Sample records for t-cell mediated immunocompetence

  1. The PHA Test Reflects Acquired T-Cell Mediated Immunocompetence in Birds

    PubMed Central

    Tella, José L.; Lemus, Jesús A.; Carrete, Martina; Blanco, Guillermo

    2008-01-01

    Background cological immunology requires techniques to reliably measure immunocompetence in wild vertebrates. The PHA-skin test, involving subcutaneous injection of a mitogen (phytohemagglutinin, PHA) and measurement of subsequent swelling as a surrogate of T-cell mediated immunocompetence, has been the test of choice due to its practicality and ease of use in the field. However, mechanisms involved in local immunological and inflammatory processes provoked by PHA are poorly known, and its use and interpretation as an acquired immune response is currently debated. Methodology Here, we present experimental work using a variety of parrot species, to ascertain whether PHA exposure produces larger secondary than primary responses as expected if the test reflects acquired immunocompetence. Moreover, we simultaneously quantified T-lymphocyte subsets (CD4+, CD5+ and CD8+) and plasma proteins circulating in the bloodstream, potentially involved in the immunological and inflammatory processes, through flow cytometry and electrophoresis. Principal Findings Our results showed stronger responses after a second PHA injection, independent of species, time elapsed and changes in body mass of birds between first and second injections, thus supporting the adaptive nature of this immune response. Furthermore, the concomitant changes in the plasma concentrations of T-lymphocyte subsets and globulins indicate a causal link between the activation of the T-cell mediated immune system and local tissue swelling. Conclusions/Significance These findings justify the widespread use of the PHA-skin test as a reliable evaluator of acquired T-cell mediated immunocompetence in diverse biological disciplines. Further experimental research should be aimed at evaluating the relative role of innate immunocompetence in wild conditions, where the access to dietary proteins varies more than in captivity, and to ascertain how PHA responses relate to particular host-parasite interactions. PMID:18820730

  2. Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches

    PubMed Central

    Hawley, Dana M; Sydenstricker, Keila V; Kollias, George V; Dhondt, André A

    2005-01-01

    Evidence is accumulating that genetic variation within individual hosts can influence their susceptibility to pathogens. However, there have been few opportunities to experimentally test this relationship, particularly within outbred populations of non-domestic vertebrates. We performed a standardized pathogen challenge in house finches (Carpodacus mexicanus) to test whether multilocus heterozygosity across 12 microsatellite loci predicts resistance to a recently emerged strain of the bacterial pathogen, Mycoplasma gallisepticum (MG). We simultaneously tested whether the relationship between heterozygosity and pathogen susceptibility is mediated by differences in cell-mediated or humoral immunocompetence. We inoculated 40 house finches with MG under identical conditions and assayed both humoral and cell-mediated components of the immune response. Heterozygous house finches developed less severe disease when infected with MG, and they mounted stronger cell-mediated immune responses to phytohaemagglutinin. Differences in cell-mediated immunocompetence may, therefore, partly explain why more heterozygous house finches show greater resistance to MG. Overall, our results underscore the importance of multilocus heterozygosity for individual pathogen resistance and immunity. PMID:17148199

  3. Dynamics of circulating gamma delta T cell activity in an immunocompetent mouse model of high-grade glioma

    USDA-ARS?s Scientific Manuscript database

    Human gamma delta T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 m...

  4. In kittiwakes food availability partially explains the seasonal decline in humoral immunocompetence

    USGS Publications Warehouse

    Gasparini, J.; Roulin, A.; Gill, V.A.; Hatch, Shyla A.; Boulinier, T.

    2006-01-01

    1. The immune system plays an important role in fitness, and interindividual variation in immunocompetence is due to several factors including food supply. 2. Seasonal variation in food resources may therefore explain why immunocompetence in bird nestlings usually declines throughout the breeding season, with chicks born early in the season receiving more food than chicks born later, and thereby possibly developing a more potent immune system. Although there are studies supporting this hypothesis, none has been experimental. 3. We performed an experiment in the kittiwake Rissa tridactyla by manipulating the food supply of pairs that were left to produce a first brood, and of pairs that were induced to produce a late replacement brood. 4. If food supply mediates, at least partially, seasonal variations in chick immunocompetence, non-food-supplemented chicks would show a stronger seasonal decline in immunocompetence than food-supplemented chicks. 5. Food supplementation improved humoral immunocompetence (the production of immunoglobulins Y), but not T-cell immunocompetence (phytohaemagglutinin, PHA response). T-cell immunocompetence of food-supplemented and non-food- supplemented chicks decreased through the season but to a similar extent, whereas the humoral immunocompetence of non-food-supplemented chicks decreased more strongly than that of food-supplemented chicks. 6. Our results suggest that the seasonal decline in humoral immunocompetence can be explained, at least partly, by variations in food supply throughout the breeding season. ?? 2006 British Ecological Society.

  5. Reduction of EGP-2-positive pulmonary metastases by bispecific-antibody-redirected T cells in an immunocompetent rat model.

    PubMed

    Kroesen, B J; Helfrich, W; Bakker, A; Wubbena, A S; Bakker, H; Kal, H B; The, T H; de Leij, L

    1995-06-09

    Effectiveness of bispecific-monoclonal-antibody (BsMAb)-mediated cellular anti-tumour activity was evaluated in vitro and in vivo in relation to the additional need for T-cell activation in a new immunocompetent rat tumour model. L37 tumour cells, derived from a squamous-cell carcinoma of the lung of Wag/Rij rats, were transfected with the cDNA coding for the human 38-kDa transmembrane pan-carcinoma-associated antigen EGP-2. Intravenous inoculation of EGP-2-positive L37 cells resulted in a rapid outgrowth of EGP-2-positive tumour nodules in the lungs. A BsMAb BIS-19, recognizing EGP-2 on the transfected tumour cells and the T-cell receptor of the rat, was made and allowed specific lysis of EGP-2-transfected L37 tumour cells by activated rat T lymphocytes in vitro. In vivo T-cell activation, assessed by up-regulation of IL-2-receptor expression, could be induced by daily injection of rat rIL-2. Intravenous treatment of tumour-bearing EGP-2-positive L37 tumour with BIS-19 together with rat rIL-2 resulted in almost complete disappearance of established tumour. In contrast, animals treated with BIS-19 alone, IL-2 alone or a combination of anti-EGP-2, anti-TcR and IL-2 showed much less or no tumour reduction. These results show effectiveness of systemic treatment with BsMAbs to induce anti-tumour activity in established tumours. Immune activation prior to or during treatment with BsMAbs, as achieved with IL-2, appears to be a prerequisite for successful treatment.

  6. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation

    PubMed Central

    Huang, Weishan; August, Avery

    2015-01-01

    T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115

  7. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus

    NASA Astrophysics Data System (ADS)

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  8. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    PubMed

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  9. Cell phenotypic change due to Cryptosporidium parvum infection in immunocompetent mice.

    PubMed

    Codices, Vera; Martins, Catarina; Novo, Carlos; Pinho, Mário; de Sousa, Bruno; Lopes, Angela; Borrego, Miguel; Matos, Olga

    2013-03-01

    Cryptosporidium parvum is an intracellular parasite causing enteritis which can become life-threatening in immunocompromised host. Immunoregulatory T cells play a central role in the regulatory network of the host. Here, we proposed to characterize the populations of immune cells during infection and reinfection with C. parvum. Four-week-old BALB/C mice were inoculated with oocysts of C. parvum at days 0 and 22. Fecal and blood samples, spleens, and small intestines were collected for analysis. Peripheral blood and spleen cell populations were characterized by flow cytometry. After infection (days 0 to 21), mice presented higher values of neutrophils, eosinophils, NK cells and CD4(+)CD25(high) T cells in peripheral blood. After reinfection, this upward trend continued in the following days for all four populations in infected mice. At day 35, infected mice presented similar values to the control group, except for CD4(+)CD25(high) T cells, which remained higher in infected mice. A possible correlation between alterations in blood and spleen cell populations was also studied, but no consistent association could be established. Small intestine sections were screened for intracellular stages of the parasite but no evidence of pathology was observed. Here, we report information which may be important for the understanding of the specific cell-mediated response in immunocompetent mice to C. parvum infection. Although some questions remain unanswered and complementary studies are needed, our results are expected to contribute to a better understanding of innate and Treg cells role in the clearance process of this parasite.

  10. Treatment of a Solid Tumor Using Engineered Drug-Resistant Immunocompetent Cells and Cytotoxic Chemotherapy

    PubMed Central

    Dasgupta, Anindya; Shields, Jordan E.

    2012-01-01

    Abstract Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches. PMID:22397715

  11. Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting.

    PubMed

    Slaney, Clare Y; von Scheidt, Bianca; Davenport, Alexander J; Beavis, Paul A; Westwood, Jennifer A; Mardiana, Sherly; Tscharke, David C; Ellis, Sarah; Prince, H Miles; Trapani, Joseph A; Johnstone, Ricky W; Smyth, Mark J; Teng, Michele W; Ali, Aesha; Yu, Zhiya; Rosenberg, Steven A; Restifo, Nicholas P; Neeson, Paul; Darcy, Phillip K; Kershaw, Michael H

    2017-05-15

    Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model. Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors. Results: ACTIV therapy induced durable complete remission of a variety of Her2 + tumors, some in excess of 150 mm 2 , in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL2, but were independent of IFNγ. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient. Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissues. Clin Cancer Res; 23(10); 2478-90. ©2016 AACR . ©2016 American Association for Cancer Research.

  12. T Lymphocytes Do Not Directly Mediate the Protective Effect of Estrogen on Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Polanczyk, Magdalena J.; Jones, Richard E.; Subramanian, Sandhya; Afentoulis, Michael; Rich, Cathleen; Zakroczymski, Melissa; Cooke, Paul; Vandenbark, Arthur A.; Offner, Halina

    2004-01-01

    Gender influences mediated by 17β-estradiol (E2) have been associated with susceptibility to and severity of autoimmune diseases such as diabetes, arthritis, and multiple sclerosis. In this regard, we have shown that estrogen receptor-α (Esr1) is crucial for the protective effect of 17β-estradiol (E2) in murine experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis. The expression of estrogen receptors among various immune cells (eg, T and B lymphocytes, antigen-presenting cells) suggests that the therapeutic effect of E2 is likely mediated directly through specific receptor binding. However, the target immune cell populations responsive to E2 treatment have not been identified. In the current study, we induced EAE in T-cell-deficient, severe combined immunodeficient mice or in immunocompetent mice with encephalitogenic T cells from wild-type Esr1+/+ or Esr1 knockout (Esr1−/−) donors and compared the protective E2 responses. The results showed that E2-responsive, Esr1+/+ disease-inducing encephalitogenic T cells were neither necessary nor sufficient for E2-mediated protection from EAE. Instead, the therapeutic response appeared to be mediated through direct effects on nonlymphocytic, E2-responsive cells and down-regulation of the inflammatory response in the central nervous system. These results provide the first demonstration that the protective effect of E2 on EAE is not mediated directly through E2-responsive T cells and raise the alternative possibility that nonlymphocytic cells such as macrophages, dendritic cells, or other nonlymphocytic cells are primarily responsive to E2 treatment in EAE. PMID:15579449

  13. CD4+ T-Cell-Independent Secondary Immune Responses to Pneumocystis Pneumonia

    PubMed Central

    de la Rua, Nicholas M.; Samuelson, Derrick R.; Charles, Tysheena P.; Welsh, David A.; Shellito, Judd E.

    2016-01-01

    Pneumocystis pneumonia is a major cause of morbidity and mortality among immunocompromised patients, especially in the context of HIV/AIDS. In the murine model of Pneumocystis pneumonia, CD4+ T-cells are required for clearance of a primary infection of Pneumocystis, but not the memory recall response. We hypothesized that the memory recall response in the absence of CD4+ T-cells is mediated by a robust memory humoral response, CD8+ T-cells, and IgG-mediated phagocytosis by alveolar macrophages. To investigate the role of CD8+ T-cells and alveolar macrophages in the immune memory response to Pneumocystis, mice previously challenged with Pneumocystis were depleted of CD8+ T-cells or alveolar macrophages prior to re-infection. Mice depleted of CD4+ T-cells prior to secondary challenge cleared Pneumocystis infection within 48 h identical to immunocompetent mice during a secondary memory recall response. However, loss of CD8+ T-cells or macrophages prior to the memory recall response significantly impaired Pneumocystis clearance. Specifically, mice depleted of CD8+ T-cells or alveolar macrophages had significantly higher fungal burden in the lungs. Furthermore, loss of alveolar macrophages significantly skewed the lung CD8+ T-cell response toward a terminally differentiated effector memory population and increased the percentage of IFN-γ+ CD8+ T-cells. Finally, Pneumocystis-infected animals produced significantly more bone marrow plasma cells and Pneumocystis-specific IgG significantly increased macrophage-mediated killing of Pneumocystis in vitro. These data suggest that secondary immune memory responses to Pneumocystis are mediated, in part, by CD8+ T-cells, alveolar macrophages, and the production of Pneumocystis-specific IgG. PMID:27242785

  14. An integrated view of suppressor T cell subsets in immunoregulation

    PubMed Central

    Jiang, Hong; Chess, Leonard

    2004-01-01

    The immune system evolved to protect organisms from a virtually infinite variety of disease-causing agents but to avoid harmful responses to self. Because immune protective mechanisms include the elaboration of potent inflammatory molecules, antibodies, and killer cell activation — which together can not only destroy invading microorganisms, pathogenic autoreactive cells, and tumors, but also mortally injure normal cells — the immune system is inherently a “double-edged sword” and must be tightly regulated. Immune response regulation includes homeostatic mechanisms intrinsic to the activation and differentiation of antigen-triggered immunocompetent cells and extrinsic mechanisms mediated by suppressor cells. This review series will focus on recent advances indicating that distinct subsets of regulatory CD4+ and CD8+ T cells as well as NK T cells control the outgrowth of potentially pathogenic antigen-reactive T cells and will highlight the evidence that these suppressor T cells may play potentially important clinical roles in preventing and treating immune-mediated disease. Here we provide a historical overview of suppressor cells and the experimental basis for the existence of functionally and phenotypically distinct suppressor subsets. Finally, we will speculate on how the distinct suppressor cell subsets may function in concert to regulate immune responses. PMID:15520848

  15. Acid sphingomyelinase mediates human CD4+ T-cell signaling: potential roles in T-cell responses and diseases

    PubMed Central

    Bai, Aiping; Guo, Yuan

    2017-01-01

    Acid sphingomyelinase (ASM) is a lipid hydrolase. By generating ceramide, ASM had been reported to have an important role in regulating immune cell functions inclusive of macrophages, NK cells, and CD8+ T cells, whereas the role of ASM bioactivity in regulation of human CD4+ T-cell functions remained uncertain. Recent studies have provided novel findings in this field. Upon stimulation of CD3 and/or CD28, ASM-dependent ceramide signaling mediates intracellular downstream signal cascades of CD3 and CD28, and regulates CD4+ T-cell activation and proliferation. Meanwhile, CD39 and CD161 have direct interactions with ASM, which mediates downstream signals inclusive of STAT3 and mTOR and thus defines human Th17 cells. Intriguingly, ASM mediates Th1 responses, but negatively regulates Treg functions. In this review, we summarized the pivotal roles of ASM in regulation of human CD4+ T-cell activation and responses. ASM/sphingolipid signaling may be a novel target for the therapy of human autoimmune diseases. PMID:28749465

  16. T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell

    PubMed Central

    Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.

    2014-01-01

    Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385

  17. Does clutch size evolve in response to parasites and immunocompetence?

    USGS Publications Warehouse

    Martin, T.E.; Moller, A.P.; Merino, S.; Clobert, J.

    2001-01-01

    Parasites have been argued to influence clutch size evolution, but past work and theory has largely focused on within-species optimization solutions rather than clearly addressing among-species variation. The effects of parasites on clutch size variation among species can be complex, however, because different parasites can induce age-specific differences in mortality that can cause clutch size to evolve in different directions. We provide a conceptual argument that differences in immunocompetence among species should integrate differences in overall levels of parasite-induced mortality to which a species is exposed. We test this assumption and show that mortality caused by parasites is positively correlated with immunocompetence measured by cell-mediated measures. Under life history theory, clutch size should increase with increased adult mortality and decrease with increased juvenile mortality. Using immunocompetence as a general assay of parasite-induced mortality, we tested these predictions by using data for 25 species. We found that clutch size increased strongly with adult immunocompetence. In contrast, clutch size decreased weakly with increased juvenile immunocompetence. But, immunocompetence of juveniles may be constrained by selection on adults, and, when we controlled for adult immunocompetence, clutch size decreased with juvenile immunocompetence. Thus, immunocompetence seems to reflect evolutionary differences in parasite virulence experienced by species, and differences in age-specific parasite virulence appears to exert opposite selection on clutch size evolution.

  18. Orbital Epstein-Barr Virus-Positive Polymorphic B-Cell Lymphoproliferative Disorder in an Apparently Immunocompetent Woman.

    PubMed

    Abendroth, Michael D; Bayerl, Michael G; Wilkinson, Michael J; Claxton, David F; Specht, Charles S

    2017-12-01

    We report a rare case of Epstein-Barr virus (EBV)-positive polymorphic B-cell lymphoproliferative disorder (LPD) involving the lacrimal gland of a 28-year-old, apparently immunocompetent woman. She presented with a chief complaint of orbital swelling and tenderness and was found to have a lesion involving the right lacrimal gland and distal superior and lateral rectus muscles. Histology of the lesion revealed histiocytes with pleomorphic nuclei, reactive lymphocytes, and scattered cells that resembled the Reed-Sternberg (R-S) cells of classical Hodgkin lymphoma. The R-S-like cells were positive for PAX5 and CD30 and negative for CD15, supporting a diagnosis of polymorphic B-cell LPD. In situ hybridization for EBV-encoded RNA demonstrated the presence of EBV. Most EBV-positive polymorphic B-cell LPDs are associated with immunodeficiency. However, the patient described is HIV-negative and has no identifiable defects in immunoglobulin levels or cell-mediated immunity. This raises the question of whether she has an underlying immunodeficiency resulting from subtle changes in T-cell physiology, or whether chronic EBV infection contributed to her immune dysfunction through an unclear mechanism. The orbital mass partially regressed with chemotherapy, and the patient has done well clinically with no recurrence of this EBV-LPD for over 2 years.

  19. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    PubMed Central

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  20. Antigen-specific and nonspecific mediators of T cell/B cell cooperation. III. Characterization of the nonspecific mediator(s) from different sources.

    PubMed

    Harwell, L; Kappler, J W; Marrack, P

    1976-05-01

    T cell-containing lymphoid populations produce a nonantigen-specific mediator(s) (NSM) which can replace T cell helper function in vitro in the response of B cells to sheep red blood cells (SRBC), but not to the hapten-protein conjugate, trinitrophenyl-keyhole limpet hemocyanin, (TNP-KLH). NSM produced under three conditions: 1) stimulation of KLH-primed cells with KLH; 2) allogeneic stimulation of normal spleen cells; and 3) stimulation of normal spleen cells with Con A (but not PHA) are indistinguishable on the basis of their biologic activity and m.w., estimated as 30 to 40,000 daltons by G-200 chromatography. Production of NSM is dependent on the presence of T cells. The action of NSM on B cells responding to SRBC in the presence of 2-mercaptoethanol is unaffected by severe macrophage depletion. Extensive absorption of NSM with SRBC failed to remove its activity, confirming its nonantigen-specific nature.

  1. [Systemic EBV+ T-cell lymphoproliferative disease of childhood].

    PubMed

    Lemaire, Anne-Sophie; Daussay, Dorothée; Bouchindhomme, Brigitte; Grardel, Nathalie; Botte, Astrid; Copin, Marie-Christine

    2014-08-01

    Systemic EBV+ T-cell lymphoproliferative disease of childhood is a recent entity described in the 2008 World Health Organisation tumours of haematopoietic system and lymphoid tissues as a clonal T-cell EBV+ systemic proliferation. It occurs after acute or chronic active EBV infection. We report the case of a caucasian, immunocompetent 12-year-old girl, with no particular history, who presented with hemophagocytic lymphohistiocytosis in the aftermath of an infectious mononucleosis. Main symptoms were multiple organ failure, hepatosplenomegaly and pancytopenia. Histopathology of peripheral lymph node and bone marrow revealed a T-cell, CD8+, EBV+ lymphoproliferation. An elevated viral load was detected in blood by PCR. The patient died within 3 weeks. Since most of the cases have been reported in Asia and South America, few cases still have been described in Europe. Unlike B-cell lymphoproliferation in immunocompromised individuals, T-cell EBV+ lymphoproliferation occurs in immunocompetent patients and seems to be the consequence of a proliferative disorder of EBV-infected T-cells, attributed to a cytotoxic T-cell response deficiency. These T-cell proliferations are more frequently immunoreactive for CD8 than CD4. A key feature of the diagnosis might be EBV viral load. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Potentiation of T-cell mediated immunity by levamisole.

    PubMed Central

    Renoux, G; Renoux, M; Teller, M N; McMahon, S; Guillaumin, J M

    1976-01-01

    Cell-mediated immunity is a requirement for recognition and elimination of cells and for prevention or treatment of a variety of diseases. Therefore, the development of a product potentially active in increasing immunity involves its testing in assays specific for cell-mediated immunity. The effectiveness of a single administration of levamisole was demonstrated in the rejection of isografts in a male to female C57BL/6 system, and on the enhancement of levels of the delayed type hypersensitivity (DTH) to sheep red cells (SRBC). Indeed, in five on nine tests, an injection of 25 mg/kg of levamisole to female recipients either on the day of grafting or 7 days after grafting resulted in a RT50% rejection time of 25 days, compared with 46 days in untreated controls. Levamisole administered at the time of immunization with various doses of SRBC elicited earlier, higher and more sustained DTH levels than in untreated controls. Such induction of T-cell activation was accompanied by a switch on anti-SRBC antibodies from IgM to IgG. These findings confirm and extend data evidencing the ability of levamisole to recruit and activate T cells for an increased or restored cell-mediated immunity. PMID:782749

  3. An early history of T cell-mediated cytotoxicity.

    PubMed

    Golstein, Pierre; Griffiths, Gillian M

    2018-04-16

    After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications.

  4. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    PubMed

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. A Case Report of NK-Cell Lymphoproliferative Disease With a Wide Involvement of Digestive Tract Develop Into Epstein-Barr Virus Associated NK/T Cell Lymphoma in an Immunocompetent Patient.

    PubMed

    Chen, Haotian; Zhang, Yu; Jiang, Zhinong; Zhou, Wei; Cao, Qian

    2016-03-01

    Epstein-Barr virus (EBV) plays an important role in various diseases. EBV-associated lymphoproliferative disease (LPD) is a rare disease with a canceration tendency. It is difficult to differentiate LPD with involvement of digestive tract from Crohn disease due to similar clinical and endoscopic manifestations. We present a case report of multiple ulcers with esophagus, small bowel and the entire colon involved, proved to be NK-Cell LPD, developed into EBV-associated NK/T Cell lymphoma, in an immunocompetent man who was initially misdiagnosed as Crohn disease.This report underscores that intestinal ulcers should be cautiously diagnosed, for it sometimes could be a precancerous lesion.

  6. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.

    PubMed

    Tsagaratou, Ageliki; González-Avalos, Edahí; Rautio, Sini; Scott-Browne, James P; Togher, Susan; Pastor, William A; Rothenberg, Ellen V; Chavez, Lukas; Lähdesmäki, Harri; Rao, Anjana

    2017-01-01

    TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4 + CD8 + double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).

  7. A Reproducible Immunopotency Assay to Measure Mesenchymal Stromal Cell Mediated T cell Suppression

    PubMed Central

    Bloom, Debra D.; Centanni, John M.; Bhatia, Neehar; Emler, Carol A.; Drier, Diana; Leverson, Glen E.; McKenna, David H.; Gee, Adrian P.; Lindblad, Robert; Hei, Derek J.; Hematti, Peiman

    2014-01-01

    Background The T cell suppressive property of bone marrow derived mesenchymal stromal cells (MSCs) has been considered a major mode of action and basis for their utilization in a number of human clinical trials. However, there is no well-established reproducible assay to measure MSC-mediated T cell suppression. Methods At the University of Wisconsin-Madison Production Assistance for Cellular Therapy (PACT) Center we developed an in vitro quality control T cell suppression immunopotency assay (IPA) which utilizes anti-CD3 and anti-CD28 antibodies to stimulate T cell proliferation. We measured MSC-induced suppression of CD4+ T cell proliferation at various effector to target cell ratios using defined peripheral blood mononuclear cells and in parallel compared to a reference standard MSC product. We calculated an IPA value for suppression of CD4+ T cells for each MSC product. Results Eleven MSC products generated at three independent PACT centers were evaluated for cell surface phenotypic markers and T cell suppressive properties. Flow cytometry results demonstrated typical MSC cell surface marker profiles. There was significant variability in the level of suppression of T cell proliferation with IPA values ranging from 27% to 88%. However, MSC suppression did not correlate with HLA-DR expression. Discussion We have developed a reproducible immunopotency assay to measure allogeneic MSC-mediated suppression of CD4+ T cells. Additional studies may be warranted to determine how these in vitro assay results may correlate with other immunomodulatory properties of MSCs, in addition to evaluating the ability of this assay to predict in vivo efficacy. PMID:25455739

  8. Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells.

    PubMed

    Kunzmann, Volker; Kimmel, Brigitte; Herrmann, Thomas; Einsele, Hermann; Wilhelm, Martin

    2009-02-01

    Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.

  9. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    PubMed Central

    Joshi, Rubin N.; Binai, Nadine A.; Marabita, Francesco; Sui, Zhenhua; Altman, Amnon; Heck, Albert J. R.; Tegnér, Jesper; Schmidt, Angelika

    2017-01-01

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4+CD25− T cells (Tcons) independently of IP3 levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP3 receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer. PMID:28993769

  10. Radioimmunotargeting of human tumour cells in immunocompetent animals.

    PubMed Central

    Fjeld, J. G.; Bruland, O. S.; Benestad, H. B.; Schjerven, L.; Stigbrand, T.; Nustad, K.

    1990-01-01

    A tumour model system is reported that for many purposes may be an alternative to xenografted nude mice. The model allows immunotargeting of human tumour cells in immunocompetent animals. The target cells are contained in i.p. diffusion chambers (DC) with micropore membrane walls that are permeable to molecules, including the cell specific monoclonal antibodies (MoAb), but impermeable to cells. Thus, the tumour cells are protected from the host immunocompetent cells. In the work here presented the model was tested in immunocompetent mice and pigs, with tumour cells and antibody preparations that had demonstrated specific targeting in the nude mouse xenograft model. Hence, the DC were filled with cells from the human cell lines Hep-2 (expressing placental alkaline phosphatase, PLALP), or OHS (a sarcoma cell line), and the MoAb preparations injected i.v. were a 125I-labelled Fab fragment of the PLALP specific antibody H7, or a 125I-labelled F(ab')2 fragment of the sarcoma specific antibody TP-1. Specific targeting of the human tumour cells was demonstrated in both mice and pigs. The target: blood ratios were comparable in the two species, reaching a maximum of about 15 after 24 h with the Fab preparation, and a ratio of 25 after 72 h with the F(ab')2. The target uptake relative to injected dose was lower in pigs than in mice, but the difference between the two species was smaller than expected, presumably due to a slower antibody clearance in the pigs than in the mice. An artificial cell targeting system like this has several advantages in the search for solutions to many of the fundamental problems experienced in immunotargeting. Firstly, parallel binding experiments can be carried out in vitro with the same target. Because in vitro results are only influenced by the diffusion into the DC and the immunological binding characteristics of the antibodies, targeting differences between antibody preparations due to these factors can then be distinguished from differences

  11. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice.

    PubMed

    Li, L; Tu, J; Jiang, Y; Zhou, J; Schust, D J

    2017-05-01

    Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4 -/- mice but not IFN-γ -/- mice into αGC-treated iNKT cell-deficient Jα18 -/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.

  12. T-dependent activation of resting B cells mediated by concanavalin A.

    PubMed

    Ratcliffe, M J; Julius, M H

    1984-03-01

    In cultures containing long-term cultured lines of antigen-specific helper T (Th) cells, normal unprimed B cells and concanavalin A (Con A), induction of B cells to immunoglobulin secretion and DNA synthesis was observed. The plaque-forming cell (PFC) response was large (frequently greater than 75 000 PFC/10(6) input B cells) demonstrating the polyspecific nature of the response. Con A-mediated maturation and induction to DNA synthesis of responding B cells was completely Th cell dependent and inhibited with methyl-alpha-D-mannoside. Both resting and blasted B cells, separated by Percoll density centrifugation, were induced to DNA synthesis and immunoglobulin secretion. Responses were completely unrestricted by the B cell major histocompatibility complex, even at the level of the resting B cell. The polyclonal nature of the response taken together with the Con A-mediated bypassing of T cell specificity and restricting haplotype indicates that this response is analogous to lectin-mediated cytotoxicity.

  13. γδ T Cells Are a Component of Early Immunity against Preerythrocytic Malaria Parasites

    PubMed Central

    McKenna, Kyle C.; Tsuji, Moriya; Sarzotti, Marcella; Sacci, John B.; Witney, Adam A.; Azad, Abdu F.

    2000-01-01

    We tested the hypothesis that γδ T cells are a component of an early immune response directed against preerythrocytic malaria parasites that are required for the induction of an effector αβ T-cell immune response generated by irradiated-sporozoite (irr-spz) immunization. γδ T-cell-deficient (TCRδ−/−) mice on a C57BL/6 background were challenged with Plasmodium yoelii (17XNL strain) sporozoites, and then liver parasite burden was measured at 42 h postchallenge. Liver parasite burden was measured by quantification of parasite-specific 18S rRNA in total liver RNA by quantitative-competitive reverse transcription-PCR and by an automated 5′ exonuclease PCR. Sporozoite-challenged TCRδ−/− mice showed a significant (P < 0.01) increase in liver parasite burden compared to similarly challenged immunocompetent mice. In support of this result, TCRδ−/− mice were also found to be more susceptible than immunocompetent mice to a sporozoite challenge when blood-stage parasitemia was used as a readout. A greater percentage of TCRδ−/− mice than of immunocompetent mice progressed to a blood-stage infection when challenged with five or fewer sporozoites (odds ratio = 2.35, P = 0.06). TCRδ−/− mice receiving a single irr-spz immunization showed percent inhibition of liver parasites comparable to that of immunized immunocompetent mice following a sporozoite challenge. These data support the hypothesis that γδ T cells are a component of early immunity directed against malaria preerythrocytic parasites and suggest that γδ T cells are not required for the induction of an effector αβ T-cell immune response generated by irr-spz immunization. PMID:10722623

  14. PD-L1, B7-H3, and PD-1 expression in immunocompetent vs. immunosuppressed patients with cutaneous squamous cell carcinoma.

    PubMed

    Varki, Vinod; Ioffe, Olga B; Bentzen, Soren M; Heath, Jon; Cellini, Ashley; Feliciano, Josephine; Zandberg, Dan P

    2018-05-01

    To characterize the expression of co-signaling molecules PD-L1, PD-1, and B7-H3 in cutaneous squamous cell carcinoma (cSCC) by immune status. We retrospectively analyzed 66 cases of cSCC treated with surgical resection from 2012 to 2015. Immunostained tumor sections were analyzed for percent of tumor cells expressing PD-L1 (Tum-PD-L1%), B7-H3 (Tum-B7-H3%), density of peri and intratumoral CD8 T cells (CD8 density), proportion of CD8 T cells expressing PD-1 (CD8-PD-1%) and of tumor-infiltrating immune cells (TII) expressing PD-L1 (TII-PD-L1%). Of 66 cases, 42 were immunocompetent, 24 immunosuppressed (13 organ transplant, 8 HIV+, 3 other). Defining positive expression at > 5%, 26% of tumors were positive for PD-L1, 85% for B7-H3, 80% had CD8 T cells that expressed PD-1 and 55% had TII that expressed PD-L1. Tum-B7-H3% was significantly higher (median 60 vs. 28%, p = 0.025) in immunocompetent vs. immunosuppressed patients, including when factoring in cause of immunosuppression. No significant difference in Tum-PD-L1%, TII-PD-L1%, CD8 density, or CD8-PD-1% was observed. Tumors from HIV+ patients lacked PD-L1 expression, and had lower B7-H3% (median 2.5 vs. 60%, p = 0.007), and higher CD8 density (median 75% vs. 40%, p = 0.04) compared to immunocompetent patients. Higher tumor grade (R s  = 0.34, p = 0.006) and LVI (R s  = 0.61, p < 0.001) were both associated with higher Tum-PD-L1%. cSCC showed expression of PD-L1 on tumor in 26% of cases, and high tumor B7-H3 expression (85%) and PD-1 expression on CD8 TILs (80%). Tumor B7-H3 expression was significantly higher in immunocompetent vs. immunosuppressed patients, largely driven by very low expression in HIV+ patients.

  15. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells.

    PubMed

    Liu, Feng; Bu, Zhouyan; Zhao, Feng; Xiao, Daping

    2018-01-01

    MicroRNA (miR)-451 is a cell metabolism-related miRNA that can mediate cell energy-consuming models by several targets. As miR-451 can promote mechanistic target of rapamycin (mTOR) activity, and increased mTOR activity is related to increased differentiation of T-helper 17 (Th17) cells, we sought to investigate whether miR-451 can redistribute from cancer cells to infiltrated T cells and enhance the distribution of Th17 cells through mTOR. Real-time PCR was used for detecting expression of miR-451 in gastric cancer, tumor infiltrated T cells and exosomes, and distribution of Th17 was evaluated by both flow cytometry and immunohistochemistry (IHC). Immunofluorescence staining was used in monitoring the exosome-enveloped miR-451 from cancer cells to T cells with different treatments, and signaling pathway change was analyzed by western blot. miR-451 decreased significantly in gastric cancer (GC) tissues but increased in infiltrated T cells and exosomes; tumor miR-451 was negatively related to infiltrated T cells and exosome miR-451. Exosome miR-451 can not only serve as an indicator for poor prognosis of post-operation GC patients but is also related to increased Th17 distribution in gastric cancer. miR-451 can redistribute from cancer cells to T cells with low glucose treatment. Decreased 5' AMP-activated protein kinase (AMPK) and increased mTOR activity was investigated in miR-451 redistributed T cells and the Th17 polarized differentiation of these T cells were also increased. Exosome miR-451 derived from tumor tissues can serve as an indicator for poor prognosis and redistribution of miR-451 from cancer cells to infiltrated T cells in low glucose treatment can enhance Th17 differentiation by enhancing mTOR activity. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. A subset of IL-10-producing gammadelta T cells protect the liver from Listeria-elicited, CD8(+) T cell-mediated injury.

