recipient mice received various combinations of peptide boosts and/or IL-2 treatments. At different times after the T-cell transfer, spleen and lung tissues were analyzed phenotypically to monitor the persistence of the immune T cells and functionally (via proliferation or cytotoxicity assays) to assess the maintenance of peptide specificity. The results showed that immune donor T lymphocytes (uncultured immune T cells or cloned T cells) were recoverable from the spleens and lungs of recipient mice after transfer. The recovery of Ag-specific T-cell responses was greatest from recipient mice that received peptide boosts and IL-2 treatment. However, mice that received a peptide boost without IL-2 treatment responded nearly as well, which suggested that including a peptide boost after T-cell

  3. Immediate-Early Transactivator Rta of Epstein-Barr Virus (EBV) Shows Multiple Epitopes Recognized by EBV-Specific Cytotoxic T Lymphocytes

    PubMed Central

    Pepperl, Sandra; Benninger-Döring, Gerlinde; Modrow, Susanne; Wolf, Hans; Jilg, Wolfgang

    1998-01-01

    We analyzed the immediate-early transactivator Rta of Epstein-Barr virus (EBV) for its role as a target for specific cytotoxic T lymphocytes (CTL). Panels of overlapping peptides covering the entire amino acid sequence of Rta were synthesized and used to induce and analyze specific CTL responses in EBV-positive donors. Using peptide-pulsed target cells, we found nine different CTL epitopes that are distributed over the entire protein sequence. One epitope restricted by HLA-A24 could be mapped to the decameric sequence DYCNVLNKEF between amino acid positions 28 and 37 of the Rta protein. A second epitope could be assigned to the same region of Rta (residues 25 to 39) and was shown to be restricted by HLA-B18. Another, minimal epitope could be mapped to the nonameric sequence ATIGTAMYK between amino acid positions 134 and 142; this peptide was restricted by HLA-A11. Another four epitopes were proven to be restricted by HLA-A2, -A3, -B61, and -Cw4 and were located between Rta residues 225 and 239, 145 and 159, 529 and 543, and 393 and 407, respectively. For two other epitopes, only the location within the Rta protein is known so far (residues 121 to 135 and 441 to 455); their exact HLA restriction patterns have not yet been identified. Using target cells infected with recombinant vaccinia virus containing the gene for Rta, we showed that six of eight Rta-specific CTL lines recognized the corresponding peptides also after endogenous processing. These data suggest that Rta comprises an important target for EBV-specific cellular cytotoxicity. Together with recent findings of other immediate-early and early proteins also acting as CTL targets, they reveal the role of proteins of the lytic cycle in the immune recognition of EBV-infected cells. PMID:9765404

  4. Human CD4+ T-cell response to hepatitis delta virus: identification of multiple epitopes and characterization of T-helper cytokine profiles.

    PubMed Central

    Nisini, R; Paroli, M; Accapezzato, D; Bonino, F; Rosina, F; Santantonio, T; Sallusto, F; Amoroso, A; Houghton, M; Barnaba, V

    1997-01-01

    The T-cell-mediated immune response plays a crucial role in defense against hepatotropic viruses as well as in the pathogenesis of viral chronic hepatitides. However, very little is known about the role of specific T cells during hepatitis delta virus (HDV) infection in humans. In this study, the T-cell response to HDV in chronic hepatitis B virus (HBV) carriers with HDV superinfection was investigated at different levels. Analysis of peripheral blood mononuclear cell (PBMC) proliferation in response to a recombinant form of large hepatitis delta antigen (HDAg) revealed that 8 of 30 patients studied (27%) specifically responded to HDAg. By employing synthetic peptides spanning the entire HDAg sequence, we found that T-cell recognition was directed against different antigenic determinants, with patient-to-patient variation in the pattern of response to peptides. Interestingly, all responders had signs of inactive HDV-induced disease, while none of the patients with active disease and none of the control subjects showed any significant proliferation. More accurate information about the specific T-cell response was obtained at the clonal level. A panel of HDAg-specific CD4+ T-cell clones from three HDV-infected individuals and fine-specificity analysis revealed that the clones tested individually recognized four epitopes corresponding to amino acids (aa) 26 to 41, 50 to 65, 66 to 81, or 106 to 121 of HDAg sequence. The study of human leukocyte antigen (HLA) restriction revealed that peptides 50 to 65 and 106 to 121 were presented to specific T cells in association with multiple class II molecules. In addition, peptide 26 to 41 was efficiently generated after processing of HDAg through the endogenous processing pathway. Cytokine secretion analysis showed that all the CD4+ T-cell clones assayed were able to produce high levels of gamma interferon (IFN-gamma), belonging either to T helper-1 (Th1) or Th0 subsets and that some of them were cytotoxic in a specific assay

  5. Similar Responses of Intestinal T Cells From Untreated Children and Adults With Celiac Disease to Deamidated Gluten Epitopes.

    PubMed

    Ráki, Melinda; Dahal-Koirala, Shiva; Yu, Hao; Korponay-Szabó, Ilma R; Gyimesi, Judit; Castillejo, Gemma; Jahnsen, Jørgen; Qiao, Shuo-Wang; Sollid, Ludvig M

    2017-09-01

    Celiac disease is a chronic small intestinal inflammatory disorder mediated by an immune response to gluten peptides in genetically susceptible individuals. Celiac disease is often diagnosed in early childhood, but some patients receive a diagnosis late in life. It is uncertain whether pediatric celiac disease is distinct from adult celiac disease. It has been proposed that gluten-reactive T cells in children recognize deamidated and native gluten epitopes, whereas T cells from adults only recognize deamidated gluten peptides. We studied the repertoire of gluten epitopes recognized by T cells from children and adults. We examined T-cell responses against gluten by generating T-cell lines and T-cell clones from intestinal biopsies of adults and children and tested proliferative response to various gluten peptides. We analyzed T cells from 14 children (2-5 years old) at high risk for celiac disease who were followed for celiac disease development. We also analyzed T cells from 6 adults (26-55 years old) with untreated celiac disease. All children and adults were positive for HLA-DQ2.5. Biopsies were incubated with gluten digested with chymotrypsin (modified or unmodified by the enzyme transglutaminase 2) or the peptic-tryptic digest of gliadin (in native and deamidated forms) before T-cell collection. Levels of T-cell responses were higher to deamidated gluten than to native gluten in children and adults. T cells from children and adults each reacted to multiple gluten epitopes. Several T-cell clones were cross-reactive, especially clones that recognized epitopes from γ-and ω-gliadin. About half of the generated T-cell clones from children and adults reacted to unknown epitopes. T-cell responses to different gluten peptides appear to be similar between adults and children at the time of diagnosis of celiac disease. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein

    PubMed Central

    1992-01-01

    The immunogenicity of a chimeric T/B cell peptide corresponding to antigenically characterized epitopes of the Chlamydia trachomatis major outer membrane protein (MOMP) was studied in mice to further define its potential use in the development of a subunit vaccine in preventing blinding trachoma in humans. The chimeric peptide, designated A8-VDI, corresponds to a conserved MOMP T helper (Th) cell epitope(s) (A8, residues 106-130) and serovar A VDI (residues 66-80), which contains the serovar-specific neutralizing epitope 71VAGLEK76. Mice immunized with peptide A8-VDI produced high-titered polyclonal IgG antibodies which recognized the VAGLEK-neutralizing epitope. Peptide A8-VDI primed A/J mice to produce high-titered serum-neutralizing antibodies in response to a secondary immunization with intact chlamydial elementary bodies (EBs). Peptide A8-VDI, but not peptide VDI alone, was immunogenic in six different inbred strains of mice disparate at H-2, indicating that the Th cell epitope(s) contained in the A8 portion of the chimera was recognized in the context of multiple major histocompatibility complex (MHC) haplotypes. An unexpected finding of this work was that different inbred strains of mice immunized with the chimeric peptide produced antibodies of differing fine specificities to the VDI portion of the chimera. Some mouse strains produced anti-VDI antibodies that did not recognize the VAGLEK-neutralizing epitope. The ability of mice to respond to the VAGLEK-neutralizing site was not dependent on MHC haplotype since mouse strains of the same H-2 haplotype produced anti-VDI antibodies of differing fine specificity. PMID:1370528

  7. In vitro Peptide Immunization ofTargetTax Protein HumanT-Cell Leukemia Virus Type 1 – Specific CD4+ Helper T Lymphocytes

    PubMed Central

    Kobayashi, Hiroya; Ngato, Toshihiro; Sato, Keisuke; Aoki, Naoko; Kimura, Shoji; Tanaka, Yuetsu; Aizawa, Hitoshi; Tateno, Masatoshi; Celis, Esteban

    2006-01-01

    Purpose Adult T-cell leukemia/lymphoma induced by human T-cell leukemia virus type 1 (HTLV-1) is usually a fatal lymphoproliferative malignant disease. HTLV-1 Tax protein plays a critical role in HTLV-1-associated leukemogenesis and is an attractive target for vaccine development. Although HTLV-1Tax is the most dominant antigen for HTLV-1-specific CD8+ CTLs in HTLV-1-infected individuals, few epitopes recognized by CD4+ helper T lymphocytes in HTLV-1Tax protein have been described.The aim of the present study was to study T-helper-cell responses to HTLV-1 Tax and to identify naturally processed MHC class II – restricted epitopes that could be used for vaccine development. Experimental Design An MHC class II binding peptide algorithm was used to predict potential T-helper cell epitope peptides from HTLV-1 Tax. We assessed the ability of the corresponding peptides to elicit helper T-cell responses by in vitro vaccination of purified CD4+ T lymphocytes. Results Peptides Tax191–205 and Tax305–319 were effective in inducingT-helper-cell responses. Although Tax191–205 was restricted by the HLA-DR1 and DR9 alleles, responses to Tax305–319 were restricted by either DR15 or DQ9. Both these epitopes were found to be naturally processed by HTLV-1+ T-cell lymphoma cells and by autologous antigen-presenting cells that were pulsed with HTLV-1Tax+ tumor lysates. Notably, the two newly identified helper T-cell epitopes are found to lie proximal to known CTL epitopes, which will facilitate the development of prophylactic peptide – based vaccine capable of inducing simultaneous CTL andT-helper responses. Conclusion Our data suggest that HTLV-1 Tax protein could serve as tumor-associated antigen for CD4+ helper T cells and that the present epitopes might be used for T-cell-based immunotherapy against tumors expressing HTLV-1. PMID:16778109

  8. Efficient induction of CD25- iTreg by co-immunization requires strongly antigenic epitopes for T cells.

    PubMed

    Geng, Shuang; Yu, Yang; Kang, Youmin; Pavlakis, George; Jin, Huali; Li, Jinyao; Hu, Yanxin; Hu, Weibin; Wang, Shuang; Wang, Bin

    2011-05-05

    We previously showed that co-immunization with a protein antigen and a DNA vaccine coding for the same antigen induces CD40 low IL-10 high tolerogenic DCs, which in turn stimulates the expansion of antigen-specific CD4+CD25-Foxp3+ regulatory T cells (CD25- iTreg). However, it was unclear how to choose the antigen sequence to maximize tolerogenic antigen presentation and, consequently, CD25- iTreg induction. In the present study, we demonstrated the requirement of highly antigenic epitopes for CD25- iTreg induction. Firstly, we showed that the induction of CD25- iTreg by tolerogenic DC can be blocked by anti-MHC-II antibody. Next, both the number and the suppressive activity of CD25- iTreg correlated positively with the overt antigenicity of an epitope to activate T cells. Finally, in a mouse model of dermatitis, highly antigenic epitopes derived from a flea allergen not only induced more CD25- iTreg, but also more effectively prevented allergenic reaction to the allergen than did weakly antigenic epitopes. Our data thus indicate that efficient induction of CD25- iTreg requires highly antigenic peptide epitopes. This finding suggests that highly antigenic epitopes should be used for efficient induction of CD25- iTreg for clinical applications such as flea allergic dermatitis.

  9. Novel T-cell epitopes of ovalbumin in BALB/c mouse: Potential for peptide-immunotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Marie; Mine, Yoshinori

    The identification of food allergen T-cell epitopes provides a platform for the development of novel immunotherapies. Despite extensive knowledge of the physicochemical properties of hen ovalbumin (OVA), a major egg allergen, the complete T-cell epitope map of OVA has surprisingly not been defined in the commonly used BALB/c mouse model. In this study, spleen cells obtained from OVA-sensitized mice were incubated in the presence of 12-mer overlapping synthetic peptides, constructed using the SPOTS synthesis method. Proliferative activity was assessed by 72-h in vitro assays with use of the tetrazolium salt WST-1 and led to identification of four mitogenic sequences, i.e.,more » A39R50, S147R158, K263E274, and A329E340. ELISA analyses of interferon (IFN)-{gamma} and interleukin (IL)-4 productions in cell culture supernatants upon stimulation with increasing concentrations of peptides confirmed their immunogenicity. Knowledge of the complete T-cell epitope map of OVA opens the way to a number of experimental investigations, including the exploration of peptide-based immunotherapy.« less

  10. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    PubMed Central

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings. PMID:26445723

  11. Screening and structure-based modeling of T-cell epitopes of Nipah virus proteome: an immunoinformatic approach for designing peptide-based vaccine.

    PubMed

    Kamthania, Mohit; Sharma, D K

    2015-12-01

    Identification of Nipah virus (NiV) T-cell-specific antigen is urgently needed for appropriate diagnostic and vaccination. In the present study, prediction and modeling of T-cell epitopes of Nipah virus antigenic proteins nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, L protein, W protein, V protein and C protein followed by the binding simulation studies of predicted highest binding scorers with their corresponding MHC class I alleles were done. Immunoinformatic tool ProPred1 was used to predict the promiscuous MHC class I epitopes of viral antigenic proteins. The molecular modelings of the epitopes were done by PEPstr server. And alleles structure were predicted by MODELLER 9.10. Molecular dynamics (MD) simulation studies were performed through the NAMD graphical user interface embedded in visual molecular dynamics. Epitopes VPATNSPEL, NPTAVPFTL and LLFVFGPNL of Nucleocapsid, V protein and Fusion protein have considerable binding energy and score with HLA-B7, HLA-B*2705 and HLA-A2MHC class I allele, respectively. These three predicted peptides are highly potential to induce T-cell-mediated immune response and are expected to be useful in designing epitope-based vaccines against Nipah virus after further testing by wet laboratory studies.

  12. CD8 and CD4 epitope predictions in RV144: no strong evidence of a T-cell driven sieve effect in HIV-1 breakthrough sequences from trial participants.

    PubMed

    Dommaraju, Kalpana; Kijak, Gustavo; Carlson, Jonathan M; Larsen, Brendan B; Tovanabutra, Sodsai; Geraghty, Dan E; Deng, Wenjie; Maust, Brandon S; Edlefsen, Paul T; Sanders-Buell, Eric; Ratto-Kim, Silvia; deSouza, Mark S; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Pitisuttihum, Punnee; Kaewkungwal, Jaranit; O'Connell, Robert J; Robb, Merlin L; Michael, Nelson L; Mullins, James I; Kim, Jerome H; Rolland, Morgane

    2014-01-01

    The modest protection afforded by the RV144 vaccine offers an opportunity to evaluate its mechanisms of protection. Differences between HIV-1 breakthrough viruses from vaccine and placebo recipients can be attributed to the RV144 vaccine as this was a randomized and double-blinded trial. CD8 and CD4 T cell epitope repertoires were predicted in HIV-1 proteomes from 110 RV144 participants. Predicted Gag epitope repertoires were smaller in vaccine than in placebo recipients (p = 0.019). After comparing participant-derived epitopes to corresponding epitopes in the RV144 vaccine, the proportion of epitopes that could be matched differed depending on the protein conservation (only 36% of epitopes in Env vs 84-91% in Gag/Pol/Nef for CD8 predicted epitopes) or on vaccine insert subtype (55% against CRF01_AE vs 7% against subtype B). To compare predicted epitopes to the vaccine, we analyzed predicted binding affinity and evolutionary distance measurements. Comparisons between the vaccine and placebo arm did not reveal robust evidence for a T cell driven sieve effect, although some differences were noted in Env-V2 (0.022≤p-value≤0.231). The paucity of CD8 T cell responses identified following RV144 vaccination, with no evidence for V2 specificity, considered together both with the association of decreased infection risk in RV 144 participants with V-specific antibody responses and a V2 sieve effect, lead us to hypothesize that this sieve effect was not T cell specific. Overall, our results did not reveal a strong differential impact of vaccine-induced T cell responses among breakthrough infections in RV144 participants.

  13. Analysis of ChimeriVax Japanese Encephalitis Virus envelope for T-cell epitopes and comparison to circulating strain sequences.

    PubMed

    De Groot, Anne S; Martin, William; Moise, Leonard; Guirakhoo, Farshad; Monath, Thomas

    2007-11-19

    T-cell epitope variability is associated with viral immune escape and may influence the outcome of vaccination against the highly variable Japanese Encephalitis Virus (JEV). We computationally analyzed the ChimeriVax-JEV vaccine envelope sequence for T helper epitopes that are conserved in 12 circulating JEV strains and discovered 75% conservation among putative epitopes. Among non-identical epitopes, only minor amino acid changes that would not significantly affect HLA-binding were present. Therefore, in most cases, circulating strain epitopes could be restricted by the same HLA and are likely to stimulate a cross-reactive T-cell response. Based on this analysis, we predict no significant abrogation of ChimeriVax-JEV-conferred protection against circulating JEV strains.

  14. High frequencies of circulating IFN-gamma-secreting CD8 cytotoxic T cells specific for a novel MHC class I-restricted Mycobacterium tuberculosis epitope in M. tuberculosis-infected subjects without disease.

    PubMed

    Pathan, A A; Wilkinson, K A; Wilkinson, R J; Latif, M; McShane, H; Pasvol, G; Hill, A V; Lalvani, A

    2000-09-01

    MHC class I-restricted CD8 cytotoxic T lymphocytes (CTL) are essential for protective immunity to Mycobacterium tuberculosis in animal models but their role in humans remains unclear. We therefore studied subjects who had successfully contained M. tuberculosis infection in vivo, i.e. exposed healthy household contacts and individuals with inactive self-healed pulmonary tuberculosis. Using the ELISPOT assay for IFN-gamma, we screened peptides from ESAT-6, a secreted antigen that is highly specific for M. tuberculosis. We identified a novel nonamer epitope: unstimulated peripheral blood-derived CD8 T cells displayed peptide-specific IFN-gamma release ex vivo while CD8 T cell lines and clones exhibited HLA-A68.02-restricted cytolytic activity and recognized endogenously processed antigen. The frequency of CD8 CTL specific for this single M. tuberculosis epitope, 1/2500 peripheral blood lymphocytes, was equivalent to the combined frequency of all IFN-gamma-secreting purified protein derivative-reactive T cells ex vivo. This highly focused CTL response was maintained in an asymptomatic contact over 2 years and is the most potent antigen-specific antimycobacterial CD8 CTL response hitherto described. Thus, human M. tuberculosis-specific CD8 CTL are not necessarily associated with active disease per se. Rather, our results are consistent with a protective role for these ESAT-6-specific CD8 T cells in the long-term control of M. tuberculosis in vivo in humans.

  15. Preclinical Assessment of CD171-Directed CAR T-cell Adoptive Therapy for Childhood Neuroblastoma: CE7 Epitope Target Safety and Product Manufacturing Feasibility.

    PubMed

    Künkele, Annette; Taraseviciute, Agne; Finn, Laura S; Johnson, Adam J; Berger, Carolina; Finney, Olivia; Chang, Cindy A; Rolczynski, Lisa S; Brown, Christopher; Mgebroff, Stephanie; Berger, Michael; Park, Julie R; Jensen, Michael C

    2017-01-15

    The identification and vetting of cell surface tumor-restricted epitopes for chimeric antigen receptor (CAR)-redirected T-cell immunotherapy is the subject of intensive investigation. We have focused on CD171 (L1-CAM), an abundant cell surface molecule on neuroblastomas and, specifically, on the glycosylation-dependent tumor-specific epitope recognized by the CE7 monoclonal antibody. CD171 expression was assessed by IHC using CE7 mAb in tumor microarrays of primary, metastatic, and recurrent neuroblastoma, as well as human and rhesus macaque tissue arrays. The safety of targeting the CE7 epitope of CD171 with CE7-CAR T cells was evaluated in a preclinical rhesus macaque trial on the basis of CD171 homology and CE7 cross reactivity. The feasibility of generating bioactive CAR T cells from heavily pretreated pediatric patients with recurrent/refractory disease was assessed. CD171 is uniformly and abundantly expressed by neuroblastoma tumor specimens obtained at diagnoses and relapse independent of patient clinical risk group. CD171 expression in normal tissues is similar in humans and rhesus macaques. Infusion of up to 1 × 10 8 /kg CE7-CAR + CTLs in rhesus macaques revealed no signs of specific on-target off-tumor toxicity. Manufacturing of lentivirally transduced CD4 + and CD8 + CE7-CAR T-cell products under GMP was successful in 4 out of 5 consecutively enrolled neuroblastoma patients in a phase I study. All four CE7-CAR T-cell products demonstrated in vitro and in vivo antitumor activity. Our preclinical assessment of the CE7 epitope on CD171 supports its utility and safety as a CAR T-cell target for neuroblastoma immunotherapy. Clin Cancer Res; 23(2); 466-77. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Exposure to Melan-A/MART-126-35 tumor epitope specific CD8+T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS)

    PubMed Central

    Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M.; Seifert, Ulrike

    2016-01-01

    Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649

  17. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets

    PubMed Central

    Rosendahl Huber, S. K.; Camps, M. G. M.; Jacobi, R. H. J.; Mouthaan, J.; van Dijken, H.; van Beek, J.; Ossendorp, F.; de Jonge, J.

    2015-01-01

    Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks. PMID:26046664

  18. B and T Cell Epitope-Based Peptides Predicted from Evolutionarily Conserved and Whole Protein Sequences of Ebola Virus as Vaccine Targets.

    PubMed

    Yasmin, T; Nabi, A H M Nurun

    2016-05-01

    Ebola virus (EBV) has become a serious threat to public health. Different approaches were applied to predict continuous and discontinuous B cell epitopes as well as T cell epitopes from the sequence-based and available three-dimensional structural analyses of each protein of EBV. Peptides '(79) VPSATKRWGFRSGVPP(94) ' from GP1 and '(515) LHYWTTQDEGAAIGLA(530) ' from GP2 of Ebola were found to be the consensus peptidic sequences predicted as linear B cell epitope of which the latter contains a region (519) TTQDEG(524) that fulfilled all the criteria of accessibility, hydrophilicity, flexibility and beta turn region for becoming an ideal B cell epitope. Different nonamers as T cell epitopes were obtained that interacted with different numbers of MHC class I and class II alleles with a binding affinity of <100 nm. Interestingly, these alleles also bound to the MHC class I alleles mostly prevalent in African and South Asian regions. Of these, 'LANETTQAL' and 'FLYDRLAST' nonamers were predicted to be the most potent T cell epitopes and they, respectively, interacted with eight and twelve class I alleles that covered 63.79% and 54.16% of world population, respectively. These nonamers were found to be the core sequences of 15mer peptides that interacted with the most common class II allele, HLA-DRB1*01:01. They were further validated for their binding to specific class I alleles using docking technique. Thus, these predicted epitopes may be used as vaccine targets against EBV and can be validated in model hosts to verify their efficacy as vaccine. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  19. T Cell Epitope Regions of the P. falciparum MSP1-33 Critically Influence Immune Responses and In Vitro Efficacy of MSP1-42 Vaccines

    PubMed Central

    Pusic, Kae M.; Hashimoto, Caryn N.; Lehrer, Axel; Aniya, Charmaine; Clements, David E.; Hui, George S.

    2011-01-01

    The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes. PMID:21931852

  20. Bet v 1-specific T-cell receptor/forkhead box protein 3 transgenic T cells suppress Bet v 1-specific T-cell effector function in an activation-dependent manner.

    PubMed

    Schmetterer, Klaus G; Haiderer, Daniela; Leb-Reichl, Victoria M; Neunkirchner, Alina; Jahn-Schmid, Beatrice; Küng, Hans J; Schuch, Karina; Steinberger, Peter; Bohle, Barbara; Pickl, Winfried F

    2011-01-01

    Regulatory T (Treg) cells establish and maintain tolerance to self-antigens and many foreign antigens, such as allergens, by suppressing effector T-cell proliferation and function. We have previously shown that human T-cell receptor (TCR) αβ-chains specific for allergen-derived epitopes confer allergen specificity on peripheral blood T cells of individuals with and without allergy. To study the feasibility of generating allergen-specific human Treg cells by retroviral transduction of a transcription unit encoding forkhead box protein 3 (FOXP3) and allergen-specific TCR αβ-chains. cDNAs encoding the α and β-chains of a Bet v 1(142-153)-specific TCR (TCR alpha variable region 6/TCR beta variable region 20) and human FOXP3 were linked via picornaviral 2A sequences and expressed as single translational unit from an internal ribosomal entry site-green fluorescence protein-containing retroviral vector. Retrovirally transduced peripheral blood T cells were tested for expression of transgenes, Treg phenotype, and regulatory capacity toward allergen-specific effector T cells. Transduced T cells displayed a Treg phenotype with clear-cut upregulation of CD25, CD39, and cytotoxic T-lymphocyte antigen 4. The transduced cells were hyporesponsive in cytokine production and secretion and, like naturally occurring Treg cells, did not proliferate after antigen-specific or antigen-mimetic stimulation. However, proliferation was inducible upon exposure to exogenous IL-2. In coculture experiments, TRAV6(+)TRBV20(+)FOXP3(+) transgenic T cells, unlike FOXP3(+) single transgenic T cells or naturally occurring Treg cells, highly significantly suppressed T cell cytokine production and proliferation of corresponding allergen-specific effector T cells in an allergen-specific, dose-dependent manner. We demonstrate a transgenic approach to engineer human allergen-specific Treg cells that exert their regulatory function in an activation-dependent manner. Customized Treg cells might become

  1. Future of an “Asymptomatic” T-cell Epitope-Based Therapeutic Herpes Simplex Vaccine

    PubMed Central

    Dervillez, Xavier; Gottimukkala, Chetan; Kabbara, Khaled W.; Nguyen, Chelsea; Badakhshan, Tina; Kim, Sarah M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2012-01-01

    Summary Considering the limited success of the recent herpes clinical vaccine trial [1], new vaccine strategies are needed. Infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) in the majority of men and women are usually asymptomatic and results in lifelong viral latency in neurons of sensory ganglia (SG). However, in a minority of men and women HSV spontaneous reactivation can cause recurrent disease (i.e., symptomatic individuals). Our recent findings show that T cells from symptomatic and asymptomatic men and women (i.e. those with and without recurrences, respectively) recognize different herpes epitopes. This finding breaks new ground and opens new doors to assess a new vaccine strategy: mucosal immunization with HSV-1 & HSV-2 epitopes that induce strong in vitro CD4 and CD8 T cell responses from PBMC derived from asymptomatic men and women (designated here as “asymptomatic” protective epitopes”) could boost local and systemic “natural” protective immunity, induced by wild-type infection. Here we highlight the rationale and the future of our emerging “asymptomatic” T cell epitope-based mucosal vaccine strategy to decrease recurrent herpetic disease. PMID:22701511

  2. Upregulation of interleukin 7 receptor alpha and programmed death 1 marks an epitope-specific CD8+ T-cell response that disappears following primary Epstein-Barr virus infection.

    PubMed

    Sauce, Delphine; Larsen, Martin; Abbott, Rachel J M; Hislop, Andrew D; Leese, Alison M; Khan, Naeem; Papagno, Laura; Freeman, Gordon J; Rickinson, Alan B

    2009-09-01

    In immunocompetent individuals, the stability of the herpesvirus-host balance limits opportunities to study the disappearance of a virus-specific CD8(+) T-cell response. However, we noticed that in HLA-A 0201-positive infectious mononucleosis (IM) patients undergoing primary Epstein-Barr virus (EBV) infection, the initial CD8 response targets three EBV lytic antigen-derived epitopes, YVLDHLIVV (YVL), GLCTLVAML (GLC), and TLDYKPLSV (TLD), but only the YVL and GLC reactivities persist long-term; the TLD response disappears within 10 to 27 months. While present, TLD-specific cells remained largely indistinguishable from YVL and GLC reactivities in many phenotypic and functional respects but showed unique temporal changes in two markers of T-cell fate, interleukin 7 receptor alpha (IL-7Ralpha; CD127) and programmed death 1 (PD-1). Thus, following the antigen-driven downregulation of IL-7Ralpha seen on all populations in acute IM, in every case, the TLD-specific population recovered expression unusually quickly post-IM. As well, in four of six patients studied, TLD-specific cells showed very strong PD-1 upregulation in the last blood sample obtained before the cells' disappearance. Our data suggest that the disappearance of this individual epitope reactivity from an otherwise stable EBV-specific response (i) reflects a selective loss of cognate antigen restimulation (rather than of IL-7-dependent signals) and (ii) is immediately preceded, and perhaps mediated, by PD-1 upregulation to unprecedented levels.

  3. Epitope analysis of HLA-DR-restricted helper T-cell responses to Der p II, a major allergen molecule of Dermatophagoides pteronyssinus.

    PubMed

    Okano, M; Nagano, T; Nakada, M; Masuda, Y; Kino, K; Yasueda, H; Nose, Y; Nishimura, Y; Ohta, N

    1996-01-01

    T-cell epitopes of Der p II, a major allergen of Dermatophagoides pteronyssinus, were analyzed by using human T-cell clones. We tested 38 cloned T cells from two Japanese patients with allergic rhinitis, and identified at least two peptides (K33-T47 and I58-C73) as helper T-cell epitopes. The former epitope was shown to be restricted by HLA-DRB1*1502, and the latter by HLA-DRB1*0405, both of which are typical Japanese HLA-DR alleles, suggesting that those T-cell epitopes might be important for the onset of house-dust mite allergy in the Japanese population. We prepared 15 analog peptides of the HLA- DRB1*1502-restricted 15-mer peptide. Of those 15 residues, five (F35, L37, A39, F41, and E42) were critical for the epitope activity, and three residues (F35, A39, and E42) seemed to be included in anchor motifs for HLA-DRB1*1502. The epitope peptide was also recognized by HLA-DRB1*1502-positive healthy donors; however, only allergic T cells showed Th2 functions. Antigen-presenting cells of nonallergic donors were able to activate allergic T cells to express Th2 function. This seemed to suggest that antigen recognition of T cells, as well as additional unknown factors which promote Th2, rather than Th1, responses, might be important for the onset of house-dust mite allergy.

  4. Brucella melitensis T Cell Epitope Recognition in Humans with Brucellosis in Peru

    PubMed Central

    Cannella, Anthony P.; Arlehamn, Cecilia S. Lindestam; Sidney, John; Patra, Kailash P.; Torres, Katherine; Tsolis, Renee M.; Liang, Li; Felgner, Philip L.; Saito, Mayuko; Gotuzzo, Eduardo; Gilman, Robert H.; Sette, Alessandro

    2014-01-01

    Brucella melitensis, one of the causative agents of human brucellosis, causes acute, chronic, and relapsing infection. While T cell immunity in brucellosis has been extensively studied in mice, no recognized human T cell epitopes that might provide new approaches to classifying and prognosticating B. melitensis infection have ever been delineated. Twenty-seven pools of 500 major histocompatibility complex class II (MHC-II) restricted peptides were created by computational prediction of promiscuous MHC-II CD4+ T cell derived from the top 50 proteins recognized by IgG in human sera on a genome level B. melitensis protein microarray. Gamma interferon (IFN-γ) and interleukin-5 (IL-5) enzyme-linked immunospot (ELISPOT) analyses were used to quantify and compare Th1 and Th2 responses of leukapheresis-obtained peripheral blood mononuclear cells from Peruvian subjects cured after acute infection (n = 9) and from patients who relapsed (n = 5). Four peptide epitopes derived from 3 B. melitensis proteins (BMEI 1330, a DegP/HtrA protease; BMEII 0029, type IV secretion system component VirB5; and BMEII 0691, a predicted periplasmic binding protein of a peptide transport system) were found repeatedly to produce significant IFN-γ ELISPOT responses in both acute-infection and relapsing patients; none of the peptides distinguished the patient groups. IL-5 responses against the panel of peptides were insignificant. These experiments are the first to systematically identify B. melitensis MHC-II-restricted CD4+ T cell epitopes recognized by the human immune response, with the potential for new approaches to brucellosis diagnostics and understanding the immunopathogenesis related to this intracellular pathogen. PMID:24126518

  5. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT.

    PubMed

    Neuenhahn, M; Albrecht, J; Odendahl, M; Schlott, F; Dössinger, G; Schiemann, M; Lakshmipathi, S; Martin, K; Bunjes, D; Harsdorf, S; Weissinger, E M; Menzel, H; Verbeek, M; Uharek, L; Kröger, N; Wagner, E; Kobbe, G; Schroeder, T; Schmitt, M; Held, G; Herr, W; Germeroth, L; Bonig, H; Tonn, T; Einsele, H; Busch, D H; Grigoleit, G U

    2017-10-01

    Cytomegalovirus (CMV) infection is a common, potentially life-threatening complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We assessed prospectively the safety and efficacy of stem cell-donor- or third-party-donor-derived CMV-specific T cells for the treatment of persistent CMV infections after allo-HSCT in a phase I/IIa trial. Allo-HSCT patients with drug-refractory CMV infection and lacking virus-specific T cells were treated with a single dose of ex vivo major histocompatibility complex-Streptamer-isolated CMV epitope-specific donor T cells. Forty-four allo-HSCT patients receiving a T-cell-replete (D + repl; n=28) or T-cell-depleted (D + depl; n=16) graft from a CMV-seropositive donor were screened for CMV-specific T-cell immunity. Eight D + depl recipients received adoptive T-cell therapy from their stem cell donor. CMV epitope-specific T cells were well supported and became detectable in all treated patients. Complete and partial virological response rates were 62.5% and 25%, respectively. Owing to longsome third-party donor (TPD) identification, only 8 of the 57 CMV patients transplanted from CMV-seronegative donors (D - ) received antigen-specific T cells from partially human leukocyte antigen (HLA)-matched TPDs. In all but one, TPD-derived CMV-specific T cells remained undetectable. In summary, adoptive transfer correlated with functional virus-specific T-cell reconstitution in D + depl patients. Suboptimal HLA match may counteract expansion of TPD-derived virus-specific T cells in D - patients.

  6. Defining the expression hierarchy of latent T-cell epitopes in Epstein-Barr virus infection with TCR-like antibodies

    PubMed Central

    Sim, Adrian Chong Nyi; Too, Chien Tei; Oo, Min Zin; Lai, Junyun; Eio, Michelle Yating; Song, Zhenying; Srinivasan, Nalini; Tan, Diane Ai Lin; Pang, Shyue Wei; Gan, Shu Uin; Lee, Kok Onn; Loh, Thomas Kwok Seng; Chen, Jianzhu; Chan, Soh Ha; MacAry, Paul Anthony

    2013-01-01

    Epstein-Barr virus (EBV) is a gamma herpesvirus that causes a life-long latent infection in human hosts. The latent gene products LMP1, LMP2A and EBNA1 are expressed by EBV-associated tumors and peptide epitopes derived from these can be targeted by CD8 Cytotoxic T-Lymphocyte (CTL) lines. Whilst CTL-based methodologies can be utilized to infer the presence of specific latent epitopes, they do not allow a direct visualization or quantitation of these epitopes. Here, we describe the characterization of three TCR-like monoclonal antibodies (mAbs) targeting the latent epitopes LMP1125–133, LMP2A426–434 or EBNA1562–570 in association with HLA-A0201. These are employed to map the expression hierarchy of endogenously generated EBV epitopes. The dominance of EBNA1562–570 in association with HLA-A0201 was consistently observed in cell lines and EBV-associated tumor biopsies. These data highlight the discordance between MHC-epitope density and frequencies of associated CTL with implications for cell-based immunotherapies and/or vaccines for EBV-associated disease. PMID:24240815

  7. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model.

    PubMed

    Nomura, Takushi; Yamamoto, Hiroyuki; Takahashi, Naofumi; Naruse, Taeko K; Kimura, Akinori; Matano, Tetsuro

    2014-07-25

    Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A bivalent dendrimeric peptide bearing a T-cell epitope from foot-and-mouth disease virus protein 3A improves humoral response against classical swine fever virus.

    PubMed

    Bohórquez, José Alejandro; Defaus, Sira; Muñoz-González, Sara; Perez-Simó, Marta; Rosell, Rosa; Fraile, Lorenzo; Sobrino, Francisco; Andreu, David; Ganges, Llilianne

    2017-06-15

    Three dendrimeric peptides were synthesized in order to evaluate their immunogenicity and their potential protection against classical swine fever virus (CSFV) in domestic pigs. Construct 1, an optimized version of a previously used dendrimer, had four copies of a B-cell epitope derived from CSFV E2 glycoprotein connected to an also CSFV-derived T-cell epitope through maleimide instead of thioether linkages. Construct 2 was similarly built but included only two copies of the B-cell epitope, and in also bivalent construct 3 the CSFV T-cell epitope was replaced by a previously described one from the 3A protein of foot-and-mouth disease virus (FMDV). Animals were inoculated twice with a 21-day interval and challenged 15days after the second immunization. Clinical signs were recorded daily and ELISA tests were performed to detect antibodies against specific peptide and E2. The neutralising antibody response was assessed 13days after challenge. Despite the change to maleimide connectivity, only partial protection against CSFV was again observed. The best clinical protection was observed in group 3. Animals inoculated with constructs 2 and 3 showed higher anti-peptide humoral response, suggesting that two copies of the B-cell epitope are sufficient or even better than four copies for swine immune recognition. In addition, for construct 3 higher neutralizing antibody titres against CSFV were detected. Our results support the immunogenicity of the CSFV B-cell epitope and the cooperative role of the FMDV 3A T-cell epitope in inducing a neutralising response against CSFV in domestic pigs. This is also the first time that the FMDV T-cell epitope shows effectivity in improving swine immune response against a different virus. Our findings highlight the relevance of dendrimeric peptides as a powerful tool for epitope characterization and antiviral strategies development. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Vaccine Targeting of Subdominant CD8+ T Cell Epitopes Increases the Breadth of the T Cell Response upon Viral Challenge, but May Impair Immediate Virus Control.

    PubMed

    Steffensen, Maria A; Pedersen, Louise H; Jahn, Marie L; Nielsen, Karen N; Christensen, Jan P; Thomsen, Allan R

    2016-03-15

    As a result of the difficulties in making efficient vaccines against genetically unstable viruses such as HIV, it has been suggested that future vaccines should preferentially target subdominant epitopes, the idea being that this should allow a greater breadth of the induced T cell response and, hence, a greater efficiency in controlling escape variants. However, to our knowledge the evidence supporting this concept is limited at best. To improve upon this, we used the murine lymphocytic choriomeningitis virus model and adenoviral vectors to compare a vaccine expressing unmodified Ag to a vaccine expressing the same Ag without its immunodominant epitope. We found that removal of the dominant epitope allowed the induction of CD8(+) T cell responses targeting at least two otherwise subdominant epitopes. Importantly, the overall magnitude of the induced T cell responses was similar, allowing us to directly compare the efficiency of these vaccines. Doing this, we observed that mice vaccinated with the vaccine expressing unmodified Ag more efficiently controlled an acute viral challenge. In the course of a more chronic viral infection, mice vaccinated using the vaccine targeting subdominant epitopes caught up with the conventionally vaccinated mice, and analysis of the breadth of the CD8(+) T cell response revealed that this was notably greater in the former mice. However, under the conditions of our studies, we never saw any functional advantage of this. This may represent a limitation of our model, but clearly our findings underscore the importance of carefully weighing the pros and cons of changes in epitope targeting before any implementation. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Application of the pMHC Array to Characterise Tumour Antigen Specific T Cell Populations in Leukaemia Patients at Disease Diagnosis.

    PubMed

    Brooks, Suzanne E; Bonney, Stephanie A; Lee, Cindy; Publicover, Amy; Khan, Ghazala; Smits, Evelien L; Sigurdardottir, Dagmar; Arno, Matthew; Li, Demin; Mills, Ken I; Pulford, Karen; Banham, Alison H; van Tendeloo, Viggo; Mufti, Ghulam J; Rammensee, Hans-Georg; Elliott, Tim J; Orchard, Kim H; Guinn, Barbara-ann

    2015-01-01

    Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 10(6)). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1(126-134) (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1(950-958) epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.

  11. The Preferred Substrates for Transglutaminase 2 in a Complex Wheat Gluten Digest Are Peptide Fragments Harboring Celiac Disease T-Cell Epitopes

    PubMed Central

    Dørum, Siri; Arntzen, Magnus Ø.; Qiao, Shuo-Wang; Holm, Anders; Koehler, Christian J.; Thiede, Bernd; Sollid, Ludvig M.; Fleckenstein, Burkhard

    2010-01-01

    Background Celiac disease is a T-cell mediated chronic inflammatory disorder of the gut that is induced by dietary exposure to gluten proteins. CD4+ T cells of the intestinal lesion recognize gluten peptides in the context of HLA-DQ2.5 or HLA-DQ8 and the gluten derived peptides become better T-cell antigens after deamidation catalyzed by the enzyme transglutaminase 2 (TG2). In this study we aimed to identify the preferred peptide substrates of TG2 in a heterogeneous proteolytic digest of whole wheat gluten. Methods A method was established to enrich for preferred TG2 substrates in a complex gluten peptide mixture by tagging with 5-biotinamido-pentylamine. Tagged peptides were isolated and then identified by nano-liquid chromatography online-coupled to tandem mass spectrometry, database searching and final manual data validation. Results We identified 31 different peptides as preferred substrates of TG2. Strikingly, the majority of these peptides were harboring known gluten T-cell epitopes. Five TG2 peptide substrates that were predicted to bind to HLA-DQ2.5 did not contain previously characterized sequences of T-cell epitopes. Two of these peptides elicited T-cell responses when tested for recognition by intestinal T-cell lines of celiac disease patients, and thus they contain novel candidate T-cell epitopes. We also found that the intact 9mer core sequences of the respective epitopes were not present in all peptide substrates. Interestingly, those epitopes that were represented by intact forms were frequently recognized by T cells in celiac disease patients, whereas those that were present in truncated versions were infrequently recognized. Conclusion TG2 as well as gastrointestinal proteolysis play important roles in the selection of gluten T-cell epitopes in celiac disease. PMID:21124911

  12. Upregulation of Interleukin 7 Receptor Alpha and Programmed Death 1 Marks an Epitope-Specific CD8+ T-Cell Response That Disappears following Primary Epstein-Barr Virus Infection▿ †

    PubMed Central

    Sauce, Delphine; Larsen, Martin; Abbott, Rachel J. M.; Hislop, Andrew D.; Leese, Alison M.; Khan, Naeem; Papagno, Laura; Freeman, Gordon J.; Rickinson, Alan B.

    2009-01-01

    In immunocompetent individuals, the stability of the herpesvirus-host balance limits opportunities to study the disappearance of a virus-specific CD8+ T-cell response. However, we noticed that in HLA-A*0201-positive infectious mononucleosis (IM) patients undergoing primary Epstein-Barr virus (EBV) infection, the initial CD8 response targets three EBV lytic antigen-derived epitopes, YVLDHLIVV (YVL), GLCTLVAML (GLC), and TLDYKPLSV (TLD), but only the YVL and GLC reactivities persist long-term; the TLD response disappears within 10 to 27 months. While present, TLD-specific cells remained largely indistinguishable from YVL and GLC reactivities in many phenotypic and functional respects but showed unique temporal changes in two markers of T-cell fate, interleukin 7 receptor alpha (IL-7Rα; CD127) and programmed death 1 (PD-1). Thus, following the antigen-driven downregulation of IL-7Rα seen on all populations in acute IM, in every case, the TLD-specific population recovered expression unusually quickly post-IM. As well, in four of six patients studied, TLD-specific cells showed very strong PD-1 upregulation in the last blood sample obtained before the cells’ disappearance. Our data suggest that the disappearance of this individual epitope reactivity from an otherwise stable EBV-specific response (i) reflects a selective loss of cognate antigen restimulation (rather than of IL-7-dependent signals) and (ii) is immediately preceded, and perhaps mediated, by PD-1 upregulation to unprecedented levels. PMID:19605492

  13. The Control of the Specificity of CD4 T Cell Responses: Thresholds, Breakpoints, and Ceilings

    PubMed Central

    Sant, Andrea J.; Chaves, Francisco A.; Leddon, Scott A.; Tung, Jacqueline

    2013-01-01

    It has been known for over 25 years that CD4 T cell responses are restricted to a finite number of peptide epitopes within pathogens or protein vaccines. These selected peptide epitopes are termed “immunodominant.” Other peptides within the antigen that can bind to host MHC molecules and recruit CD4 T cells as single peptides are termed “cryptic” because they fail to induce responses when expressed in complex proteins or when in competition with other peptides during the immune response. In the last decade, our laboratory has evaluated the mechanisms that underlie the preferential specificity of CD4 T cells and have discovered that both intracellular events within antigen presenting cells, particular selective DM editing, and intercellular regulatory pathways, involving IFN-γ, indoleamine 2,3-dioxygenase, and regulatory T cells, play a role in selecting the final peptide specificity of CD4 T cells. In this review, we summarize our findings, discuss the implications of this work on responses to pathogens and vaccines and speculate on the logic of these regulatory events. PMID:24167504

  14. Substantial gaps in knowledge of Bordetella pertussis antibody and T cell epitopes relevant for natural immunity and vaccine efficacy

    PubMed Central

    Vaughan, Kerrie; Seymour, Emily; Peters, Bjoern; Sette, Alessandro

    2016-01-01

    The recent increase in whooping cough in vaccinated populations has been attributed to waning immunity associated with the acellular vaccine. The Immune Epitope Database (IEDB) is a repository of immune epitope data from the published literature and includes T cell and antibody epitopes for human pathogens. The IEDB conducted a review of the epitope literature, which revealed 300 Bordetella pertussis-related epitopes from 39 references. Epitope data are currently available for six virulence factors of B. pertussis: pertussis toxin, pertactin, fimbrial 2, fimbrial 3, adenylate cyclase and filamentous hemagglutinin. The majority of epitopes were defined for antibody reactivity; fewer T cell determinants were reported. Analysis of available protective correlates data revealed a number of candidate epitopes; however few are defined in humans and few have been shown to be protective. Moreover, there are a limited number of studies defining epitopes from natural infection versus whole cell or acellular/subunit vaccines. The relationship between epitope location and structural features, as well as antigenic drift (SNP analysis) was also investigated. We conclude that the cumulative data is yet insufficient to address many fundamental questions related to vaccine failure and this underscores the need for further investigation of B. pertussis immunity at the molecular level. PMID:24530743

  15. New insights into non-conventional epitopes as T cell targets: The missing link for breaking immune tolerance in autoimmune disease?

    PubMed

    Harbige, James; Eichmann, Martin; Peakman, Mark

    2017-11-01

    The mechanism by which immune tolerance is breached in autoimmune disease is poorly understood. One possibility is that post-translational modification of self-antigens leads to peripheral recognition of neo-epitopes against which central and peripheral tolerance is inadequate. Accumulating evidence points to multiple mechanisms through which non-germline encoded sequences can give rise to these non-conventional epitopes which in turn engage the immune system as T cell targets. In particular, where these modifications alter the rules of epitope engagement with MHC molecules, such non-conventional epitopes offer a persuasive explanation for associations between specific HLA alleles and autoimmune diseases. In this review article, we discuss current understanding of mechanisms through which non-conventional epitopes may be generated, focusing on several recently described pathways that can transpose germline-encoded sequences. We contextualise these discoveries around type 1 diabetes, the prototypic organ-specific autoimmune disease in which specific HLA-DQ molecules confer high risk. Non-conventional epitopes have the potential to act as tolerance breakers or disease drivers in type 1 diabetes, prompting a timely re-evaluation of models of a etiopathogenesis. Future studies are required to elucidate the disease-relevance of a range of potential non-germline epitopes and their relationship to the natural peptide repertoire. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mapping HLA-A2, -A3 and -B7 supertype-restricted T-cell epitopes in the ebolavirus proteome.

    PubMed

    Lim, Wan Ching; Khan, Asif M

    2018-01-19

    Ebolavirus (EBOV) is responsible for one of the most fatal diseases encountered by mankind. Cellular T-cell responses have been implicated to be important in providing protection against the virus. Antigenic variation can result in viral escape from immune recognition. Mapping targets of immune responses among the sequence of viral proteins is, thus, an important first step towards understanding the immune responses to viral variants and can aid in the identification of vaccine targets. Herein, we performed a large-scale, proteome-wide mapping and diversity analyses of putative HLA supertype-restricted T-cell epitopes of Zaire ebolavirus (ZEBOV), the most pathogenic species among the EBOV family. All publicly available ZEBOV sequences (14,098) for each of the nine viral proteins were retrieved, removed of irrelevant and duplicate sequences, and aligned. The overall proteome diversity of the non-redundant sequences was studied by use of Shannon's entropy. The sequences were predicted, by use of the NetCTLpan server, for HLA-A2, -A3, and -B7 supertype-restricted epitopes, which are relevant to African and other ethnicities and provide for large (~86%) population coverage. The predicted epitopes were mapped to the alignment of each protein for analyses of antigenic sequence diversity and relevance to structure and function. The putative epitopes were validated by comparison with experimentally confirmed epitopes. ZEBOV proteome was generally conserved, with an average entropy of 0.16. The 185 HLA supertype-restricted T-cell epitopes predicted (82 (A2), 37 (A3) and 66 (B7)) mapped to 125 alignment positions and covered ~24% of the proteome length. Many of the epitopes showed a propensity to co-localize at select positions of the alignment. Thirty (30) of the mapped positions were completely conserved and may be attractive for vaccine design. The remaining (95) positions had one or more epitopes, with or without non-epitope variants. A significant number (24) of the

  17. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    PubMed

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  18. Functional characterization of BK virus-specific CD4+ T cells with cytotoxic potential in seropositive adults.

    PubMed

    Zhou, Wendi; Sharma, Madeva; Martinez, Joy; Srivastava, Tumul; Diamond, Don J; Knowles, Wendy; Lacey, Simon F

    2007-09-01

    BK polyomavirus (BKV) reactivation is associated with a failure of T cell immunity in kidney transplant patients, and may lead to BKV-associated nephropathy (BKVN) and loss of the allograft. BKV reactivation in hematopoietic stem cell transplant recipients is associated with hemorrhagic cystitis. We have investigated T cell responses to overlapping peptide mixtures corresponding to the whole BKV major T antigen (TAg) and major capsid protein (VP1) in peripheral blood mononuclear cell samples from a cohort of healthy BKV-seropositive subjects. The majority of these individuals possessed populations of both CD8(+) and CD4(+) T cells specific for these BKV antigens. After expansion in culture, the majority of the BKV-specific CD4(+) T cells, in addition to expressing CD40L (CD154), secreted both interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha, contained both granzyme A and granzyme B, and degranulated/mobilized CD107 in response to antigen-specific stimulation. These T cells thus represent potentially functional BKV-specific cytotoxic CD4(+) T lymphocytes. Secretion of both TNF-alpha and IFN-gamma by CD154(+)CD4(+) T cells on BKV-specific stimulation was associated with higher levels of granzyme B and a higher proportion of degranulating cells compared with CD154(+)CD4(+) T cells producing only IFN-gamma or neither cytokine. These healthy subjects also harbored populations of functional CD8(+) T cells specific for one or more of three newly defined HLA-A 02-restricted cytotoxic T lymphocyte epitopes within the BKV TAg as well as two HLA-A 02-restricted epitopes within the BKV VP1 we have previously described. The BKV-specific CD4(+) T cells characterized in this study may play a part in maintaining persistent memory T cell responses to the virus and thus contribute to the immune control of BKV in healthy individuals.