    PubMed

    Rhodes, Katherine A; Andrew, Elizabeth M; Newton, Darren J; Tramonti, Daniela; Carding, Simon R

    2008-08-01

    Although gammadelta T cells play a role in protecting tissues from pathogen-elicited damage to bacterial, viral and parasitic pathogens, the mechanisms involved in the damage and in the protection have not been clearly elucidated. This has been addressed using a murine model of listeriosis, which in mice lacking gammadelta T cells (TCRdelta(-/-)) is characterised by severe and extensive immune-mediated hepatic necrosis. We show that these hepatic lesions are caused by Listeria-elicited CD8(+) T cells secreting high levels of TNF-alpha that accumulate in the liver of Listeria-infected TCRdelta(-/-) mice. Using isolated populations of gammadelta T cells from wild-type and cytokine-deficient strains of mice to reconstitute TCRdelta(-/-) mice, the TCR variable gene 4 (Vgamma4)(+) subset of gammadelta T cells was shown to protect against liver injury. Hepatoprotection was dependent upon their ability to produce IL-10 after TCR-mediated interactions with Listeria-elicited macrophages and CD8(+) T cells. IL-10-producing Vgamma4(+) T cells also contribute to controlling CD8(+) T cell expansion and to regulating and reducing TNF-alpha secretion by activated CD8(+) T cells. This effect on TNF-alpha production was directly attributed to IL-10. These findings identify a novel mechanism by which pathogen-elicited CD8(+) T cells are regulated via interactions with, and activation of, IL-10-producing hepatoprotective gammadelta T cells.

  17. Fibrin facilitates both innate and T cell-mediated defense against Yersinia pestis.1

    PubMed Central

    Luo, Deyan; Lin, Shiuan; Parent, Michelle A.; Kanevsky, Isis Mullarky; Szaba, Frank M.; Kummer, Lawrence W.; Duso, Debra K.; Tighe, Michael; Hill, Jim; Gruber, Andras; Mackman, Nigel; Gailani, David; Smiley, Stephen T.

    2013-01-01

    The gram-negative bacterium Yersinia pestis causes plague, a rapidly progressing and often fatal disease. The formation of fibrin at sites of Y. pestis infection supports innate host defense against plague, perhaps by providing a non-diffusible spatial cue that promotes the accumulation of inflammatory cells expressing fibrin-binding integrins. This report demonstrates that fibrin is an essential component of T cell-mediated defense against plague but can be dispensable for antibody-mediated defense. Genetic or pharmacologic depletion of fibrin abrogated innate and T cell-mediated defense in mice challenged intranasally with Y. pestis. The fibrin-deficient mice displayed reduced survival, increased bacterial burden, and exacerbated hemorrhagic pathology. They also showed fewer neutrophils within infected lung tissue and reduced neutrophil viability at sites of liver infection. Depletion of neutrophils from wild type mice weakened T cell-mediated defense against plague. The data suggest that T cells combat plague in conjunction with neutrophils, which require help from fibrin in order to withstand Y. pestis encounters and effectively clear bacteria. PMID:23487423

  18. Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence.

    PubMed

    Bou Sleiman, Maroun S; Osman, Dani; Massouras, Andreas; Hoffmann, Ary A; Lemaitre, Bruno; Deplancke, Bart

    2015-07-27

    Gut immunocompetence involves immune, stress and regenerative processes. To investigate the determinants underlying inter-individual variation in gut immunocompetence, we perform enteric infection of 140 Drosophila lines with the entomopathogenic bacterium Pseudomonas entomophila and observe extensive variation in survival. Using genome-wide association analysis, we identify several novel immune modulators. Transcriptional profiling further shows that the intestinal molecular state differs between resistant and susceptible lines, already before infection, with one transcriptional module involving genes linked to reactive oxygen species (ROS) metabolism contributing to this difference. This genetic and molecular variation is physiologically manifested in lower ROS activity, lower susceptibility to ROS-inducing agent, faster pathogen clearance and higher stem cell activity in resistant versus susceptible lines. This study provides novel insights into the determinants underlying population-level variability in gut immunocompetence, revealing how relatively minor, but systematic genetic and transcriptional variation can mediate overt physiological differences that determine enteric infection susceptibility.

  19. CD49a promotes T-cell-mediated hepatitis by driving T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Chen, Yonglin; Peng, Hui; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-01-01

    It is becoming increasingly clear that the T-cell-mediated immune response is important in many diseases. In this study, we used concanavalin A (Con A) -induced hepatitis to investigate the role of CD49a in the molecular and cellular mechanism of the T-cell-mediated immune response. We found that CD49a−/− mice had significantly reduced levels of serum alanine aminotransferase and were protected from Con A-induced hepatitis. CD49a deficiency led to decreased production of interferon-γ (IFN-γ) and interleukin-17A (IL-17A) after Con A injection. Furthermore, we found that hepatic CD4+ T cells and invariant natural killer T cells up-regulated CD49a expression, along with enhanced activation after Con A injection, leading to production of inflammatory cytokines by these T cells. Blockade of CD49a in vivo ameliorated Con A-induced hepatitis with reduced production of IFN-γ and IL-17A. Hence, CD49a promoted Con A-induced hepatitis through enhancing inflammatory cytokine production (IFN-γ and IL-17A) by CD4+ T and invariant natural killer T cells. The protective effect of CD49a blockade antibody suggested a new target therapeutic molecule for intervention of T-cell-mediated liver injury. PMID:24164540

  20. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism.

    PubMed

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S; Tellides, George; Lakkis, Fadi G

    2004-01-01

    CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.

  1. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism

    PubMed Central

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S.; Tellides, George; Lakkis, Fadi G.

    2004-01-01

    CD4+CD25+ regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8+ T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8+ T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8+ T cells was observed when Treg cells lacked CD30 or when CD30 ligand–CD30 interaction was blocked with anti–CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses. PMID:14722622

  2. The pan-ErbB tyrosine kinase inhibitor canertinib induces caspase-mediated cell death in human T-cell leukemia (Jurkat) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinks, Cecilia, E-mail: Cecilia.trinks@liu.se; Severinsson, Emelie A., E-mail: Emelie.severinsson@liu.se; Holmlund, Birgitta, E-mail: Birgitta.holmlund@lio.se

    2011-07-08

    Highlights: {yields} Canertinib induces caspase-mediated apoptosis in T-cell leukemia cells in vitro. {yields} Canertinib mediates activation of the intrinsic apoptotic pathway. {yields} Canertinib induces apoptosis in an ErbB receptor independent manner. {yields} Lymphocyte specific proteins as well as survival kinases are inhibited. {yields} Canertinib may act as a multi-kinase inhibiting drug in human T-cell malignancies. -- Abstract: Canertinib is a novel ErbB-receptor inhibitor currently in clinical development for the treatment of solid tumors overexpressing ErbB-receptors. We have recently demonstrated that canertinib displays anti-proliferative and pro-apoptotic effects in human myeloid leukemia cells devoid of ErbB-receptors. The mechanism mediating these effects aremore » however unknown. In this study, we show that canertinib is able to act as a multi-kinase inhibitor by inhibition of several intracellular kinases involved in T-cell signaling such as Akt, Erk1/2 and Zap-70, and reduced Lck protein expression in the human T-cell leukemia cell line Jurkat. Treatment with canertinib at a concentration of 2 {mu}M caused accumulation of Jurkat cells in the G{sub 1} cell cycle phase and increased doses induced apoptosis in a time-dependent manner. Apoptotic signs of treated cells were detected by Annexin V staining and cleavage of PARP, caspase-3, -8, -9, -10 and Bid. A subset of the pro-apoptotic signals mediated by canertinib could be significantly reduced by specific caspase inhibitors. Taken together, these results demonstrate the dual ability of canertinib to downregulate important signaling pathways and to activate caspase-mediated intrinsic apoptosis pathway in human T-cell leukemia cells.« less

  3. T-cell-mediated immune response to respiratory coronaviruses

    PubMed Central

    Channappanavar, Rudragouda; Zhao, Jincun; Perlman, Stanley

    2014-01-01

    Emerging respiratory coronaviruses such as the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV) pose potential biological threats to humans. SARS and MERS are manifested as severe atypical pneumonia associated with high morbidity and mortality in humans. The majority of studies carried out in SARS-CoV-infected humans and animals attribute a dysregulated/exuberant innate response as a leading contributor to SARS-CoV-mediated pathology. A decade after the 2002–2003 SARS epidemic, we do not have any approved preventive or therapeutic agents available in case of re-emergence of SARS-CoV or other related viruses. A strong neutralizing antibody response generated against the spike (S) glycoprotein of SARS-CoV is completely protective in the susceptible host. However, neutralizing antibody titers and the memory B cell response are short-lived in SARS-recovered patients and the antibody will target primary homologous strain. Interestingly, the acute phase of SARS in humans is associated with a severe reduction in the number of T cells in the blood. Surprisingly, only a limited number of studies have explored the role of the T cell-mediated adaptive immune response in respiratory coronavirus pathogenesis. In this review, we discuss the role of anti-virus CD4 and CD8 T cells during respiratory coronavirus infections with a special emphasis on emerging coronaviruses. PMID:24845462

  4. Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells

    PubMed Central

    Sung, Julia A.M.; Pickeral, Joy; Liu, Liqin; Stanfield-Oakley, Sherry A.; Lam, Chia-Ying Kao; Garrido, Carolina; Pollara, Justin; LaBranche, Celia; Bonsignori, Mattia; Moody, M. Anthony; Yang, Yinhua; Parks, Robert; Archin, Nancie; Allard, Brigitte; Kirchherr, Jennifer; Kuruc, JoAnn D.; Gay, Cynthia L.; Cohen, Myron S.; Ochsenbauer, Christina; Soderberg, Kelly; Liao, Hua-Xin; Montefiori, David; Moore, Paul; Johnson, Syd; Koenig, Scott; Haynes, Barton F.; Nordstrom, Jeffrey L.; Margolis, David M.; Ferrari, Guido

    2015-01-01

    Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell–mediated clearance of HIV-1–infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity–mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected–patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals. PMID:26413868

  5. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    PubMed

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  6. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    PubMed

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Curcumin Inhibits CD4+ T Cell Activation, but Augments CD69 Expression and TGF-β1-Mediated Generation of Regulatory T Cells at Late Phase

    PubMed Central

    Kim, Girak; Jang, Mi Seon; Son, Young Min; Seo, Min Ji; Ji, Sang Yun; Han, Seung Hyun; Jung, In Duk; Park, Yeong-Min; Jung, Hyun Jung; Yun, Cheol-Heui

    2013-01-01

    Background Curcumin is a promising candidate for a natural medicinal agent to treat chronic inflammatory diseases. Although CD4+ T cells have been implicated in the pathogenesis of chronic inflammation, whether curcumin directly regulates CD4+ T cells has not been definitively established. Here, we showed curcumin-mediated regulation of CD2/CD3/CD28-initiated CD4+ T cell activation in vitro. Methodology/Principal Findings Primary human CD4+ T cells were stimulated with anti-CD2/CD3/CD28 antibody-coated beads as an in vitro surrogate system for antigen presenting cell-T cell interaction and treated with curcumin. We found that curcumin suppresses CD2/CD3/CD28-initiated CD4+ T cell activation by inhibiting cell proliferation, differentiation and cytokine production. On the other hand, curcumin attenuated the spontaneous decline of CD69 expression and indirectly increased expression of CCR7, L-selectin and Transforming growth factor-β1 (TGF-β1) at the late phase of CD2/CD3/CD28-initiated T cell activation. Curcumin-mediated up-regulation of CD69 at late phase was associated with ERK1/2 signaling. Furthermore, TGF-β1 was involved in curcumin-mediated regulation of T cell activation and late-phase generation of regulatory T cells. Conclusions/Significance Curcumin not merely blocks, but regulates CD2/CD3/CD28-initiated CD4+ T cell activation by augmenting CD69, CCR7, L-selectin and TGF-β1 expression followed by regulatory T cell generation. These results suggest that curcumin could directly reduce T cell-dependent inflammatory stress by modulating CD4+ T cell activation at multiple levels. PMID:23658623

  8. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming.

    PubMed

    Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M

    2016-02-01

    Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming. © Society for Leukocyte Biology.

  9. Human Follicular Lymphoma CD39+-Infiltrating T Cells Contribute to Adenosine-Mediated T Cell Hyporesponsiveness1

    PubMed Central

    Hilchey, Shannon P.; Kobie, James J.; Cochran, Mathew R.; Secor-Socha, Shelley; Wang, Jyh-Chiang E.; Hyrien, Ollivier; Burack, W. Richard; Mosmann, Tim R.; Quataert, Sally A.; Bernstein, Steven H.

    2010-01-01

    Our previous work has demonstrated that human follicular lymphoma (FL) infiltrating T cells are anergic, in part due to suppression by regulatory T cells. In this study, we identify pericellular adenosine, interacting with T cell-associated G protein-coupled A2A/B adenosine receptors (AR), as contributing to FL T cell hyporesponsiveness. In a subset of FL patient samples, treatment of lymph node mononuclear cells (LNMC) with specific A2A/B AR antagonists results in an increase in IFN-γ or IL-2 secretion upon anti-CD3/CD28 Ab stimulation, as compared with that seen without inhibitors. In contrast, treatment with an A1 AR antagonist had no effect on cytokine secretion. As the rate limiting step for adenosine generation from pericellular ATP is the ecto-ATPase CD39, we next show that inhibition of CD39 activity using the inhibitor ARL 67156 partially overcomes T cell hyporesponsiveness in a subset of patient samples. Phenotypic characterization of LNMC demonstrates populations of CD39-expressing CD4+ and CD8+ T cells, which are overrepresented in FL as compared with that seen in normal or reactive nodes, or normal peripheral blood. Thirty percent of the FL CD4+CD39+ T cells coexpress CD25high and FOXP3 (consistent with regulatory T cells). Finally, FL or normal LNMC hydrolyze ATP in vitro, in a dose- and time-dependent fashion, with the rate of ATP consumption being associated with the degree of CD39+ T cell infiltration. Together, these results support the finding that the ATP-ectonucleotidase-adenosine system mediates T cell anergy in a human tumor. In addition, these studies suggest that the A2A/B AR as well as CD39 are novel pharmacological targets for augmenting cancer immunotherapy. PMID:19864600

  10. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    PubMed

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.

  11. Metastasis Risk of Cutaneous Squamous Cell Carcinoma in Organ Transplant Recipients and Immunocompetent Patients.

    PubMed

    Genders, Roel E; Osinga, Joris A J; Tromp, Elise E; O'Rourke, Peter; Bouwes Bavinck, Jan N; Plasmeijer, Elsemieke I

    2018-06-08

    Organ transplant recipients (OTRs) have a high incidence of cutaneous squamous cell carcinoma (cSCC), and immunosuppression has been reported to be an important risk factor for metastasis. The aim of this study was to identify the metastasis risk over a 10-year period for 593 patients with cSCC, of whom 134 were OTR and 459 were immunocompetent. Metastasis incidence rate was 1,046 (95% confidence interval (95% CI) 524-2,096) per 100,000 person years in OTR and 656 (95% CI; 388-1,107) in immunocompetent patients, yielding an incidence rate ratio of 1.6 (95% CI 0.67-3.81). In OTRs head/neck location, older age at transplantation and older age at diagnosis of first cSCC were associated with metastatic risk, and 7 out of 8 metastasized tumours were smaller than 2 cm. In immunocompetent patients tumour size and tumour depth were associated with metastasis. In conclusion, we were not able to demonstrate an increased incidence rate of metastasis in OTRs compared with immunocompetent patients. However, OTRs and immunocompetent patients differed with regard to risk factors for metastasis.

  12. Intestinal IgA responses to Giardia muris in mice depleted of helper T lymphocytes and in immunocompetent mice.

    PubMed

    Heyworth, M F

    1989-04-01

    Immunocompetent mice infected with Giardia muris generate an intestinal antibody response to this parasite and clear G. muris infection. Previous work has shown that G. muris infection is prolonged in mice that have been depleted of helper (CD4+) T lymphocytes by treatment with a monoclonal antibody (mAb) directed against the murine CD4 antigen. The aim of the present study was to compare the intestinal anti-Giardia antibody response in immunocompetent mice and in mice depleted of helper T (Th) lymphocytes by treatment with anti-CD4 mAb. Immunocompetent mice generated an IgA response to G. muris, as judged by the presence of IgA on Giardia trophozoites harvested from the intestine of these animals more than 10 days after the start of the infection. The anti-Giardia IgA response was impaired in mice depleted of Th lymphocytes, as judged by virtual absence of immunofluorescent staining of trophozoites from these animals for surface-bound IgA. Clearance of G. muris infection was impaired by treatment of mice with anti-CD4 mAb. The results suggest that Th (CD4+) lymphocytes are important for the generation of a local IgA response against G. muris trophozoites in the mouse intestine and that IgA anti-trophozoite antibody may contribute to the clearance of G. muris from the intestine of immunocompetent mice.

  13. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    PubMed

    Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya

    2008-07-16

    Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  14. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    PubMed

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  15. Adenosine production by human B cells and B cell–mediated suppression of activated T cells

    PubMed Central

    Saze, Zenichiro; Schuler, Patrick J.; Hong, Chang-Sook; Cheng, Dongmei; Jackson, Edwin K.

    2013-01-01

    Antibody-independent role of B cells in modulating T-cell responses is incompletely understood. Freshly isolated or cultured B cells isolated from the peripheral blood of 30 normal donors were evaluated for CD39 and CD73 coexpression, the ability to produce adenosine 5′-monophosphate (AMP) and adenosine (ADO) in the presence of exogenous adenosine triphosphate (ATP) as well as A1, A2A, A2B, and A3 adenosine receptor (ADOR) expression. Human circulating B cells coexpress ectonucleotidases CD39 and CD73, hydrolyze exogenous ATP to 5′-AMP and ADO, and express messenger RNA for A1R, A2AR, and A3R. 2-chloroadenosine inhibited B-cell proliferation and cytokine expression, and only A3R selective antagonist restored B-cell functions. This suggested that B cells use the A3R for autocrine signaling and self-regulation. Mediated effects on B-cell growth ± ADOR antagonists or agonists were tested in carboxyfluorescein diacetate succinimidyl ester assays. In cocultures, resting B cells upregulated functions of CD4+ and CD8+ T cells. However, in vitro–activated B cells downregulated CD73 expression, mainly produced 5′-AMP, and inhibited T-cell proliferation and cytokine production. These B cells acquire the ability to restrict potentially harmful effects of activated T cells. Thus, B cells emerge as a key regulatory component of T cell–B cell interactions, and their dual regulatory activity is mediated by the products of ATP hydrolysis, 5′-AMP, and ADO. PMID:23678003

  16. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways

    PubMed Central

    Ramana, Chilakamarti V.; DeBerge, Matthew P.; Kumar, Aseem; Alia, Christopher S.; Durbin, Joan E.

    2015-01-01

    Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8+ T cell effector functions. To isolate the specific contribution of CD8+ T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8+ T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8+ T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8+ T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8+ T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8+ T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8+ T cell-mediated lung immunopathology without the complication of differences in viral load. PMID:25617378

  17. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    PubMed

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  18. Endogenous Memory CD8 T Cells Directly Mediate Cardiac Allograft Rejection

    PubMed Central

    Su, C. A.; Iida, S.; Abe, T.; Fairchild, R. L.

    2014-01-01

    Differences in levels of environmentally induced memory T cells that cross-react with donor MHC molecules are postulated to account for the efficacy of allograft tolerance inducing strategies in rodents versus their failure in nonhuman primates and human transplant patients. Strategies to study the impact of donor-reactive memory T cells on allografts in rodents have relied on the pre-transplant induction of memory T cells cross-reactive with donor allogeneic MHC molecules through recipient viral infection, priming directly with donor antigen, or adoptive transfer of donor-antigen primed memory T cells. Each approach accelerates allograft rejection and confers resistance to tolerance induction, but also biases the T cell repertoire to strong donor-reactivity. The ability of endogenous memory T cells within unprimed mice to directly reject an allograft is unknown. Here we show a direct association between increased duration of cold ischemic allograft storage and numbers and enhanced functions of early graft infiltrating endogenous CD8 memory T cells. These T cells directly mediate rejection of allografts subjected to prolonged ischemia and this rejection is resistant to costimulatory blockade. These findings recapitulate the clinically significant impact of endogenous memory T cells with donor reactivity in a mouse transplant model in the absence of prior recipient priming. PMID:24502272

  19. Female bluethroats enhance offspring immunocompetence through extra-pair copulations.

    PubMed

    Johnsen, A; Andersen, V; Sunding, C; Lifjeld, J T

    2000-07-20

    Female birds frequently copulate with extra-pair males, but the adaptive value of this behaviour is poorly understood. Some studies have suggested that 'good genes' may be involved, where females seek to have their eggs fertilized by high-quality males without receiving any material benefits from them. Nevertheless, it remains to be shown that a genetic benefit is passed on to offspring. Here we report that nestling bluethroats, Luscinia svecica, sired by extra-pair males had a higher T-cell-mediated immune response than their maternal half-siblings raised in the same nest. The difference could not be attributed to nestling body mass, sex or hatching order, but may be an effect of paternal genotype. Extra-pair young were also more immunocompetent than their paternal half-sibs raised in the genetic father's own nest, which indicates an additional effect of maternal genotype. Our results are consistent with the idea that females engage in extra-pair copulations to obtain compatible viability genes, rather than 'good genes' per se.

  20. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  1. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases. Published by Elsevier B.V.

  2. Systemic immunological tolerance to ocular antigens is mediated by TRAIL-expressing CD8+ T cells.

    PubMed

    Griffith, Thomas S; Brincks, Erik L; Gurung, Prajwal; Kucaba, Tamara A; Ferguson, Thomas A

    2011-01-15

    Systemic immunological tolerance to Ag encountered in the eye restricts the formation of potentially damaging immune responses that would otherwise be initiated at other anatomical locations. We previously demonstrated that tolerance to Ag administered via the anterior chamber (AC) of the eye required Fas ligand-mediated apoptotic death of inflammatory cells that enter the eye in response to the antigenic challenge. Moreover, the systemic tolerance induced after AC injection of Ag was mediated by CD8(+) regulatory T cells. This study examined the mechanism by which these CD8(+) regulatory T cells mediate tolerance after AC injection of Ag. AC injection of Ag did not prime CD4(+) T cells and led to increased TRAIL expression by splenic CD8(+) T cells. Unlike wild-type mice, Trail(-/-) or Dr5(-/-) mice did not develop tolerance to Ag injected into the eye, even though responding lymphocytes underwent apoptosis in the AC of the eyes of these mice. CD8(+) T cells from Trail(-/-) mice that were first injected via the AC with Ag were unable to transfer tolerance to naive recipient wild-type mice, but CD8(+) T cells from AC-injected wild-type or Dr5(-/-) mice could transfer tolerance. Importantly, the transferred wild-type (Trail(+/+)) CD8(+) T cells were also able to decrease the number of infiltrating inflammatory cells into the eye; however, Trail(-/-) CD8(+) T cells were unable to limit the inflammatory cell ingress. Together, our data suggest that "helpless" CD8(+) regulatory T cells generated after AC injection of Ag enforce systemic tolerance in a TRAIL-dependent manner to inhibit inflammation in the eye.

  3. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    PubMed Central

    Cobb, Dustin A.; Bhadra, Rajarshi

    2016-01-01

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  4. Release of nitric oxide during the T cell-independent pathway of macrophage activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckerman, K.P.; Rogers, H.W.; Corbett, J.A.

    1993-02-01

    Immunodeficient mice are remarkably resistant to Listeria monocytogenes (LM) infection. The authors examined the role that nitric oxide (NO) plays in the CB-17/lcr SCID (SCID) response to LM. SCID spleen cells produced large quantities of NO (as measured by nitrite formation) when incubated in the presence of heat-killed LM. NO produced large quantities of nitrite in response to LM, but only in the presence of IFN-[gamma]. The production of NO induced by LM was not affected by neutralizing antibodies to TNF or IL-1. The production of NO was inhibited by addition of either of two inhibitors of NO synthase, N[supmore » G]-monomethyl arginine, or aminoguanidine. In a different situation, NK cells that were stimulated by TNF and Listeria products to release IFN-[gamma] did not produce NO. Macrophages cultured with IFN-[gamma] killed live LM. This increased killing of LM was significantly inhibited by amino-guanidine. In vivo, administration of aminoguanidine resulted in a marked increase in the mortality and spleen bacterial loads of LM-infected SCID or immunocompetent control mice. It is concluded that NO is a critical effector molecule of T cell-independent natural resistence of LM as studied in the SCID mouse, and that the NO-mediated response is essential for both SCID and immunocompetent host to survive after LM infection. 37 refs., 7 figs.« less

  5. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.

  6. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  7. Calcium-mediated shaping of naive CD4 T-cell phenotype and function

    PubMed Central

    Guichard, Vincent; Bonilla, Nelly; Durand, Aurélie; Audemard-Verger, Alexandra; Guilbert, Thomas; Martin, Bruno

    2017-01-01

    Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced/peripheral regulatory T cells. To decipher the molecular mechanisms governing this process, we here focus on the TCR signaling cascade and demonstrate that a rise in intracellular calcium levels is sufficient to modulate the phenotype of mouse naive CD4 T cells and to increase their sensitivity to regulatory T-cell polarization signals, both processes relying on calcineurin activation. Accordingly, in vivo calcineurin inhibition leads the most self-reactive naive CD4 T cells to adopt the phenotype of their less self-reactive cell-counterparts. Collectively, our findings demonstrate that calcium-mediated activation of the calcineurin pathway acts as a rheostat to shape both the phenotype and effector potential of naive CD4 T cells in the steady-state. PMID:29239722

  8. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  9. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1.

    PubMed

    Bertin, Samuel; Aoki-Nonaka, Yukari; Lee, Jihyung; de Jong, Petrus R; Kim, Peter; Han, Tiffany; Yu, Timothy; To, Keith; Takahashi, Naoki; Boland, Brigid S; Chang, John T; Ho, Samuel B; Herdman, Scott; Corr, Maripat; Franco, Alessandra; Sharma, Sonia; Dong, Hui; Akopian, Armen N; Raz, Eyal

    2017-09-01

    Transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-1 (TRPV1) are calcium (Ca 2+ )-permeable ion channels mostly known as pain receptors in sensory neurons. However, growing evidence suggests their crucial involvement in the pathogenesis of IBD. We explored the possible contribution of TRPA1 and TRPV1 to T-cell-mediated colitis. We evaluated the role of Trpa1 gene deletion in two models of experimental colitis (ie, interleukin-10 knockout and T-cell-adoptive transfer models). We performed electrophysiological and Ca 2+ imaging studies to analyse TRPA1 and TRPV1 functions in CD4+ T cells. We used genetic and pharmacological approaches to evaluate TRPV1 contribution to the phenotype of Trpa1 -/- CD4+ T cells. We also analysed TRPA1 and TRPV1 gene expression and TRPA1 + TRPV1 + T cell infiltration in colonic biopsies from patients with IBD. We identified a protective role for TRPA1 in T-cell-mediated colitis. We demonstrated the functional expression of TRPA1 on the plasma membrane of CD4+ T cells and identified that Trpa1 -/- CD4+ T cells have increased T-cell receptor-induced Ca 2+ influx, activation profile and differentiation into Th1-effector cells. This phenotype was abrogated upon genetic deletion or pharmacological inhibition of the TRPV1 channel in mouse and human CD4+ T cells. Finally, we found differential regulation of TRPA1 and TRPV1 gene expression as well as increased infiltration of TRPA1 + TRPV1 + T cells in the colon of patients with IBD. Our study indicates that TRPA1 inhibits TRPV1 channel activity in CD4+ T cells, and consequently restrains CD4+ T-cell activation and colitogenic responses. These findings may therefore have therapeutic implications for human IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. The mediator subunit Med23 contributes to controlling T-cell activation and prevents autoimmunity.

    PubMed

    Sun, Yang; Zhu, Xiaoyan; Chen, Xufeng; Liu, Haifeng; Xu, Yu; Chu, Yajing; Wang, Gang; Liu, Xiaolong

    2014-10-10

    T-cell activation is critical for successful immune responses and is controlled at multiple levels. Although many changes of T-cell receptor-associated signalling molecules affect T-cell activation, the transcriptional mechanisms that control this process remain largely unknown. Here we find that T cell-specific deletion of the mediator subunit Med23 leads to hyperactivation of T cells and aged Med23-deficient mice exhibit an autoimmune syndrome. Med23 specifically and consistently promotes the transcription of multiple negative regulators of T-cell activation. In the absence of Med23, the T-cell activation threshold is lower, which results in enhanced antitumour T-cell function. Cumulatively, our data suggest that Med23 contributes to controlling T-cell activation at the transcriptional level and prevents the development of autoimmunity.

  11. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    PubMed

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  12. Candida esophagitis in an immunocompetent pregnant woman.

    PubMed

    Greenspoon, J S; Kivnick, S

    1993-01-01

    Nausea and vomiting are common during the first half of pregnancy and usually require only supportive measures. When symptoms are progressive and weight loss occurs, treatable causes should be sought by means of upper gastrointestinal endoscopy. We report a case of an immunocompetent gravida with invasive Candida albicans esophagitis. The immunocompetent primigravida developed progressive nausea, vomiting, epigastric pain, and a 4.1 kg weight loss during the second trimester of pregnancy. Treatment with metoclopramide and cimetidine for presumed gastroesophageal reflux was not effective. The patient had normal T-cell CD4 and CD8 subsets and was human immunodeficiency virus (HIV) antibody negative. Upper gastrointestinal endoscopy revealed C. albicans esophagitis which was treated with oral nystatin. The esophagitis had resolved completely when reassessed postpartum. The use of histamine(2) blockers is associated with an increased risk for fungal esophagitis and may have been a contributing cause in this case. Pregnant patients with persistent nausea, vomiting, and weight loss should be evaluated by endoscopy for fungal esophagitis.

  13. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    PubMed Central

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer

  14. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

    PubMed Central

    Zhou, Vivian; Agle, Kimberle; Chen, Xiao; Beres, Amy; Komorowski, Richard; Belle, Ludovic; Taylor, Carolyn; Zhu, Fenlu; Haribhai, Dipica; Williams, Calvin B.; Verbsky, James; Blumenschein, Wendy; Sadekova, Svetlana; Bowman, Eddie; Ballantyne, Christie; Weaver, Casey; Serody, David A.; Vincent, Benjamin; Serody, Jonathan; Cua, Daniel J.; Drobyski, William R.

    2016-01-01

    Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers. PMID:27500496

  15. SLP-76-ADAP adaptor module regulates LFA-1 mediated costimulation and T cell motility.

    PubMed

    Wang, Hongyan; Wei, Bin; Bismuth, Georges; Rudd, Christopher E

    2009-07-28

    Although adaptor ADAP (FYB) and its binding to SLP-76 has been implicated in TcR-induced "inside-out" signaling for LFA-1 activation in T cells, little is known regarding its role in LFA-1-mediated "outside-in" signaling. In this study, we demonstrate that ADAP and SLP-76-ADAP binding are coupled to LFA-1 costimulation of IL-2 production, F-actin clustering, cell polarization, and T cell motility. LFA-1 enhancement of anti-CD3-induced IL-2 production was completely dependent on SLP-76-ADAP binding. Further, anti-CD3 was found to require CD11a ligation by antibody or ICAM1 to cause T cell polarization. ADAP augmented this polarization induced by anti-CD3/CD11a, but not by anti-CD3 alone. ADAP expression with LFA-1 ligation alone was sufficient to polarize T cells directly and to increase T cell motility whereas the loss of ADAP in ADAP-/- primary T cells reduced motility. A mutant lacking SLP-76-binding sites (M12) blocked LFA-1 costimulation of IL-2 production, polarization, and motility. LFA-1-ADAP polarization was also dependent on src kinases, Rho GTPases, phospholipase C, and phosphoinositol 3-kinase. Our findings provide evidence of an obligatory role for the SLP-76-ADAP module in LFA-1-mediated costimulation in T cells.