  19. Asymptomatic HLA-A*02:01–Restricted Epitopes from Herpes Simplex Virus Glycoprotein B Preferentially Recall Polyfunctional CD8+ T Cells from Seropositive Asymptomatic Individuals and Protect HLA Transgenic Mice against Ocular Herpes

    PubMed Central

    Dervillez, Xavier; Qureshi, Huma; Chentoufi, Aziz A.; Khan, Arif A.; Kritzer, Elizabeth; Yu, David C.; Diaz, Oscar R.; Gottimukkala, Chetan; Kalantari, Mina; Villacres, Maria C.; Scarfone, Vanessa M.; McKinney, Denise M.; Sidney, John; Sette, Alessandro; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2014-01-01

    Evidence from C57BL/6 mice suggests that CD8+ T cells, specific to the immunodominant HSV-1 glycoprotein B (gB) H-2b–restricted epitope (gB498–505), protect against ocular herpes infection and disease. However, the possible role of CD8+ T cells, specific to HLA-restricted gB epitopes, in protective immunity seen in HSV-1–seropositive asymptomatic (ASYMP) healthy individuals (who have never had clinical herpes) remains to be determined. In this study, we used multiple prediction algorithms to identify 10 potential HLA-A*02:01–restricted CD8+ T cell epitopes from the HSV-1 gB amino acid sequence. Six of these epitopes exhibited high-affinity binding to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01–positive, HSV-1–seropositive ASYMP individuals, the most frequent, robust, and polyfunctional CD8+ T cell responses, as assessed by a combination of tetramer, IFN-γ-ELISPOT, CFSE proliferation, CD107a/b cytotoxic degranulation, and multiplex cytokine assays, were directed mainly against epitopes gB342–350 and gB561–569. In contrast, in 10 HLA-A*02:01–positive, HSV-1–seropositive symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent clinical herpes disease) frequent, but less robust, CD8+ T cell responses were directed mainly against nonoverlapping epitopes (gB183–191 and gB441–449). ASYMP individuals had a significantly higher proportion of HSV-gB–specific CD8+ T cells expressing CD107a/b degranulation marker and producing effector cytokines IL-2, IFN-γ, and TNF-α than did SYMP individuals. Moreover, immunization of a novel herpes-susceptible HLA-A*02:01 transgenic mouse model with ASYMP epitopes, but not with SYMP epitopes, induced strong CD8+ T cell–dependent protective immunity against ocular herpes infection and disease. These findings should guide the development of a safe and effective T cell–based herpes vaccine. PMID:24101547

  20. Recovery of known T-cell epitopes by computational scanning of a viral genome

    NASA Astrophysics Data System (ADS)

    Logean, Antoine; Rognan, Didier

    2002-04-01

    A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.

  1. Characterization of the Fine Specificity of Bovine CD8 T-Cell Responses to Defined Antigens from the Protozoan Parasite Theileria parva▿

    PubMed Central

    Graham, Simon P.; Pellé, Roger; Yamage, Mat; Mwangi, Duncan M.; Honda, Yoshikazu; Mwakubambanya, Ramadhan S.; de Villiers, Etienne P.; Abuya, Evelyne; Awino, Elias; Gachanja, James; Mbwika, Ferdinand; Muthiani, Anthony M.; Muriuki, Cecelia; Nyanjui, John K.; Onono, Fredrick O.; Osaso, Julius; Riitho, Victor; Saya, Rosemary M.; Ellis, Shirley A.; McKeever, Declan J.; MacHugh, Niall D.; Gilbert, Sarah C.; Audonnet, Jean-Christophe; Morrison, W. Ivan; van der Bruggen, Pierre; Taracha, Evans L. N.

    2008-01-01

    Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes. PMID:18070892

  2. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages.

    PubMed

    Machkovech, Heather M; Bedford, Trevor; Suchard, Marc A; Bloom, Jesse D

    2015-11-01

    Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  3. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages

    PubMed Central

    Machkovech, Heather M.; Bedford, Trevor; Suchard, Marc A.

    2015-01-01

    ABSTRACT Numerous experimental studies have demonstrated that CD8+ T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8+ T cells. Here we use a novel computational approach to test for selection in CD8+ T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8+ T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8+ T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8+ T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. IMPORTANCE There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8+ T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  4. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes

    PubMed Central

    Mazor, Ronit; Eberle, Jaime A.; Hu, Xiaobo; Vassall, Aaron N.; Onda, Masanori; Beers, Richard; Lee, Elizabeth C.; Kreitman, Robert J.; Lee, Byungkook; Baker, David; King, Chris; Hassan, Raffit; Benhar, Itai; Pastan, Ira

    2014-01-01

    Nonhuman proteins have valuable therapeutic properties, but their efficacy is limited by neutralizing antibodies. Recombinant immunotoxins (RITs) are potent anticancer agents that have produced many complete remissions in leukemia, but immunogenicity limits the number of doses that can be given to patients with normal immune systems. Using human cells, we identified eight helper T-cell epitopes in PE38, a portion of the bacterial protein Pseudomonas exotoxin A which consists of the toxin moiety of the RIT, and used this information to make LMB-T18 in which three epitopes were deleted and five others diminished by point mutations in key residues. LMB-T18 has high cytotoxic and antitumor activity and is very resistant to thermal denaturation. The new immunotoxin has a 93% decrease in T-cell epitopes and should have improved efficacy in patients because more treatment cycles can be given. Furthermore, the deimmunized toxin can be used to make RITs targeting other antigens, and the approach we describe can be used to deimmunize other therapeutically useful nonhuman proteins. PMID:24799704

  5. Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3.

    PubMed

    Pasetto, Anna; Frelin, Lars; Brass, Anette; Yasmeen, Anila; Koh, Sarene; Lohmann, Volker; Bartenschlager, Ralf; Magalhaes, Isabelle; Maeurer, Markus; Sällberg, Matti; Chen, Margaret

    2012-02-01

    Hepatitis C virus (HCV) is a major cause of severe liver disease, and one major contributing factor is thought to involve a dysfunction of virus-specific T-cells. T-cell receptor (TCR) gene therapy with HCV-specific TCRs would increase the number of effector T-cells to promote virus clearance. We therefore took advantage of HLA-A2 transgenic mice to generate multiple TCR candidates against HCV using DNA vaccination followed by generation of stable T-cell-BW (T-BW) tumour hybrid cells. Using this approach, large numbers of non-structural protein 3 (NS3)-specific functional T-BW hybrids can be generated efficiently. These predominantly target the genetically stable HCV genotype 1 NS3(1073-1081) CTL epitope, frequently associated with clearance of HCV in humans. These T-BW hybrid clones recognized the NS3(1073) peptide with a high avidity. The hybridoma effectively recognized virus variants and targeted cells with low HLA-A2 expression, which has not been reported previously. Importantly, high-avidity murine TCRs effectively redirected human non-HCV-specific T-lymphocytes to recognize human hepatoma cells with HCV RNA replication driven by a subgenomic HCV replicon. Taken together, TCR candidates with a range of functional avidities, which can be used to study immune recognition of HCV-positive targets, have been generated. This has implications for TCR-related immunotherapy against HCV.

  6. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    PubMed

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  7. CD8(+) T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types.

    PubMed

    Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark

    2015-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people.

  8. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8+ T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination.

    PubMed

    Memarnejadian, Arash; Meilleur, Courtney E; Shaler, Christopher R; Khazaie, Khashayarsha; Bennink, Jack R; Schell, Todd D; Haeryfar, S M Mansour

    2017-11-01

    The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8 + T cell (T CD8 ) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse T CD8 exhaustion/anergy. However, whether they alter the epitope breadth of T CD8 responses remains unclear. This is an important question because subdominant T CD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of T CD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant T CD8 , which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant T CD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant T CD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant T CD8 responses by relieving their lysis-dependent suppression by immunodominant T CD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Cross-reactive influenza virus–specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus–associated infectious mononucleosis

    PubMed Central

    Clute, Shalyn C.; Watkin, Levi B.; Cornberg, Markus; Naumov, Yuri N.; Sullivan, John L.; Luzuriaga, Katherine; Welsh, Raymond M.; Selin, Liisa K.

    2005-01-01

    The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M158–66–specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1280–288, which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM. PMID:16308574

  10. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis.

    PubMed

    Clute, Shalyn C; Watkin, Levi B; Cornberg, Markus; Naumov, Yuri N; Sullivan, John L; Luzuriaga, Katherine; Welsh, Raymond M; Selin, Liisa K

    2005-12-01

    The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M1(58-66)-specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1(280-288), which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM.

  11. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    PubMed Central

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer

  12. Protective Efficacy of Serially Up-Ranked Subdominant CD8+ T Cell Epitopes against Virus Challenges

    PubMed Central

    Roshorm, Yaowaluck; Bridgeman, Anne; Létourneau, Sven; Liljeström, Peter; Potash, Mary Jane; Volsky, David J.; McMichael, Andrew J.; Hanke, Tomáš

    2011-01-01

    Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans. PMID:21625575

  13. T Cell Epitope Mapping of JC Polyoma Virus-Encoded Proteome Reveals Reduced T Cell Responses in HLA-DRB1*04:01+ Donors

    PubMed Central

    Jelčić, Ilijas; Aly, Lilian; Binder, Thomas M. C.; Jelčić, Ivan; Bofill-Mas, Sílvia; Planas, Raquel; Demina, Victoria; Eiermann, Thomas H.; Weber, Thomas; Girones, Rosina; Sospedra, Mireia

    2013-01-01

    JC polyomavirus (JCV) infection is highly prevalent and usually kept in a persistent state without clinical signs and symptoms. It is only during immunocompromise and especially impaired CD4+ T cell function in the brain, as seen in AIDS patients or natalizumab-treated multiple sclerosis patients, that JCV may cause progressive multifocal leukoencephalopathy (PML), an often life-threatening brain disease. Since CD4+ T cells likely play an important role in controlling JCV infection, we here describe the T cell response to JCV in a group of predominantly HLA-DR-heterozygotic healthy donors (HD) by using a series of overlapping 15-mer peptides spanning all JCV-encoded open reading frames. We identified immunodominant epitopes and compared T cell responses with anti-JCV VP1 antibody production and with the presence of urinary viral shedding. We observed positive JCV-specific T cell responses in 28.6% to 77.6%, humoral immune response in 42.6% to 89.4%, and urinary viral shedding in 36.4% to 45.5% of HD depending on the threshold. Four immunodominant peptides were mapped, and at least one immunogenic peptide per HLA-DRB1 allele was detected in DRB1*01+, DRB1*07+, DRB1*11+, DRB1*13+, DRB1*15+, and DRB1*03+ individuals. We show for the first time that JCV-specific T cell responses may be directed not only against JCV VP1 and large T antigen but also against all other JCV-encoded proteins. Heterozygotic DRB1*04:01+ individuals showed very low T cell responses to JCV together with normal anti-VP1 antibody levels and no urinary viral shedding, indicating a dominant-negative effect of this allele on global JCV-directed T cell responses. Our data are potentially relevant for the development of vaccines against JCV. PMID:23302880

  14. Biological and immunological characterization of recombinant Yellow Fever 17D viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome.

    PubMed

    Nogueira, Raquel T; Nogueira, Alanderson R; Pereira, Mirian C S; Rodrigues, Maurício M; Galler, Ricardo; Bonaldo, Myrna C

    2011-03-18

    The attenuated Yellow fever (YF) 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2) to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan) antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression of larger domains of ASP-2, which include the TEWETGQI

  15. Infection with Trypanosoma cruzi restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance.

    PubMed

    Tzelepis, Fanny; de Alencar, Bruna C G; Penido, Marcus L O; Claser, Carla; Machado, Alexandre V; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; Rodrigues, Mauricio M

    2008-02-01

    Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.

  16. T-Epitope Designer: A HLA-peptide binding prediction server.

    PubMed

    Kangueane, Pandjassarame; Sakharkar, Meena Kishore

    2005-05-15

    The current challenge in synthetic vaccine design is the development of a methodology to identify and test short antigen peptides as potential T-cell epitopes. Recently, we described a HLA-peptide binding model (using structural properties) capable of predicting peptides binding to any HLA allele. Consequently, we have developed a web server named T-EPITOPE DESIGNER to facilitate HLA-peptide binding prediction. The prediction server is based on a model that defines peptide binding pockets using information gleaned from X-ray crystal structures of HLA-peptide complexes, followed by the estimation of peptide binding to binding pockets. Thus, the prediction server enables the calculation of peptide binding to HLA alleles. This model is superior to many existing methods because of its potential application to any given HLA allele whose sequence is clearly defined. The web server finds potential application in T cell epitope vaccine design. http://www.bioinformation.net/ted/

  17. CD4+ T-cell engagement by both wild-type and variant HCV peptides modulates the conversion of viral clearing helper T cells to Tregs

    PubMed Central

    Cusick, Matthew F; Libbey, Jane E; Cox Gill, Joan; Fujinami, Robert S; Eckels, David D

    2013-01-01

    Aim To determine whether modulation of T-cell responses by naturally occurring viral variants caused an increase in numbers of Tregs in HCV-infected patients. Patients, materials & methods Human peripheral blood mononuclear cells, having proliferative responses to a wild-type HCV-specific CD4+ T-cell epitope, were used to quantify, via proliferative assays, flow cytometry and class II tetramers, the effects of naturally occurring viral variants arising in the immunodominant epitope. Results In combination, the wild-type and variant peptides led to enhanced suppression of an anti-HCV T-cell response. The variant had a lower avidity for the wild-type-specific CD4+ T cell. Variant-stimulated CD4+ T cells had increased Foxp3, compared with wild-type-stimulated cells. Conclusion A stable viral variant from a chronic HCV subject was able to induce Tregs in multiple individuals that responded to the wild-type HCV-specific CD4+ T-cell epitope. PMID:24421862

  18. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection.

    PubMed

    Kumar Pandey, Rajan; Ojha, Rupal; Mishra, Amit; Kumar Prajapati, Vijay

    2018-06-14

    The Zika virus is a rapidly spreading Aedes mosquito-borne sickness, which creates an unanticipated linkage birth deformity and neurological turmoil. This study represents the use of the combinatorial immunoinformatics approach to develop a multiepitope subunit vaccine using the structural and nonstructural proteins of the Zika virus. The designed subunit vaccine consists of cytotoxic T-lymphocyte and helper T-lymphocyte epitopes accompanied by suitable adjuvant and linkers. The presence of humoral immune response specific B-cell epitopes was also confirmed by B-cell epitope mapping among vaccine protein. Further, the vaccine protein was characterized for its allergenicity, antigenicity, and physiochemical parameters and found to be safe and immunogenic. Molecular docking and molecular dynamics studies of the vaccine protein with the toll-like receptor-3 were performed to ensure the binding affinity and stability of their complex. Finally, in silico cloning was performed for the effective expression of vaccine construct in the microbial system (Escherichia coli K12 strain). Aforementioned approaches result in the multiepitope subunit vaccine which may have the ability to induce cellular as well as humoral immune response. Moreover, this study needs the experimental validation to prove the immunogenic and protective behavior of the developed subunit vaccine. © 2018 Wiley Periodicals, Inc., A Wiley Company.

  19. A novel Minimalist Cell-Free MHC Class II Antigen Processing System Identifies Immunodominant Epitopes

    PubMed Central

    Hartman, Isamu Z.; Kim, AeRyon; Cotter, Robert J.; Walter, Kimberly; Dalai, Sarat K.; Boronina, Tatiana; Griffith, Wendell; Schwenk, Robert; Lanar, David E.; Krzych, Urszula; Cole, Robert N.; Sadegh-Nasseri, Scheherazade

    2010-01-01

    Immunodominance is defined as restricted responsiveness of T cells to a few selected epitopes from complex antigens. Strategies currently used for elucidating CD4+ T cell epitopes are inadequate. To understand the mechanism of epitope selection for helper T cells, we established a cell-free antigen processing system composed of defined proteins: MHC class II, cathepsins, and HLA-DM. Our minimalist system successfully identified the physiologically selected immunodominant epitopes of model antigens, HA1 from influenza virus (A/Texas/1/77) and type II collagen. When applied for de novo epitope identification to a malaria antigen, or HA1 from H5N1 virus (Avian Flu), the system selected a single epitope from each protein that were confirmed to be immunodominant by their capacity to activate CD4+ T cells in HLA-DR1 positive human volunteers or transgenic mice immunized with the corresponding proteins. Thus, we provide a powerful new tool for the identification of physiologically relevant helper T cell epitopes from antigens. PMID:21037588

  20. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    PubMed

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. CD8+ T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types

    PubMed Central

    Migueles, Stephen A.; Mendoza, Daniel; Zimmerman, Matthew G.; Martins, Kelly M.; Toulmin, Sushila A.; Kelly, Elizabeth P.; Peterson, Bennett A.; Johnson, Sarah A.; Galson, Eric; Poropatich, Kate O.; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A.; Jones, Sara; Hallahan, Claire W.; Follmann, Dean A.; Connors, Mark

    2014-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8+ T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8+ T-cell specificity and function of B*27/57neg LTNP/EC (n = 23), B*27/57pos LTNP/EC (n = 23) and B*27/57neg progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57neg LTNP/EC did not target more highly conserved epitopes, their CD8+ T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57pos LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8+ T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533

  2. HLA-DR4-associated T and B cell responses to specific determinants on the IA-2 autoantigen in type 1 diabetes.

    PubMed

    McLaughlin, Kerry A; Gulati, Kavita; Richardson, Carolyn C; Morgan, Diana; Bodansky, H Jonathan; Feltbower, Richard G; Christie, Michael R

    2014-11-01

    Autoantibodies to IA-2 in type 1 diabetes are associated with HLA-DR4, suggesting influences of HLA-DR4-restricted T cells on IA-2-specific B cell responses. The aim of this study was to investigate possible T-B cell collaboration by determining whether autoantibodies to IA-2 epitopes are associated with T cell responses to IA-2 peptides presented by DR4. T cells secreting the cytokines IFN-γ and IL-10 in response to seven peptides known to elicit T cell responses in type 1 diabetes were quantified by cytokine ELISPOT in HLA-typed patients characterized for Abs to IA-2 epitopes. T cell responses were detected to all peptides tested, but only IL-10 responses to 841-860 and 853-872 peptides were associated with DR4. Phenotyping by RT-PCR of FACS-sorted CD45RO(hi) T cells secreting IL-10 in response to these two peptides indicated that these expressed GATA-3 or T-bet, but not FOXP3, consistent with these being Th2 or Th1 memory T cells rather than of regulatory phenotype. T cell responses to the same two peptides were also associated with specific Abs: those to 841-860 peptide with Abs to juxtamembrane epitopes, which appear early in prediabetes, and those to peptide 853-872 with Abs to an epitope located in the 831-862 central region of the IA-2 tyrosine phosphatase domain. Abs to juxtamembrane and central region constructs were both DR4 associated. This study identifies a region of focus for B and T cell responses to IA-2 in HLA-DR4 diabetic patients that may explain HLA associations of IA-2 autoantibodies, and this region may provide a target for future immune intervention to prevent disease. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. Differential Recognition of Mycobacterium tuberculosis-Specific Epitopes as a Function of Tuberculosis Disease History.

    PubMed

    Scriba, Thomas J; Carpenter, Chelsea; Pro, Sebastian Carrasco; Sidney, John; Musvosvi, Munyaradzi; Rozot, Virginie; Seumois, Grégory; Rosales, Sandy L; Vijayanand, Pandurangan; Goletti, Delia; Makgotlho, Edward; Hanekom, Willem; Hatherill, Mark; Peters, Bjoern; Sette, Alessandro; Arlehamn, Cecilia S Lindestam

    2017-09-15

    Individuals with a history of tuberculosis (TB) disease are at elevated risk of disease recurrence. The underlying cause is not known, but one explanation is that previous disease results in less-effective immunity against Mycobacterium tuberculosis (Mtb). We hypothesized that the repertoire of Mtb-derived epitopes recognized by T cells from individuals with latent Mtb infection differs as a function of previous diagnosis of active TB disease. T-cell responses to peptide pools in samples collected from an adult screening and an adolescent validation cohort were measured by IFN-γ enzyme-linked immunospot assay or intracellular cytokine staining. We identified a set of "type 2" T-cell epitopes that were recognized at 10-fold-lower levels in Mtb-infected individuals with a history of TB disease less than 6 years ago than in those without previous TB. By contrast, "type 1" epitopes were recognized equally well in individuals with or without previous TB. The differential epitope recognition was not due to differences in HLA class II binding, memory phenotypes, or gene expression in the responding T cells. Instead, "TB disease history-sensitive" type 2 epitopes were significantly (P < 0.0001) more homologous to sequences from bacteria found in the human microbiome than type 1 epitopes. Preferential loss of T-cell reactivity to Mtb epitopes that are homologous to bacteria in the microbiome in persons with previous TB disease may reflect long-term effects of antibiotic TB treatment on the microbiome.

  4. T-cell receptor transfer for boosting HIV-1-specific T-cell immunity in HIV-1-infected patients.

    PubMed

    Mummert, Christiane; Hofmann, Christian; Hückelhoven, Angela G; Bergmann, Silke; Mueller-Schmucker, Sandra M; Harrer, Ellen G; Dörrie, Jan; Schaft, Niels; Harrer, Thomas

    2016-09-10

    Strategies to cure HIV-1 infection require the eradication of viral reservoirs. An innovative approach for boosting the cytotoxic T-lymphocyte response is the transfer of T-cell receptors (TCRs). Previously, we have shown that electroporation of TCR-encoding mRNA is able to reprogram CD8 T cells derived from healthy donors. So far, it is unknown whether the transfer of HIV-1-specific TCRs is capable to reprogram CD8 T cells of HIV-1-infected patients. To assess the efficiency of TCR-transfer by mRNA electroporation and the functionality of reprogramed T cells in HIV-1-infected patients, we performed an in-vitro analysis of TCR-transfer into T cells from HIV-1-infected patients in various stages of disease and from healthy controls. Peripheral blood mononuclear cells from 16 HIV-1-infected patients (nine HLA-A02-positive, seven HLA-A02-negative) and from five healthy controls were electroporated with mRNA-constructs encoding TCRs specific for the HLA-A02/HIV-1-gag p17 epitope SLYNTVATL (SL9). Functionality of the TCRs was measured by γIFN-ELISpot assays. SL9/TCR transfection into peripheral blood mononuclear cells from both HLA-A02-positive and HLA-A02-negative HIV-1-infected patients and from healthy blood donors reprogramed T cells for recognition of SL9-presenting HLA-A02-positive cells in γIFN-ELISpot assays. SL9/TCR-transfer into T cells from an immunodeficient AIDS patient could induce recognition of SL9-expressing target cells only after reversion of T-cell dysfunction by antiretroviral therapy. The transfer of HIV-1-p17-specific TCRs into T cells is functional both in HIV-1-infected patients as well as in healthy blood donors. TCR-transfer is a promising method to boost the immune system against HIV-1.

  5. Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection

    PubMed Central

    Asher, Tedi E.; Wilson, Nancy A.; Nason, Martha C.; Brenchley, Jason M.; Metzler, Ian S.; Venturi, Vanessa; Gostick, Emma; Chattopadhyay, Pratip K.; Roederer, Mario; Davenport, Miles P.; Watkins, David I.; Douek, Daniel C.

    2009-01-01

    Despite the pressing need for an AIDS vaccine, the determinants of protective immunity to HIV remain concealed within the complexity of adaptive immune responses. We dissected immunodominant virus-specific CD8+ T cell populations in Mamu-A*01+ rhesus macaques with primary SIV infection to elucidate the hallmarks of effective immunity at the level of individual constituent clonotypes, which were identified according to the expression of distinct T cell receptors (TCRs). The number of public clonotypes, defined as those that expressed identical TCR β-chain amino acid sequences and recurred in multiple individuals, contained within the acute phase CD8+ T cell population specific for the biologically constrained Gag CM9 (CTPYDINQM; residues 181–189) epitope correlated negatively with the virus load set point. This independent molecular signature of protection was confirmed in a prospective vaccine trial, in which clonotype engagement was governed by the nature of the antigen rather than the context of exposure and public clonotype usage was associated with enhanced recognition of epitope variants. Thus, the pattern of antigen-specific clonotype recruitment within a protective CD8+ T cell population is a prognostic indicator of vaccine efficacy and biological outcome in an AIDS virus infection. PMID:19349463

  6. Modified Vaccinia Virus Ankara-Infected Dendritic Cells Present CD4+ T-Cell Epitopes by Endogenous Major Histocompatibility Complex Class II Presentation Pathways

    PubMed Central

    Thiele, Frank; Tao, Sha; Zhang, Yi; Muschaweckh, Andreas; Zollmann, Tina; Protzer, Ulrike; Abele, Rubert

    2014-01-01

    ABSTRACT CD4+ T lymphocytes play a central role in the immune system and mediate their function after recognition of their respective antigens presented on major histocompatibility complex II (MHCII) molecules on antigen-presenting cells (APCs). Conventionally, phagocytosed antigens are loaded on MHCII for stimulation of CD4+ T cells. Certain epitopes, however, can be processed directly from intracellular antigens and are presented on MHCII (endogenous MHCII presentation). Here we characterized the MHCII antigen presentation pathways that are possibly involved in the immune response upon vaccination with modified vaccinia virus Ankara (MVA), a promising live viral vaccine vector. We established CD4+ T-cell lines specific for MVA-derived epitopes as tools for in vitro analysis of MHCII antigen processing and presentation in MVA-infected APCs. We provide evidence that infected APCs are able to directly transfer endogenous viral proteins into the MHCII pathway to efficiently activate CD4+ T cells. By using knockout mice and chemical inhibitory compounds, we further elucidated the molecular basis, showing that among the various subcellular pathways investigated, proteasomes and autophagy are key players in the endogenous MHCII presentation during MVA infection. Interestingly, although proteasomal processing plays an important role, neither TAP nor LAMP-2 was found to be involved in the peptide transport. Defining the molecular mechanism of MHCII presentation during MVA infection provides a basis for improving MVA-based vaccination strategies by aiming for enhanced CD4+ T-cell activation by directing antigens into the responsible pathways. IMPORTANCE This work contributes significantly to our understanding of the immunogenic properties of pathogens by deciphering antigen processing pathways contributing to efficient activation of antigen-specific CD4+ T cells. We identified autophagosome formation, proteasomal activity, and lysosomal integrity as being crucial for

  7. In Silico Analysis of Six Known Leishmania major Antigens and In Vitro Evaluation of Specific Epitopes Eliciting HLA-A2 Restricted CD8 T Cell Response

    PubMed Central

    Seyed, Negar; Zahedifard, Farnaz; Safaiyan, Shima; Gholami, Elham; Doustdari, Fatemeh; Azadmanesh, Kayhan; Mirzaei, Maryam; Saeedi Eslami, Nasir; Khadem Sadegh, Akbar; Eslami far, Ali; Sharifi, Iraj; Rafati, Sima

    2011-01-01

    Background As a potent CD8+ T cell activator, peptide vaccine has found its way in vaccine development against intracellular infections and cancer, but not against leishmaniasis. The first step toward a peptide vaccine is epitope mapping of different proteins according to the most frequent HLA types in a population. Methods and Findings Six Leishmania (L.) major-related candidate antigens (CPB,CPC,LmsTI-1,TSA,LeIF and LPG-3) were screened for potential CD8+ T cell activating 9-mer epitopes presented by HLA-A*0201 (the most frequent HLA-A allele). Online software including SYFPEITHI, BIMAS, EpiJen, Rankpep, nHLApred, NetCTL and Multipred were used. Peptides were selected only if predicted by almost all programs, according to their predictive scores. Pan-A2 presentation of selected peptides was confirmed by NetMHCPan1.1. Selected peptides were pooled in four peptide groups and the immunogenicity was evaluated by in vitro stimulation and intracellular cytokine assay of PBMCs from HLA-A2+ individuals recovered from L. major. HLA-A2− individuals recovered from L. major and HLA-A2+ healthy donors were included as control groups. Individual response of HLA-A2+ recovered volunteers as percent of CD8+/IFN-γ+ T cells after in vitro stimulation against peptide pools II and IV was notably higher than that of HLA-A2− recovered individuals. Based on cutoff scores calculated from the response of HLA-A2− recovered individuals, 31.6% and 13.3% of HLA-A2+ recovered persons responded above cutoff in pools II and IV, respectively. ELISpot and ELISA results confirmed flow cytometry analysis. The response of HLA-A2− recovered individuals against peptide pools I and III was detected similar and even higher than HLA-A2+ recovered individuals. Conclusion Using in silico prediction we demonstrated specific response to LmsTI-1 (pool II) and LPG-3- (pool IV) related peptides specifically presented in HLA-A*0201 context. This is among the very few reports mapping L. major epitopes for

  8. Production of IFN-γ and IL-4 Against Intact Catalase and Constructed Catalase Epitopes of Helicobacter pylori From T-Cells.

    PubMed

    Ghasemian Safaei, Hajieh; Faghri, Jamshid; Moghim, Sharareh; Nasr Esfahani, Bahram; Fazeli, Hossein; Makvandi, Manoochehr; Adib, Minoo; Rashidi, Niloufar

    2015-12-01

    Helicobacter pylori infection is highly prevalent in the developing countries. It causes gastritis, peptic ulcer disease, and gastrocarcinoma. Treatment with drugs and antibiotics is problematic due to the following reasons: cost, resistance to antibiotics, prolonged treatment and using multiple drugs. Catalase is highly conserved among the Helicobacter species and is important to the survival of the organism. It is expressed in high amounts and is exposed to the surface of this bacterium; therefore it represents a suitable candidate vaccine antigen. A suitable approach in H. pylori vaccinology is the administration of epitope based vaccines. Therefore the responses of T-cells (IFN-γ and IL-4 production) against the catalase of H. pylori were determined. Then the quality of the immune responses against intact catalase and three epitopes of catalase were compared. In this study, a composition of three epitopes of the H. pylori catalase was selected based on Propred software. The effect of catalase epitopes on T-cells were assayed and immune responses identified. The results of IFN-γ, IL-4 production against antigens, epitopes, and recombinant catalase by T-cells were compared for better understanding of epitope efficiency. The current research demonstrated that epitope sequence stimulates cellular immune responses effectively. In addition, increased safety and potency as well as a reduction in time and cost were advantages of this method. Authors are going to use this sequence as a suitable vaccine candidate for further research on animal models and humans in future.

  9. Type-specific and cross-reactive antibodies and T cell responses in norovirus VLP immunized mice are targeted both to conserved and variable domains of capsid VP1 protein.

    PubMed

    Malm, Maria; Tamminen, Kirsi; Vesikari, Timo; Blazevic, Vesna

    2016-10-01

    Norovirus (NoV)-specific antibodies, which block binding of the virus-like particles (VLPs) to the cell receptors are conformation dependent and directed towards the most exposed domain of the NoV capsid VP1 protein, the P2 domain. Limited data are available on the antibodies directed to other domains of the VP1, and even less on the NoV VP1-specific T cell epitopes. In here, BALB/c mice were immunized with six VLPs derived from NoV GII.4-1999, GII.4-2009 (New Orleans), GII.4-2012 (Sydney), GII.12, GI.1, and G1.3. Serum immunoglobulin G binding antibodies, histo-blood group antigen blocking antibodies and T cell responses using type-specific and heterologous NoV VLPs, P-dimers and 76 overlapping synthetic peptides, spanning the entire 539 amino acid sequence of GII.4 VP1, were determined. The results showed that at least half of the total antibody content is directed towards conserved S domain of the VP1. Only a small fraction (<1%) of the VP1 binding antibodies were blocking/neutralizing. With the use of matrix peptide pools and individual peptides, seven CD4 + and CD8 + T cell restricted epitopes were mapped, two located in S domain, four in P2 domain and one in P1 domain of NoV VP1. The epitopes were GII.4 strain-specific but also common GII.4 genotype-specific T cell epitopes were identified. More importantly, the results suggest a 9-amino acids long sequence ( 318 PAPLGTPDF 326 ) in P2 domain of VP1 as a universal NoV genogroup II-specific CD8 + T cell epitope. Distribution of the T cell epitopes alongside the capsid VP1 indicates the need of the complete protein for high immunogenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Epitope-Specific Suppression of IgG Responses by Passively Administered Specific IgG: Evidence of Epitope Masking.

    PubMed

    Bergström, Joakim J E; Xu, Hui; Heyman, Birgitta

    2017-01-01

    Specific IgG, passively administered together with particulate antigen, can completely prevent induction of antibody responses to this antigen. The ability of IgG to suppress antibody responses to sheep red blood cells (SRBCs) is intact in mice lacking FcγRs, complement factor 1q, C3, or complement receptors 1 and 2, suggesting that Fc-dependent effector functions are not involved. Two of the most widely discussed explanations for the suppressive effect are increased clearance of IgG-antigen complexes and/or that IgG "hides" the antigen from recognition by specific B cells, so-called epitope masking. The majority of data on how IgG induces suppression was obtained through studies of the effects on IgM-secreting single spleen cells during the first week after immunization. Here, we show that IgG also suppresses antigen-specific extrafollicular antibody-secreting cells, germinal center B-cells, long-lived plasma cells, long-term IgG responses, and induction of memory antibody responses. IgG anti-SRBC reduced the amount of SRBC in the spleens of wild-type, but not of FcγR-deficient mice. However, no correlation between suppression and the amount of SRBC in the spleen was observed, suggesting that increased clearance does not explain IgG-mediated suppression. Instead, we found compelling evidence for epitope masking because IgG anti-NP administered with NP-SRBC suppressed the IgG anti-NP, but not the IgG anti-SRBC response. Vice versa, IgG anti-SRBC administered with NP-SRBC, suppressed only the IgG anti-SRBC response. In conclusion, passively transferred IgG suppressed all measured parameters of an antigen-specific antibody/B cell response and an important mechanism of action is likely to be epitope masking.

  11. CD8+ T Lymphocyte Epitopes From The Herpes Simplex Virus Type 2 ICP27, VP22 and VP13/14 Proteins To Facilitate Vaccine Design And Characterization

    PubMed Central

    Platt, Rebecca J.; Khodai, Tansi; Townend, Tim J.; Bright, Helen H.; Cockle, Paul; Perez-Tosar, Luis; Webster, Rob; Champion, Brian; Hickling, Timothy P.; Mirza, Fareed

    2013-01-01

    CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules. Nine previously uncharacterized CD8+ T cell epitopes were identified from HSV-2 infected BALB/c mice. HSV-2 specific peptide sequences stabilized HLA-A*02 surface expression with intermediate or high affinity binding. Peptide specific CD8+ human T cell lines from peripheral blood lymphocytes were generated from a HLA-A*02+ donor. High frequencies of peptide specific CD8+ T cell responses were elicited in mice by DNA vaccination with ICP27, VP22 and VP13/14, as demonstrated by CD107a mobilization. Vaccine driven T cell responses displayed a more focused immune response than those induced by viral infection. Furthermore, vaccination with ICP27 reduced viral shedding and reduced the clinical impact of disease. In conclusion, this study describes novel HSV-2 epitopes eliciting strong CD8+ T cell responses that may facilitate epitope based vaccine design and aid immunomonitoring of antigen specific T cell frequencies in preclinical and clinical settings. PMID:24709642

  12. Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development

    PubMed Central

    2015-01-01

    Background High genetic heterogeneity in the hepatitis C virus (HCV) is the major challenge of the development of an effective vaccine. Existing studies for developing HCV vaccines have mainly focused on T-cell immune response. However, identification of linear B-cell epitopes that can stimulate B-cell response is one of the major tasks of peptide-based vaccine development. Owing to the variability in B-cell epitope length, the prediction of B-cell epitopes is much more complex than that of T-cell epitopes. Furthermore, the motifs of linear B-cell epitopes in different pathogens are quite different (e. g. HCV and hepatitis B virus). To cope with this challenge, this work aims to propose an HCV-customized sequence-based prediction method to identify B-cell epitopes of HCV. Results This work establishes an experimentally verified dataset comprising the B-cell response of HCV dataset consisting of 774 linear B-cell epitopes and 774 non B-cell epitopes from the Immune Epitope Database. An interpretable rule mining system of B-cell epitopes (IRMS-BE) is proposed to select informative physicochemical properties (PCPs) and then extracts several if-then rule-based knowledge for identifying B-cell epitopes. A web server Bcell-HCV was implemented using an SVM with the 34 informative PCPs, which achieved a training accuracy of 79.7% and test accuracy of 70.7% better than the SVM-based methods for identifying B-cell epitopes of HCV and the two general-purpose methods. This work performs advanced analysis of the 34 informative properties, and the results indicate that the most effective property is the alpha-helix structure of epitopes, which influences the connection between host cells and the E2 proteins of HCV. Furthermore, 12 interpretable rules are acquired from top-five PCPs and achieve a sensitivity of 75.6% and specificity of 71.3%. Finally, a conserved promising vaccine candidate, PDREMVLYQE, is identified for inclusion in a vaccine against HCV. Conclusions This work

  13. Detection of novel cancer-testis antigen-specific T-cell responses in TIL, regional lymph nodes, and PBL in patients with esophageal squamous cell carcinoma.

    PubMed

    Mizukami, Yoshiki; Kono, Koji; Daigo, Yataro; Takano, Atsushi; Tsunoda, Takuya; Kawaguchi, Yoshihiko; Nakamura, Yusuke; Fujii, Hideki

    2008-07-01

    We recently identified three HLA-A2402-restricted epitope peptides derived from cancer-testis antigens (CTA), TTK protein kinase (TTK), lymphocyte antigen 6 complex locus K (LY6K), and insulin-like growth factor (IGF)-II mRNA binding protein 3 (IMP-3) for the development of immunotherapies against esophageal squamous cell carcinoma (ESCC). In order to evaluate their immunotherapeutic potential in ESCC patients, we estimated by ELISPOT assay the TTK-, LY6K-, or IMP-3-specific T-cell immune responses in tumor-infiltrating lymphocytes (TIL), regional lymph node lymphocytes (RLNL), and peripheral blood lymphocytes (PBL) expanded from 20HLA-A2402 (+) ESCC patients, and correlated their immune activity with the expression levels of TTK, LY6K, and IMP-3, and MHC class I in the tumors. Induction of TTK-antigen specific T-cell response in TIL to the peptide-pulsed target cells was detected in 14 out of 20 (70%) cases, while LY6K or IMP-3 specific T-cell activity was observed in 11 of 20 (55%) or in eight of 20 (40%) cases, respectively. Furthermore, T-cell activity in RLNL and PBL was detectable in the similar proportion of the 20 ESCC patients. Interestingly, CTA-specific T-cell immune response was found in 13 of 14 (93%) TIL obtained from ESCC tumors with strong MHC class I expression, while it could be observed only in two of six (33%) TIL from ESCC tumors with weak MHC class I expression. These results strongly suggest the pre-existence of specific T-cell responses to HLA-A24-restricted epitope peptides from TTK, LY6K, and IMP-3 in ESCC patients. Monitoring antigen-specific T-cell responses, as well as the expression levels of MHC class I and epitope CTA in tumors, should be a selection index for application of cancer vaccine therapies to the patients who are likely to show good immune response.

  14. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane.

    PubMed

    James, Scott E; Greenberg, Philip D; Jensen, Michael C; Lin, Yukang; Wang, Jinjuan; Till, Brian G; Raubitschek, Andrew A; Forman, Stephen J; Press, Oliver W

    2008-05-15

    We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR(+) CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR(+) CTL exhibited lower levels of maximum lysis and lower Ag sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of Ag engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope, but constructed as a truncated CD22 molecule to approximate the length of a TCR:peptide-MHC complex. The reduced sensitivity of CD22-specific cTCR(+) CTL for Ag-induced triggering of effector functions has potential therapeutic applications, because such cells selectively lysed B cell lymphoma lines expressing high levels of CD22, but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength, and consequently Ag sensitivity, can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate Ag density.

  15. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  16. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes.

    PubMed

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke; Saini, Sunil Kumar; Ramskov, Sofie; Donia, Marco; Such, Lina; Furness, Andrew J S; McGranahan, Nicholas; Rosenthal, Rachel; Straten, Per Thor; Szallasi, Zoltan; Svane, Inge Marie; Swanton, Charles; Quezada, Sergio A; Jakobsen, Søren Nyboe; Eklund, Aron Charles; Hadrup, Sine Reker

    2016-10-01

    Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10-100 distinct T-cell specificities in one sample. Here we use peptide-major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer. Barcode-labeled pMHC multimers enable the combination of functional T-cell analysis with large-scale epitope recognition profiling for the characterization of T-cell recognition in various diseases, including in small clinical samples.

  17. [In silico identification of molecular mimicry between T-cell epitopes of Neisseria meningitidis B and the human proteome].

    PubMed

    Batista-Duharte, Alexander; Téllez, Bruno; Tamayo, Maybia; Portuondo, Deivys; Cabrera, Osmir; Sierra, Gustavo; Pérez, Oliver

    2013-07-01

    The objective of the study was to determine the T-cell epitopes of four of the most frequent antigenic proteins of the outer membrane of Neisseria meningitidis B, and to identify the most relevant sites for molecular mimicry with T-cell epitopes in humans. In order to do so, an in silico study -a type of study that uses bioinformatic tools- was carried out using SWISS-PROT/TrEMBL, SYFPEITHI and FASTA databases, which helped to determine the protein sequences, CD4 and CD8 T-cell epitope prediction, as well as the molecular mimicry with humans, respectively. Molecular similarity was found in several human proteins present in different organs and tissues such as: liver, skin and epithelial tissues, brain, lymphatic system and testicles. Of these, those found in testicles were more similar, showing the highest frequency of mimetic sequences. This finding shed light on the success of N. meningitidis B to colonize human tissues and the failure of certain vaccines against this bacterium, and it even helps to explain possible autoimmune reactions associated with the infection or vaccination.

  18. Production of IFN-γ and IL-4 Against Intact Catalase and Constructed Catalase Epitopes of Helicobacter pylori From T-Cells

    PubMed Central

    Ghasemian Safaei, Hajieh; Faghri, Jamshid; Moghim, Sharareh; Nasr Esfahani, Bahram; Fazeli, Hossein; Makvandi, Manoochehr; Adib, Minoo; Rashidi, Niloufar

    2015-01-01

    Background: Helicobacter pylori infection is highly prevalent in the developing countries. It causes gastritis, peptic ulcer disease, and gastrocarcinoma. Treatment with drugs and antibiotics is problematic due to the following reasons: cost, resistance to antibiotics, prolonged treatment and using multiple drugs. Catalase is highly conserved among the Helicobacter species and is important to the survival of the organism. It is expressed in high amounts and is exposed to the surface of this bacterium; therefore it represents a suitable candidate vaccine antigen. Objectives: A suitable approach in H. pylori vaccinology is the administration of epitope based vaccines. Therefore the responses of T-cells (IFN-γ and IL-4 production) against the catalase of H. pylori were determined. Then the quality of the immune responses against intact catalase and three epitopes of catalase were compared. Materials and Methods: In this study, a composition of three epitopes of the H. pylori catalase was selected based on Propred software. The effect of catalase epitopes on T-cells were assayed and immune responses identified. Results: The results of IFN-γ, IL-4 production against antigens, epitopes, and recombinant catalase by T-cells were compared for better understanding of epitope efficiency. Conclusions: The current research demonstrated that epitope sequence stimulates cellular immune responses effectively. In addition, increased safety and potency as well as a reduction in time and cost were advantages of this method. Authors are going to use this sequence as a suitable vaccine candidate for further research on animal models and humans in future. PMID:26862387

  19. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection.

    PubMed

    Alam, Shabnam; Chan, Cory; Qiu, Xing; Shannon, Ian; White, Chantelle L; Sant, Andrea J; Nayak, Jennifer L

    2017-01-01

    A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.

  20. Influence of flanking sequences on presentation efficiency of a CD8+ cytotoxic T-cell epitope delivered by parvovirus-like particles.

    PubMed

    Rueda, P; Morón, G; Sarraseca, J; Leclerc, C; Casal, J I

    2004-03-01

    We have previously developed an antigen-delivery system based on hybrid recombinant porcine parvovirus-like particles (PPV-VLPs) formed by the self-assembly of the VP2 protein of PPV carrying a foreign epitope at its N terminus. In this study, different constructs were made containing a CD8(+) T-cell epitope of chicken ovalbumin (OVA) to analyse the influence of the sequence inserted into VP2 on the correct processing of VLPs by antigen-presenting cells. We analysed the presentation of the OVA epitope inserted without flanking sequences or with either different natural flanking sequences or with the natural flanking sequences of a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus nucleoprotein, and as a dimer with or without linker sequences. All constructs were studied in terms of level of expression, assembly of VLPs and ability to deliver the inserted epitope into the MHC I pathway. The presentation of the OVA epitope was considerably improved by insertion of short natural flanking sequences, which indicated the relevance of the flanking sequences on the processing of PPV-VLPs. Only PPV-VLPs carrying two copies of the OVA epitope linked by two glycines were able to be properly processed, suggesting that the introduction of flexible residues between the two consecutive OVA epitopes may be necessary for the correct presentation of these dimers by PPV-VLPs. These results provide information to improve the insertion of epitopes into PPV-VLPs to facilitate their processing and presentation by MHC class I molecules.

  1. Pathogenesis of NOD Diabetes is Initiated by Reactivity to the Insulin B Chain 9–23 Epitope and Involves Functional Epitope Spreading1

    PubMed Central

    Prasad, Suchitra; Kohm, Adam P.; McMahon, Jeffrey S.; Luo, Xunrong; Miller, Stephen D.

    2012-01-01

    Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by CD4 and CD8 T cells specific for epitopes on numerous diabetogenic autoantigens resulting in loss of glucose homeostasis. Employing antigen-specific tolerance induced by i.v. administration of syngeneic splenocytes ECDI cross-linked to various diabetogenic antigens/epitopes (Ag-SP), we show that epitope spreading plays a functional role in the pathogenesis of T1D in NOD mice. Specifically, Ag-SP coupled with intact insulin, Ins B9–23 or Ins B15–23, but not GAD65509–528, GAD65524–543 or IGRP206–214, protected 4–6 week-old NOD mice from the eventual development of clinical disease; infiltration of immune cells to the pancreatic islets; and blocked the induction of DTH responses in a Treg-dependent, antigen-specific manner. However, tolerance induction in 19–21 week-old NOD mice was effectively accomplished only by Ins-SP, suggesting Ins B9–23 is a dominant initiating epitope, but autoimmune responses to insulin epitope(s) distinct from Ins B9–23 emerge during disease progression. PMID:22647732

  2. Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells.

    PubMed

    Stenger, Rachel M; Meiring, Hugo D; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A M; Boog, Claire J P; de Jong, Ad P J M; van Els, Cécile A C M

    2014-05-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.

  3. Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xinbo; Chen, Guobing; Weng, Nan-ping

    Influenza A virus (IAV) causes an acute infection in humans that is normally eliminated by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T-cell receptors (TCRs) that recognize the immunodominant IAV epitope GILGFVFTL (GIL). Most GIL-specific TCRs utilize α/β chain pairs encoded by the TRAV27/TRBV19 gene combination to recognize this relatively featureless peptide epitope (canonical TCRs). However, ~40% of GIL-specific TCRs express a wide variety of other TRAV/TRBV combinations (non-canonical TCRs). To investigate the structural underpinnings of this remarkable diversity, we determined the crystal structure of a non-canonical GIL-specific TCR (F50)more » expressing the TRAV13-1/TRBV27 gene combination bound to GIL–HLA-A2 to 1.7 Å resolution. Comparison of the F50–GIL–HLA-A2 complex with the previously published complex formed by a canonical TCR (JM22) revealed that F50 and JM22 engage GIL–HLA-A2 in markedly different orientations. These orientations are distinguished by crossing angles of TCR to peptide–MHC of 29° for F50 versus 69° for JM22 and by a focus by F50 on the C terminus rather than the center of the MHC α1 helix for JM22. In addition, F50, unlike JM22, uses a tryptophan instead of an arginine to fill a critical notch between GIL and the HLA-A2 α2 helix. The F50–GIL–HLA-A2 complex shows that there are multiple structurally distinct solutions to recognizing an identical peptide–MHC ligand with sufficient affinity to elicit a broad anti-IAV response that protects against viral escape and T-cell clonal loss.« less

  4. Induction of A. fumigatus-specific CD4-positive T cells in patients recovering from invasive aspergillosis

    PubMed Central

    Jolink, Hetty; Hagedoorn, Renate S.; Lagendijk, Ellen L.; Drijfhout, Jan W.; van Dissel, Jaap T.; Falkenburg, J.H. Frederik; Heemskerk, Mirjam H.M.

    2014-01-01

    After allogeneic stem cell transplantation patients are at risk of invasive aspergillosis, especially during the period of neutropenia. Recent data suggest that impaired T-cell immune reconstitution after transplantation plays an important role in this increased risk. In this study we investigated whether Aspergillus-specific T cells are involved in the recovery from invasive aspergillosis by analyzing the Aspergillus-specific T-cell response in patients with invasive aspergillosis. In nine patients whose Aspergillus infection improved, we identified Crf1- or Catalase1-specific T cells on the basis of CD154 expression and interferon-γ production following stimulation with overlapping peptides of the A. fumigatus proteins Crf1 and Catalase1. These Aspergillus-specific T cells were induced at the moment of regression of the aspergillus lesions. Crf1- and Catalase1-specific T cells, sorted on the basis of CD154 expression at the peak of the immune response, had a T helper-1 phenotype and recognized a variety of T-cell epitopes. In contrast, in two patients with progressive invasive aspergillosis, no Crf1- or Catalase1-specific T cells were identified. These data indicate that the presence of Aspergillus-specific T cells with a T helper-1 phenotype correlates with the clearance of aspergillus infection. PMID:24747947

  5. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T; Huang, Jiawei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-03-01

    The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. HLA-A02:01-Restricted Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP11/12 Preferentially Recall Polyfunctional Effector Memory CD8+ T Cells from Seropositive Asymptomatic Individuals and Protect “Humanized” HLA-A*02:01 Transgenic Mice Against Ocular Herpes

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P.; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T.; Huang, Jiawei; Scarfone, Vanessa M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2014-01-01

    The Herpes Simplex Virus type 1 virion tegument phosphoprotein 11/12 (HSV-1 VP11/12) is a major antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether and which VP11/12-epitope-specific CD8+ T cells play a role in the “natural” protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8+ T cell epitopes from the 716 amino acids sequence of VP11/12. Three out of ten epitopes exhibited high to moderate binding affinity to HLA-A*02:01 molecules. In ten sequentially studied HLA-A*02:01 positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust and polyfunctional effector CD8+ T-cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107a/b cytotoxic degranulation, IFN-γ and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266–74, VP11/12220–228 and VP11/12702–710. Interestingly, ASYMP individuals had significantly higher proportion of CD45RAlowCCR7lowCD44highCD62LlowCD27lowCD28lowCD8+ effector memory T cells (TEM) specific to the three epitopes, compared to symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8+ TEM cell epitopes induced robust and polyfunctional epitope-specific CD8+ TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8+ T cells that should guide the development of an effective T-cell-based herpes vaccine. PMID:25617474

  7. Identification of HLA-DRB1*1501-restricted T-cell epitopes from human prostatic acid phosphatase.

    PubMed

    Klyushnenkova, Elena N; Kouiavskaia, Diana V; Kodak, James A; Vandenbark, Arthur A; Alexander, Richard B

    2007-07-01

    The crucial role of CD4 T-cells in anti-tumor immune response is widely recognized, yet the identification of HLA class II-restricted epitopes derived from tumor antigens has lagged behind compared to class I epitopes. This is particularly true for prostate cancer. Based on the hypothesis that successful cancer immunotherapy will likely resemble autoimmunity, we searched for the CD4 T-cell epitopes derived from prostatic proteins that are restricted by human leukocyte antigen (HLA)-DRB1*1501, an allele associated with granulomatous prostatitis (GP), a disease that may have an autoimmune etiology. One of the antigens implicated in the development of autoimmunity in the prostate is prostatic acid phosphatase (PAP), which is also considered a promising target for prostate cancer immunotherapy. We immunized transgenic (tg) mice engineered to express HLA-DRB1*1501 with human PAP. A library of overlapping 20-mer peptides spanning the entire human PAP sequence was screened in vitro for T-cell recognition by proliferative and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) assays. We identified two 20-mer peptides, PAP (133-152), and PAP (173-192), that were immunogenic and naturally processed from whole PAP in HLA-DRB1*1501 tg mice. These peptides were also capable of stimulating CD4 T lymphocytes from HLA-DRB1*1501-positive patients with GP and normal donors. These peptides can be used for the design of a new generation of peptide-based vaccines against prostate cancer. The study can also be helpful in understanding the role of autoimmunity in the development of some forms of chronic prostatitis.