  16. Cytokine-mediated activation of human ex vivo-expanded Vγ9Vδ2 T cells

    PubMed Central

    Domae, Eisuke; Hirai, Yuya; Ikeo, Takashi; Goda, Seiji; Shimizu, Yoji

    2017-01-01

    Vγ9Vδ2 T cells, the major subset of the human peripheral blood γδ T-cell, respond to microbial infection and stressed cells through the recognition of phosphoantigens. In contrast to the growing knowledge of antigen-mediated activation mechanisms, the antigen-independent and cytokine-mediated activation mechanisms of Vγ9Vδ2 T cells are poorly understood. Here, we show that interleukin (IL) -12 and IL-18 synergize to activate human ex vivo-expanded Vγ9Vδ2 T cells. Vγ9Vδ2 T cells treated with IL-12 and IL-18 enhanced effector functions, including the expression of IFN-γ and granzyme B, and cytotoxicity. These enhanced effector responses following IL-12 and IL-18 treatment were associated with homotypic aggregation, enhanced expression of ICAM-1 and decreased expression of the B- and T-lymphocyte attenuator (BTLA), a co-inhibitory receptor. IL-12 and IL-18 also induced the antigen-independent proliferation of Vγ9Vδ2 T cells. Increased expression of IκBζ, IL-12Rβ2 and IL-18Rα following IL-12 and IL-18 stimulation resulted in sustained activation of STAT4 and NF-κB. The enhanced production of IFN-γ and cytotoxic activity are critical for cancer immunotherapy using Vγ9Vδ2 T cells. Thus, the combined treatment of ex vivo-expanded Vγ9Vδ2 T cells with IL-12 and IL-18 may serve as a new strategy for the therapeutic activation of these cells. PMID:28521284

  17. The adapter protein SLP-76 mediates "outside-in" integrin signaling and function in T cells.

    PubMed

    Baker, R G; Hsu, C J; Lee, D; Jordan, M S; Maltzman, J S; Hammer, D A; Baumgart, T; Koretzky, G A

    2009-10-01

    The adapter protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is an essential mediator of signaling from the T-cell antigen receptor (TCR). We report here that SLP-76 also mediates signaling downstream of integrins in T cells and that SLP-76-deficient T cells fail to support adhesion to integrin ligands. In response to both TCR and integrin stimulation, SLP-76 relocalizes to surface microclusters that colocalize with phosphorylated signaling proteins. Disruption of SLP-76 recruitment to the protein named LAT (linker for activation of T cells) inhibits SLP-76 clustering downstream of the TCR but not downstream of integrins. Conversely, an SLP-76 mutant unable to bind ADAP (adhesion and degranulation-promoting adapter protein) forms clusters following TCR but not integrin engagement and fails to support T-cell adhesion to integrin ligands. These findings demonstrate that SLP-76 relocalizes to integrin-initiated signaling complexes by a mechanism different from that employed during TCR signaling and that SLP-76 relocalization corresponds to SLP-76-dependent integrin function in T cells.

  18. T Follicular Helper Cell Plasticity Shapes Pathogenic T Helper 2 Cell-Mediated Immunity to Inhaled House Dust Mite.

    PubMed

    Ballesteros-Tato, André; Randall, Troy D; Lund, Frances E; Spolski, Rosanne; Leonard, Warren J; León, Beatriz

    2016-02-16

    Exposure to environmental antigens, such as house dust mite (HDM), often leads to T helper 2 (Th2) cell-driven allergic responses. However, the mechanisms underlying the development of these responses are incompletely understood. We found that the initial exposure to HDM did not lead to Th2 cell development but instead promoted the formation of interleukin-4 (IL-4)-committed T follicular helper (Tfh) cells. Following challenge exposure to HDM, Tfh cells differentiated into IL-4 and IL-13 double-producing Th2 cells that accumulated in the lung and recruited eosinophils. B cells were required to expand IL-4-committed Tfh cells during the sensitization phase, but did not directly contribute to disease. Impairment of Tfh cell responses during the sensitization phase or Tfh cell depletion prevented Th2 cell-mediated responses following challenge. Thus, our data demonstrate that Tfh cells are precursors of HDM-specific Th2 cells and reveal an unexpected role of B cells and Tfh cells in the pathogenesis of allergic asthma. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Endogenous Memory CD8 T Cells Are Activated Within Cardiac Allografts Without Mediating Rejection

    PubMed Central

    Setoguchi, Kiyoshi; Hattori, Yusuke; Iida, Shoichi; Baldwin, William M.; Fairchild, Robert L.

    2013-01-01

    Endogenous memory CD8 T cells infiltrate MHC-mismatched cardiac allografts within 12–24 hours post-transplant in mice and are activated to proliferate and produce IFN-γ. To more accurately assess the graft injury directly imposed by these endogenous memory CD8 T cells, we took advantage of the ability of anti-LFA-1 mAb given to allograft recipients on days 3 and 4 post-transplant to inhibit the generation of primary effector T cells. When compared to grafts from IgG treated recipients on day 7 post-transplant, allografts from anti-LFA-1 mAb treated recipients had increased numbers of CD8 T cells but these grafts had marked decreases in expression levels of mRNA encoding effector mediators associated with graft injury and decreases in donor-reactive CD8 T cells producing IFN-γ. Despite this decreased activity within the allograft, CD8 T cells in allografts from recipients treated with anti-LFA-1 mAb continued to proliferate up to day 7 post-transplant and did not upregulate expression of the exhaustion marker LAG-3 but did have decreased expression of ICOS. These results indicate that endogenous memory CD8 T cells infiltrate and proliferate in cardiac allografts in mice but do not express sufficient levels of functions to mediate overt graft injury and acute rejection. PMID:23914930

  20. Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors.

    PubMed

    Kobayashi, Michihiro; Nabinger, Sarah C; Bai, Yunpeng; Yoshimoto, Momoko; Gao, Rui; Chen, Sisi; Yao, Chonghua; Dong, Yuanshu; Zhang, Lujuan; Rodriguez, Sonia; Yashiro-Ohtani, Yumi; Pear, Warren S; Carlesso, Nadia; Yoder, Mervin C; Kapur, Reuben; Kaplan, Mark H; Daniel Lacorazza, Hugo; Zhang, Zhong-Yin; Liu, Yan

    2017-04-01

    The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064. © 2016 AlphaMed Press.

  1. Protection by universal influenza vaccine is mediated by memory CD4 T cells.

    PubMed

    Valkenburg, Sophie A; Li, Olive T W; Li, Athena; Bull, Maireid; Waldmann, Thomas A; Perera, Liyanage P; Peiris, Malik; Poon, Leo L M

    2018-07-05

    There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4 + T cells, whereby depletion of CD4 + T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4 + T cells were needed for early antibody production and CD8 + T cell recall responses. Furthermore, influenza-specific CD4 + T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4 + and CD8 + T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. CXCR5+CD8+ T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma.

    PubMed

    Tang, Jiahong; Zha, Jie; Guo, Xutao; Shi, Pengcheng; Xu, Bing

    2017-09-01

    Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8 + T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5 + CD8 + T cell is a novel cell subtype and share CXCR5 expression with CD19 + tumor cells. In this study, we investigated the frequency and function of existing CXCR5 + CD8 + T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5 + CD8 + T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8 + T cells as effector (E) cells and autologous CD19 + tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5 + CD8 + T cell- and CXCR5 - CD8 + T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5 + CD8 + T cells presented stronger cytotoxicity than CXCR5 - CD8 + T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5 + CD8 + T cells than in CXCR5 - CD8 + T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5 + CD8 + T cells were significantly elevated. Together, these results suggest that CXCR5 + CD8 + T cells are potential candidates of CD8 + T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression. Copyright © 2017. Published by Elsevier B.V.

  3. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells.

    PubMed

    Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S; Ding, Yong-Bing; Wang, Jian-Hua

    2015-12-30

    The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4(+) T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4(+) T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. Copyright © 2016, American Society

  4. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.

    PubMed

    Bhattacharyya, Sankar; Md Sakib Hossain, Dewan; Mohanty, Suchismita; Sankar Sen, Gouri; Chattopadhyay, Sreya; Banerjee, Shuvomoy; Chakraborty, Juni; Das, Kaushik; Sarkar, Diptendra; Das, Tanya; Sa, Gaurisankar

    2010-07-01

    Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8(+) cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4(+) T cells are essential for helping this CD8(+) T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T(CM))/effector memory T cell (T(EM)) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-beta and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-beta and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.

  5. The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology?

    PubMed

    Johnson, Aaron J; Suidan, Georgette L; McDole, Jeremiah; Pirko, Istvan

    2007-01-01

    Multiple sclerosis (MS) is the most common human demyelinating disease of the central nervous system. It is universally accepted that the immune system plays a major role in the pathogenesis of MS. For decades, CD4 T cells have been considered the predominant mediator of neuropathology in MS. This perception was largely due to the similarity between MS and CD4 T-cell-driven experimental allergic encephalomyelitis, the most commonly studied murine model of MS. Over the last decade, several new observations in MS research imply an emerging role for CD8 T cells in neuropathogenesis. In certain experimental autoimmune encephalomyelitis (EAE) models, CD8 T cells are considered suppressors of pathology, whereas in other EAE models, neuropathology can be exacerbated by adoptive transfer of CD8 T cells. Studies using the Theiler's murine encephalomyelitis virus (TMEV) model have demonstrated preservation of motor function and axonal integrity in animals deficient in CD8 T cells or their effector molecules. CD8 T cells have also been demonstrated to be important regulators of blood-brain barrier permeability. There is also an emerging role for CD8 T cells in human MS. Human genetic studies reveal an important role for HLA class I molecules in MS susceptibility. In addition, neuropathologic studies demonstrate that CD8 T cells are the most numerous inflammatory infiltrate in MS lesions at all stages of lesion development. CD8 T cells are also capable of damaging neurons and axons in vitro. In this chapter, we discuss the neuropathologic, genetic, and experimental evidence for a critical role of CD8 T cells in the pathogenesis of MS and its most frequently studied animal models. We also highlight important new avenues for future research.

  6. α-Galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria

    PubMed Central

    Gonzalez-Aseguinolaza, Gloria; de Oliveira, Camila; Tomaska, Margaret; Hong, Seokmann; Bruna-Romero, Oscar; Nakayama, Toshinori; Taniguchi, Masaru; Bendelac, Albert; Van Kaer, Luc; Koezuka, Yasuhiko; Tsuji, Moriya

    2000-01-01

    Natural killer T (NKT) cells are a unique population of lymphocytes that coexpress a semiinvariant T cell and natural killer cell receptors, which are particularly abundant in the liver. To investigate the possible effect of these cells on the development of the liver stages of malaria parasites, a glycolipid, α-galactosylceramide (α-GalCer), known to selectively activate Vα14 NKT cells in the context of CD1d molecules, was administered to sporozoite-inoculated mice. The administration of α-GalCer resulted in rapid, strong antimalaria activity, inhibiting the development of the intrahepatocytic stages of the rodent malaria parasites Plasmodium yoelii and Plasmodium berghei. The antimalaria activity mediated by α-GalCer is stage-specific, since the course of blood-stage-induced infection was not inhibited by administration of this glycolipid. Furthermore, it was determined that IFN-γ is essential for the antimalaria activity mediated by the glycolipid. Taken together, our results provide the clear evidence that NKT cells can mediate protection against an intracellular microbial infection. PMID:10900007

  7. Differential cytotoxic properties of Helleborus niger L. on tumour and immunocompetent cells.

    PubMed

    Schink, Michael; Garcia-Käufer, Manuel; Bertrams, Julia; Duckstein, Sarina M; Müller, Margit B; Huber, Roman; Stintzing, Florian C; Gründemann, Carsten

    2015-01-15

    In Romanian folk medicine, Helleborus niger L. is used for the treatment of rheumatoid arthritis or viral infections and in complementary therapy, especially in anthroposophic medicine (AM), where the plant is administered as an adjuvant to treat malignant diseases. In the present study, we investigated the differential cytotoxic effects of H. niger on human tumour and healthy cells of the human immune system in vitro. Protoanemonin and saponins, as significant constituents of H. niger extracts, were quantified in five individual batches using validated HPLC methods. Further, the impact of H. niger on proliferation capacity (MTT assay) as well as on apoptosis and necrosis induction in a panel of tumour cell lines and human lymphocytes (combined annexin V and propidium iodide staining) was monitored. In addition, NK cell function (degranulation-CD107a assay and IFN-gamma secretion) was also investigated since these immunocompetent cells are important for the control of malignancies within the human body. Extracts of H. niger induced proliferation inhibition not only of lymphoblastic leukaemia cells (MOLT4; IC50: 171 µg/mL) but also of myosarcoma (SK-UT-1b; IC50: 304 µg/mL) and melanoma cells (HT-144; IC50: 569 µg/mL) due to the induction of apoptosis. Purified T cells or NK cells were significantly affected through the presence of high H. niger concentrations while bulk lymphocytes were not affected. NK cells' anti-tumour functions expressed by degranulation capacity as well as IFN-y production were unaffected by the presence of the H. niger extract. Since protoanemonin and saponins have been reported in the literature to exert cytotoxic effects, their content was also determined. H. niger extracts exhibit differential cytotoxicity towards tumour cell lines and healthy human T- and NK-cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation.

    PubMed

    Hobo, Willemijn; Norde, Wieger J; Schaap, Nicolaas; Fredrix, Hanny; Maas, Frans; Schellens, Karen; Falkenburg, J H Frederik; Korman, Alan J; Olive, Daniel; van der Voort, Robbert; Dolstra, Harry

    2012-07-01

    Allogeneic stem cell transplantation (allo-SCT) can cure hematological malignancies by inducing alloreactive T cell responses targeting minor histocompatibility antigens (MiHA) expressed on malignant cells. Despite induction of robust MiHA-specific T cell responses and long-term persistence of alloreactive memory T cells specific for the tumor, often these T cells fail to respond efficiently to tumor relapse. Previously, we demonstrated the involvement of the coinhibitory receptor programmed death-1 (PD-1) in suppressing MiHA-specific CD8(+) T cell immunity. In this study, we investigated whether B and T lymphocyte attenuator (BTLA) plays a similar role in functional impairment of MiHA-specific T cells after allo-SCT. In addition to PD-1, we observed higher BTLA expression on MiHA-specific CD8(+) T cells compared with that of the total population of CD8(+) effector-memory T cells. In addition, BTLA's ligand, herpes virus entry mediator (HVEM), was found constitutively expressed by myeloid leukemia, B cell lymphoma, and multiple myeloma cells. Interference with the BTLA-HVEM pathway, using a BTLA blocking Ab, augmented proliferation of BTLA(+)PD-1(+) MiHA-specific CD8(+) T cells by HVEM-expressing dendritic cells. Notably, we demonstrated that blocking of BTLA or PD-1 enhanced ex vivo proliferation of MiHA-specific CD8(+) T cells in respectively 7 and 9 of 11 allo-SCT patients. Notably, in 3 of 11 patients, the effect of BTLA blockade was more prominent than that of PD-1 blockade. Furthermore, these expanded MiHA-specific CD8(+) T cells competently produced effector cytokines and degranulated upon Ag reencounter. Together, these results demonstrate that BTLA-HVEM interactions impair MiHA-specific T cell functionality, providing a rationale for interfering with BTLA signaling in post-stem cell transplantation therapies.

  9. c-Abl-Mediated Tyrosine Phosphorylation of the T-bet DNA-Binding Domain Regulates CD4+ T-Cell Differentiation and Allergic Lung Inflammation ▿

    PubMed Central

    Chen, An; Lee, Sang-Myeong; Gao, Beixue; Shannon, Stephen; Zhu, Zhou; Fang, Deyu

    2011-01-01

    The tyrosine kinase c-Abl is required for full activation of T cells, while its role in T-cell differentiation has not been characterized. We report that c-Abl deficiency skews CD4+ T cells to type 2 helper T cell (Th2) differentiation, and c-Abl−/− mice are more susceptible to allergic lung inflammation. c-Abl interacts with and phosphorylates T-bet, a Th1 lineage transcription factor. c-Abl-mediated phosphorylation enhances the transcriptional activation of T-bet. Interestingly, three tyrosine residues within the T-bet DNA-binding domain are the predominant sites of phosphorylation by c-Abl. Mutation of these tyrosine residues inhibits the promoter DNA-binding activity of T-bet. c-Abl regulates Th cell differentiation in a T-bet-dependent manner because genetic deletion of T-bet in CD4+ T cells abolishes c-Abl-deficiency-mediated enhancement of Th2 differentiation. Reintroduction of T-bet-null CD4+ T cells with wild-type T-bet, but not its tyrosine mutant, rescues gamma interferon (IFN-γ) production and inhibits Th2 cytokine production. Therefore, c-Abl catalyzes tyrosine phosphorylation of the DNA-binding domain of T-bet to regulate CD4+ T cell differentiation. PMID:21690296

  10. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion.

    PubMed

    Kadle, Rohini L; Abdou, Salma A; Villarreal-Ponce, Alvaro P; Soares, Marc A; Sultan, Darren L; David, Joshua A; Massie, Jonathan; Rifkin, William J; Rabbani, Piul; Ceradini, Daniel J

    2018-01-01

    Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use.

  11. Intratumoral delivery of low doses of anti-CD40 mAb combined with monophosphoryl lipid A induces local and systemic antitumor effects in immunocompetent and T cell-deficient mice

    PubMed Central

    Van De Voort, Tyler J.; Felder, Mildred A. R.; Yang, Richard K.; Sondel, Paul M.; Rakhmilevich, Alexander L.

    2012-01-01

    In this study, an agonistic anti-CD40 monoclonal antibody was combined with monophosphoryl lipid A (MPL), a nontoxic derivative of LPS and agonist of toll-like receptor 4, to assess the immunomodulatory and antitumor synergy between the two agents in mice. Anti-CD40 was capable of priming macrophages to subsequent ex vivo activation by MPL in immunocompetent and T cell-depleted mice. Intraperitoneal injections of anti-CD40+MPL induced additive to synergistic suppression of poorly immunogenic B16-F10 melanoma growing subcutaneously in syngeneic mice. When anti-CD40+MPL were injected directly into the subcutaneous tumor, the combination treatment was more effective, even with a 25-fold reduction in dose. Low-dose intratumoral treatment also slowed the growth of a secondary tumor growing simultaneously at a distant, untreated site. Antitumor effects were also induced in immunodeficient SCID mice and in T cell-depleted C57BL/6 mice. Taken together, our results show that the antitumor effects of anti-CD40 are enhanced by subsequent treatment with MPL, even in T cell-deficient hosts. These preclinical data suggest that an anti-CD40+MPL combined regimen is appropriate for clinical testing in human patients, including cancer patients that may be immunosuppressed from prior chemotherapy. PMID:23211623

  12. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.

    PubMed

    Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F

    2006-05-01

    The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.

  13. Optimization of Dendritic Cell-Mediated Cytotoxic T-Cell Activation by Tracking of Dendritic Cell Migration Using Reporter Gene Imaging.

    PubMed

    Lee, Hongje; Lee, Ho Won; La Lee, You; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2018-06-01

    The aim of this study is to optimize the dendritic cell (DC)-mediated T-cell activation using reporter gene imaging and flow cytometric analysis in living mice. A murine dendritic cell line (DC2.4) co-expressing effluc and Thy1.1 genes were established by transfection with retroviral vectors. Thy1.1 positive cells were sorted by magnetic bead separation system (DC2.4/effluc). Cell proliferation assay and phenotype analysis to determine the effects of gene transduction on the function of dendritic cells between parental DC2.4 and DC2.4/effluc were performed. To optimize the DC-mediated immune response by cell number or frequency, different cell numbers (5 × 10 5 , 1 × 10 6 , and 2 × 10 6  DC2.4/effluc) or different frequencies of DC2.4/effluc (first, second, and third injections) were injected in the right footpad of mice. The migration of the DC2.4/effluc into the draining popliteal lymph node of mice was monitored by bioluminescence imaging (BLI). Flow cytometric analysis was performed with splenocytes to determine the cytotoxic T-cell population after injection of DC2.4/effluc. Parental DC2.4 and DC2.4/effluc exhibit no significant differences in their proliferation and phenotype. BLI signals were observed in the draining popliteal lymph node at day 1 after injection of DC2.4/effluc in 1 × 10 6 and 2 × 10 6 cells-injected groups. The highest BLI signal intensity was detected in 2 × 10 6 cells-injected mice. On day 11, the BLI signal was detected in only 2 × 10 6 cell-injected group but not in other groups. Optimized cell numbers (2 × 10 6 ) were injected in three animal groups with a different frequency (first, second, and third injection groups). The BLI signal was detected at day 1 and maintained until day 7 in the first injection group, but there is low signal intensity in the second and the third injection groups. Although the expression levels of Thy1.1 gene in the first injection group were very high, there reveals no expression of

  14. TNFα and IFNγ but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection.

    PubMed

    Szaba, Frank M; Kummer, Lawrence W; Duso, Debra K; Koroleva, Ekaterina P; Tumanov, Alexei V; Cooper, Andrea M; Bliska, James B; Smiley, Stephen T; Lin, Jr-Shiuan

    2014-05-01

    Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69-77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69-77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69-77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69-77-mediated protection. In contrast, YopE69-77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.

  15. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    PubMed

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Comparing immunocompetent and immunodeficient mice as animal models for bone tissue engineering.

    PubMed

    Zhang, Y; Li, X; Chihara, T; Mizoguchi, T; Hori, A; Udagawa, N; Nakamura, H; Hasegawa, H; Taguchi, A; Shinohara, A; Kagami, H

    2015-07-01

    To understand the differences and similarities between immunocompetent and immunodeficient mice as ectopic transplantation animal models for bone tissue engineering. Osteogenic cells from mouse leg bones were cultured, seeded on β-TCP granules, and transplanted onto the backs of either immunocompetent or immunodeficient nude mice. At 1, 2, 4, and 8 weeks postoperatively, samples were harvested and evaluated by hematoxylin-eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemical staining and quantitative PCR. In immunocompetent mice, inflammatory cell infiltration was evident at 1 week postoperatively and relatively higher expression of TNF-α and IL-4 was observed. In immunodeficient mice, new bone area and the number of TRAP-positive cells were larger at 4 weeks than in immunocompetent mice. The volume of new bone area in immunodeficient mice was reduced by 8 weeks. Bone regeneration was feasible in immunocompetent mice. However, some differences were observed between immunocompetent and immunodeficient mice in the bone regeneration process possibly due to different cytokine expression, which should be considered when utilizing in vivo animal models. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    PubMed

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  18. L-Asparaginase II Produced by Salmonella Typhimurium Inhibits T Cell Responses and Mediates Virulence

    PubMed Central

    Kullas, Amy L.; McClelland, Michael; Yang, Hee-Jeong; Tam, Jason W.; Torres, AnnMarie; Porwollik, Steffen; Mena, Patricio; McPhee, Joseph B.; Bogomolnaya, Lydia; Andrews-Polymenis, Helene; van der Velden, Adrianus W.M.

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium avoids clearance by the host immune system by suppressing T cell responses; however, the mechanisms that mediate this immunosuppression remain unknown. We show that S. Typhimurium inhibit T cell responses by producing L-Asparaginase II, which catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production, and proliferation and to downmodulate expression of the T cell receptor. Furthermore, S. Typhimurium-induced inhibition of T cells in vitro is prevented upon addition of L-asparagine. S. Typhimurium lacking the L-Asparaginase II gene (STM3106) are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-Asparaginases are used to treat acute lymphoblastic leukemia through mechanisms that likely involve amino acid starvation of leukemic cells, and these findings indicate that pathogens similarly use L-asparagine deprivation to limit T cell responses. PMID:23245323

  19. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    PubMed Central

    2012-01-01

    Background Merkel cell carcinoma (MCC) is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV). The MCPyV-encoded large T (LT) antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT) encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT), as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the immunodominant LT epitope

  20. ICAM-3 influences human immunodeficiency virus type 1 replication in CD4+ T-cells independent of DC-SIGN-mediated transmission

    PubMed Central

    Biggins, Julia E.; Biesinger, Tasha; Yu Kimata, Monica T.; Arora, Reetakshi; Kimata, Jason T.

    2007-01-01

    We investigated the role of ICAM-3 in DC-SIGN-mediated human immunodeficiency virus (HIV) infection of CD4+ T cells. Our results demonstrate that ICAM-3 does not appear to play a role in DC-SIGN-mediated infection of CD4+ T cells as virus is transmitted equally to ICAM-3+ or ICAM-3− Jurkat T cells. However, HIV-1 replication is enhanced in ICAM-3− cells, suggesting that ICAM-3 may limit HIV-1 replication. Similar results were obtained when SIV replication was examined in ICAM-3+ and ICAM-3− CEMx174 cells. Furthermore, while ICAM-3 has been proposed to play a co-stimulatory role in T cell activation, DC-SIGN expression on antigen presenting cells did not enhance antigen-dependent activation of T cells. Together, these data indicate that while ICAM-3 may influence HIV-1 replication, it does so independent of DC-SIGN mediated virus transmission or activation of CD4+ T cells. PMID:17434553

  1. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont.

    PubMed

    Xu, Mo; Pokrovskii, Maria; Ding, Yi; Yi, Ren; Au, Christy; Harrison, Oliver J; Galan, Carolina; Belkaid, Yasmine; Bonneau, Richard; Littman, Dan R

    2018-02-15

    Both microbial and host genetic factors contribute to the pathogenesis of autoimmune diseases. There is accumulating evidence that microbial species that potentiate chronic inflammation, as in inflammatory bowel disease, often also colonize healthy individuals. These microorganisms, including the Helicobacter species, can induce pathogenic T cells and are collectively referred to as pathobionts. However, how such T cells are constrained in healthy individuals is not yet understood. Here we report that host tolerance to a potentially pathogenic bacterium, Helicobacter hepaticus, is mediated by the induction of RORγt + FOXP3 + regulatory T (iT reg ) cells that selectively restrain pro-inflammatory T helper 17 (T H 17) cells and whose function is dependent on the transcription factor c-MAF. Whereas colonization of wild-type mice by H. hepaticus promoted differentiation of RORγt-expressing microorganism-specific iT reg cells in the large intestine, in disease-susceptible IL-10-deficient mice, there was instead expansion of colitogenic T H 17 cells. Inactivation of c-MAF in the T reg cell compartment impaired differentiation and function, including IL-10 production, of bacteria-specific iT reg cells, and resulted in the accumulation of H. hepaticus-specific inflammatory T H 17 cells and spontaneous colitis. By contrast, RORγt inactivation in T reg cells had only a minor effect on the bacteria-specific T reg and T H 17 cell balance, and did not result in inflammation. Our results suggest that pathobiont-dependent inflammatory bowel disease is driven by microbiota-reactive T cells that have escaped this c-MAF-dependent mechanism of iT reg -T H 17 homeostasis.

  2. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion

    PubMed Central

    Abdou, Salma A.; Villarreal-Ponce, Alvaro P.; Soares, Marc A.; Sultan, Darren L.; David, Joshua A.; Massie, Jonathan; Rabbani, Piul

    2018-01-01

    Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use. PMID:29513756

  3. CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity.

    PubMed

    Kumamoto, Yosuke; Linehan, Melissa; Weinstein, Jason S; Laidlaw, Brian J; Craft, Joseph E; Iwasaki, Akiko

    2013-10-17

    Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. [Cytomegalovirus retinitis in immunocompetent patients].

    PubMed

    Yoshinaga, Wakako; Mizushima, Yuka; Abematsu, Noriko; Nakao, Kumiko; Sakamoto, Taiji

    2008-08-01

    Cytomegalovirus (CMV) retinitis usually affects severely immunosuppressed individuals. We report two immunocompetent patients who developed CMV retinitis. Case 1 was a 65-year-old man who was referred to us with blurred vision and floaters of 2 weeks duration in his left eye. Slit-lamp biomicroscopy showed keratic precipitates, aqueous cells, and vitreous opacity in his left eye. Funduscopic examination revealed yellow-white retinal lesions with arterial sheathing in the superotemporal midperiphery. Case 2 was a 63-year-old man who presented with a 2-week history of blurred vision in his left eye. Ophthalmologic examination of the left eye showed keratic precipitates, aqueous cells, vitreous opacity, and yellow-white lesions in the superotemporal peripheral retina. In both cases, CMV DNA was detected in the aqueous humor and therefore the diagnosis was CMV retinitis. CMV retinitis in both cases was indolent and was resolved in one month without treatment with antiviral drugs. Although both patients had diabetes mellitus, the results of their laboratory examinations were unremarkable and they were immunocompetent. Unlike CMV retinitis in immunocompromised patients, CMV retinitis in immunocompetent patients had significant anterior and vitreous inflammation but did not require antiviral treatment. A possible association between CMV retinitis and diabetes mellitus was suggested.

  5. Acute virus control mediated by licensed NK cells sets primary CD8+ T cell dependence on CD27 costimulation1,2,3

    PubMed Central

    Teoh, Jeffrey J.; Gamache, Awndre E.; Gillespie, Alyssa L.; Stadnisky, Michael D.; Yagita, Hideo; Bullock, Timothy N.J.; Brown, Michael G.

    2016-01-01

    Natural killer (NK) cells represent a critical first-line of immune defense against a bevy of viral pathogens, and infection can provoke them to mediate both supportive and suppressive effects on virus-specific adaptive immunity. In mice expressing MHC I Dk, a major MCMV resistance factor and self-ligand of the inhibitory Ly49G2 (G2) receptor, licensed G2+ NK cells provide essential host resistance against murine (M)CMV infection. Additionally G2+ NK cell responses to MCMV increase the rate and extent of dendritic cell (DC) recovery, as well as early priming of CD8+ T-cell effectors in response to MCMV. However, relatively little is known about the NK-cell effect on co-stimulatory ligand patterns displayed by DCs, or ensuing effector and memory T-cell responses. Here we found that CD27-dependent CD8+ T-cell priming and differentiation is shaped by the efficiency of NK responses to virus infection. Surprisingly, differences in specific NK responses to MCMV in Dk-disparate mice failed to distinguish early DC co-stimulatory patterns. Nonetheless, while CD27 deficiency did not impede licensed NK-mediated resistance, both CD70 and CD27 were required to efficiently prime and regulate effector CD8+ T-cell differentiation in response to MCMV, which eventually resulted in biased memory T-cell precursor formation in Dk mice. In contrast, CD8+ T-cells accrued more slowly in non-Dk mice, and eventually differentiated into terminal effector cells regardless of CD27 stimulation. Disparity in this requirement for CD27 signaling indicates that specific virus control mediated by NK cells can shape DC co-stimulatory signals needed to prime CD8+ T cells and eventual T-cell fate decisions. PMID:27798162

  6. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation.

    PubMed

    Nolz, Jeffrey C; Gomez, Timothy S; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B; Shimizu, Yoji; Burkhardt, Janis K; Freedman, Bruce D; Billadeau, Daniel D

    2006-01-10

    The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and beta-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCgamma1 activation and IP(3)-mediated store release. These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation.

  7. The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation

    PubMed Central

    Nolz, Jeffrey C.; Gomez, Timothy S.; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B.; Shimizu, Yoji; Burkhardt, Janis K.; Freedman, Bruce D.; Billadeau, Daniel D.

    2007-01-01

    Summary Background The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. Results By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and β-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCγ1 activation and IP3-mediated store release. Conclusions These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation. PMID:16401421

  8. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma.

    PubMed

    Ma, Si-Rui; Deng, Wei-Wei; Liu, Jian-Feng; Mao, Liang; Yu, Guang-Tao; Bu, Lin-Lin; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-06-07

    Cancer immunotherapy offers a promising approach in cancer treatment. The adenosine A2A receptor (A2AR) could protect cancerous tissues from immune clearance via inhibiting T cells response. To date, the role of A2AR in head and neck squamous cell carcinoma (HNSCC) has not been investigated. Here, we sought to explore the expression and immunotherapeutic value of A2AR blockade in HNSCC. The expression of A2AR was evaluated by immunostaining in 43 normal mucosae, 48 dysplasia and 165 primary HNSCC tissues. The immunotherapeutic value of A2AR blockade was assessed in vivo in genetically defined immunocompetent HNSCC mouse model. Immunostaining of HNSCC tissue samples revealed that increased expression of A2AR on tumor infiltrating immune cells correlated with advanced pathological grade, larger tumor size and positive lymph node status. Elevated A2AR expression was also detected in recurrent HNSCC and HNSCC tissues with induction chemotherapy. The expression of A2AR was found to be significantly correlated with HIF-1α, CD73, CD8 and Foxp3. Furthermore, the increased population of CD4 + Foxp3 + regulatory T cells (Tregs), which partially expressed A2AR, was observed in an immunocompetent mouse model that spontaneously develops HNSCC. Pharmacological blockade of A2AR by SCH58261 delayed the tumor growth in the HNSCC mouse model. Meanwhile, A2AR blockade significantly reduced the population of CD4 + Foxp3 + Tregs and enhanced the anti-tumor response of CD8 + T cells. These results offer a preclinical proof for the administration of A2AR inhibitor on prophylactic experimental therapy of HNSCC and suggest that A2AR blockade can be a potential novel strategy for HNSCC immunotherapy.

  9. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells

    PubMed Central

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450

  10. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    PubMed

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  11. PD-1–Mediated Attrition of Polyfunctional Memory CD8+ T Cells in Chronic Toxoplasma Infection

    PubMed Central

    Bhadra, Rajarshi; Gigley, Jason P.; Khan, Imtiaz A.

    2012-01-01

    We reported earlier that during chronic toxoplasmosis CD8+ T cells become functionally exhausted with concomitant PD-1 upregulation, leading to eventual host mortality. However, how immune exhaustion specifically mediates attrition of CD8 polyfunctionality, a hallmark of potent T-cell response, during persistent infections has not been addressed. In this study, we demonstrate that PD-1 is preferentially expressed on polyfunctional memory CD8+ T cells, which renders them susceptible to apoptosis. In vitro blockade of the PD-1–PD-L1 pathway dramatically reduces apoptosis of polyfunctional and interferon γ+/granzyme B− memory but not effector CD8+ T cells. In summary, the present report underscores the critical role of the PD-1–PD-L1 pathway in mediating attrition of this important CD8+ T-cell subset and addresses the mechanistic basis of how αPD-L1 therapy reinvigorates polyfunctional CD8 response during chronic infections. The conclusions of this study can have profound immunotherapeutic implications in combating recrudescent toxoplasmosis as well other chronic infections. PMID:22539813

  12. Mechanisms regulating enhanced HLA class II-mediated CD4+ T cell recognition of human B-cell lymphoma by resveratrol

    PubMed Central

    RADWAN, FAISAL F. Y.; ZHANG, LIXIA; HOSSAIN, AZIM; DOONAN, BENTLY P.; GOD, JASON; HAQUE, AZIZUL

    2015-01-01

    Malignant B-cells express measurable levels of HLA class II proteins, but often escape immune recognition by CD4+ T cells. Resveratrol (Resv) has been the focus of numerous investigations due to its potential chemopreventive and anti-cancer effects, but it has never been tested in the regulation of immune components in B-cell tumors. Here, we show for the first time that Resv treatment enhances HLA class II-mediated immune detection of B-cell lymphomas by altering immune components and class II presentation in tumor cells. Resv treatment induced an upregulation of both classical and non-classical HLA class II proteins (DR and DM) in B-lymphoma cells. Resv also altered endolysosomal cathepsins (Cat S, B and D) and a thiol reductase (GILT), increasing HLA class II-mediated antigen (Ag) processing in B-cell lymphomas and their subsequent recognition by CD4+ T cells. Mechanistic study demonstrated that Resv treatment activated the recycling class II pathway of Ag presentation through upregulation of Rab 4B protein expression in B-lymphoma cells. These findings suggest that HLA class II-mediated immune recognition of malignant B-cells can be improved by Resv treatment, thus encouraging its potential use in chemoimmunotherapy of B-cell lymphoma. PMID:21854084

  13. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajah, T.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2014-07-15

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletionmore » of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.« less

  14. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    PubMed

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  15. The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells.

    PubMed

    Niyibizi, Christopher; Wang, Sujing; Mi, Zhibao; Robbins, Paul D

    2004-06-01

    To explore the feasibility of skeletal gene and cell therapies, we transduced murine bone marrow-derived mesenchymal stem cells (MSCs) with a retrovirus carrying the enhanced green fluorescent protein and zeocin-resistance genes prior to transplantation into 2-day-old immunocompetent neonatal mice. Whole-body imaging of the recipient mice at 7 days post-systemic cell injection demonstrated a wide distribution of the cells in vivo. Twenty-five days posttransplantation, most of the infused cells were present in the lung as assessed by examination of the cells cultured from the lungs of the recipient mice. The cells persisted in lung and maintained a high level of gene expression and could be recovered from the recipient mice at 150 days after cell transplantation. A significant number of GFP-positive cells were also present in the bones of the recipient mice at 35 days post-cell transplantation. Recycling of the cells recovered from femurs of the recipient mice at 25 days posttransplantation by repeated injections into different neonatal mice resulted in the isolation of a clone of cells that was detected in bone and cartilage, but not in lung and liver after systemic injection. These data demonstrate that MSCs persist in immunocompetent neonatal mice, maintain a high level of gene expression, and may participate in skeletal growth and development of the recipient animals.

  16. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression.

    PubMed

    Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R

    2014-09-18

    Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses.

    PubMed

    Chiurchiù, Valerio; Leuti, Alessandro; Dalli, Jesmond; Jacobsson, Anders; Battistini, Luca; Maccarrone, Mauro; Serhan, Charles N

    2016-08-24

    Resolution of inflammation is a finely regulated process mediated by specialized proresolving lipid mediators (SPMs), including docosahexaenoic acid (DHA)-derived resolvins and maresins. The immunomodulatory role of SPMs in adaptive immune cells is of interest. We report that D-series resolvins (resolvin D1 and resolvin D2) and maresin 1 modulate adaptive immune responses in human peripheral blood lymphocytes. These lipid mediators reduce cytokine production by activated CD8(+) T cells and CD4(+) T helper 1 (TH1) and TH17 cells but do not modulate T cell inhibitory receptors or abrogate their capacity to proliferate. Moreover, these SPMs prevented naïve CD4(+) T cell differentiation into TH1 and TH17 by down-regulating their signature transcription factors, T-bet and Rorc, in a mechanism mediated by the GPR32 and ALX/FPR2 receptors; they concomitantly enhanced de novo generation and function of Foxp3(+) regulatory T (Treg) cells via the GPR32 receptor. These results were also supported in vivo in a mouse deficient for DHA synthesis (Elovl2(-/-)) that showed an increase in TH1/TH17 cells and a decrease in Treg cells compared to wild-type mice. Additionally, either DHA supplementation in Elovl2(-/-) mice or in vivo administration of resolvin D1 significantly reduced cytokine production upon specific stimulation of T cells. These findings demonstrate actions of specific SPMs on adaptive immunity and provide a new avenue for SPM-based approaches to modulate chronic inflammation. Copyright © 2016, American Association for the Advancement of Science.

  18. Interference with Intraepithelial TNF-α Signaling Inhibits CD8+ T-Cell-Mediated Lung Injury in Influenza Infection

    PubMed Central

    Srikiatkhachorn, Anon; Chintapalli, Jyothi; Liu, Jun; Jamaluddin, Mohammad; Harrod, Kevin S.; Whitsett, Jeffrey A.; Enelow, Richard I.

    2010-01-01

    Abstract CD8+ T-cell-mediated pulmonary immunopathology in respiratory virus infection is mediated in large part by antigen-specific TNF-α expression by antiviral effector T cells, which results in epithelial chemokine expression and inflammatory infiltration of the lung. To further define the signaling events leading to lung epithelial chemokine production in response to CD8+ T-cell antigen recognition, we expressed the adenoviral 14.7K protein, a putative inhibitor of TNF-α signaling, in the distal lung epithelium, and analyzed the functional consequences. Distal airway epithelial expression of 14.7K resulted in a significant reduction in lung injury resulting from severe influenza pneumonia. In vitro analysis demonstrated a significant reduction in the expression of an important mediator of injury, CCL2, in response to CD8+ T-cell recognition, or to TNF-α. The inhibitory effect of 14.7K on CCL2 expression resulted from attenuation of NF-κB activity, which was independent of Iκ-Bα degradation or nuclear translocation of the p65 subunit. Furthermore, epithelial 14.7K expression inhibited serine phosphorylation of Akt, GSK-3β, and the p65 subunit of NF-κB, as well as recruitment of NF-κB for DNA binding in vivo. These results provide insight into the mechanism of 14.7K inhibition of NF-κB activity, as well as further elucidate the mechanisms involved in the induction of T-cell-mediated immunopathology in respiratory virus infection. PMID:21142450

  19. Asbestos-Induced Cellular and Molecular Alteration of Immunocompetent Cells and Their Relationship with Chronic Inflammation and Carcinogenesis

    PubMed Central

    Matsuzaki, Hidenori; Maeda, Megumi; Lee, Suni; Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Hayashi, Hiroaki; Yamamoto, Shoko; Hatayama, Tamayo; Kojima, Yoko; Tabata, Rika; Kishimoto, Takumi; Hiratsuka, Junichi; Otsuki, Takemi

    2012-01-01

    Asbestos causes lung fibrosis known as asbestosis as well as cancers such as malignant mesothelioma and lung cancer. Asbestos is a mineral silicate containing iron, magnesium, and calcium with a core of SiO2. The immunological effect of silica, SiO2, involves the dysregulation of autoimmunity because of the complications of autoimmune diseases found in silicosis. Asbestos can therefore cause alteration of immunocompetent cells to result in a decline of tumor immunity. Additionally, due to its physical characteristics, asbestos fibers remain in the lung, regional lymph nodes, and the pleural cavity, particularly at the opening sites of lymphatic vessels. Asbestos can induce chronic inflammation in these areas due to the production of reactive oxygen/nitrogen species. As a consequence, immunocompetent cells can have their cellular and molecular features altered by chronic and recurrent encounters with asbestos fibers, and there may be modification by the surrounding inflammation, all of which eventually lead to decreased tumor immunity. In this paper, the brief results of our investigation regarding reduction of tumor immunity of immunocompetent cells exposed to asbestos in vitro are discussed, as are our findings concerned with an investigation of chronic inflammation and analyses of peripheral blood samples derived from patients with pleural plaque and mesothelioma that have been exposed to asbestos. PMID:22500091

  20. Analysis of the t(3;8) of Hereditary Renal Cell Carcinoma: A Palindrome-Mediated Translocation

    PubMed Central

    Kato, Takema; Franconi, Colleen P.; Sheridan, Molly B.; Hacker, April M.; Inagakai, Hidehito; Glover, Thomas W.; Arlt, Martin F.; Drabkin, Harry A.; Gemmill, Robert M.; Kurahashi, Hiroki; Emanuel, Beverly S.

    2014-01-01

    It has emerged that palindrome-mediated genomic instability generates DNA-based rearrangements. The presence of palindromic AT-rich repeats (PATRRs) at the translocation breakpoints suggested a palindrome-mediated mechanism in the generation of several recurrent constitutional rearrangements: the t(11;22), t(17;22) and t(8;22). To date, all reported PATRR mediated translocations include the PATRR on chromosome 22 (PATRR22) as a translocation partner. Here, the constitutional rearrangement, t(3;8)(p14.2;q24.1), segregating with renal cell carcinoma in two families, is examined. The chromosome 8 breakpoint lies in PATRR8 in the first intron of the RNF139 (TRC8) gene while the chromosome 3 breakpoint is located in an AT-rich palindromic sequence in intron 3 of the FHIT gene (PATRR3). Thus, the t(3;8) is the first PATRR-mediated, recurrent, constitutional translocation that does not involve PATRR22. Furthermore, similar to the t(11;22) and t(8;22), we detect de novo translocations involving PATRR3 in normal sperm. The breakpoint on chromosome 3 is in proximity to FRA3B, the most common fragile site in the human genome and a site of frequent deletions in tumor cells. However, the lack of involvement of PATRR3 sequence in numerous FRA3B-related deletions suggests that there are several different DNA sequence based etiologies responsible for chromosome 3p14.2 genomic rearrangements. PMID:24813807

  1. Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis.

    PubMed

    Chen, Ching-Wen; Mittal, Rohit; Klingensmith, Nathan J; Burd, Eileen M; Terhorst, Cox; Martin, Greg S; Coopersmith, Craig M; Ford, Mandy L

    2017-09-15

    Sepsis is a leading cause of death in the United States, but the mechanisms underlying sepsis-induced immune dysregulation remain poorly understood. 2B4 (CD244, SLAM4) is a cosignaling molecule expressed predominantly on NK cells and memory CD8 + T cells that has been shown to regulate T cell function in models of viral infection and autoimmunity. In this article, we show that 2B4 signaling mediates sepsis lymphocyte dysfunction and mortality. 2B4 expression is increased on CD4 + T cells in septic animals and human patients at early time points. Importantly, genetic loss or pharmacologic inhibition of 2B4 significantly increased survival in a murine cecal ligation and puncture model. Further, CD4-specific conditional knockouts showed that 2B4 functions on CD4 + T cell populations in a cell-intrinsic manner and modulates adaptive and innate immune responses during sepsis. Our results illuminate a novel role for 2B4 coinhibitory signaling on CD4 + T cells in mediating immune dysregulation. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses.

    PubMed

    Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J

    2018-05-15

    Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (<20%). In contrast, the anti-CD20 mAb rituximab depleted >80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  3. Telomerase Is Involved in IL-7-Mediated Differential Survival of Naive and Memory CD4+ T Cells1

    PubMed Central

    Yang, Yinhua; An, Jie; Weng, Nan-ping

    2008-01-01

    IL-7 plays an essential role in T cell maintenance and survival. The survival effect of IL-7 is thought to be mediated through regulation of Bcl2 family proteins. After a comparative analysis of IL-7-induced growth and cell death of human naive and memory CD4+ T cells, we observed that more memory CD4+ T cells underwent cell division and proceeded to apoptosis than naive cells in response to IL-7. However, IL-7-induced expressions of Bcl2 family members (Bcl2, Bcl-xL, Bax, and Bad) were similar between naive and memory cells. Instead, we found that IL-7 induced higher levels of telomerase activity in naive cells than in memory cells, and the levels of IL-7-induced telomerase activity had a significant inverse correlation with cell death in CD4+ T cells. Furthermore, we showed that reducing expression of telomerase reverse transcriptase and telomerase activity significantly increased cell death of IL-7-cultured CD4+ T cells. Together, these findings demonstrate that telomerase is involved in IL-7-mediated differential survival of naive and memory CD4+ T cells. PMID:18322183

  4. Allergen endotoxins induce T-cell-dependent and non-IgE-mediated nasal hypersensitivity in mice.

    PubMed

    Iwasaki, Naruhito; Matsushita, Kazufumi; Fukuoka, Ayumi; Nakahira, Masakiyo; Matsumoto, Makoto; Akasaki, Shoko; Yasuda, Koubun; Shimizu, Takeshi; Yoshimoto, Tomohiro

    2017-01-01

    Allergen-mediated cross-linking of IgE on mast cells/basophils is a well-recognized trigger for type 1 allergic diseases such as allergic rhinitis (AR). However, allergens may not be the sole trigger for AR, and several allergic-like reactions are induced by non-IgE-mediated mechanisms. We sought to describe a novel non-IgE-mediated, endotoxin-triggered nasal type-1-hypersensitivity-like reaction in mice. To investigate whether endotoxin affects sneezing responses, mice were intraperitoneally immunized with ovalbumin (OVA), then nasally challenged with endotoxin-free or endotoxin-containing OVA. To investigate the role of T cells and mechanisms of the endotoxin-induced response, mice were adoptively transferred with in vitro-differentiated OVA-specific T H 2 cells, then nasally challenged with endotoxin-free or endotoxin-containing OVA. Endotoxin-containing, but not endotoxin-free, OVA elicited sneezing responses in mice independent from IgE-mediated signaling. OVA-specific T H 2 cell adoptive transfer to mice demonstrated that local activation of antigen-specific T H 2 cells was required for the response. The Toll-like receptor 4-myeloid differentiation factor 88 signaling pathway was indispensable for endotoxin-containing OVA-elicited rhinitis. In addition, LPS directly triggered sneezing responses in OVA-specific T H 2-transferred and nasally endotoxin-free OVA-primed mice. Although antihistamines suppressed sneezing responses, mast-cell/basophil-depleted mice had normal sneezing responses to endotoxin-containing OVA. Clodronate treatment abrogated endotoxin-containing OVA-elicited rhinitis, suggesting the involvement of monocytes/macrophages in this response. Antigen-specific nasal activation of CD4 + T cells followed by endotoxin exposure induces mast cell/basophil-independent histamine release in the nose that elicits sneezing responses. Thus, environmental or nasal residential bacteria may exacerbate AR symptoms. In addition, this novel phenomenon might

  5. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells.

    PubMed

    Chimote, Ameet A; Hajdu, Peter; Kucher, Vladimir; Boiko, Nina; Kuras, Zerrin; Szilagyi, Orsolya; Yun, Yeo-Heung; Conforti, Laura

    2013-12-15

    Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.

  6. Effect of feeding different levels of Azolla pinnata on blood biochemicals, hematology and immunocompetence traits of Chabro chicken

    PubMed Central

    Mishra, Deepesh Bharat; Roy, Debashis; Kumar, Vinod; Bhattacharyya, Amitav; Kumar, Muneendra; Kushwaha, Raju; Vaswani, Shalini

    2016-01-01

    Aim: The present study was conducted to see the effect of feeding different levels of Azolla meal on blood biochemicals, hematology and immunocompetence traits of Chabro chicken. Materials and Methods: The study was conducted on 160 Chabro chicks, which were randomly divided into four treatment groups each with four replicates of 10 birds. The first treatment (T1) served as a control in which basal diets was offered without Azolla supplementation while in T2, T3, and T4 groups, basal diet was replaced with Azolla meal at 5%, 7.5%, and 10% levels, respectively. A feeding trial was conducted upto 8 weeks. At the last week of trial, blood samples were collected randomly from one bird of each replicate and plasma was separated to estimate certain biochemical parameters, some blood metabolites, minerals and enzymes like alanine aminotransferase and aspartate aminotransferase (AST). Hematological parameters such as hemoglobin, packed cell volume, total leukocytes count and differential leukocytes count were estimated in fresh blood just after collection. The humoral immune response was measured against sheep red blood cells,and cell-mediated immune response was measured against phyto hemagglutinin lectin from Phaseolus vulgaris (PHA-P). Results: The study showed that hematological profile of the Chabro bird was not affected by any treatment except heterophil and lymphocyte which was found higher in T2 and T3 groups and eosinophil was found higher in a T3 group than control. Blood glucose, creatinine, cholesterol, total protein, albumin, uric acid, and triglycerides were found similar in all the groups and within the normal values for broiler chicken. Liver enzymes and macro mineral content in blood were found similar in all the treatment groups and within normal physiological range. Although AST was found higher in 10% replacement group than control, the value was within normal range for broiler chicken. Although antibody titer was found similar in all the experimental

  7. Effect of feeding different levels of Azolla pinnata on blood biochemicals, hematology and immunocompetence traits of Chabro chicken.

    PubMed

    Mishra, Deepesh Bharat; Roy, Debashis; Kumar, Vinod; Bhattacharyya, Amitav; Kumar, Muneendra; Kushwaha, Raju; Vaswani, Shalini

    2016-02-01

    The present study was conducted to see the effect of feeding different levels of Azolla meal on blood biochemicals, hematology and immunocompetence traits of Chabro chicken. The study was conducted on 160 Chabro chicks, which were randomly divided into four treatment groups each with four replicates of 10 birds. The first treatment (T1) served as a control in which basal diets was offered without Azolla supplementation while in T2, T3, and T4 groups, basal diet was replaced with Azolla meal at 5%, 7.5%, and 10% levels, respectively. A feeding trial was conducted upto 8 weeks. At the last week of trial, blood samples were collected randomly from one bird of each replicate and plasma was separated to estimate certain biochemical parameters, some blood metabolites, minerals and enzymes like alanine aminotransferase and aspartate aminotransferase (AST). Hematological parameters such as hemoglobin, packed cell volume, total leukocytes count and differential leukocytes count were estimated in fresh blood just after collection. The humoral immune response was measured against sheep red blood cells,and cell-mediated immune response was measured against phyto hemagglutinin lectin from Phaseolus vulgaris (PHA-P). The study showed that hematological profile of the Chabro bird was not affected by any treatment except heterophil and lymphocyte which was found higher in T2 and T3 groups and eosinophil was found higher in a T3 group than control. Blood glucose, creatinine, cholesterol, total protein, albumin, uric acid, and triglycerides were found similar in all the groups and within the normal values for broiler chicken. Liver enzymes and macro mineral content in blood were found similar in all the treatment groups and within normal physiological range. Although AST was found higher in 10% replacement group than control, the value was within normal range for broiler chicken. Although antibody titer was found similar in all the experimental groups in the present study, cell-mediate

  8. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells.

    PubMed

    Miyanokoshi, Miki; Yokosawa, Takumi; Wakasugi, Keisuke

    2018-06-01

    The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Programmed death 1-mediated T cell exhaustion during visceral leishmaniasis impairs phagocyte function.

    PubMed

    Esch, Kevin J; Juelsgaard, Rachel; Martinez, Pedro A; Jones, Douglas E; Petersen, Christine A

    2013-12-01

    Control of Leishmania infantum infection is dependent upon Th1 CD4(+) T cells to promote macrophage intracellular clearance of parasites. Deficient CD4(+) T cell effector responses during clinical visceral leishmaniasis (VL) are associated with elevated production of IL-10. In the primary domestic reservoir of VL, dogs, we define occurrence of both CD4(+) and CD8(+) T cell exhaustion as a significant stepwise loss of Ag-specific proliferation and IFN-γ production, corresponding to increasing VL symptoms. Exhaustion was associated with a 4-fold increase in the population of T cells with surface expression of programmed death 1 (PD-1) between control and symptomatic populations. Importantly, exhausted populations of CD8(+) T cells and to a lesser extent CD4(+) T cells were present prior to onset of clinical VL. VL-exhausted T cells did not undergo significant apoptosis ex vivo after Ag stimulation. Ab block of PD-1 ligand, B7.H1, promoted return of CD4(+) and CD8(+) T cell function and dramatically increased reactive oxygen species production in cocultured monocyte-derived phagocytes. As a result, these phagocytes had decreased parasite load. To our knowledge, we demonstrate for the first time that pan-T cell, PD-1-mediated, exhaustion during VL influenced macrophage-reactive oxygen intermediate production. Blockade of the PD-1 pathway improved the ability of phagocytes isolated from dogs presenting with clinical VL to clear intracellular parasites. T cell exhaustion during symptomatic canine leishmaniasis has implications for the response to vaccination and therapeutic strategies for control of Leishmania infantum in this important reservoir species.

  10. Visualization of T Cell-Regulated Monocyte Clusters Mediating Keratinocyte Death in Acquired Cutaneous Immunity.

    PubMed

    Liu, Zheng; Yang, Fei; Zheng, Hao; Fan, Zhan; Qiao, Sha; Liu, Lei; Tao, Juan; Luo, Qingming; Zhang, Zhihong

    2018-06-01

    It remains unclear how monocytes are mobilized to amplify inflammatory reactions in T cell-mediated adaptive immunity. Here, we investigate dynamic cellular events in the cascade of inflammatory responses through intravital imaging of a multicolor-labeled murine contact hypersensitivity model. We found that monocytes formed clusters around hair follicles in the contact hypersensitivity model. In this process, effector T cells encountered dendritic cells under regions of monocyte clusters and secreted IFN-γ, which mobilizes CCR2-dependent monocyte interstitial migration and CXCR2-dependent monocyte cluster formation. We showed that hair follicles shaped the inflammatory microenvironment for communication among the monocytes, keratinocytes, and effector T cells. After disrupting the T cell-mobilized monocyte clusters through CXCR2 antagonization, monocyte activation and keratinocyte apoptosis were significantly inhibited. Our study provides a new perspective on effector T cell-regulated monocyte behavior, which amplifies the inflammatory reaction in acquired cutaneous immunity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Bim regulates alloimmune-mediated vascular injury through effects on T-cell activation and death.

    PubMed

    von Rossum, Anna; Enns, Winnie; Shi, Yu P; MacEwan, Grace E; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C

    2014-06-01

    Bim is a proapoptotic Bcl-2 protein known to downregulate immune responses and to also be required for antigen-induced T-cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T-cell responses in a model of vascular rejection. Bim was required for proliferation of CD4 and CD8 T cells, and for interleukin-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T-cell activation, whereas a complete elimination of Bim was required to prevent CD4 T-cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim(+/-), but not Bim(-/-), graft recipients. T-cell proliferation in response to allograft arteries was significantly reduced in both Bim(+/-) and Bim(-/-) mice, but cell death was attenuated only in Bim(-/-) animals. Bim controls both T-cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. © 2014 American Heart Association, Inc.

  12. T lymphocyte subpopulations diverge in commercially raised chickens

    PubMed Central

    Bridle, Byram W.; Julian, Richard; Shewen, Patricia E.; Vaillancourt, Jean-Pierre

    2006-01-01

    Abstract To evaluate immunocompetence in commercially raised chickens, we immunophenotyped Dekalb Delta and H&N White Leghorn (WLH) hybrids, 20 chickens in each of 3 age groups (9 wk [juvenile], 25 wk [young adult], and 79 or 80 wk [adult]), for circulating CD3+, CD4+, CD8+, TCR1+, TCR2+, and TCR3+ lymphocytes. The proportion of CD3+ T cells, including CD4+ and CD8+ subsets, was increased in the hybrids as compared with published values for laboratory-raised outbred WLH chickens. The proportion of the TCR2+ (Vβ1) T cell subpopulation was also increased. An age-related decrease in the proportion of TCR1+ (γδ) T cells was noted in both hybrids. Further, a remarkably low CD4:CD8 ratio was evident in all age groups of both hybrids, indicating decreased immunocompetence. Overall, these experiments provide age-related proportions of various peripheral-blood T lymphocyte subpopulations in commercially raised Dekalb Delta and H&N chickens that diverge from the proportions in laboratory-raised outbred WLH chickens and suggest reduced immunocompetence. Such a decline in immunocompetence, including humoral immune capacity, could be attributed to genetic selection for production traits, environmental factors associated with commercial operations, and intense immunization. PMID:16850940

  13. LPS-treated bone marrow-derived dendritic cells induce immune tolerance through modulating differentiation of CD4+ regulatory T cell subpopulations mediated by 3G11 and CD127.

    PubMed

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2017-06-01

    Intravenous transfer of LPS-treated bone marrow-derived dendritic cells blocks development of autoimmunity induced by CD4 + T cells in vivo. However, cellular mechanisms of dendritic cell-mediated immune tolerance have not yet been fully elucidated. Here, we report that there are two new subpopulations of CD4 + CD25 + FoxP3 + GITR + regulatory T cells (CD127 + 3G11 + and CD127 + 3G11 - cells). LPS-treated dendritic cells facilitate development of CD4 + CD127 + 3G11 - regulatory T cells but inhibit that of CD4 + CD127 + 3G11 + regulatory T cells. LPS-induced tolerogenic dendritic cells may cause immune tolerance through modulating balance of different subsets of CD4 + regulatory T cells mediated by CD127 and 3G11. Our results imply a new potential cellular mechanism of dendritic cell-mediated immune tolerance.

  14. Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2010-01-01

    Immune defense is important for organisms' survival and fitness. Small mammals in temperate zone often face seasonal food shortages. Generally fasting can suppress immune function in laboratory rodents and little information is available for wild rodents. The present study tested the hypothesis that Mongolian gerbils (Meriones unguiculatus) could inhibit T cell-mediated immunity to adapt to acute fasting. Forty-two females were divided into the fed and fasted groups, in which the latter was deprived of food for 3days. After 66h fasting, half of the gerbils in each group were injected with phosphate buffered saline or phytohaemagglutinin (PHA) solution. T cell-mediated immunity assessed by PHA response was suppressed in the fasted gerbils compared with the fed gerbils. The fasted gerbils had lower body fat mass, wet and dry thymus mass, dry spleen mass, white blood cells, serum leptin and blood glucose concentrations, but higher corticosterone concentrations than those of the controls. Moreover, PHA response was positively correlated with body fat mass and serum leptin levels in the immunochallenged groups. Taken together, acute fasting leads to immunosuppression, which might be caused by low body fat mass and low serum leptin concentrations in female Mongolian gerbils.

  15. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen.

    PubMed

    Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S

    2016-07-01

    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.

  16. IFN-Gamma-Dependent and Independent Mechanisms of CD4⁺ Memory T Cell-Mediated Protection from Listeria Infection.

    PubMed

    Meek, Stephanie M; Williams, Matthew A

    2018-02-13

    While CD8⁺ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4⁺ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV), followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP 61-80 (Lm-gp61). We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4⁺ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4⁺ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4⁺ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4⁺ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4⁺ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.

  17. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity

    PubMed Central

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M.; Kuchroo, Vijay K.; Constantin, Gabriela

    2014-01-01

    SUMMARY Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper-1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease. PMID:24703780

  18. Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4+ T cells

    PubMed Central

    Altin, John A.; Daley, Stephen R.; Howitt, Jason; Rickards, Helen J.; Batkin, Alison K.; Horikawa, Keisuke; Prasad, Simon J.; Nelms, Keats A.; Kumar, Sharad; Wu, Lawren C.; Tan, Seong-Seng; Cook, Matthew C.; Goodnow, Christopher C.

    2014-01-01

    The NDFIP1 (neural precursor cell expressed, developmentally down-regulated protein 4 family-interacting protein 1) adapter for the ubiquitin ligase ITCH is genetically linked to human allergic and autoimmune disease, but the cellular mechanism by which these proteins enable foreign and self-antigens to be tolerated is unresolved. Here, we use two unique mouse strains—an Ndfip1-YFP reporter and an Ndfip1-deficient strain—to show that Ndfip1 is progressively induced during T-cell differentiation and activation in vivo and that its deficiency causes a cell-autonomous, Forkhead box P3-independent failure of peripheral CD4+ T-cell tolerance to self and exogenous antigen. In small cohorts of antigen-specific CD4+ cells responding in vivo, Ndfip1 was necessary for tolerogen-reactive T cells to exit cell cycle after one to five divisions and to abort Th2 effector differentiation, defining a step in peripheral tolerance that provides insights into the phenomenon of T-cell anergy in vivo and is distinct from the better understood process of Bcl2-interacting mediator of cell death-mediated apoptosis. Ndfip1 deficiency precipitated autoimmune pancreatic destruction and diabetes; however, this depended on a further accumulation of nontolerant anti-self T cells from strong stimulation by exogenous tolerogen. These findings illuminate a peripheral tolerance checkpoint that aborts T-cell clonal expansion against allergens and autoantigens and demonstrate how hypersensitive responses to environmental antigens may trigger autoimmunity. PMID:24520172

  19. Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling.

    PubMed

    Kido, Masahiro; Watanabe, Norihiko; Okazaki, Taku; Akamatsu, Takuji; Tanaka, Junya; Saga, Kazuyuki; Nishio, Akiyoshi; Honjo, Tasuku; Chiba, Tsutomu

    2008-10-01

    Because of the lack of animal models developing spontaneous autoimmune hepatitis (AIH), the molecular mechanisms involved in the development of AIH are still unclear. This study aims to examine the regulatory roles of naturally arising CD4(+)CD25(+) regulatory T (Treg) cells and programmed cell death 1 (PD-1)-mediated signaling in the development of AIH. To induce a concurrent loss of Treg cells and PD-1-mediated signaling, neonatal thymectomy (NTx), which severely reduces the number of Treg cells, was performed on PD-1(-/-) mice. After the NTx, we performed histologic examination, assessed autoantibody production and infiltrating cells in the liver, and conducted adoptive transfer experiments. In contrast to NTx mice and PD-1(-/-) mice, NTx-PD-1(-/-) mice produced antinuclear antibodies and developed fatal hepatitis characterized by a CD4(+) and CD8(+) T-cell infiltration invading the parenchyma with massive lobular necrosis. Induction of AIH in NTx-PD-1(-/-) mice was suppressed by transfer of Treg cells, even derived from PD-1(-/-) mice. Transfer of total but not CD4(+) T-cell-depleted splenocytes from NTx-PD-1(-/-) mice into RAG2(-/-) mice induced the development of severe hepatitis. In contrast, the transfer of CD8(+) T-cell-depleted splenocytes triggered only mononuclear infiltrates without massive necrosis of the parenchyma. NTx-PD-1(-/-) mice are the first mouse model of spontaneous fatal AIH. The concurrent loss of Treg cells and PD-1-mediated signaling can induce the development of fatal AIH. Autoreactive CD4(+) T cells are essential for induction of AIH, whereas CD8(+) T cells play an important role in progression to fatal hepatic damage.

  20. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division ratesmore » and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21

  1. CD8+CD28+ T cells might mediate injury of cardiomyocytes in acute myocardial infarction.

    PubMed

    Zhang, Lili; Wang, Zhiyan; Wang, Di; Zhu, Jumo; Wang, Yi

    2018-06-07

    CD8 + T cells accumulate in the necrotic myocardium of acute myocardial infarction (AMI). It is unclear whether CD8 + CD28 + T cells, a specific subset of CD8 + T cells, contribute to myocardial injury. In this study, 92 consecutive patients with AMI and 28 healthy control subjects were enrolled. The frequency of CD8 + CD28 + T cells in peripheral blood samples was assayed by flow cytometry. Plasma cardiac troponin I (TNI) and left ventricular ejection fraction (LVEF) were determined. Long-term prognosis of the patients was evaluated by major adverse cardiac and cerebrovascular events (MACCE) over a 12-month follow-up period. Our findings indicated that patients with AMI who presented with high numbers of CD8 + CD28 + T cells had an increased infarction size and aggravated ventricular function. We proposed that cytotoxic CD8 + CD28 + T cell-mediated myocardial necrosis may act as a novel and alternative pathway of AMI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis.

    PubMed

    Singh, Karnail; Deshpande, Pratima; Li, Guangjin; Yu, Mingcan; Pryshchep, Sergey; Cavanagh, Mary; Weyand, Cornelia M; Goronzy, Jörg J

    2012-06-19

    Autoantibodies to common autoantigens and neoantigens, such as IgG Fc and citrullinated peptides, are immunological hallmarks of rheumatoid arthritis (RA). We examined whether a failure in maintaining tolerance is mediated by defects in T-cell receptor activation threshold settings. RA T cells responded to stimulation with significantly higher ERK phosphorylation (P < 0.001). Gene expression arrays of ERK pathway members suggested a higher expression of KRAS and BRAF, which was confirmed by quantitative PCR (P = 0.003), Western blot, and flow cytometry (P < 0.01). Partial silencing of KRAS and BRAF lowered activation-induced phosphorylated ERK levels (P < 0.01). In individual cells, levels of these signaling molecules correlated with ERK phosphorylation, attesting that their concentrations are functionally important. In confocal studies, B-RAF/K-RAS clustering was increased in RA T cells 2 min after T-cell receptor stimulation (P < 0.001). Overexpression of B-RAF and K-RAS in normal CD4 T cells amplified polyclonal T-cell proliferation and facilitated responses to citrullinated peptides. We propose that increased expression of B-RAF and K-RAS lowers T-cell activation thresholds in RA T cells, enabling responses to autoantigens.

  3. Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

    PubMed

    Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib

    2016-11-01

    To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  5. Bim Regulates Alloimmune-Mediated Vascular Injury Through Effects on T Cell Activation and Death

    PubMed Central

    von Rossum, Anna; Enns, Winnie; Shi, Yu P.; MacEwan, Grace E.; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C.

    2014-01-01

    Objective Bim is a pro-apoptotic Bcl-2 protein known to down-regulate immune responses and to also be required for antigen-induced T cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T cell responses in a model of vascular rejection. Approach and Results Bim was required for proliferation of CD4 and CD8 T cells, and for IL-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T cell activation whereas a complete elimination of Bim was required to prevent CD4 T cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim+/−, but not Bim−/−, graft recipients. T cell proliferation in response to allograft arteries was significantly reduced in both Bim+/− and Bim−/− mice, but cell death was attenuated only in Bim−/− animals. Conclusions Bim controls both T cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. PMID:24700126

  6. PLAC1-specific TCR-engineered T cells mediate antigen-specific antitumor effects in breast cancer

    PubMed Central

    Li, Qiongshu; Liu, Muyun; Wu, Man; Zhou, Xin; Wang, Shaobin; Hu, Yuan; Wang, Youfu; He, Yixin; Zeng, Xiaoping; Chen, Junhui; Liu, Qubo; Xiao, Dong; Hu, Xiang; Liu, Weibin

    2018-01-01

    Placenta-specific 1 (PLAC1), a novel cancer-testis antigen (CTA), is expressed in a number of different human malignancies. It is frequently produced in breast cancer, serving a function in tumorigenesis. Adoptive immunotherapy using T cell receptor (TCR)-engineered T cells against CTA mediates objective tumor regression; however, to the best of our knowledge, targeting PLAC1 using engineered T cells has not yet been attempted. In the present study, the cDNAs encoding TCRα- and β-chains specific for human leukocyte antigen (HLA)-A*0201-restricted PLAC1 were cloned from a cytotoxic T-lymphocyte, generated by in vitro by the stimulation of CD8+ T cells using autologous HLA-A2+ dendritic cells loaded with a PLAC1-specific peptide (p28-36, VLCSIDWFM). The TCRα/β-chains were linked by a 2A peptide linker (TCRα-Thosea asigna virus-TCRβ), and the constructs were cloned into the lentiviral vector, followed by transduction into human cytotoxic (CD8+) T cells. The efficiency of transduction was up to 25.16%, as detected by PLAC1 multimers. TCR-transduced CD8+ T cells, co-cultured with human non-metastatic breast cancer MCF-7 cells (PLAC1+, HLA-A2+) and triple-negative breast cancer MDAMB-231 cells (PLAC1+, HLA-A2+), produced interferon γ and tumor necrosis factor α, suggesting TCR activation. Furthermore, the PLAC1 TCR-transduced CD8+ T cells efficiently and specifically identified and annihilated the HLA-A2+/PLAC1+ breast cancer cell lines in a lactate dehydrogenase activity assay. Western blot analysis demonstrated that TCR transduction stimulated the production of mitogen-activated protein kinase signaling molecules, extracellular signal-regulated kinases 1/2 and nuclear factor-κB, through phosphoinositide 3-kinase γ-mediated phosphorylation of protein kinase B in CD8+ T cells. Xenograft mouse assays revealed that PLAC1 TCR-transduced CD8+T cells significantly delayed the tumor progression in mice-bearing breast cancer compared with normal saline or negative

  7. CD4+ T cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs.

    PubMed

    Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune

    2018-05-11

    Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.