  8. Identification of B cell epitopes of alcohol dehydrogenase allergen of Curvularia lunata.

    PubMed

    Nair, Smitha; Kukreja, Neetu; Singh, Bhanu Pratap; Arora, Naveen

    2011-01-01

    Epitope identification assists in developing molecules for clinical applications and is useful in defining molecular features of allergens for understanding structure/function relationship. The present study was aimed to identify the B cell epitopes of alcohol dehydrogenase (ADH) allergen from Curvularia lunata using in-silico methods and immunoassay. B cell epitopes of ADH were predicted by sequence and structure based methods and protein-protein interaction tools while T cell epitopes by inhibitory concentration and binding score methods. The epitopes were superimposed on a three dimensional model of ADH generated by homology modeling and analyzed for antigenic characteristics. Peptides corresponding to predicted epitopes were synthesized and immunoreactivity assessed by ELISA using individual and pooled patients' sera. The homology model showed GroES like catalytic domain joined to Rossmann superfamily domain by an alpha helix. Stereochemical quality was confirmed by Procheck which showed 90% residues in most favorable region of Ramachandran plot while Errat gave a quality score of 92.733%. Six B cell (P1-P6) and four T cell (P7-P10) epitopes were predicted by a combination of methods. Peptide P2 (epitope P2) showed E(X)(2)GGP(X)(3)KKI conserved pattern among allergens of pathogenesis related family. It was predicted as high affinity binder based on electronegativity and low hydrophobicity. The computational methods employed were validated using Bet v 1 and Der p 2 allergens where 67% and 60% of the epitope residues were predicted correctly. Among B cell epitopes, Peptide P2 showed maximum IgE binding with individual and pooled patients' sera (mean OD 0.604±0.059 and 0.506±0.0035, respectively) followed by P1, P4 and P3 epitopes. All T cell epitopes showed lower IgE binding. Four B cell epitopes of C. lunata ADH were identified. Peptide P2 can serve as a potential candidate for diagnosis of allergic diseases.

  9. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    PubMed

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  10. Discerning regulation of cis- and trans-presentation of CD8+ T-cell epitopes by EBV-encoded oncogene LMP-1 through self-aggregation.

    PubMed

    Smith, Corey; Wakisaka, Naohiro; Crough, Tania; Peet, Jesse; Yoshizaki, Tomokazu; Beagley, Leone; Khanna, Rajiv

    2009-06-11

    Activation of the nuclear factor-kappaB pathway by Epstein-Barr virus-encoded latent membrane protein-1 (LMP-1) leads to an up-regulation of the major histocompatibility complex class I antigen-processing pathway. Paradoxically, LMP-1 itself induces a subdominant CD8+ T-cell response and appears to have evolved to avoid immune recognition. Here we show that, although expression of LMP-1 in human cells dramatically enhanced the trans-presentation of CD8+ T-cell epitopes, cis-presentation of LMP-1-derived epitopes was severely impaired. Testing of a series of LMP-1 mutants revealed that deletion of the first transmembrane domain of LMP-1, which prevented self-aggregation, significantly enhanced cis-presentation of T-cell epitopes from this protein, whereas it lost its ability to up-regulate trans-presentation. Interestingly, we also found that cis-presentation of LMP-1 epitopes was rescued by blocking the proteasome function. Taken together, these results delineate a novel mechanism of immune evasion, which renders a virally encoded oncogene inaccessible to the conventional major histocompatibility complex class I pathway limiting its cis-presentation to effector cells.

  11. A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead

    PubMed Central

    Jones, Tim D.; Hearn, Arron R.; Holgate, Robert G.E.; Kozub, Dorota; Fogg, Mark H.; Carr, Francis J.; Baker, Matthew P.; Lacadena, Javier; Gehlsen, Kurt R.

    2016-01-01

    Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics. PMID:27578884

  12. Therapeutic immunization with a mixture of herpes simplex virus 1 glycoprotein D-derived “asymptomatic” human CD8+ T-cell epitopes decreases spontaneous ocular shedding in latently infected HLA transgenic rabbits: association with low frequency of local PD-1+ TIM-3+ CD8+ exhausted T cells.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Chentoufi, Aziz A; Geertsema, Roger; Thai, Nhi Thi Uyen; Dasgupta, Gargi; Osorio, Nelson; Kalantari, Mina; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-07-01

    Most blinding ocular herpetic disease is due to reactivation of herpes simplex virus 1 (HSV-1) from latency rather than to primary acute infection. No herpes simplex vaccine is currently available for use in humans. In this study, we used the HLA-A*02:01 transgenic (HLA Tg) rabbit model of ocular herpes to assess the efficacy of a therapeutic vaccine based on HSV-1 gD epitopes that are recognized mainly by CD8(+) T cells from "naturally" protected HLA-A*02:01-positive, HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease). Three ASYMP CD8(+) T-cell epitopes (gD(53-61), gD(70-78), and gD(278-286)) were linked with a promiscuous CD4(+) T-cell epitope (gD(287-317)) to create 3 separate pairs of CD4-CD8 peptides, which were then each covalently coupled to an Nε-palmitoyl-lysine moiety, a Toll-like receptor 2 (TLR-2) ligand. This resulted in the construction of 3 CD4-CD8 lipopeptide vaccines. Latently infected HLA Tg rabbits were immunized with a mixture of these 3 ASYMP lipopeptide vaccines, delivered as eye drops in sterile phosphate-buffered saline (PBS). The ASYMP therapeutic vaccination (i) induced HSV-specific CD8(+) T cells that prevent HSV-1 reactivation ex vivo from latently infected explanted trigeminal ganglia (TG), (ii) significantly reduced HSV-1 shedding detected in tears, (iii) boosted the number and function of HSV-1 gD epitope-specific CD8(+) T cells in draining lymph nodes (DLN), conjunctiva, and TG, and (iv) was associated with fewer exhausted HSV-1 gD-specific PD-1(+) TIM-3+ CD8(+) T cells. The results underscore the potential of an ASYMP CD8(+) T-cell epitope-based therapeutic vaccine strategy against recurrent ocular herpes. Seventy percent to 90% of adults harbor herpes simplex virus 1 (HSV-1), which establishes lifelong latency in sensory neurons of the trigeminal ganglia. This latent state sporadically switches to spontaneous reactivation, resulting in viral shedding in tears. Most blinding

  13. Specific B-cell Epitope of Per a 1: A Major Allergen of American Cockroach (Periplaneta americana) and Anatomical Localization.

    PubMed

    Sookrung, Nitat; Khetsuphan, Thanyathon; Chaisri, Urai; Indrawattana, Nitaya; Reamtong, Onrapak; Chaicumpa, Wanpen; Tungtrongchitr, Anchalee

    2014-07-01

    Cockroach (CR) is a common source of indoor allergens, and Per a 1 is a major American CR (Periplaneta americana) allergen; however, several attributes of this protein remain unknown. This study identifies a novel specific B cell epitope and anatomical locations of Per a 1.0105. Recombinant Per a 1.0105 (rPer a 1.0105) was used as BALB/c mouse immunogen for the production of monoclonal antibodies (MAb). The MAb specific B cell epitope was identified by determining phage mimotopic peptides and pair-wise alignment of the peptides with the rPer a 1.0105 amino acid sequence. Locations of the Per a 1.0105 in P. americana were investigated by immunohistochemical staining. The rPer a 1.0105 (~13 kDa) had 100%, 98% and ≥90% identity to Per a 1.0105, Per a 1.0101, and Cr-PII, respectively. The B-cell epitope of the Per a 1.0105 specific-MAb was located at residues(99) QDLLLQLRDKGV(110) contained in all 5 Per a 1.01 isoforms and Per a 1.02. The epitope was analogous to the Bla g 1.02 epitope; however, this B-cell epitope was not an IgE inducer. Per a 1.0105 was found in the midgut and intestinal content of American CR but not in the other organs. The amount of the Per a 1 was ~544 ℃g per gram of feces. The novel Per a 1 B-cell epitope described in this study is a useful target for allergen quantification in samples; however, the specific MAb can be used as an allergen detection reagent. The MAb based-affinity resin can be made for allergen purification, and the so-purified protein can serve as a standard and diagnostic allergen as well as a therapeutic vaccine component. The finding that the Per a 1 is contained in the midgut and feces is useful to increase yield and purity when preparing this allergen.

  14. Specific B-cell Epitope of Per a 1: A Major Allergen of American Cockroach (Periplaneta americana) and Anatomical Localization

    PubMed Central

    Sookrung, Nitat; Khetsuphan, Thanyathon; Chaisri, Urai; Indrawattana, Nitaya; Reamtong, Onrapak; Chaicumpa, Wanpen

    2014-01-01

    Purpose Cockroach (CR) is a common source of indoor allergens, and Per a 1 is a major American CR (Periplaneta americana) allergen; however, several attributes of this protein remain unknown. This study identifies a novel specific B cell epitope and anatomical locations of Per a 1.0105. Methods Recombinant Per a 1.0105 (rPer a 1.0105) was used as BALB/c mouse immunogen for the production of monoclonal antibodies (MAb). The MAb specific B cell epitope was identified by determining phage mimotopic peptides and pair-wise alignment of the peptides with the rPer a 1.0105 amino acid sequence. Locations of the Per a 1.0105 in P. americana were investigated by immunohistochemical staining. Results The rPer a 1.0105 (~13 kDa) had 100%, 98% and ≥90% identity to Per a 1.0105, Per a 1.0101, and Cr-PII, respectively. The B-cell epitope of the Per a 1.0105 specific-MAb was located at residues99 QDLLLQLRDKGV110 contained in all 5 Per a 1.01 isoforms and Per a 1.02. The epitope was analogous to the Bla g 1.02 epitope; however, this B-cell epitope was not an IgE inducer. Per a 1.0105 was found in the midgut and intestinal content of American CR but not in the other organs. The amount of the Per a 1 was ~544 ℃g per gram of feces. Conclusions The novel Per a 1 B-cell epitope described in this study is a useful target for allergen quantification in samples; however, the specific MAb can be used as an allergen detection reagent. The MAb based-affinity resin can be made for allergen purification, and the so-purified protein can serve as a standard and diagnostic allergen as well as a therapeutic vaccine component. The finding that the Per a 1 is contained in the midgut and feces is useful to increase yield and purity when preparing this allergen. PMID:24991456

  15. Design and Characterization of Epitope-Scaffold Immunogens That Present the Motavizumab Epitope from Respiratory Syncytial Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, Jason S.; Correia, Bruno E.; Chen, Man

    2012-06-28

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potentmore » neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 {angstrom} resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.« less

  16. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus.

    PubMed

    McLellan, Jason S; Correia, Bruno E; Chen, Man; Yang, Yongping; Graham, Barney S; Schief, William R; Kwong, Peter D

    2011-06-24

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 Å resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required. Published by Elsevier Ltd.

  17. Polyomavirus BK-specific CD8+ T cell responses in patients after allogeneic stem cell transplant.

    PubMed

    Schneidawind, Dominik; Schmitt, Anita; Wiesneth, Markus; Mertens, Thomas; Bunjes, Donald; Freund, Mathias; Schmitt, Michael

    2010-06-01

    Polyomavirus BK (BKV) is known as an important etiologic agent in the development of hemorrhagic cystitis (HC) after allogeneic stem cell transplant (SCT). To define T cell epitopes of the BKV proteins VP1 and sT, eight potential HLA-A2-binding peptides were synthesized based on computer algorithms. These peptides were co-incubated with CD8 + T cells from the peripheral blood (PB) of 25 healthy volunteers and seven patients suffering from HC after allogeneic SCT in a mixed-lymphocyte peptide culture (MLPC), which were subsequently screened by enzyme-linked immunospot (ELISPOT) assays and fluorescence-activated cell sorting (FACS) analysis. We found that CD8 + T cells from five of seven (71%) patients with HC presensitized with the BKV peptide VP1 p108 (LLMWEAVTV) specifically recognized T2 cells pulsed with VP1 p108. In contrast, only seven of 25 (28%) healthy volunteers had CD8 + T cells reactive with VP1 p108-pulsed T2 cells. The presence of VP1 p108-specific T cells could be confirmed by FACS analysis. The BKV peptide VP1 p108 seems to play an important role as an immunodominant peptide in the pathogenesis of HC in patients after allogeneic SCT, and might be a promising target for immunotherapies or even strategies to prevent the development of BKV-associated HC.

  18. Bordetella pertussis Proteins Dominating the Major Histocompatibility Complex Class II-Presented Epitope Repertoire in Human Monocyte-Derived Dendritic Cells

    PubMed Central

    Stenger, Rachel M.; Meiring, Hugo D.; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A. M.; Boog, Claire J. P.; de Jong, Ad P. J. M.

    2014-01-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4+ T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4+ T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies. PMID:24599530

  19. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions.

    PubMed

    Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder

    2011-05-01

    Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.

  20. Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes.

    PubMed

    Hong, Hao; Stastny, Michael; Brown, Christine; Chang, Wen-Chung; Ostberg, Julie R; Forman, Stephen J; Jensen, Michael C

    2014-01-01

    Adhesion molecule L1-CAM (CD171) was originally reported to be overexpressed on neuroblastoma and to play an important role during tumor progression. More recently, it has been shown to be overexpressed on many other solid tumors such as melanoma and carcinomas of the cervix, ovary, bladder, and others. Thus, there has been a growing interest in using this cell-surface molecule as a target for both antibody-based and cellular-based therapy-our group has previously examined the clinical utility of chimeric antigen receptor (CAR)-redirected cytolytic T cells that specifically target the CE7 epitope of L1-CAM on neuroblastoma patients. Here, we sought to determine whether this CE7 epitope is present on other recently identified L1-CAM tumors and whether it too can be targeted by CAR T cells. Our studies demonstrate that a diverse array of human tumor cell lines and primary solid tumors (ovarian, lung, and renal carcinoma, glioblastoma and neuroblastoma) do express the CE7 epitope and can efficiently stimulate CE7-specific CAR-redirected (CE7R) T-cell lytic activity and secretion of proinflamatory cytokines. L1-CAM was also detected on a limited number of normal tissues; however, L1-CAM expressed on normal human monocytes was not bound by the CE7 mAb nor was it targeted by CE7R T cells, suggesting that the CE7 epitope is more tumor restricted and not expressed on all L1-CAM tissues. Overall, the CE7 epitope of L1-CAM on a variety of tumors may be amenable to targeting by CE7R T cells, making it a promising target for adoptive immunotherapy.

  1. Influenza virus-specific TCR-transduced T cells as a model for adoptive immunotherapy

    PubMed Central

    Berdien, Belinda; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Kröger, Nicolaus; Atanackovic, Djordje; Fehse, Boris

    2013-01-01

    Adoptive transfer of T lymphocytes equipped with tumor-antigen specific T-cell receptors (TCRs) represents a promising strategy in cancer immunotherapy, but the approach remains technically demanding. Using influenza virus (Flu)-specific T-cell responses as a model system we compared different methods for the generation of T-cell clones and isolation of antigen-specific TCRs. Altogether, we generated 12 CD8+ T-cell clones reacting to the Flu matrix protein (Flu-M) and 6 CD4+ T-cell clones reacting to the Flu nucleoprotein (Flu-NP) from 4 healthy donors. IFN-γ-secretion-based enrichment of antigen-specific cells, optionally combined with tetramer staining, was the most efficient way for generating T-cell clones. In contrast, the commonly used limiting dilution approach was least efficient. TCR genes were isolated from T-cell clones and cloned into both a previously used gammaretroviral LTR-vector, MP91 and the novel lentiviral self-inactivating vector LeGO-MP that contains MP91-derived promotor and regulatory elements. To directly compare their functional efficiencies, we in parallel transduced T-cell lines and primary T cells with the two vectors encoding identical TCRs. Transduction efficiencies were approximately twice higher with the gammaretroviral vector. Secretion of high amounts of IFN-γ, IL-2 and TNF-α by transduced cells after exposure to the respective influenza target epitope proved efficient specificity transfer of the isolated TCRs to primary T-cells for both vectors, at the same time indicating superior functionality of MP91-transduced cells. In conclusion, we have developed optimized strategies to obtain and transfer antigen-specific TCRs as well as designed a novel lentiviral vector for TCR-gene transfer. Our data may help to improve adoptive T-cell therapies. PMID:23428899

  2. Identification of an epitope derived from the cancer testis antigen HOM-TES-14/SCP1 and presented by dendritic cells to circulating CD4+ T cells.

    PubMed

    Neumann, Frank; Wagner, Claudia; Preuss, Klaus-Dieter; Kubuschok, Boris; Schormann, Claudia; Stevanovic, Stefan; Pfreundschuh, Michael

    2005-11-01

    Because of their frequent expression in a wide spectrum of malignant tumors but not in normal tissue except testis, cancer testis antigens are promising targets. However, except for HOM-TES-14/SCP1, their expression in malignant lymphomas is rare. SCP1 (synaptonemal complex protein 1) has been shown to elicit antibody responses in the autologous host, but no T-cell responses against HOM-TES-14/SCP1 have been reported. Using the SYFPEITHI algorithm, we selected peptides with a high binding affinity to major histocompatibility complex class 2 (MHC 2) molecules. The pentadecamer epitope p635-649 induced specific CD4+ T-cell responses that were shown to be restricted by HLA-DRB1*1401. The responses could be blocked by preincubation of T cells with anti-CD4 and antigen-presenting cells with anti-HLA-DR, respectively, proving the HLA-DR-restricted presentation of p635-649 and a CD4+ T-cell-mediated effector response. Responding CD4+ cells did not secrete interleukin-5 (IL-5), indicating that they belong to the T(H)1 subtype. The natural processing and presentation of p635-649 were demonstrated by pulsing autologous and allogeneic dendritic cells with a protein fragment covering p635-649. Thus, p635-649 is the first HOM-TES-14/SCP1-derived epitope to fulfill all prerequisites for use as a peptide vaccine in patients with HOM-TES-14/SCP1-expressing tumors, which is the case in two thirds of peripheral T-cell lymphomas.

  3. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8 + T cells and protects against herpes simplex virus type 2 challenge

    PubMed Central

    Dasgupta, G; Nesburn, AB; Wu, M; Zhu, X; Carpenter, D; Wechsler, SL; You, S; BenMohamed, L

    2015-01-01

    The next generation of needle-free mucosal vaccines is being rationally designed according to rules that govern the way in which the epitopes are recognized by and stimulate the genital mucosal immune system. We hypothesized that synthetic peptide epitopes extended with an agonist of Toll-like receptor 2 (TLR-2), that are abundantly expressed by dendritic and epithelial cells of the vaginal mucosa, would lead to induction of protective immunity against genital herpes. To test this hypothesis, we intravaginally (IVAG) immunized wild-type B6, TLR-2 (TLR2 −/−) or myeloid differentiation factor 88 deficient (MyD88 −/−) mice with a herpes simplex virus type 2 (HSV-2) CD8 + T-cell peptide epitope extended by a palmitic acid moiety (a TLR-2 agonist). IVAG delivery of the lipopeptide generated HSV-2-specific memory CD8 + cytotoxic T cells both locally in the genital tract draining lymph nodes and systemically in the spleen. Moreover, lipopeptide-immunized TLR2 −/− and MyD88 −/− mice developed significantly less HSV-specific CD8 + T-cell response, earlier death, faster disease progression, and higher vaginal HSV-2 titers compared to lipopeptide-immunized wild-type B6 mice. IVAG immunization with self-adjuvanting lipid-tailed peptides appears to be a novel mucosal vaccine approach, which has attractive practical and immunological features. PMID:19129756

  4. Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes.

    PubMed

    Paul, Sinu; Arlehamn, Cecilia S Lindestam; Schulten, Veronique; Westernberg, Luise; Sidney, John; Peters, Bjoern; Sette, Alessandro

    2017-06-21

    The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes from immune response data of HLA typed subjects without additional cumbersome experimentation. Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to the general test population and the associated p-value in a Fisher's exact test. We also examined the potential for further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles, and the absolute number of individuals expressing a given allele and responding to the specific epitope. Different statistical measures, including Matthew's correlation coefficient, accuracy, sensitivity and specificity were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend selection of HLA restrictions with cutoffs of p-value < 0.01 and RF ≥ 1.3. The usefulness of the tool was demonstrated by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic patients. Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool.

  5. Epitope mapping and evaluation of specificity of T-helper sites in four major antigenic peptides of chicken riboflavin carrier protein in outbred rats.

    PubMed

    Subramanian, Sarada; Andal, S; Karande, Anjali A; Radhakantha Adiga, P

    2003-11-07

    This paper reviews our studies on synthetic peptides spanning the major antigenic determinants of the chicken riboflavin carrier protein (RCP; 219 AA). These determinants are composed of residues 4-24 (YGC), 64-83 (CED), 130-147 (GEN), and 200-219 (HAC) and function as minivaccines in terms of eliciting anti-peptide antibodies which recognize the native protein and are particularly promising contraceptive vaccine candidates. We have used 15-residue synthetic peptides to define short sequences involved in interaction with antibody and with T-cells. We have mapped the boundaries of T-cell epitopes of these peptides in outbred rats by immunizing the animals with each peptide and assaying the popliteal lymph node cell proliferation against a series of overlapping synthetic 15-mers covering the entire length of the individual peptides. The peptides YGC, GEN, and HAC harboured a single T-cell epitope each whereas the peptide CED exhibited bimodal response possessing two epitopes, one at N-terminus and the other at the C-terminus. These studies provide insight into the way in which an immunogen is viewed by the immune system. In addition, preferential T-cell helper function for B cells recognizing unique determinants on the same molecule was demonstrated. This information helps in exploiting synthetic peptides in the construction of designer immunogens which have potential as candidate vaccines.

  6. Immunization with a novel chimeric peptide representing B and T cell epitopes from HER2 extracellular domain (HER2 ECD) for breast cancer.

    PubMed

    Mahdavi, Manijeh; Keyhanfar, Mehrnaz; Jafarian, Abbas; Mohabatkar, Hassan; Rabbani, Mohammad

    2014-12-01

    Because of direct stimulating immune system against disease, vaccination or active immunotherapy is preferable compared to passive immunotherapy. For this purpose, a newly designed chimeric peptide containing epitopes for both B and T cells from HER2 ECD subdomain III was proposed. To evaluate the effects of the active immunization, a discontinuous B cell epitope peptide was selected based on average antigenicity by bioinformatics analysis. The selected peptide was collinearly synthesized as a chimera with a T helper epitope from the protein sequence of measles virus fusion (208-302) using the GPSL linker. Three mice were immunized with the chimeric peptide. Reactive antibodies with HER2 protein in ELISA and immunofluorescence assays with no cross-reactivity were generated. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay indicated that the anti-peptide sera had inhibitory effects on proliferation of SK-BR-3 cells. Hence, the newly designed, discontinuous chimeric peptide representing B and T cell epitopes from subdomain III of HER2-ECD can form the basis for future vaccines design, where these data can be applied for monoclonal antibody production targeting the distinct epitope of HER2 receptor compared to the two broadly used anti-HER2 monoclonal antibodies, Herceptin and pertuzumab.

  7. Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction*

    PubMed Central

    Rahman, Kh. Shamsur; Chowdhury, Erfan Ullah; Sachse, Konrad; Kaltenboeck, Bernhard

    2016-01-01

    X-ray crystallography has shown that an antibody paratope typically binds 15–22 amino acids (aa) of an epitope, of which 2–5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6–11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7–12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16–30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences. PMID:27189949

  8. Machine learning-based methods for prediction of linear B-cell epitopes.

    PubMed

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  9. Schistosoma mansoni Phosphoenolpyruvate Carboxykinase, a Novel Egg Antigen: Immunological Properties of the Recombinant Protein and Identification of a T-Cell Epitope

    PubMed Central

    Asahi, Hiroko; Osman, Ahmed; Cook, Rosemary M.; LoVerde, Philip T.; Stadecker, Miguel J.

    2000-01-01

    In schistosomiasis mansoni, hepatic granulomatous inflammation surrounding parasite eggs is mediated by CD4+ T helper (Th) cells sensitized to schistosomal egg antigens (SEA). We previously showed that a prominent lymphoproliferative response of CD4+ Th cells from schistosome-infected C57BL/6 (BL/6) mice was directed against a 62-kDa component of SEA. A partial amino acid sequence of the 62-kDa component was found to be identical with one present in the enzyme phosphoenolpyruvate carboxykinase (PEPCK). Based on this sequence, a cDNA clone containing the entire coding region of PEPCK was identified, and the full recombinant Schistosoma mansoni PEPCK (rSm-PEPCK) of 626 amino acids was purified from a prokaryotic expression system. rSm-PEPCK strongly stimulated a specific T-cell hybridoma, 4E6, as well as CD4+ Th cells from SEA-immunized BL/6 mice and from infected BL/6, CBA, and BALB/c mice. In the infected mice, rSm-PEPCK elicited significant gamma interferon production as well as, to a lesser extent, production of interleukin-2 and -5. In BL/6 and BALB/c mice, the CD4+ Th cell response to rSm-PEPCK was greater than that directed against the egg antigen Sm-p40; conversely, CBA mice responded better to Sm-p40 than to Sm-PEPCK. A 12-amino-acid region (residues 398 to 409: DKSKDPKAHPNS) was demonstrated to contain a T-cell epitope; synthetic peptides containing this epitope significantly stimulated specific hybridoma 4E6 and polyclonal CD4+ Th cells. The identification and characterization of immunogenic egg components will contribute to the understanding and possible control of T-cell-mediated schistosomal disease. PMID:10816489

  10. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection.

    PubMed

    Holst, Peter J; Jensen, Benjamin A H; Ragonnaud, Emeline; Thomsen, Allan R; Christensen, Jan P

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.

  11. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.

    PubMed

    Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H

    2014-12-15

    Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Modulation of CD4(+) T cell-dependent specific cytotoxic CD8(+) T cells differentiation and proliferation by the timing of increase in the pathogen load.

    PubMed

    Tzelepis, Fanny; Persechini, Pedro M; Rodrigues, Mauricio M

    2007-04-25

    Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8(+) T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8(+) cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8(+) cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8(+) cytotoxic T cells was dependent on MHC class II restricted CD4(+) T cells. Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4(+) T cell-dependent expansion of pathogen-specific CD8(+) cytotoxic T cells.

  13. Re-evaluating the generation of a "proteasome-independent" MHC class I-restricted CD8 T cell epitope.

    PubMed

    Wherry, E John; Golovina, Tatiana N; Morrison, Susan E; Sinnathamby, Gomathinayagam; McElhaugh, Michael J; Shockey, David C; Eisenlohr, Laurence C

    2006-02-15

    The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.

  14. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection

    PubMed Central

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry AF; Rothman, Alan L; Mathew, Anuja

    2014-01-01

    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS126–34-specific CD8+ T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS126–34-specific and other DENV epitope-specific CD8+ T cells, as well as total CD8+ T cells, expressed an activated phenotype (CD69+ and/or CD38+) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8+ T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation. PMID:23941420

  15. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection.

    PubMed

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry A F; Rothman, Alan L; Mathew, Anuja

    2014-01-01

    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS1(26-34) -specific CD8(+) T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS1(26-34) -specific and other DENV epitope-specific CD8(+) T cells, as well as total CD8(+) T cells, expressed an activated phenotype (CD69(+) and/or CD38(+)) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8(+) T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation. © 2013 John Wiley & Sons Ltd.

  16. A recombinant chimeric protein composed of human and mice-specific CD4+ and CD8+ T-cell epitopes protects against visceral leishmaniasis.

    PubMed

    Martins, V T; Duarte, M C; Lage, D P; Costa, L E; Carvalho, A M R S; Mendes, T A O; Roatt, B M; Menezes-Souza, D; Soto, M; Coelho, E A F

    2017-01-01

    In this study, a recombinant chimeric protein (RCP), which was composed of specific CD4 + and CD8 + T-cell epitopes to murine and human haplotypes, was evaluated as an immunogen against Leishmania infantum infection in a murine model. BALB/c mice received saline were immunized with saponin or with RCP with or without an adjuvant. The results showed that RCP/saponin-vaccinated mice presented significantly higher levels of antileishmanial IFN-γ, IL-12 and GM-CSF before and after challenge, which were associated with the reduction of IL-4 and IL-10 mediated responses. These animals showed significant reductions in the parasite burden in all evaluated organs, when both limiting dilution and quantitative real-time PCR techniques were used. In addition, the protected animals presented higher levels of parasite-specific nitrite, as well as the presence of anti-Leishmania IgG2a isotype antibodies. In conclusion, the RCP/saponin vaccine could be considered as a prophylactic alternative to prevent against VL. © 2016 John Wiley & Sons Ltd.

  17. A Novel HLA-B18 Restricted CD8+ T Cell Epitope Is Efficiently Cross-Presented by Dendritic Cells from Soluble Tumor Antigen

    PubMed Central

    Chan, Kok-Fei; Oveissi, Sara; Jackson, Heather M.; Dimopoulos, Nektaria; Guillaume, Philippe; Knights, Ashley J.; Lowen, Tamara; Robson, Neil C.; Russell, Sarah E.; Scotet, Emmanuel; Davis, Ian D.; Maraskovsky, Eugene; Cebon, Jonathan; Luescher, Immanuel F.; Chen, Weisan

    2012-01-01

    NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8+ T cell epitope, NY-ESO-188–96 (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1157–165 epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-188–96 is much more efficiently cross-presented from the soluble form, than NY-ESO-1157–165. On the other hand, NY-ESO-1157–165 is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A26–35; whereas NY-ESO-188–96 was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-188–96 is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-188–96 from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8+ T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed. PMID:22970293

  18. In vivo immunogenicity of Tax 11-19 epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine

    PubMed Central

    Sagar, Divya; Masih, Shet; Schell, Todd; Jacobson, Steven; Comber, Joseph D.; Philip, Ramila; Wigdahl, Brian; Jain, Pooja; Khan, Zafar K.

    2014-01-01

    Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund’s adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8 T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses. PMID:24739247

  19. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools.

    PubMed

    Singh, Satwinder Kaur; Meyering, Maaike; Ramwadhdoebe, Tamara H; Stynenbosch, Linda F M; Redeker, Anke; Kuppen, Peter J K; Melief, Cornelis J M; Welters, Marij J P; van der Burg, Sjoerd H

    2012-11-01

    The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25 % of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50 % of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.

  20. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses

    PubMed Central

    da Silva Antunes, Ricardo; Paul, Sinu; Sidney, John; Weiskopf, Daniela; Dan, Jennifer M.; Phillips, Elizabeth; Mallal, Simon; Crotty, Shane; Sette, Alessandro; Lindestam Arlehamn, Cecilia S.

    2017-01-01

    Despite widespread uses of tetanus toxoid (TT) as a vaccine, model antigen and protein carrier, TT epitopes have been poorly characterized. Herein we defined the human CD4+ T cell epitope repertoire by reevaluation of previously described epitopes and evaluation of those derived from prediction of HLA Class II binding. Forty-seven epitopes were identified following in vitro TT stimulation, with 28 epitopes accounting for 90% of the total response. Despite this diverse range of epitopes, individual responses were associated with only a few immunodominant epitopes, with each donor responding on average to 3 epitopes. For the top 14 epitopes, HLA restriction could be inferred based on HLA typing of the responding donors. HLA binding predictions re-identified the vast majority of known epitopes, and identified 24 additional novel epitopes. With these epitopes, we created a TT epitope pool, which allowed us to characterize TT responses directly ex vivo using a cytokine-independent Activation Induced Marker (AIM) assay. These TT responses were highly Th1 or Th2 polarized, which was dependent upon the original priming vaccine, either the cellular DTwP or acellular DTaP formulation. This polarization remained despite the original priming having occurred decades past and a recent booster immunization with a reduced acellular vaccine formulation. While TT responses following booster vaccination were not durably increased in magnitude, they were associated with a relative expansion of CD4+ effector memory T cells. PMID:28081174

  1. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses.

    PubMed

    da Silva Antunes, Ricardo; Paul, Sinu; Sidney, John; Weiskopf, Daniela; Dan, Jennifer M; Phillips, Elizabeth; Mallal, Simon; Crotty, Shane; Sette, Alessandro; Lindestam Arlehamn, Cecilia S

    2017-01-01

    Despite widespread uses of tetanus toxoid (TT) as a vaccine, model antigen and protein carrier, TT epitopes have been poorly characterized. Herein we defined the human CD4+ T cell epitope repertoire by reevaluation of previously described epitopes and evaluation of those derived from prediction of HLA Class II binding. Forty-seven epitopes were identified following in vitro TT stimulation, with 28 epitopes accounting for 90% of the total response. Despite this diverse range of epitopes, individual responses were associated with only a few immunodominant epitopes, with each donor responding on average to 3 epitopes. For the top 14 epitopes, HLA restriction could be inferred based on HLA typing of the responding donors. HLA binding predictions re-identified the vast majority of known epitopes, and identified 24 additional novel epitopes. With these epitopes, we created a TT epitope pool, which allowed us to characterize TT responses directly ex vivo using a cytokine-independent Activation Induced Marker (AIM) assay. These TT responses were highly Th1 or Th2 polarized, which was dependent upon the original priming vaccine, either the cellular DTwP or acellular DTaP formulation. This polarization remained despite the original priming having occurred decades past and a recent booster immunization with a reduced acellular vaccine formulation. While TT responses following booster vaccination were not durably increased in magnitude, they were associated with a relative expansion of CD4+ effector memory T cells.

  2. Inability To Detect Cross-Reactive Memory T Cells Challenges the Frequency of Heterologous Immunity among Common Viruses.

    PubMed

    Rowntree, Louise C; Nguyen, Thi H O; Halim, Hanim; Purcell, Anthony W; Rossjohn, Jamie; Gras, Stephanie; Kotsimbos, Tom C; Mifsud, Nicole A

    2018-06-15

    Human memory T cells that cross-react with epitopes from unrelated viruses can potentially modulate immune responses to subsequent infections by a phenomenon termed heterologous immunity. However, it is unclear whether similarities in structure rather than sequence underpin heterologous T cell cross-reactivity. In this study, we aimed to explore the mechanism of heterologous immunity involving immunodominant epitopes derived from common viruses restricted to high-frequency HLA allotypes (HLA-A*02:01, -B*07:02, and -B*08:01). We examined EBV-specific memory T cells for their ability to cross-react with CMV or influenza A virus-derived epitopes. Following T cell immunoassays to determine phenotype and function, complemented with biophysical and structural investigations of peptide/HLA complexes, we did not detect cross-reactivity of EBV-specific memory T cells toward either CMV or influenza A virus epitopes presented by any of the selected HLA allomorphs. Thus, despite the ubiquitous nature of these human viruses and the dominant immune response directed toward the selected epitopes, heterologous virus-specific T cell cross-reactivity was not detected. This suggests that either heterologous immunity is not as common as previously reported, or that it requires a very specific biological context to develop and be clinically relevant. Copyright © 2018 by The American Association of Immunologists, Inc.

  3. A Subdominant CD8+ Cytotoxic T Lymphocyte (CTL) Epitope from the Plasmodium yoelii Circumsporozoite Protein Induces CTLs That Eliminate Infected Hepatocytes from Culture

    PubMed Central

    Franke, Eileen D.; Sette, Alessandro; Sacci, John; Southwood, Scott; Corradin, Giampietro; Hoffman, Stephen L.

    2000-01-01

    Previous studies indicated that the Plasmodium yoelii circumsporozoite protein (PyCSP) 57–70 region elicits T cells capable of eliminating infected hepatocytes in vitro. Herein, we report that the PyCSP58–67 sequence contains an H-2d binding motif, which binds purified Kd molecules in vitro with low affinity (3,267 nM) and encodes an H-2d-restricted cytotoxic T lymphocyte (CTL) epitope. Immunization of BALB/c mice with three doses of a multiple antigen peptide (MAP) construct containing four branches of amino acids 57 to 70 linked to a lysine-glycine core [MAP4(PyCSP57–70)] and Lipofectin as the adjuvant induced both T-cell proliferation and a peptide-specific CTL response that was PyCSP59–67 specific, H-2d restricted, and CD8+ T cell dependent. Immunization with either DNA encoding the PyCSP or irradiated sporozoites demonstrated that this CTL epitope is subdominant since it is not recognized in the context of whole CSP immunization. The biological relevance of this CTL response was underlined by the demonstration that it could mediate genetically restricted, CD8+- and nitric-oxide-dependent elimination of infected hepatocytes in vitro, as well as partial protection of BALB/c mice against sporozoite challenge. These findings indicate that subdominant epitopes with low major histocompatibility complex affinity can be used to engineer epitope-based vaccines and have implications for the selection of epitopes for subunit-based vaccines. PMID:10816491

  4. Processing of two latent membrane protein 1 MHC class I epitopes requires tripeptidyl peptidase II involvement.

    PubMed

    Diekmann, Jan; Adamopoulou, Eleni; Beck, Olaf; Rauser, Georg; Lurati, Sarah; Tenzer, Stefan; Einsele, Hermann; Rammensee, Hans-Georg; Schild, Hansjörg; Topp, Max S

    2009-08-01

    The EBV Ag latent membrane protein 1 (LMP1) has been described as a potential target for T cell immunotherapy in EBV-related malignancies. However, only a few CD8(+) T cell epitopes are known, and the benefit of LMP1-specific T cell immunotherapy has not yet been proven. In this work, we studied the processing of the two LMP1 HLA-A02-restricted epitopes, YLLEMLRWL and YLQQNWWTL. We found that target cells endogenously expressing the native LMP1 are not recognized by CTLs specific for these epitopes because the N-terminal part of LMP1 limits the efficiency of epitope generation. We further observed that the proteasome is not required for the generation of both epitopes and that the YLLEMLRWL epitope seems to be destroyed by the proteasome, because blocking of proteasomal activities enhanced specific CTL activation. Activation of LMP1-specific CTLs could be significantly reduced after inhibition of the tripeptidyl peptidase II, suggesting a role for this peptidase in the processing of both epitopes. Taken together, our results demonstrate that the MHC class I-restricted LMP1 epitopes studied in this work are two of very few epitopes known to date to be processed proteasome independently by tripeptidyl peptidase II.

  5. Three Immunoproteasome-Associated Subunits Cooperatively Generate a Cytotoxic T-Lymphocyte Epitope of Epstein-Barr Virus LMP2A by Overcoming Specific Structures Resistant to Epitope Liberation

    PubMed Central

    Ito, Yoshinori; Kondo, Eisei; Demachi-Okamura, Ayako; Akatsuka, Yoshiki; Tsujimura, Kunio; Tanimoto, Mitsune; Morishima, Yasuo; Takahashi, Toshitada; Kuzushima, Kiyotaka

    2006-01-01

    The precise roles of gamma interferon-inducible immunoproteasome-associated molecules in generation of cytotoxic T-lymphocyte (CTL) epitopes have yet to be fully elucidated. We describe here a unique epitope derived from the Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) presented by HLA-A*2402 molecules. Generation of the epitope, designated LMP2A222-230, from the full-length protein requires the immunoproteasome subunit low-molecular-weight protein 7 (ip-LMP7) and the proteasome activator 28-α subunit and is accelerated by ip-LMP2, as revealed by gene expression experiments using an LMP2A222-230-specific CTL clone as a responder in enzyme-linked immunospot assays. The unequivocal involvement of all three components was confirmed by RNA interference gene silencing. Interestingly, the LMP2A222-230 epitope could be efficiently generated from incomplete EBV-LMP2A fragments that were produced by puromycin treatment or gene-engineered shortened EBV-LMP2A lacking some of its hydrophobic domains. In addition, epitope generation was increased by a single amino acid substitution from leucine to alanine immediately flanking the C terminus, this being predicted by a web-accessible program to increase the cleavage strength. Taken together, the data indicate that the generation of LMP2A222-230 is influenced not only by extrinsic factors such as immunoproteasomes but also by intrinsic factors such as the length of the EBV-LMP2A protein and proteasomal cleavage strength at specific positions in the source antigen. PMID:16378990

  6. Clinical-grade generation of peptide-stimulated CMV/EBV-specific T cells from G-CSF mobilized stem cell grafts.

    PubMed

    Gary, Regina; Aigner, Michael; Moi, Stephanie; Schaffer, Stefanie; Gottmann, Anja; Maas, Stefanie; Zimmermann, Robert; Zingsem, Jürgen; Strobel, Julian; Mackensen, Andreas; Mautner, Josef; Moosmann, Andreas; Gerbitz, Armin

    2018-05-09

    A major complication after allogeneic hematopoietic stem cell transplantation (aSCT) is the reactivation of herpesviruses such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Both viruses cause significant mortality and compromise quality of life after aSCT. Preventive transfer of virus-specific T cells can suppress reactivation by re-establishing functional antiviral immune responses in immunocompromised hosts. We have developed a good manufacturing practice protocol to generate CMV/EBV-peptide-stimulated T cells from leukapheresis products of G-CSF mobilized and non-mobilized donors. Our procedure selectively expands virus-specific CD8+ und CD4+ T cells over 9 days using a generic pool of 34 CMV and EBV peptides that represent well-defined dominant T-cell epitopes with various HLA restrictions. For HLA class I, this set of peptides covers at least 80% of the European population. CMV/EBV-specific T cells were successfully expanded from leukapheresis material of both G-CSF mobilized and non-mobilized donors. The protocol allows administration shortly after stem cell transplantation (d30+), storage over liquid nitrogen for iterated applications, and protection of the stem cell donor by avoiding a second leukapheresis. Our protocol allows for rapid and cost-efficient production of T cells for early transfusion after aSCT as a preventive approach. It is currently evaluated in a phase I/IIa clinical trial.

  7. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients

    PubMed Central

    Acevedo, Gonzalo R.; Longhi, Silvia A.; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P.; Santos, Radleigh

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host’s immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient’s memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells. PMID:28552984

  8. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients.

    PubMed

    Acevedo, Gonzalo R; Longhi, Silvia A; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P; Santos, Radleigh; Judkowski, Valeria A; Pinilla, Clemencia; Gómez, Karina A

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.

  9. Efficient Processing of the Immunodominant, HLA-A*0201-Restricted Human Immunodeficiency Virus Type 1 Cytotoxic T-Lymphocyte Epitope despite Multiple Variations in the Epitope Flanking Sequences

    PubMed Central

    Brander, Christian; Yang, Otto O.; Jones, Norman G.; Lee, Yun; Goulder, Philip; Johnson, R. Paul; Trocha, Alicja; Colbert, David; Hay, Christine; Buchbinder, Susan; Bergmann, Cornelia C.; Zweerink, Hans J.; Wolinsky, Steven; Blattner, William A.; Kalams, Spyros A.; Walker, Bruce D.

    1999-01-01

    Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences. PMID:10559335

  10. The HLA-A2 Restricted T Cell Epitope HCV Core35–44 Stabilizes HLA-E Expression and Inhibits Cytolysis Mediated by Natural Killer Cells

    PubMed Central

    Nattermann, Jacob; Nischalke, Hans Dieter; Hofmeister, Valeska; Ahlenstiel, Golo; Zimmermann, Henning; Leifeld, Ludger; Weiss, Elisabeth H.; Sauerbruch, Tilman; Spengler, Ulrich

    2005-01-01

    Impaired activity of natural killer cells has been proposed as a mechanism contributing to viral persistence in hepatitis C virus (HCV) infection. Natural cytotoxicity is regulated by interactions of HLA-E with inhibitory CD94/NKG2A receptors on natural killer (NK) cells. Here, we studied whether HCV core encodes peptides that bind to HLA-E and inhibit natural cytotoxicity. We analyzed 30 HCV core-derived peptides. Peptide-induced stabilization of HLA-E expression was measured flow cytometrically after incubating HLA-E-transfected cells with peptides. NK cell function was studied with a 51chromium-release-assay. Intrahepatic HLA-E expression was analyzed by an indirect immunoperoxidase technique and flow cytometry of isolated cells using a HLA-E-specific antibody. We identified peptide aa35–44, a well-characterized HLA-A2 restricted T cell epitope, as a peptide stabilizing HLA-E expression and thereby inhibiting NK cell-mediated lysis. Blocking experiments confirmed that this inhibitory effect of peptide aa35–44 on natural cytotoxicity was mediated via interactions between CD94/NKG2A receptors and enhanced HLA-E expression. In line with these in vitro data we found enhanced intrahepatic HLA-E expression on antigen-presenting cells in HCV-infected patients. Our data indicate the existence of T cell epitopes that can be recognized by HLA-A2 and HLA-E. This dual recognition may contribute to viral persistence in hepatitis C. PMID:15681828

  11. Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+ regulatory T cells in humans and mice

    PubMed Central

    Bedke, Tanja; Iannitti, Rossana G; De Luca, Antonella; Giovannini, Gloria; Fallarino, Francesca; Berges, Carsten; Latgé, Jean-Paul; Einsele, Hermann; Romani, Luigina; Topp, Max S

    2014-01-01

    Unlike induced Foxp3+ regulatory T cells (Foxp3+ iTreg) that have been shown to play an essential role in the development of protective immunity to the ubiquitous mold Aspergillus fumigatus, type-(1)-regulatory T cells (Tr1) cells have, thus far, not been implicated in this process. Here, we evaluated the role of Tr1 cells specific for an epitope derived from the cell wall glucanase Crf-1 of A. fumigatus (Crf-1/p41) in antifungal immunity. We identified Crf-1/p41-specific latent-associated peptide+ Tr1 cells in healthy humans and mice after vaccination with Crf-1/p41+zymosan. These cells produced high amounts of interleukin (IL)-10 and suppressed the expansion of antigen-specific T cells in vitro and in vivo. In mice, in vivo differentiation of Tr1 cells was dependent on the presence of the aryl hydrocarbon receptor, c-Maf and IL-27. Moreover, in comparison to Tr1 cells, Foxp3+ iTreg that recognize the same epitope were induced in an interferon gamma-type inflammatory environment and more potently suppressed innate immune cell activities. Overall, our data show that Tr1 cells are involved in the maintenance of antifungal immune homeostasis, and most likely play a distinct, yet complementary, role compared with Foxp3+ iTreg. PMID:24820384

  12. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice.

    PubMed

    Lin, Su-I; Huang, Ming-Hsi; Chang, Yu-Wen; Chen, I-Hua; Roffler, Steve; Chen, Bing-Mae; Sher, Yuh-Pyng; Liu, Shih-Jen

    2016-07-28

    Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Dynamics of Tissue-Specific CD8+ T Cell Responses during West Nile Virus Infection.

    PubMed

    Aguilar-Valenzuela, Renan; Netland, Jason; Seo, Young-Jin; Bevan, Michael J; Grakoui, Arash; Suthar, Mehul S

    2018-05-15

    The mouse model of West Nile virus (WNV), which is a leading cause of mosquito-borne encephalitis worldwide, has provided fundamental insights into the host and viral factors that regulate viral pathogenesis and infection outcome. In particular, CD8 + T cells are critical for controlling WNV replication and promoting protection against infection. Here, we present the characterization of a T cell receptor (TCR)-transgenic mouse with specificity for the immunodominant epitope in the WNV NS4B protein (here referred to as transgenic WNV-I mice). Using an adoptive-transfer model, we found that WNV-I CD8 + T cells behave similarly to endogenous CD8 + T cell responses, with an expansion phase in the periphery beginning around day 7 postinfection (p.i.) followed by a contraction phase through day 15 p.i. Through the use of in vivo intravascular immune cell staining, we determined the kinetics, expansion, and differentiation into effector and memory subsets of WNV-I CD8 + T cells within the spleen and brain. We found that red-pulp WNV-I CD8 + T cells were more effector-like than white-pulp WNV-I CD8 + T cells, which displayed increased differentiation into memory precursor cells. Within the central nervous system (CNS), we found that WNV-I CD8 + T cells were polyfunctional (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), displayed tissue-resident characteristics (CD69 + and CD103 + ), persisted in the brain through day 15 p.i., and reduced the viral burden within the brain. The use of these TCR-transgenic WNV-I mice provides a new resource to dissect the immunological mechanisms of CD8 + T cell-mediated protection during WNV infection. IMPORTANCE West Nile Virus (WNV) is the leading cause of mosquito-borne encephalitis worldwide. There are currently no approved therapeutics or vaccines for use in humans to treat or prevent WNV infection. CD8 + T cells are critical for controlling WNV replication and protecting against infection. Here, we present a

  14. Antibody specific epitope prediction-emergence of a new paradigm.

    PubMed

    Sela-Culang, Inbal; Ofran, Yanay; Peters, Bjoern

    2015-04-01

    The development of accurate tools for predicting B-cell epitopes is important but difficult. Traditional methods have examined which regions in an antigen are likely binding sites of an antibody. However, it is becoming increasingly clear that most antigen surface residues will be able to bind one or more of the myriad of possible antibodies. In recent years, new approaches have emerged for predicting an epitope for a specific antibody, utilizing information encoded in antibody sequence or structure. Applying such antibody-specific predictions to groups of antibodies in combination with easily obtainable experimental data improves the performance of epitope predictions. We expect that further advances of such tools will be possible with the integration of immunoglobulin repertoire sequencing data. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Development of Epstein-Barr virus-specific memory T cell receptor clonotypes in acute infectious mononucleosis

    PubMed Central

    1996-01-01

    The importance of cytotoxic T lymphocytes (CTLs) in the immunosurveillance of Epstein-Barr virus (EBV)-infected B cells is firmly established, and the viral antigens of CTL recognition in latent infection are well defined. The epitopes targeted by CTLs during primary infection have not been identified, however, and there is only limited information about T cell receptor (TCR) selection. In the present report, we have monitored the development of memory TCR-beta clonotypes selected in response to natural EBV infection in a longitudinal study of an HLA-B8+ individual with acute infectious mononucleosis (IM). By stimulating peripheral blood lymphocytes with HLA-B8+ EBV-transformed B lymphoblastoid cells, the primary virus- specific CTL response was shown to include specificities for two HLA-B8- restricted antigenic determinants, FLRGRAYGL and QAKWRLQTL, which are encoded within the latent EBV nuclear antigen EBNA-3. TCR-beta sequence analysis of CTL clones specific for each epitope showed polyclonal TCR- beta repertoire selection, with structural restrictions on recognition that indicated antigen-driven selection. Furthermore, longitudinal repertoire analysis revealed long-term preservation of a multiclonal effector response throughout convalescence, with the reemergence of distinct memory T cell clonotypes sharing similar structural restrictions. Tracking the progression of specific TCR-beta clonotypes and antigen-specific TCR-V beta family gene expression in the peripheral repertoire ex vivo using semiquantitative PCR strongly suggested that selective TCR-beta expansions were present at the clonotype level, but not at the TCR-V beta family level. Overall, in this first analysis of antigen-specific TCR development in IM, a picture of polyclonal TCR stimulation is apparent. This diversity may be especially important in the establishment of an effective CTL control during acute EBV infection and in recovery from disease. PMID:8920869

  16. Carbohydrates and T cells: A sweet twosome

    PubMed Central

    Avci, Fikri Y.; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L.

    2013-01-01

    Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically-linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease. PMID:23757291

  17. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves’ Disease

    PubMed Central

    Inaba, Hidefumi; De Groot, Leslie J.; Akamizu, Takashi

    2016-01-01

    Graves’ disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020

  18. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans

    PubMed Central

    Chou, Meng-Yun; Fogelstrand, Linda; Hartvigsen, Karsten; Hansen, Lotte F.; Woelkers, Douglas; Shaw, Peter X.; Choi, Jeomil; Perkmann, Thomas; Bäckhed, Fredrik; Miller, Yury I.; Hörkkö, Sohvi; Corr, Maripat; Witztum, Joseph L.; Binder, Christoph J.

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis. PMID:19363291

  19. An epitope-specific DerG-PG70 LEAPS vaccine modulates T cell responses and suppresses arthritis progression in two related murine models of rheumatoid arthritis

    PubMed Central

    Mikecz, Katalin; Glant, Tibor T.; Markovics, Adrienn; Rosenthal, Kenneth S.; Kurko, Julia; Carambula, Roy E.; Cress, Steve; Steiner, Harold L.; Zimmerman, Daniel H.

    2017-01-01

    Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA. PMID:28583308

  20. An epitope-specific DerG-PG70 LEAPS vaccine modulates T cell responses and suppresses arthritis progression in two related murine models of rheumatoid arthritis.

    PubMed

    Mikecz, Katalin; Glant, Tibor T; Markovics, Adrienn; Rosenthal, Kenneth S; Kurko, Julia; Carambula, Roy E; Cress, Steve; Steiner, Harold L; Zimmerman, Daniel H

    2017-07-13

    Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity.

    PubMed

    Eickhoff, Christopher S; Zhang, Xiuli; Vasconcelos, Jose R; Motz, R Geoffrey; Sullivan, Nicole L; O'Shea, Kelly; Pozzi, Nicola; Gohara, David W; Blase, Jennifer R; Di Cera, Enrico; Hoft, Daniel F

    2016-09-01

    Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T

  2. Trypanosoma cruzi Subverts Host Cell Sialylation and May Compromise Antigen-specific CD8+ T Cell Responses*

    PubMed Central

    Freire-de-Lima, Leonardo; Alisson-Silva, Frederico; Carvalho, Sebastião T.; Takiya, Christina M.; Rodrigues, Maurício M.; DosReis, George A.; Mendonça-Previato, Lucia; Previato, José O.; Todeschini, Adriane R.