  8. Integrins in T Cell Physiology

    PubMed Central

    Alabiso, Oscar; Galetto, Alessandra Silvia; Baldanzi, Gianluca

    2018-01-01

    From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research. PMID:29415483

  9. Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells.

    PubMed Central

    Prieto, J; Beatty, P G; Clark, E A; Patarroyo, M

    1988-01-01

    Leucocytes interact with vascular endothelial cells (EC), and adhesion between these two cell types in vitro is modulated by phorbol ester. Monocytes were found to display the highest basal adhesion to EC, followed by Epstein-Barr virus-immortalized normal B cells (EBV-B), T cells and granulocytes. Phorbol ester treatment increased the adhesion of all types of leucocytes, except monocytes. In the presence of this compound, monoclonal antibody 60.3 to GP90 (CD18, a leucocyte-adhesion protein which is non-covalently associated to either GP160, GP155, or GP130) was found to inhibit the adhesion of the four types of leucocytes to a considerable extent, while anti-lymphocyte function-associated antigen-1 (LFA-1) antibody to GP160 (CD11a) inhibited the adhesion of T and B cells only. Antibody 60.1 to GP155 (CD11b) had a major inhibitory activity exclusively on granulocytes, while antibody LB-2, which recognizes a distinct adhesion molecule (GP84) and, in contrast to the previous antibodies, reacts with EC, mainly inhibited adhesion of EBV-B and did not increase the inhibition obtained with antibody 60.3 alone. Fab fragments of antibody 60.3 inhibited leucocyte adhesion more efficiently, in either the absence or presence of phorbol ester, than the intact antibody molecule. It is concluded the GP90, either alone or associated to the larger glycoproteins, mediates the adhesion in all types of leucocytes, while GP84 mediates the adhesion of the activated B cells. Images Figure 2 PMID:3259203

  10. [Morphofunctional characteristics of immunocompetent cells in dysplasia of the breast].

    PubMed

    Dikshteĭn, E A; Burlak, Iu P; Shevchenko, N I

    1985-01-01

    Immunocompetent cells were studied in the stroma and epithelium of 34 cases of mammary gland dysplasia. The following stainings were used for light microscopy: hematoxylin and eosin, methods of Brachet, van Gieson, Romanovsky-Giemsa, hallocyanine alums, Gomori, PAS-reaction as well as the determination of acid and alkaline phosphatases, glucose-6-phosphate and succinate dehydrogenase were used. 14 cases were studied ultrastructurally. Two types of small B lymphocytes and one type of large lymphocytes, stromal macrophages are described. Their morphofunctional characteristics is given and their properties in proliferating and non-proliferating fibroadenomatosis are shown. Interaction of intraepithelial large granular lymphocytes (normal killers) with immature epithelial cells resulting in the death of these epitheliocytes is described. The results obtained are regarded as a morphological manifestation of the immune surveillance.

  11. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice. [X Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-04-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F/sub 1/ (BLCF/sub 1/) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF/sub 1/ mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (..mu..-suppressed) BLCF/sub 1/ mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the ..mu..-suppressed mice that resisted a sporozoite challenge suggests amore » minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF/sub 1/ mice against a P. berghei sporozoite infection.« less

  12. Systemic immunological tolerance to ocular antigens is mediated by TNF-related apoptosis-inducing ligand (TRAIL)-expressing CD8+ T cells*

    PubMed Central

    Griffith, Thomas S.; Brincks, Erik L.; Gurung, Prajwal; Kucaba, Tamara A.; Ferguson, Thomas A.

    2010-01-01

    Systemic immunological tolerance to Ag encountered in the eye restricts the formation of potentially damaging immune responses that would otherwise be initiated at other anatomical locations. We previously demonstrated that tolerance to Ag administered via the anterior chamber (AC) of the eye required FasL-mediated apoptotic death of inflammatory cells that enter the eye in response to the antigenic challenge. Moreover, the systemic tolerance induced after AC injection of Ag was mediated by CD8+ regulatory T cells. The present study examined the mechanism by which these CD8+ regulatory T cells mediate tolerance after AC injection of Ag. AC injection of Ag did not prime CD4+ T cells, and led to increased TRAIL expression by splenic CD8+ T cells. Unlike wildtype mice, Trail−/− or Dr5−/− mice did not develop tolerance to Ag injected into the eye, even though responding lymphocytes underwent apoptosis in the AC of the eyes of these mice. CD8+ T cells from Trail−/− mice that were first injected AC with Ag were unable to transfer tolerance to naïve recipient wildtype mice, but CD8+ T cells from AC-injected wildtype or Dr5−/− mice could transfer tolerance. Importantly, the transferred wildtype (Trail+/+) CD8+ T cells were also able to decrease the number of infiltrating inflammatory cells into the eye; however, Trail−/− CD8+ T cells were unable to limit the inflammatory cell ingress. Together, our data suggest that “helpless” CD8+ regulatory T cells generated after AC injection of Ag enforce systemic tolerance in a TRAIL-dependent manner to inhibit inflammation in the eye. PMID:21169546

  13. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    PubMed Central

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M.; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells we targeted HER2-positive OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2-positive canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy prior to conducting studies in humans. PMID:25198528

  14. Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions.

    PubMed

    Graser, R T; DiLorenzo, T P; Wang, F; Christianson, G J; Chapman, H D; Roopenian, D C; Nathenson, S G; Serreze, D V

    2000-04-01

    Previous work has indicated that an important component for the initiation of autoimmune insulin-dependent diabetes mellitus (IDDM) in the NOD mouse model entails MHC class I-restricted CD8 T cell responses against pancreatic beta cell Ags. However, unless previously activated in vitro, such CD8 T cells have previously been thought to require helper functions provided by MHC class II-restricted CD4 T cells to exert their full diabetogenic effects. In this study, we show that IDDM development is greatly accelerated in a stock of NOD mice expressing TCR transgenes derived from a MHC class I-restricted CD8 T cell clone (designated AI4) previously found to contribute to the earliest preclinical stages of pancreatic beta cell destruction. Importantly, these TCR transgenic NOD mice (designated NOD.AI4alphabeta Tg) continued to develop IDDM at a greatly accelerated rate when residual CD4 helper T cells were eliminated by introduction of the scid mutation or a functionally inactivated CD4 allele. In a previously described stock of NOD mice expressing TCR transgenes derived from another MHC class I-restricted beta cell autoreactive T cell clone, IDDM development was retarded by elimination of residual CD4 T cells. Hence, there is variability in the helper dependence of CD8 T cells contributing to the development of autoimmune IDDM. The AI4 clonotype represents the first CD8 T cell with a demonstrated ability to progress from a naive to functionally activated state and rapidly mediate autoimmune IDDM development in the complete absence of CD4 T cell helper functions.

  15. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors.

    PubMed

    Smith, Tyrel T; Moffett, Howell F; Stephan, Sirkka B; Opel, Cary F; Dumigan, Amy G; Jiang, Xiuyun; Pillarisetty, Venu G; Pillai, Smitha P S; Wittrup, K Dane; Stephan, Matthias T

    2017-06-01

    Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.

  16. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    PubMed

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  17. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64+ cells

    PubMed Central

    Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M.; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich

    2015-01-01

    Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64+ monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients’ inflamed joints that comprised enhanced numbers of CD64+ cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64+ cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64+ cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions. PMID:26670584

  18. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    PubMed

    Akhmetzyanova, Ilseyar; Drabczyk, Malgorzata; Neff, C Preston; Gibbert, Kathrin; Dietze, Kirsten K; Werner, Tanja; Liu, Jia; Chen, Lieping; Lang, Karl S; Palmer, Brent E; Dittmer, Ulf; Zelinskyy, Gennadiy

    2015-10-01

    Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  19. Evolving models of the immunopathogenesis of T-cell mediated drug allergy: the role of host, pathogens, and drug response

    PubMed Central

    White, Katie D.; Chung, Wen-Hung; Hung, Shuen-Iu; Mallal, Simon; Phillips, Elizabeth J.

    2015-01-01

    Immune-mediated adverse drug reactions (IM-ADRs) are an underrecognized source of preventable morbidity, mortality, and cost. Increasingly, genetic variation in the HLA loci is associated with risk of severe reactions, highlighting the importance of T-cell immune responses in the mechanisms of both B-cell mediated and primary T-cell mediated IM-ADRs. In this review, we summarize the role of host genetics, microbes and drugs in the development of IM-ADRs, expand upon the existing models of IM-ADR pathogenesis to address multiple unexplained observations, discuss the implications of this work in clinical practice today, and describe future applications for pre-clinical drug toxicity screening, drug design, and development. PMID:26254049

  20. Role of the Ca2+-Calcineurin-Nuclear Factor of Activated T cell Pathway in Mitofusin-2-Mediated Immune Function of Jurkat Cells.

    PubMed

    Xu, Xiu-Ping; Yao, Yong-Ming; Zhao, Guang-Ju; Wu, Zong-Sheng; Li, Jun-Cong; Jiang, Yun-Long; Lu, Zhong-Qiu; Hong, Guang-Liang

    2018-02-05

    Mitofusin-2 (MFN2), a well-known mitochondrial fusion protein, has been shown to participate in innate immunity, but its role in mediating adaptive immunity remains poorly characterized. In this study, we explored the potential role of MFN2 in mediating the immune function of T lymphocytes. We manipulated MFN2 gene expression in Jurkat cells via lentiviral transduction of MFN2 small interfering RNA (siRNA) or full-length MFN2. After transduction, the immune response and its underlying mechanism were determined in Jurkat cells. One-way analysis of variance and Student's t-test were performed to determine the statistical significance between the groups. Overexpression of MFN2 enhanced the immune response of T lymphocytes by upregulating Ca2+ (359.280 ± 10.130 vs. 266.940 ± 10.170, P = 0.000), calcineurin (0.513 ± 0.014 vs. 0.403 ± 0.020 nmol/L, P = 0.024), and nuclear factor of activated T cells (NFATs) activation (1.040 ± 0.086 vs. 0.700 ± 0.115, P = 0.005), whereas depletion of MFN2 impaired the immune function of T lymphocytes by downregulating Ca2+ (141.140 ± 14.670 vs. 267.060 ± 9.230, P = 0.000), calcineurin (0.054 ± 0.030 nmol/L vs. 0.404 ± 0.063 nmol/L, P = 0.000), and NFAT activation (0.500 ± 0.025 vs. 0.720 ± 0.061, P = 0.012). Furthermore, upregulated calcineurin partially reversed the negative effects of MFN2 siRNA on T cell-mediated immunity evidenced by elevations in T cell proliferation (1.120 ± 0.048 vs. 0.580 ± 0.078, P = 0.040), interleukin-2 (IL-2) production (473.300 ± 24.100 vs. 175.330 ± 12.900 pg/ml, P = 0.000), and the interferon-γ/IL-4 ratio (3.080 ± 0.156 vs. 0.953 ± 0.093, P = 0.000). Meanwhile, calcineurin activity inhibitor depleted the positive effects of overexpressed MFN2 on T cells function. Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway. MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.

  1. Differential effects of immunosuppressive drugs on T-cell motility.

    PubMed

    Datta, A; David, R; Glennie, S; Scott, D; Cernuda-Morollon, E; Lechler, R I; Ridley, A J; Marelli-Berg, F M

    2006-12-01

    The best-characterized mechanism of the action of immunosuppressive drugs is to prevent T-cell clonal expansion, thus containing the magnitude of the ensuing immune response. As T-cell recruitment to the inflammatory site is another key step in the development of T-cell-mediated inflammation, we analyzed and compared the effects of two commonly used immunosuppressants, cyclosporin A (CsA) and the rapamycin-related compound SDZ-RAD, on the motility of human CD4+ T cells. We show that CsA, but not SDZ-RAD, inhibits T-cell transendothelial migration in vitro. CsA selectively impaired chemokine-induced T-cell chemotaxis while integrin-mediated migration was unaffected. The inhibition of T-cell chemotaxis correlated with reduced AKT/PKB but not ERK activation following exposure to the chemokine CXCL-12/SDF-1. In addition, CsA, but not SDZ-RAD, prevents some T-cell receptor-mediated effects on T-cell motility. Finally, we show that CsA, but not SDZ-RAD inhibits tissue infiltration by T cells in vivo. Our data suggest a prominent antiinflammatory role for CsA in T-cell-mediated tissue damage, by inhibiting T-cell trafficking into tissues in addition to containing clonal expansion.

  2. CCL21 mediates CD4+ T-cell costimulation via a DOCK2/Rac-dependent pathway.

    PubMed

    Gollmer, Kathrin; Asperti-Boursin, François; Tanaka, Yoshihiko; Okkenhaug, Klaus; Vanhaesebroeck, Bart; Peterson, Jeffrey R; Fukui, Yoshinori; Donnadieu, Emmanuel; Stein, Jens V

    2009-07-16

    CD4(+) T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)-transgenic (tg) CD4(+) T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3Kdelta(D910A/D910A) or PI3Kgamma-deficient TCR-tg CD4(+) T cells showed similar responsiveness to CCL21 costimulation as control CD4(+) T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4(+) T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca(2+) signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.

  3. Jejunal brush border microvillous alterations in Giardia muris-infected mice: role of T lymphocytes and interleukin-6.

    PubMed

    Scott, K G; Logan, M R; Klammer, G M; Teoh, D A; Buret, A G

    2000-06-01

    Intestinal colonization with the protozoan Giardia causes diffuse brush border microvillous alterations and disaccharidase deficiencies, which in turn are responsible for intestinal malabsorption and maldigestion. The role of T cells and/or cytokines in the pathogenesis of Giardia-induced microvillous injury remains unclear. The aim of this study was to assess the role of T cells and interleukin-6 (IL-6) in the brush border pathophysiology of acute murine giardiasis in vivo. Athymic nude (nu(-)/nu(-)) CD-1 mice and isogenic immunocompetent (nu(+)/nu(+)) CD-1 mice (4 weeks old) received an axenic Giardia muris trophozoite inoculum or vehicle (control) via orogastric gavage. Weight gain and food intake were assessed daily. On day 6, segments of jejunum were assessed for parasite load, brush border ultrastructure, IL-6 content, maltase and sucrase activities, villus-crypt architecture, and intraepithelial lymphocyte (IEL) infiltration. Despite similar parasitic loads on day 6, infected immunocompetent animals, but not infected nude mice, showed a diffuse loss of brush border microvillous surface area, which was correlated with a significant reduction in maltase and sucrase activities and a decrease in jejunal IL-6 concentration. In both athymic control and infected mice, jejunal brush border surface area and disaccharidases were high, but levels of tissue IL-6 were low and comparable to the concentration measured in immunocompetent infected animals. In both immunocompetent and nude mice, infection caused a small but significant increase in the numbers of IELs. These findings suggest that the enterocyte brush border injury and malfunction seen in giardiasis is, at least in part, mediated by thymus-derived T lymphocytes and that suppressed jejunal IL-6 does not necessarily accompany microvillous shortening.

  4. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    PubMed Central

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  5. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells.

    PubMed

    Lin, Rui; Choi, Yeon Ho; Zidar, David A; Walker, Julia K L

    2018-06-01

    Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4 + T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4 + T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4 + Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4 + Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.

  6. CD8+IL-17+ T Cells Mediate Neutrophilic Airway Obliteration in T-bet–Deficient Mouse Lung Allograft Recipients

    PubMed Central

    Dodd-o, Jeffrey M.; Coon, Tiffany A.; Miller, Hannah L.; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P.; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M.; Zhao, Jing; Zhao, Yutong; McDyer, John F.

    2015-01-01

    Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet−/− recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet−/− recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8+ T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ–dominant responses in WT mice. CD4+ T cells produced IL-17 but not IFN-γ responses in T-bet−/− recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8+IFN-γ+ responses in both T-bet−/− and WT mice but had no attenuating effect on lung rejection pathology in T-bet−/− recipients or on the development of obliterative airway inflammation that occurred only in T-bet−/− recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade–resistant rejection pathology and airway inflammation in T-bet−/− recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet−/− allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet–deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade–resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8+IL-17+ T cells. Our data support T-bet–deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation

  7. Anti-allergic activity of 2,4,6-trihydroxy-3-geranylacetophenone (tHGA) via attenuation of IgE-mediated mast cell activation and inhibition of passive systemic anaphylaxis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ji Wei; Israf, Daud Ahmad; Harith, Hanis Haze

    tHGA, a geranyl acetophenone compound originally isolated from a local shrub called Melicope ptelefolia, has been previously reported to prevent ovalbumin-induced allergic airway inflammation in a murine model of allergic asthma by targeting cysteinyl leukotriene synthesis. Mast cells are immune effector cells involved in the pathogenesis of allergic diseases including asthma by releasing cysteinyl leukotrienes. The anti-asthmatic properties of tHGA could be attributed to its inhibitory effect on mast cell degranulation. As mast cell degranulation is an important event in allergic responses, this study aimed to investigate the anti-allergic effects of tHGA in cellular and animal models of IgE-mediated mastmore » cell degranulation. For in vitro model of IgE-mediated mast cell degranulation, DNP-IgE-sensitized RBL-2H3 cells were pre-treated with tHGA before challenged with DNP-BSA to induce degranulation. For IgE-mediated passive systemic anaphylaxis, Sprague Dawley rats were sensitized by intraperitoneal injection of DNP-IgE before challenged with DNP-BSA. Both in vitro and in vivo models showed that tHGA significantly inhibited the release of preformed mediators (β-hexosaminidase and histamine) as well as de novo mediators (interleukin-4, tumour necrosis factor-α, prostaglandin D{sub 2} and leukotriene C{sub 4}). Pre-treatment of tHGA also prevented IgE-challenged RBL-2H3 cells and peritoneal mast cells from undergoing morphological changes associated with mast cell degranulation. These findings indicate that tHGA possesses potent anti-allergic activity via attenuation of IgE-mediated mast cell degranulation and inhibition of IgE-mediated passive systemic anaphylaxis. Thus, tHGA may have the potential to be developed as a mast cell stabilizer for the treatment of allergic diseases in the future. - Highlights: • The in vitro and in vivo mast cell stabilizing effects of tHGA were examined. • tHGA counteracts the plasma membrane deformation in degranulating

  8. Exposure to apoptotic activated CD4+ T cells induces maturation and APOBEC3G-mediated inhibition of HIV-1 infection in dendritic cells.

    PubMed

    Mohanram, Venkatramanan; Johansson, Ulrika; Sköld, Annette E; Fink, Joshua; Kumar Pathak, Sushil; Mäkitalo, Barbro; Walther-Jallow, Lilian; Spetz, Anna-Lena

    2011-01-01

    Dendritic cells (DCs) are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4(+) T cells (ApoInf) or apoptotic uninfected activated CD4(+) T cells (ApoAct) induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4(+) T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4(+) T cells (ApoRest). Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection.

  9. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic programming

    PubMed Central

    Yang, Kai; Shrestha, Sharad; Zeng, Hu; Karmaus, Peer W.F.; Neale, Geoffrey; Vogel, Peter; Guertin, David A.; Lamb, Richard F.; Chi, Hongbo

    2014-01-01

    SUMMARY Naïve T cells respond to antigen stimulation by exiting from quiescence and initiating clonal expansion and functional differentiation, but the control mechanism is elusive. Here we describe that Raptor-mTORC1-dependent metabolic programming is a central determinant of this transitional process. Loss of Raptor abrogated T cell priming and Th2 cell differentiation, although Raptor function is less important for continuous proliferation of actively cycling cells. mTORC1 coordinated multiple metabolic programs in T cells including glycolysis, lipid synthesis and oxidative phosphorylation to mediate antigen-triggered exit from quiescence. mTORC1 further linked glucose metabolism to the initiation of Th2 cell differentiation by orchestrating cytokine receptor expression and cytokine responsiveness. Activation of Raptor-mTORC1 integrated T cell receptor and CD28 co-stimulatory signals in antigen-stimulated T cells. Our studies identify a Raptor-mTORC1-dependent pathway linking signal-dependent metabolic reprogramming to quiescence exit, and this in turn coordinates lymphocyte activation and fate decisions in adaptive immunity. PMID:24315998

  10. Haemagglutinin-neuraminidase from HPIV3 mediates human NK regulation of T cell proliferation via NKp44 and NKp46.

    PubMed

    McQuaid, Samantha; Loughran, Sinead; Power, Patrick; Maguire, Paula; Walls, Dermot; Grazia Cusi, Maria; Orvell, Claes; Johnson, Patricia

    2018-06-01

    HPIV3 is a respiratory virus causing airway diseases, including pneumonia, croup, and bronchiolitis, during infancy and childhood. Currently there is no effective vaccine or anti-viral therapy for this virus. Studies have suggested that poor T cell proliferation following HPIV3 infection is responsible for impaired immunological memory associated with this virus. We have previously demonstrated that NK cells mediate regulation of T cell proliferation during HPIV3 infection. Here we add to these studies by demonstrating that the regulation of T cell proliferation during HPIV3 infection is mediated via NK receptors NKp44 and NKp46 and involves the surface glycoprotein haemagglutinin-neuraminidase but not the fusion protein of the virus. These studies extend our knowledge of the regulatory repertoire of NK cells and provide mechanistic insights which may explain reoccurring failures of vaccines against this virus.

  11. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity.

    PubMed

    Schmidt, Stanislaw; Tramsen, Lars; Perkhofer, Susanne; Lass-Flörl, Cornelia; Hanisch, Mitra; Röger, Frauke; Klingebiel, Thomas; Koehl, Ulrike; Lehrnbecher, Thomas

    2013-07-01

    Mucormycosis has a high mortality and is increasingly diagnosed in hematopoietic stem cell transplant (HSCT) recipients. In this setting, there is a growing interest to restore host defense to combat infections by adoptively transferring donor-derived immunocompetent cells. Natural killer (NK) cells exhibit antitumor and antiinfective activity, but the interaction with Mucormycetes is unknown. Our data demonstrate that both unstimulated and IL-2 prestimulated human NK cells damage Rhizopus oryzae hyphae, but do not affect resting conidia. The damage of the fungus is mediated, at least in part, by perforin. R. oryzae hyphae decrease the secretion of immunoregulatory molecules by NK cells, such as IFN-γ and RANTES, indicating an immunosuppressive effect of the fungus. Our data indicate that NK cells exhibit activity against Mucormycetes and future research should evaluate NK cells as a potential tool for adoptive immunotherapy in HSCT. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Regionally compartmentalized resident memory T cells mediate naturally acquired protection against pneumococcal pneumonia.

    PubMed

    Smith, N Ms; Wasserman, G A; Coleman, F T; Hilliard, K L; Yamamoto, K; Lipsitz, E; Malley, R; Dooms, H; Jones, M R; Quinton, L J; Mizgerd, J P

    2018-01-01

    As children age, they become less susceptible to the diverse microbes causing pneumonia. These microbes are pathobionts that infect the respiratory tract multiple times during childhood, generating immunological memory. To elucidate mechanisms of such naturally acquired immune protection against pneumonia, we modeled a relevant immunological history in mice by infecting their airways with mismatched serotypes of Streptococcus pneumoniae (pneumococcus). Previous pneumococcal infections provided protection against a heterotypic, highly virulent pneumococcus, as evidenced by reduced bacterial burdens and long-term sterilizing immunity. This protection was diminished by depletion of CD4 + cells prior to the final infection. The resolution of previous pneumococcal infections seeded the lungs with CD4 + resident memory T (T RM ) cells, which responded to heterotypic pneumococcus stimulation by producing multiple effector cytokines, particularly interleukin (IL)-17A. Following lobar pneumonias, IL-17-producing CD4 + T RM cells were confined to the previously infected lobe, rather than dispersed throughout the lower respiratory tract. Importantly, pneumonia protection also was confined to that immunologically experienced lobe. Thus regionally localized memory cells provide superior local tissue protection to that mediated by systemic or central memory immune defenses. We conclude that respiratory bacterial infections elicit CD4 + T RM cells that fill a local niche to optimize heterotypic protection of the affected tissue, preventing pneumonia.

  13. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    PubMed

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  14. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy

    PubMed Central

    Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E

    2014-01-01

    Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions. PMID:24116999

  15. Immune privilege as an intrinsic CNS property: astrocytes protect the CNS against T-cell-mediated neuroinflammation.

    PubMed

    Gimsa, Ulrike; Mitchison, N Avrion; Brunner-Weinzierl, Monika C

    2013-01-01

    Astrocytes have many functions in the central nervous system (CNS). They support differentiation and homeostasis of neurons and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB) and make up the glia limitans. Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the CNS. Depending on the microenvironment, they may become potent antigen-presenting cells for T cells and they may contribute to inflammatory processes. They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory mediators. We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with lymphocytes, which may either aggravate or suppress neuroinflammation.

  16. Measuring T cell-mediated cytotoxicity using fluorogenic caspase substrates.

    PubMed

    Chahroudi, A; Silvestri, G; Feinberg, M B

    2003-10-01

    Cytotoxic T lymphocytes (CTLs) play a major role in the immune response against viruses and other intracellular pathogens. In addition, CTLs are implicated in the control of tumor cells in certain settings. Accurate measures of CTL function are of critical importance to study the pathogenesis of infectious diseases and to evaluate the efficacy of new vaccines and immunotherapies. To this end, we have recently developed a flow cytometry-based CTL (FCC) assay that measures the CTL-induced caspase activation within target cells using cell permeable fluorogenic caspase substrates. This novel assay reliably detects, by flow cytometry or fluorescence/confocal microscopy, antigen-specific CTLs in a wide variety of human and murine systems, and is safer and more informative than the standard 51Cr-release assay. In addition, the flow cytometric CTL (FCC) assay provides an alternative method that is often more sensitive and physiologically informative when compared to previously described FCC assays, as it measures a biological indicator of apoptosis within the target cell. The FCC assay may thus represent a useful tool to further understand the molecular and cellular mechanisms that underlie CTL-mediated killing during tumorigenesis or following infection with viruses or other intracellular pathogens.

  17. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses.

    PubMed

    Choi, Dong Hoon; Kim, Kwang Soon; Yang, Se Hwan; Chung, Doo Hyun; Song, Boyeong; Sprent, Jonathan; Cho, Jae Ho; Sung, Young Chul

    2011-12-15

    Dendritic cells (DC) present α-galactosylceramide (αGalCer) to invariant T-cell receptor-expressing natural killer T cells (iNKT) activating these cells to secrete a variety of cytokines, which in turn results in DC maturation and activation of other cell types, including NK cells, B cells, and conventional T cells. In this study, we showed that αGalCer-pulsing of antigen-activated CD8 T cells before adoptive transfer to tumor-bearing mice caused a marked increase in donor T-cell proliferation, precursor frequency, and cytotoxic lymphocyte activity. This effect was interleukin (IL)-2 dependent and involved both natural killer T cells (NKT) and DCs, as mice lacking IL-2, NKTs, and DCs lacked any enhanced response to adoptively transferred αGalCer-loaded CD8 T cells. iNKT activation was mediated by transfer of αGalCer from the cell membrane of the donor CD8 T cells onto the αGalCer receptor CD1d which is present on host DCs. αGalCer transfer was increased by prior activation of the donor CD8 T cells and required AP-2-mediated endocytosis by host DCs. In addition, host iNKT cell activation led to strong IL-2 synthesis, thereby increasing expansion and differentiation of donor CD8 T cells. Transfer of these cells led to improved therapeutic efficacy against established solid tumors in mice. Thus, our findings illustrate how αGalCer loading of CD8 T cells after antigen activation in vitro may leverage the therapeutic potential of adoptive T-cell therapies.

  18. T-Cell Receptor- and CD28-induced Vav1 activity is required for the accumulation of primed T cells into antigenic tissue

    PubMed Central

    David, Rachel; Ma, Liang; Ivetic, Aleksandar; Takesono, Aya; Ridley, Anne J.; Chai, Jian-Guo; Tybulewicz, Victor; Marelli-Berg, Federica M.

    2016-01-01

    Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into non-lymphoid antigen-rich tissue tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signalling pathways that regulate T cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4+ T cells to antigenic sites. Severe migratory defects displayed by Vav1-/- T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1-/- T cells in vivo. In contrast, Vav1-/- T-cell retention into antigen-rich tissue was severely impaired, reflecting their inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T-cell-mediated tissue damage. PMID:19060239

  19. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors

    PubMed Central

    Smith, Tyrel T.; Moffett, Howell F.; Stephan, Sirkka B.; Opel, Cary F.; Dumigan, Amy G.; Jiang, Xiuyun; Pillarisetty, Venu G.; Pillai, Smitha P. S.; Wittrup, K. Dane; Stephan, Matthias T.

    2017-01-01

    Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants. PMID:28436934

  20. Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction

    PubMed Central

    Qu, Kai; Shen, Nai-ying; Xu, Xin-sen; Su, Hai-bo; Wei, Ji-chao; Tai, Ming-hui; Meng, Fan-di; Zhou, Lei; Zhang, Yue-lang; Liu, Chang

    2013-01-01

    Aim: To elucidate the molecular mechanisms underlying the immunosuppressive effects of emodin isolated from Rheum palmatum L. Methods: Human T cells were isolated from the peripheral venous blood of 10 healthy adult donors. Cell viability was analyzed with MTT assay. AO/EB and Annexin V/PI staining and DNA damage assay were used to detect cell apoptosis. Fluorescence staining was used to detect the levels of ROS, the mitochondrial membrane potential and intracellular Ca2+. Colorimetry was used to detect the levels of MDA and total SOD and GSH/GSSG ratio. The expression and activity of caspase-3, -4, and -9 were detected with Western blotting and a fluorometric assay. Western blotting was also used to detect the expression of Bcl-2, Bax, cytochrome C, and endoplasmic reticulum (ER) markers. Results: Emodin (1, 10, and 100 μmol/L) inhibited the growth of human T cells and induced apoptosis in dose- and time dependent manners. Emodin triggered ER stress and significantly elevated intracellular free Ca2+ in human T cells. It also disrupted mitochondrial membrane potential, and increased cytosolic level of cytochrome C, and the levels of activated cleavage fragments of caspase-3, -4, and -9 in human T cells. Furthermore, emodin significantly increased the levels of ROS and MDA, inhibited both SOD level and GSH/GSSG ratio in human T cells, whereas co-incubation with the ROS scavenger N-acetylcysteine (NAC, 20 μmol/L) almost completely blocked emodin-induced ER stress and mitochondrial dysfunction in human T cells, and decreased the caspase cascade-mediated apoptosis. Conclusion: Emodin exerts immunosuppressive actions at least partly by inducing apoptosis of human T cells, which is triggered by ROS-mediated ER stress and mitochondrial dysfunction. PMID:23811723

  1. Feline glycoprotein A repetitions predominant anchors transforming growth factor beta on the surface of activated CD4(+)CD25(+) regulatory T cells and mediates AIDS lentivirus-induced T cell immunodeficiency.

    PubMed

    Miller, Michelle M; Fogle, Jonathan E; Ross, Peter; Tompkins, Mary B

    2013-04-01

    Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.

  2. CD4+ T Cells Mediate Aspergillosis Vaccine Protection.

    PubMed

    Diaz-Arevalo, Diana; Kalkum, Markus

    2017-01-01

    Adaptive effector CD4 + T cells play essential roles in the defense against fungal infections, especially against invasive aspergillosis (IA). Such protective CD4 + T cells can be generated through immunization with specialized antifungal vaccines, as has been demonstrated for pulmonary Aspergillus fumigatus infections in mouse experiments. Adaptive transfer of fungal antigen-specific CD4 + T cells conferred protection onto non-immunized naive mice, an experimental approach that could potentially become a future treatment option for immunosuppressed IA patients, focusing on the ultimate goal to improve their otherwise dim chances for survival. Here, we describe the different techniques to analyze CD4 + T cell immune responses after immunization with a recombinant fungal protein. We present three major methods that are used to analyze the role of CD4 + T cells in protection against A. fumigatus challenge. They include (1) transplantation of CD4 + T cells from vaccinated mice into immunosuppressed naive mice, observing increasing protection of the cell recipients, (2) depletion of CD4 + T cells from vaccinated mice, which abolishes vaccine protection, and (3) T cell proliferation studies following stimulation with overlapping synthetic peptides or an intact protein vaccine. The latter can be used to validate immunization status and to identify protective T cell epitopes in vaccine antigens. In the methods detailed here, we used versions of the well-studied Asp f3 protein expressed in a bacterial host, either as the intact full length protein or its N-terminally truncated version, comprised of residues 15-168. However, these methods are generally applicable and can well be adapted to study other protein-based subunit vaccines.

  3. Mathematical modeling on T-cell mediated adaptive immunity in primary dengue infections.

    PubMed

    Sasmal, Sourav Kumar; Dong, Yueping; Takeuchi, Yasuhiro

    2017-09-21

    At present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model. We find that the virus load goes down to zero within 6 days as it is common for DENV infection. From our analysis, we have identified the important model parameters and done the numerical simulation with respect to such important parameters. We have shown that the cytokine mediated virus clearance plays a very important role in dengue dynamics. It can change the dynamical behavior of the system and causes essential extinction of the virus. Finally, we have incorporated the antiviral treatment for dengue in our model and shown that the basic reproduction number is directly proportional to the antiviral treatment effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Immune-mediated neuropathy with Epstein-Barr virus-positive T-cell lymphoproliferative disease.

    PubMed

    Hattori, Takaaki; Arai, Ayako; Yokota, Takanori; Imadome, Ken-Ichi; Tomimitsu, Hiroyuki; Miura, Osamu; Mizusawa, Hidehiro

    2015-01-01

    A 47-year-old man with Epstein-Barr virus (EBV)-positive T/NK- cell lymphoproliferative disease (EBV-T/NK-LPD) developed acute-onset weakness. A nerve conduction study showed a conduction block in both the proximal and most distal segments. Although the patient's neuropathy transiently responded to intravenous immunoglobulin, it was progressive for at least 25 days until the start of prednisolone (PSL) administration, after which it remarkably improved. The neuropathy further improved after allogeneic bone marrow transplantation (BMT). The present patient's clinical course is not consistent with that of typical Guillain-Barré syndrome. This case suggests that EBV-T/NK-LPD can cause progressive immune-mediated neuropathy as a result of chronic EBV antigen presentation and can be treated with PSL and BMT.

  5. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    PubMed Central

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  6. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  7. Memory T cells and vaccines.

    PubMed

    Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W

    2003-01-17

    T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.

  8. Feline Glycoprotein A Repetitions Predominant Anchors Transforming Growth Factor Beta on the Surface of Activated CD4+CD25+ Regulatory T Cells and Mediates AIDS Lentivirus-Induced T Cell Immunodeficiency

    PubMed Central

    Miller, Michelle M.; Fogle, Jonathan E.; Ross, Peter

    2013-01-01

    Abstract Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP+TGFb+ Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP+ Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb+ Treg-mediated T cell immune suppression during lentivirus infection. PMID:23373523

  9. CD95 co-stimulation blocks activation of naive T cells by inhibiting T cell receptor signaling

    PubMed Central

    Lindquist, Jonathan A.; Arhel, Nathalie; Felder, Edward; Karl, Sabine; Haas, Tobias L.; Fulda, Simone; Walczak, Henning; Kirchhoff, Frank; Debatin, Klaus-Michael

    2009-01-01

    CD95 is a multifunctional receptor that induces cell death or proliferation depending on the signal, cell type, and cellular context. Here, we describe a thus far unknown function of CD95 as a silencer of T cell activation. Naive human T cells triggered by antigen-presenting cells expressing a membrane-bound form of CD95 ligand (CD95L) or stimulated by anti-CD3 and -CD28 antibodies in the presence of recombinant CD95L had reduced activation and proliferation, whereas preactivated, CD95-sensitive T cells underwent apoptosis. Triggering of CD95 during T cell priming interfered with proximal T cell receptor signaling by inhibiting the recruitment of ζ-chain–associated protein of 70 kD, phospholipase-γ, and protein kinase C-θ into lipid rafts, thereby preventing their mutual tyrosine protein phosphorylation. Subsequently, Ca2+ mobilization and nuclear translocation of transcription factors NFAT, AP1, and NF-κB were strongly reduced, leading to impaired cytokine secretion. CD95-mediated inhibition of proliferation in naive T cells could not be reverted by the addition of exogenous interleukin-2 and T cells primed by CD95 co-stimulation remained partially unresponsive upon secondary T cell stimulation. HIV infection induced CD95L expression in primary human antigeen-presenting cells, and thereby suppressed T cell activation, suggesting that CD95/CD95L-mediated silencing of T cell activation represents a novel mechanism of immune evasion. PMID:19487421

  10. T-Cell Tropism of Simian Varicella Virus during Primary Infection

    PubMed Central

    Ouwendijk, Werner J. D.; Mahalingam, Ravi; de Swart, Rik L.; Haagmans, Bart L.; van Amerongen, Geert; Getu, Sarah; Gilden, Don; Osterhaus, Albert D. M. E.; Verjans, Georges M. G. M.

    2013-01-01

    Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in disseminating SVV to its target organs during primary infection of its natural and immunocompetent host. PMID:23675304

  11. T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency.

    PubMed

    Walton, Senta M; Torti, Nicole; Mandaric, Sanja; Oxenius, Annette

    2011-08-01

    CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion.

    PubMed

    Oliphant, Christopher J; Hwang, You Yi; Walker, Jennifer A; Salimi, Maryam; Wong, See Heng; Brewer, James M; Englezakis, Alexandros; Barlow, Jillian L; Hams, Emily; Scanlon, Seth T; Ogg, Graham S; Fallon, Padraic G; McKenzie, Andrew N J

    2014-08-21

    Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    PubMed Central

    dos Santos Virgilio, Fernando; Pontes, Camila; Dominguez, Mariana Ribeiro; Ersching, Jonatan; Rodrigues, Mauricio Martins; Vasconcelos, José Ronnie

    2014-01-01

    MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine. PMID:25104879

  14. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells.

    PubMed

    Mao, Yujia; Yin, Shanshan; Zhang, Jianmin; Hu, Yu; Huang, Bo; Cui, Lianxian; Kang, Ning; He, Wei

    2016-03-01

    Interleukin 4 (IL-4) has a variety of immune functions, including helper T-cell (Th-cell) differentiation and innate immune-response processes. However, the impact of IL-4 on gamma delta (γδ) T cells remains unclear. In this study, we investigate the effects of IL-4 on the activation and proliferation of γδ T cells and the balance between variable delta 1 (Vδ1) and Vδ2 T cells in humans. The results show that IL-4 inhibits the activation of γδ T cells in the presence of γδ T-cell receptor (TCR) stimulation in a STAT6-dependent manner. IL-4 promoted the growth of activated γδ T cells and increased the levels of Vδ1 T cells, which in turn inhibited Vδ2 T-cell growth via significant IL-10 secretion. Vδ1 T cells secreted significantly less interferon gamma (IFNγ) and more IL-10 relative to Vδ2. Furthermore, Vδ1 T cells showed relatively low levels of Natural Killer Group 2D (NKG2D) expression in the presence of IL-4, suggesting that Vδ1 T cells weaken the γδ T cell-mediated anti-tumor immune response. For the first time, our findings demonstrate a negative regulatory role of IL-4 in γδ T cell-mediated anti-tumor immunity.

  15. [Cytomegalovirus-associated infectious mononucleosis-like syndrome accompanied by transient monoclonal expansion of CD8+ T-cells].

    PubMed

    Yonezawa, Akihito; Onaka, Takashi; Imada, Kazunori

    2009-08-01

    Most cases of infectious mononucleosis (IM) are caused by Epstein-Barr virus (EBV). Other pathogens have been reported to cause heterophile-negative mononucleosis-like syndrome, including cytomegalovirus (CMV) and human immunodeficiency virus type-1 (HIV-1). Primary CMV infection is often asymptomatic in immunocompetent individuals. In this article, we describe a patient with prolonged fever and fatigue, who developed transient monoclonal CD8+ T-cell lymphocytosis after primary CMV infection. Monoclonal gene rearrangement of T-cell receptor (TCR) beta locus was transiently detected in DNA from peripheral lymphocytes. Monoclonal rearrangement and atypical lymphocytosis disappeared after treatment with anti-viral agents. These observations imply that monoclonal expansion of T-cells could be a reactive phenomenon of primary CMV infection and TCR gene rearrangement is not specific for malignancy. Physicians should carefully follow patients with monoclonal expansion of CD8+ T-cells after CMV-IM in order to rule out T cell malignancy.

  16. Effect of Aerva lanata on cell-mediated immune responses and cytotoxic T-lymphocyte generation in normal and tumor-bearing mice.

    PubMed

    Siveen, K S; Kuttan, Girija

    2012-01-01

    Cell-mediated immunity offers protection against virus-infected cells and tumor cells, involves activation of natural killer (NK) cells, production of antigen-specific cytotoxic T-lymphocytes, and release of various cytokines in response to an antigen. Administration of an ethanolic extract of Aerva lanata was found to stimulate cell-mediated immunological responses in normal and tumor-bearing BALB/c mice. A significant enhancement in NK cell activity in both normal and tumor-bearing hosts was observed after administration of A. lanata. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent complement-mediated cytotoxicity (ACC) were significantly enhanced as well in both sets of treated hosts. In addition, in vivo production of IL-2 and IFNg were each significantly enhanced by extract treatment. The stimulatory effect of A. lanata on cytotoxic T-lymphocyte (CTL) production was determined by Winn's neutralization assay using CTL-sensitive EL4 thymoma cells. A. lanata treatment caused a significant increase in CTL production in both in vivo and in vitro models, in each case as indicated by a significant increase in the life-spans of tumor-injected mice. Taken together, all of these results in the murine model indicate that administration of an ethanolic extract of A. lanata could enhance the cell-mediated anti-tumor response.

  17. Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy

    PubMed Central

    Wang, Jing; Anders, Robert A.; Wu, Qiang; Peng, Dacheng; Cho, Judy H.; Sun, Yonglian; Karaliukas, Reda; Kang, Hyung-Sik; Turner, Jerrold R.; Fu, Yang-Xin

    2004-01-01

    Whether and how T cells contribute to the pathogenesis of immunoglobulin A nephropathy (IgAN) has not been well defined. Here, we explore a murine model that spontaneously develops T cell–mediated intestinal inflammation accompanied by pathological features similar to those of human IgAN. Intestinal inflammation mediated by LIGHT, a ligand for lymphotoxin β receptor (LTβR), not only stimulates IgA overproduction in the gut but also results in defective IgA transportation into the gut lumen, causing a dramatic increase in serum polymeric IgA. Engagement of LTβR by LIGHT is essential for both intestinal inflammation and hyperserum IgA syndrome in our LIGHT transgenic model. Impressively, the majority of patients with inflammatory bowel disease showed increased IgA-producing cells in the gut, elevated serum IgA levels, and severe hematuria, a hallmark of IgAN. These observations indicate the critical contributions of dysregulated LIGHT expression and intestinal inflammation to the pathogenesis of IgAN. PMID:15067315

  18. Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells.

    PubMed

    Djiadeu, Pascal; Kotra, Lakshmi P; Sweezey, Neil; Palaniyar, Nades

    2017-05-01

    Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.

  19. Unique ζ-chain motifs mediate a direct TCR-actin linkage critical for immunological synapse formation and T-cell activation.

    PubMed

    Klieger, Yair; Almogi-Hazan, Osnat; Ish-Shalom, Eliran; Pato, Aviad; Pauker, Maor H; Barda-Saad, Mira; Wang, Lynn; Baniyash, Michal

    2014-01-01

    TCR-mediated activation induces receptor microclusters that evolve to a defined immune synapse (IS). Many studies showed that actin polymerization and remodeling, which create a scaffold critical to IS formation and stabilization, are TCR mediated. However, the mechanisms controlling simultaneous TCR and actin dynamic rearrangement in the IS are yet not fully understood. Herein, we identify two novel TCR ζ-chain motifs, mediating the TCR's direct interaction with actin and inducing actin bundling. While T cells expressing the ζ-chain mutated in these motifs lack cytoskeleton (actin) associated (cska)-TCRs, they express normal levels of non-cska and surface TCRs as cells expressing wild-type ζ-chain. However, such mutant cells are unable to display activation-dependent TCR clustering, IS formation, expression of CD25/CD69 activation markers, or produce/secrete cytokine, effects also seen in the corresponding APCs. We are the first to show a direct TCR-actin linkage, providing the missing gap linking between TCR-mediated Ag recognition, specific cytoskeleton orientation toward the T-cell-APC interacting pole and long-lived IS maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells

    PubMed Central

    Tsuda, Hidetoshi; Su, Charles A.; Tanaka, Toshiaki; Ayasoufi, Katayoun; Min, Booki; Valujskikh, Anna; Fairchild, Robert L.

    2018-01-01

    Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade–induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig–resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig–resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell–graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS. PMID:29467328

  1. T cell activation and proliferation following acute exercise in human subjects is altered by storage conditions and mitogen selection.

    PubMed

    Siedlik, Jacob A; Deckert, Jake A; Benedict, Stephen H; Bhatta, Anuja; Dunbar, Amanda J; Vardiman, John P; Gallagher, Philip M

    2017-07-01

    Recent work investigating exercise induced changes in immunocompetence suggests that some of the ambiguity in the literature is resultant from different cell isolation protocols and mitogen selection. To understand this effect, we compared post-exercise measures of T cell activation and proliferation using two different stimulation methods (costimulation through CD28 or stimulation with phytohaemagglutinin [PHA]). Further, we investigated whether exercise induced changes are maintained when T cell isolation from whole blood is delayed overnight in either a room temperature or chilled (4°C) environment. As expected, an increased proliferation response was observed post-exercise in T cells isolated from whole blood of previously trained individuals immediately after blood collection. Also, cells stimulated with PHA after resting overnight in whole blood were not adversely impacted by the storage conditions. In contrast, allowing cells to rest overnight in whole blood prior to stimulation through CD28, lessened the proliferation observed by cells following exercise rendering both the room temperature and chilled samples closer to the results seen in the control condition. Changes in early markers of activation (CD25), followed a similar pattern, with activation in PHA stimulated cells remaining fairly robust after overnight storage; whereas cell activation following stimulation through CD3+CD28 was disproportionately decreased by the influence of overnight storage. These findings indicate that decisions regarding cell stimulation methods need to be paired with the timeline for T cell isolation from whole blood. These considerations will be especially important for field based studies of immunocompetence where there is a delay in getting whole blood samples to a lab for processing as well as clinical applications where a failure to isolate T cells in a timely manner may result in loss of the response of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. CD147 and CD98 complex-mediated homotypic aggregation attenuates the CypA-induced chemotactic effect on Jurkat T cells.

    PubMed

    Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping

    2015-02-01

    Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data

  3. Central memory CD8+ T lymphocytes mediate lung allograft acceptance

    PubMed Central

    Krupnick, Alexander Sasha; Lin, Xue; Li, Wenjun; Higashikubo, Ryuiji; Zinselmeyer, Bernd H.; Hartzler, Hollyce; Toth, Kelsey; Ritter, Jon H.; Berezin, Mikhail Y.; Wang, Steven T.; Miller, Mark J.; Gelman, Andrew E.; Kreisel, Daniel

    2014-01-01

    Memory T lymphocytes are commonly viewed as a major barrier for long-term survival of organ allografts and are thought to accelerate rejection responses due to their rapid infiltration into allografts, low threshold for activation, and ability to produce inflammatory mediators. Because memory T cells are usually associated with rejection, preclinical protocols have been developed to target this population in transplant recipients. Here, using a murine model, we found that costimulatory blockade–mediated lung allograft acceptance depended on the rapid infiltration of the graft by central memory CD8+ T cells (CD44hiCD62LhiCCR7+). Chemokine receptor signaling and alloantigen recognition were required for trafficking of these memory T cells to lung allografts. Intravital 2-photon imaging revealed that CCR7 expression on CD8+ T cells was critical for formation of stable synapses with antigen-presenting cells, resulting in IFN-γ production, which induced NO and downregulated alloimmune responses. Thus, we describe a critical role for CD8+ central memory T cells in lung allograft acceptance and highlight the need for tailored approaches for tolerance induction in the lung. PMID:24569377

  4. Memory CD4+ T cells: beyond “helper” functions

    PubMed Central

    Boonnak, Kobporn; Subbarao, Kanta

    2012-01-01

    In influenza virus infection, antibodies, memory CD8+ T cells, and CD4+ T cells have all been shown to mediate immune protection, but how they operate and interact with one another to mediate efficient immune responses against virus infection is not well understood. In this issue of the JCI, McKinstry et al. have identified unique functions of memory CD4+ T cells beyond providing “help” for B cell and CD8+ T cell responses during influenza virus infection. PMID:22820285

  5. T cell costimulation by chemokine receptors.

    PubMed

    Molon, Barbara; Gri, Giorgia; Bettella, Monica; Gómez-Moutón, Concepción; Lanzavecchia, Antonio; Martínez-A, Carlos; Mañes, Santos; Viola, Antonella

    2005-05-01

    Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.

  6. Antigen localization controls T cell-mediated tumor immunity.

    PubMed

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  7. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2‐interacting mediator knock‐out mice

    PubMed Central

    Wang, Y. M.; Zhang, G. Y.; Wang, Y.; Hu, M.; Zhou, J. J.; Sawyer, A.; Cao, Q.; Wang, Y.; Zheng, G.; Lee, V. W. S.; Harris, D. C. H.

    2017-01-01

    Summary Regulatory T cells (Tregs) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of Tregs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of Tregs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of Tregs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2‐interacting mediator (Bim) knock‐out mice by transient depleting Tregs. Bim is a pro‐apoptotic member of the B cell lymphoma 2 (Bcl‐2) family. Bim knock‐out (Bim–/–) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that Treg depletion in Bim–/– mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild‐type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)−2, IL‐4, IL‐6, IL‐10, IL‐17α, interferon (IFN)‐γ and tumour necrosis factor (TNF)‐α were increased significantly after Treg depletion in Bim–/– mice. This study demonstrates that transient depletion of Tregs leads to enhanced self‐reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim‐deficient mice. PMID:28152566

  8. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    PubMed

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Anergic self-reactive B cells present self antigen and respond normally to CD40-dependent T-cell signals but are defective in antigen-receptor-mediated functions.

    PubMed Central

    Eris, J M; Basten, A; Brink, R; Doherty, K; Kehry, M R; Hodgkin, P D

    1994-01-01

    B-cell tolerance to soluble protein self antigens such as hen egg lysozyme (HEL) is mediated by clonal anergy. Anergic B cells fail to mount antibody responses even in the presence of carrier-primed T cells, suggesting an inability to activate or respond to T helper cells. To investigate the nature of this defect, B cells from tolerant HEL/anti-HEL double-transgenic mice were incubated with a membrane preparation from activated T-cell clones expressing the CD40 ligand. These membranes, together with interleukin 4 and 5 deliver the downstream antigen-independent CD40-dependent B-cell-activating signals required for productive T-B collaboration. Anergic B cells responded to this stimulus by proliferating and secreting antibody at levels comparable to or better than control B cells. Furthermore, anergic B cells presented HEL acquired in vivo and could present the unrelated antigen, conalbumin, targeted for processing via surface IgD. In contrast, the low immunoglobulin receptor levels on anergic B cells were associated with reduced de novo presentation of HEL and a failure to upregulate costimulatory ligands for CD28. These defects in immunoglobulin-receptor-mediated functions could be overcome in vivo, suggesting a number of mechanisms for induction of autoantibody responses. Images PMID:7514304

  10. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  11. A BTLA-mediated bait-and-switch strategy permits Listeria expansion in CD8α+ DCs to promote long term T cell responses

    PubMed Central

    Yang, Xuanming; Zhang, Xunmin; Sun, Yonglian; Tu, Tony; Fu, May Lynne; Miller, Mendy; Fu, Yang-Xin

    2014-01-01

    SUMMARY Listeria monocytogenes infected CD8α+ DCs in the spleen are essential for CD8+ T cell generation. CD8α+ DCs are also necessary for Listeria expansion and dissemination within the host. The mechanisms that regulate CD8α+ DCs to allow Listeria expansion are unclear. We find that activating the B and T lymphocyte attenuator (BTLA), a co-inhibitory receptor on CD8α+ DCs, suppresses, while blocking BTLA enhances both the primary and memory CD8 T cell responses against Listeria. Btla−/− mice have lower effector and memory CD8+ T cells while paradoxically also being more resistant to Listeria. Although bacterial entry into Btla−/− CD8α+ DCs is unaffected, Listeria fails to expand within these cells. BTLA signaling limits Fas/FasL-mediated suppression of Listeria expansion within CD8α+ DCs to more effectively alert adaptive immune cells. This study uncovers a BTLA-mediated strategy used by the host that permits Listeria proliferation to enable increasing T cell responses for long-term protection. PMID:25011109

  12. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  14. Attenuation of T cell receptor signaling by serine phosphorylation-mediated lysine 30 ubiquitination of SLP-76 protein.

    PubMed

    Wang, Xiaohong; Li, Ju-Pi; Chiu, Li-Li; Lan, Joung-Liang; Chen, Der-Yuan; Boomer, Jonathan; Tan, Tse-Hua

    2012-10-05

    SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) is an adaptor protein that is essential for T cell development and T cell receptor (TCR) signaling activation. Previous studies have identified an important negative feedback regulation of SLP-76 by HPK1 (hematopoietic progenitor kinase 1; MAP4K1)-induced Ser-376 phosphorylation. Ser-376 phosphorylation of SLP-76 mediates 14-3-3 binding, resulting in the attenuation of SLP-76 activation and downstream signaling; however, the underlying mechanism of this action remains unknown. Here, we report that phosphorylated SLP-76 is ubiquitinated and targeted for proteasomal degradation during TCR signaling. SLP-76 ubiquitination is mediated by Ser-376 phosphorylation. Furthermore, Lys-30 is identified as a ubiquitination site of SLP-76. Loss of Lys-30 ubiquitination of SLP-76 results in enhanced anti-CD3 antibody-induced ERK and JNK activation. These results reveal a novel regulation mechanism of SLP-76 by ubiquitination and proteasomal degradation of activated SLP-76, which is mediated by Ser-376 phosphorylation, leading to down-regulation of TCR signaling.

  15. Attenuation of T Cell Receptor Signaling by Serine Phosphorylation-mediated Lysine 30 Ubiquitination of SLP-76 Protein*

    PubMed Central

    Wang, Xiaohong; Li, Ju-Pi; Chiu, Li-Li; Lan, Joung-Liang; Chen, Der-Yuan; Boomer, Jonathan; Tan, Tse-Hua

    2012-01-01

    SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) is an adaptor protein that is essential for T cell development and T cell receptor (TCR) signaling activation. Previous studies have identified an important negative feedback regulation of SLP-76 by HPK1 (hematopoietic progenitor kinase 1; MAP4K1)-induced Ser-376 phosphorylation. Ser-376 phosphorylation of SLP-76 mediates 14-3-3 binding, resulting in the attenuation of SLP-76 activation and downstream signaling; however, the underlying mechanism of this action remains unknown. Here, we report that phosphorylated SLP-76 is ubiquitinated and targeted for proteasomal degradation during TCR signaling. SLP-76 ubiquitination is mediated by Ser-376 phosphorylation. Furthermore, Lys-30 is identified as a ubiquitination site of SLP-76. Loss of Lys-30 ubiquitination of SLP-76 results in enhanced anti-CD3 antibody-induced ERK and JNK activation. These results reveal a novel regulation mechanism of SLP-76 by ubiquitination and proteasomal degradation of activated SLP-76, which is mediated by Ser-376 phosphorylation, leading to down-regulation of TCR signaling. PMID:22902619

  16. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures

    PubMed Central

    CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N

    2002-01-01

    Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847

  17. Protective properties of Huperzine A through activation Nrf2/ARE-mediated transcriptional response in X-rays radiation-induced NIH3T3 cells.

    PubMed

    Zhu, Huan-Feng; Yan, Peng-Wei; Wang, Li-Jun; Liu, Ya-Tian; Wen, Jing; Zhang, Qian; Fan, Yan-Xin; Luo, Yan-Hong

    2018-06-22

    Huperzine A (HupA), derived from Huperzia Serrata, has exhibited a variety of biological actions, in particular neuroprotective effect. However, the protective activities of HupA on murine embryonic fibroblast NIH3T3 cells after X-rays radiation have not been fully elucidated. Herein, HupA treatment dramatically promoted cell viability, abated a G0/G1 peak accumulation, and ameliorated increase of cell apoptosis in NIH3T3 cells after X-rays radiation. Simultaneously, HupA notably enhanced activities of anti-oxidant enzymes, inhibited activity of lipid peroxide, and efficiently eliminated production of reactive oxygen species in NIH3T3 cells after X-rays radiation. Dose-dependent increase of antioxidant genes by HupA were associated with up-regulated Nrf2 and down-regulated Keap-1 expression, which was confirmed by increasing nuclear accumulation, and inhibiting of degradation of Nrf2. Notably, augmented luciferase activity of ARE may explained Nrf2/ARE-mediated signaling pathways behind HupA protective properties. Moreover, expression of Nrf2 HupA-mediated was significant attenuated by AKT inhibitor (LY294002), p38 MAPK inhibitor (SB202190) and ERK inhibitor (PD98059). Besides, HupA-mediated cell viability, and ROS production were dramatically bated by LY294002, SB202190, and PD98059. Taken together, HupA effectively ameliorated X-rays radiation-induced damage Nrf2-ARE-mediated transcriptional response via activation AKT, p38, and ERK signaling in NIH3T3 cells. © 2018 Wiley Periodicals, Inc.

  18. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease.

    PubMed

    Hinks, Timothy S C

    2016-05-01

    Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  20. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    PubMed

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  1. CD8+ T Cells and IFN-γ Mediate the Time-Dependent Accumulation of Infected Red Blood Cells in Deep Organs during Experimental Cerebral Malaria

    PubMed Central

    Claser, Carla; Malleret, Benoît; Gun, Sin Yee; Wong, Alicia Yoke Wei; Chang, Zi Wei; Teo, Pearline; See, Peter Chi Ee; Howland, Shanshan Wu; Ginhoux, Florent; Rénia, Laurent

    2011-01-01

    Background Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA–induced pathologies, which mechanisms are poorly understood. Methods and Findings Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8+ T cells and IFN-γ drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6–12 days post-infection, at a time when mice develop ECM. Other cells types like CD4+ T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-α did not influence the early increase of total parasite biomass and IRBC accumulation in different organs. Conclusions CD8+ T cells and IFN-γ are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues. PMID:21494565

  2. IL-12p40 impairs mesenchymal stem cell-mediated bone regeneration via CD4+ T cells

    PubMed Central

    Xu, Jiajia; Wang, Yiyun; Li, Jing; Zhang, Xudong; Geng, Yiyun; Huang, Yan; Dai, Kerong; Zhang, Xiaoling

    2016-01-01

    Severe or prolonged inflammatory response caused by infection or biomaterials leads to delayed healing or bone repair failure. This study investigated the important roles of the proinflammatory cytokines of the interleukin-12 (IL-12) family, namely, IL-12 and IL-23, in the inflammation-mediated inhibition of bone formation in vivo. IL-12p40−/− mice lacking IL-12 and IL-23 exhibited enhanced bone formation. IL-12 and IL-23 indirectly inhibited bone marrow mesenchymal stem cell (BMMSC) differentiation by stimulating CD4+ T cells to increase interferon γ (IFN-γ) and IL-17 levels. Mechanistically, IL-17 synergistically enhanced IFN-γ-induced BMMSC apoptosis. Moreover, INF-γ and IL-17 exerted proapoptotic effects by upregulating the expression levels of Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as well as by activating the caspase cascade in BMMSCs. IL-12p40 depletion in mice could promote ectopic bone formation. Thus, IL-12p40 is an attractive therapeutic target to overcome the inflammation-mediated inhibition of bone formation in vivo. PMID:27472064

  3. Memory T cells: A helpful guard for allogeneic hematopoietic stem cell transplantation without causing graft-versus-host disease.

    PubMed

    Huang, Wei; Chao, Nelson J

    2017-12-01

    Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (AHSCT) and the major cause of nonrelapse morbidity and mortality of AHSCT. In AHSCT, donor T cells facilitate hematopoietic stem cell (HSC) engraftment, contribute to anti-infection immunity, and mediate graft-versus-leukemia (GVL) responses. However, activated alloreactive T cells also attack recipient cells in vital organs, leading to GVHD. Different T-cell subsets, including naïve T (T N ) cells, memory T (T M ) cells, and regulatory T (T reg ) cells mediate different forms of GVHD and GVL; T N cells mediate severe GVHD, whereas T M cells do not cause GVHD, but preserve T-cell function including GVL. In addition, metabolic reprogramming controls T-cell differentiation and activation in these disease states. This minireview focuses on the role and the related mechanisms of T M cells in AHSCT, and the potential manipulation of T cells in AHSCT. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  4. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

    PubMed Central

    Rodgers, David T.; Mazagova, Magdalena; Hampton, Eric N.; Cao, Yu; Ramadoss, Nitya S.; Hardy, Ian R.; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K.; Wright, Timothy M.; Schultz, Peter G.; Kim, Chan Hyuk; Young, Travis S.

    2016-01-01

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR–T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  5. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health

    PubMed Central

    Kubinak, Jason L.; Petersen, Charisse; Stephens, W. Zac; Soto, Ray; Bake, Erin; O’Connell, Ryan M.; Round, June L.

    2015-01-01

    SUMMARY Altered commensal communities are associated with human disease. IgA mediates intestinal homeostasis and regulates microbiota composition. Intestinal IgA is produced at high levels as a result of T follicular helper cell (TFH) and B cell interactions in germinal centers. However, the pathways directing host IgA responses towards the microbiota remain unknown. Here, we report that signaling through the innate adaptor MyD88 in gut T cells coordinates germinal center responses, including TFH and IgA+ B cell development. TFH development is deficient in germfree mice and can be restored by feeding TLR2 agonists that activate T cell intrinsic MyD88 signaling. Loss of this pathway diminishes high affinity IgA targeting of the microbiota and fails to control the bacterial community, leading to worsened disease. Our findings identify that T cells converge innate and adaptive immune signals to coordinate IgA against the microbiota, constraining microbial community membership to promote symbiosis. PMID:25620548

  6. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    PubMed

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Influence of Ganoderma lucidum (Curt.: Fr.) P. Karst. on T-cell-mediated immunity in normal and immunosuppressed mice line CBA/Ca.

    PubMed

    Nizhenkovska, Iryna V; Pidchenko, Vitalii T; Bychkova, Nina G; Bisko, Nina A; Rodnichenko, Angela Y; Kozyko, Natalya O

    2015-09-01

    The article presents the results of the investigation of the effect of biomass powder of the fungus Ganoderma lucidum on T-cell-mediated immunity in normal and immunosuppressed mice CBA/Ca. Delayed-type hypersensitivity assay was used. Experimental immunodeficiency was established with intraperitoneal injection of the immunosuppressant cyclophosphamide at a single dose of 150 mg/kg on the first day of the experiment. Results of the study show that the administration of biomass powder of Ganoderma lucidum in a dose of 0.5 mg/kg orally for 10 days increases the delayed-type hypersensitivity response in normal mice CBA/Ca. Administration of 0.5 mg/kg of biomass powder of the fungus Ganoderma lucidum for 10 days blocked the development of the T-cell-mediated immunosuppression, induced by administration of cyclophosphamide and restored the delayed-type hypersensitivity response in immunosuppressed mice. Key words: fungus Ganoderma lucidum cyclophosphamide immunodeficiency T-cell-mediated immunity delayed-type hypersensitivity.

  8. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    PubMed

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  9. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    PubMed

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  10. HTLV-1 Tax-mediated inhibition of FOXO3a activity is critical for the persistence of terminally differentiated CD4+ T cells.

    PubMed

    Olagnier, David; Sze, Alexandre; Bel Hadj, Samar; Chiang, Cindy; Steel, Courtney; Han, Xiaoying; Routy, Jean-Pierre; Lin, Rongtuan; Hiscott, John; van Grevenynghe, Julien

    2014-12-01

    The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis.

  11. HTLV-1 Tax-Mediated Inhibition of FOXO3a Activity Is Critical for the Persistence of Terminally Differentiated CD4+ T Cells

    PubMed Central

    Bel Hadj, Samar; Chiang, Cindy; Steel, Courtney; Han, Xiaoying; Routy, Jean-Pierre; Lin, Rongtuan; Hiscott, John; van Grevenynghe, Julien

    2014-01-01

    The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis. PMID:25521510

  12. SLP-76 sterile α motif (SAM) and individual H5 α helix mediate oligomer formation for microclusters and T-cell activation.

    PubMed

    Liu, Hebin; Thaker, Youg Raj; Stagg, Loren; Schneider, Helga; Ladbury, John E; Rudd, Christopher E

    2013-10-11

    Despite the importance of the immune adaptor SLP-76 in T-cell immunity, it has been unclear whether SLP-76 directly self-associates to form higher order oligomers for T-cell activation. In this study, we show that SLP-76 self-associates in response to T-cell receptor ligation as mediated by the N-terminal sterile α motif (SAM) domain. SLP-76 co-precipitated alternately tagged SLP-76 in response to anti-CD3 ligation. Dynamic light scattering and fluorescent microscale thermophoresis of the isolated SAM domain (residues 1-78) revealed evidence of dimers and tetramers. Consistently, deletion of the SAM region eliminated SLP-76 co-precipitation of itself, concurrent with a loss of microcluster formation, nuclear factor of activated T-cells (NFAT) transcription, and interleukin-2 production in Jurkat or primary T-cells. Furthermore, the H5 α helix within the SAM domain contributed to self-association. Retention of H5 in the absence of H1-4 sufficed to support SLP-76 self-association with smaller microclusters that nevertheless enhanced anti-CD3-driven AP1/NFAT transcription and IL-2 production. By contrast, deletion of the H5 α helix impaired self-association and anti-CD3 induced AP1/NFAT transcription. Our data identified for the first time a role for the SAM domain in mediating SLP-76 self-association for T-cell function.

  13. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis.

    PubMed

    Borlido, Joana; Sakuma, Stephen; Raices, Marcela; Carrette, Florent; Tinoco, Roberto; Bradley, Linda M; D'Angelo, Maximiliano A

    2018-06-01

    Nuclear pore complexes (NPCs) are channels connecting the nucleus with the cytoplasm. We report that loss of the tissue-specific NPC component Nup210 causes a severe deficit of naïve CD4 + T cells. Nup210-deficient CD4 + T lymphocytes develop normally but fail to survive in the periphery. The decreased survival results from both an impaired ability to transmit tonic T cell receptor (TCR) signals and increased levels of Fas, which sensitize Nup210 -/- naïve CD4 + T cells to Fas-mediated cell death. Mechanistically, Nup210 regulates these processes by modulating the expression of Cav2 (encoding Caveolin-2) and Jun at the nuclear periphery. Whereas the TCR-dependent and CD4 + T cell-specific upregulation of Cav2 is critical for proximal TCR signaling, cJun expression is required for STAT3-dependent repression of Fas. Our results uncover an unexpected role for Nup210 as a cell-intrinsic regulator of TCR signaling and T cell homeostasis and expose NPCs as key players in the adaptive immune system.