    2010-01-01

    Upon activation, cytotoxic CD8+ T lymphocytes are desialylated exposing β-galactose residues in a physiological change that enhances their effector activity and that can be monitored on the basis of increased binding of the lectin peanut agglutinin. Herein, we investigated the impact of sialylation mediated by trans-sialidase, a specific and unique Trypanosoma transglycosylase for sialic acid, on CD8+ T cell response of mice infected with T. cruzi. Our data demonstrate that T. cruzi uses its trans-sialidase enzyme to resialylate the CD8+ T cell surface, thereby dampening antigen-specific CD8+ T cell response that might favor its own persistence in the mammalian host. Binding of the monoclonal antibody S7, which recognizes sialic acid-containing epitopes on the 115-kDa isoform of CD43, was augmented on CD8+ T cells from ST3Gal-I-deficient infected mice, indicating that CD43 is one sialic acid acceptor for trans-sialidase activity on the CD8+ T cell surface. The cytotoxic activity of antigen-experienced CD8+ T cells against the immunodominant trans-sialidase synthetic peptide IYNVGQVSI was decreased following active trans-sialidase- mediated resialylation in vitro and in vivo. Inhibition of the parasite's native trans-sialidase activity during infection strongly decreased CD8+ T cell sialylation, reverting it to the glycosylation status expected in the absence of parasite manipulation increasing mouse survival. Taken together, these results demonstrate, for the first time, that T. cruzi subverts sialylation to attenuate CD8+ T cell interactions with peptide-major histocompatibility complex class I complexes. CD8+ T cell resialylation may represent a sophisticated strategy to ensure lifetime host parasitism. PMID:20106975

  3. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study

    PubMed Central

    Fleischhauer, Katharina; Gooley, Theodore; Malkki, Mari; Bardy, Peter; Bignon, Jean-Denis; Dubois, Valérie; Horowitz, Mary M; Madrigal, J Alejandro; Morishima, Yasuo; Oudshoorn, Machteld; Ringden, Olle; Spellman, Stephen; Velardi, Andrea; Zino, Elisabetta; Petersdorf, Effie W

    2013-01-01

    Summary Background The risks after unrelated-donor haemopoietic-cell transplantation with matched HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1 alleles between donor and recipient (10/10 matched) can be decreased by selection of unrelated donors who also match for HLA-DPB1; however, such donors are difficult to find. Classification of HLA-DPB1 mismatches based on T-cell-epitope groups could identify mismatches that might be tolerated (permissive) and those that would increase risks (non-permissive) after transplantation. We did a retrospective study to compare outcomes between permissive and non-permissive HLA-DPB1 mismatches in unrelated-donor haemopoietic-cell transplantation. Methods HLA and clinical data for unrelated-donor transplantations submitted to the International Histocompatibility Working Group in haemopoietic-cell transplantation were analysed retrospectively. HLA-DPB1 T-cell-epitope groups were assigned according to a functional algorithm based on alloreactive T-cell crossreactivity patterns. Recipients and unrelated donors matching status were classified as HLA-DPB1 match, non-permissive HLA-DPB1 mismatch (those with mismatched T-cell-epitope groups), or permissive HLA-DPB1 mismatch (those with matched T-cell-epitope groups). The clinical outcomes assessed were overall mortality, non-relapse mortality, relapse, and severe (grade 3–4) acute graft-versus-host disease (aGvHD). Findings Of 8539 transplantations, 5428 (64%) were matched for ten of ten HLA alleles (HLA 10/10 matched) and 3111 (36%) for nine of ten alleles (HLA 9/10 matched). Of the group overall, 1719 (20%) were HLA-DPB1 matches, 2670 (31%) non-permissive HLA-DPB1 mismatches, and 4150 (49%) permissive HLA-DPB1 mismatches. In HLA 10/10-matched transplantations, non-permissive mismatches were associated with a significantly increased risk of overall mortality (hazard ratio [HR] 1·15, 95% CI 1·05–1·25; p=0·002), non-relapse mortality (1·28, 1·14–1·42; p<0·0001), and severe a

  4. Specific CD8+ T Cell Responses Correlate with Control of Simian Immunodeficiency Virus Replication in Mauritian Cynomolgus Macaques

    PubMed Central

    Budde, Melisa L.; Greene, Justin M.; Chin, Emily N.; Ericsen, Adam J.; Scarlotta, Matthew; Cain, Brian T.; Pham, Ngoc H.; Becker, Ericka A.; Harris, Max; Weinfurter, Jason T.; O'Connor, Shelby L.; Piatak, Michael; Lifson, Jeffrey D.; Gostick, Emma; Price, David A.; Friedrich, Thomas C.

    2012-01-01

    Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8+ T cells, but it is not clear whether particular CD8+ T cell responses or a broad repertoire of epitope-specific CD8+ T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-γ ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth. PMID:22573864

  5. T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy.

    PubMed

    Kyte, Jon Amund; Gaudernack, Gustav; Faane, Anne; Lislerud, Kari; Inderberg, Else Marit; Brunsvig, Paal; Aamdal, Steinar; Kvalheim, Gunnar; Wälchli, Sébastien; Pule, Martin

    2016-01-01

    We herein report retargeting of T-helper (Th) cells against the universal cancer antigen telomerase for use in adoptive cell therapy. The redirected Th cells may counter tumor tolerance, transform the inflammatory milieu, and induce epitope spreading and cancer senescence. We have previously conducted a series of trials evaluating vaccination with telomerase peptides. From long-term survivors, we isolated >100 CD4 + Th-cell clones recognizing telomerase epitopes. The clones were characterized with regard to HLA restriction, functional avidity, fine specificity, proliferative capacity, cytokine profile, and recognition of naturally processed epitopes. DP4 is the most prevalent HLA molecule worldwide. Two DP4-restricted T-cell clones with different functional avidity, C13 and D71, were selected for molecular T-cell receptor (TCR) cloning. Both clones showed a high proliferative capacity, recognition of naturally processed telomerase epitopes, and a polyfunctional and Th1-weighted cytokine profile. TCR C13 and D71 were cloned into the retroviral vector MP71 together with the compact and GMP-applicable marker/suicide gene RQR8. Both TCRs were expressed well in recipient T cells after PBMC transduction. The transduced T cells co-expressed RQR8 and acquired the desired telomerase specificity, with a polyfunctional response including production of TNFa, IFNγ, and CD107a. Interestingly, the DP4-restricted TCRs were expressed and functional both in CD4 + and CD8 + T cells. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired hTERT-specificity and functionality. We hypothesize that adoptive therapy with Th cells may offer a powerful novel approach for overcoming tumor tolerance and synergize with other forms of immunotherapy.

  6. HTLV-1 Tax-Specific CTL Epitope-Pulsed Dendritic Cell Therapy Reduces Proviral Load in Infected Rats with Immune Tolerance against Tax.

    PubMed

    Ando, Satomi; Hasegawa, Atsuhiko; Murakami, Yuji; Zeng, Na; Takatsuka, Natsuko; Maeda, Yasuhiro; Masuda, Takao; Suehiro, Youko; Kannagi, Mari

    2017-02-01

    Adult T cell leukemia/lymphoma (ATL), a CD4 + T cell malignancy with a poor prognosis, is caused by human T cell leukemia virus type 1 (HTLV-1) infection. High proviral load (PVL) is a risk factor for the progression to ATL. We previously reported that some asymptomatic carriers had severely reduced functions of CTLs against HTLV-1 Tax, the major target Ag. Furthermore, the CTL responses tended to be inversely correlated with PVL, suggesting that weak HTLV-1-specific CTL responses may be involved in the elevation of PVL. Our previous animal studies indicated that oral HTLV-1 infection, the major route of infection, caused persistent infection with higher PVL in rats compared with other routes. In this study, we found that Tax-specific CD8 + T cells were present, but not functional, in orally infected rats as observed in some human asymptomatic carriers. Even in the infected rats with immune unresponsiveness against Tax, Tax-specific CTL epitope-pulsed dendritic cell (DC) therapy reduced the PVL and induced Tax-specific CD8 + T cells capable of proliferating and producing IFN-γ. Furthermore, we found that monocyte-derived DCs from most infected individuals still had the capacity to stimulate CMV-specific autologous CTLs in vitro, indicating that DC therapy may be applicable to most infected individuals. These data suggest that peptide-pulsed DC immunotherapy will be useful to induce functional HTLV-1-specific CTLs and decrease PVL in infected individuals with high PVL and impaired HTLV-1-specific CTL responses, thereby reducing the risk of the development of ATL. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections.

    PubMed

    Whitacre, David C; Espinosa, Diego A; Peters, Cory J; Jones, Joyce E; Tucker, Amy E; Peterson, Darrell L; Zavala, Fidel P; Milich, David R

    2015-01-01

    In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x10(6)) and provided 80-100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.

  8. Intranasal delivery of recombinant parvovirus-like particles elicits cytotoxic T-cell and neutralizing antibody responses.

    PubMed

    Sedlik, C; Dridi, A; Deriaud, E; Saron, M F; Rueda, P; Sarraseca, J; Casal, J I; Leclerc, C

    1999-04-01

    We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4(+) and CD8(+) T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8(+) T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8(+) T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration.

  9. Intranasal Delivery of Recombinant Parvovirus-Like Particles Elicits Cytotoxic T-Cell and Neutralizing Antibody Responses

    PubMed Central

    Sedlik, C.; Dridi, A.; Deriaud, E.; Saron, M. F.; Rueda, P.; Sarraseca, J.; Casal, J. I.; Leclerc, C.

    1999-01-01

    We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4+ and CD8+ T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8+ T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8+ T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8+ T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration. PMID:10074120

  10. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins.

    PubMed

    James, Eddie A; LaFond, Rebecca E; Gates, Theresa J; Mai, Duy T; Malhotra, Uma; Kwok, William W

    2013-12-01

    Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8(+) T cell responses, less is known about YFV-specific CD4(+) T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4(+) T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4(+) T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4(+) T cell responses that contract, forming a detectable memory population.

  11. Yellow Fever Vaccination Elicits Broad Functional CD4+ T Cell Responses That Recognize Structural and Nonstructural Proteins

    PubMed Central

    James, Eddie A.; LaFond, Rebecca E.; Gates, Theresa J.; Mai, Duy T.; Malhotra, Uma

    2013-01-01

    Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8+ T cell responses, less is known about YFV-specific CD4+ T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4+ T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4+ T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4+ T cell responses that contract, forming a detectable memory population. PMID:24049183

  12. Functional impairment of Tax-specific but not cytomegalovirus-specific CD8+ T lymphocytes in a minor population of asymptomatic human T-cell leukemia virus type 1-carriers

    PubMed Central

    2011-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a small percentage of infected individuals. ATL is often associated with general immune suppression and an impaired HTLV-1-specific T-cell response, an important host defense system. We previously found that a small fraction of asymptomatic HTLV-1-carriers (AC) already showed impaired T-cell responses against the major target antigen, Tax. However, it is unclear whether the impaired HTLV-1 Tax-specific T-cell response in these individuals is an HTLV-1-specific phenomenon, or merely reflects general immune suppression. In this study, in order to characterize the impaired HTLV-1-specific T-cell response, we investigated the function of Tax-specific CD8+ T-cells in various clinical status of HTLV-1 infection. Results By using tetramers consisting of HLA-A*0201, -A*2402, or -A*1101, and corresponding Tax epitope peptides, we detected Tax-specific CD8+ T-cells in the peripheral blood from 87.0% of ACs (n = 20/23) and 100% of HAM/TSP patients (n = 18/18) tested. We also detected Tax-specific CD8+ T-cells in 38.1% of chronic type ATL (cATL) patients (n = 8/21), although its frequencies in peripheral blood CD8+ T cells were significantly lower than those of ACs or HAM/TSP patients. Tax-specific CD8+ T-cells detected in HAM/TSP patients proliferated well in culture and produced IFN-γ when stimulated with Tax peptides. However, such functions were severely impaired in the Tax-specific CD8+ T-cells detected in cATL patients. In ACs, the responses of Tax-specific CD8+ T-cells were retained in most cases. However, we found one AC sample whose Tax-specific CD8+ T-cells hardly produced IFN-γ, and failed to proliferate and express activation (CD69) and degranulation (CD107a) markers in response to Tax peptide. Importantly, the same AC sample contained cytomegalovirus (CMV) pp65-specific CD8+ T-cells that possessed

  13. Vaccination potential of B and T epitope-enriched NP and M2 against Influenza A viruses from different clades and hosts

    PubMed Central

    Esmagambetov, Ilias; Bagaev, Alexander; Pichugin, Alexey; Lysenko, Andrey; Shcherbinin, Dmitry; Sedova, Elena; Logunov, Denis; Shmarov, Maxim; Ataullakhanov, Ravshan; Naroditsky, Boris; Gintsburg, Alexander

    2018-01-01

    To avoid outbreaks of influenza virus epidemics and pandemics among human populations, modern medicine requires the development of new universal vaccines that are able to provide protection from a wide range of influenza A virus strains. In the course of development of a universal vaccine, it is necessary to consider that immunity must be generated even against viruses from different hosts because new human epidemic virus strains have their origins in viruses of birds and other animals. We have enriched conserved viral proteins–nucleoprotein (NP) and matrix protein 2 (M2)—by B and T-cell epitopes not only human origin but also swine and avian origin. For this purpose, we analyzed M2 and NP sequences with respect to changes in the sequences of known T and B-cell epitopes and chose conserved and evolutionarily significant epitopes. Eventually, we found consensus sequences of M2 and NP that have the maximum quantity of epitopes that are 100% coincident with them. Consensus epitope-enriched amino acid sequences of M2 and NP proteins were included in a recombinant adenoviral vector. Immunization with Ad5-tet-M2NP induced strong CD8 and CD4 T cells responses, specific to each of the encoded antigens, i.e. M2 and NP. Eight months after immunization with Ad5-tet-M2NP, high numbers of M2- and NP-responding “effector memory” CD44posCD62neg T cells were found in the mouse spleens, which revealed a long-term T cell immune memory conferred by the immunization. In all, the challenge experiments showed an extraordinarily wide-ranging efficacy of protection by the Ad5-tet-M2NP vaccine, covering 5 different heterosubtypes of influenza A virus (2 human, 2 avian and 1 swine). PMID:29377916

  14. Of Mice and not Humans: How Reliable are Animal Models for Evaluation of Herpes CD8+-T cell-Epitopes-Based Immunotherapeutic Vaccine Candidates?

    PubMed Central

    Dasgupta, Gargi; BenMohamed, Lbachir

    2011-01-01

    Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) -specific CD8+ T cells that reside in sensory ganglia, appears to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8+ T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8+ T cell responses specific to Human Leukocyte Antigen- (HLA-) restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel “humanized” HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8+ T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models. PMID:21718746

  15. Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification.

    PubMed

    Wang, Hsin-Wei; Lin, Ya-Chi; Pai, Tun-Wen; Chang, Hao-Teng

    2011-01-01

    Epitopes are antigenic determinants that are useful because they induce B-cell antibody production and stimulate T-cell activation. Bioinformatics can enable rapid, efficient prediction of potential epitopes. Here, we designed a novel B-cell linear epitope prediction system called LEPS, Linear Epitope Prediction by Propensities and Support Vector Machine, that combined physico-chemical propensity identification and support vector machine (SVM) classification. We tested the LEPS on four datasets: AntiJen, HIV, a newly generated PC, and AHP, a combination of these three datasets. Peptides with globally or locally high physicochemical propensities were first identified as primitive linear epitope (LE) candidates. Then, candidates were classified with the SVM based on the unique features of amino acid segments. This reduced the number of predicted epitopes and enhanced the positive prediction value (PPV). Compared to four other well-known LE prediction systems, the LEPS achieved the highest accuracy (72.52%), specificity (84.22%), PPV (32.07%), and Matthews' correlation coefficient (10.36%).

  16. Brain Ischemia Induces Diversified Neuroantigen-Specific T-Cell Responses That Exacerbate Brain Injury.

    PubMed

    Jin, Wei-Na; Gonzales, Rayna; Feng, Yan; Wood, Kristofer; Chai, Zhi; Dong, Jing-Fei; La Cava, Antonio; Shi, Fu-Dong; Liu, Qiang

    2018-06-01

    Autoimmune responses can occur when antigens from the central nervous system are presented to lymphocytes in the periphery or central nervous system in several neurological diseases. However, whether autoimmune responses emerge after brain ischemia and their impact on clinical outcomes remains controversial. We hypothesized that brain ischemia facilitates the genesis of autoimmunity and aggravates ischemic brain injury. Using a mouse strain that harbors a transgenic T-cell receptor to a central nervous system antigen, MOG 35-55 (myelin oligodendrocyte glycoprotein) epitope (2D2), we determined the anatomic location and involvement of antigen-presenting cells in the development of T-cell reactivity after brain ischemia and how T-cell reactivity impacts stroke outcome. Transient middle cerebral artery occlusion and photothrombotic stroke models were used in this study. We also quantified the presence and status of T cells from brain slices of ischemic patients. By coupling transfer of labeled MOG 35-55 -specific (2D2) T cells with tetramer tracking, we show an expansion in reactivity of 2D2 T cells to MOG 91-108 and MOG 103-125 in transient middle cerebral artery occlusion and photothrombotic stroke models. This reactivity and T-cell activation first occur locally in the brain after ischemia. Also, microglia act as antigen-presenting cells that effectively present MOG antigens, and depletion of microglia ablates expansion of 2D2 reactive T cells. Notably, the adoptive transfer of neuroantigen-experienced 2D2 T cells exacerbates Th1/Th17 responses and brain injury. Finally, T-cell activation and MOG-specific T cells are present in the brain of patients with ischemic stroke. Our findings suggest that brain ischemia activates and diversifies T-cell responses locally, which exacerbates ischemic brain injury. © 2018 The Authors.

  17. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes

    PubMed Central

    Jespersen, Martin Closter; Peters, Bjoern

    2017-01-01

    Abstract Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community. PMID:28472356

  18. Codon Optimization of the Human Papillomavirus E7 Oncogene Induces a CD8+ T Cell Response to a Cryptic Epitope Not Harbored by Wild-Type E7

    PubMed Central

    Lorenz, Felix K. M.; Wilde, Susanne; Voigt, Katrin; Kieback, Elisa; Mosetter, Barbara; Schendel, Dolores J.; Uckert, Wolfgang

    2015-01-01

    Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine. PMID:25799237

  19. Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients.

    PubMed

    Mizote, Yu; Taniguchi, Taku; Tanaka, Kei; Isobe, Midori; Wada, Hisashi; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Uenaka, Akiko; Nakayama, Eiichi

    2010-07-19

    Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Identification of a novel HLA-A*02:01-restricted cytotoxic T lymphocyte epitope derived from the EML4-ALK fusion gene

    PubMed Central

    YOSHIMURA, MAYUKO; TADA, YOSHITAKA; OFUZI, KAZUYA; YAMAMOTO, MASAKAZU; NAKATSURA, TETSUYA

    2014-01-01

    Cancer immunotherapy is a promising new approach to cancer treatment. It has been demonstrated that a high number of tumor-specific cytotoxic T cells (CTLs) is associated with increased disease-specific survival in lung cancer patients. Identification of superior CTL epitopes from tumor antigens is essential for the development of immunotherapy for malignant tumors. The EML4-ALK fusion gene was recently identified in a subset of non-small cell lung cancers (NSCLCs). In this study we searched for HLA-A*02:01- and HLA-A*24:02-restricted epitopes derived from EML4-ALK by screening predicted EML4-ALK-derived candidate peptides for the induction of tumor-reactive CTLs. Nine EML4-ALK-derived peptides were selected by a computer algorithm based on a permissive HLA-A*02:01 or HLA-A*24:02 binding motif. One of the nine peptides induced peptide-specific CTLs from human peripheral blood mononuclear cells. We were able to generate a peptide-specific CTL clone. This CTL clone specifically recognized peptide-pulsed T2 cells and H2228 cells expressing HLA-A*02:01 and EML4-ALK that had been treated with IFN-γ 48 h prior to examination. CTL activity was inhibited by an anti-HLA-class I monoclonal antibody (W6/32), consistent with a class I-restricted mechanism of cytotoxicity. These results suggest that this peptide (RLSALESRV) is a novel HLA-A*02:01-restricted CTL epitope and that it may be a new target for antigen-specific immunotherapy against EML4-ALK-positive cancers. PMID:24842630

  1. Identification of a novel HLA-A 02:01-restricted cytotoxic T lymphocyte epitope derived from the EML4-ALK fusion gene.

    PubMed

    Yoshimura, Mayuko; Tada, Yoshitaka; Ofuzi, Kazuya; Yamamoto, Masakazu; Nakatsura, Tetsuya

    2014-07-01

    Cancer immunotherapy is a promising new approach to cancer treatment. It has been demonstrated that a high number of tumor-specific cytotoxic T cells (CTLs) is associated with increased disease-specific survival in lung cancer patients. Identification of superior CTL epitopes from tumor antigens is essential for the development of immunotherapy for malignant tumors. The EML4-ALK fusion gene was recently identified in a subset of non-small cell lung cancers (NSCLCs). In this study we searched for HLA-A 02:01- and HLA-A 24:02‑restricted epitopes derived from EML4-ALK by screening predicted EML4-ALK‑derived candidate peptides for the induction of tumor‑reactive CTLs. Nine EML4-ALK‑derived peptides were selected by a computer algorithm based on a permissive HLA-A 02:01 or HLA-A 24:02 binding motif. One of the nine peptides induced peptide-specific CTLs from human peripheral blood mononuclear cells. We were able to generate a peptide‑specific CTL clone. This CTL clone specifically recognized peptide‑pulsed T2 cells and H2228 cells expressing HLA-A 02:01 and EML4-ALK that had been treated with IFN-γ 48 h prior to examination. CTL activity was inhibited by an anti-HLA‑class I monoclonal antibody (W6/32), consistent with a class I-restricted mechanism of cytotoxicity. These results suggest that this peptide (RLSALESRV) is a novel HLA-A 02:01-restricted CTL epitope and that it may be a new target for antigen-specific immunotherapy against EML4‑ALK-positive cancers.

  2. Single Insulin-Specific CD8+ T Cells Show Characteristic Gene Expression Profiles in Human Type 1 Diabetes

    PubMed Central

    Luce, Sandrine; Lemonnier, François; Briand, Jean-Paul; Coste, Joel; Lahlou, Najiba; Muller, Sylviane; Larger, Etienne; Rocha, Benedita; Mallone, Roberto; Boitard, Christian

    2011-01-01

    OBJECTIVE Both the early steps and the high recurrence of autoimmunity once the disease is established are unexplained in human type 1 diabetes. Because CD8+ T cells are central and insulin is a key autoantigen in the disease process, our objective was to characterize HLA class I–restricted autoreactive CD8+ T cells specific for preproinsulin (PPI) in recent-onset and long-standing type 1 diabetic patients and healthy control subjects. RESEARCH DESIGN AND METHODS We used HLA-A*02:01 tetramers complexed to PPI peptides to enumerate circulating PPI-specific CD8+ T cells in patients and characterize them using membrane markers and single-cell PCR. RESULTS Most autoreactive CD8+ T cells detected in recent-onset type 1 diabetic patients are specific for leader sequence peptides, notably PPI6–14, whereas CD8+ T cells in long-standing patients recognize the B-chain peptide PPI33–42 (B9–18). Both CD8+ T-cell specificities are predominantly naïve, central, and effector memory cells, and their gene expression profile differs from cytomegalovirus-specific CD8+ T cells. PPI6–14–specific CD8+ T cells detected in one healthy control displayed Il-10 mRNA expression, which was not observed in diabetic patients. CONCLUSIONS PPI-specific CD8+ T cells in type 1 diabetic patients include central memory and target different epitopes in new-onset versus long-standing disease. Our data support the hypothesis that insulin therapy may contribute to the expansion of autoreactive CD8+ T cells in the long term. PMID:21998398

  3. Fluidity of HIV-1-Specific T-Cell Responses during Acute and Early Subtype C HIV-1 Infection and Associations with Early Disease Progression ▿

    PubMed Central

    Mlotshwa, Mandla; Riou, Catherine; Chopera, Denis; de Assis Rosa, Debra; Ntale, Roman; Treunicht, Florette; Woodman, Zenda; Werner, Lise; van Loggerenberg, Francois; Mlisana, Koleka; Abdool Karim, Salim; Williamson, Carolyn; Gray, Clive M.

    2010-01-01

    Deciphering immune events during early stages of human immunodeficiency virus type 1 (HIV-1) infection is critical for understanding the course of disease. We characterized the hierarchy of HIV-1-specific T-cell gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses during acute subtype C infection in 53 individuals and associated temporal patterns of responses with disease progression in the first 12 months. There was a diverse pattern of T-cell recognition across the proteome, with the recognition of Nef being immunodominant as early as 3 weeks postinfection. Over the first 6 months, we found that there was a 23% chance of an increased response to Nef for every week postinfection (P = 0.0024), followed by a nonsignificant increase to Pol (4.6%) and Gag (3.2%). Responses to Env and regulatory proteins appeared to remain stable. Three temporal patterns of HIV-specific T-cell responses could be distinguished: persistent, lost, or new. The proportion of persistent T-cell responses was significantly lower (P = 0.0037) in individuals defined as rapid progressors than in those progressing slowly and who controlled viremia. Almost 90% of lost T-cell responses were coincidental with autologous viral epitope escape. Regression analysis between the time to fixed viral escape and lost T-cell responses (r = 0.61; P = 0.019) showed a mean delay of 14 weeks after viral escape. Collectively, T-cell epitope recognition is not a static event, and temporal patterns of IFN-γ-based responses exist. This is due partly to viral sequence variation but also to the recognition of invariant viral epitopes that leads to waves of persistent T-cell immunity, which appears to associate with slower disease progression in the first year of infection. PMID:20826686

  4. A comparative in silico linear B-cell epitope prediction and characterization for South American and African Trypanosoma vivax strains.

    PubMed

    Guedes, Rafael Lucas Muniz; Rodrigues, Carla Monadeli Filgueira; Coatnoan, Nicolas; Cosson, Alain; Cadioli, Fabiano Antonio; Garcia, Herakles Antonio; Gerber, Alexandra Lehmkuhl; Machado, Rosangela Zacarias; Minoprio, Paola Marcella Camargo; Teixeira, Marta Maria Geraldes; de Vasconcelos, Ana Tereza Ribeiro

    2018-02-27

    Trypanosoma vivax is a parasite widespread across Africa and South America. Immunological methods using recombinant antigens have been developed aiming at specific and sensitive detection of infections caused by T. vivax. Here, we sequenced for the first time the transcriptome of a virulent T. vivax strain (Lins), isolated from an outbreak of severe disease in South America (Brazil) and performed a computational integrated analysis of genome, transcriptome and in silico predictions to identify and characterize putative linear B-cell epitopes from African and South American T. vivax. A total of 2278, 3936 and 4062 linear B-cell epitopes were respectively characterized for the transcriptomes of T. vivax LIEM-176 (Venezuela), T. vivax IL1392 (Nigeria) and T. vivax Lins (Brazil) and 4684 for the genome of T. vivax Y486 (Nigeria). The results presented are a valuable theoretical source that may pave the way for highly sensitive and specific diagnostic tools. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Responses of human birch pollen allergen-reactive T cells to chemically modified allergens (allergoids).

    PubMed

    Dormann, D; Ebner, C; Jarman, E R; Montermann, E; Kraft, D; Reske-Kunz, A B

    1998-11-01

    Allergoids are widely used in specific immunotherapy for the treatment of IgE-mediated allergic diseases. The aim of this study was to analyse whether a modification of birch pollen allergens with formaldehyde affects the availability of T-cell epitopes. Efficient modification of the allergens was verified by determining IgE and IgG binding activity using ELISA inhibition tests. T-cell responses to birch pollen allergoids were analysed in polyclonal systems, using peripheral blood mononuclear cells (PBMC) of five birch pollen-allergic individuals, as well as birch pollen extract-reactive T-cell lines (TCL), established from the peripheral blood of 14 birch pollen-allergic donors. To determine whether the modification of natural (n)Bet v 1 with formaldehyde or maleic anhydride results in epitope-specific changes in T-cell reactivities, 22 Bet v 1-specific T-cell clones (TCC), established from nine additional birch pollen-allergic individuals, were tested for their reactivity with these products. The majority of PBMC and TCL showed a reduced response to the birch pollen extract allergoid. Bet v 1-specific TCC could be divided into allergoid-reactive and -non-reactive TCC. No simple correlation between possible modification sites of formaldehyde in the respective T-cell epitopes and the stimulatory potential of the allergoid was observed. Mechanisms of suppression or of anergy induction were excluded as an explanation for the non-reactivity of representative TCC. All TCC could be stimulated by maleylated and unmodified nBet v 1 to a similar extent. These results demonstrate differences in the availability of T-cell epitopes between allergoids and unmodified allergens, which are most likely due to structural changes within the allergen molecule.

  6. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection.

    PubMed

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M

    2017-04-01

    Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  7. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection

    PubMed Central

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D.; Ndung'u, Thumbi

    2017-01-01

    ABSTRACT Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = −0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  8. Impact of regulated secretion on anti-parasitic CD8 T cell responses

    PubMed Central

    Grover, Harshita Satija; Chu, H. Hamlet; Kelly, Felice D.; Yang, Soo Jung; Reese, Michael L.; Blanchard, Nicolas; Gonzalez, Federico; Chan, Shiao Wei; Boothroyd, John C.; Shastri, Nilabh; Robey, Ellen A.

    2014-01-01

    Summary CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen ROP5 that elicits a modest CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense granule antigen, GRA6, is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion impacts the efficacy of parasite-specific CD8 T cell responses. PMID:24857659

  9. Peptide immunotherapy in allergic asthma generates IL-10–dependent immunological tolerance associated with linked epitope suppression

    PubMed Central

    Campbell, John D.; Buckland, Karen F.; McMillan, Sarah J.; Kearley, Jennifer; Oldfield, William L.G.; Stern, Lawrence J.; Grönlund, Hans; van Hage, Marianne; Reynolds, Catherine J.; Boyton, Rosemary J.; Cobbold, Stephen P.; Kay, A. Barry; Altmann, Daniel M.; Larché, Mark

    2009-01-01

    Treatment of patients with allergic asthma using low doses of peptides containing T cell epitopes from Fel d 1, the major cat allergen, reduces allergic sensitization and improves surrogate markers of disease. Here, we demonstrate a key immunological mechanism, linked epitope suppression, associated with this therapeutic effect. Treatment with selected epitopes from a single allergen resulted in suppression of responses to other (“linked”) epitopes within the same molecule. This phenomenon was induced after peptide immunotherapy in human asthmatic subjects and in a novel HLA-DR1 transgenic mouse model of asthma. Tracking of allergen-specific T cells using DR1 tetramers determined that suppression was associated with the induction of interleukin (IL)-10+ T cells that were more abundant than T cells specific for the single-treatment peptide and was reversed by anti–IL-10 receptor administration. Resolution of airway pathophysiology in this model was associated with reduced recruitment, proliferation, and effector function of allergen-specific Th2 cells. Our results provide, for the first time, in vivo evidence of linked epitope suppression and IL-10 induction in both human allergic disease and a mouse model designed to closely mimic peptide therapy in humans. PMID:19528258

  10. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens.

    PubMed

    Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John

    2009-12-30

    In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.

  11. Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy

    PubMed Central

    Lei, Janet; Osen, Wolfram; Gardyan, Adriane; Hotz-Wagenblatt, Agnes; Wei, Guochao; Gissmann, Lutz; Eichmüller, Stefan; Löchelt, Martin

    2015-01-01

    The use of whole viruses as antigen scaffolds is a recent development in vaccination that improves immunogenicity without the need for additional adjuvants. Previous studies highlighted the potential of foamy viruses (FVs) in prophylactic vaccination and gene therapy. Replication-competent FVs can trigger immune signaling and integrate into the host genome, resulting in persistent antigen expression and a robust immune response. Here, we explored feline foamy virus (FFV) proteins as scaffolds for therapeutic B and T cell epitope delivery in vitro. Infection- and cancer-related B and T cell epitopes were grafted into FFV Gag, Env, or Bet by residue replacement, either at sites of high local sequence homology between the epitope and the host protein or in regions known to tolerate sequence alterations. Modified proviruses were evaluated in vitro for protein steady state levels, particle release, and virus titer in permissive cells. Modification of Gag and Env was mostly detrimental to their function. As anticipated, modification of Bet had no impact on virion release and affected virus titers of only some recombinants. Further evaluation of Bet as an epitope carrier was performed using T cell epitopes from the model antigen chicken ovalbumin (OVA), human tyrosinase-related protein 2 (TRP-2), and oncoprotein E7 of human papillomavirus type 16 (HPV16E7). Transfection of murine cells with constructs encoding Bet-epitope chimeric proteins led to efficient MHC-I-restricted epitope presentation as confirmed by interferon-gamma enzyme-linked immunospot assays using epitope-specific cytotoxic T lymphocyte (CTL) lines. FFV infection-mediated transduction of cells with epitope-carrying Bet also induced T-cell responses, albeit with reduced efficacy, in a process independent from the presence of free peptides. We show that primate FV Bet is also a promising T cell epitope carrier for clinical translation. The data demonstrate the utility of replication-competent and -attenuated

  12. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes.

    PubMed

    Jespersen, Martin Closter; Peters, Bjoern; Nielsen, Morten; Marcatili, Paolo

    2017-07-03

    Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Depletion of Regulatory T Cells Augments a Vaccine-Induced T Effector Cell Response against the Liver-Stage of Malaria but Fails to Increase Memory

    PubMed Central

    Espinoza Mora, Maria del Rosario; Steeg, Christiane; Tartz, Susanne; Heussler, Volker; Sparwasser, Tim; Link, Andreas; Fleischer, Bernhard; Jacobs, Thomas

    2014-01-01

    Regulatory T cells (Treg) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4+CD25+ Treg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3+CD25− Treg. To obtain more insights in the specific function of Treg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when Treg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed. PMID:25115805

  14. Epitope discovery in West Nile virus infection: Identification and immune recognition of viral epitopes.

    PubMed

    McMurtrey, Curtis P; Lelic, Alina; Piazza, Paolo; Chakrabarti, Ayan K; Yablonsky, Eric J; Wahl, Angela; Bardet, Wilfried; Eckerd, Annette; Cook, Robert L; Hess, Rachael; Buchli, Rico; Loeb, Mark; Rinaldo, Charles R; Bramson, Jonathan; Hildebrand, William H

    2008-02-26

    Cytotoxic T lymphocytes (CTL) play an important role in the control and elimination of infection by West Nile virus (WNV), yet the class I human leukocyte antigen (HLA)-presented peptide epitopes that enable CTL recognition of WNV-infected cells remain uncharacterized. The goals of this work were first to discover the peptide epitopes that distinguish the class I HLA of WNV-infected cells and then to test the T cell reactivity of newly discovered WNV epitopes. To discover WNV-immune epitopes, class I HLA was harvested from WNV (NY99 strain)-infected and uninfected HeLa cells. Then peptide epitopes were eluted from affinity-purified HLA, and peptide epitopes from infected and uninfected cells were comparatively mapped by mass spectroscopy. Six virus-derived peptides from five different viral proteins (E, NS2b, NS3, NS4b, and NS5) were discovered as unique to HLA-A*0201 of infected cells, demonstrating that the peptides sampled by class I HLA are distributed widely throughout the WNV proteome. When tested with CTL from infected individuals, one dominant WNV target was apparent, two epitopes were subdominant, and three demonstrated little CTL reactivity. Finally, a sequence comparison of these epitopes with the hundreds of viral isolates shows that HLA-A*0201 presents epitopes derived from conserved regions of the virus. Detection and recovery from WNV infection are therefore functions of the ability of class I HLA molecules to reveal conserved WNV epitopes to an intact cellular immune system that subsequently recognizes infected cells.

  15. Harnessing Computational Biology for Exact Linear B-Cell Epitope Prediction: A Novel Amino Acid Composition-Based Feature Descriptor.

    PubMed

    Saravanan, Vijayakumar; Gautham, Namasivayam

    2015-10-01

    Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP.

  16. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response.

    PubMed

    Culshaw, Abigail; Ladell, Kristin; Gras, Stephanie; McLaren, James E; Miners, Kelly L; Farenc, Carine; van den Heuvel, Heleen; Gostick, Emma; Dejnirattisai, Wanwisa; Wangteeraprasert, Apirath; Duangchinda, Thaneeya; Chotiyarnwong, Pojchong; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Dong, Tao; Rossjohn, Jamie; Mongkolsapaya, Juthathip; Price, David A; Screaton, Gavin R

    2017-11-01

    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8 + T cell populations specific for variants of the nonstructural protein epitope NS3 133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3 133 -DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2 + TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2 + TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.

  17. Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. | Office of Cancer Genomics

    Cancer.gov

    Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4% to 18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, "KLL") and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome.

  18. Antibody Production and Th1-biased Response Induced by an Epitope Vaccine Composed of Cholera Toxin B Unit and Helicobacter pylori Lpp20 Epitopes.

    PubMed

    Li, Yan; Chen, Zhongbiao; Ye, Jianbin; Ning, Lijun; Luo, Jun; Zhang, Lili; Jiang, Yin; Xi, Yue; Ning, Yunshan

    2016-06-01

    The epitope vaccine is an attractive potential for prophylactic and therapeutic vaccination against Helicobacter pylori (H. pylori) infection. Lpp20 is one of major protective antigens which trigger immune response after H. pylori invades host and has been considered as an excellent vaccine candidate for the control of H. pylori infection. In our previous study, one B-cell epitope and two CD4(+) T-cell epitopes of Lpp20 were identified. In this study, an epitope vaccine composed of mucosal adjuvant cholera toxin B subunit (CTB) and these three identified Lpp20 epitopes were constructed to investigate the efficacy of this epitope vaccine in mice. The epitope vaccine including CTB, one B-cell, and two CD4(+) T-cell epitopes of Lpp20 was constructed and named CTB-Lpp20, which was then expressed in Escherichia coli and used for intraperitoneal immunization in BALB/c mice. The immunogenicity, specificity, and ability to induce antibodies against Lpp20 and cytokine secretion were evaluated. After that, CTB-Lpp20 was intragastrically immunized to investigate the prophylactic and therapeutic efficacy in infected mice. The results indicated that the epitope vaccine CTB-Lpp20 possessed good immunogenicity and immunoreactivity and could elicit specific high level of antibodies against Lpp20 and the cytokine of IFN-γ and IL-17. Additionally, CTB-Lpp20 significantly decreased H. pylori colonization in H. pylori challenging mice, and the protection was correlated with IgG, IgA, and sIgA antibody and Th1-type cytokines. This study will be better for understanding the protective immunity of epitope vaccine, and CTB-Lpp20 may be an alternative strategy for combating H. pylori invasion. © 2015 John Wiley & Sons Ltd.

  19. Essential differences in ligand presentation and T cell epitope recognition among HLA molecules of the HLA-B44 supertype.

    PubMed

    Hillen, Nina; Mester, Gabor; Lemmel, Claudia; Weinzierl, Andreas O; Müller, Margret; Wernet, Dorothee; Hennenlotter, Jörg; Stenzl, Arnulf; Rammensee, Hans-Georg; Stevanović, Stefan

    2008-11-01

    Human leukocyte antigens (HLA) have long been grouped into supertypes to facilitate peptide-based immunotherapy. Analysis of several hundreds of peptides presented by all nine antigens of the HLA-B44 supertype (HLA-B*18, B*37, B*40, B*41, B*44, B*45, B*47, B*49 and B*50) revealed unique peptide motifs for each of them. Taking all supertype members into consideration only 25 out of 670 natural ligands were found on more than one HLA molecule. Further direct comparisons by two mass spectrometric methods--isotope labeling as well as a label-free approach--consistently demonstrated only minute overlaps of below 3% between the ligandomes of different HLA antigens. In addition, T cell reactions of healthy donors against immunodominant HLA-B*44 and HLA-B*40 epitopes from EBV lacked promiscuous T-cell recognition within the HLA-B44 supertype. Taken together, these results challenge the common paradigm of broadly presented epitopes within this supertype.

  20. BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences

    PubMed Central

    Gao, Jianzhao; Faraggi, Eshel; Zhou, Yaoqi; Ruan, Jishou; Kurgan, Lukasz

    2012-01-01

    Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods. PMID:22761950

  1. Phenotypic analysis of perennial airborne allergen-specific CD4+ T cells in atopic and non-atopic individuals.

    PubMed

    Crack, L R; Chan, H W; McPherson, T; Ogg, G S

    2011-11-01

    Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.

  2. Astrocyte-specific expression of human T-cell lymphotropic virus type 1 (HTLV-1) Tax: induction of tumor necrosis factor alpha and susceptibility to lysis by CD8+ HTLV-1-specific cytotoxic T cells.

    PubMed

    Méndez, E; Kawanishi, T; Clemens, K; Siomi, H; Soldan, S S; Calabresi, P; Brady, J; Jacobson, S

    1997-12-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is associated with a chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraperesis (HAM/TSP). Although the pathogenesis of this disease remains to be elucidated, the evidence suggests that immunopathological mechanisms are involved. Since HTLV-1 tax mRNA was colocalized with glial acidic fibrillary protein, a marker for astrocytes, we developed an in vitro model to assess whether HTLV-1 infection activates astrocytes to secrete cytokines or present viral immunodominant epitopes to virus-specific T cells. Two human astrocytic glioma cell lines, U251 and U373, were transfected with the 3' portion of the HTLV-1 genome and with the HTLV-1 tax gene under astrocyte-specific promoter control. In this study, we report that Tax-expressing astrocytic glioma transfectants activate the expression of tumor necrosis factor alpha mRNA in vitro. Furthermore, these Tax-expressing glioma transfectants can serve as immunological targets for HTLV-1-specific cytotoxic T lymphocytes (CTL). We propose that these events could contribute to the neuropathology of HAM/TSP, since infected astrocytes can become a source for inflammatory cytokines upon HTLV-1 infection and serve as targets for HTLV-1-specific CTL, resulting in parenchymal damage by direct lysis and/or cytokine release.

  3. Long-lived CD8+ T cell responses following Crimean-Congo haemorrhagic fever virus infection

    PubMed Central

    Goedhals, Dominique; Paweska, Janusz T.

    2017-01-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a member of the Orthonairovirus genus of the Nairoviridae family and is associated with haemorrhagic fever in humans. Although T lymphocyte responses are known to play a role in protection from and clearance of viral infections, specific T cell epitopes have yet to be identified for CCHFV following infection. A panel of overlapping peptides covering the CCHFV nucleoprotein and the structural glycoproteins, GN and GC, were screened by ELISpot assay to detect interferon gamma (IFN-γ) production in vitro by peripheral blood mononuclear cells from eleven survivors with previous laboratory confirmed CCHFV infection. Reactive peptides were located predominantly on the nucleoprotein, with only one survivor reacting to two peptides from the glycoprotein GC. No single epitope was immunodominant, however all but one survivor showed reactivity to at least one T cell epitope. The responses were present at high frequency and detectable several years after the acute infection despite the absence of continued antigenic stimulation. T cell depletion studies confirmed that IFN-γ production as detected using the ELISpot assay was mediated chiefly by CD8+ T cells. This is the first description of CD8+ T cell epitopic regions for CCHFV and provides confirmation of long-lived T cell responses in survivors of CCHFV infection. PMID:29261651

  4. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig

    PubMed Central

    Morgan, Sophie B.; Attaf, Meriem; Szomolay, Barbara; Miles, John J.; Townsend, Alain; Bailey, Mick; Charleston, Bryan; Tchilian, Elma

    2018-01-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory

  5. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig.

    PubMed

    Tungatt, Katie; Dolton, Garry; Morgan, Sophie B; Attaf, Meriem; Fuller, Anna; Whalley, Thomas; Hemmink, Johanneke D; Porter, Emily; Szomolay, Barbara; Montoya, Maria; Hammond, John A; Miles, John J; Cole, David K; Townsend, Alain; Bailey, Mick; Rizkallah, Pierre J; Charleston, Bryan; Tchilian, Elma; Sewell, Andrew K

    2018-05-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory

  6. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  7. Analysis of the T-cell receptor repertoire of human T-cell leukemia virus type 1 (HTLV-1) Tax-specific CD8+ cytotoxic T lymphocytes from patients with HTLV-1-associated disease: evidence for oligoclonal expansion.

    PubMed

    Utz, U; Banks, D; Jacobson, S; Biddison, W E

    1996-02-01

    Human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive neurological disease characterized by marked degeneration of the spinal cord and the presence of antibodies against HTLV-1. Patients with HAM/TSP, but not asymptomatic carriers, show very high precursor frequencies of HTLV-1-specific CD8+ T cells in peripheral blood and cerebrospinal fluid, suggestive of a role of these T cells in the pathogenesis of the disease. In HLA-A2+ HAM/TSP patients, HTLV-1-specific T cells were demonstrated to be directed predominantly against one HTLV-1 epitope, namely, Tax11-19. In the present study, we analyzed HLA-A2-restricted HTLV-1 Tax11-19-specific cytotoxic T cells from three patients with HAM/TSP. An analysis of the T-cell receptor (TCR) repertoire of these cells revealed an absence of restricted variable (V) region usage. Different combinations of TCR V alpha and V beta genes were utilized between, but also within, the individual patients for the recognition of Tax11-19. Sequence analysis of the TCR showed evidence for an oligoclonal expansion of few founder T cells in each patient. Apparent structural motifs were identified for the CDR3 regions of the TCR beta chains. One T-cell clone could be detected within the same patient over a period of 3 years. We suggest that these in vivo clonally expanded T cells might play a role in the pathogenesis of HAM/TSP and provide information on HTLV-1-specific TCR which may elucidate the nature of the T cells that infiltrate the central nervous system in HAM/TSP patients.

  8. Identification of EGFRvIII-derived CTL epitopes restricted by HLA A0201 for dendritic cell based immunotherapy of gliomas.

    PubMed

    Wu, An-hua; Xiao, Jing; Anker, Lars; Hall, Walter A; Gregerson, Dale S; Cavenee, Webster K; Chen, Wei; Low, Walter C

    2006-01-01

    The type III variant of the epidermal growth factor receptor (EGFRvIII) mutation is present in 20-25% of patients with glioblastoma multiforme (GBM). EGFRvIII is not expressed in normal tissue and is therefore a suitable candidate antigen for dendritic cell (DC) based immunotherapy of GBM. To identify the antigenic epitope(s) that may serve as targets for EGFRvIII-specific cytotoxic T lymphocytes (CTLs), the peptide sequence of EGFRvIII was screened with two software programs to predict candidate epitopes restricted by the major histocompatibility complex class I subtype HLA-A0201, which is the predominant subtype in most ethnic groups. Three predicted peptides were constructed and loaded to mature human DCs generated from peripheral blood monocytes. Autologous CD8+ T cells were stimulated in vitro with the EGFRvIII peptide-pulsed DCs. One of the three peptides was found to induce EGFRvIII-specific CTLs as demonstrated by IFN-gamma production and cytotoxicity against HLA-A0201+ EGFRvIII transfected U87 glioma cells. These results suggest that vaccination with EGFRvIII peptide-pulsed DCs or adoptive transfer of in vitro elicited EGFRvIII-specific CTLs by EGFRvIII peptide-pulsed DCs are potential approaches to the treatment of glioma patients.

  9. Diverse cross-reactive potential and Vbeta gene usage of an epitope-specific cytotoxic T-lymphocyte population in monkeys immunized with diverse human immunodeficiency virus type 1 Env immunogens.

    PubMed

    Hulot, Sandrine L; Seaman, Michael S; Sen, Pritha; Autissier, Patrick A; Manuel, Edwin R; Letvin, Norman L

    2009-10-01

    An ideal human immunodeficiency virus type 1 (HIV-1) vaccine would elicit potent cellular and humoral immune responses that recognize diverse strains of the virus. In the present study, combined methodologies (flow cytometry, Vbeta repertoire analysis, and complementarity-determining region 3 sequencing) were used to determine the clonality of CD8(+) T lymphocytes taking part in the recognition of variant epitope peptides elicited in Mamu-A*01-positive rhesus monkeys immunized with vaccines encoding diverse HIV-1 envelopes (Envs). Monkeys immunized with clade B Envs generated CD8(+) T lymphocytes that cross-recognized both clade B- and clade C-p41A epitope peptides using a large degree of diversity in Vbeta gene usage. However, with two monkeys immunized with clade C Env, one monkey exhibited p41A-specific cytotoxic T-lymphocytes (CTL) with the capacity for cross-recognition of variant epitopes, while the other monkey did not. These studies demonstrate that the cross-reactive potential of variant p41A epitope peptide-specific CTL populations can differ between monkeys that share the same restricting major histocompatibility complex class I molecule and receive the same vaccine immunogens.

  10. Sterile Immunity to Malaria after DNA Prime/Adenovirus Boost Immunization Is Associated with Effector Memory CD8+T Cells Targeting AMA1 Class I Epitopes

    PubMed Central

    Sedegah, Martha; Hollingdale, Michael R.; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Kim, Yohan; Peters, Bjoern; Sette, Alessandro; Huang, Jun; McGrath, Shannon; Abot, Esteban; Limbach, Keith; Shi, Meng; Soisson, Lorraine; Diggs, Carter; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E.; Villasante, Eileen; Richie, Thomas L.

    2014-01-01

    Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches

  11. Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6.

    PubMed

    Draper, Lindsey M; Kwong, Mei Li M; Gros, Alena; Stevanović, Sanja; Tran, Eric; Kerkar, Sid; Raffeld, Mark; Rosenberg, Steven A; Hinrichs, Christian S

    2015-10-01

    The E6 and E7 oncoproteins of HPV-associated epithelial cancers are in principle ideal immunotherapeutic targets, but evidence that T cells specific for these antigens can recognize and kill HPV(+) tumor cells is limited. We sought to determine whether TCR gene engineered T cells directed against an HPV oncoprotein can successfully target HPV(+) tumor cells. T-cell responses against the HPV-16 oncoproteins were investigated in a patient with an ongoing 22-month disease-free interval after her second resection of distant metastatic anal cancer. T cells genetically engineered to express an oncoprotein-specific TCR from this patient's tumor-infiltrating T cells were tested for specific reactivity against HPV(+) epithelial tumor cells. We identified, from an excised metastatic anal cancer tumor, T cells that recognized an HLA-A*02:01-restricted epitope of HPV-16 E6. The frequency of the dominant T-cell clonotype from these cells was approximately 400-fold greater in the patient's tumor than in her peripheral blood. T cells genetically engineered to express the TCR from this clonotype displayed high avidity for an HLA-A*02:01-restricted epitope of HPV-16, and they showed specific recognition and killing of HPV-16(+) cervical, and head and neck cancer cell lines. These findings demonstrate that HPV-16(+) tumors can be targeted by E6-specific TCR gene engineered T cells, and they provide the foundation for a novel cellular therapy directed against HPV-16(+) malignancies, including cervical, oropharyngeal, anal, vulvar, vaginal, and penile cancers. ©2015 American Association for Cancer Research.

  12. Computer-Aided Design of an Epitope-Based Vaccine against Epstein-Barr Virus

    PubMed Central

    Alonso-Padilla, Julio

    2017-01-01

    Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt's lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble. PMID:29119120

  13. HSP90 inhibitor 17-DMAG enhances EphA2+ tumor cell recognition by specific CD8+ T cells

    PubMed Central

    Kawabe, Mayumi; Mandic, Maja; Taylor, Jennifer L.; Vasquez, Cecilia A.; Wesa, Amy K.; Neckers, Leonard M.; Storkus, Walter J.

    2009-01-01

    EphA2, a member of the receptor tyrosine kinase (RTK) family, is commonly expressed by a broad range of cancer types, where its level of (over)expression correlates with poor clinical outcome. Since tumor cell expressed EphA2 is a non-mutated “self” protein, specific CD8+ T cells are subject to self-tolerance mechanisms and typically exhibit only moderate-to-low functional avidity, rendering them marginally competent to recognize EphA2+ tumor cells in vitro or in vivo. We have recently reported that the ability of specific CD8+ T cells to recognize EphA2+ tumor cells can be augmented after the cancer cells are pretreated with EphA2 agonists that promote proteasomal degradation and upregulated expression of EphA2/class I complexes on the tumor cell membrane (Wesa et al., J. Immunol. 2008;181:7721-7). In the current study we show that treatment of EphA2+ tumor cells with the irreversible HSP90 inhibitor, 17-DMAG, similarly enhances their recognition by EphA2-specific CD8+ T cell lines and clones in vitro via a mechanism that is dependent on proteasome and TAP function, as well as, the retrotranslocation of EphA2 into the tumor cytoplasm. When 17-DMAG and agonist anti-EphA2 mAb are co-applied, T cell recognition of tumor cells is further increased over that observed for either agent alone. These studies suggest that EphA2 represents a novel HSP90 client protein and that the treatment of cancer patients with 17-DMAG-based “pulse” therapy may improve the anti-tumor efficacy of CD8+ T effector cells reactive against EphA2-derived epitopes. PMID:19690146

  14. Specific Mutation of a Gammaherpesvirus-Expressed Antigen in Response to CD8 T Cell Selection In Vivo

    PubMed Central

    Loh, Joy; Popkin, Daniel L.; Droit, Lindsay; Braaten, Douglas C.; Zhao, Guoyan; Zhang, Xin; Vachharajani, Punit; Myers, Nancy; Hansen, Ted H.