  14. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    PubMed Central

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  15. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.

    PubMed

    Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio

    2016-06-01

    Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic

  16. Strain-Specific Properties and T Cells Regulate the Susceptibility to Papilloma Induction by Mus musculus Papillomavirus 1

    PubMed Central

    Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Bonelli, Michael; Lowy, Douglas R.; Schiller, John T.

    2014-01-01

    The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated “MmuPV1”), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific

  17. BCL11B is frequently downregulated in HTLV-1-infected T-cells through Tax-mediated proteasomal degradation.

    PubMed

    Permatasari, Happy Kurnia; Nakahata, Shingo; Ichikawa, Tomonaga; Morishita, Kazuhiro

    2017-08-26

    Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia-lymphoma (ATLL). The HTLV-1-encoded protein Tax plays important roles in the proliferation of HTLV-1-infected T-cells by affecting cellular proteins. In this study, we showed that Tax transcriptionally and post-transcriptionally downregulates the expression of the tumor suppressor gene B-cell leukemia/lymphoma 11B (BCL11B), which encodes a lymphoid-related transcription factor. BCL11B expression was downregulated in HTLV-1-infected T-cell lines at the mRNA and protein levels, and forced expression of BCL11B suppressed the proliferation of these cells. The proteasomal inhibitor MG132 increased BCL11B expression in HTLV-1-infected cell lines, and colocalization of Tax with BCL11B was detected in the cytoplasm of HTLV-1-infected T-cells following MG132 treatment. shRNA knock-down of Tax expression also increased the expression of BCL11B in HTLV-1-infected cells. Moreover, we found that Tax physically binds to BCL11B protein and induces the polyubiquitination of BCL11B and proteasome-dependent degradation of BCL11B. Thus, inactivation of BCL11B by Tax protein may play an important role in the Tax-mediated leukemogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Primary central nervous system diffuse large B-cell lymphoma in the immunocompetent: Immunophenotypic subtypes and Epstein-Barr virus association.

    PubMed

    Mahadevan, Anita; Rao, Clementina Rama; Shanmugham, M; Shankar, Susarla Krishna

    2015-01-01

    Primary central nervous system diffuse large B-cell lymphoma (PCNSL DLBCL) in the immunocompetent is an uncommon tumor that has an activated B-cell immunophenotype resembling germinal center exit B cells. They also differ from primary central nervous diffuse large B-cell lymphomas in the immunocompromised as they show no association with the Epstein-Barr virus. To determine if immunophenotypic subtyping of PCNS DLBCL from Asian subcontinent are also different similar to its systemic counterpart is unclear, as there are only limited studies from Asia, and none from India. The immunohistochemical profile of 24 South Indian patients with primary central nervous system diffuse large B-cell lymphoma was studied using germinal center markers - CD10 and Bcl-6, and activation markers - MUM1 and CD138, which are markers for late/post germinal centre B cells. Insitu hybridization for EBV genome and LMP1 by immunohistochemistry was carried out in all cases to determine association with EBV. Centroblastic morphology and uniform activated B-cell phenotype with positivity for MUM1 was seen in 91.6% of tumors. Co-expression of Bcl-6 and MUM1 was evident in 50%, which is more frequent than in systemic diffuse large B-cell lymphomas. All cases were negative for Epstein-Barr virus using EBER in-situ hybridization and LMP1 immunohistochemistry. Primary diffuse large B-cell lymphoma in the immunocompetent is a distinct clinicopathological entity with centroblastic morphology, a uniform activated B-cell immunophenotype that is not associated with the Epstein-Barr virus regardless of geographic origin.

  19. Suppression of pro-inflammatory T-cell responses by human mesothelial cells.

    PubMed

    Lin, Chan-Yu; Kift-Morgan, Ann; Moser, Bernhard; Topley, Nicholas; Eberl, Matthias

    2013-07-01

    Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.

  20. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    PubMed

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  1. RECEPTORS ON IMMUNOCOMPETENT CELLS

    PubMed Central

    Davie, Joseph M.; Paul, William E.

    1971-01-01

    Nonimmunized guinea pigs possess rare lymphocytes which bind sufficient 2,4-dinitrophenyl-guinea pig albumin-125I (DNP-GPA) to their surface to be detected by short-term radioautography. The cells occur in the lymph nodes, spleen, peripheral blood, and bone marrow with a frequency of ∼40/100,000 lymphocytes, but are absent from the thymus. The receptors of these cells are largely specific for the haptenic group (ε-DNP-L-lysine) as shown by inhibition of DNP-GPA-125I binding with ε-DNP-L-lysine and with DNP bovine serum albumin (DNP-BSA). Furthermore, these cells specifically adsorb to agarose beads to which either DNP-GPA, DNP-BSA, or DNP-keyhole limpet hemocyanin (KLH) has been covalently linked. This hapten specific depletion of DNP-GPA-125I antigen-binding cells (ABC) correlates with a similar diminution in the capacity of adsorbed populations to transfer primary responsiveness to DNP-KLH to irradiated syngeneic recipients. Fluoresceinated anti-immunoglobulin binds to the surface of some guinea pig lymphocytes, and all DNP-GPA-125I ABC, as shown by a double-label technique. The great majority of DNP-GPA ABC and human γ-globulin ABC possess surface Ig molecules of the γ2 heavy chain class. Preincubation of cell suspensions with anti-γ2 antibody markedly diminishes the number of DNP-GPA-125I ABC which are detected, strongly suggesting that the receptors of these cells are immunoglobulin molecules, most of which possess γ2 heavy chains. The specificity characteristics of DNP-GPA-125I ABC are strikingly different from those of cells mediating a cellular immune response to DNP-GPA, indicating major differences in the specificity and nature of the receptors of these cell types. PMID:4934503

  2. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.

    PubMed

    Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H

    2010-11-15

    Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.

  3. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor

    PubMed Central

    Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M.; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G.; Scholler, John; Levine, Bruce L.; Albelda, Steven M.; June, Carl H.

    2010-01-01

    Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CARs). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week post electroporation. Multiple injections of RNA CAR electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(−/−) mice. Dramatic tumor reduction also occurred when the pre-existing intraperitoneal human-derived tumors, that had been growing in vivo for over 50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes demonstrating that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. PMID:20926399

  4. Macrophages play an essential role in antigen-specific immune suppression mediated by T CD8⁺ cell-derived exosomes.

    PubMed

    Nazimek, Katarzyna; Ptak, Wlodzimierz; Nowak, Bernadeta; Ptak, Maria; Askenase, Philip W; Bryniarski, Krzysztof

    2015-09-01

    Murine contact sensitivity (CS) reaction could be antigen-specifically regulated by T CD8(+) suppressor (Ts) lymphocytes releasing microRNA-150 in antibody light-chain-coated exosomes that were formerly suggested to suppress CS through action on macrophages (Mφ). The present studies investigated the role of Mφ in Ts cell-exosome-mediated antigen-specific suppression as well as modulation of Mφ antigen-presenting function in humoral and cellular immunity by suppressive exosomes. Mice depleted of Mφ by clodronate liposomes could not be tolerized and did not produce suppressive exosomes. Moreover, isolated T effector lymphocytes transferring CS were suppressed by exosomes only in the presence of Mφ, demonstrating the substantial role of Mφ in the generation and action of Ts cell regulatory exosomes. Further, significant decrease of number of splenic B cells producing trinitrophenyl (TNP) -specific antibodies with the alteration of the ratio of serum titres of IgM to IgG was observed in recipients of exosome-treated, antigen-pulsed Mφ and the significant suppression of CS was demonstrated in recipients of exosome-treated, TNP-conjugated Mφ. Additionally, exosome-pulsed, TNP-conjugated Mφ mediated suppression of CS in mice pre-treated with a low-dose of cyclophosphamide, suggesting de novo induction of T regulatory (Treg) lymphocytes. Treg cell involvement in the effector phase of the studied suppression mechanism was proved by unsuccessful tolerization of DEREG mice depleted of Treg lymphocytes. Furthermore, the inhibition of proliferation of CS effector cells cultured with exosome-treated Mφ in a transmembrane manner was observed. Our results demonstrated the essential role of Mφ in antigen-specific immune suppression mediated by Ts cell-derived exosomes and realized by induction of Treg lymphocytes and inhibition of T effector cell proliferation. © 2015 John Wiley & Sons Ltd.

  5. A Proteomic View at T Cell Costimulation

    PubMed Central

    Hombach, Andreas A.; Recktenwald, Christian V.; Dressler, Sven P.; Abken, Hinrich; Seliger, Barbara

    2012-01-01

    The “two-signal paradigm” in T cell activation predicts that the cooperation of “signal 1,” provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with “signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3+ CD69- resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed. Differentially regulated spots were defined leading to the identification of proteins involved in the regulation of the metabolism, shaping and maintenance of the cytoskeleton and signal transduction. Representative members of the differentially expressed protein families, such as calmodulin (CALM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), L-lactate dehydrogenase (LDH), Rho GDP-dissociation inhibitor 2 (GDIR2), and platelet basic protein (CXCL7), were independently verified by flow cytometry. Data provide a detailed map of individual protein alterations at the global proteome level in response to TCR/CD28-mediated T cell activation. PMID:22539942

  6. Inhibition of T cell-mediated functions by MVM(i), a parvovirus closely related to minute virus of mice.

    PubMed

    Engers, H D; Louis, J A; Zubler, R H; Hirt, B

    1981-12-01

    A purified preparation of MVM(i), a murine parvovirus closely related to minute virus of mice (MVM), was found to inhibit various functions mediated by murine T cells in vitro. Addition of MVM(i) virus to secondary allogeneic mixed leukocyte cultures resulted in the inhibition of both lymphocyte proliferation (3H-thymidine incorporation) and the generation of cytolytic T lymphocyte activity but not interferon production. MVM(i) virus also inhibited the growth and cytolytic activity of several cloned, long-term Lyt-2+ cytolytic T cell lines. Furthermore, the antigen-induced proliferative responses of parasite- (Leishmania) specific Lyt-1+ T cells in vitro was abrogated by the addition of MVM(i) virus to the culture. Finally, the suppression of an in vitro antibody response to SRBC by MVM(i) virus was the result of the inhibition of T helper cells required for the B cell response. These suppressive effects were specific for MVM(i); parallel studies in which the prototype MVM parvovirus was used showed no significant inhibition in the various systems tested.

  7. GPER mediates the inhibitory actions of estrogen on adipogenesis in 3T3-L1 cells through perturbation of mitotic clonal expansion.

    PubMed

    Zhu, Pei; Yuen, Jacky M L; Sham, Kathy W Y; Cheng, Christopher H K

    2013-11-01

    G-protein-coupled estrogen receptor 1 (GPER) mediates non-genomic signaling of estrogenic events. Here we showed for the first time that Gper/GPER is expressed in Swiss 3T3 mouse embryo preadipocytes 3T3-L1, and that Gper/GPER is up-regulated during differentiation of the cells induced by monocyte differentiation-inducing (MDI) cocktail. Activation of GPER by the natural ligand 17β-estradiol (E2), and the specific agonist G1, was shown to inhibit lipid accumulation in 3T3-L1 cells, while such inhibition was reversed upon knockdown of GPER using specific siRNA. GPER was also found to mediate perturbation of mitotic clonal expansion (MCE) in these cells by inhibiting cell cycle arrest during MDI cocktail-induced differentiation. Persistent activation of cell cycle regulating factors cyclin-dependant kinase (CDK) 4, CDK6 and cyclin D1, and phosphorylation of retinoblastoma (Rb) protein at serine 795 was observed in the G1-treated cells. Taken together, our results indicate that E2-GPER signaling leads to an inhibition of adipogenesis in 3T3-L1 cells via perturbation of MCE. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Cryptococcal meningitis in an immunocompetent child: a case report and literature review.

    PubMed

    Othman, Norlijah; Abdullah, Nor Atiqah Ng; Wahab, Zubaidah Abdul

    2004-12-01

    An immunocompetent 5 year-old girl presented with pyrexia of unknown origin associated with headache. Initial investigations showed leukocytosis and an increased erythrocyte sedimentation rate. A Widal-Weil Felix test, blood film for malarial parasites, mycoplasma IgM antibody, cultures from blood and urine, full blood picture, Mantoux test, and chest x-ray were all negative. A lumbar puncture was done as part of a work-up for pyrexia of unknown origin. Cryptococcus neoformans was seen on India ink examination and confirmed on culture. She was treated with 10 weeks of intravenous amphotericin B and 8 weeks of fluconazole. Further immunological tests did not reveal any defect in the cell-mediated immune system. C. neoformans meningitis may present with non-specific symptoms and should be considered in a work-up for pyrexia of unknown origin.

  9. Glutathione-mediated detoxification of halobenzoquinone drinking water disinfection byproducts in T24 cells.

    PubMed

    Li, Jinhua; Wang, Wei; Zhang, Hongquan; Le, X Chris; Li, Xing-Fang

    2014-10-01

    Halobenzoquinones (HBQs) are a new class of drinking water disinfection byproducts (DBPs) and are capable of producing reactive oxygen species and causing oxidative damage to proteins and DNA in T24 human bladder carcinoma cells. However, the exact mechanism of the cytotoxicity of HBQs is unknown. Here, we investigated the role of glutathione (GSH) and GSH-related enzymes including glutathione S-transferase (GST) and glutathione peroxidase (GPx) in defense against HBQ-induced cytotoxicity in T24 cells. The HBQs are 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), 2,3,6-trichloro-1,4-benzoquinone (TriCBQ), and 2,6-dibromobenzoquinone (DBBQ). We found that depletion of cellular GSH could sensitize cells to HBQs and extracellular GSH supplementation could attenuate HBQ-induced cytotoxicity. HBQs caused significant cellular GSH depletion and increased cellular GST activities in a concentration-dependent manner. Our mass spectrometry study confirms that HBQs can conjugate with GSH, explaining in part the mechanism of GSH depletion by HBQs. The effects of HBQs on GPx activity are compound dependent; DCMBQ and DBBQ decrease cellular GPx activities, whereas DCBQ and TriCBQ have no significant effects. Pearson correlation analysis shows that the cellular GSH level is inversely correlated with ROS production and cellular GST activity in HBQ-treated cells. These results support a GSH and GSH-related enzyme-mediated detoxification mechanism of HBQs in T24 cells. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice

    PubMed Central

    Ganguly, Sudipto; Ross, Duncan B.; Panoskaltsis-Mortari, Angela; Kanakry, Christopher G.; Blazar, Bruce R.; Levy, Robert B.

    2014-01-01

    Posttransplantation cyclophosphamide (PTCy) is an effective prophylaxis against graft-versus-host disease (GVHD). However, it is unknown whether PTCy works singularly by eliminating alloreactive T cells via DNA alkylation or also by restoring the conventional (Tcon)/regulatory (Treg) T-cell balance. We studied the role of Tregs in PTCy-mediated GVHD prophylaxis in murine models of allogeneic blood or marrow transplantation (alloBMT). In 2 distinct MHC-matched alloBMT models, infusing Treg-depleted allografts abrogated the GVHD-prophylactic activity of PTCy. Using allografts in which Foxp3+ Tregs could be selectively depleted in vivo, either pre- or post-PTCy ablation of donor thymus–derived Tregs (tTregs) abolished PTCy protection against GVHD. PTCy treatment was associated with relative preservation of donor Tregs. Experiments using combinations of Foxp3– Tcons and Foxp3+ Tregs sorted from different Foxp3 reporter mice indicated that donor Treg persistence after PTCy treatment was predominantly caused by survival of functional tTregs that retained Treg-specific demethylation and also induction of peripherally derived Tregs. Finally, adoptive transfer of tTregs retrieved from PTCy-treated chimeras rescued PTCy-treated, Treg-depleted recipients from lethal GVHD. Our findings indicate that PTCy-mediated protection against GVHD is not singularly dependent on depletion of donor alloreactive T cells but also requires rapidly recovering donor Tregs to initiate and maintain alloimmune regulation. PMID:25139358

  11. B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma.

    PubMed

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, A K M G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-10-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.

  12. Cholera Toxin Inhibits the T-Cell Antigen Receptor-Mediated Increases in Inositol Trisphosphate and Cytoplasmic Free Calcium

    NASA Astrophysics Data System (ADS)

    Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.

    1986-08-01

    The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.

  13. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    PubMed

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  14. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity

    PubMed Central

    Wang, Dongrui; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R.; Forman, Stephen J.; Brown, Christine E.

    2018-01-01

    Chimeric antigen receptor–modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy. PMID:29769444

  15. miR-2909-mediated regulation of KLF4: a novel molecular mechanism for differentiating between B-cell and T-cell pediatric acute lymphoblastic leukemias

    PubMed Central

    2014-01-01

    Background microRNAs (miRNAs) play both oncogenic and oncostatic roles in leukemia. However, the molecular details underlying miRNA-mediated regulation of their target genes in pediatric B- and T-cell acute lymphoblastic leukemias (ALLs) remain unclear. The present study investigated the relationship between miR-2909 and Kruppel-like factor 4 (KLF4), and its functional relevance to cell cycle progression and immortalization in patients with pediatric ALL. Methods Elevated levels of miR-2909 targeted the tumor suppressor gene KLF4 in pediatric B-cell, but not pediatric T-cell ALL, as detected by pMIR-GFP reporter assay. Expression levels of genes including apoptosis-antagonizing transcription factor (AATF), MYC, B-cell lymphoma (BCL3), P21 CIP , CCND1 and SP1 in B- and T-cells from patients with pediatric ALL were compared with control levels using real-time quantitative reverse transcription polymerase chain reaction, western blotting, and reporter assays. Results We identified two novel mutations in KLF4 in pediatric T-ALL. A mutation in the 3′ untranslated region of the KLF4 gene resulted in loss of miR-2909-mediated regulation, while mutation in its first or third zinc-finger motif (Zf1/Zf3) rendered KLF4 transcriptionally inactive. This mutation was a frameshift mutation resulting in alteration of the Zf3 motif sequence in the mutant KLF4 protein in all pediatric T-ALL samples. Homology models, docking studies and promoter activity of its target gene P21 CIP confirmed the lack of function of the mutant KLF4 protein in pediatric T-ALL. Moreover, the inability of miR-2909 to regulate KLF4 and its downstream genes controlling cell cycle and apoptosis in T-cell but not in B-ALL was verified by antagomiR-2909 transfection. Comprehensive sequence analysis of KLF4 identified the predominance of isoform 1 (~55 kDa) in most patients with pediatric B-ALL, while those with pediatric T-ALL expressed isoform 2 (~51 kDa). Conclusions This study identified a novel mi

  16. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hojka-Osinska, Anna, E-mail: hojka@immuno.iitd.pan.wroc.pl; Ziolo, Ewa, E-mail: ziolo@immuno.iitd.pan.wroc.pl; Rapak, Andrzej, E-mail: rapak@immuno.iitd.pan.wroc.pl

    Highlights: Black-Right-Pointing-Pointer The combination of fenretinide and indomethacin induces a high level of cell death. Black-Right-Pointing-Pointer Apoptotic pathway is caspase-independent. Black-Right-Pointing-Pointer Jurkat cells undergo AIF-mediated cell death. -- Abstract: Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergisticmore » effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug-indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.« less

  17. CXCL16 and CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T cells.

    PubMed

    Günther, Claudia; Carballido-Perrig, Nicole; Kaesler, Susanne; Carballido, José M; Biedermann, Tilo

    2012-03-01

    Psoriatic skin lesions are characterized by an inflammatory infiltrate, consisting of dendritic cells, monocytes, and both CD4(+) and CD8(+) T lymphocytes. Although the chemokines involved in the migration of CD4(+) T cells into psoriatic skin are well characterized, those regulating CD8(+) T-cell recruitment are less understood. We found that the percentages of peripheral blood CD8(+) T cells expressing CXCR6 were higher in psoriatic patients than in healthy or atopic individuals. In addition, CXCR6 expression in psoriatic patients was more abundant in the CD8(+) than in the CD4(+) T-cell compartment. CXCR6 mRNA expression was also stronger in skin CD8(+) T cells than in the corresponding blood-derived counterparts. Immunofluorescence analysis revealed profound upregulation of the CXCR6 ligand CXCL16 by monocytes, keratinocytes, and dendritic cells in psoriatic skin compared with healthy or atopic dermatitis skin. In line with this, CXCR6(+) CD8(+) T cells also were most prevalent in psoriatic skin. Furthermore, CXCL16 induced Ca(2+) influx and chemotactic migration of psoriatic skin-derived CD8(+) T cells in vitro. Most importantly, CXCL16 potently recruited human CD8(+) T cells to human skin grafts previously transplanted onto SCID mice in vivo. These investigations indicate that CXCL16-CXCR6 interactions mediate homing of CD8(+) T cells into human skin, and thereby contribute to psoriasis pathogenesis.

  18. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    PubMed

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Regulatory T cells: mechanisms of differentiation and function.

    PubMed

    Josefowicz, Steven Z; Lu, Li-Fan; Rudensky, Alexander Y

    2012-01-01

    The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.

  20. SLP-76 Sterile α Motif (SAM) and Individual H5 α Helix Mediate Oligomer Formation for Microclusters and T-cell Activation*

    PubMed Central

    Liu, Hebin; Thaker, Youg Raj; Stagg, Loren; Schneider, Helga; Ladbury, John E.; Rudd, Christopher E.

    2013-01-01

    Despite the importance of the immune adaptor SLP-76 in T-cell immunity, it has been unclear whether SLP-76 directly self-associates to form higher order oligomers for T-cell activation. In this study, we show that SLP-76 self-associates in response to T-cell receptor ligation as mediated by the N-terminal sterile α motif (SAM) domain. SLP-76 co-precipitated alternately tagged SLP-76 in response to anti-CD3 ligation. Dynamic light scattering and fluorescent microscale thermophoresis of the isolated SAM domain (residues 1–78) revealed evidence of dimers and tetramers. Consistently, deletion of the SAM region eliminated SLP-76 co-precipitation of itself, concurrent with a loss of microcluster formation, nuclear factor of activated T-cells (NFAT) transcription, and interleukin-2 production in Jurkat or primary T-cells. Furthermore, the H5 α helix within the SAM domain contributed to self-association. Retention of H5 in the absence of H1–4 sufficed to support SLP-76 self-association with smaller microclusters that nevertheless enhanced anti-CD3-driven AP1/NFAT transcription and IL-2 production. By contrast, deletion of the H5 α helix impaired self-association and anti-CD3 induced AP1/NFAT transcription. Our data identified for the first time a role for the SAM domain in mediating SLP-76 self-association for T-cell function. PMID:23935094

  1. Knockdown of HMGB1 in tumor cells attenuates their ability to induce regulatory T cells and uncovers naturally acquired CD8 T cell-dependent antitumor immunity.

    PubMed

    Liu, Zuqiang; Falo, Louis D; You, Zhaoyang

    2011-07-01

    Although high mobility group box 1 (HMGB1) in tumor cells is involved in many aspects of tumor progression, its role in tumor immune suppression remains elusive. Host cell-derived IL-10 suppressed a naturally acquired CD8 T cell-dependent antitumor response. The suppressive activity of tumor-associated Foxp3(+)CD4(+)CD25(+) regulatory T cells (Treg) was IL-10 dependent. Neutralizing HMGB1 impaired tumor cell-promoted IL-10 production by Treg. Short hairpin RNA-mediated knockdown of HMGB1 (HMGB1 KD) in tumor cells did not affect tumor cell growth but uncovered naturally acquired long-lasting tumor-specific IFN-γ- or TNF-α-producing CD8 T cell responses and attenuated their ability to induce Treg, leading to naturally acquired CD8 T cell- or IFN-γ-dependent tumor rejection. The data suggest that tumor cell-derived HMGB1 may suppress naturally acquired CD8 T cell-dependent antitumor immunity via enhancing Treg to produce IL-10, which is necessary for Treg-mediated immune suppression.

  2. The mechanism of T-cell mediated cytotoxicity. VI. T-cell projections and their role in target cell killing.

    PubMed Central

    Sanderson, C J; Glauert, A M

    1979-01-01

    Electron micrographs of material fixed during the first 10 min of a T-cell cytotoxic system showed T-cell projections and T-cell burrowing into target cells. These observations were made possible by using a system with a very high rate of killing. The projections vary in shape and size, and can push deeply into the target cell, distorting organelles in their path, including the nucleus. The projections contain fine fibrillar material, to the exclusion of organelles. They push the target cell membrane in front of them to form pockets approximating to the shape of the projection. Areas of close contact occur between the projections and the target cell membrane, particularly at the leading edges. The likelihood that these projections develop as a result of contact with specific antigen, and are involved in the cytotoxic mechanism is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:311336

  3. Reactive oxygen species mediate N-(4-hydroxyphenyl)retinamide-induced cell death in malignant T cells and are inhibited by the HTLV-I oncoprotein Tax.

    PubMed

    Darwiche, N; Abou-Lteif, G; Bazarbachi, A

    2007-02-01

    N-(4-hydroxyphenyl)retinamide (HPR) is a synthetic retinoid that inhibits growth of many human tumor cells, including those resistant to natural retinoids. HPR is an effective chemopreventive agent for prostate, cervix, breast, bladder, skin and lung cancers, and has shown promise for the treatment of neuroblastomas. We have previously shown that HPR inhibits proliferation and induces apoptosis of human T-cell lymphotropic virus type I (HTLV-I)-associated adult T-cell leukemia (ATL) and HTLV-I-negative malignant T cells, whereas no effect is observed on normal lymphocytes. In this report, we identified HPR-induced reactive oxygen species (ROS) generation as the key mediator of cell cycle arrest and apoptosis of malignant T cells. HPR treatment of HTLV-I-negative malignant T cells was associated with a rapid and progressive ROS accumulation. Pre-treatment with the antioxidants vitamin C and dithiothreitol inhibited ROS generation, prevented HPR-induced ceramide accumulation, cell cycle arrest, cytochrome c release, caspase-activation and apoptosis. Therefore, anti-oxidants protected malignant T cells from HPR-induced growth inhibition. The expression of the HTLV-I oncoprotein Tax abrogated HPR-induced ROS accumulation in HTLV-I-infected cells, which explains their lower sensitivity to HPR. Defining the mechanism of free radical induction by HPR may support a potential therapeutic role for this synthetic retinoid in ATL and HTLV-I-negative T-cell lymphomas.

  4. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells.

    PubMed

    Ghosh, Tithi; Barik, Subhasis; Bhuniya, Avishek; Dhar, Jesmita; Dasgupta, Shayani; Ghosh, Sarbari; Sarkar, Madhurima; Guha, Ipsita; Sarkar, Koustav; Chakrabarti, Pinak; Saha, Bhaskar; Storkus, Walter J; Baral, Rathindranath; Bose, Anamika

    2016-11-01

    Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment. © 2016 UICC.

  5. Gut-derived lipopolysaccharide promotes T-cell-mediated hepatitis in mice through Toll-like receptor 4.

    PubMed

    Lin, Yan; Yu, Le-Xing; Yan, He-Xin; Yang, Wen; Tang, Liang; Zhang, Hui-Lu; Liu, Qiong; Zou, Shan-Shan; He, Ya-Qin; Wang, Chao; Wu, Meng-Chao; Wang, Hong-Yang

    2012-09-01

    Robust clinical and epidemiologic data support the role of inflammation as a key player in hepatocellular carcinoma (HCC) development. Our previous data showed that gut-derived lipopolysaccharide (LPS) promote HCC development by activating Toll-like receptor 4 (TLR4) expressed on myeloid-derived cells. However, the effects of gut-derived LPS on other types of liver injury models are yet to be studied. The purpose of this study was to determine the importance of gut-derived LPS and TLR4 signaling in a T-cell-mediated hepatitis-Con A-induced hepatitis model, which mimic the viral hepatitis. Reduction of endotoxin using antibiotics regimen or genetic ablation of TLR4 in mice significantly alleviate Con A-induced liver injury by inhibiting the infiltration of T lymphocytes into the liver and the activation of CD4(+) T lymphocytes as well as the production of T helper 1 cytokines; in contrast, exogenous LPS can promote Con A-induced hepatitis and CD4(+) T cells activation in vivo and in vitro. Reconstitution of TLR4-expressing myeloid cells in TLR4-deficient mice restored Con A-induced liver injury and inflammation, indicating the major cell target of LPS. In addition, TLR4 may positively regulate the target hepatocellular apoptosis via the perforin/granzyme B pathway. These data suggest that gut-derived LPS and TLR4 play important positive roles in Con A-induced hepatitis and modulation of the gut microbiotia may represent a new avenue for therapeutic intervention to treat acute hepatitis induced by hepatitis virus infection, thus to prevent hepatocellular carcinoma.

  6. Epstein-Barr virus associated T-cell lymphoproliferative disease misdiagnosed as ulcerative colitis: a case report.

    PubMed

    Zheng, Xiaodan; Xie, Jianlan; Zhou, Xiaoge

    2015-01-01

    Epstein-Barr virus (EBV)-associated T-cell lymphoproliferative disease (LPD) is not uncommon in China, but gastrointestinal involvement is very rare. We report on an immunocompetent patient with EBV-associated T-cell LPD of the colon. The 26-year-old man was initially misdiagnosed with ulcerative colitis (UC). A colon biopsy revealed the presence of small to medium-sized lymphoid cells infiltrating the intestinal wall. The neoplastic cells expressed CD3, CD5, and granzyme B, not CD56. EBV-encoded small ribonucleic acid was detected in the tumor cells of the colon as well as the lymph node, and the T-cell receptor gene rearrangement result displayed δ gene monoclonal rearrangement. The patient died 2 moths after the diagnosis. The clinical course of EBV-associated T-cell LPD is aggressive and the prognosis is poor, the wrong diagnosis may delay treatment. Therefore, we should be very careful to prevent misdiagnosis. When patients have multiple intestinal ulcers that are not typical of UC and the clinical course is unusual, although morphology looks like inflammatory change, pathologist should consider the possibility of EBV-associated LPD. The treatment strategy and prognosis of these two diseases are different.

  7. Cytotoxic-T-lymphocyte antigen 4 receptor signaling for lymphocyte adhesion is mediated by C3G and Rap1.

    PubMed

    Kloog, Yoel; Mor, Adam

    2014-03-01

    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders.

  8. Cytotoxic-T-Lymphocyte Antigen 4 Receptor Signaling for Lymphocyte Adhesion Is Mediated by C3G and Rap1

    PubMed Central

    Kloog, Yoel

    2014-01-01

    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders. PMID:24396067

  9. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells

    PubMed Central

    Chmielewski, Markus; Hombach, Andreas A.; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient’s T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a “tumor-associated antigen” and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer. PMID:24273543

  10. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells.

    PubMed

    Chmielewski, Markus; Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a "tumor-associated antigen" and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer.

  11. Expression of alpha-AR subtypes in T lymphocytes and role of the alpha-ARs in mediating modulation of T cell function.

    PubMed

    Bao, Jing-Yin; Huang, Yan; Wang, Feng; Peng, Yu-Ping; Qiu, Yi-Hua

    2007-01-01

    Previous work in our laboratory has shown that alpha-adrenoreceptors (alpha-ARs) and beta-ARs exist on lymphocytes from functional profile, and that the receptors mediate the regulation of lymphocyte function by catecholamines. In the present study, we directly examined the expression of alpha-AR subtypes, alpha(1)-AR and alpha(2)-AR mRNAs, in T lymphocytes and explored the roles of the alpha-AR subtypes and intracellular signal transduction mechanisms linked to the receptors in mediating the modulation of T lymphocyte function. T lymphocytes from mesenteric lymph nodes of rats were purified by using a nylon wool column. Reverse transcription polymerase chain reaction was used to detect the expression of alpha(1)-AR and alpha(2)-AR mRNAs in the freshly isolated T cells and the mitogen concanavalin A (Con A)-activated lymphocytes. Colorimetric methylthiazoletetrazolium assay was employed to measure lymphocyte proliferation induced by Con A. Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in the Con A-stimulated lymphocyte culture supernatants were examined by enzyme-linked immunosorbent assay. T cells expressed both alpha(1)-AR and alpha(2)-AR mRNAs. The expression of both alpha(1)-AR and alpha(2)-AR mRNAs was significantly higher in the Con A-activated lymphocytes than in the resting lymphocytes. Phenylephrine, a selective alpha(1)-AR agonist, had no evident effect on lymphocyte proliferation nor on IFN-gamma and IL-4 production induced by Con A. However, the selective alpha(2)-AR agonist clonidine attenuated Con A-induced lymphocyte proliferation as well as IFN-gamma and IL-4 production. The inhibited lymphocyte proliferation and IFN-gamma and IL-4 production by clonidine were blocked by yohimbine, an alpha(2)-AR antagonist. Either phospholipase C inhibitor U-73122 or protein kinase C inhibitor chelerythrine partially prevented the suppressive effect of clonidine on Con A-stimulated lymphocyte proliferation and IL-4 production. T lymphocytes express

  12. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis

    USDA-ARS?s Scientific Manuscript database

    Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...

  13. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients

    PubMed Central

    Romano, Emanuela; Kusio-Kobialka, Monika; Foukas, Periklis G.; Baumgaertner, Petra; Meyer, Christiane; Ballabeni, Pierluigi; Michielin, Olivier; Weide, Benjamin; Romero, Pedro; Speiser, Daniel E.

    2015-01-01

    Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4–specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14++CD16− monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68+/CD163+ macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti–CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients. PMID:25918390

  14. Src homology 2-domain containing leukocyte-specific phosphoprotein of 76 kDa is mandatory for TCR-mediated inside-out signaling, but dispensable for CXCR4-mediated LFA-1 activation, adhesion, and migration of T cells.