    2012-01-01

    Herpesviruses are thought to be highly genetically stable, and their use as vaccine vectors has been proposed. However, studies of the human gammaherpesvirus, Epstein-Barr virus, have found viral isolates containing mutations in HLA class I-restricted epitopes. Using murine gammaherpesvirus 68 expressing ovalbumin (OVA), we examined the stability of a gammaherpesvirus antigenic locus under strong CD8 T cell selection in vivo. OVA-specific CD8 T cells selected viral isolates containing mutations in the OVA locus but minimal alterations in other genomic regions. Thus, a CD8 T cell response to a gammaherpesvirus-expressed antigen that is not essential for replication or pathogenesis can result in selective mutation of that antigen in vivo. This finding may have relevance for the use of herpesvirus vectors for chronic antigen expression in vivo. PMID:22171269

  15. Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes.

    PubMed

    Barba-Spaeth, Giovanna; Longman, Randy S; Albert, Matthew L; Rice, Charles M

    2005-11-07

    The yellow fever (YF) 17D vaccine is one of the most successful live attenuated vaccines available. A single immunization induces both long-lasting neutralizing antibody and YF-specific T cell responses. Surprisingly, the mechanism for this robust immunity has not been addressed. In light of several recent reports suggesting flavivirus interaction with dendritic cells (DCs), we investigated the mechanism of YF17D interaction with DCs and the importance of this interaction in generating T cell immunity. Our results show that YF17D can infect immature and mature human DCs. Viral entry is Ca(2+) dependent, but it is independent of DC-SIGN as well as multiple integrins expressed on the DC surface. Similar to infection of cell lines, YF infection of immature DCs is cytopathic. Although infection itself does not induce DC maturation in vitro, TNF-alpha-induced maturation protects DCs from YF-induced cytopathogenicity. Furthermore, we show that DCs infected with YF17D or YF17D carrying a recombinant epitope can process and present antigens for CD8(+) T cell stimulation. These findings offer insight into the immunologic mechanisms associated with the highly capable YF17D vaccine that may guide effective vaccine design.

  16. B-1 Cell Immunoglobulin Directed Against Oxidation-Specific Epitopes

    PubMed Central

    Tsiantoulas, Dimitrios; Gruber, Sabrina; Binder, Christoph J.

    2013-01-01

    Natural antibodies (NAbs) are pre-existing antibodies with germline origin that arise in the absence of previous exposure to foreign antigens. NAbs are produced by B-1 lymphocytes and are primarily of the IgM isotype. There is accumulating evidence that – in addition to their role in antimicrobial host defense – NAbs exhibit important housekeeping functions by facilitating the non-immunogenic clearance of apoptotic cells as well as the removal of (neo-)self antigens. These properties are largely mediated by the ability of NAbs to recognize highly conserved and endogenously generated structures, which are exemplified by so-called oxidation-specific epitopes (OSEs) that are products of lipid peroxidation. The generation of OSEs as well as their interaction with the immune system have been studied extensively in the context of atherosclerosis, a chronic inflammatory disease of the vascular wall that is characterized by the accumulation of cellular debris and oxidized low-density lipoproteins (OxLDL). Both apoptotic cells as well as OxLDL carry OSEs that are targeted by NAbs. Therefore, OSEs represent stress-induced neo self-structures that mediate recognition of metabolic waste (e.g., cellular debris) by NAbs, allowing its safe disposal, which has fundamental implications in health and disease. PMID:23316200

  17. Induction of protective anti-CTL epitope responses against HER-2-positive breast cancer based on multivalent T7 phage nanoparticles.

    PubMed

    Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram

    2012-01-01

    We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2k(d)-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines.

  18. Induction of Protective Anti-CTL Epitope Responses against HER-2-Positive Breast Cancer Based on Multivalent T7 Phage Nanoparticles

    PubMed Central

    Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram

    2012-01-01

    We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2kd-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines. PMID:23166703

  19. Inability to induce consistent T-cell responses recognizing conserved regions within HIIV-1 antigens: a potential mechanism for lack of vaccine efficacy in the step study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette; Szinger, James

    2009-01-01

    T cell based vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a high probability of matching the epitope induced by vaccination with the infecting viral strain. We compared the frequency and specificity of the CTL epitopes elicited by the replication defective AdS gag/pol/nef vaccine used in the STEP trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. On average vaccination elicited only one epitope per gene. Importantly, the highly conservedmore » epitopes in gag, pol, and nef (> 80% of strains in the current collection of the Los Alamos database [www.hiv.lanl.gov]) were rarely elicited by vaccination. Moreover there was a statistically significant skewing of the T cell response to relative variable epitopes of each gene; only 20% of persons possessed > 3 T cell responses to epitopes likely to be found in circulating strains in the CladeB populations in which the Step trial was conducted. This inability to elicit T cell responses likely to be found in circulating viral strains is a likely factor in the lack of efficacy of the vaccine utilized in the STEP trial. Modeling of the epitope specific responses elicited by vaccination, we project that a median of 8-10 CD8+ T cell epitopes are required to provide >80% likelihood of eliciting at least 3 CD8+ T cell epitopes that would be found on a circulating population of viruses. Development of vaccine regimens which elicit either a greater breadth of responses or elicit responses to conserved regions of the HIV-1 genome are needed to fully evaluate the concept of whether induction of T cell immunity can alter HIV-1 in vivo.« less

  20. Enhancing T cell activation and antiviral protection by introducing the HIV-1 protein transduction domain into a DNA vaccine.

    PubMed

    Leifert, J A; Lindencrona, J A; Charo, J; Whitton, J L

    2001-10-10

    Protein transduction domains (PTD), which can transport proteins or peptides across biological membranes, have been identified in several proteins of viral, invertebrate, and vertebrate origin. Here, we evaluate the immunological and biological consequences of including PTD in synthetic peptides and in DNA vaccines that contain CD8(+) T cell epitopes from lymphocytic choriomeningitis virus (LCMV). Synthetic PTD-peptides did not induce detectable CD8(+) T cell responses. However, fusion of an open reading frame encoding a PTD to an epitope minigene caused transfected tissue culture cells to stimulate epitope-specific T cells much more effectively. Kinetic studies indicated that the epitope reached the surface of transfected cells more rapidly and that the number of transfected cells needed to stimulate T cell responses was reduced by 35- to 50-fold when compared to cells transfected with a standard minigene plasmid. The mechanism underlying the effect of PTD linkage is not clear, but transit of the PTD-attached epitope from transfected cells to nontransfected cells (cross presentation) seemed to play, at most, a minimal role. Mice immunized once with the plasmid encoding the PTD-linked epitope showed a markedly accelerated CD8(+) T cell response and, unlike mice immunized with a standard plasmid, were completely protected against a normally lethal LCMV challenge administered only 8 days post-immunization.

  1. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation

    PubMed Central

    Janbazian, Loury; Price, David A.; Canderan, Glenda; Filali-Mouhim, Abdelali; Asher, Tedi E.; Ambrozak, David R.; Scheinberg, Phillip; Boulassel, Mohamad Rachid; Routy, Jean-Pierre; Koup, Richard A.; Douek, Daniel C.; Sekaly, Rafick-Pierre; Trautmann, Lydie

    2011-01-01

    Persistent exposure to cognate antigen leads to the functional impairment and exhaustion of HIV-specific CD8 T cells. Antigen withdrawal, due either to antiretroviral treatment or the emergence of epitope escape mutations, causes HIV-specific CD8 T cell responses to wane over time. However, this process does not continue to extinction, and residual CD8 T cells likely play an important role in the control of HIV replication. Here, we conducted a longitudinal analysis of clonality, phenotype and function to define the characteristics of HIV-specific CD8 T cell populations that persist under conditions of limited antigenic stimulation. Antigen decay was associated with dynamic changes in the TCR repertoire, increased expression of CD45RA and CD127, decreased expression of PD-1 and the emergence of poly-functional HIV-specific CD8 T cells. High definition analysis of individual clonotypes revealed that the antigen loss-induced gain of function within HIV-specific CD8 T cell populations could be attributed to two non-exclusive mechanisms: (i) functional improvement of persisting clonotypes; and, (ii) recruitment of particular clonotypes endowed with superior functional capabilities. PMID:22210916

  2. Complexity of type-specific 56 kDa antigen CD4 T-cell epitopes of Orientia tsutsugamushi strains causing scrub typhus in India

    PubMed Central

    Dasch, Gregory A.

    2018-01-01

    Orientia tsutsugamushi (Ots) is an obligate, intracellular, mite-transmitted human pathogen which causes scrub typhus. Understanding the diversity of Ots antigens is essential for designing specific diagnostic assays and efficient vaccines. The protective immunodominant type-specific 56 kDa antigen (TSA) of Ots varies locally and across its geographic distribution. TSA contains four hypervariable domains. We bioinformatically analyzed 345 partial sequences of TSA available from India, most of which contain only the three variable domains (VDI-III) and three spacer conserved domains (SVDI, SVDII/III, SVDIII). The total number (152) of antigenic types (amino acid variants) varied from 14–36 in the six domains of TSA that we studied. Notably, 55% (787/1435) of the predicted CD4 T-cell epitopes (TCEs) from all the six domains had high binding affinities (HBA) to at least one of the prevalent Indian human leukocyte antigen (HLA) alleles. A surprisingly high proportion (61%) of such TCEs were from spacer domains; indeed 100% of the CD4 TCEs in the SVDI were HBA. TSA sequences from India had more antigenic types (AT) than TSA from Korea. Overall, >90% of predicted CD4 TCEs from spacer domains were predicted to have HBA against one or more prevalent HLA types from Indian, Korean, Asia-Pacific region or global population data sets, while only <50% of CD4 TCEs in variable domains exhibited such HBA. The phylogenetically and immunologically important amino acids in the conserved spacer domains were identified. Our results suggest that the conserved spacer domains are predicted to be functionally more important than previously appreciated in immune responses to Ots infections. Changes occurring at the TCE level of TSA may contribute to the wide range of pathogenicity of Ots in humans and mouse models. CD4 T-cell functional experiments are needed to assess the immunological significance of these HBA spacer domains and their role in clearance of Ots from Indian patients. PMID

  3. Accumulation of human T lymphotropic virus (HTLV)-I-specific T cell clones in HTLV-I-associated myelopathy/tropical spastic paraparesis patients.

    PubMed

    Höger, T A; Jacobson, S; Kawanishi, T; Kato, T; Nishioka, K; Yamamoto, K

    1997-08-15

    Human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraperesis (HAM/TSP) is a slowly progressive neurologic disorder following infection with HTLV-I. It is characterized by spasticity and hyper-reflexia of the lower extremities, urinary bladder disturbance, lower extremity muscle weakness, and sensory disturbances. HTLV-I, as an inducer of a strong humoral and cytotoxic response, is a well-known pathogenic factor for the progression of HAM/TSP. Peptides derived from proviral tax and env genes provide epitopes recognized by T cells. We herein report an accumulation of distinct clonotypes of alpha/beta TCR+ peripheral blood T lymphocytes from HAM/TSP patients in comparison with that observed in both asymptomatic carriers and healthy controls, using the reverse-transcriptase PCR/single-strand conformation polymorphism method. We also found that some of the accumulated T cell clones in the peripheral blood and cerebrospinal fluid are HTLV-I Tax(11-19) peptide specific. Such clones were found to expand strongly after being cultured with an HTLV-I Tax(11-19) peptide. Moreover, the cultured samples exhibited a strong MHC class I-restricted cytotoxic activity against HTLV-I Tax(11-19) peptide-expressing targets, and therefore most likely also include the disease-associated T cell clones observed in the patients. This is the first report of a direct assessment of Ag-specific T cell responses in fresh PBL and cerebrospinal fluid.

  4. Noncanonical expression of a murine cytomegalovirus early protein CD8 T-cell epitope as an immediate early epitope based on transcription from an upstream gene.

    PubMed

    Fink, Annette; Büttner, Julia K; Thomas, Doris; Holtappels, Rafaela; Reddehase, Matthias J; Lemmermann, Niels A W

    2014-02-14

    Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I) glycoproteins, are often identified by "reverse immunology", a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs) based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype) mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E) phase protein, the m164 epitope is presented already during the Immediate Early (IE) phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.

  5. Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response

    PubMed Central

    Hemann, Emily A.; Sjaastad, Louisa E.; Langlois, Ryan A.

    2015-01-01

    ABSTRACT Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α+ DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IMPORTANCE IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than

  6. Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response.

    PubMed

    Hemann, Emily A; Sjaastad, Louisa E; Langlois, Ryan A; Legge, Kevin L

    2015-12-30

    Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α(+) DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross

  7. Characterization of CD8+ T-cell response in acute and resolved hepatitis A virus infection.

    PubMed

    Schulte, I; Hitziger, T; Giugliano, S; Timm, J; Gold, H; Heinemann, F M; Khudyakov, Y; Strasser, M; König, C; Castermans, E; Mok, J Y; van Esch, W J E; Bertoletti, A; Schumacher, T N; Roggendorf, M

    2011-02-01

    In contrast to the infection with other hepatotropic viruses, hepatitis A virus (HAV) always causes acute self-limited hepatitis, although the role for virus-specific CD8 T cells in viral containment is unclear. Herein, we analyzed the T cell response in patients with acute hepatitis by utilizing a set of overlapping peptides and predicted HLA-A2 binders from the polyprotein. A set of 11 predicted peptides from the HAV polyprotein, identified as potential binders, were synthesized. Peripheral blood mononuclear cells (PBMCs) from patients were tested for IFNγ secretion after stimulation with these peptides and ex vivo with HLA-A2 tetramers. Phenotyping was carried out by staining with the activation marker CD38 and the memory marker CD127. Eight out of 11 predicted HLA-A2 binders showed a high binding affinity and five of them were recognized by CD8+ T cells from patients with hepatitis A. There were significant differences in the magnitude of the responses to these five peptides. One was reproducibly immunodominant and the only one detectable ex vivo by tetramer staining of CD8+ T cells. These cells have an activated phenotype (CD38hi CD127lo) during acute infection. Three additional epitopes were identified in HLA-A2 negative patients, most likely representing epitopes restricted by other HLA-class I-alleles (HLA-A11, B35, B40). Patients with acute hepatitis A have a strong multi-specific T cell response detected by ICS. With the tetramer carrying the dominant HLA-A2 epitope, HAV-specific and activated CD8+ T cells could be detected ex vivo. This first description of the HAV specific CTL-epitopes will allow future studies on strength, breadth, and kinetics of the T-cell response in hepatitis A. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Epitope mapping: the first step in developing epitope-based vaccines.

    PubMed

    Gershoni, Jonathan M; Roitburd-Berman, Anna; Siman-Tov, Dror D; Tarnovitski Freund, Natalia; Weiss, Yael

    2007-01-01

    Antibodies are an effective line of defense in preventing infectious diseases. Highly potent neutralizing antibodies can intercept a virus before it attaches to its target cell and, thus, inactivate it. This ability is based on the antibodies' specific recognition of epitopes, the sites of the antigen to which antibodies bind. Thus, understanding the antibody/epitope interaction provides a basis for the rational design of preventive vaccines. It is assumed that immunization with the precise epitope, corresponding to an effective neutralizing antibody, would elicit the generation of similarly potent antibodies in the vaccinee. Such a vaccine would be a 'B-cell epitope-based vaccine', the implementation of which requires the ability to backtrack from a desired antibody to its corresponding epitope. In this article we discuss a range of methods that enable epitope discovery based on a specific antibody. Such a reversed immunological approach is the first step in the rational design of an epitope-based vaccine. Undoubtedly, the gold standard for epitope definition is x-ray analyses of crystals of antigen:antibody complexes. This method provides atomic resolution of the epitope; however, it is not readily applicable to many antigens and antibodies, and requires a very high degree of sophistication and expertise. Most other methods rely on the ability to monitor the binding of the antibody to antigen fragments or mutated variations. In mutagenesis of the antigen, loss of binding due to point modification of an amino acid residue is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping are also useful. These methods rely on the ability of the antibody of interest to affinity isolate specific short peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For

  9. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1.

    PubMed

    Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha

    2013-10-29

    Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers

  10. Peripheral self-reactivity regulates antigen-specific CD8 T-cell responses and cell division under physiological conditions.

    PubMed

    Swee, Lee Kim; Tan, Zhen Wei; Sanecka, Anna; Yoshida, Nagisa; Patel, Harshil; Grotenbreg, Gijsbert; Frickel, Eva-Maria; Ploegh, Hidde L

    2016-11-01

    T-cell identity is established by the expression of a clonotypic T-cell receptor (TCR), generated by somatic rearrangement of TCRα and β genes. The properties of the TCR determine both the degree of self-reactivity and the repertoire of antigens that can be recognized. For CD8 T cells, the relationship between TCR identity-hence reactivity to self-and effector function(s) remains to be fully understood and has rarely been explored outside of the H-2 b haplotype. We measured the affinity of three structurally distinct CD8 T-cell-derived TCRs that recognize the identical H-2 L d -restricted epitope, derived from the Rop7 protein of Toxoplasma gondii We used CD8 T cells obtained from mice generated by somatic cell nuclear transfer as the closest approximation of primary T cells with physiological TCR rearrangements and TCR expression levels. First, we demonstrate the common occurrence of secondary rearrangements in endogenously rearranged loci. Furthermore, we characterized and compared the response of Rop7-specific CD8 T-cell clones upon Toxoplasma gondii infection as well as effector function and TCR signalling upon antigenic stimulation in vitro Antigen-independent TCR cross-linking in vitro uncovered profound intrinsic differences in the effector functions between T-cell clones. Finally, by assessing the degree of self-reactivity and comparing the transcriptomes of naive Rop7 CD8 T cells, we show that lower self-reactivity correlates with lower effector capacity, whereas higher self-reactivity is associated with enhanced effector function as well as cell cycle entry under physiological conditions. Altogether, our data show that potential effector functions and basal proliferation of CD8 T cells are set by self-reactivity thresholds. © 2016 The Authors.

  11. Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope.

    PubMed

    Wilson, Kirsty L; Xiang, Sue D; Plebanski, Magdalena

    2015-01-01

    The development of practical and flexible vaccines to target liver stage malaria parasites would benefit from an ability to induce high levels of CD8 T cells to minimal peptide epitopes. Herein we compare different adjuvant and carrier systems in a murine model for induction of interferon gamma (IFN-γ) producing CD8 T cells to the minimal immuno-dominant peptide epitope from the circumsporozoite protein (CSP) of Plasmodium berghei, pb9 (SYIPSAEKI, referred to as KI). Two pro-inflammatory adjuvants, Montanide and Poly I:C, and a non-classical, non-inflammatory nanoparticle based carrier (polystyrene nanoparticles, PSNPs), were compared side-by-side for their ability to induce potentially protective CD8 T cell responses after two immunizations. KI in Montanide (Montanide + KI) or covalently conjugated to PSNPs (PSNPs-KI) induced such high responses, whereas adjuvanting with Poly I:C or PSNPs without conjugation was ineffective. This result was consistent with an observed induction of an immunosuppressed environment by Poly I:C in the draining lymph node (dLN) 48 h post injection, which was reflected by increased frequencies of myeloid derived suppressor cells (MDSCs) and a proportion of inflammation reactive regulatory T cells (Treg) expressing the tumor necrosis factor receptor 2 (TNFR2), as well as decreased dendritic cell (DC) maturation. The other inflammatory adjuvant, Montanide, also promoted proportional increases in the TNFR2(+) Treg subpopulation, but not MDSCs, in the dLN. By contrast, injection with non-inflammatory PSNPs did not cause these changes. Induction of high CD8 T cell responses, using minimal peptide epitopes, can be achieved by non-inflammatory carrier nanoparticles, which in contrast to some conventional inflammatory adjuvants, do not expand either MDSCs or inflammation reactive Tregs at the site of priming.

  12. Meta-analysis of immune epitope data for all Plasmodia: overview and applications for malarial immunobiology and vaccine-related issues

    PubMed Central

    Vaughan, K.; Blythe, M.; Greenbaum, J.; Zhang, Q.; Peters, B.; Doolan, D. L.; Sette, A.

    2012-01-01

    Summary We present a comprehensive meta-analysis of more than 500 references, describing nearly 5000 unique B cell and T cell epitopes derived from the Plasmodium genus, and detailing thousands of immunological assays. This is the first inventory of epitope data related to malaria-specific immunology, plasmodial pathogenesis, and vaccine performance. The survey included host and pathogen species distribution of epitopes, the number of antibody vs. CD4+ and CD8+ T cell epitopes, the genomic distribution of recognized epitopes, variance among epitopes from different parasite strains, and the characterization of protective epitopes and of epitopes associated with parasite evasion of the host immune response. The results identify knowledge gaps and areas for further investigation. This information has relevance to issues, such as the identification of epitopes and antigens associated with protective immunity, the design and development of candidate malaria vaccines, and characterization of immune response to strain polymorphisms. PMID:19149776

  13. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial.

    PubMed

    Fellrath, Jean-Marc; Kettner, Alexander; Dufour, Nathalie; Frigerio, Christian; Schneeberger, Dominique; Leimgruber, Annette; Corradin, Gampietro; Spertini, François

    2003-04-01

    There is a need to improve the safety and efficacy of allergen-specific immunotherapy. Long synthetic peptide-based immunotherapy was proven safe, immunogenic, and protective in preclinical trials. To evaluate the safety and immunogenicity of an allergen-derived long synthetic overlapping peptide (LSP) immunotherapy, we designed a double-blind, placebo-controlled phase I clinical trial in patients hypersensitive to bee venom. Patients from the active group were injected at day 0 with a mixture of 3 LSPs mapping the entire PLA2 molecule, a major bee venom allergen, in a dose-escalating protocol to a maintenance dose of 100 microg per peptide repeated at days 4, 7, 14, 42, and 70. The control group was injected with human albumin. Whereas specific T-cell proliferation in the peptide group increased up to day 14, a sharp decline was observed thereafter, ending in specific T-cell hyporesponsiveness at day 80. Serum-specific IgG4 response was enhanced, in contrast to anti-PLA2 IgE. Specific T-cell cytokine modulation was marked by increased IL-10 and IFN-gamma secretion. LSP injections were well tolerated in all patients except for mild, late allergic reactions in 2 patients at day 70. The results of this short-term study demonstrate that LSP-based allergen immunotherapy was safe and able to induce T(H)1-type immune deviation, allergen-specific IL-10 production, and T-cell hyporesponsiveness. LSPs, which offer the advantage of covering all possible T-cell epitopes for any HLA genotype, can be considered candidates for a novel and safe approach of specific immunotherapy.

  14. Breast Mucin Tumor-Specific Epitopes for Cancer Immunotherapy

    DTIC Science & Technology

    1998-09-01

    reactivity with tumor-specific monoclonal antibodies show that antigenicity is maximized with the 40 amino acid MUC1-mtr2. By contrast, the MUC1-mtr3...associated mucins (7). The presence of tumor-specific epitopes is evidenced by the development of many monoclonal antibodies (mAb) that recognize...P1-P5 in the tandem repeat sequence (7). This epitope was identified by competition of antibody binding to tumor- specific mucin by synthetic

  15. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses.

    PubMed

    Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R; Lafuente, Esther M; Reche, Pedro A

    2015-01-01

    Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.

  16. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses

    PubMed Central

    Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R.; Lafuente, Esther M.; Reche, Pedro A.

    2015-01-01

    Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes. PMID:26605344

  17. Analysis of the Effects of Polymorphism on Pollen Profilin Structural Functionality and the Generation of Conformational, T- and B-Cell Epitopes

    PubMed Central

    Jimenez-Lopez, Jose C.; Rodríguez-García, María I.; Alché, Juan D.

    2013-01-01

    An extensive polymorphism analysis of pollen profilin, a fundamental regulator of the actin cytoskeleton dynamics, has been performed with a major focus in 3D-folding maintenance, changes in the 2-D structural elements, surface residues involved in ligands-profilin interactions and functionality, and the generation of conformational and lineal B- and T-cell epitopes variability. Our results revealed that while the general fold is conserved among profilins, substantial structural differences were found, particularly affecting the special distribution and length of different 2-D structural elements (i.e. cysteine residues), characteristic loops and coils, and numerous micro-heterogeneities present in fundamental residues directly involved in the interacting motifs, and to some extension these residues nearby to the ligand-interacting areas. Differential changes as result of polymorphism might contribute to generate functional variability among the plethora of profilin isoforms present in the olive pollen from different genetic background (olive cultivars), and between plant species, since biochemical interacting properties and binding affinities to natural ligands may be affected, particularly the interactions with different actin isoforms and phosphoinositides lipids species. Furthermore, conspicuous variability in lineal and conformational epitopes was found between profilins belonging to the same olive cultivar, and among different cultivars as direct implication of sequences polymorphism. The variability of the residues taking part of IgE-binding epitopes might be the final responsible of the differences in cross-reactivity among olive pollen cultivars, among pollen and plant-derived food allergens, as well as between distantly related pollen species, leading to a variable range of allergy reactions among atopic patients. Identification and analysis of commonly shared and specific epitopes in profilin isoforms is essential to gain knowledge about the interacting

  18. Levels of HIV1 gp120 3D B-cell epitopes mutability and variability: searching for possible vaccine epitopes.

    PubMed

    Khrustalev, Vladislav Victorovich

    2010-01-01

    We used a DiscoTope 1.2 (http://www.cbs.dtu.dk/services/DiscoTope/), Epitopia (http://epitopia.tau.ac.il/) and EPCES (http://www.t38.physik.tu-muenchen.de/programs.htm) algorithms to map discontinuous B-cell epitopes in HIV1 gp120. The most mutable nucleotides in HIV genes are guanine (because of G to A hypermutagenesis) and cytosine (because of C to U and C to A mutations). The higher is the level of guanine and cytosine usage in third (neutral) codon positions and the lower is their level in first and second codon positions of the coding region, the more stable should be an epitope encoded by this region. We compared guanine and cytosine usage in regions coding for five predicted 3D B-cell epitopes of gp120. To make this comparison we used GenBank resource: 385 sequences of env gene obtained from ten HIV1-infected individuals were studied (http://www.barkovsky.hotmail.ru/Data/Seqgp120.htm). The most protected from nonsynonymous nucleotide mutations of guanine and cytosine 3D B-cell epitope is situated in the first conserved region of gp120 (it is mapped from 66th to 86th amino acid residue). We applied a test of variability to confirm this finding. Indeed, the less mutable predicted B-cell epitope is the less variable one. MEGA4 (standard PAM matrix) was used for the alignments and "VVK Consensus" algorithm (http://www.barkovsky.hotmail.ru) was used for the calculations.

  19. Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis

    PubMed Central

    1995-01-01

    Lewis rats are susceptible to several forms of experimental arthritis- induced using heat-killed Mycobacterium tuberculosis (adjuvant arthritis, or AA), streptococcal cell walls, collagen type II, and the lipoidal amine CP20961. Prior immunization with the mycobacterial 65-kD heat shock protein (hsp65) was reported to protect against AA, and other athritis models not using M. tuberculosis, via a T cell-mediated mechanism. Hsp65 shares 48% amino acid identity with mammalian hsp60, which is expressed at elevated levels in inflamed synovia. Several studies have reported cross-reactive T cell recognition of mycobacterial hsp65 and self hsp60 in arthritic and normal individuals. We previously described nine major histocompatibility complex class II- restricted epitopes in mycobacterial hsp65 recognized by Lewis rat T cells. Of these only one, covering the 256-270 sequence, primed for cross-reactive T cell responses to the corresponding region of rat hsp60. Here we have tested each hsp65 epitope for protective activity by immunizing rats with synthetic peptides. A peptide containing the 256-270 epitope, which induced cross-reactive T cells, was the only one able to confer protection against AA. Similarly, administration of a T cell line specific for this epitope protected against AA. Preimmunization with the 256-270 epitope induced T cells that responded to heat-shocked syngeneic antigen-presenting cells, and also protected against CP20961-induced arthritis, indicating that activation of T cells, recognizing an epitope in self hsp60 can protect against arthritis induced without mycobacteria. Therefore, in contrast to the accepted concept that cross-reactive T cell recognition of foreign and self antigens might induce aggressive autoimmune disease, we propose that cross-reactivity between bacterial and self hsp60 might also be used to maintain a protective self-reactive T cell population. This discovery might have important implications for understanding T cell- mediated

  20. A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+ T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a “Humanized” HLA Transgenic Rabbit Model

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Huang, Jiawei; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2015-01-01

    Purpose. A clinical vaccine that protects from ocular herpes simplex virus type 1 (HSV-1) infection and disease still is lacking. In the present study, preclinical vaccine trials of nine asymptomatic (ASYMP) peptides, selected from HSV-1 glycoproteins B (gB), and tegument proteins VP11/12 and VP13/14, were performed in the “humanized” HLA–transgenic rabbit (HLA-Tg rabbit) model of ocular herpes. We recently reported that these peptides are highly recognized by CD8+ T cells from “naturally” protected HSV-1–seropositive healthy ASYMP individuals (who have never had clinical herpes disease). Methods. Mixtures of three ASYMP CD8+ T-cell peptides derived from either HSV-1 gB, VP11/12, or VP13/14 were delivered subcutaneously to different groups of HLA-Tg rabbits (n = 10) in incomplete Freund's adjuvant, twice at 15-day intervals. The frequency and function of HSV-1 epitope-specific CD8+ T cells induced by these peptides and their protective efficacy, in terms of survival, virus replication in the eye, and ocular herpetic disease were assessed after an ocular challenge with HSV-1 (strain McKrae). Results. All mixtures elicited strong and polyfunctional IFN-γ– and TNF-α–producing CD107+CD8+ cytotoxic T cells, associated with a significant reduction in death, ocular herpes infection, and disease (P < 0.015). Conclusions. The results of this preclinical trial support the screening strategy used to select the HSV-1 ASYMP CD8+ T-cell epitopes, emphasize their valuable immunogenic and protective efficacy against ocular herpes, and provide a prototype vaccine formulation that may be highly efficacious for preventing ocular herpes in humans. PMID:26098469

  1. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection.

    PubMed

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably

  2. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection

    PubMed Central

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B.

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably

  3. Enhanced activation of human T cell clones specific for virus-like particles expressing the HIV V3 loop in the presence of HIV V3 loop-specific polyclonal antibodies

    PubMed Central

    Peifang, S.; Pira, G. L.; Fenoglio, D.; Harris, S.; Costa, M. G.; Venturino, V.; Dessì, V.; Layton, G.; Laman, J.; Huisman, J. G.; Manca, F.

    1994-01-01

    Recombinant virus-like particles (VLP), formed by the yeast Ty p1 protein, carrying the HIV gp120 V3 loop on their surface (V3-VLP) have been tested in vitro for immunogenicity and antigenicity by using VLP p1-specific human CD4+ T cell lines and clones. VLP-specific human T cell lines and clones were generated from normal individuals, indicating that VLP-specific precursor cells present in the peripheral lymphocyte pool can be induced to expand clonally upon antigen challenge in vitro, in the absence of previous immunization. It was also shown that V3-specific polyclonal antibodies enhance V3-VLP-induced activation of VLP-specific T cell clones. Antibody-dependent potentiation has been shown previously in other antigen systems, and it depends on enhanced uptake of complexed antigen by Fc receptor-positive antigen-presenting cells. Since in this case antigen is internalized by presenting cells as a complex, it can be inferred that a similar event of antibody-mediated antigen uptake can take place with V3-specific B cells, resulting in presentation by the B cells of T helper epitopes derived from processing of the VLP p1 moiety. This suggests that T helper cells specific for the carrier VLP p1 protein can be activated to provide help to V3-specific B cells in the presence of the appropriate antigen construct. PMID:7915974

  4. The T cells specific for the carboxyl-terminal determinants of self (rat) heat-shock protein 65 escape tolerance induction and are involved in regulation of autoimmune arthritis.

    PubMed

    Durai, Malarvizhi; Gupta, Radhey S; Moudgil, Kamal D

    2004-03-01

    Immunization of Lewis rats with heat-killed Mycobacterium tuberculosis H37Ra leads to development of polyarthritis (adjuvant-induced arthritis; AA) that shares several features with human rheumatoid arthritis (RA). Immune response to the 65-kDa mycobacterial heat-shock protein (Bhsp65) is believed to be involved in induction of AA as well as in experimental modulation of this disease. However, the understanding of several critical aspects of the pathogenesis of AA in the Lewis rat has severely been hampered by the lack of information both regarding the level as well as epitope specificity of tolerance to the mammalian self (rat) homologue of Bhsp65, 65-kDa rat heat-shock protein (Rhsp65), and about the functional attributes of the T cell repertoire specific for this self protein. In this study, we established that tolerance to Rhsp65 in the Lewis rat is incomplete, and that the residual T cells primed upon challenge with this self hsp65 are disease regulating in nature. We also have defined the T cell epitopes in the C-terminal region within Rhsp65 that contribute predominantly to the immune reactivity as well as the AA-protective effect of this self protein. Furthermore, the T cells primed by peptides comprising these C-terminal determinants can be efficiently restimulated by the naturally generated epitopes from endogenous Rhsp65, suggesting that self hsp65 might also be involved in natural remission from acute AA. These novel first experimental insights into the self hsp65-directed regulatory T cell repertoire in AA would help develop better immunotherapeutic approaches for autoimmune arthritis.

  5. Frequent associations between CTL and T-Helper epitopes in HIV-1 genomes and implications for multi-epitope vaccine designs

    PubMed Central

    2010-01-01

    Background Epitope vaccines have been suggested as a strategy to counteract viral escape and development of drug resistance. Multiple studies have shown that Cytotoxic T-Lymphocyte (CTL) and T-Helper (Th) epitopes can generate strong immune responses in Human Immunodeficiency Virus (HIV-1). However, not much is known about the relationship among different types of HIV epitopes, particularly those epitopes that can be considered potential candidates for inclusion in the multi-epitope vaccines. Results In this study we used association rule mining to examine relationship between different types of epitopes (CTL, Th and antibody epitopes) from nine protein-coding HIV-1 genes to identify strong associations as potent multi-epitope vaccine candidates. Our results revealed 137 association rules that were consistently present in the majority of reference and non-reference HIV-1 genomes and included epitopes of two different types (CTL and Th) from three different genes (Gag, Pol and Nef). These rules involved 14 non-overlapping epitope regions that frequently co-occurred despite high mutation and recombination rates, including in genomes of circulating recombinant forms. These epitope regions were also highly conserved at both the amino acid and nucleotide levels indicating strong purifying selection driven by functional and/or structural constraints and hence, the diminished likelihood of successful escape mutations. Conclusions Our results provide a comprehensive systematic survey of CTL, Th and Ab epitopes that are both highly conserved and co-occur together among all subtypes of HIV-1, including circulating recombinant forms. Several co-occurring epitope combinations were identified as potent candidates for inclusion in multi-epitope vaccines, including epitopes that are immuno-responsive to different arms of the host immune machinery and can enable stronger and more efficient immune responses, similar to responses achieved with adjuvant therapies. Signature of strong

  6. Fine mapping of canine parvovirus B cell epitopes.

    PubMed

    López de Turiso, J A; Cortés, E; Ranz, A; García, J; Sanz, A; Vela, C; Casal, J I

    1991-10-01

    In this report we describe the topological mapping of neutralizing domains of canine parvovirus (CPV). We obtained 11 CPV-specific monoclonal antibodies (MAbs), six of which are neutralizing. The reactivities were as determined by ELISA and Western blot (immunoblot) analysis. VP2, the most abundant protein of the CPV capsid, seemed to contain all the neutralization sites. Also, an almost full-length genomic clone of CPV was constructed in the bacterial plasmid pUC18 to enable expression of CPV proteins. All the neutralizing MAbs recognized recombinant VP2 when it was expressed as a free protein in Escherichia coli but not when expressed as a fusion protein with glutathione-S-transferase. When two large fragments containing about 85% and 67% of the C terminus of VP2 were expressed, no neutralization sites were detected. When fusion proteins containing the N terminus were expressed, two linear determinants were mapped, one between residues 1 to 10 of VP2, and the other between amino acids 11 and 23. The peptide 11 GQPAVRNERATGS 23, recognized by MAb 3C9, was synthesized chemically and checked for immunogenicity, not being able to induce neutralizing activity. Although the antibody response in rabbits to all the fusion proteins was uniformly high, the anti-CPV response was very variable. Protein from pCPVEx11, which contains a T cell epitope (peptide PKIFINLAKKKKAG) present in the VP1-specific region as well as the B cell epitopes, seemed to be the most effective in inducing virus neutralization.

  7. Rapid reconstitution of CMV-specific T-cells after stem-cell transplantation.

    PubMed

    Widmann, Thomas; Sester, Urban; Schmidt, Tina; Gärtner, Barbara C; Schubert, Jörg; Pfreundschuh, Michael; Sester, Martina

    2018-04-13

    As reconstitution of virus-specific T-cells is critical to control cytomegalovirus (CMV)-viremia following stem-cell transplantation (SCT), we characterized the dynamics in CMV-specific T-cell reconstitution after SCT. Cytomegalovirus-specific T-cells from 51 SCT-recipients were prospectively quantified and phenotypically characterised by intracellular cytokine-staining after specific stimulation and HLA class-I-specific pentamers using flow cytometry. Cytomegalovirus-specific CD4 T-cells reconstituted after a median of 2.3 (IQR, 2.0-3.0) weeks following autografting, and 4.0 (IQR, 3.0-5.6) weeks after allografting, with CMV-specific T-cells originating from donors and/or recipients. The time for reconstitution of CMV-specific CD4 and CD8 T-cells did not differ (P = .58). Factors delaying the time to initial reconstitution of CMV-specific CD4 T-cells included a negative recipient serostatus (P = .016) and CMV-viremia (P = .026). Percentages of CMV-specific CD4 T-cells significantly increased over time and reached a plateau after 90 days (P = .043). Relative CMV-specific CD4 T-cell levels remained higher in long-term transplant recipients compared with those in controls (P < .0001). However, due to persisting lymphopenia, absolute numbers of CMV-specific T-cells were similar as in controls. Cytomegalovirus-specific T-cells rapidly reconstitute after SCT and their percentages remain high in the long term. In the face of persistent lymphopenia, this results in similar absolute numbers of CMV-specific T-cells as in controls to ensure sufficient pathogen control. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization

    PubMed Central

    Co, Mary Dawn T; Kilpatrick, Elizabeth D; Rothman, Alan L

    2009-01-01

    Management of yellow fever is focused on the prevention of illness by the use of the yellow fever virus (YFV) 17D vaccine. The role of neutralizing antibodies in protection is generally accepted with YFV-specific T cells likely contributing to the control of viral replication. We studied CD8+ T-cell responses to four defined human leucocyte antigen-B35-restricted epitopes in YFV vaccine recipients as a model of the kinetics of cytotoxic T-lymphocyte responses to an acute human viral infection. Multiple features of these epitope-specific responses were analysed after vaccination including magnitude, cytokine production, phenotype and T-cell receptor repertoire. Peak peptide-specific interferon-γ (IFN-γ) responses of almost 1% of CD8+ T cells were seen as early as 2 weeks post-vaccination; however, dominant responses varied between donors. Peptide-specific responses were still detectable at 54 months post-vaccination. Tetramer-positive cells, at high frequencies, were detected as early as 7–9 days, before detectable IFN-γ-producing cells, suggesting a defect in the functional capacity of some antigen-specific cells early post-vaccination. The predominant memory phenotype of the tetramer-positive population was a differentiated effector (CD45RA+ CCR7− CD62L−) phenotype. The T-cell receptor Vβ analysis revealed a diverse oligoclonal repertoire in tetramer-positive T-cell populations in two individuals. These characteristics of the YFV-specific T-cell response could contribute to vaccine effectiveness. PMID:19740333

  9. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization.

    PubMed

    Co, Mary Dawn T; Kilpatrick, Elizabeth D; Rothman, Alan L

    2009-09-01

    Management of yellow fever is focused on the prevention of illness by the use of the yellow fever virus (YFV) 17D vaccine. The role of neutralizing antibodies in protection is generally accepted with YFV-specific T cells likely contributing to the control of viral replication. We studied CD8(+) T-cell responses to four defined human leucocyte antigen-B35-restricted epitopes in YFV vaccine recipients as a model of the kinetics of cytotoxic T-lymphocyte responses to an acute human viral infection. Multiple features of these epitope-specific responses were analysed after vaccination including magnitude, cytokine production, phenotype and T-cell receptor repertoire. Peak peptide-specific interferon-gamma (IFN-gamma) responses of almost 1% of CD8(+) T cells were seen as early as 2 weeks post-vaccination; however, dominant responses varied between donors. Peptide-specific responses were still detectable at 54 months post-vaccination. Tetramer-positive cells, at high frequencies, were detected as early as 7-9 days, before detectable IFN-gamma-producing cells, suggesting a defect in the functional capacity of some antigen-specific cells early post-vaccination. The predominant memory phenotype of the tetramer-positive population was a differentiated effector (CD45RA(+) CCR7(-) CD62L(-)) phenotype. The T-cell receptor Vbeta analysis revealed a diverse oligoclonal repertoire in tetramer-positive T-cell populations in two individuals. These characteristics of the YFV-specific T-cell response could contribute to vaccine effectiveness.

  10. Limited Model Antigen Expression by Transgenic Fungi Induces Disparate Fates during Differentiation of Adoptively Transferred T Cell Receptor Transgenic CD4+ T Cells: Robust Activation and Proliferation with Weak Effector Function during Recall

    PubMed Central

    Ersland, Karen; Pick-Jacobs, John C.; Gern, Benjamin H.; Frye, Christopher A.; Sullivan, Thomas D.; Brennan, Meghan B.; Filutowicz, Hanna I.; O'Brien, Kevin; Korthauer, Keegan D.; Schultz-Cherry, Stacey; Klein, Bruce S.

    2012-01-01

    CD4+ T cells are the key players of vaccine resistance to fungi. The generation of effective T cell-based vaccines requires an understanding of how to induce and maintain CD4+ T cells and memory. The kinetics of fungal antigen (Ag)-specific CD4+ T cell memory development has not been studied due to the lack of any known protective epitopes and clonally restricted T cell subsets with complementary T cell receptors (TCRs). Here, we investigated the expansion and function of CD4+ T cell memory after vaccination with transgenic (Tg) Blastomyces dermatitidis yeasts that display a model Ag, Eα-mCherry (Eα-mCh). We report that Tg yeast led to Eα display on Ag-presenting cells and induced robust activation, proliferation, and expansion of adoptively transferred TEa cells in an Ag-specific manner. Despite robust priming by Eα-mCh yeast, antifungal TEa cells recruited and produced cytokines weakly during a recall response to the lung. The addition of exogenous Eα-red fluorescent protein (RFP) to the Eα-mCh yeast boosted the number of cytokine-producing TEa cells that migrated to the lung. Thus, model epitope expression on yeast enables the interrogation of Ag presentation to CD4+ T cells and primes Ag-specific T cell activation, proliferation, and expansion. However, the limited availability of model Ag expressed by Tg fungi during T cell priming blunts the downstream generation of effector and memory T cells. PMID:22124658

  11. Human leukemia antigen-A*0201-restricted epitopes of human endogenous retrovirus W family envelope (HERV-W env) induce strong cytotoxic T lymphocyte responses.

    PubMed

    Tu, Xiaoning; Li, Shan; Zhao, Lijuan; Xiao, Ran; Wang, Xiuling; Zhu, Fan

    2017-08-01

    Human endogenous retrovirus W family (HERV-W) envelope (env) has been reported to be related to several human diseases, including autoimmune disorders, and it could activate innate immunity. However, there are no reports investigating whether human leukemia antigen (HLA)-A*0201 + restriction is involved in the immune response caused by HERV-W env in neuropsychiatric diseases. In the present study, HERV-W env-derived epitopes presented by HLA-A*0201 are described with the potential for use in adoptive immunotherapy. Five peptides displaying HLA-A*0201-binding motifs were predicted using SYFEPITHI and BIMAS, and synthesized. A CCK-8 assay showed peptides W, Q and T promoted lymphocyte proliferation. Stimulation of peripheral blood mononuclear cells from HLA-A*0201 + donors with each of these peptides induced peptide-specific CD8 + T cells. High numbers of IFN-γ-secreting T cells were also detectable after several weekly stimulations with W, Q and T. Besides lysis of HERV-W env-loaded target cells, specific apoptosis was also observed. These data demonstrate that human T cells can be sensitized toward HERV-W env peptides (W, Q and T) and, moreover, pose a high killing potential toward HERV-W env-expressing U251 cells. In conclusion, peptides W Q and T, which are HERV-W env antigenic epitopes, have both antigenicity and immunogenicity, and can cause strong T cell immune responses. Our data strengthen the view that HERV-W env should be considered as an autoantigen that can induce autoimmunity in neuropsychiatric diseases, such as multiple sclerosis and schizophrenia. These data might provide an experimental foundation for a HERV-W env peptide vaccine and new insight into the treatment of neuropsychiatric diseases.

  12. Human and Murine Clonal CD8+ T Cell Expansions Arise during Tuberculosis Because of TCR Selection

    PubMed Central

    Nunes-Alves, Cláudio; Booty, Matthew G.; Carpenter, Stephen M.; Rothchild, Alissa C.; Martin, Constance J.; Desjardins, Danielle; Steblenko, Katherine; Kløverpris, Henrik N.; Madansein, Rajhmun; Ramsuran, Duran; Leslie, Alasdair; Correia-Neves, Margarida; Behar, Samuel M.

    2015-01-01

    The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRβ bias. Using a retrogenic model of TB10.44-11-specific CD8+ T cells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity. PMID:25945999

  13. NetCTLpan: pan-specific MHC class I pathway epitope predictions

    PubMed Central

    Larsen, Mette Voldby; Lundegaard, Claus; Nielsen, Morten

    2010-01-01

    Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0441-4) contains supplementary material, which is available to authorized users. PMID

  14. Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes.

    PubMed

    Schlepper-Schäfer, J; Springer, G F

    1989-10-09

    We studied interactions of isolated Thomsen-Friedenreich (T)- and Tn-specific glycoproteins with the Gal/GalNAc-specific receptors on rat Kupffer cells and compared them to those with rat hepatocytes. Immunoreactive T and Tn are specific pancarcinoma epitopes. Electron microscopy of gold-labelled T and Tn antigens revealed their specific binding to Kupffer cells, followed by their uptake via the coated pit/vesicle pathway of receptor-mediated endocytosis. Preincubation of Kupffer cells with GalNAc and GalNAc-BSA, but not GlcNAc or GlcNAc-BSA specifically inhibited binding of the T and Tn glycoproteins. Desialylated, isologous erythrocytes (T RBC) are known to bind to the Gal/GalNAc receptors of rat Kupffer cells and hepatocytes. This attachment was specifically inhibited by T and Tn in a concentration-dependent manner: 50% T RBC-Kupffer cell contacts were inhibited at 8.5.10(-6) mM T and 8.5.10(-5) mM Tn antigen concentrations, respectively. The corresponding figures for hepatocytes were 6.10(-6) mM T and 1.2.10(-6) mM Tn antigen. Amino-terminal cleavage products of the T glycoprotein, possessing clusters terminating in non-reducing Gal/GalNAc, inhibited T RBC binding to Kupffer cells and hepatocytes usually at 10(-2) to 10(-5) mM concentrations, whereas GalNAc, galactose and galactose glycosides inhibited at millimolar concentrations. Galactose-unrelated carbohydrates were inactive at concentrations greater than or equal to 50 mM.

  15. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    PubMed

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective

  16. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine

    PubMed Central

    Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692

  17. Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols.

    PubMed

    Gilchuk, Pavlo; Knight, Frances C; Wilson, John T; Joyce, Sebastian

    2017-01-01

    CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens. Such antigens are proteolytically processed peptides presented by MHC class I molecules. To induce a robust antigen-specific CD8+ T cell response through vaccination, it is essential to formulate the antigen with an effective adjuvant. Here, we describe a versatile method for generating high-frequency antigen-specific CD8+ T cells through immunization of mice using the invariant natural killer T cell agonist α-galactosylceramide as the adjuvant.

  18. Extensive CD4 and CD8 T-cell cross-reactivity between alphaherpesviruses1

    PubMed Central

    Dong, Lichun; Russell, Ronnie M.; Barlow, Russell S.; Haas, Juergen G.; Ramchandani, Meena S.; Johnston, Christine; Buus, Soren; Redwood, Alec J.; White, Katie D.; Mallal, Simon A.; Phillips, Elizabeth J.; Posavad, Christine M.; Wald, Anna; Koelle, David M.

    2015-01-01

    The alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole virus, protein, and peptide levels, consistent with bi-directional cross-reactivity. HSV-specific CD4 T cells recovered from HSV seronegative persons can be partially explained by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, and kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T-cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both CD4 and CD8 HSV/VZV cross-reactive epitopes. Quantitative estimates of HSV/VZV cross-reactivity for both CD4 and CD8 T cells vary from 10-50%. Based on these findings, we hypothesize host herpesvirus immune history may influence the pathogenesis and clinical outcome of subsequent infections or vaccinations for related pathogens, and that cross-reactive epitopes and TCRs may be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy. PMID:26810224

  19. Human and Murine Clonal CD8+ T Cell Expansions Arise during Tuberculosis Because of TCR Selection.

    PubMed

    Nunes-Alves, Cláudio; Booty, Matthew G; Carpenter, Stephen M; Rothchild, Alissa C; Martin, Constance J; Desjardins, Danielle; Steblenko, Katherine; Kløverpris, Henrik N; Madansein, Rajhmun; Ramsuran, Duran; Leslie, Alasdair; Correia-Neves, Margarida; Behar, Samuel M

    2015-05-01

    The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRβ bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.

  20. CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription

    PubMed Central

    Carlson, Jonathan; Yan, Jiyu; Akinsiku, Olusimidele T.; Schaefer, Malinda; Sabbaj, Steffanie; Bet, Anne; Levy, David N.; Heath, Sonya; Tang, Jianming; Kaslow, Richard A.; Walker, Bruce D.; Ndung’u, Thumbi; Goulder, Philip J.; Heckerman, David; Hunter, Eric; Goepfert, Paul A.

    2010-01-01

    Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity. PMID:20065064

  1. Sequence conservation predicts T cell reactivity against ragweed allergens.

    PubMed

    Pham, J; Oseroff, C; Hinz, D; Sidney, J; Paul, S; Greenbaum, J; Vita, R; Phillips, E; Mallal, S; Peters, B; Sette, A

    2016-09-01

    Ragweed is a major cause of seasonal allergy, affecting millions of people worldwide. Several allergens have been defined based on IgE reactivity, but their relative immunogenicity in terms of T cell responses has not been studied. We comprehensively characterized T cell responses from atopic, ragweed-allergic subjects to Amb a 1, Amb a 3, Amb a 4, Amb a 5, Amb a 6, Amb a 8, Amb a 9, Amb a 10, Amb a 11, and Amb p 5 and examined their correlation with serological reactivity and sequence conservation in other allergens. Peripheral blood mononuclear cells (PBMCs) from donors positive for IgE towards ragweed extracts after in vitro expansion for secretion of IL-5 (a representative Th2 cytokine) and IFN-γ (Th1) in response to a panel of overlapping peptides spanning the above-listed allergens were assessed. Three previously identified dominant T cell epitopes (Amb a 1 176-191, 200-215, and 344-359) were confirmed, and three novel dominant epitopes (Amb a 1 280-295, 304-319, and 320-335) were identified. Amb a 1, the dominant IgE allergen, was also the dominant T cell allergen, but dominance patterns for T cell and IgE responses for the other ragweed allergens did not correlate. Dominance for T cell responses correlated with conservation of ragweed epitopes with sequences of other well-known allergens. These results provide the first assessment of the hierarchy of T cell reactivity in ragweed allergens, which is distinct from that observed for IgE reactivity and influenced by T cell epitope sequence conservation. The results suggest that ragweed allergens associated with lesser IgE reactivity and significant T cell reactivity may be targeted for T cell immunotherapy, and further support the development of immunotherapies against epitopes conserved across species to generate broad reactivity against many common allergens. © 2016 John Wiley & Sons Ltd.

  2. T cell epitope definition by differential mass spectrometry: identification of a novel, immunogenic HLA-B8 ligand directly from renal cancer tissue.

    PubMed

    Flad, Thomas; Mueller, Ludmila; Dihazi, Hassan; Grigorova, Veneta; Bogumil, Ralf; Beck, Alexander; Thedieck, Cornelia; Mueller, Gerhard A; Kalbacher, Hubert; Mueller, Claudia A

    2006-01-01

    In this study, we describe a differential mass spectrometric technique for the immuno-proteomic analysis of the major histocompatibility complex (MHC) peptides of a renal cell carcinoma (RCC) biopsy compared with the healthy kidney tissue of the same patient after nephrectomy. Using a stable isotope labeling approach, we could directly compare and relatively quantify 43 MHC-peptide pairs, most of which were present in similar proportions on both normal kidney and tumor. Significantly, two dominant peptides of monoisotopic masses ([M+H](+)) 973.43 u and 967.59 u, respectively, were found exclusively in the tumor sample. One of these was identified as originating from heme oxygenase-1 (HO-1), a protein involved in induction of apoptosis resistance, immuno-suppression and neoangiogenesis and reported to be up-regulated in various cancer types. Moreover, the corresponding synthetic HO-1-derived peptide was shown to be immunogenic in vitro by generation of CD8+ T cell lines with peptide-specific cytolytic activity. Thus, this peptide is an example of a differentially identified T cell epitope that could be considered as a target for immunotherapy.

  3. Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination.

    PubMed

    Koblischke, Maximilian; Mackroth, Maria S; Schwaiger, Julia; Fae, Ingrid; Fischer, Gottfried; Stiasny, Karin; Heinz, Franz X; Aberle, Judith H

    2017-08-21

    The live attenuated yellow fever (YF) vaccine is a highly effective human vaccine and induces long-term protective neutralizing antibodies directed against the viral envelope protein E. The generation of such antibodies requires the help of CD4 T cells which recognize peptides derived from proteins in virus particles internalized and processed by E-specific B cells. The CD4 T helper cell response is restricted to few immunodominant epitopes, but the mechanisms of their selection are largely unknown. Here, we report that CD4 T cell responses elicited by the YF-17D vaccine are focused to hotspots of two helices of the viral capsid protein and to exposed strands and loops of E. We found that the locations of immunodominant epitopes within three-dimensional protein structures exhibit a high degree of overlap between YF virus and the structurally homologous flavivirus tick-borne encephalitis virus, although amino acid sequence identity of the epitope regions is only 15-45%. The restriction of epitopes to exposed E protein surfaces and their strikingly similar positioning within proteins of distantly related flaviviruses are consistent with a strong influence of protein structure that shapes CD4 T cell responses and provide leads for a rational design of immunogens for vaccination.

  4. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Garg, Sumit; Syed, Sabrina A; Furness, Julie N; Vahed, Hawa; Pham, Tiffany; Yu, Howard T; Nesburn, Anthony B; BenMohamed, Lbachir

    2017-01-15

    Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8 + T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8 + T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8 + T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8 + T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107 a/b cytotoxic degranulation. High frequencies of multifunctional CD8 + T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14 286-294 ), VP13/14 from amino acids 504 to 512 (VP13/14 504-512 ), and VP13/14 from amino acids 544 to 552 (VP13/14 544-552 ), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RA low CD44 high CCR7 low CD62L low CD8 + effector memory T cells (T EM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8 + T EM -cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8 + T EM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic

  5. Preexisting CD4+ T-Cell Immunity in Human Population to Avian Influenza H7N9 Virus: Whole Proteome-Wide Immunoinformatics Analyses

    PubMed Central

    Duvvuri, Venkata R.; Duvvuri, Bhargavi; Alice, Christilda; Wu, Gillian E.; Gubbay, Jonathan B.; Wu, Jianhong

    2014-01-01

    In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV) is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2). The CD4+ T-cell epitopes that are commonly conserved (∼556) were further screened against the Immune Epitope Database (IEDB) to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556) epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62%) when compared with other ethnicities (57.77% to 94.84%). In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs. PMID:24609014

  6. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses.

    PubMed

    Bazhan, S I; Karpenko, L I; Ilyicheva, T N; Belavin, P A; Seregin, S V; Danilyuk, N K; Antonets, D V; Ilyichev, A A

    2010-04-01

    Advances in defining HIV-1 CD8+ T cell epitopes and understanding endogenous MHC class I antigen processing enable the rational design of polyepitope vaccines for eliciting broadly targeted CD8+ T cell responses to HIV-1. Here we describe the construction and comparison of experimental DNA vaccines consisting of ten selected HLA-A2 epitopes from the major HIV-1 antigens Env, Gag, Pol, Nef, and Vpr. The immunogenicity of designed gene constructs was assessed after double DNA prime, single vaccinia virus boost immunization of HLA-A2 transgenic mice. We compared a number of parameters including different strategies for fusing ubiquitin to the polyepitope and including spacer sequences between epitopes to optimize proteasome liberation and TAP transport. It was demonstrated that the vaccine construct that induced in vitro the largest number of [peptide-MHC class I] complexes was also the most immunogenic in the animal experiments. This most immunogenic vaccine construct contained the N-terminal ubiquitin for targeting the polyepitope to the proteasome and included both proteasome liberation and TAP transport optimized spacer sequences that flanked the epitopes within the polyepitope construct. The immunogenicity of determinants was strictly related to their affinities for HLA-A2. Our finding supports the concept of rational vaccine design based on detailed knowledge of antigen processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Peptide-Induced Antiviral Protection by Cytotoxic T Cells

    NASA Astrophysics Data System (ADS)

    Schulz, Manfred; Zinkernagel, Rolf M.; Hengartner, Hans

    1991-02-01

    A specific antiviral cytotoxic immune response in vivo could be induced by the subcutaneous injection of the T-cell epitope of the lymphocytic choriomeningitis virus (LCMV) nucleoprotein as an unmodified free synthetic peptide (Arg-Pro-Gln-Ala-Ser-Gly-Val-Tyr-Met-Gly-Asn-Leu-Thr-Ala-Gln) emulsified in incomplete Freund's adjuvant. This immunization rendered mice into a LCMV-specific protective state as shown by the inhibition of LCMV replication in spleens of such mice. The protection level of these mice correlated with the ability to respond to the peptide challenge by CD8^+ virus-specific cytotoxic T cells. This is a direct demonstration that peptide vaccines can be antivirally protective in vivo, thus encouraging further search for appropriate mixtures of stable peptides that may be used as T-cell vaccines.

  8. Minor Viral and Host Genetic Polymorphisms Can Dramatically Impact the Biologic Outcome of an Epitope-Specific CD8 T-Cell Response

    DTIC Science & Technology

    2009-08-20

    be associated with impaired antigen process - ing.45,46 Indeed, extra-epitopic mutations were observed in B81 subjects infected with subtype C in whom...Medical Research Council (United Kingdom) Senior Clinical Fellow. Sample collection was supported by the European Commission, DG XII, INCO -DC (grant...Gall S, Pfafferott KJ, et al. Im- mune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection. J Exp

  9. Comprehensive Analysis of Contributions from Protein Conformational Stability and Major Histocompatibility Complex Class II-Peptide Binding Affinity to CD4+ Epitope Immunogenicity in HIV-1 Envelope Glycoprotein

    PubMed Central

    Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.

    2014-01-01

    ABSTRACT Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an

  10. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    PubMed

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.

  11. Identification of human leukemia antigen A*0201-restricted epitopes derived from epidermal growth factor pathway substrate number 8.

    PubMed

    Tang, Baishan; Zhou, Weijun; Du, Jingwen; He, Yanjie; Li, Yuhua

    2015-08-01

    T-cell-mediated immunotherapy of hematological malignancies requires selection of targeted tumor-associated antigens and T-cell epitopes contained in these tumor proteins. Epidermal growth factor receptor pathway substrate 8 (EPS8), whose function is pivotal for tumor proliferation, progression and metastasis, has been found to be overexpressed in most human tumor types, while its expression in normal tissue is low. The aim of the present study was to identify human leukemia antigen (HLA)-A*0201-restricted epitopes of EPS8 by using a reverse immunology approach. To achieve this, computer algorithms were used to predict HLA-A*0201 molecular binding, proteasome cleavage patterns as well as translocation of transporters associated with antigen processing. Candidate peptides were experimentally validated by T2 binding affinity assay and brefeldin-A decay assay. The functional avidity of peptide-specific cytotoxic T lymphocytes (CTLs) induced from peripheral blood mononuclear cells of healthy volunteers were evaluated by using an enzyme-linked immunosorbent spot assay and a cytotoxicity assay. Four peptides, designated as P455, P92, P276 and P360, had high affinity and stability of binding towards the HLA-A*0201 molecule, and specific CTLs induced by them significantly responded to the corresponding peptides and secreted IFN-γ. At the same time, the CTLs were able to specifically lyse EPS8-expressing cell lines in an HLA-A*0201-restricted manner. The present study demonstrated that P455, P92, P276 and P360 were CTL epitopes of EPS8, and were able to be used for epitope-defined adoptive T-cell transfer and multi-epitope-based vaccine design.

  12. Virus-Specific T Cells for the Immunocompromised Patient

    PubMed Central

    Houghtelin, Amy; Bollard, Catherine M.

    2017-01-01

    While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70–90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo. PMID:29075259

  13. Virus-Specific T Cells for the Immunocompromised Patient.

    PubMed

    Houghtelin, Amy; Bollard, Catherine M

    2017-01-01

    While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70-90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo .

  14. Escape is a more common mechanism than avidity reduction for evasion of CD8+ T cell responses in primary human immunodeficiency virus type 1 infection

    PubMed Central

    2011-01-01

    Background CD8+ T cells play an important role in control of viral replication during acute and early human immunodeficiency virus type 1 (HIV-1) infection, contributing to containment of the acute viral burst and establishment of the prognostically-important persisting viral load. Understanding mechanisms that impair CD8+ T cell-mediated control of HIV replication in primary infection is thus of importance. This study addressed the relative extent to which HIV-specific T cell responses are impacted by viral mutational escape versus reduction in response avidity during the first year of infection. Results 18 patients presenting with symptomatic primary HIV-1 infection, most of whom subsequently established moderate-high persisting viral loads, were studied. HIV-specific T cell responses were mapped in each individual and responses to a subset of optimally-defined CD8+ T cell epitopes were followed from acute infection onwards to determine whether they were escaped or declined in avidity over time. During the first year of infection, sequence variation occurred in/around 26/33 epitopes studied (79%). In 82% of cases of intra-epitopic sequence variation, the mutation was confirmed to confer escape, although T cell responses were subsequently expanded to variant sequences in some cases. In contrast, < 10% of responses to index sequence epitopes declined in functional avidity over the same time-frame, and a similar proportion of responses actually exhibited an increase in functional avidity during this period. Conclusions Escape appears to constitute a much more important means of viral evasion of CD8+ T cell responses in acute and early HIV infection than decline in functional avidity of epitope-specific T cells. These findings support the design of vaccines to elicit T cell responses that are difficult for the virus to escape. PMID:21635736

  15. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease.

    PubMed

    Jacek, Elzbieta; Tang, Kevin S; Komorowski, Lars; Ajamian, Mary; Probst, Christian; Stevenson, Brian; Wormser, Gary P; Marques, Adriana R; Alaedini, Armin

    2016-02-01

    Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen's possible immune evasion mechanisms. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection.

    PubMed

    Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi

    2010-11-01

    We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  17. Correlation of sensitizing capacity and T-cell recognition within the Bet v 1 family

    PubMed Central

    Kitzmüller, Claudia; Zulehner, Nora; Roulias, Anargyros; Briza, Peter; Ferreira, Fatima; Faé, Ingrid; Fischer, Gottfried F.; Bohle, Barbara

    2015-01-01

    Background Bet v 1 is the main sensitizing allergen in birch pollen. Like many other major allergens, it contains an immunodominant T cell–activating region (Bet v 1142-156). Api g 1, the Bet v 1 homolog in celery, lacks the ability to sensitize and is devoid of major T-cell epitopes. Objective We analyzed the T-cell epitopes of Mal d 1, the nonsensitizing Bet v 1 homolog in apple, and assessed possible differences in uptake and antigen processing of Bet v 1, Api g 1, and Mal d 1. Methods For epitope mapping, Mal d 1–specific T-cell lines were stimulated with overlapping synthetic 12-mer peptides. The surface binding, internalization, and intracellular degradation of Bet v 1, Api g 1, and Mal d 1 by antigen-presenting cells were compared by using flow cytometry. All proteins were digested with endolysosomal extracts, and the resulting peptides were identified by means of mass spectrometry. The binding of Bet v 1142-156 and the homologous region in Mal d 1 by HLA class II molecules was analyzed in silico. Results Like Api g 1, Mal d 1 lacked dominant T-cell epitopes. The degree of surface binding and the kinetics of uptake and endolysosomal degradation of Bet v 1, Api g 1, and Mal d 1 were comparable. Endolysosomal degradation of Bet v 1 and Mal d 1 resulted in very similar fragments. The Bet v 1142-156 and Mal d 1141-155 regions showed no striking difference in their binding affinities to the most frequent HLA-DR alleles. Conclusion The sensitizing activity of different Bet v 1 homologs correlates with the presence of immunodominant T-cell epitopes. However, the presence of Bet v 1142-156 is not conferred by differential antigen processing. PMID:25670010

  18. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107+ CD8+ T Cells That Infiltrate the Cornea and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Vahed, Hawa; Roy, Soumyabrata; Walia, Sager S; Kim, Grace J; Fouladi, Mona A; Yamada, Taikun; Ly, Vincent T; Lam, Cynthia; Lou, Anthony; Nguyen, Vivianna; Boldbaatar, Undariya; Geertsema, Roger; Fraser, Nigel W; BenMohamed, Lbachir

    2018-06-13

    Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in Human Leukocyte Antigen- (HLA-) transgenic rabbit model of ocular herpes (HLA Tg rabbit). Three asymptomatic (ASYMP) peptide epitopes were selected from the HSV-1 membrane glycoprotein C (UL44 400-408 ), the DNA replication binding helicase (UL9 196-204 ), and the tegument protein (UL25 572-580 ), all preferentially recognized by CD8 + T cells from "naturally protected" HSV-1-seropositive healthy ASYMP individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8 + T cell peptide epitopes (UL44 400-408 , UL9 196-204 and UL25 572-580 ), delivered subcutaneously with CpG 2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic AAV8 vector, expressing the T cell-attracting CXCL10 chemokine (pull). The frequency, function of HSV-specific CD8 + T cells induced by the prime/pull vaccine were assessed in peripheral blood, cornea, and trigeminal ganglia (TG). Compared to peptides alone, the peptides/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ + ) CD107 + CD8 + T cells that infiltrated both the cornea and TG. CD8 + T cells mobilization into cornea and TG of prime/pull- vaccinated rabbits was associated with a significant reduction in corneal herpes infection and disease following an ocular HSV-1 challenge (McKrae). These findings draw attention to the novel prime/pull vaccine strategy to mobilize anti-viral CD8 + T cells into tissues protecting them against herpes infection and disease. IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA

  19. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

    PubMed

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile; Ordaz-Ortiz, José J; Farkas, Vladimir; Pedersen, Henriette L; Willats, William G T; Knox, J Paul

    2008-05-22

    Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re

  20. Identification of novel HLA-A(*)0201-restricted CTL epitopes from Pokemon.

    PubMed

    Yuan, Bangqing; Zhao, Lin; Xian, Ronghua; Zhao, Gang

    2012-01-01

    Pokemon is a member of the POK family of transcriptional repressors and aberrant overexpressed in various human cancers. Therefore, the related peptide epitopes derived from Pokemon is essential for the development of specific immunotherapy of malignant tumors. In this study, we predicted and identified HLA-A(*)0201-restricted cytotoxic T lymphocyte (CTL) epitopes derived from Pokemon with computer-based epitope prediction, peptide-binding assay and testing of the induced CTLs toward different kinds of carcinoma cells. The results demonstrated that effectors induced by peptides of Pokemon containing residues 32-40, 61-69, 87-95, and 319-327 could specifically secrete IFN-γ and lyse tumor cell lines of Pokemon-positive and HLA-A2-matched. The results suggest that Pokemon32, Pokemon61, Pokemon87, and Pokemon319 peptides are novel HLA-A(*)0201-restricted restricted CTL epitopes, and could be utilized in the cancer immunotherapy against a broad spectrum of tumors. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells

    PubMed Central

    Chmielewski, Markus; Hombach, Andreas A.; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient’s T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a “tumor-associated antigen” and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer. PMID:24273543

  2. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells.

    PubMed

    Chmielewski, Markus; Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a "tumor-associated antigen" and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer.

  3. Breast milk IgA to foods has different epitope specificity than serum IgA-Evidence for entero-mammary link for food-specific IgA?

    PubMed

    Seppo, A E; Savilahti, E M; Berin, M C; Sampson, H A; Järvinen, K M

    2017-10-01

    We have previously shown that maternal cow's milk (CM) elimination results in downregulation of CM-specific IgA antibody levels in BM, but not in serum, suggesting that an entero-mammary link may exist for food-specific antibody-secreting cells. We sought to investigate whether food-specific IgA epitope profiles differ intra-individually between mother's serum and BM. We also examined how infants' food epitope-specific IgA develops in early infancy and the relationship of IgA epitope recognition with development of cow's milk allergy (CMA). We measured specific IgA to a series of overlapping peptides in major CM allergens (α s1 -, α s2 -, β- and κ-caseins and β-lactoglobulin) in paired maternal and infant serum as well as BM samples in 31 mother-infant dyads within the first 15 post-partum months utilizing peptide microarray. There was significant discordance in epitope specificity between BM and maternal sera ranging from only 13% of sample pairs sharing at least one epitope in α s1 -casein to 73% in κ-casein. Epitope-specific IgA was detectable in infants' sera starting at less than 3 months of age. Sera of mothers with a CMA infant had increased binding of epitope-specific IgA to CM proteins compared to those with a non-CMA infant. These findings support the concept that mother's milk has a distinct antifood antibody repertoire when compared to the antibody repertoire of the peripheral blood. Increased binding of serum epitope-specific IgA to CM in mothers of infants with CMA may reflect inherited systemic immunogenicity of CM proteins in these families, although specific IgA in breast milk was not proportionally up-regulated. © 2017 John Wiley & Sons Ltd.

  4. Identification of three PPV1 VP2 protein-specific B cell linear epitopes using monoclonal antibodies against baculovirus-expressed recombinant VP2 protein.

    PubMed

    Sun, Jianhui; Huang, Liping; Wei, Yanwu; Wang, Yiping; Chen, Dongjie; Du, Wenjuan; Wu, Hongli; Feng, Li; Liu, Changming

    2015-11-01

    Porcine parvovirus type 1 (PPV1) is a major causative agent of embryonic and fetal death in swine. The PPV1 VP2 protein is closely associated with viral immunogenicity for eliciting neutralizing antibodies, but its antigenic structures have been largely unknown. We generated three monoclonal antibodies (MAbs) against baculovirus-expressed recombinant PPV1 VP2 protein. A PEPSCAN analysis identified the minimal B cell linear epitopes of PPV1 VP2 based on these MAbs. Three core epitopes, (228)QQITDA(233), (284)RSLGLPPK(291), and (344)FEYSNGGPFLTPI(356), were defined and mapped onto three-dimensional models of the PPV1 virion and VP2 monomer. The epitope (228)QQITDA(233) is exposed on the virion surface, and the other two are located inside the protein. An alignment of the PPV1 VP2 amino acid sequences showed that (284)RSLGLPPK(291) and (344)FEYSNGGPFLTPI(356) are absolutely conserved, whereas (228)QQITDA(233) has a single substitution at residue 233 in some (S → A or T). We developed a VP2 epitope-based indirect enzyme-linked immunosorbent assay (iELISA) to test for anti-PPV1 antibodies. In a comparative analysis with an immunoperoxidase monolayer assay using 135 guinea pig sera, the VP2-epitope-based iELISA had a concordance rate of 85.19 %, sensitivity of 83.33 %, and specificity of 85.47 %. MAb 8H6 was used to monitor VP2 during the PPV1 replication cycle in vitro with an indirect immunofluorescence assay, which indicated that newly encapsulated virions are released from the nucleus at 24 h postinfection and the PPV1 replication cycle takes less than 24 h. This study provides valuable information clarifying the antigenic structure of PPV1 VP2 and lays the foundations for PPV1 serodiagnosis and antigen detection.

  5. Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary Sequence

    PubMed Central

    Raghava, Gajendra P. S.

    2013-01-01

    One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell’s response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting linear B-cell epitopes. We have retrieved experimentally validated B-cell epitopes as well as non B-cell epitopes from Immune Epitope Database and derived two types of datasets called Lbtope_Variable and Lbtope_Fixed length datasets. The Lbtope_Variable dataset contains 14876 B-cell epitope and 23321 non-epitopes of variable length where as Lbtope_Fixed length dataset contains 12063 B-cell epitopes and 20589 non-epitopes of fixed length. We also evaluated the performance of models on above datasets after removing highly identical peptides from the datasets. In addition, we have derived third dataset Lbtope_Confirm having 1042 epitopes and 1795 non-epitopes where each epitope or non-epitope has been experimentally validated in at least two studies. A number of models have been developed to discriminate epitopes and non-epitopes using different machine-learning techniques like Support Vector Machine, and K-Nearest Neighbor. We achieved accuracy from ∼54% to 86% using diverse s features like binary profile, dipeptide composition, AAP (amino acid pair) profile. In this study, for the first time experimentally validated non B-cell epitopes have been used for developing method for predicting linear B-cell epitopes. In previous studies, random peptides have been used as non B-cell epitopes. In order to provide service to scientific community, a web server LBtope has been developed for predicting and designing B-cell epitopes (http://crdd.osdd.net/raghava/lbtope/). PMID:23667458

  6. Cutting edge: the relative distribution of T cells responding to chemically dominant or minor epitopes of lysozyme is not affected by CD40-CD40 ligand and B7-CD28-CTLA-4 costimulatory pathways.

    PubMed

    DiPaolo, Richard J; Unanue, Emil R

    2002-09-15

    We examined the frequencies and specificities of the CD4+ T cell responses to the protein hen egg white lysozyme in mice deficient in the CD40-CD40 ligand or B7-CD28 costimulatory pathways. The frequency of T cells was decreased by between 3- and 4-fold in CD40-/- mice, and 12-fold in B7-1/B7-2-/- mice, but surprisingly, the relative distribution of T cells responding to peptides that were presented at levels that differed by >250-fold was similar. We also examined the CD4 response after blocking the regulatory molecule CTLA-4 during immunization. We observed no difference in either the frequency or specificity of the CD4+ T cell response if CTLA-4 was blocking during priming. Thus, the T cell response was generated toward the constellation of chemically dominant and subdominant epitopes as a whole, and did not discriminate among them based on their relative abundance.

  7. Aryl hydrocarbon receptor activation impairs the priming but not the recall of influenza virus-specific CD8+ T cells in the lung.

    PubMed

    Lawrence, B Paige; Roberts, Alan D; Neumiller, Joshua J; Cundiff, Jennifer A; Woodland, David L

    2006-11-01

    The response of CD8+ T cells to influenza virus is very sensitive to modulation by aryl hydrocarbon receptor (AhR) agonists; however, the mechanism underlying AhR-mediated alterations in CD8+ T cell function remains unclear. Moreover, very little is known regarding how AhR activation affects anamnestic CD8+ T cell responses. In this study, we analyzed how AhR activation by the pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the in vivo distribution and frequency of CD8+ T cells specific for three different influenza A virus epitopes during and after the resolution of a primary infection. We then determined the effects of TCDD on the expansion of virus-specific memory CD8+ T cells during recall challenge. Adoptive transfer of AhR-null CD8+ T cells into congenic AhR(+/+) recipients, and the generation of CD45.2AhR(-/-)-->CD45.1AhR(+/+) chimeric mice demonstrate that AhR-regulated events within hemopoietic cells, but not directly within CD8+ T cells, underlie suppressed expansion of virus-specific CD8+ T cells during primary infection. Using a dual-adoptive transfer approach, we directly compared the responsiveness of virus-specific memory CD8+ T cells created in the presence or absence of TCDD, which revealed that despite profound suppression of the primary response to influenza virus, the recall response of virus-specific CD8+ T cells that form in the presence of TCDD is only mildly impaired. Thus, the delayed kinetics of the recall response in TCDD-treated mice reflects the fact that there are fewer memory cells at the time of reinfection rather than an inherent defect in the responsive capacity of virus-specific memory CD8+ cells.

  8. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.

    PubMed

    Akondy, Rama S; Monson, Nathan D; Miller, Joseph D; Edupuganti, Srilatha; Teuwen, Dirk; Wu, Hong; Quyyumi, Farah; Garg, Seema; Altman, John D; Del Rio, Carlos; Keyserling, Harry L; Ploss, Alexander; Rice, Charles M; Orenstein, Walter A; Mulligan, Mark J; Ahmed, Rafi

    2009-12-15

    The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.

  9. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    PubMed

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. EpitopeViewer: a Java application for the visualization and analysis of immune epitopes in the Immune Epitope Database and Analysis Resource (IEDB).

    PubMed

    Beaver, John E; Bourne, Philip E; Ponomarenko, Julia V

    2007-02-21

    Structural information about epitopes, particularly the three-dimensional (3D) structures of antigens in complex with immune receptors, presents a valuable source of data for immunology. This information is available in the Protein Data Bank (PDB) and provided in curated form by the Immune Epitope Database and Analysis Resource (IEDB). With continued growth in these data and the importance in understanding molecular level interactions of immunological interest there is a need for new specialized molecular visualization and analysis tools. The EpitopeViewer is a platform-independent Java application for the visualization of the three-dimensional structure and sequence of epitopes and analyses of their interactions with antigen-specific receptors of the immune system (antibodies, T cell receptors and MHC molecules). The viewer renders both 3D views and two-dimensional plots of intermolecular interactions between the antigen and receptor(s) by reading curated data from the IEDB and/or calculated on-the-fly from atom coordinates from the PDB. The 3D views and associated interactions can be saved for future use and publication. The EpitopeViewer can be accessed from the IEDB Web site http://www.immuneepitope.org through the quick link 'Browse Records by 3D Structure.' The EpitopeViewer is designed and been tested for use by immunologists with little or no training in molecular graphics. The EpitopeViewer can be launched from most popular Web browsers without user intervention. A Java Runtime Environment (RJE) 1.4.2 or higher is required.

  11. A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies.

    PubMed

    Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah; Dallabernadina, Pietro; Boos, Irene; Andersen, Mathias C F; Kotake, Toshihisa; Knox, J Paul; Hahn, Michael G; Clausen, Mads H; Pfrengle, Fabian

    2017-11-01

    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Epitope Capsid-Incorporation: New Effective Approach for Vaccine Development for Chagas Disease

    PubMed Central

    Matthews, Qiana L.; Farrow, Anitra L.; Rachakonda, Girish; Gu, Linlin; Nde, Pius; Krendelchtchikov, Alexandre; Pratap, Siddharth; Sakhare, Shruti S.; Sabbaj, Steffanie; Lima, Maria F.; Villalta, Fernando

    2016-01-01

    Background Previously we reported that a hexon-modified adenovirus (Ad) vector containing the invasive neutralizing epitope of Trypanosoma cruzi (T. cruzi) trypomastigote gp83 (Ad5-gp83) provided immunoprotection against T. cruzi infection. The purpose of this work was to design an improved vaccine for T. cruzi using a novel epitope capsid incorporation strategy. Thus, we evaluated the immunoprotection raised by co-immunization with Ad5-gp83 and an Ad vector containing an epitope (ASP-M) of the T. cruzi amastigote surface protein 2. Methods Protein IX (pIX)-modified Ad vector (Ad5-pIX-ASP-M) was generated, characterized, and validated. C3H/He mice were immunized with Ad5-pIX-ASP-M and Ad5-gp83 and the cell-mediated responses were evaluated by enzyme-linked immunospot (ELISPOT) assay and intracellular staining. Immunized mice were challenged with T. cruzi to evaluate the vaccine efficacy. Results Our findings indicate that Ad5-pIX-ASP-M was viable. Specific CD8+ T-cell mediated responses prior to the challenge show an increase in IFNγ and TNFα production. A single immunization with Ad5-pIX-ASP-M provided protection from T. cruzi infection, but co-immunizations with Ad5-pIX-ASP-M and Ad5-gp83 provided a higher immunoprotection and increased survival rate of mice. Conclusions Overall, these results suggest that the combination of gp83 and ASP-M specific epitopes onto the capsid-incorporated adenoviruses would provide superior protection against Chagas disease as compared with Ad5-gp83 alone. PMID:27709126

  13. Structural analysis of B-cell epitopes in antibody:protein complexes

    PubMed Central

    Kringelum, Jens Vindahl; Nielsen, Morten; Padkjær, Søren Berg; Lund, Ole

    2012-01-01

    The binding of antigens to antibodies is one of the key events in an immune response against foreign molecules and is a critical element of several biomedical applications including vaccines and immunotherapeutics. For development of such applications, the identification of antibody binding sites (B-cell epitopes) is essential. However experimental epitope mapping is highly cost-intensive and computer-aided methods do in general have moderate performance. One major reason for this moderate performance is an incomplete understanding of what characterizes an epitope. To fill this gap, we here developed a novel framework for comparing and superimposing B-cell epitopes and applied it on a dataset of 107 non-similar antigen:antibody structures extracted from the PDB database. With the presented framework, we were able to describe the general B-cell epitope as a flat, oblong, oval shaped volume consisting of predominantly hydrophobic amino acids in the center flanked by charged residues. The average epitope was found to be made up of ~15 residues with one linear stretch of 5 or more residues constituting more than half of the epitope size. Furthermore, the epitope area is predominantly constrained to a plane above the antibody tip, in which the epitope is orientated in a −30 to 60 degree angle relative to the light to heavy chain antibody direction. Contrary to previously findings, we did not find a significant deviation between the amino acid composition in epitopes and the composition of equally exposed parts of the antigen surface. Our results, in combination with previously findings, give a detailed picture of the B-cell epitope that may be used in development of improved B-cell prediction methods. PMID:22784991

  14. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs.

    PubMed

    de Melo, Andréa Barbosa; Nascimento, Eduardo J M; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P; Sidney, John; Sette, Alessandro; Montenegro, Silvia M L; Marques, Ernesto T A

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4(+) and CD8(+) T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines.

  15. T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs

    PubMed Central

    de Melo, Andréa Barbosa; Nascimento, Eduardo J. M.; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P.; Sidney, John; Sette, Alessandro; Montenegro, Silvia M. L.; Marques, Ernesto T. A.

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, “promiscuous” T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. PMID:23383350

  16. Inhibition of serine-peptidase activity enhances the generation of a survivin-derived HLA-A2-presented CTL epitope in colon-carcinoma cells.

    PubMed

    Preta, G; Marescotti, D; Fortini, C; Carcoforo, P; Castelli, C; Masucci, M; Gavioli, R

    2008-12-01

    Cytotoxic T lymphocytes eliminate tumor cells expressing antigenic peptides in the context of MHC-I molecules. Peptides are generated during protein degradation by the proteasome and resulting products, surviving cytosolic amino-peptidases activity, may be presented by MHC-I molecules. The MHC-I processing pathway is altered in a large number of malignancies and modulation of antigen generation is one strategy employed by cells to evade immune control. In this study we analyzed the generation and presentation of a survivin-derived CTL epitope in HLA-A2-positive colon-carcinoma cells. Although all cell lines expressed the anti-apoptotic protein survivin, some tumors were poorly recognized by ELTLGEFLKL (ELT)-specific CTL cultures. The expression of MHC-I or TAP molecules was similar in all cell lines suggesting that tumors not recognized by CTLs may present defects in the generation of the ELT-epitope which could be due either to lack of generation or to subsequent degradation of the epitope. The cells were analyzed for the expression and the activity of extra-proteasomal peptidases. A significant overexpression and higher activity of TPPII was observed in colon-carcinoma cells which are not killed by ELT-specific CTLs, suggesting a possible role of TPPII in the degradation of the ELT-epitope. To confirm the role of TPPII in the degradation of the ELT-peptide, we showed that treatment of colon-carcinoma cells with a TPPII inhibitor resulted in a dose-dependent increased sensitivity to ELT-specific CTLs. These results suggest that TPPII is involved in degradation of the ELT-peptide, and its overexpression may contribute to the immune escape of colon-carcinoma cells.

  17. Use of massively parallel pyrosequencing to evaluate the diversity of and selection on Plasmodium falciparum csp T-cell epitopes in Lilongwe, Malawi.

    PubMed

    Bailey, Jeffrey A; Mvalo, Tisungane; Aragam, Nagesh; Weiser, Matthew; Congdon, Seth; Kamwendo, Debbie; Martinson, Francis; Hoffman, Irving; Meshnick, Steven R; Juliano, Jonathan J

    2012-08-15

    The development of an effective malaria vaccine has been hampered by the genetic diversity of commonly used target antigens. This diversity has led to concerns about allele-specific immunity limiting the effectiveness of vaccines. Despite extensive genetic diversity of circumsporozoite protein (CS), the most successful malaria vaccine is RTS/S, a monovalent CS vaccine. By use of massively parallel pyrosequencing, we evaluated the diversity of CS haplotypes across the T-cell epitopes in parasites from Lilongwe, Malawi. We identified 57 unique parasite haplotypes from 100 participants. By use of ecological and molecular indexes of diversity, we saw no difference in the diversity of CS haplotypes between adults and children. We saw evidence of weak variant-specific selection within this region of CS, suggesting naturally acquired immunity does induce variant-specific selection on CS. Therefore, the impact of CS vaccines on variant frequencies with widespread implementation of vaccination requires further study.

  18. Different antigen processing activities in dendritic cells, macrophages and monocytes lead to uneven production of HIV epitopes and affect CTL recognition

    PubMed Central

    Duong, Ellen; Bracho-Sanchez, Edith; Rucevic, Marijana; Liebesny, Paul H.; Xu, Yang; Shimada, Mariko; Ghebremichael, Musie; Kavanagh, Daniel G.; Le Gall, Sylvie

    2014-01-01

    Dendritic cells (DCs), macrophages (MPs) and monocytes are permissive to HIV. Whether they similarly process and present HIV epitopes to HIV-specific CD8 T cells is unknown despite the critical role of peptide processing and presentation for recognition and clearance of infected cells. Cytosolic peptidases degrade endogenous proteins originating from self or pathogens, exogenous antigens preprocessed in endolysosomes, thus shaping the peptidome available for endoplasmic reticulum (ER) translocation, trimming and MHC-I presentation. Here we compared the capacity of DCs, MPs and monocyte cytosolic extracts to produce epitope precursors and epitopes. We showed differences in the proteolytic activities and expression levels of cytosolic proteases between monocyte-derived DCs and MPs and upon maturation with LPS, R848 and CL097, with mature MPs having the highest activities. Using cytosol as a source of proteases to degrade epitope-containing HIV peptides, we showed by mass spectrometry that the degradation patterns of long peptides and the kinetics and amount of antigenic peptides produced differed among DCs, MPs and monocytes. Additionally, variable intracellular stability of HIV peptides prior to loading onto MHC may accentuate the differences in epitope availability for presentation by MHC-I between these subsets. Differences in peptide degradation led to 2- to 25-fold differences in the CTL responses elicited by the degradation peptides generated in DCs, MPs and monocytes. Differences in antigen processing activities between these subsets might lead to variations in the timing and efficiency of recognition of HIV-infected cells by CTLs and contribute to the unequal capacity of HIV-specific CTLs to control viral load. PMID:25230751

  19. Human influenza viruses and CD8(+) T cell responses.

    PubMed

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Identification of conserved and HLA-A*2402-restricted epitopes in Dengue virus serotype 2.

    PubMed

    Duan, Zhi-Liang; Liu, Hui-Fang; Huang, Xi; Wang, Si-Na; Yang, Jin-Lin; Chen, Xin-Yu; Li, De-Zhou; Zhong, Xiao-Zhi; Chen, Bo-Kun; Wen, Jin-Sheng

    2015-01-22

    In this study, we set out to identify dengue virus serotype 2 (DENV-2)-specific HLA-A*2402-restricted epitopes and determine the characteristics of T cells generated to these epitopes. We screened the full-length amino-acid sequence of DENV-2 to find potential epitopes using the SYFPEITHI algorithm. Twelve putative HLA-A*2402-binding peptides conserved in hundreds of DENV-2 strains were synthesized, and the HLA restriction of peptides was tested in HLA-A*2402 transgenic mice. Nine peptides (NS4b(228-237), NS2a(73-81), E(298-306), M(141-149), NS4a(96-105), NS4b(159-168), NS5(475-484), NS1(162-171), and NS5(611-620)) induced high levels of peptide-specific IFN-γ-secreting cells in HLA-A*2402 transgenic mice. Apart from IFN-γ, NS4b(228-237-), NS2a(73-81-) and E(298-306)-specific CD8(+) cells produced TNF-α and IL-6 simultaneously, whereas M(141-149-) and NS5(475-484-) CD8(+) cells produced only IL-6. Moreover, splenic mononuclear cells (SMCs) efficiently recognized and killed peptide-pulsed splenocytes. Furthermore, each of nine peptides could be recognized by splenocytes from DENV-2-infected HLA-A*2402 transgenic mice. The SMCs from HLA-A*2402 transgenic mice immunized with nine immunogenic peptides efficiently killed DENV-2-infected splenic monocytes. The present identified epitopes have the potential to be new diagnostic tools for characterization of T-cell immunity in DENV infection and may serve as part of a universal epitope-based vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Viremic HIV Infected Individuals with High CD4 T Cells and Functional Envelope Proteins Show Anti-gp41 Antibodies with Unique Specificity and Function

    PubMed Central

    Curriu, Marta; Fausther-Bovendo, Hughes; Pernas, María; Massanella, Marta; Carrillo, Jorge; Cabrera, Cecilia; López-Galíndez, Cecilio; Clotet, Bonaventura; Debré, Patrice; Vieillard, Vincent; Blanco, Julià

    2012-01-01

    Background CD4 T-cell decay is variable among HIV-infected individuals. In exceptional cases, CD4 T-cell counts remain stable despite high plasma viremia. HIV envelope glycoprotein (Env) properties, namely tropism, fusion or the ability to induce the NK ligand NKp44L, or host factors that modulate Env cytopathic mechanisms may be modified in such situation. Methods We identified untreated HIV-infected individuals showing non-cytopathic replication (VL>10,000 copies/mL and CD4 T-cell decay<50 cells/µL/year, Viremic Non Progressors, VNP) or rapid progression (CD4 T-cells<350 cells/µL within three years post-infection, RP). We isolated full-length Env clones and analyzed their functions (tropism, fusion activity and capacity to induce NKp44L expression on CD4 cells). Anti-Env humoral responses were also analyzed. Results Env clones isolated from VNP or RP individuals showed no major phenotypic differences. The percentage of functional clones was similar in both groups. All clones tested were CCR5-tropic and showed comparable expression and fusogenic activity. Moreover, no differences were observed in their capacity to induce NKp44L expression on CD4 T cells from healthy donors through the 3S epitope of gp41. In contrast, anti- Env antibodies showed clear functional differences: plasma from VNPs had significantly higher capacity than RPs to block NKp44L induction by autologous viruses. Consistently, CD4 T-cells isolated from VNPs showed undetectable NKp44L expression and specific antibodies against a variable region flanking the highly conserved 3S epitope were identified in plasma samples from these patients. Conversely, despite continuous antigen stimulation, VNPs were unable to mount a broad neutralizing response against HIV. Conclusions Env functions (fusion and induction of NKp44L) were similar in viremic patients with slow or rapid progression to AIDS. However, differences in humoral responses against gp41 epitopes nearby 3S sequence may contribute to the lack

  2. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    PubMed

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  3. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1.

    PubMed

    Hertz, Tomer; Ahmed, Hasan; Friedrich, David P; Casimiro, Danilo R; Self, Steven G; Corey, Lawrence; McElrath, M Juliana; Buchbinder, Susan; Horton, Helen; Frahm, Nicole; Robertson, Michael N; Graham, Barney S; Gilbert, Peter

    2013-01-01

    Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different

  4. Syntheses and Immunological Evaluation of Self-Adjuvanting Clustered N-Acetyl and N-Propionyl Sialyl-Tn Combined with A T-helper Cell Epitope as Antitumor Vaccine Candidates.

    PubMed

    Chang, Tsung-Che; Manabe, Yoshiyuki; Fujimoto, Yukari; Ohshima, Shino; Kametani, Yoshie; Kabayama, Kazuya; Nimura, Yuka; Lin, Chun-Cheng; Fukase, Koichi

    2018-05-16

    Sialyl-Tn (STn) is a tumor-associated carbohydrate antigen (TACA) rarely observed on healthy tissues. We synthesized two fully synthetic N-acetyl and N-propionyl STn trimer (triSTn) vaccines possessing a T-helper epitope and a TLR2 agonist, since the clustered STn antigens are highly expressed on many cancer cells. Immunization of both vaccines in mice induced the anti-triSTn IgG antibodies, which recognized triSTn-expressing cell lines PANC-1 and HepG2. The N-propionyl triSTn vaccine induced the triSTn-specific IgGs, while IgGs induced by the N-acetyl triSTn vaccine were less specific. These results illustrated that N-propionyl triSTn is a valuable unnatural TACA for anticancer vaccines. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    PubMed

    Sandalova, Elena; Laccabue, Diletta; Boni, Carolina; Tan, Anthony T; Fink, Katja; Ooi, Eng Eong; Chua, Robert; Shafaeddin Schreve, Bahar; Ferrari, Carlo; Bertoletti, Antonio

    2010-08-19

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  6. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover

    PubMed Central

    Almeida, Jorge R.; Price, David A.; Papagno, Laura; Arkoub, Zaïna Aït; Sauce, Delphine; Bornstein, Ethan; Asher, Tedi E.; Samri, Assia; Schnuriger, Aurélie; Theodorou, Ioannis; Costagliola, Dominique; Rouzioux, Christine; Agut, Henri; Marcelin, Anne-Geneviève; Douek, Daniel; Autran, Brigitte; Appay, Victor

    2007-01-01

    The key attributes of CD8+ T cell protective immunity in human immunodeficiency virus (HIV) infection remain unclear. We report that CD8+ T cell responses specific for Gag and, in particular, the immunodominant p24 epitope KK10 correlate with control of HIV-1 replication in human histocompatibility leukocyte antigen (HLA)–B27 patients. To understand further the nature of CD8+ T cell–mediated antiviral efficacy, we performed a comprehensive study of CD8+ T cells specific for the HLA-B27–restricted epitope KK10 in chronic HIV-1 infection based on the use of multiparametric flow cytometry together with molecular clonotypic analysis and viral sequencing. We show that B27-KK10–specific CD8+ T cells are characterized by polyfunctional capabilities, increased clonal turnover, and superior functional avidity. Such attributes are interlinked and constitute the basis for effective control of HIV-1 replication. These data on the features of effective CD8+ T cells in HIV infection may aid in the development of successful T cell vaccines. PMID:17893201

  7. Initial HIV-1 Antigen-Specific CD8+ T Cells in Acute HIV-1 Infection Inhibit Transmitted/Founder Virus Replication

    PubMed Central

    Freel, Stephanie A.; Picking, Ralph A.; Ferrari, Guido; Ding, Haitao; Ochsenbauer, Christina; Kappes, John C.; Kirchherr, Jennifer L.; Soderberg, Kelly A.; Weinhold, Kent J.; Cunningham, Coleen K.; Denny, Thomas N.; Crump, John A.; Cohen, Myron S.; McMichael, Andrew J.; Haynes, Barton F.

    2012-01-01

    CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8+ T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8+ responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8+ T cells during AHI. Autologous and heterologous CD8+ T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8+ T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8+ antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8+-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8+ T cell-mediated inhibition of virus replication. CD8+ T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies. PMID:22514337

  8. T cell receptor alpha variable 12-2 bias in the immunodominant response to Yellow fever virus.

    PubMed

    Bovay, Amandine; Zoete, Vincent; Dolton, Garry; Bulek, Anna M; Cole, David K; Rizkallah, Pierre J; Fuller, Anna; Beck, Konrad; Michielin, Olivier; Speiser, Daniel E; Sewell, Andrew K; Fuertes Marraco, Silvia A

    2018-02-01

    The repertoire of human αβ T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specificcells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8 + T cell response to the highly effective YF-17D vaccine. We discover that these A2/LLW-specific CD8 + T cells are highly biased for the TCR α chain TRAV12-2. This bias is already present in A2/LLW-specific naïve T cells before vaccination with YF-17D. Using CD8 + T cell clones, we show that TRAV12-2 does not confer a functional advantage on a per cell basis. Molecular modeling indicated that the germline-encoded complementarity determining region (CDR) 1α loop of TRAV12-2 critically contributes to A2/LLW binding, in contrast to the conventional dominant dependence on somatically rearranged CDR3 loops. This germline component of antigen recognition may explain the unusually high precursor frequency, prevalence and immunodominance of T-cell responses specific for the A2/LLW epitope. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Definition of an HPV18/45 cross-reactive human T-cell epitope after DNA immunisation of HLA-A2/KB transgenic mice.

    PubMed

    McCarthy, Corinna; Youde, Sarah J; Man, Stephen

    2006-05-15

    Although human papillomavirus (HPV) types 16 and 18 are the most common types associated with cervical cancer worldwide, other related HPV types such as HPV 35, 45 and 58 have significant prevalence in geographically distinct populations. For development of global prophylactic and therapeutic vaccine strategies, it is important to study immune responses against these viruses and to define the degree of cross-reactivity between related HPV types. To investigate the potential for T cell cross-reactivity after vaccination, HLA-A2/Kb transgenic mice were immunised with DNA plasmid constructs containing HPV18 and 45 E6 and E7. Splenocytes from immunised mice were tested in direct ELIspot assays against overlapping pools of HPV 18 peptides. Immunisation with either HPV18 or HPV45 E6 DNA produced dominant T cell responses against an epitope (KCIDFYSRI) that was shared between HPV18 and HPV45. This peptide was shown to bind to HLA-A*0201 but not Db or Kb molecules on the cell surface. Furthermore this peptide was shown to be immunogenic in vitro to human T cells from 2 out of 3 HLA-A2+ healthy donors. Collectively, these results demonstrate that HPV 18 and 45 E6 DNA vaccines are immunogenic in mice and demonstrate that cross-reactive T cell responses against closely related HPV types can be induced in vivo. The use of the HLA-A2/Kb transgenic mice allowed definition of an HLA-A*0201 binding peptide epitope that would have been rejected on the basis of predicted major histocompatibility complex binding affinity. Copyright (c) 2005 Wiley-Liss, Inc.

  10. Conformational B-cell epitopes prediction from sequences using cost-sensitive ensemble classifiers and spatial clustering.

    PubMed

    Zhang, Jian; Zhao, Xiaowei; Sun, Pingping; Gao, Bo; Ma, Zhiqiang

    2014-01-01

    B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use.

  11. Oxidation-Specific Epitopes are Danger Associated Molecular Patterns Recognized by Pattern Recognition Receptors of Innate Immunity

    PubMed Central

    Miller, Yury I.; Choi, Soo-Ho; Wiesner, Philipp; Fang, Longhou; Harkewicz, Richard; Hartvigsen, Karsten; Boullier, Agnès; Gonen, Ayelet; Diehl, Cody J.; Que, Xuchu; Montano, Erica; Shaw, Peter X.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.

    2010-01-01

    Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-specific” epitopes. In this review, we will discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of “pattern recognition receptors” (PRRs). By analogy with microbial “pathogen associated molecular patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent “danger (or damage) associated molecular patterns” (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Further, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provided a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and CRP recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy. PMID:21252151

  12. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression

    PubMed Central

    Buggert, Marcus; Norström, Melissa M; Salemi, Marco; Hecht, Frederick M; Karlsson, Annika C

    2014-01-01

    Viral escape from HIV-1-specific CD8+ T cells has been demonstrated in numerous studies previously. However, the qualitative features driving the emergence of mutations within epitopes are still unclear. In this study, we aimed to distinguish whether specific functional characteristics of HLA-B*5701-restricted CD8+ T cells influence the emergence of mutations in high-risk progressors (HRPs) versus low-risk progressors (LRPs). Single genome sequencing was performed to detect viral mutations (variants) within seven HLA-B*5701-restricted epitopes in Gag (n = 4) and Nef (n = 3) in six untreated HLA-B*5701 subjects followed from early infection up to seven years. Several well-characterized effector markers (IFN-γ, IL-2, MIP-1β, TNF, CD107a and perforin) were identified by flow cytometry following autologous (initial and emerging variant/s) epitope stimulations. This study demonstrates that specific functional attributes may facilitate the outgrowth of mutations within HLA-B*5701-restricted epitopes. A significantly lower fraction of IL-2 producing cells and a decrease in functional avidity and polyfunctional sensitivity were evident in emerging epitope variants compared to the initial autologous epitopes. Interestingly, the HRPs mainly drove these differences, while the LRPs maintained a directed and maintained functional response against emerging epitope variants. In addition, LRPs induced improved cell cycle progression and perforin up-regulation after autologous and emerging epitope variant stimulations in contrast to HRPs. The maintained quantitative and qualitative features of the CD8+ T cell responses in LRPs toward emerging epitope variants provide insights into why HLA-B*5701 subjects have different risks of HIV-1 disease progression. PMID:24740510

  13. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL.

    PubMed

    Bellantuono, Ilaria; Gao, Liquan; Parry, Suzanne; Marley, Steve; Dazzi, Francesco; Apperley, Jane; Goldman, John M; Stauss, Hans J

    2002-11-15

    Using the allo-restricted T-cell approach to circumvent tolerance, we have previously identified a cytotoxic T-lymphocyte (CTL) epitope in the transcription factor Wilms tumor antigen 1 (WT1) presented by HLA-A0201 (A2) class I molecules. Here we describe an additional A2-presented epitope and show that CTLs against both epitopes kill WT1-expressing leukemia cell lines. Colony-forming assays demonstrated that both types of CTL killed CD34(+) progenitor cells from A2(+) leukemia patients, but not from A2(+) healthy individuals. The long-term culture-initiating cell (LTC-IC) assay was used to analyze the killing activity of WT1-specific CTLs against the more immature fraction of CD34(+) cells. The CTLs killed LTC-ICs of patients with chronic myelogenous leukemia (CML), whereas the function of normal CD34(+) progenitor/stem cells was not inhibited. Together, the data show that CTLs specific for 2 distinct peptide epitopes of WT1 can discriminate between normal and leukemia LTC-ICs, suggesting that such CTLs have the potential to selectively kill CML progenitor/stem cells.

  14. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes

    PubMed Central

    Xiang, Sue D.; Gao, Qian; Wilson, Kirsty L.; Heyerick, Arne; Plebanski, Magdalena

    2015-01-01

    Sperm protein antigen 17 (Sp17), expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17) sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional “mix-in” pro-inflammatory adjuvant CpG, both mapping to amino acids (aa) 111–142. However, delivery of hSp17111–142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111–142, from an immuno-dominant region 134–142 aa for CpG, to region 121–138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses. PMID:26529027

  15. Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells.

    PubMed

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.

  16. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    PubMed Central

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  17. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination

    PubMed Central

    Brooks, Jill M.; Long, Heather M.; Tierney, Rose J.; Shannon-Lowe, Claire; Leese, Alison M.; Fitzpatrick, Martin; Taylor, Graham S.; Rickinson, Alan B.

    2016-01-01

    Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three “first wave” proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that “first wave” antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design. PMID:27096949

  18. Quantitative and functional analysis of PDC-E2–specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis

    PubMed Central

    Kita, Hiroto; Matsumura, Shuji; He, Xiao-Song; Ansari, Aftab A.; Lian, Zhe-Xiong; Van de Water, Judy; Coppel, Ross L.; Kaplan, Marshall M.; Gershwin, M. Eric

    2002-01-01

    While the pathologic mechanisms responsible for organ-specific tissue damage in primary biliary cirrhosis (PBC) remain an enigma, it has been suggested that the pathology is mediated by autoreactive T cells infiltrating the intrahepatic bile ducts. Previously, we have documented that there is 100-fold enrichment in the frequency of CD4+ autoreactive T cells in the liver that are specific for peptides encoded by the E2 components of the pyruvate dehydrogenase complexes (PDC-E2). We have also recently characterized the first MHC class I–restricted epitope for PDC-E2, namely amino acid 159–167, a region very similar to the epitope recognized by MHC class II–restricted CD4+ cells and by autoantibodies. The effector functions of these PDC-E2159-167–specific CD8+ cytotoxic T lymphocytes (CTLs) are not well understood. We have taken advantage of tetramer technology and report herein that there is tenfold increase in the frequency of PDC-E2159-167–specific CTLs in the liver as compared with the blood in PBC. In addition, the precursor frequency of the CTLs in blood was significantly higher in early-stage PBC. Of interest was the fact that, upon stimulation with the peptide, the response of PDC-E2159-167 tetramer-positive cells is heterogeneous with respect to IFN-γ synthesis. These data, we believe for the first time, document the enrichment of autoantigen-specific CD8+ T cells in the PBC liver, suggesting that CD8+ T cells play a significant role in the immunopathogenesis of PBC. PMID:11994412

  19. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells.

    PubMed

    Ioannides, C G; Freedman, R S; Platsoucas, C D; Rashed, S; Kim, Y P

    1991-03-01

    CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.

  20. Antigen-specific T cell therapies for cancer

    PubMed Central

    Manzo, Teresa; Heslop, Helen E.; Rooney, Cliona M.

    2015-01-01

    Adoptively transferred antigen-specific T cells that recognize tumor antigens through their native receptors have many potential benefits as treatment for virus-associated diseases and malignancies, due to their ability to selectively recognize tumor antigens, expand and persist to provide long-term protection. Infusions of T cells targeting Epstein–Barr virus (EBV) antigens have shown encouraging response rates in patients with post-transplant lymphoproliferative disease as well as EBV-positive lymphomas and nasopharyngeal cancer, although a recent study also showed that human papilloma virus-reactive T cells can induce complete regression of metastatic cervical cancer. This strategy is also being evaluated to target non-viral tumor-associated antigens. Targeting these less immunogenic antigens is more challenging, as tumor antigens are generally weak, and high avidity T cells specific for self-antigens are deleted in the thymus, but tumor responses have been reported. Current research focusses on defining factors that promote in vivo persistence of transferred cells and ameliorate the immunosuppressive microenvironment. To this end, investigators are evaluating the effects of combining adoptive transfer of antigen-specific T cells with other immunotherapy moieties such as checkpoint inhibitors. Genetic modification of infused T cells may also be used to overcome tumor evasion mechanisms, and vaccines may be used to promote in vivo proliferation. PMID:26160910

  1. Fine specificities of natural regulatory T cells after IVIG therapy in patients with Kawasaki disease

    PubMed Central

    Burns, Jane C.; Touma, Ranim; Song, Yali; Padilla, Robert L.; Tremoulet, Adriana H.; Sidney, John; Sette, Alessandro; Franco, Alessandra

    2016-01-01

    The activation of natural regulatory T cells (nTreg) recognizing the heavy constant region (Fc) of IgG is an important mechanism of action of intravenous immunoglobulin (IVIG) therapy in Kawasaki disease (KD). Lack of circulating Fc-specific nTreg in the sub-acute phase of KD is correlated with the development of coronary artery abnormalities (CAA). Here, we characterize the fine specificity of nTreg in sub-acute (2- to 8-week post-IVIG) and convalescent (1- to 10-year post-IVIG) KD subjects by testing the immunogenicity of 64 peptides, 15 amino acids in length with a 10 amino acid-overlap spanning the entire Fc protein. About 12 Fc peptides (6 pools of 2 consecutive peptides) were recognized by nTreg in the cohorts studied, including two patients with CAA. To test whether IVIG expands the same nTreg populations that maintain vascular homeostasis in healthy subjects, we compared these results with results obtained in healthy adult controls. Similar nTreg fine specificities were observed in KD patients after IVIG and in healthy donors. These results suggest that T cell fitness rather than T cell clonal deletion or anergy is responsible for the lack of Fc-specific nTreg in KD patients who develop CAA. Furthermore, we found that adolescents and adults who had KD during childhood without developing CAA did not respond to the Fc protein in vitro, suggesting that the nTreg response induced by IVIG in KD patients is short-lived. Our results support the concept that peptide epitopes may be a viable therapeutic approach to expand Fc-specific nTreg and more effectively prevent CAA in KD patients. PMID:25822882

  2. Cytotoxic T lymphocytes and CD4 epitope mutations in the pre-core/core region of hepatitis B virus in chronic hepatitis B carriers in Northeast Iran.

    PubMed

    Zhand, Sareh; Tabarraei, Alijan; Nazari, Amineh; Moradi, Abdolvahab

    2017-07-01

    Hepatitis B virus (HBV) is vulnerable to many various mutations. Those within epitopes recognized by sensitized T cells may influence the re-emergence of the virus. This study was designed to investigate the mutation in immune epitope regions of HBV pre-core/core among chronic HBV patients of Golestan province, Northeast Iran. In 120 chronic HBV carriers, HBV DNA was extracted from blood plasma samples and PCR was done using specific primers. Direct sequencing and alignment of the pre-core/core region were applied using reference sequence from Gene Bank database (Accession Number AB033559). The study showed 27 inferred amino acid substitutions, 9 of which (33.3%) were in CD4 and 2 (7.4%) in cytotoxic T lymphocytes' (CTL) epitopes and 16 other mutations (59.2%) were observed in other regions. CTL escape mutations were not commonly observed in pre-core/core sequences of chronic HBV carriers in the locale of study. It can be concluded that most of the inferred amino acid substitutions occur in different immune epitopes other than CTL and CD4.

  3. Recombinant vaccines of a CD4+ T-cell epitope promote efficient control of Paracoccidioides brasiliensis burden by restraining primary organ infection.

    PubMed

    Holanda, Rodrigo Assunção; Muñoz, Julián Esteban; Dias, Lucas Santos; Silva, Leandro Buffoni Roque; Santos, Julliana Ribeiro Alves; Pagliari, Sthefany; Vieira, Érica Leandro Marciano; Paixão, Tatiane Alves; Taborda, Carlos Pelleschi; Santos, Daniel Assis; Bruña-Romero, Oscar

    2017-09-01

    Paracoccidioidomycosis (PCM) is an infectious disease endemic to South America, caused by the thermally dimorphic fungi Paracoccidioides. Currently, there is no effective human vaccine that can be used in prophylactic or therapeutic regimes. We tested the hypothesis that the immunogenicity of the immunodominant CD4+ T-cell epitope (P10) of Paracoccidioides brasiliensis gp43 antigen might be significantly enhanced by using a hepatitis B virus-derived particle (VLP) as an antigen carrier. This chimera was administered to mice as a (His)6-purified protein (rPbT) or a replication-deficient human type 5 adenoviral vector (rAdPbT) in an immunoprophylaxis assay. The highly virulent Pb18 yeast strain was used to challenge our vaccine candidates. Fungal challenge evoked robust P10-specific memory CD4+ T cells secreting protective Th-1 cytokines in most groups of immunized mice. Furthermore, the highest level of fungal burden control was achieved when rAdPbT was inoculated in a homologous prime-boost regimen, with 10-fold less CFU recovering than in non-vaccinated mice. Systemic Pb18 spreading was only prevented when rAdPbT was previously inoculated. In summary, we present here VLP/P10 formulations as vaccine candidates against PCM, some of which have demonstrated for the first time their ability to prevent progression of this pernicious fungal disease, which represents a significant social burden in developing countries.

  4. Design and Synthesis of Non-Peptide Mimetics Mapping the Immunodominant Myelin Basic Protein (MBP83-96) Epitope to Function as T-Cell Receptor Antagonists.

    PubMed

    Yannakakis, Mary-Patricia; Simal, Carmen; Tzoupis, Haralambos; Rodi, Maria; Dargahi, Narges; Prakash, Monica; Mouzaki, Athanasia; Platts, James A; Apostolopoulos, Vasso; Tselios, Theodore V

    2017-06-08

    Encephalitogenic T cells are heavily implicated in the pathogenesis of multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system. Their stimulation is triggered by the formation of a trimolecular complex between the human leukocyte antigen (HLA), an immunodominant myelin basic protein (MBP) epitope, and the T cell receptor (TCR). We detail herein our studies directed towards the rational design and synthesis of non-peptide mimetic molecules, based on the immunodominant MBP 83-96 epitope that is recognized by the TCR in complex with HLA. We focused our attention on the inhibition of the trimolecular complex formation and consequently the inhibition of proliferation of activated T cells. A structure-based pharmacophore model was generated, in view of the interactions between the TCR and the HLA-MBP 83-96 complex. As a result, new candidate molecules were designed based on lead compounds obtained through the ZINC database. Moreover, semi-empirical and density functional theory methods were applied for the prediction of the binding energy between the proposed non-peptide mimetics and the TCR. We synthesized six molecules that were further evaluated in vitro as TCR antagonists. Analogues 15 and 16 were able to inhibit to some extent the stimulation of T cells by the immunodominant MBP 83-99 peptide from immunized mice. Inhibition was followed to a lesser degree by analogues 17 and 18 and then by analogue 19 . These studies show that lead compounds 15 and 16 may be used for immunotherapy against MS.

  5. Mapping of epitopes for autoantibodies to the type 1 diabetes autoantigen IA-2 by peptide phage display and molecular modeling: overlap of antibody and T cell determinants.

    PubMed

    Dromey, James A; Weenink, Sarah M; Peters, Günther H; Endl, Josef; Tighe, Patrick J; Todd, Ian; Christie, Michael R

    2004-04-01

    IA-2 is a major target of autoimmunity in type 1 diabetes. IA-2 responsive T cells recognize determinants within regions represented by amino acids 787-817 and 841-869 of the molecule. Epitopes for IA-2 autoantibodies are largely conformational and not well defined. In this study, we used peptide phage display and homology modeling to characterize the epitope of a monoclonal IA-2 Ab (96/3) from a human type 1 diabetic patient. This Ab competes for IA-2 binding with Abs from the majority of patients with type 1 diabetes and therefore binds a region close to common autoantibody epitopes. Alignment of peptides obtained after screening phage-displayed peptide libraries with purified 96/3 identified a consensus binding sequence of Asn-x-Glu-x-x-(aromatic)-x-x-Gly. The predicted surface on a three-dimensional homology model of the tyrosine phosphatase domain of IA-2 was analyzed for clusters of Asn, Glu, and aromatic residues and amino acids contributing to the epitope investigated using site-directed mutagenesis. Mutation of each of amino acids Asn(858), Glu(836), and Trp(799) reduced 96/3 Ab binding by >45%. Mutations of these residues also inhibited binding of serum autoantibodies from IA-2 Ab-positive type 1 diabetic patients. This study identifies a region commonly recognized by autoantibodies in type 1 diabetes that overlaps with dominant T cell determinants.

  6. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding

    DOE PAGES

    Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...

    2012-12-13

    The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less

  7. Pep19 drives epitope spreading in periodontitis and periodontitis-associated autoimmune diseases.

    PubMed

    Kwon, E-Y; Cha, G S; Jeong, E; Lee, J-Y; Kim, S-J; Surh, C D; Choi, J

    2016-06-01

    Epitope spreading is one of valid mechanisms operating in immunopathological processes of infection-induced autoimmune diseases. We hypothesized that the peptide 19 from Porphyromonas gingivalis heat shock protein (HSP) 60 (Pep19) may be the dominant epitope from which epitope-specific immune response to subdominant epitopes may diversify sequentially into autoimmune responses directed at human neoepitopes in P. gingivalis-induced periodontitis and autoimmune diseases. However, the exact feature and mechanism on how Pep19 may drive epitope spreading into human autoantigens in chronic periodontitis or P. gingivalis-induced experimental periodontitis has not been clarified. The present study was performed with the following specific aims: (i) to delineate retrospectively the features of epitope spreading by human cross-sectional analysis; (ii) to demonstrate prospectively the epitope spreading into new antigenic determinants in an ordered, predictable and sequential manner in experimental periodontitis; and (iii) to clarify the mechanism on how immunization with Pep19 may mobilize helper T cells or elicit B-cell responses to human autoantigens and neoantigen. The study was devised for two independent investigations - a cross-sectional analysis on clinical subjects and a prospective analysis on experimental periodontitis - each being subdivided further into two additional independent observations. Cross-sectional dot immunoblot pattern against a panel of peptides of P. gingivalis HSP60 and human HSP60 was performed among age-dependent healthy subjects and between healthy subjects, patients with chronic periodontitis and patients with autoimmune disease, to identify epitope spreading. A peptide-specific T-cell line was established for phenotype analysis and for proliferation assay to an array of identical peptides. An identical prospective analysis was performed in P. gingivalis-induced experimental periodontitis or in Pep19-immunized mice. Cross-reactivity of anti

  8. Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity.

    PubMed

    Däumer, Martin P; Schneider, Beate; Giesen, Doris M; Aziz, Sheriff; Kaiser, Rolf; Kupfer, Bernd; Schneweis, Karl E; Schneider-Mergener, Jens; Reineke, Ulrich; Matz, Bertfried; Eis-Hübinger, Anna M

    2011-05-01

    Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.

  9. Cytotoxic T Lymphocyte Epitopes of HIV-1 Nef

    PubMed Central

    Lucchiari-Hartz, Maria; van Endert, Peter M.; Lauvau, Grégoire; Maier, Reinhard; Meyerhans, Andreas; Mann, Derek; Eichmann, Klaus; Niedermann, Gabriele

    2000-01-01

    Although a pivotal role of proteasomes in the proteolytic generation of epitopes for major histocompatibility complex (MHC) class I presentation is undisputed, their precise function is currently the subject of an active debate: do proteasomes generate many epitopes in definitive form, or do they merely generate the COOH termini, whereas the definitive NH2 termini are cleaved by aminopeptidases? We determined five naturally processed MHC class I ligands derived from HIV-1 Nef. Unexpectedly, the five ligands correspond to only three cytotoxic T lymphocyte (CTL) epitopes, two of which occur in two COOH-terminal length variants. Parallel analyses of proteasomal digests of a Nef fragment encompassing the epitopes revealed that all five ligands are direct products of proteasomes. Moreover, in four of the five ligands, the NH2 termini correspond to major proteasome cleavage sites, and putative NH2-terminally extended precursor fragments were detected for only one of the five ligands. All ligands are transported by the transporter associated with antigen processing (TAP). The combined results from these five ligands provide strong evidence that many definitive MHC class I ligands are precisely cleaved at both ends by proteasomes. Additional evidence supporting this conclusion is discussed, along with contrasting results of others who propose a strong role for NH2-terminal trimming with direct proteasomal epitope generation being a rare event. PMID:10637269

  10. The Presence of HLA-E-Restricted, CMV-Specific CD8+ T Cells in the Blood of Lung Transplant Recipients Correlates with Chronic Allograft Rejection.

    PubMed

    Sullivan, Lucy C; Westall, Glen P; Widjaja, Jacqueline M L; Mifsud, Nicole A; Nguyen, Thi H O; Meehan, Aislin C; Kotsimbos, Tom C; Brooks, Andrew G

    2015-01-01

    The human cytomegalovirus (CMV) immune evasion protein, UL40, shares an identical peptide sequence with that found in the leader sequence of many human leukocyte antigen (HLA)-C alleles and when complexed with HLA-E, can modulate NK cell functions via interactions with the CD94-NKG2 receptors. However the UL40-derived sequence can also be immunogenic, eliciting robust CD8+ T cell responses. In the setting of solid organ transplantation these T cells may not only be involved in antiviral immunity but also can potentially contribute to allograft rejection when the UL40 epitope is also present in allograft-encoded HLA. Here we assessed 15 bilateral lung transplant recipients for the presence of HLA-E-restricted UL40 specific T cells by tetramer staining of peripheral blood mononuclear cells (PBMC). UL40-specific T cells were observed in 7 patients post-transplant however the magnitude of the response varied significantly between patients. Moreover, unlike healthy CMV seropositive individuals, longitudinal analyses revealed that proportions of such T cells fluctuated markedly. Nine patients experienced low-grade acute cellular rejection, of which 6 also demonstrated UL40-specific T cells. Furthermore, the presence of UL40-specific CD8+ T cells in the blood was significantly associated with allograft dysfunction, which manifested as Bronchiolitis Obliterans Syndrome (BOS). Therefore, this study suggests that minor histocompatibility antigens presented by HLA-E can represent an additional risk factor following lung transplantation.

  11. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2.

    PubMed

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune; Osterby, Thomas; Rasmussen, Michael; Hansen, Andreas Martin; Christiansen, Claus Bohn; Hansen, Morten Bagge; Nielsen, Morten; Vindeløv, Lars; Buus, Søren; Stryhn, Anette

    2014-01-01

    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.

  12. Identification and HLA-Tetramer-Validation of Human CD4+ and CD8+ T Cell Responses against HCMV Proteins IE1 and IE2

    PubMed Central

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune; Østerby, Thomas; Rasmussen, Michael; Hansen, Andreas Martin; Christiansen, Claus Bohn; Hansen, Morten Bagge; Nielsen, Morten; Vindeløv, Lars; Buus, Søren; Stryhn, Anette

    2014-01-01

    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy. PMID:24760079

  13. Determinants of public T cell responses.

    PubMed

    Li, Hanjie; Ye, Congting; Ji, Guoli; Han, Jiahuai

    2012-01-01

    Historically, sharing T cell receptors (TCRs) between individuals has been speculated to be impossible, considering the dramatic discrepancy between the potential enormity of the TCR repertoire and the limited number of T cells generated in each individual. However, public T cell response, in which multiple individuals share identical TCRs in responding to a same antigenic epitope, has been extensively observed in a variety of immune responses across many species. Public T cell responses enable individuals within a population to generate similar antigen-specific TCRs against certain ubiquitous pathogens, leading to favorable biological outcomes. However, the relatively concentrated feature of TCR repertoire may limit T cell response in a population to some other pathogens. It could be a great benefit for human health if public T cell responses can be manipulated. Therefore, the mechanistic insight of public TCR generation is important to know. Recently, high-throughput DNA sequencing has revolutionized the study of immune receptor repertoires, which allows a much better understanding of the factors that determine the overlap of TCR repertoire among individuals. Here, we summarize the current knowledge on public T-cell response and discuss future challenges in this field.

  14. Mucorales-Specific T Cells in Patients with Hematologic Malignancies

    PubMed Central

    Forghieri, Fabio; Candoni, Anna; Cesaro, Simone; Quadrelli, Chiara; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Codeluppi, Mauro; Mussini, Cristina; Colaci, Elisabetta; Messerotti, Andrea; Paolini, Ambra; Maccaferri, Monica; Fantuzzi, Valeria; Del Giovane, Cinzia; Stefani, Alessandro; Morandi, Uliano; Maffei, Rossana; Marasca, Roberto; Narni, Franco; Fanin, Renato; Comoli, Patrizia; Romani, Luigina; Beauvais, Anne; Viale, Pier Luigi; Latgè, Jean Paul; Luppi, Mario

    2016-01-01

    Background Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. Methods and Findings By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB) samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3%) of 204 patients, accounting for 32 (5.3%) of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD), showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD): 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD. Conclusions Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM. PMID:26871570

  15. Mucorales-Specific T Cells in Patients with Hematologic Malignancies.

    PubMed

    Potenza, Leonardo; Vallerini, Daniela; Barozzi, Patrizia; Riva, Giovanni; Gilioli, Andrea; Forghieri, Fabio; Candoni, Anna; Cesaro, Simone; Quadrelli, Chiara; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Codeluppi, Mauro; Mussini, Cristina; Colaci, Elisabetta; Messerotti, Andrea; Paolini, Ambra; Maccaferri, Monica; Fantuzzi, Valeria; Del Giovane, Cinzia; Stefani, Alessandro; Morandi, Uliano; Maffei, Rossana; Marasca, Roberto; Narni, Franco; Fanin, Renato; Comoli, Patrizia; Romani, Luigina; Beauvais, Anne; Viale, Pier Luigi; Latgè, Jean Paul; Lewis, Russell E; Luppi, Mario

    2016-01-01

    Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB) samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3%) of 204 patients, accounting for 32 (5.3%) of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD), showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD): 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD. Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM.

  16. TCR repertoires of intratumoral T-cell subsets.

    PubMed

    Linnemann, Carsten; Mezzadra, Riccardo; Schumacher, Ton N M

    2014-01-01

    The infiltration of human tumors by T cells is a common phenomenon, and over the past decades, it has become increasingly clear that the nature of such intratumoral T-cell populations can predict disease course. Furthermore, intratumoral T cells have been utilized therapeutically in clinical studies of adoptive T-cell therapy. In this review, we describe how novel methods that are either based on T-cell receptor (TCR) sequencing or on cancer exome analysis allow the analysis of the tumor reactivity and antigen-specificity of the intratumoral TCR repertoire with unprecedented detail. Furthermore, we discuss studies that have started to utilize these techniques to probe the link between cancer exomes and the intratumoral TCR pool. Based on the observation that both the cancer epitope repertoire and intratumoral TCR repertoire appear highly individual, we outline strategies, such as 'autologous TCR gene therapy', that exploit the tumor-resident TCR repertoire for the development of personalized immunotherapy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Identification of a gag-encoded cytotoxic T-lymphocyte epitope from FBL-3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors.

    PubMed Central

    Chen, W; Qin, H; Chesebro, B; Cheever, M A

    1996-01-01

    FBL-3 is a highly immunogenic murine leukemia of C57BL/6 origin induced by Friend murine leukemia virus (MuLV). Immunization of C57BL/6 mice with FBL-3 readily elicits CD8+ cytotoxic T lymphocytes (CTL) capable of lysing FBL-3 as well as syngeneic leukemias induced by Moloney and Rauscher MuLV. The aim of this current study was to identify the immunogenic epitope(s) recognized by the FBL-3-specific CD8+ CTL. A series of FBL-3-specific CD8+ CTL clones were generated from C57BL/6 mice immunized to FBL-3. The majority of CTL clones (32 of 38) were specific for F-MuLV gag-encoded antigen. By using a series of recombinant vaccinia viruses expressing full-length and truncated F-MuLV gag genes, the antigenic epitope recognized by the FBL-3 gag-specific CTL clones, as well as by bulk-cultured CTL from spleens of mice immune to FBL-3, was localized to the leader sequence of gPr80gag protein. The precise amino acid sequence of the CTL epitope in the leader sequence was identified as CCLCLTVFL (positions 85-93) by examining lysis of targets incubated with a series of synthetic leader sequence peptides. No evidence of other CTL epitopes in the gPr80gag or Pr65gag core virion structural polyproteins was found. The identity of CCLCLTVFL as the target peptide was validated by showing that immunization with the peptide elicited CTL that lysed FBL-3. The CTL elicited by the Gag peptide also specifically lysed syngeneic leukemia cells induced by Moloney and Rauscher MuLV (MBL-2 and RBL-5). The transmembrane peptide was shown to be the major gag-encoded antigenic epitope recognized by bulk-cultured CTL derived from C57BL/6 mice immunized to MBL-2 or RBL-5. Thus, the CTL epitope of FBL-3 is localized to the transmembrane anchor domain of the nonstructural Gag polyprotein and is shared by leukemia/lymphoma cell lines induced by Friend, Moloney, and Rauscher MuLV. PMID:8892898

  18. Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes

    PubMed Central

    Gedvilaite, Alma; Kucinskaite-Kodze, Indre; Lasickiene, Rita; Timinskas, Albertas; Vaitiekaite, Ausra; Ziogiene, Danguole; Zvirbliene, Aurelija

    2015-01-01

    Recombinant virus-like particles (VLPs) represent a promising tool for protein engineering. Recently, trichodysplasia spinulosa-associated polyomavirus (TSPyV) viral protein 1 (VP1) was efficiently produced in yeast expression system and shown to self-assemble to VLPs. In the current study, TSPyV VP1 protein was exploited as a carrier for construction of chimeric VLPs harboring selected B and T cell-specific epitopes and evaluated in comparison to hamster polyomavirus VP1 protein. Chimeric VLPs with inserted either hepatitis B virus preS1 epitope DPAFR or a universal T cell-specific epitope AKFVAAWTLKAAA were produced in yeast Saccharomyces cerevisiae. Target epitopes were incorporated either at the HI or BC loop of the VP1 protein. The insertion sites were selected based on molecular models of TSPyV VP1 protein. The surface exposure of the insert positions was confirmed using a collection of monoclonal antibodies raised against the intact TSPyV VP1 protein. All generated chimeric proteins were capable to self-assemble to VLPs, which induced a strong immune response in mice. The chimeric VLPs also activated dendritic cells and T cells as demonstrated by analysis of cell surface markers and cytokine production profiles in spleen cell cultures. In conclusion, TSPyV VP1 protein represents a new potential carrier for construction of chimeric VLPs harboring target epitopes. PMID:26230706

  19. Blocking Virus Replication during Acute Murine Cytomegalovirus Infection Paradoxically Prolongs Antigen Presentation and Increases the CD8+ T Cell Response by Preventing Type I IFN-Dependent Depletion of Dendritic Cells.

    PubMed

    Loo, Christopher P; Snyder, Christopher M; Hill, Ann B

    2017-01-01

    Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8 + T cell response, which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication, we found that increased virus replication drove increased effector CD8 + T cell differentiation, as expected. Paradoxically, however, increased virus replication dramatically decreased the size of the CD8 + T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs, but they did not inhibit the response to "inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8 + T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein

    PubMed Central

    Lemonnier, François A.; Esteban, Mariano

    2017-01-01

    Background The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. Methodology/Principal findings By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Conclusions/Significance Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins. PMID:29084215

  1. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    PubMed

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  2. Serum Concentrations of Antibodies against Outer Membrane Protein P6, Protein D, and T- and B-Cell Combined Antigenic Epitopes of Nontypeable Haemophilus influenzae in Children and Adults of Different Ages

    PubMed Central

    Hua, Chun-Zhen; Hu, Wei-Lin; Li, Jian-Ping; Hong, Li-Quan

    2015-01-01

    Nontypeable Haemophilus influenzae (NTHi) is one of the most common etiologies of acute otitis media, rhinosinusitis, and pneumonia. Outer membrane proteins (OMPs) are the main focus in new vaccine development against NTHi, as the H. influenzae type b (Hib) vaccine does not cover noncapsulated NTHi. The OMPs P6 and protein D are the most promising candidate antigens for an NTHi vaccine, and low antibody levels against them in serum may be correlated with infection caused by NTHi. In the current study, we measured the antibody titers against P6, protein D, and their T- and B-cell combined peptide epitopes in healthy individuals of different ages. We found that children <1 month old had the lowest antibody levels against NTHi P6, protein D, and their T- and B-cell combined antigenic epitopes. Antibody titers increased at ages 1 to 6 months, peaked at 7 months to 3 years, and remained high at 4 to 6 years. The antibody titers started to decrease after 6 years and were the lowest in the 21- to 30-year group. The geometric mean titers (GMTs) of T- and B-cell combined antigenic epitopes in P6 and protein D were positively correlated with those of the protein antigens. Among 12 peptides tested, P6-61, P6-123, and protein D-167 epitopes were better recognized than others in human serum. These findings might contribute to the development of an effective serotype-independent vaccine for H. influenzae. PMID:26677200

  3. Characterization of self-T-cell response and antigenic determinants of U1A protein with bone marrow-derived dendritic cells in NZB x NZW F1 mice.

    PubMed

    Suen, J L; Wu, C H; Chen, Y Y; Wu, W M; Chiang, B L

    2001-07-01

    Systemic lupus erythematosus (SLE) is characterized by the existence of a heterogeneous group of autoantibodies directed against nuclear intact structures, such as nucleosomes and small nuclear ribonucleoproteins (snRNPs). Autoantibodies against snRNPs are of special interest because they are detectable in the majority of SLE patients. Although the B-cell antigenic determinants have been well characterized, very limited data have been reported in regard to the T-cell epitopes of snRNPs. Furthermore, several studies have demonstrated that determination of the auto-T-cell epitopes recognized by freshly isolated T cells is difficult from unprimed lupus mice when self-antigen-pulsed B cells or macrophages are used as antigen-presenting cells (APCs) in vitro. In the present study, we showed a novel approach for determining the auto-T-cell epitopes, using bone marrow-derived dendritic cells (BMDCs) pulsed with the murine U1A protein - an immunodominant antigen of the U1 snRNPs - which is capable of activating freshly isolated T cells from unprimed (NZB x NZW) F1 (BWF1) mice in vitro. The T-cell epitope area was found to be located at the C-terminus of U1A, overlapping the T-cell epitope of human U1A that has been reported in human SLE. Identification of the autoreactive T-cell epitope(s) in snRNPs will help to elucidate how reciprocal T-B determinant spreading of snRNPs emerges in lupus. The results presented here also indicate that it is feasible to use this approach to further explore strategies to design immunotherapy for patients with lupus.

  4. Towards Identifying Protective B-Cell Epitopes: The PspA Story.

    PubMed

    Khan, Naeem; Jan, Arif T

    2017-01-01

    Pneumococcal surface protein A (PspA) is one of the most abundant cell surface protein of Streptococcus pneumoniae ( S. pneumoniae ). PspA variants are structurally and serologically diverse and help evade complement-mediated phagocytosis of S. pneumoniae , which is essential for its survival in the host. PspA is currently been screened for employment in the generation of more effective (serotype independent) vaccine to overcome the limitations of polysaccharide based vaccines, providing serotype specific immune responses. The cross-protection eliciting regions of PspA localize to the α-helical and proline rich regions. Recent data indicate significant variation in the ability of antibodies induced against the recombinant PspA variants to recognize distinct S. pneumoniae strains. Hence, screening for the identification of the topographical repertoire of B-cell epitopes that elicit cross-protective immune response seems essential in the engineering of a superior PspA-based vaccine. Herein, we revisit epitope identification in PspA and the utility of hybridoma technology in directing the identification of protective epitope regions of PspA that can be used in vaccine research.

  5. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

    PubMed Central

    Rodgers, David T.; Mazagova, Magdalena; Hampton, Eric N.; Cao, Yu; Ramadoss, Nitya S.; Hardy, Ian R.; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K.; Wright, Timothy M.; Schultz, Peter G.; Kim, Chan Hyuk; Young, Travis S.

    2016-01-01

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR–T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  6. MUC1-specific cytotoxic T lymphocytes eradicate tumors when adoptively transferred in vivo.

    PubMed

    Mukherjee, P; Ginardi, A R; Tinder, T L; Sterner, C J; Gendler, S J

    2001-03-01

    We have reported previously that MUC1 transgenic mice with spontaneous tumors of the pancreas (designated MET) naturally develop MHC class I-restricted, MUC1-specific CTLs as tumors progress (P. Mukherjee et al., J. Immunol., 165: 3451-3460, 2000). From these MET mice, we have isolated, expanded, and cloned naturally occurring MUC1-specific CTLs in vitro. In this report, we show that the CTL line is predominantly CD8+ T cells and expresses T-cell receptor Vbeta chains 5.1/5.2, 11, 13, and 2 and Valpha chains 2, 8.3, 3.2, and 11.1/11.2. These CTLs recognize several epitopes on the MUC1 tandem repeat with highest affinity to APGSTAPPA. The CTL clone, on the other hand, is 100% CD8+ cells and expresses a single Vbeta chain of 5.1/5.2 and Valpha2. It recognizes only the H-2Db class I-restricted epitope of MUC1, APGSTAPPA. When adoptively transferred, the CTLs were effective in eradicating MUC1-expressing injected tumor cells including mammary gland cells (C57mg) and B16 melanomas. These results suggest that MUC1-specific CTLs are capable of possibly preventing, or at least substantially delaying, MUC1-expressing tumor formation. To our knowledge, this is the first evidence that demonstrates that the naturally occurring MUC1-specific CTLs isolated from one tumor model has antitumor effects on other MUC1-expressing tumors in vivo. Therefore, our data confirm that MUC1 is an important tumor rejection antigen and can serve as a target for immunotherapy.

  7. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

    PubMed

    Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas

    2017-11-01

    In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8+ T Cell Recognition across All Three Phases of the Lytic Cycle

    PubMed Central

    Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin

    2014-01-01

    CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IEepitopes. Together, these data firstly indicate which potential immune-evasion functions are actually relevant in the context of lytic virus replication, and secondly identify lytic-cycle phase-specific effects that provide mechanistic insight

  9. Simple and efficient generation of virus-specific T cells for adoptive therapy using anti-4-1BB antibody.

    PubMed

    Imahashi, Nobuhiko; Nishida, Tetsuya; Goto, Tatsunori; Terakura, Seitaro; Watanabe, Keisuke; Hanajiri, Ryo; Sakemura, Reona; Imai, Misa; Kiyoi, Hitoshi; Naoe, Tomoki; Murata, Makoto

    2015-01-01

    Although recent studies of virus-specific T-cell (VST) therapy for viral infections after allogeneic hematopoietic stem cell transplantation have shown promising results, simple and less time-intensive and labor-intensive methods are required to generate VSTs for the wider application of VST therapy. We investigated the efficacy of anti-CD28 and anti-4-1BB antibodies, which can provide T cells with costimulatory signals similar in strength to those of antigen-presenting cells, in generating VSTs. When peripheral blood mononuclear cells were stimulated with viral peptides together with isotype control, anti-CD28, or anti-4-1BB antibodies, anti-4-1BB antibodies yielded the highest numbers of VSTs, which were on an average 7.9 times higher than those generated with isotype control antibody. The combination of anti-CD28 and anti-4-1BB antibodies did not result in increased numbers of VSTs compared with anti-4-1BB antibody alone. Importantly, the positive effect of anti-4-1BB antibody was observed regardless of the epitopes of the VSTs. In contrast, the capacity of dendritic cells (DCs) to generate VSTs differed considerably depending on the epitopes of the VSTs. Furthermore, the numbers of VSTs generated with DCs were at most similar to those generated with the anti-4-1BB antibody. Generation of VSTs with anti-4-1BB antibody did not result in excessive differentiation or deteriorated function of the generated VSTs compared with those generated with control antibody or DCs. In conclusion, VSTs can be generated rapidly and efficiently by simply stimulating peripheral blood mononuclear cells with viral peptide and anti-4-1BB antibody without using antigen-presenting cells. We propose using anti-4-1BB antibody as a novel strategy to generate VSTs for adoptive therapy.

  10. Induction of long-lasting multi-specific CD8+ T cells by a four-component DNA-MVA/HIVA-RENTA candidate HIV-1 vaccine in rhesus macaques.

    PubMed

    Im, Eung-Jun; Nkolola, Joseph P; di Gleria, Kati; McMichael, Andrew J; Hanke, Tomás

    2006-10-01

    As a part of a long-term effort to develop vaccine against HIV-1 clade A inducing protective T cell responses in humans, we run mutually complementing studies in humans and non-human primates (NHP) with the aim to maximize vaccine immunogenicity. The candidate vaccine under development has four components, pTHr.HIVA and pTH.RENTA DNA, and modified vaccinia virus Ankara (MVA).HIVA and MVA.RENTA, delivered in a heterologous DNA prime-MVA boost regimen. While the HIVA (Gag/epitopes) components have been tested in NHP and over 300 human subjects, we plan to test in humans the RENTA (reverse transcriptase, gp41, Nef, Tat) vaccines designed to broaden HIVA-induced responses in year 2007. Here, we investigated the four-component vaccine long-term immunogenicity in Mamu-A*01-positive rhesus macaques and demonstrated that the vaccine-induced T cells were multi-specific, multi-functional, readily proliferated to recall peptides and were circulating in the peripheral blood of vaccine recipients over 1 year after vaccine administration. The consensus clade A-elicited T cells recognized 50% of tested epitope variants from other HIV-1 clades. Thus, the DNA-MVA/HIVA-RENTA vaccine induced memory T cells of desirable characteristics and similarities to those induced in humans by HIVA vaccines alone; however, single-clade vaccines may not elicit sufficiently cross-reactive responses.

  11. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor

    PubMed Central

    Jena, Bipulendu; Dotti, Gianpietro

    2010-01-01

    Infusions of antigen-specific T cells have yielded therapeutic responses in patients with pathogens and tumors. To broaden the clinical application of adoptive immunotherapy against malignancies, investigators have developed robust systems for the genetic modification and characterization of T cells expressing introduced chimeric antigen receptors (CARs) to redirect specificity. Human trials are under way in patients with aggressive malignancies to test the hypothesis that manipulating the recipient and reprogramming T cells before adoptive transfer may improve their therapeutic effect. These examples of personalized medicine infuse T cells designed to meet patients' needs by redirecting their specificity to target molecular determinants on the underlying malignancy. The generation of clinical grade CAR+ T cells is an example of bench-to-bedside translational science that has been accomplished using investigator-initiated trials operating largely without industry support. The next-generation trials will deliver designer T cells with improved homing, CAR-mediated signaling, and replicative potential, as investigators move from the bedside to the bench and back again. PMID:20439624

  12. Identification of Dominant Optimal HLA-B60- and HLA-B61-Restricted Cytotoxic T-Lymphocyte (CTL) Epitopes: Rapid Characterization of CTL Responses by Enzyme-Linked Immunospot Assay

    PubMed Central

    Altfeld, Marcus A.; Trocha, Alicja; Eldridge, Robert L.; Rosenberg, Eric S.; Phillips, Mary N.; Addo, Marylyn M.; Sekaly, Rafick P.; Kalams, Spyros A.; Burchett, Sandra A.; McIntosh, Kenneth; Walker, Bruce D.; Goulder, Philip J. R.

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1. PMID:10954555

  13. Identification of dominant optimal HLA-B60- and HLA-B61-restricted cytotoxic T-lymphocyte (CTL) epitopes: rapid characterization of CTL responses by enzyme-linked immunospot assay.

    PubMed

    Altfeld, M A; Trocha, A; Eldridge, R L; Rosenberg, E S; Phillips, M N; Addo, M M; Sekaly, R P; Kalams, S A; Burchett, S A; McIntosh, K; Walker, B D; Goulder, P J

    2000-09-01

    Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1.

  14. Extensive T cell cross-reactivity between diverse seasonal influenza strains in the ferret model.

    PubMed

    Reber, Adrian J; Music, Nedzad; Kim, Jin Hyang; Gansebom, Shane; Chen, Jufu; York, Ian

    2018-04-17

    Influenza virus causes widespread, yearly epidemics by accumulating surface protein mutations to escape neutralizing antibodies established from prior exposure. In contrast to antibody epitopes, T cell mediated immunity targets influenza epitopes that are more highly conserved and have potential for cross-protection. The extent of T cell cross-reactivity between a diverse array of contemporary and historical influenza strains was investigated in ferrets challenged with 2009 pandemic H1N1 influenza or the seasonal H3N2 strain, A/Perth/16/2009. Post-challenge cell-mediated immune responses demonstrated extensive cross-reactivity with a wide variety of contemporary and historical influenza A strains as well as influenza B. Responses in peripheral blood were undetectable by 36d post-challenge, but cross-reactivity persisted in spleen. The strongest responses targeted peptides from the NP protein and demonstrated cross-reactivity in both the CD4+ and CD8+ T cell populations. Cross-reactive CD4+ T cells also targeted HA and NA epitopes, while cross-reactive CD8+ T cells targeted internal M1, NS2, and PA. T cell epitopes demonstrated extensive cross-reactivity between diverse influenza strains in outbred animals, with NP implicated as a significant antigenic target demonstrating extensive cross-reactivity for both CD4+ and CD8+ T cells.

  15. Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs

    PubMed Central

    Brooks, Benjamin D.; Friedman, Harvey M.

    2018-01-01

    Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to

  16. Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs.

    PubMed

    Hook, Lauren M; Cairns, Tina M; Awasthi, Sita; Brooks, Benjamin D; Ditto, Noah T; Eisenberg, Roselyn J; Cohen, Gary H; Friedman, Harvey M

    2018-05-01

    Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to

  17. Organ and Tissue-Specific Localisation of Selected Cell Wall Epitopes in the Zygotic Embryo of Brachypodium distachyon.

    PubMed

    Betekhtin, Alexander; Milewska-Hendel, Anna; Lusinska, Joanna; Chajec, Lukasz; Kurczynska, Ewa; Hasterok, Robert

    2018-03-03

    The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium). We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells. The use of transmission electron microscopy, and histological and immunolocalisation techniques permitted the distribution of selected arabinogalactan proteins, extensins, pectins, and hemicelluloses on the embryo surface, internal cell compartments, and in the context of the cell wall ultrastructure to be demonstrated. We revealed that the majority of arabinogalactan proteins and extensins were distributed on the cell surface and that pectins were the main component of the seed coat and other parts, such as the mesocotyl cell walls and the radicula. Hemicelluloses were localised in the cell wall and outside of the radicula protodermis, respectively. The specific arrangement of those components may indicate their significance during embryo development and seed germination, thus suggesting the importance of their protective functions. Despite the differences in the cell wall composition, we found that some of the antibodies can be used as markers to identify specific cells and the parts of the developing Brachypodium embryo.

  18. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells

    PubMed Central

    Witkover, Aviva; Tanaka, Yuetsu; Fields, Paul; Bangham, Charles R. M.

    2016-01-01

    There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease. PMID:27893842

  19. The in Vitro Antigenicity of Plasmodium vivax Rhoptry Neck Protein 2 (PvRON2) B- and T-Epitopes Selected by HLA-DRB1 Binding Profile

    PubMed Central

    López, Carolina; Yepes-Pérez, Yoelis; Díaz-Arévalo, Diana; Patarroyo, Manuel E.; Patarroyo, Manuel A.

    2018-01-01

    Malaria caused by Plasmodium vivax is a neglected disease which is responsible for the highest morbidity in both Americas and Asia. Despite continuous public health efforts to prevent malarial infection, an effective antimalarial vaccine is still urgently needed. P. vivax vaccine development involves analyzing naturally-infected patients' immune response to the specific proteins involved in red blood cell invasion. The P. vivax rhoptry neck protein 2 (PvRON2) is a highly conserved protein which is expressed in late schizont rhoptries; it interacts directly with AMA-1 and might be involved in moving-junction formation. Bioinformatics approaches were used here to select B- and T-cell epitopes. Eleven high-affinity binding peptides were selected using the NetMHCIIpan-3.0 in silico prediction tool; their in vitro binding to HLA-DRB1*0401, HLA-DRB1*0701, HLA-DRB1*1101 or HLA-DRB1*1302 was experimentally assessed. Four peptides (39152 (HLA-DRB1*04 and 11), 39047 (HLA-DRB1*07), 39154 (HLADRB1*13) and universal peptide 39153) evoked a naturally-acquired T-cell immune response in P. vivax-exposed individuals from two endemic areas in Colombia. All four peptides had an SI greater than 2 in proliferation assays; however, only peptides 39154 and 39153 had significant differences compared to the control group. Peptide 39047 was able to significantly stimulate TNF and IL-10 production while 39154 stimulated TNF production. Allele-specific peptides (but not the universal one) were able to stimulate IL-6 production; however, none induced IFN-γ production. The Bepipred 1.0 tool was used for selecting four B-cell epitopes in silico regarding humoral response. Peptide 39041 was the only one recognized by P. vivax-exposed individuals' sera and had significant differences concerning IgG subclasses; an IgG2 > IgG4 profile was observed for this peptide, agreeing with a protection-inducing role against P. falciparum and P. vivax as previously described for antigens such as RESA and MSP2

  20. Potent CD4+ T-cell epitope P30 enhances HER2/neu-engineered dendritic cell-induced immunity against Tg1-1 breast cancer in transgenic FVBneuN mice by enhanced CD4+ T-cell-stimulated CTL responses.

    PubMed

    Xie, Y; Chen, Y; Ahmed, K A; Li, W; Ahmed, S; Sami, A; Chibbar, R; Tang, X; Tao, M; Xu, J; Xiang, J

    2013-10-01

    One of the major obstacles in human epidermal growth factor receptor (HER)-2/neu-specific trastuzumab immunotherapy of HER2/neu-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Although dendritic cell (DC) vaccines have been extensively applied in clinical trials for cancer treatment, the vaccination efficacy is still limited, mostly because DC vaccines are not sufficient to break tumor-associated antigen-specific self-immune tolerance in cancer patients. P30 (FNNFTVSFWLRVPKVSASHLE) derived from tetanus toxin is a universally potent CD4(+) T helper epitope capable of enhancing CD8(+) cytotoxic T-lymphocyte (CTL) responses. In this study, we constructed two recombinant adenoviral vectors (AdVs), AdVOVA-P30 and AdVHER2/neu-P30, expressing ovalbumin (OVA)-P30 and HER2/neu-P30. In order to enhance DC vaccine efficacy, we transfected mouse bone marrow (BM)-derived DCs with AdVOVA-P30 and AdVHER2/neu-P30 to generate engineered DCOVA-P30 and DCHER2/neu-P30 vaccines, respectively. We, then, compared CD4(+) and CD8(+) T-cell responses and antitumor immunity derived from DCOVA-P30 and DCHER2/neu-P30 vaccination in wild-type C57BL/6 and transgenic FVBneuN mice, respectively. We demonstrate that engineered DCOVA-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses than DCOVA in C57BL/6 mice. Interestingly, the increased DCOVA-P30-induced CTL responses are mainly contributed by enhanced CD4(+) T-cell-stimulated CTL proliferation. We show that DCOVA-P30 vaccine also stimulates more efficient therapeutic immunity against OVA-expressing BL6-10OVA melanoma than DCOVA in C57BL/6 mice. In addition, we demonstrate that DCHER2/neu-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses and protective immunity against HER2/neu-expressing Tg1-1 breast cancer than DCHER2/neu in transgenic FVBneuN mice with HER2/neu-specific self-immune tolerance. Therefore, the engineered DCHER

  1. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity.

    PubMed

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Xu, Bing; Zhao, Qian; Chen, Kun

    2016-11-01

    Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers.

  2. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette; Fischer, William; Wallstrom, Timothy

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highlymore » conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.« less

  3. Relationships between major epitopes of the IA-2 autoantigen in Type 1 diabetes: Implications for determinant spreading.

    PubMed

    McLaughlin, Kerry A; Richardson, Carolyn C; Williams, Stefan; Bonifacio, Ezio; Morgan, Diana; Feltbower, Richard G; Powell, Michael; Rees Smith, Bernard; Furmaniak, Jadwiga; Christie, Michael R

    2015-10-01

    Diversification of autoimmunity to islet autoantigens is critical for progression to Type 1 diabetes. B-cells participate in diversification by modifying antigen processing, thereby influencing which peptides are presented to T-cells. In Type 1 diabetes, JM antibodies are associated with T-cell responses to PTP domain peptides. We investigated whether this is the consequence of close structural alignment of JM and PTP domain determinants on IA-2. Fab fragments of IA-2 antibodies with epitopes mapped to the JM domain blocked IA-2 binding of antibodies that recognise epitopes in the IA-2 PTP domain. Peptides from both the JM and PTP domains were protected from degradation during proteolysis of JM antibody:IA-2 complexes and included those representing major T-cell determinants in Type 1 diabetes. The results demonstrate close structural relationships between JM and PTP domain epitopes on IA-2. Stabilisation of PTP domain peptides during proteolysis in JM-specific B-cells may explain determinant spreading in IA-2 autoimmunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Differences in Aspergillus-specific immune recovery between T-cell-replete and T-cell-depleted hematopoietic transplants.

    PubMed

    Perruccio, Katia; Topini, Fabiana; Tosti, Antonella; Gazzola, Maria Vittoria; Messina, Chiara; Martelli, Massimo F; Caniglia, Maurizio; Velardi, Andrea; Cesaro, Simone

    2015-12-01

    After hematopoietic stem cell transplantation, invasive aspergillosis remains one of the most lethal infections. Susceptibility may be due to prophylaxis and treatment of graft-vs.-host disease in T-cell-replete transplants, and delayed immune rebuilding due to T-cell depletion in haploidentical transplantation. We monitored CD4(+) T-cell recovery and anti-Aspergillus immune competence in pediatric recipients of T-cell-replete matched transplants and of prevalently adult recipients of T-cell-depleted matched or haploidentical transplants for hematological malignancies. Although CD4(+) T-cell counts were higher in T-cell-replete transplant recipients at all post-transplant time points, Aspergillus-specific T cells were first detected 15-18 months after T-cell-replete matched, 7-9 months after T-cell-depleted matched, and 9-12 months after haploidentical transplantation, respectively. Incidence of invasive aspergillosis was 22% with 10% mortality after T-cell-replete transplants, 0% after T-cell-depleted matched, and 7% with 4% mortality after haploidentical transplants. Although T-cell counts were significantly higher after T-cell-replete transplants, post-transplant immune suppression/GvHD appeared to impair their function. Specific Aspergillus immune competence recovered faster after T-cell-depleted transplants, whether matched or haploidentical. T-cell-replete transplants were associated with a higher incidence of invasive aspergillosis and Aspergillus-related deaths. These results showed that T-cell depletion without post-transplant immunosuppression is associated to a faster immune recovery than T-cell-replete transplantation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. T Cell Epitope Mimicry between Sjögren’s Syndrome Antigen A (SSA)/Ro60 and Oral, Gut, Skin and Vaginal Bacteria.

    PubMed Central

    Szymula, Agnieszka; Rosenthal, Jacob; Szczerba, Barbara M; Bagavant, Harini; Fu, Shu Man; Deshmukh, Umesh S.

    2014-01-01

    This study was undertaken to test the hypothesis that Sjogren’s syndrome Antigen A (SSA)/Ro60-reactive T cells are activated by peptides originating from oral and gut bacteria. T cell hybridomas generated from HLA-DR3 transgenic mice recognized 3 regions on Ro60, with core epitopes mapped to amino acids 228-238, 246-256 and 371-381. BLAST analysis identified several mimicry peptides, originating from human oral, intestinal, skin and vaginal bacteria, as well as environmental bacteria. Amongst these, a peptide from the von Willebrand factor type A domain protein (vWFA) from the oral microbe Capnocytphaga ochracea was the most potent activator. Further, Ro60-reactive T cells were activated by recombinant vWFA protein and whole E. coli expressing this protein. These results demonstrate that peptides derived from normal human microbiota can activate Ro60-reactive T cells. Thus, immune responses to commensal microbiota and opportunistic pathogens should be explored as potential triggers for initiating autoimmunity in SLE and Sjögren’s syndrome. PMID:24576620

  6. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection

    PubMed Central

    Boyd, Anders; Almeida, Jorge R.; Darrah, Patricia A.; Sauce, Delphine; Seder, Robert A.; Appay, Victor; Gorochov, Guy; Larsen, Martin

    2015-01-01

    Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality

  7. Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors

    PubMed Central

    Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya

    2013-01-01

    Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112

  8. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    PubMed

    Bhattacharyya, Tapan; Falconar, Andrew K; Luquetti, Alejandro O; Costales, Jaime A; Grijalva, Mario J; Lewis, Michael D; Messenger, Louisa A; Tran, Trang T; Ramirez, Juan-David; Guhl, Felipe; Carrasco, Hernan J; Diosque, Patricio; Garcia, Lineth; Litvinov, Sergey V; Miles, Michael A

    2014-05-01

    Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. These results demonstrate the considerable potential for synthetic

  9. T follicular helper and T follicular regulatory cells have different TCR specificity

    PubMed Central

    Maceiras, Ana Raquel; Almeida, Silvia Cristina Paiva; Mariotti-Ferrandiz, Encarnita; Chaara, Wahiba; Jebbawi, Fadi; Six, Adrien; Hori, Shohei; Klatzmann, David; Faro, Jose; Graca, Luis

    2017-01-01

    Immunization leads to the formation of germinal centres (GCs) that contain both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T-cell receptor (TCR) specificity defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently on restimulation with the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization induces oligoclonal expansion of Tfh cells. By contrast, the Tfr pool has a TCR repertoire that more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially autoreactive TCRs to suppress autoimmunity. PMID:28429709

  10. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells.

    PubMed

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-08-12

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  11. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    PubMed Central

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-01-01

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated. PMID:26274954

  12. CD18 activation epitopes induced by leukocyte activation.

    PubMed

    Beals, C R; Edwards, A C; Gottschalk, R J; Kuijpers, T W; Staunton, D E

    2001-12-01

    The cell surface adhesion molecule LFA-1 coordinates leukocyte trafficking and is a costimulatory molecule for T cell activation. We developed a panel of mAbs that recognize activation epitopes on the CD18 subunit, and show that stimulation of T lymphocytes appears to be accompanied by a conformational change in a subpopulation of LFA-1 that does not require ligand binding. Activation epitope up-regulation requires divalent cations, is sensitive to cellular signal transduction events, and correlates with cell adhesion. In addition, the stimulated appearance of these activation epitopes is absent in cell lines from patients with leukocyte adhesion deficiency-1/variant that has previously been shown to be defective in LFA-1 activation. Thus, these activation epitope Abs can be used to dissect signal transmission to CD18. Evidence suggests that these CD18 activation epitopes are induced early in cellular activation and are independent of actin rearrangement necessary for avid adhesion. We have also determined that function-blocking CD18 Abs inhibit the induction of activation epitopes. One activation epitope Ab binds to a site on CD18 distinct from that of the blocking Abs, indicating that the blocking Abs suppress a conformational change in LFA-1. We also find that these neoepitopes are present on rLFA-1 with high affinity for ICAM-1 and their binding is modulated in parallel with the affinity of LFA-1 for ICAM-1. Collectively, these neoepitope Abs identify a subpopulation of LFA-1 most likely with high affinity for ICAM-1 and necessary for LFA-1 function.

  13. In situ induction of dendritic cell–based T cell tolerance in humanized mice and nonhuman primates

    PubMed Central

    Jung, Kyeong Cheon; Jeon, Yoon Kyung; Ban, Young Larn; Min, Hye Sook; Kim, Eun Ji; Kim, Ju Hyun; Kang, Byung Hyun; Bae, Youngmee; Yoon, Il-Hee; Kim, Yong-Hee; Lee, Jae-Il; Kim, Jung-Sik; Shin, Jun-Seop; Yang, Jaeseok; Kim, Sung Joo; Rostlund, Emily; Muller, William A.

    2011-01-01

    Induction of antigen-specific T cell tolerance would aid treatment of diverse immunological disorders and help prevent allograft rejection and graft versus host disease. In this study, we establish a method of inducing antigen-specific T cell tolerance in situ in diabetic humanized mice and Rhesus monkeys receiving porcine islet xenografts. Antigen-specific T cell tolerance is induced by administration of an antibody ligating a particular epitope on ICAM-1 (intercellular adhesion molecule 1). Antibody-mediated ligation of ICAM-1 on dendritic cells (DCs) led to the arrest of DCs in a semimature stage in vitro and in vivo. Ablation of DCs from mice completely abrogated anti–ICAM-1–induced antigen-specific T cell tolerance. T cell responses to unrelated antigens remained unaffected. In situ induction of DC-mediated T cell tolerance using this method may represent a potent therapeutic tool for preventing graft rejection. PMID:22025302

  14. Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope.

    PubMed

    Hufnagl, Karin; Ghosh, Debajyoti; Wagner, Stefanie; Fiocchi, Alessandro; Dahdah, Lamia; Bianchini, Rodolfo; Braun, Nina; Steinborn, Ralf; Hofer, Martin; Blaschitz, Marion; Roth, Georg A; Hofstetter, Gerlinde; Roth-Walter, Franziska; Pacios, Luis F; Jensen-Jarolim, Erika

    2018-01-25

    The major cow's milk allergen Bos d 5 belongs to the lipocalin protein family, with an intramolecular pocket for hydrophobic ligands. We investigated whether Bos d 5 when loaded with the active vitamin A metabolite retinoic acid (RA), would elicit differential immune responses compared to the unloaded state. By in silico docking an affinity energy of -7.8 kcal/mol was calculated for RA into Bos d 5. Loading of RA to Bos d 5 could be achieved in vitro, as demonstrated by ANS displacement assay, but had no effect on serum IgE binding in tolerant or challenge-positive milk allergic children. Bioinformatic analysis revealed that RA binds to the immunodominant T-cell epitope region of Bos d 5. In accordance, Bos d 5 significantly suppressed the CD3+ CD4+ cell numbers, proliferative response and IL-10, IL-13 and IFN-γ secretion from stimulated human PBMCs only when complexed with RA. This phenomenon was neither associated with apoptosis of T-cells nor with the activation of Foxp3+ T-cells, but correlated likely with enhanced stability to lysosomal digestion due to a predicted overlap of Cathepsin S cleavage sites with the RA binding site. Taken together, proper loading of Bos d 5 with RA may suppress its immunogenicity and prevent its allergenicity.

  15. Urinary Peptides As a Novel Source of T Cell Allergen Epitopes

    PubMed Central

    da Silva Antunes, Ricardo; Pham, John; McMurtrey, Curtis; Hildebrand, William H.; Phillips, Elizabeth; Mallal, Simon; Sidney, John; Busse, Paula; Peters, Bjoern; Schulten, Véronique; Sette, Alessandro

    2018-01-01

    Mouse allergy in both laboratory workers and in inner-city children is associated with allergic rhinitis and asthma, posing a serious public health concern. Urine is a major source of mouse allergens, as mice spray urine onto their surroundings, where the proteins dry up and become airborne on dust particles. Here, we tested whether oligopeptides that are abundant in mouse urine may contribute to mouse allergic T cell response. Over 1,300 distinct oligopeptides were detected by mass spectrometry analysis of the low molecular weight filtrate fraction of mouse urine (LoMo). Posttranslationally modified peptides were common, accounting for almost half of total peptides. A pool consisting of 225 unique oligopeptides of 13 residues or more in size identified within was tested for its capacity to elicit T cell reactivity in mouse allergic donors. Following 14-day in vitro stimulation of PBMCs, we detected responses in about 95% of donors tested, directed against 116 distinct peptides, predominantly associated with Th2 cytokines (IL-5). Peptides from non-urine related proteins such as epidermal growth factor, collagen, and Beta-globin accounted for the highest response (15.9, 9.1, and 8.1% of the total response, respectively). Peptides derived from major urinary proteins (MUPs), kidney androgen-regulated protein (KAP), and uromodulin were the main T cell targets from kidney or urine related sources. Further ex vivo analysis of enrichment of 4-1BB expressing cells demonstrated that LoMo pool-specific T cell reactivity can be detected directly ex vivo in mouse allergic but not in non-allergic donors. Further cytometric analysis of responding cells revealed a bone fide memory T cell phenotype and confirmed their Th2 polarization. Overall, these data suggest that mouse urine-derived oligopeptides are a novel target for mouse allergy-associated T cell responses, which may contribute to immunopathological mechanisms in mouse allergy. PMID:29755469

  16. Immunotherapy of murine retrovirus-induced acquired immunodeficiency by CD4 T regulatory cell depletion and PD-1 blockade.

    PubMed

    Li, Wen; Green, William R

    2011-12-01

    LP-BM5 retrovirus induces a complex disease featuring an acquired immunodeficiency syndrome termed murine AIDS (MAIDS) in susceptible strains of mice, such as C57BL/6 (B6). CD4 T helper effector cells are required for MAIDS induction and progression of viral pathogenesis. CD8 T cells are not needed for viral pathogenesis, but rather, are essential for protection from disease in resistant strains, such as BALB/c. We have discovered an immunodominant cytolytic T lymphocyte (CTL) epitope encoded in a previously unrecognized LP-BM5 retroviral alternative (+1 nucleotide [nt]) gag translational open reading frame. CTLs specific for this cryptic gag epitope are the basis of protection from LP-BM5-induced immunodeficiency in BALB/c mice, and the inability of B6 mice to mount an anti-gag CTL response appears critical to the initiation and progression of LP-BM5-induced MAIDS. However, uninfected B6 mice primed by LP-BM5-induced tumors can generate CTL responses to an LP-BM5 retrovirus infection-associated epitope(s) that is especially prevalent on such MAIDS tumor cells, indicating the potential to mount a protective CD8 T-cell response. Here, we utilized this LP-BM5 retrovirus-induced disease system to test whether modulation of normal immune down-regulatory mechanisms can alter retroviral pathogenesis. Thus, following in vivo depletion of CD4 T regulatory (Treg) cells and/or selective interruption of PD-1 negative signaling in the CD8 T-cell compartment, retroviral pathogenesis was significantly decreased, with the combined treatment of CD4 Treg cell depletion and PD-1 blockade working in a synergistic fashion to substantially reduce the induction of MAIDS.

  17. Design and Synthesis of Non-Peptide Mimetics Mapping the Immunodominant Myelin Basic Protein (MBP83–96) Epitope to Function as T-Cell Receptor Antagonists

    PubMed Central

    Yannakakis, Mary-Patricia; Simal, Carmen; Tzoupis, Haralambos; Rodi, Maria; Dargahi, Narges; Prakash, Monica; Mouzaki, Athanasia; Platts, James A.; Apostolopoulos, Vasso; Tselios, Theodore V.

    2017-01-01

    Encephalitogenic T cells are heavily implicated in the pathogenesis of multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system. Their stimulation is triggered by the formation of a trimolecular complex between the human leukocyte antigen (HLA), an immunodominant myelin basic protein (MBP) epitope, and the T cell receptor (TCR). We detail herein our studies directed towards the rational design and synthesis of non-peptide mimetic molecules, based on the immunodominant MBP83–96 epitope that is recognized by the TCR in complex with HLA. We focused our attention on the inhibition of the trimolecular complex formation and consequently the inhibition of proliferation of activated T cells. A structure-based pharmacophore model was generated, in view of the interactions between the TCR and the HLA-MBP83–96 complex. As a result, new candidate molecules were designed based on lead compounds obtained through the ZINC database. Moreover, semi-empirical and density functional theory methods were applied for the prediction of the binding energy between the proposed non-peptide mimetics and the TCR. We synthesized six molecules that were further evaluated in vitro as TCR antagonists. Analogues 15 and 16 were able to inhibit to some extent the stimulation of T cells by the immunodominant MBP83–99 peptide from immunized mice. Inhibition was followed to a lesser degree by analogues 17 and 18 and then by analogue 19. These studies show that lead compounds 15 and 16 may be used for immunotherapy against MS. PMID:28594344

  18. Prior Dengue Virus Exposure Shapes T Cell Immunity to Zika Virus in Humans

    PubMed Central

    Grifoni, Alba; Pham, John; Sidney, John; O'Rourke, Patrick H.; Paul, Sinu; Peters, Bjoern; Martini, Sheridan R.; de Silva, Aruna D.; Ricciardi, Michael J.; Silveira, Cassia G. T.; Maestri, Alvino; Costa, Priscilla R.; de-Oliveira-Pinto, Luzia Maria; de Azeredo, Elzinandes Leal; Damasco, Paulo Vieira; Phillips, Elizabeth; Mallal, Simon; de Silva, Aravinda M.; Collins, Matthew; Durbin, Anna; Diehl, Sean A.; Cerpas, Cristhiam; Balmaseda, Angel; Kuan, Guillermina; Coloma, Josefina; Harris, Eva; Crowe, James E.; Stone, Mars; Busch, Michael; Vivanco-Cid, Hector; Cox, Josephine; Graham, Barney S.; Ledgerwood, Julie E.; Turtle, Lance; Solomon, Tom; Kallas, Esper G.; Watkins, David I.; Weiskopf, Daniela

    2017-01-01

    ABSTRACT While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here, we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether preexisting dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with tetravalent dengue attenuated vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors but declines in DENV-preexposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells from DENV-preexposed donors selectively upregulated granzyme B and PD1, unlike DENV-naive donors. Finally, we discovered that ZIKV structural proteins (E, prM, and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins. IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how preexisting DENV T cell immunity modulates Zika T cell responses is of great relevance, as the two viruses often cocirculate and Zika virus has been spreading in geographical regions where DENV is endemic or hyperendemic. Our data show that memory T cell responses elicited by prior

  19. Patterns of Immunodominance in HIV-1–specific Cytotoxic T Lymphocyte Responses in Two Human Histocompatibility Leukocyte Antigens (HLA)-identical Siblings with HLA-A*0201 Are Influenced by Epitope Mutation

    PubMed Central

    Goulder, P.J.R.; Sewell, A.K.; Lalloo, D.G.; Price, D.A.; Whelan, J.A.; Evans, J.; Taylor, G.P.; Luzzi, G.; Giangrande, P.; Phillips, R.E.; McMichael, A.J.

    1997-01-01

    Primary human immunodeficiency virus (HIV) infection is controlled principally by HIV-specific cytotoxic T lymphocytes (CTL) to a steady-state level of virus load, which strongly influences the ultimate rate of progression to disease. Epitope selection by CTL may be an important determinant of the degree of immune control over the virus. This report describes the CTL responses of two HLA-identical hemophiliac brothers who were exposed to identical batches of Factor VIII and became seropositive within 10 wk of one another. Both have HLA-A*0201. The CTL responses of the two siblings were very dissimilar, one donor making strong responses to two epitopes within p17 Gag (HLA-A*0201–restricted SLYNTVATL and HLA-A3–restricted RLRPGGKKK). The sibling responded to neither epitope, but made strong responses to two epitopes presented by HLA-B7. This was not the result of differences in presentation of the epitopes. However, mutations in both immunodominant epitopes of the p17 Gag responder were seen in proviral sequences of the nonresponder. We then documented the CTL responses to two HLA-A*0201–restricted epitopes, in Gag (SLYNTVATL) and Pol (ILKEPVHGV) in 22 other HIV-infected donors with HLA-A*0201. The majority (71%) generated responses to the Gag epitope. In the 29% of donors failing to respond to the Gag epitope in standard assays, there was evidence of low frequency memory CTL responses using peptide stimulation of PBMC, and most of these donors also showed mutations in or around the Gag epitope. We concluded that HLA class I genotype determines epitope selection initially but that mutation in immunodominant epitopes can profoundly alter the pattern of CTL response. PMID:9126923

  20. Chimeric epitope vaccine against Leptospira interrogans infection and induced specific immunity in guinea pigs.

    PubMed

    Lin, Xu'ai; Xiao, Guohui; Luo, Dongjiao; Kong, Liangliang; Chen, Xu; Sun, Dexter; Yan, Jie

    2016-10-14

    Leptospirosis is an important reemerging zoonosis, with more than half a million cases reported annually, and is caused by pathogenic Leptospira species. Development of a universal vaccine is one of the major strategic goals to overcome the disease burden of leptospirosis. In this study, a chimeric multi-epitope protein-based vaccine was designed and tested for its potency to induce a specific immune response and provide protection against L. interrogans infection. The protein, containing four repeats of six T- and B-cell combined epitopes from the leptospiral outer membrane proteins, OmpL1, LipL32 and LipL21, was expressed and purified. Western blot analysis showed that the recombinant protein (named r4R) mainly expressed in a soluble pattern, and reacted with antibodies raised in rabbit against heat-killed Leptospira and in guinea pigs against the r4R vaccine. Microscopic agglutination tests showed that r4R antisera was immunological cross-reactive with a range of Chinese standard reference strains of Leptospira belonging to different serogroups. In guinea pigs, the r4R vaccine induced a Th1-biased immune response, as reflected by the IgG2a/IgG1 ratio and cytokine production of stimulated splenocytes derived from immunized animals. Finally, r4R-immunized guinea pigs showed increased survival of lethal Leptospira challenges compared with PBS-immunized animals and tissue damage and leptospiral colonization of the kidney were reduced. The multi-epitope chimeric r4R protein is a promising antigen for the development of a universal cross-reactive vaccine against leptospirosis.

  1. Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia

    PubMed Central

    Johnson, Susan; Eller, Michael; Teigler, Jeffrey E.; Maloveste, Sebastien M.; Schultz, Bruce T.; Soghoian, Damien Z.; Lu, Richard; Oster, Alexander F.; Chenine, Agnès-Laurence; Alter, Galit; Dittmer, Ulf; Marovich, Mary; Robb, Merlin L.; Michael, Nelson L.; Bolton, Diane

    2015-01-01

    ABSTRACT CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are

  2. Impact of clonal competition for peptide-MHC complexes on the CD8[superscript +] T-cell repertoire selection in a persistent viral infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynn, Katherine K.; Fulton, Zara; Cooper, Leanne

    2008-04-29

    CD8{sup +} T-cell responses to persistent viral infections are characterized by the accumulation of an oligoclonal T-cell repertoire and a reduction in the naive T-cell pool. However, the precise mechanism for this phenomenon remains elusive. Here we show that human cytomegalovirus (HCMV)-specific CD8{sup +} T cells recognizing distinct epitopes from the pp65 protein and restricted through an identical HLA class I allele (HLA B*3508) exhibited either a highly conserved public T-cell repertoire or a private, diverse T-cell response, which was uniquely altered in each donor following in vitro antigen exposure. Selection of a public T-cell receptor (TCR) was coincident withmore » an atypical major histocompatibility complex (MHC)-peptide structure, in that the epitope adopted a helical conformation that bulged from the peptide-binding groove, while a diverse TCR profile was observed in response to the epitope that formed a flatter, more 'featureless' landscape. Clonotypes with biased TCR usage demonstrated more efficient recognition of virus-infected cells, a greater CD8 dependency, and were more terminally differentiated in their phenotype when compared with the T cells expressing diverse TCR. These findings provide new insights into our understanding on how the biology of antigen presentation in addition to the structural features of the pMHC-I might shape the T-cell repertoire and its phenotype.« less

  3. Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients

    DOE PAGES

    Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua; ...

    2015-01-08

    Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of

  4. Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua

    Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of

  5. Generation of transgenic mice expressing EGFP protein fused to NP68 MHC class I epitope using lentivirus vectors.

    PubMed

    Tomkowiak, Martine; Ghittoni, Raffaella; Teixeira, Marie; Blanquier, Bariza; Szécsi, Judit; Nègre, Didier; Aubert, Denise; Coupet, Charles-Antoine; Brunner, Molly; Verhoeyen, Els; Thoumas, Jean-Louis; Cosset, François-Loïc; Leverrier, Yann; Marvel, Jacqueline

    2013-03-01

    Immune tolerance to self-antigens is a complex process that utilizes multiple mechanisms working in concert to maintain homeostasis and prevent autoimmunity. Considerable progress in deciphering the mechanisms controlling the activation or deletion of T cells has been made by using T cell receptor (TCR) transgenic mice. One such model is the F5 model in which CD8 T cells express a TCR specific for an epitope derived from the influenza NP68 protein. Our aim was to create transgenic mouse models expressing constitutively the NP68 epitope fused to enhanced green fluorescent protein (EGFP) in order to assess unambiguously the relative levels of NP68 epitope expressed by single cells. We used a lentiviral-based approach to generate two independent transgenic mouse strains expressing the fusion protein EGFP-NP68 under the control of CAG (CMV immediate early enhancer and the chicken β-actin promoter) or spleen focus-forming virus (SFFV) promoters. Analysis of the pattern of EGFP expression in the hematopoietic compartment showed that CAG and SFFV promoters are differentially regulated during T cell development. However, both promoters drove high EGFP-NP68 expression in dendritic cells (pDCs, CD8α(+) cDCs, and CD8α(-) cDCs) from spleen or generated in vitro following differentiation from bone-marrow progenitors. NP68 epitope was properly processed and successfully presented by dendritic cells (DCs) by direct presentation and cross-presentation to F5 CD8 T cells. The models presented here are valuable tools to investigate the priming of F5 CD8 T cells by different subsets of DCs. Copyright © 2013 Wiley Periodicals, Inc.

  6. Generation and characterization of antibodies specific for caspase-cleaved neo-epitopes: a novel approach

    PubMed Central

    Ai, X; Butts, B; Vora, K; Li, W; Tache-Talmadge, C; Fridman, A; Mehmet, H

    2011-01-01

    Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity. PMID:21881607

  7. Selection Pressure in CD8+ T-cell Epitopes in the pol Gene of HIV-1 Infected Individuals in Colombia. A Bioinformatic Approach

    PubMed Central

    Acevedo-Sáenz, Liliana; Ochoa, Rodrigo; Rugeles, Maria Teresa; Olaya-García, Patricia; Velilla-Hernández, Paula Andrea; Diaz, Francisco J.

    2015-01-01

    One of the main characteristics of the human immunodeficiency virus is its genetic variability and rapid adaptation to changing environmental conditions. This variability, resulting from the lack of proofreading activity of the viral reverse transcriptase, generates mutations that could be fixed either by random genetic drift or by positive selection. Among the forces driving positive selection are antiretroviral therapy and CD8+ T-cells, the most important immune mechanism involved in viral control. Here, we describe mutations induced by these selective forces acting on the pol gene of HIV in a group of infected individuals. We used Maximum Likelihood analyses of the ratio of non-synonymous to synonymous mutations per site (dN/dS) to study the extent of positive selection in the protease and the reverse transcriptase, using 614 viral sequences from Colombian patients. We also performed computational approaches, docking and algorithmic analyses, to assess whether the positively selected mutations affected binding to the HLA molecules. We found 19 positively-selected codons in drug resistance-associated sites and 22 located within CD8+ T-cell epitopes. A high percentage of mutations in these epitopes has not been previously reported. According to the docking analyses only one of those mutations affected HLA binding. However, algorithmic methods predicted a decrease in the affinity for the HLA molecule in seven mutated peptides. The bioinformatics strategies described here are useful to identify putative positively selected mutations associated with immune escape but should be complemented with an experimental approach to define the impact of these mutations on the functional profile of the CD8+ T-cells. PMID:25803098

  8. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state

    PubMed Central

    Yates, Kathleen B.; Bi, Kevin; Darko, Samuel; Godec, Jernej; Gerdemann, Ulrike; Swadling, Leo; Douek, Daniel C.; Klenerman, Paul; Barnes, Eleanor J.; Sharpe, Arlene H.

    2017-01-01

    Abstract The T cell compartment must contain diversity in both T cell receptor (TCR) repertoire and cell state to provide effective immunity against pathogens. However, it remains unclear how differences in the TCR contribute to heterogeneity in T cell state. Single cell RNA-sequencing (scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional profile from single cells. However, current methods for TCR inference from scRNA-seq are limited in their sensitivity and require long sequencing reads, thus increasing the cost and decreasing the number of cells that can be feasibly analyzed. Here we present TRAPeS, a publicly available tool that can efficiently extract TCR sequence information from short-read scRNA-seq libraries. We apply it to investigate heterogeneity in the CD8+ T cell response in humans and mice, and show that it is accurate and more sensitive than existing approaches. Coupling TRAPeS with transcriptome analysis of CD8+ T cells specific for a single epitope from Yellow Fever Virus (YFV), we show that the recently described ‘naive-like’ memory population have significantly longer CDR3 regions and greater divergence from germline sequence than do effector-memory phenotype cells. This suggests that TCR usage is associated with the differentiation state of the CD8+ T cell response to YFV. PMID:28934479

  9. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector1

    PubMed Central

    Bolinger, Beatrice; Sims, Stuart; O’Hara, Geraldine; de Lara, Catherine; Tchilian, Elma; Firner, Sonja; Engeler, Daniel; Ludewig, Burkhard; Klenerman, Paul

    2013-01-01

    CD8+ T cell memory inflation, first described in murine cytomegalovirus (MCMV) infection, is characterized by the accumulation of high-frequency, functional antigen-specific CD8+ T cell pools with an effector-memory phenotype and enrichment in peripheral organs. Although persistence of antigen is considered essential, the rules underpinning memory inflation are still unclear. The MCMV model is, however, complicated by the virus’s low-level persistence, and stochastic reactivation. We developed a new model of memory inflation based upon a βgal-recombinant adenovirus vector (Ad-LacZ). After i.v. administration in C57BL/6 mice we observe marked memory inflation in the βgal96 epitope, while a second epitope, βgal497, undergoes classical memory formation. The inflationary T cell responses show kinetics, distribution, phenotype and functions similar to those seen in MCMV and are reproduced using alternative routes of administration. Memory inflation in this model is dependent on MHC Class II. As in MCMV, only the inflating epitope showed immunoproteasome-independence. These data define a new model for memory inflation, which is fully replication-independent, internally controlled and reproduces the key immunologic features of the CD8+ T cell response. This model provides insight into the mechanisms responsible for memory inflation, and since it is based on a vaccine vector, also is relevant to novel T cell-inducing vaccines in humans. PMID:23509359

  11. Identification of a conserved B-cell epitope on duck hepatitis A type 1 virus VP1 protein.

    PubMed

    Wu, Xiaoying; Li, Xiaojun; Zhang, Qingshan; Wulin, Shaozhou; Bai, Xiaofei; Zhang, Tingting; Wang, Yue; Liu, Ming; Zhang, Yun

    2015-01-01

    The VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized. To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1-positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope. We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.

  12. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    PubMed

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Identification of an HLA-DPB1*0501 Restricted Melan-A/MART-1 Epitope Recognized by CD4+ T Lymphocytes: Prevalence for Immunotherapy in Asian Populations

    PubMed Central

    Meng, Zhaoting; Wang, Yadong; Zhang, Guanzhong; Ke, Yuehua; Yan, Yanfeng; Wu, Liangliang; Huang, Qianrong; Zeng, Gang; Wang, Yu; Ying, Han; Jiao, Shunchang

    2015-01-01

    Summary CD4+ T lymphocytes play a central role in orchestrating an efficient antitumor immune response. Much effort has been devoted in the identification of major histocompatibility complex class II eptiopes from different tumor-associated antigens. Melan-A/ MART-1 is expressed specifically in normal melanocytes and tumor cells of 75% to 100% of melanoma patients. Melan-A/MART-1 is considered as an attractive target for cancer immunotherapy. In the past, several human leukocyte antigen (HLA) class II restricted epitopes have been identified and characterized, including Melan-A/ MART-11-20 (HLA-DR11 restricted),Melan-A/MART-125-36 (HLA-DQ6 and HLA-DR3 restricted), Melan-A/MART-127-40 (HLA-DR1 restricted), Melan-A/MART-151-73 (HLA-DR4 restricted), Melan-A/ MART-191-110 (HLA-DR52 restricted), and Melan-A/MART-1100-111 (HLA-DR1 restricted). Owing to the infrequent expression of the above HLA class II alleles in Asian populations, immunotherapy using these defined Melan-A/MART-1 peptides could potentially only benefit a very small percentage of Asian melanoma patients. In this study, we established several CD4+ T-cell clones by in vitro stimulation of peripheral blood mononuclear cells from a healthy donor by a peptide pool of 28 to 30 amino acid long peptides spanning the entire Melan-A/MART-1 protein. These CD4+ T-cell clones recognized a peptide that is embedded within Melan-A/ MART-121-50, in a HLA-DPB1*0501 restricted manner. Finally, we demonstrated that this epitope is naturally processed and presented by dendritic cells. HLA-DPB1*0501 is frequently expressed in Asian population (44.9% to 73.1%). Therefore, this epitope could provide a new tool and could significantly increase the percentage of melanoma patients that can benefit from cancer immunotherapy. PMID:21760531

  14. MuPeXI: prediction of neo-epitopes from tumor sequencing data.

    PubMed

    Bjerregaard, Anne-Mette; Nielsen, Morten; Hadrup, Sine Reker; Szallasi, Zoltan; Eklund, Aron Charles

    2017-09-01

    Personalization of immunotherapies such as cancer vaccines and adoptive T cell therapy depends on identification of patient-specific neo-epitopes that can be specifically targeted. MuPeXI, the mutant peptide extractor and informer, is a program to identify tumor-specific peptides and assess their potential to be neo-epitopes. The program input is a file with somatic mutation calls, a list of HLA types, and optionally a gene expression profile. The output is a table with all tumor-specific peptides derived from nucleotide substitutions, insertions, and deletions, along with comprehensive annotation, including HLA binding and similarity to normal peptides. The peptides are sorted according to a priority score which is intended to roughly predict immunogenicity. We applied MuPeXI to three tumors for which predicted MHC-binding peptides had been screened for T cell reactivity, and found that MuPeXI was able to prioritize immunogenic peptides with an area under the curve of 0.63. Compared to other available tools, MuPeXI provides more information and is easier to use. MuPeXI is available as stand-alone software and as a web server at http://www.cbs.dtu.dk/services/MuPeXI .

  15. Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses.

    PubMed

    Rollier, Christine S; Hill, Adrian V S; Reyes-Sandoval, Arturo

    2016-08-31

    Viral-vectored vaccines are in clinical development for several infectious diseases where T-cell responses can mediate protection, and responses to sub-dominant epitopes is needed. Little is known about the influence of MVA or adenoviral vectors on the hierarchy of the dominant and sub-dominant T-cell epitopes. We investigated this aspect in mice using a malaria immunogen. Our results demonstrate that the T-cell hierarchy is influenced by the timing of analysis, rather than by the vector after a single immunization, with hierarchy changing over time. Repeated homologous immunization reduced the breadth of responses, while heterologous prime-boost induced the strongest response to the dominant epitope, albeit with only modest response to the sub-dominant epitopes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Large-scale expansion of γδ T cells and peptide-specific cytotoxic T cells using zoledronate for adoptive immunotherapy.

    PubMed

    Yoshikawa, Toshiaki; Takahara, Masashi; Tomiyama, Mai; Nieda, Mie; Maekawa, Ryuji; Nakatsura, Tetsuya

    2014-11-01

    Specific cellular immunotherapy for cancer requires efficient generation and expansion of cytotoxic T lymphocytes (CTLs) that recognize tumor-associated antigens. However, it is difficult to isolate and expand functionally active T-cells ex vivo. In this study, we investigated the efficacy of a new method to induce expansion of antigen-specific CTLs for adoptive immunotherapy. We used tumor-associated antigen glypican-3 (GPC3)-derived peptide and cytomegalovirus (CMV)-derived peptide as antigens. Treatment of human peripheral blood mononuclear cells (PBMCs) with zoledronate is a method that enables large-scale γδ T-cell expansion. To induce expansion of γδ T cells and antigen-specific CTLs, the PBMCs of healthy volunteers or patients vaccinated with GPC3 peptide were cultured with both peptide and zoledronate for 14 days. The expansion of γδ T cells and peptide-specific CTLs from a few PBMCs using zoledronate yields cell numbers sufficient for adoptive transfer. The rate of increase of GPC3‑specific CTLs was approximately 24- to 170,000-fold. These CD8(+) cells, including CTLs, showed GPC3-specific cytotoxicity against SK-Hep-1/hGPC3 and T2 pulsed with GPC3 peptide, but not against SK-Hep-1/vec and T2 pulsed with human immunodeficiency virus peptide. On the other hand, CD8(-) cells, including γδ T cells, showed cytotoxicity against SK-Hep-1/hGPC3 and SK-Hep-1/vec, but did not show GPC3 specificity. Furthermore, adoptive cell transfer of CD8(+) cells, CD8(-) cells, and total cells after expansion significantly inhibited tumor growth in an NOD/SCID mouse model. This study indicates that simultaneous expansion of γδ T cells and peptide-specific CTLs using zoledronate is useful for adoptive immunotherapy.

  17. Broadening CD4+ and CD8+ T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes

    PubMed Central

    Filskov, Jonathan; Mikkelsen, Marianne; Hansen, Paul R.; Christensen, Jan P.; Thomsen, Allan R.; Andersen, Peter; Agger, Else Marie

    2017-01-01

    ABSTRACT Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance has hampered vaccine development. It is generally accepted that in infected individuals, a narrow repertoire of exhausted T cells is a hallmark of persistent infection, whereas broad, vigorous CD4+ and CD8+ T cell responses are associated with control of acute hepatitis C. We employed a vaccine approach based on a mixture of peptides (pepmix) spanning the entire sequence of HCV nonstructural protein 3 (NS3) in cross-priming cationic liposomes (CAF09) to facilitate a versatile presentation of all possible T cell epitopes, regardless of the HLA background of the vaccine recipient. Here, we demonstrate that vaccination of mice with NS3 pepmix broadens the repertoire of epitope-specific T cells compared to the corresponding recombinant protein (rNS3). Moreover, vaccination with rNS3 induced only CD4+ T cells, whereas the NS3 pepmix induced a far more vigorous CD4+ T cell response and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice. In conclusion, we present a novel vaccine approach against HCV, inducing a broadened T cell response targeting both immunodominant and potential subdominant epitopes, which may be key elements to counter T cell exhaustion and prevent chronicity. IMPORTANCE With at least 700,000 annual deaths, development of a vaccine against hepatitis C virus (HCV) has high priority, but the tremendous ability of the virus to dodge the human immune system poses great challenges. Furthermore, many

  18. Immunoinformatics Approach in Designing Epitope-based Vaccine Against Meningitis-inducing Bacteria (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae Type b).

    PubMed

    Zahroh, Hilyatuz; Ma'rup, Ahmad; Tambunan, Usman Sumo Friend; Parikesit, Arli Aditya

    2016-01-01

    Meningitis infection is one of the major threats during Hajj season in Mecca. Meningitis vaccines are available, but their uses are limited in some countries due to religious reasons. Furthermore, they only give protection to certain serogroups, not to all types of meningitis-inducing bacteria. Recently, research on epitope-based vaccines has been developed intensively. Such vaccines have potential advantages over conventional vaccines in that they are safer to use and well responded to the antibody. In this study, we developed epitope-based vaccine candidates against various meningitis-inducing bacteria, including Streptococcus pneumoniae , Neisseria meningitidis , and Haemophilus influenzae type b. The epitopes were selected from their protein of polysaccharide capsule. B-cell epitopes were predicted by using BCPred, while T-cell epitope for major histocompatibility complex (MHC) class I was predicted using PAProC, TAPPred, and Immune Epitope Database. Immune Epitope Database was also used to predict T-cell epitope for MHC class II. Population coverage and molecular docking simulation were predicted against previously generated epitope vaccine candidates. The best candidates for MHC class I- and class II-restricted T-cell epitopes were MQYGDKTTF, MKEQNTLEI, ECTEGEPDY, DLSIVVPIY, YPMAMMWRNASNRAI, TLQMTLLGIVPNLNK, ETSLHHIPGISNYFI, and SLLYILEKNAEMEFD, which showed 80% population coverage. The complexes of class I T-cell epitopes-HLA-C*03:03 and class II T-cell epitopes-HLA-DRB1*11:01 showed better affinity than standards as evaluated from their Δ G binding value and the binding interaction between epitopes and HLA molecules. These peptide constructs may further be undergone in vitro and in vivo testings for the development of targeted vaccine against meningitis infection.

  19. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    PubMed

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin.

    PubMed

    Cizeau, Jeannick; Grenkow, Danielle M; Brown, Jennifer G; Entwistle, Joycelyn; MacDonald, Glen C

    2009-01-01

    The clinical development of immunotoxins in the treatment of solid tumors has been impeded in part, by the induction of an immune response directed primarily against the toxin moiety. Bouganin, a type I ribosome inactivating protein isolated from the leaf of Bougainvillea spectabilis Willd, was mutated to remove the T-cell epitopes while preserving the biological activity of the wild-type molecule. The T-cell epitope-depleted variant of bouganin (de-bouganin) was genetically linked to an anti-epithelial cell adhesion molecule (EpCAM) Fab moiety via a peptidic linker containing a furin proteolytic site to create the fusion construct VB6-845. To determine the optimal construct design for VB6-845, several dicistronic units where de-bouganin was genetically linked to either the N-terminal or C-terminal of either the heavy or light chain were engineered. Only the C-terminal variants expressed the full-length molecule. An in vitro assessment of the biological activity of VB6-845 showed that it bound and selectively killed EpCAM-positive cell lines with a greater potency than many commonly used chemotherapeutic agents. In vivo efficacy was demonstrated using an EpCAM-positive human tumor xenograft model in SCID mice with the majority of the mice treated being tumor free at the end of the study.

  1. Chimeric peptide constructs comprising linear B-cell epitopes: application to the serodiagnosis of infectious diseases.

    PubMed

    Lu, Yudong; Li, Zhong; Teng, Huan; Xu, Hongke; Qi, Songnan; He, Jian'an; Gu, Dayong; Chen, Qijun; Ma, Hongwei

    2015-08-21

    Linear B-cell epitopes are ideal biomarkers for the serodiagnosis of infectious diseases. However, the long-predicted diagnostic value of epitopes has not been realized. Here, we demonstrated a method, diagnostic epitopes in four steps (DEIFS), that delivers a combination of epitopes for the serodiagnosis of infectious diseases with a high success rate. Using DEIFS for malaria, we identified 6 epitopes from 8 peptides and combined them into 3 chimeric peptide constructs. Along with 4 other peptides, we developed a rapid diagnostic test (RDT), which is able to differentiate Plasmodium falciparum (P. falciparum) from Plasmodium vivax (P. vivax) infections with 95.6% overall sensitivity and 99.1% overall specificity. In addition to applications in diagnosis, DEIFS could also be used in the diagnosis of virus and bacterium infections, discovery of vaccine candidates, evaluation of vaccine potency, and study of disease progression.

  2. Chimeric peptide constructs comprising linear B-cell epitopes: application to the serodiagnosis of infectious diseases

    PubMed Central

    Lu, Yudong; Li, Zhong; Teng, Huan; Xu, Hongke; Qi, Songnan; He, Jian’an; Gu, Dayong; Chen, Qijun; Ma, Hongwei

    2015-01-01

    Linear B-cell epitopes are ideal biomarkers for the serodiagnosis of infectious diseases. However, the long-predicted diagnostic value of epitopes has not been realized. Here, we demonstrated a method, diagnostic epitopes in four steps (DEIFS), that delivers a combination of epitopes for the serodiagnosis of infectious diseases with a high success rate. Using DEIFS for malaria, we identified 6 epitopes from 8 peptides and combined them into 3 chimeric peptide constructs. Along with 4 other peptides, we developed a rapid diagnostic test (RDT), which is able to differentiate Plasmodium falciparum (P. falciparum) from Plasmodium vivax (P. vivax) infections with 95.6% overall sensitivity and 99.1% overall specificity. In addition to applications in diagnosis, DEIFS could also be used in the diagnosis of virus and bacterium infections, discovery of vaccine candidates, evaluation of vaccine potency, and study of disease progression. PMID:26293607

  3. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins.

    PubMed Central

    Brown, W C; Zhao, S; Woods, V M; Tripp, C A; Tetzlaff, C L; Heussler, V T; Dobbelaere, D A; Rice-Ficht, A C

    1993-01-01

    Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1

  4. A Rapid-Response Humoral Vaccine Platform Exploiting Pre-Existing Non-Cognate Populations of Anti-Vaccine or Anti-Viral CD4+ T Helper Cells to Confirm B Cell Activation.

    PubMed

    Hills, Thomas; Jakeman, Phillip G; Carlisle, Robert C; Klenerman, Paul; Seymour, Leonard W; Cawood, Ryan

    2016-01-01

    The need for CD4+ T cell responses to arise de novo following vaccination can limit the speed of B cell responses. Populations of pre-existing vaccine-induced or anti-viral CD4+ T cells recognising distinct antigens could be exploited to overcome this limitation. We hypothesise that liposomal vaccine particles encapsulating epitopes that are recognised, after processing and B cell MHCII presentation, by pre-existing CD4+ T cells will exploit this pre-existing T cell help and result in improved antibody responses to distinct target antigens displayed on the particle surface. Liposomal vaccine particles were engineered to display the malaria circumsporozoite (CSP) antigen on their surface, with helper CD4+ epitopes from distinct vaccine or viral antigens contained within the particle core, ensuring the B cell response is raised but focused against CSP. In vivo vaccination studies were then conducted in C57Bl/6 mice as models of either vaccine-induced pre-existing CD4+ T cell immunity (using ovalbumin-OVA) or virus-induced pre-existing CD4+ T cell immunity (murine cytomegalovirus-MCMV). Following the establishment of pre-existing by vaccination (OVA in the adjuvant TiterMax® Gold) or infection with MCMV, mice were administered CSP-coated liposomal vaccines containing the relevant OVA or MCMV core CD4+ T cell epitopes. In mice with pre-existing anti-OVA CD4+ T cell immunity, these vaccine particles elicited rapid, high-titre, isotype-switched CSP-specific antibody responses-consistent with the involvement of anti-OVA T helper cells in confirming activation of anti-CSP B cells. Responses were further improved by entrapping TLR9 agonists, combining humoral vaccination signals 'one', 'two' and 'three' within one particle. Herpes viruses can establish chronic infection and elicit significant, persistent cellular immune responses. We then demonstrate that this principle can be extended to re-purpose pre-existing anti-MCMV immunity to enhance anti-CSP vaccine responses

  5. Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire

    NASA Astrophysics Data System (ADS)

    Smith, Corey; Gras, Stephanie; Brennan, Rebekah M.; Bird, Nicola L.; Valkenburg, Sophie A.; Twist, Kelly-Anne; Burrows, Jacqueline M.; Miles, John J.; Chambers, Daniel; Bell, Scott; Campbell, Scott; Kedzierska, Katherine; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2014-02-01

    Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.

  6. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma.

    PubMed

    Linnemann, Carsten; van Buuren, Marit M; Bies, Laura; Verdegaal, Els M E; Schotte, Remko; Calis, Jorg J A; Behjati, Sam; Velds, Arno; Hilkmann, Henk; Atmioui, Dris El; Visser, Marten; Stratton, Michael R; Haanen, John B A G; Spits, Hergen; van der Burg, Sjoerd H; Schumacher, Ton N M

    2015-01-01

    Tumor-specific neo-antigens that arise as a consequence of mutations are thought to be important for the therapeutic efficacy of cancer immunotherapies. Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8+ T cells, but it is unclear whether neo-antigen-specific CD4+ T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4+ T-cell responses in tumor control, we addressed whether neo-antigen-specific CD4+ T-cell reactivity is a common property in human melanoma.

  7. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    PubMed

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  8. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.

    PubMed

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania ( L .) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4 + T H1 and CD8 + T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic- co -glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4 + and CD8 + T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8 + T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that

  9. A Comparison of Epitope Repertoires Associated with Myasthenia Gravis in Humans and Nonhuman Hosts

    PubMed Central

    Vaughan, Kerrie; Kim, Yohan; Sette, Alessandro

    2012-01-01

    Here we analyzed the molecular targets associated with myasthenia gravis (MG) immune responses, enabled by an immune epitope database (IEDB) inventory of approximately 600 MG-related epitopes derived from 175 references. The vast majority of epitopes were derived from the α-subunit of human AChR suggesting that other MG-associated autoantigens should be investigated further. Human α-AChR was mostly characterized in humans, whereas reactivity primarily to T. californica AChR was examined in animal models. While the fine specificity of T-cell response was similar in the two systems, substantial antibody reactivity to the C-terminus was detected in the nonhuman system, but not in humans. Further analysis showed that the reactivity of nonhuman hosts to the C-terminus was eliminated when data were restricted to hosts tested in the context of autoimmune disease (spontaneous or induced), demonstrating that the epitopes recognized in humans and animals were shared when disease was present. Finally, we provided data subsets relevant to particular applications, including those associated with HLA typing or restriction, sets of epitopes recognized by monoclonal antibodies, and epitopes associated with modulation of immunity or disease. In conclusion, this analysis highlights gaps, differences, and similarities in the epitope repertoires of humans and animal models. PMID:23243503

  10. Improved delivery of the OVA-CD4 peptide to T helper cells by polymeric surface display on Salmonella

    PubMed Central

    2014-01-01

    Background Autotransporter proteins represent a treasure trove for molecular engineers who modify Gram-negative bacteria for the export or secretion of foreign proteins across two membrane barriers. A particularly promising direction is the development of autotransporters as antigen display or secretion systems. Immunologists have been using ovalbumin as a reporter antigen for years and have developed sophisticated tools to detect specific T cells that respond to ovalbumin. Although ovalbumin-expressing bacteria are being used to trace T cell responses to colonizing or invading pathogens, current constructs for ovalbumin presentation have not been optimized. Results The activation of T helper cells in response to ovalbumin was improved by displaying the OVA-CD4 reporter epitope as a multimer on the surface of Salmonella and fused to the autotransporter MisL. Expression was optimized by including tandem in vivo promoters and two post-segregational killing systems for plasmid stabilization. Conclusions The use of an autotransporter protein to present relevant epitope repeats on the surface of bacteria, combined with additional techniques favoring stable and efficient in vivo transcription, optimizes antigen presentation to T cells. The technique of multimeric epitope surface display should also benefit the development of new Salmonella or other enterobacterial vaccines. PMID:24898796

  11. Induction and function of virus-specific CD4+ T cell responses

    PubMed Central

    Whitmire, Jason K.

    2010-01-01

    CD4+ T cells -- often referred to as T-helper cells -- play a central role in immune defense and pathogenesis. Virus infections and vaccines stimulate and expand populations of antigen-specific CD4+ T cells in mice and in man. These virus-specific CD4+ T cells are extremely important in antiviral protection: deficiencies in CD4+ T cells are associated with virus reactivation, generalized susceptibility to opportunistic infections, and poor vaccine efficacy. As described below, CD4+ T cells influence effector and memory CD8+ T cell responses, humoral immunity, and the antimicrobial activity of macrophages and are involved in recruiting cells to sites of infection. This review summarizes a few key points about the dynamics of the CD4+ T cell response to virus infection, the positive role of pro-inflammatory cytokines in the differentiation of virus-specific CD4+ T cells, and new areas of investigation to improve vaccines against virus infection. PMID:21236461

  12. Prior Dengue virus exposure shapes T cell immunity to Zika virus in humans.

    PubMed

    Grifoni, Alba; Pham, John; Sidney, John; O'Rourke, Patrick H; Paul, Sinu; Peters, Bjoern; Martini, Sheridan R; de Silva, Aruna D; Ricciardi, Michael J; Magnani, Diogo M; Silveira, Cassia G T; Maestri, Alvino; Costa, Priscilla R; de-Oliveira-Pinto, Luzia Maria; de Azeredo, Elzinandes Leal; Damasco, Paulo Vieira; Phillips, Elizabeth; Mallal, Simon; de Silva, Aravinda M; Collins, Matthew; Durbin, Anna; Diehl, Sean A; Cerpas, Cristhiam; Balmaseda, Angel; Kuan, Guillermina; Coloma, Josefina; Harris, Eva; Crowe, James E; Stone, Mars; Norris, Phillip J; Busch, Michael; Vivanco-Cid, Hector; Cox, Josephine; Graham, Barney S; Ledgerwood, Julie E; Turtle, Lance; Solomon, Tom; Kallas, Esper G; Watkins, David I; Weiskopf, Daniela; Sette, Alessandro

    2017-10-04

    While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether pre-existing dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with Tetravalent Dengue Attenuated Vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors, but declines in DENV pre-exposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells form DENV pre-exposed donors selectively up-regulated granzyme B and PD1, as compared to DENV-naïve donors. Finally, we discovered that ZIKV structural proteins (E, prM and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins. IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how pre-existing DENV T cell immunity modulates ZIKA T cell responses is of great relevance as the two viruses often co-circulate and ZIKA virus has been spreading in geographical regions where DENV is endemic or hyper-endemic. Our data show that memory T cell responses elicited by

  13. Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity.

    PubMed

    Zaman, Mehfuz; Chandrudu, Saranya; Giddam, Ashwini K; Reiman, Jennifer; Skwarczynski, Mariusz; McPhun, Virginia; Moyle, Peter M; Batzloff, Michael R; Good, Michael F; Toth, Istvan

    2014-12-01

    Utilize lipopeptide vaccine delivery system to develop a vaccine candidate against Group A Streptococcus. Lipopeptides synthesized by solid-phase peptide synthesis-bearing carboxyl (C)-terminal and amino (N)-terminal Group A Streptococcus peptide epitopes. Nanoparticles formed were evaluated in vivo. Immune responses were induced in mice without additional adjuvant. We demonstrated for the first time that incorporation of the C-terminal epitope significantly enhanced the N-terminal epitope-specific antibody response and correlated with forming smaller nanoparticles. Antigen-presenting cells had increased uptake and maturation by smaller, more immunogenic nanoparticles. Antibodies raised by vaccination recognized isolates. Demonstrated the lipopeptidic nanoparticles to induce an immune response which can be influenced by the combined effect of epitope choice and size.

  14. Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  15. Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E

    DOE PAGES

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.; ...

    2016-02-12

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  16. Mutant MHC class II epitopes drive therapeutic immune responses to cancer.

    PubMed

    Kreiter, Sebastian; Vormehr, Mathias; van de Roemer, Niels; Diken, Mustafa; Löwer, Martin; Diekmann, Jan; Boegel, Sebastian; Schrörs, Barbara; Vascotto, Fulvia; Castle, John C; Tadmor, Arbel D; Schoenberger, Stephen P; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2015-04-30

    Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient's tumour possesses a unique set of mutations ('the mutanome') that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient's individual tumour-specific mutations. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4(+) T cells. Vaccination with such CD4(+) immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4(+) T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo-epitope

  17. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes

    PubMed Central

    Nair, Smita K.; Tomaras, Georgia D.; Sales, Ana Paula; Boczkowski, David; Chan, Cliburn; Plonk, Kelly; Cai, Yongting; Dannull, Jens; Kepler, Thomas B.; Pruitt, Scott K.; Weinhold, Kent J.

    2014-01-01

    Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19. PMID:24755960

  18. Effective Induction of Simian Immunodeficiency Virus-Specific Cytotoxic T Lymphocytes in Macaques by Using a Multiepitope Gene and DNA Prime-Modified Vaccinia Virus Ankara Boost Vaccination Regimen

    PubMed Central

    Hanke, Tomas; Samuel, Rachel V.; Blanchard, Tom J.; Neumann, Veronica C.; Allen, Todd M.; Boyson, Jon E.; Sharpe, Sally A.; Cook, Nicola; Smith, Geoffrey L.; Watkins, David I.; Cranage, Martin P.; McMichael, Andrew J.

    1999-01-01

    DNA and modified vaccinia virus Ankara (MVA) are vaccine vehicles suitable and safe for use in humans. Here, by using a multicytotoxic T-lymphocyte (CTL) epitope gene and a DNA prime-MVA boost vaccination regimen, high levels of CTLs specific for a single simian immunodeficiency virus (SIV) gag-derived epitope were elicited in rhesus macaques. These vaccine-induced CTLs were capable of killing SIV-infected cells in vitro. Fluorescence-activated cell sorter analysis using soluble tetrameric major histocompatibility complex-peptide complexes showed that the vaccinated animals had 1 to 5% circulating CD8+ lymphocytes specific for the vaccine epitope, frequencies comparable to those in SIV-infected monkeys. Upon intrarectal challenge with pathogenic SIVmac251, no evidence for protection was observed in at least two of the three vaccinated animals. This study does not attempt to define correlates of protective immunity nor design a protective vaccine against immunodeficiency viruses, but it demonstrates clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques. It also shows that powerful tools for studying the role of CTLs in the control of SIV and human immunodeficiency virus infections are now available: epitope-based vaccines, a protocol for an effective induction of CTLs in primates, and a simple and sensitive method for quantitation of epitope-specific T cells. The advantages of the DNA prime-MVA boost regimen as well as the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed. PMID:10438842

  19. In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages

    PubMed Central

    Cockburn, Ian A.; Amino, Rogerio; Kelemen, Reka K.; Kuo, Scot C.; Tse, Sze-Wah; Radtke, Andrea; Mac-Daniel, Laura; Ganusov, Vitaly V.; Zavala, Fidel; Ménard, Robert

    2013-01-01

    CD8+ T cells are specialized cells of the adaptive immune system capable of finding and eliminating pathogen-infected cells. To date it has not been possible to observe the destruction of any pathogen by CD8+ T cells in vivo. Here we demonstrate a technique for imaging the killing of liver-stage malaria parasites by CD8+ T cells bearing a transgenic T cell receptor specific for a parasite epitope. We report several features that have not been described by in vitro analysis of the process, chiefly the formation of large clusters of effector CD8+ T cells around infected hepatocytes. The formation of clusters requires antigen-specific CD8+ T cells and signaling by G protein-coupled receptors, although CD8+ T cells of unrelated specificity are also recruited to clusters. By combining mathematical modeling and data analysis, we suggest that formation of clusters is mainly driven by enhanced recruitment of T cells into larger clusters. We further show various death phenotypes of the parasite, which typically follow prolonged interactions between infected hepatocytes and CD8+ T cells. These findings stress the need for intravital imaging for dissecting the fine mechanisms of pathogen recognition and killing by CD8+ T cells. PMID:23674673

  20. Identification of an immunodominant region of Fel d 1 and characterization of constituent epitopes.

    PubMed

    Bateman, E A L; Ardern-Jones, M R; Ogg, G S

    2008-11-01

    Characterization of T cell epitopes restricted by common HLA alleles is a powerful tool in the understanding of the immune responses to allergens and for the identification of potential peptides for future peptide immunotherapy (PIT). One important requirement is the identification and use of peptides that will bind to HLA molecules covering a large proportion of the population. To identify commonly recognized CD4(+) T cell epitopes in Fel d 1, restricted through frequently expressed HLA molecules for potential future use in PIT. HLA matched antigen presenting cells, HLA blocking antibodies, and peptide truncations were used in ELISpot assays to establish HLA-restricted T cell epitopes. Cytokine responses were measured by ex vivo and cultured IFN-gamma, IL-4, and IL-10 ELISpots. Responses to an immunodominant region of chain 2 were identified in the majority of atopic individuals and epitopes restricted by HLA-DQB1(*)06 and -DPB1(*)0401 were characterized in detail. Significantly higher ex vivo IL-4 and lower IFN-gamma responses were observed to both epitopes in individuals with atopic dermatitis (AD) compared with those without disease. IL-10 responses were significantly lower in those with AD in the individuals with HLA-DPB1(*)0401. We have identified an immunodominant region of Fel d 1 which is frequently recognized by CD4(+) T cells from atopic individuals and contains epitopes that are restricted by very common HLA alleles.