    PubMed

    Horn, Jessica; Wang, Xiaoqian; Reichardt, Peter; Stradal, Theresia E; Warnecke, Nicole; Simeoni, Luca; Gunzer, Matthias; Yablonski, Deborah; Schraven, Burkhart; Kliche, Stefanie

    2009-11-01

    Engagement of the TCR or of chemokine receptors such as CXCR4 induces adhesion and migration of T cells via so-called inside-out signaling pathways. The molecular processes underlying inside-out signaling events are as yet not completely understood. In this study, we show that TCR- and CXCR4-mediated activation of integrins critically depends on the membrane recruitment of the adhesion- and degranulation-promoting adapter protein (ADAP)/Src kinase-associated phosphoprotein of 55 kDa (SKAP55)/Rap1-interacting adapter protein (RIAM)/Rap1 module. We further demonstrate that the Src homology 2 domain containing leukocyte-specific phosphoprotein of 76 kDa (SLP76) is crucial for TCR-mediated inside-out signaling and T cell/APC interaction. Besides facilitating membrane recruitment of ADAP, SKAP55, and RIAM, SLP76 regulates TCR-mediated inside-out signaling by controlling the activation of Rap1 as well as Rac-mediated actin polymerization. Surprisingly, however, SLP76 is not mandatory for CXCR4-mediated inside-out signaling. Indeed, both CXCR4-induced T cell adhesion and migration are not affected by loss of SLP76. Moreover, after CXCR4 stimulation, the ADAP/SKAP55/RIAM/Rap1 module is recruited to the plasma membrane independently of SLP76. Collectively, our data indicate a differential requirement for SLP76 in TCR- vs CXCR4-mediated inside-out signaling pathways regulating T cell adhesion and migration.

  15. Enhanced Requirement for TNFR2 in Graft Rejection Mediated by Low Affinity Memory CD8+ T Cells During Heterologous Immunity

    PubMed Central

    Krummey, Scott M.; Chen, Ching-Wen; Guasch, Sara A.; Liu, Danya; Wagener, Maylene; Larsen, Christian P; Ford, Mandy L.

    2016-01-01

    The affinity of a T cell receptor (TCR) binding to peptide:MHC profoundly impacts the phenotype and function of effector and memory cell differentiation. Little is known about the effect of low affinity priming on memory cell generation and function, which is particularly important in heterologous immunity, when microbe-specific T cells cross-react with allogeneic antigen and mediate graft rejection. We found that low affinity primed memory CD8+ T cells produced high levels of TNF ex vivo in response to heterologous rechallenge compared to high affinity primed memory T cells. Low affinity secondary effectors significantly upregulated TNFR2 on the cell surface and contained a higher frequency of TNFR2hi proliferating cells. Low affinity primed secondary effectors concurrently downregulated TNF production. Importantly, blockade of TNFR2 attenuated graft rejection in low but not high affinity primed animals. These data establish a functional connection between TNF signaling and TCR priming affinity and have implications for the immunomodulation of pathogenic T cell responses during transplantation. PMID:27481849

  16. T cell receptor–induced phosphoinositide-3-kinase p110δ activity is required for T cell localization to antigenic tissue in mice

    PubMed Central

    Jarmin, Sarah J.; David, Rachel; Ma, Liang; Chai, Jan-Guo; Dewchand, Hamlata; Takesono, Aya; Ridley, Anne J.; Okkenhaug, Klaus; Marelli-Berg, Federica M.

    2008-01-01

    The establishment of T cell–mediated inflammation requires the migration of primed T lymphocytes from the blood stream and their retention in antigenic sites. While naive T lymphocyte recirculation in the lymph and blood is constitutively regulated and occurs in the absence of inflammation, the recruitment of primed T cells to nonlymphoid tissue and their retention at the site are enhanced by various inflammatory signals, including TCR engagement by antigen-displaying endothelium and resident antigen-presenting cells. In this study, we investigated whether signals downstream of TCR ligation mediated by the phosphoinositide-3-kinase (PI3K) subunit p110δ contributed to the regulation of these events. T lymphocytes from mice expressing catalytically inactive p110δ displayed normal constitutive trafficking and migratory responses to nonspecific stimuli. However, these cells lost susceptibility to TCR-induced migration and failed to localize efficiently to antigenic tissue. Importantly, we showed that antigen-induced T cell trafficking and subsequent inflammation was abrogated by selective pharmacological inhibition of PI3K p110δ activity. These observations suggest that pharmacological targeting of p110δ activity is a viable strategy for the therapy of T cell–mediated pathology. PMID:18259608

  17. T cell priming versus T cell tolerance induced by synthetic peptides

    PubMed Central

    1995-01-01

    It is well known that synthetic peptides are able to both induce and tolerize T cells. We have examined the parameters leading either to priming or tolerance of CD8+ cytotoxic T lymphocytes (CTL) in vivo with a major histocompatibility complex class I (H-2 Db) binding peptide derived from the glycoprotein (GP aa33-41) of lymphocytic choriomeningitis virus (LCMV). By varying dose, route, and frequency of LCMV GP peptide application, we found that a single local subcutaneous injection of 50-500 micrograms peptide emulsified in incomplete Freund's adjuvant protected mice against LCMV infection, whereas repetitive and systemic intraperitoneal application of the same dose caused tolerance of LCMV-specific CTL. The peptide-induced tolerance was transient in euthymic mice but permanent in thymectomized mice. These findings are relevant for a selective use of peptides as a therapeutic approach: peptide-induced priming of T cells for vaccination and peptide-mediated T cell tolerance for intervention in immunopathologies and autoimmune diseases. PMID:7540654

  18. The interaction between HIV-1 Nef and adaptor protein-2 reduces Nef-mediated CD4+ T cell apoptosis.

    PubMed

    Jacob, Rajesh Abraham; Johnson, Aaron L; Pawlak, Emily N; Dirk, Brennan S; Van Nynatten, Logan R; Haeryfar, S M Mansour; Dikeakos, Jimmy D

    2017-09-01

    Acquired Immune Deficiency Syndrome is characterized by a decline in CD4 + T cells. Here, we elucidated the mechanism underlying apoptosis in Human Immunodeficiency Virus-1 (HIV-1) infection by examining host apoptotic pathways hijacked by the HIV-1 Nef protein in the CD4 + T-cell line Sup-T1. Using a panel of Nef mutants unable to bind specific host proteins we uncovered that Nef generates pro- and anti-apoptotic signals. Apoptosis increased upon mutating the motifs involved in the interaction of Nef:AP-1 (Nef M20A or Nef EEEE62-65AAAA ) or Nef:AP-2 (Nef LL164/165AA ), implying these interactions limit Nef-mediated apoptosis. In contrast, disrupting the Nef:PAK2 interaction motifs (Nef H89A or Nef F191A ) reduced apoptosis. To validate further, apoptosis was measured after short-hairpin RNA knock-down of AP-1, AP-2 and PAK2. AP-2α depletion enhanced apoptosis, demonstrating that disrupting the Nef:AP-2α interaction limits Nef-mediated apoptosis. Collectively, we describe a mechanism by which HIV-1 regulates cell survival and demonstrate the consequence of interfering with Nef:host protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reducing persistent polyomavirus infection increases functionality of virus-specific memory CD8 T cells.

    PubMed

    Qin, Qingsong; Lauver, Matthew; Maru, Saumya; Lin, Eugene; Lukacher, Aron E

    2017-02-01

    Mouse polyomavirus (MuPyV) causes a smoldering persistent infection in immunocompetent mice. To lower MuPyV infection in acutely and persistently infected mice, and study the impact of a temporal reduction in viral loads on the memory CD8 T cell response, we created a recombinant MuPyV in which a loxP sequence was inserted into the A2 strain genome upstream of the early promoter and another loxP sequence was inserted in cis into the intron shared by all three T antigens. Using mice transgenic for tamoxifen-inducible Cre recombinase, we demonstrated that reduction in MuPyV load during persistent infection was associated with differentiation of virus-specific CD8 T cells having a superior recall response. Evidence presented here supports the concept that reduction in viral load during persistent infection can promote differentiation of protective virus-specific memory CD8 T cells in patients at risk for diseases caused by human polyomaviruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis.

    PubMed

    Ozden, Simona; Cochet, Madeleine; Mikol, Jacqueline; Teixeira, Antonio; Gessain, Antoine; Pique, Claudine

    2004-10-01

    Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) infection can lead to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), concomitantly with or without other inflammatory disorders such as myositis. These pathologies are considered immune-mediated diseases, and it is assumed that migration within tissues of both HTLV-1-infected CD4(+) T cells and anti-HTLV-1 cytotoxic T cells represents a pivotal event. However, although HTLV-1-infected T cells were found in inflamed lesions, the antigenic specificity of coinfiltrated CD8(+) T cells remains to be determined. In this study, we performed both ex vivo and in situ analyses using muscle biopsies obtained from an HTLV-1-infected patient with HAM/TSP and sporadic inclusion body myositis. We found that both HTLV-1-infected CD4(+) T cells and CD8(+) T cells directed to the dominant Tax antigen can be amplified from muscle cell cultures. Moreover, we were able to detect in two successive muscle biopsies both tax mRNA-positive mononuclear cells and T cells recognized by the Tax11-19/HLA-A*02 tetramer and positive for perforin. These findings provide the first direct demonstration that anti-Tax cytotoxic T cells are chronically recruited within inflamed tissues of an HTLV-1 infected patient, which validates the cytotoxic immune reaction model for the pathogenesis of HTLV-1-associated inflammatory disease.

  1. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection

    PubMed Central

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  2. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    PubMed

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-03-31

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.

  3. Butyric Acid-Induced T-Cell Apoptosis Is Mediated by Caspase-8 and -9 Activation in a Fas-Independent Manner

    PubMed Central

    Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu; Fukushima, Kazuo

    2001-01-01

    Our previous study demonstrated that butyric acid, an extracellular metabolite of periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat cells. In this study, we examined whether CD95 ligand-receptor interaction is involved in butyric acid-induced T-cell apoptosis. Flow cytometry analysis indicated that expression of Fas in Jurkat and T cells from peripheral blood mononuclear cells was not affected by butyric acid treatment. Furthermore, the expression of Fas and FasL protein in Western blotting was not affected by butyric acid treatment. Coincubation with blocking anti-Fas antibodies prevented Fas-induced apoptosis but not butyric acid-induced apoptosis. Anti-FasL antibodies also did not prevent butyric acid-induced apoptosis at any dose examined. Although cytotoxic anti-Fas antibody affected butyric acid-induced apoptosis, a synergistic effect was not seen. Time-dependent activation of caspase-8 and -9 was recognized in butyric acid- as well as Fas-mediated apoptosis. IETD-CHO and LEHD-CHO, specific inhibitors of caspase-8 and -9, respectively, completely blocked Fas-mediated apoptosis and partially prevented butyric acid-induced apoptosis. These results suggest that the Fas-FasL interaction is not involved in butyric acid-induced apoptosis and that caspase-8 and -9-dependent apoptosis plays an important role in butyric acid-induced apoptosis, as well as Fas-induced apoptosis. PMID:11238216

  4. CD8+CD28- T cells: certainties and uncertainties of a prevalent human T-cell subset.

    PubMed

    Arosa, Fernando A

    2002-02-01

    Human peripheral blood CD8+ T cells comprise cells that are in different states of differentiation and under the control of complex homeostatic processes. In a number of situations ranging from chronic inflammatory conditions and infectious diseases to ageing, immunodeficiency, iron overload and heavy alcohol intake, major phenotypic changes, usually associated with an increase in CD8+ T cells lacking CD28 expression, take place. CD8+CD28- T cells are characterized by a low proliferative capacity to conventional stimulation in vitro and by morphological and functional features of activated/memory T cells. Although the nature of the signals that give origin to this T-cell subset is uncertain, growing evidence argues for the existence of an interplay between epithelial cells, molecules with the MHC-class I fold and CD8+ T cells. The possibility that the generation of CD8+CD28- T cells is the combination of TCR/CD3zeta- and regulatory factor-mediated signals as a result of the sensing of modifications of the internal environment is discussed.

  5. Memory T-Cell-Mediated Immune Responses Specific to an Alternative Core Protein in Hepatitis C Virus Infection

    PubMed Central

    Bain, Christine; Parroche, Peggy; Lavergne, Jean Pierre; Duverger, Blandine; Vieux, Claude; Dubois, Valérie; Komurian-Pradel, Florence; Trépo, Christian; Gebuhrer, Lucette; Paranhos-Baccala, Glaucia; Penin, François; Inchauspé, Geneviève

    2004-01-01

    In vitro studies have described the synthesis of an alternative reading frame form of the hepatitis C virus (HCV) core protein that was named F protein or ARFP (alternative reading frame protein) and includes a domain coded by the +1 open reading frame of the RNA core coding region. The expression of this protein in HCV-infected patients remains controversial. We have analyzed peripheral blood from 47 chronically or previously HCV-infected patients for the presence of T lymphocytes and antibodies specific to the ARFP. Anti-ARFP antibodies were detected in 41.6% of the patients infected with various HCV genotypes. Using a specific ARFP 99-amino-acid polypeptide as well as four ARFP predicted class I-restricted 9-mer peptides, we show that 20% of the patients display specific lymphocytes capable of producing gamma interferon, interleukin-10, or both cytokines. Patients harboring three different viral genotypes (1a, 1b, and 3) carried T lymphocytes reactive to genotype 1b-derived peptides. In longitudinal analysis of patients receiving therapy, both core and ARFP-specific T-cell- and B-cell-mediated responses were documented. The magnitude and kinetics of the HCV antigen-specific responses differed and were not linked with viremia or therapy outcome. These observations provide strong and new arguments in favor of the synthesis, during natural HCV infection, of an ARFP derived from the core sequence. Moreover, the present data provide the first demonstration of the presence of T-cell-mediated immune responses directed to this novel HCV antigen. PMID:15367612

  6. Mast Cells Condition Dendritic Cells to Mediate Allograft Tolerance

    PubMed Central

    de Vries, Victor C.; Pino-Lagos, Karina; Nowak, Elizabeth C.; Bennett, Kathy A.; Oliva, Carla; Noelle, Randolph J.

    2013-01-01

    SUMMARY Peripheral tolerance orchestrated by regulatory T cells, dendritic cells (DCs), and mast cells (MCs) has been studied in several models including skin allograft tolerance. We now define a role for MCs in controlling DC behavior (“conditioning”) to facilitate tolerance. Under tolerant conditions, we show that MCs mediated a marked increase in tumor necrosis factor (TNFα)-dependent accumulation of graft-derived DCs in the dLN compared to nontolerant conditions. This increase of DCs in the dLN is due to the local production of granulocyte macrophage colony-stimulating factor (GM-CSF) by MCs that induces a survival advantage of graft-derived DCs. DCs that migrated to the dLN from the tolerant allograft were tolerogenic; i.e., they dominantly suppress T cell responses and control regional immunity. This study underscores the importance of MCs in conditioning DCs to mediate peripheral tolerance and shows a functional impact of peripherally produced TNFα and GM-CSF on the migration and function of tolerogenic DCs. PMID:22035846

  7. Adoptive Transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells Creates a Pro-inflammatory Environment in Glioblastoma.

    PubMed

    Pituch, Katarzyna C; Miska, Jason; Krenciute, Giedre; Panek, Wojciech K; Li, Gina; Rodriguez-Cruz, Tania; Wu, Meijing; Han, Yu; Lesniak, Maciej S; Gottschalk, Stephen; Balyasnikova, Irina V

    2018-04-04

    In order to fully harness the potential of immunotherapy with chimeric antigen receptor (CAR)-modified T cells, pre-clinical studies must be conducted in immunocompetent animal models that closely mimic the immunosuppressive malignant glioma (MG) microenvironment. Thus, the goal of this project was to study the in vivo fate of T cells expressing CARs specific for the MG antigen IL13Rα2 (IL13Rα2-CARs) in immunocompetent MG models. Murine T cells expressing IL13Rα2-CARs with a CD28.ζ (IL13Rα2-CAR.CD28.ζ) or truncated signaling domain (IL13Rα2-CAR.Δ) were generated by retroviral transduction, and their effector function was evaluated both in vitro and in vivo. IL13Rα2-CAR.CD28.ζ T cells' specificity toward IL13Rα2 was confirmed through cytokine production and cytolytic activity. In vivo, a single intratumoral injection of IL13Rα2-CAR.CD28.ζ T cells significantly extended the survival of IL13Rα2-expressing GL261 and SMA560 glioma-bearing mice; long-term survivors were resistant to re-challenge with IL13Rα2-negative and IL13Rα2-positive tumors. IL13Rα2-CAR.CD28.ζ T cells proliferated, produced cytokines (IFNγ, TNF-α), and promoted a phenotypically pro-inflammatory glioma microenvironment by inducing a significant increase in the number of CD4 + and CD8 + T cells and CD8α + dendritic cells and a decrease in Ly6G + myeloid-derived suppressor cells (MDSCs). Our data underline the significance of CAR T cell studies in immunocompetent hosts and further validate IL13Rα2-CAR T cells as an efficacious therapeutic strategy for MG. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  8. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells.

    PubMed

    Legut, Mateusz; Dolton, Garry; Mian, Afsar Ali; Ottmann, Oliver G; Sewell, Andrew K

    2018-01-18

    Adoptive transfer of T cells genetically modified to express a cancer-specific T-cell receptor (TCR) has shown significant therapeutic potential for both hematological and solid tumors. However, a major issue of transducing T cells with a transgenic TCR is the preexisting expression of TCRs in the recipient cells. These endogenous TCRs compete with the transgenic TCR for surface expression and allow mixed dimer formation. Mixed dimers, formed by mispairing between the endogenous and transgenic TCRs, may harbor autoreactive specificities. To circumvent these problems, we designed a system where the endogenous TCR-β is knocked out from the recipient cells using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) technology, simultaneously with transduction with a cancer-reactive receptor of choice. This TCR replacement strategy resulted in markedly increased surface expression of transgenic αβ and γδ TCRs, which in turn translated to a stronger, and more polyfunctional, response of engineered T cells to their target cancer cell lines. Additionally, the TCR-plus-CRISPR-modified T cells were up to a thousandfold more sensitive to antigen than standard TCR-transduced T cells or conventional model proxy systems used for studying TCR activity. Finally, transduction with a pan-cancer-reactive γδ TCR used in conjunction with CRISPR/Cas9 knockout of the endogenous αβ TCR resulted in more efficient redirection of CD4 + and CD8 + T cells against a panel of established blood cancers and primary, patient-derived B-cell acute lymphoblastic leukemia blasts compared with standard TCR transfer. Our results suggest that TCR transfer combined with genome editing could lead to new, improved generations of cancer immunotherapies. © 2018 by The American Society of Hematology.

  9. CD4+ T cells are important mediators of oxidative stress that cause hypertension in response to placental ischemia.

    PubMed

    Wallace, Kedra; Cornelius, Denise C; Scott, Jeremy; Heath, Judith; Moseley, Janae; Chatman, Krystal; LaMarca, Babbette

    2014-11-01

    Preeclampsia is associated with oxidative stress, which is suspected to play a role in hypertension, placental ischemia, and fetal demise associated with the disease. Various cellular sources of oxidative stress, such as neutrophils, monocytes, and CD4(+) T cells have been suggested as culprits in the pathophysiology of preeclampsia. The objective of this study was to examine a role of circulating and placental CD4(+) T cells in oxidative stress in response to placental ischemia during pregnancy. CD4(+) T cells and oxidative stress were measured in preeclamptic and normal pregnant women, placental ischemic and normal pregnant rats, and normal pregnant recipient rats of placental ischemic CD4(+) T cells. Women with preeclampsia had significantly increased circulating (P=0.02) and placental CD4(+) T cells (P=0.0001); lymphocyte secretion of myeloperoxidase (P=0.004); and placental reactive oxygen species (P=0.0004) when compared with normal pregnant women. CD4(+) T cells from placental ischemic rats cause many facets of preeclampsia when injected into normal pregnant recipient rats on gestational day 13. On gestational day 19, blood pressure increased in normal pregnant recipients of placental ischemic CD4(+) T cells (P=0.002) compared with that in normal pregnant rats. Similar to preeclamptic patients, CD4(+) T cells from placental ischemic rats secreted significantly more myeloperoxidase (P=0.003) and induced oxidative stress in cultured vascular cells (P=0.003) than normal pregnant rat CD4(+)Tcells. Apocynin, a nicotinamide adenine dinucleotide phosphate inhibitor, attenuated hypertension and all oxidative stress markers in placental ischemic and normal pregnant recipient rats of placental ischemic CD4(+)Tcells (P=0.05). These data demonstrate an important role for CD4(+) T cells in mediating another factor, oxidative stress, to cause hypertension during preeclampsia. © 2014 American Heart Association, Inc.

  10. The immunogenicity of phagocytosed T4 bacteriophage: cell replacement studies with splenectomized and irradiated mice

    PubMed Central

    Inchley, C. J.; Howard, J. G.

    1969-01-01

    The role of phagocytosed antigen in the production of antibody to bacteriophage T4 has been studied. The ability of mice to give an antibody response to this antigen was first impaired either by splenectomy or by X-irradiation, and then restored by injection of syngeneic lymphoid cells given at various times relative to the injection of T4. In splenectomized animals administration of lymphoid cells had only a marginal effect on the severely depressed response to T4. It was concluded that the presence of an intact spleen is essential to the development of the normal immune response, and that circulating immunocompetent cells are unable to respond to circulating antigen or to antigen sequestered within the liver. On the other hand, in irradiated mice, there was a faster and more complete restoration of the anti-T4 response, confirming the ability of antigen localized within the spleen to stimulate competent cells. It was also found that the immunogenicity of T4 within this organ was not lost at a rate which corresponded to its gross breakdown but persisted without decrease for at least 48 hr. A similar observation was made for sheep red blood cells when this antigen was used in conjunction with T4. PMID:5370054

  11. T lymphocyte mediated lysis of mitomycin C treated Tenon's capsule fibroblasts.

    PubMed

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-03-01

    To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon's capsule fibroblasts. IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically.

  12. Yellow Fever Virus, but Not Zika Virus or Dengue Virus, Inhibits T-Cell Receptor-Mediated T-Cell Function by an RNA-Based Mechanism.

    PubMed

    McLinden, James H; Bhattarai, Nirjal; Stapleton, Jack T; Chang, Qing; Kaufman, Thomas M; Cassel, Suzanne L; Sutterwala, Fayyaz S; Haim, Hillel; Houtman, Jon C; Xiang, Jinhua

    2017-11-27

    The Flavivirus genus within the Flaviviridae family is comprised of many important human pathogens including yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T-cell receptor (TCR) signaling by novel RNA and protein-based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of a Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles.

    PubMed

    Yang, Chun; Xiong, Wei; Qiu, Qian; Shao, Zhuo; Shao, Zuo; Hamel, David; Tahiri, Houda; Leclair, Grégoire; Lachapelle, Pierre; Chemtob, Sylvain; Hardy, Pierre

    2012-04-15

    Microparticles possess therapeutic potential regarding angiogenesis. We have demonstrated the contribution of apoptotic human CEM T lymphocyte-derived microparticles (LMPs) as inhibitors of angiogenic responses in animal models of inflammation and tumor growth. In the present study, we characterized the antivascular endothelial growth factor (VEGF) effects of LMPs on pathological angiogenesis in an animal model of oxygen-induced retinopathy and explored the role of receptor-mediated endocytosis in the effects of LMPs on human retinal endothelial cells (HRECs). LMPs dramatically inhibited cell growth of HRECs, suppressed VEGF-induced cell migration in vitro experiments, and attenuated VEGF-induced retinal vascular leakage in vivo. Intravitreal injections of fluorescently labeled LMPs revealed accumulation of LMPs in retinal tissue, with more than 60% reductions of the vascular density in retinas of rats with oxygen-induced neovascularization. LMP uptake experiments demonstrated that the interaction between LMPs and HRECs is dependent on temperature. In addition, endocytosis is partially dependent on extracellular calcium. RNAi-mediated knockdown of low-density lipoprotein receptor (LDLR) reduced the uptake of LMPs and attenuated the inhibitory effects of LMPs on VEGF-A protein expression and HRECs cell growth. Intravitreal injection of lentivirus-mediated RNA interference reduced LDLR protein expression in retina by 53% and significantly blocked the antiangiogenic effects of LMPs on pathological vascularization. In summary, the potent antiangiogenic LMPs lead to a significant reduction of pathological retinal angiogenesis through modulation of VEGF signaling, whereas LDLR-mediated endocytosis plays a partial, but pivotal, role in the uptake of LMPs in HRECs.

  14. SH2 domain-containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell-mediated Th2 immunity.

    PubMed

    Ahmed, Md Selim; Kang, Myeong-Ho; Lee, Ezra; Park, Yujin; Jeong, Yideul; Bae, Yong-Soo

    2017-01-01

    The Src homology 2 domain-containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo . However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow-derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHB KD ) BMDCs in a mouse atopic dermatitis model. SHB was steadily expressed in mouse splenic DCs and in in vitro -generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHB KD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHB KD in BMDCs significantly induced CD4 + T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHB KD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization.

  15. Specific blockade CD73 alters the 'exhausted' phenotype of T cells in head and neck squamous cell carcinoma.

    PubMed

    Deng, Wei-Wei; Li, Yi-Cun; Ma, Si-Rui; Mao, Liang; Yu, Guang-Tao; Bu, Lin-Lin; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2018-04-16

    The adenosine-induced immunosuppression hampers the immune response toward tumor cells and facilitates the tumor cells to evade immunosurveillance. CD73, an ecto-5-nucleotidase, is the ectoenzyme dephosphorylating extracellular AMP to adenosine. Here, using immunocompetent transgenic head and neck squamous cell carcinoma (HNSCC) mouse model, immune profiling showed high expression of CD73 on CD4 + and CD8 + T cells was associated with an 'exhausted' phenotype. Further, treatment with anti-CD73 monoclonal antibody (mAb) significantly blunted the tumor growth in the mouse model, and the blockade of CD73 reversed the 'exhausted' phenotype of CD4 + and CD8 + T cells through downregulation of total expression of PD-1 and CTLA-4 on T cells. Whereas the population of CD4 + CD73 hi /CD8 + CD73 hi T cells expressed higher CTLA-4 and PD-1 as compared to untreated controls. In addition, the human tissue microarrays showed the expression of CD73 is upregulated on tumor infiltrating immune cells in patients with primary HNSCC. Moreover, CD73 expression is an independent prognostic factor for poor outcome in our cohort of HNSCC patients. Altogether, these findings highlight the immunoregulatory role of CD73 in the development of HNSCC and we propose that CD73 may prove to be a promising immunotherapeutic target for the treatment of HNSCC. This article is protected by copyright. All rights reserved. © 2018 UICC.

  16. Receptor-mediated cell mechanosensing

    PubMed Central

    Chen, Yunfeng; Ju, Lining; Rushdi, Muaz; Ge, Chenghao; Zhu, Cheng

    2017-01-01

    Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. PMID:28954860

  17. Th1 and Th17 Immunocompetence in Humanized NOD/SCID/γC-KO mice

    PubMed Central

    Rajesh, Deepika; Zhou, Ying; Jankowska-Gan, Ewa; Ronneburg, Drew Allan; Dart, Melanie M; Torrealba, Jose; Burlingham, William J

    2010-01-01

    We evaluated the immunocompetence of human T cells in humanized NOD-scid IL2r-γ-null (Hu—NSG) mice bearing a human thymic organoid, after multilinegage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of CB17 SCID mice [trans-vivo (tv) DTH]. Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45+ cells, including CD3+ T cells, CD68+ macrophages and murine Ly6G+ neutrophils. We observed a significant correlation between % circulating human CD4+ cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-IFNγ, while the tvDTH response to collagen V was inhibited by anti IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. Hu-NSG mice were also capable of mounting a B cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17 - dependent cellular immune response supports the utility of Hu-NSG mice as a surrogate model of allograft rejection and autoimmunity. PMID:20298731

  18. Congenitally athymic nude (nu/nu) mice have Thy-1-bearing immunocompetent helper T cells in their peritoneal cavity

    PubMed Central

    1980-01-01

    Heavily irradiated peritoneal cells (PC) from congenitally athymic nude (nu/nu) mice markedly restored the impaired in vitro antibody response of nu/nu spleen cells to sheep erythrocyte antigens (T-dependent antigen), whereas irradiated spleen or lymph node cells from nu/nu mice had no effect on the response. This activity of the irradiated PC of nu/nu mice was completely abolished by treatment with anti-Thy-1.2 antiserum plus normal guinea pig serum (C') and is, therefore, attributable to a function of matured T cells. PMID:6966314

  19. Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity

    PubMed Central

    Ghosh, Arnab; Dogan, Yildirim; Moroz, Maxim; Holland, Amanda M.; Yim, Nury L.; Rao, Uttam K.; Young, Lauren F.; Tannenbaum, Daniel; Masih, Durva; Velardi, Enrico; Tsai, Jennifer J.; Jenq, Robert R.; Penack, Olaf; Hanash, Alan M.; Smith, Odette M.; Piersanti, Kelly; Lezcano, Cecilia; Murphy, George F.; Liu, Chen; Palomba, M. Lia; Sauer, Martin G.; Sadelain, Michel; Ponomarev, Vladimir; van den Brink, Marcel R.M.

    2013-01-01

    Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro–generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD. PMID:23676461

  20. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development.

    PubMed

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-04-07

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.

  1. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development

    PubMed Central

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-01-01

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ɛ proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development. PMID:20150895

  2. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms.

    PubMed

    Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco

    2009-07-01

    CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (alpha-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and alpha-GalCer in the treatment of mice engrafted with CD1d(+) lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence alpha-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and alpha-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d(+) masses. In addition, CD1d-restricted T-cell treatment plus alpha-GalCer eradicated small C1R-CD1d(+) nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and alpha-GalCer may represent a new immunotherapeutic tool for treatment of CD1d(+) hematologic malignancies.

  3. Mucosal-Associated Invariant T Cells in Regenerative Medicine

    PubMed Central

    Wakao, Hiroshi; Sugimoto, Chie; Kimura, Shinzo; Wakao, Rika

    2017-01-01

    Although antibiotics to inhibit bacterial growth and small compounds to interfere with the productive life cycle of human immunodeficiency virus (HIV) have successfully been used to control HIV infection, the recent emergence of the drug-resistant bacteria and viruses poses a serious concern for worldwide public health. Despite intensive scrutiny in developing novel antibiotics and drugs to overcome these problems, there is a dilemma such that once novel antibiotics are launched in markets, sooner or later antibiotic-resistant strains emerge. Thus, it is imperative to develop novel methods to avoid this vicious circle. Here, we discuss the possibility of using induced pluripotent stem cell (iPSC)-derived, innate-like T cells to control infection and potential application of these cells for cancer treatment. Mucosal-associated invariant T (MAIT) cells belong to an emerging family of innate-like T cells that link innate immunity to adaptive immunity. MAIT cells exert effector functions without priming and clonal expansion like innate immune cells and relay the immune response to adaptive immune cells through production of relevant cytokines. With these characteristics, MAIT cells are implicated in a wide range of human diseases such as autoimmune, infectious, and metabolic diseases, and cancer. Circulating MAIT cells are often depleted by these diseases and often remain depleted even after appropriate remedy because MAIT cells are susceptible to activation-induced cell death and poor at proliferation in vivo, which threatens the integrity of the immune system. Because MAIT cells have a pivotal role in human immunity, supplementation of MAIT cells into immunocompromised patients suffering from severe depletion of these cells may help recapitulate or recover immunocompetence. The generation of MAIT cells from human iPSCs has made it possible to procure MAIT cells lost from disease. Such technology creates new avenues for cell therapy and regenerative medicine for

  4. T cell mediated suppression of neurotropic coronavirus replication in neural precursor cells

    PubMed Central

    Plaisted, Warren C.; Weinger, Jason G.; Walsh, Craig M.; Lane, Thomas E.

    2014-01-01

    Neural precursor cells (NPCs) are the subject of intense investigation for their potential to treat neurodegenerative disorders, yet the consequences of neuroinvasive virus infection of NPCs remain unclear. This study demonstrates that NPCs support replication following infection by the neurotropic JHM strain of mouse hepatitis virus (JHMV). JHMV infection leads to increased cell death and dampens IFN-γ-induced MHC class II expression. Importantly, cytokines secreted by CD4+ T cells inhibit JHMV replication in NPCs, and CD8+ T cells specifically target viral peptide-pulsed NPCs for lysis. Furthermore, treatment with IFN-γ inhibits JHMV replication in a dose-dependent manner. Together, these findings suggest that T cells play a critical role in controlling replication of a neurotropic virus in NPCs, a finding which has important implications when considering immune modulation for NPC-based therapies for treatment of human neurologic diseases. PMID:24418558

  5. Airway Hyperresponsiveness through Synergy of γδ T Cells and NKT Cells1

    PubMed Central

    Jin, Niyun; Miyahara, Nobuaki; Roark, Christina L.; French, Jena D.; Aydintug, M. Kemal; Matsuda, Jennifer L.; Gapin, Laurent; O'Brien, Rebecca L.; Gelfand, Erwin W.; Born, Willi K.

    2015-01-01

    Mice sensitized and challenged with OVA were used to investigate the role of innate T cells in the development of allergic airway hyperresponsiveness (AHR). AHR, but not eosinophilic airway inflammation, was induced in T cell-deficient mice by small numbers of cotransferred γδ T cells and invariant NKT cells, whereas either cell type alone was not effective. Only Vγ1+Vδ5+ γδ T cells enhanced AHR. Surprisingly, OVA-specific αβ T cells were not required, revealing a pathway of AHR development mediated entirely by innate T cells. The data suggest that lymphocytic synergism, which is key to the Ag-specific adaptive immune response, is also intrinsic to T cell-dependent innate responses. PMID:17709511

  6. Inhibition of cell-mediated immunity by the histone deacetylase inhibitor vorinostat: implications for therapy of cutaneous T-cell lymphoma.

    PubMed

    Stephen, Sasha; Morrissey, Kelly A; Benoit, Bernice M; Kim, Ellen J; Vittorio, Carmela C; Nasta, Sunita D; Showe, Louise C; Wysocka, Maria; Rook, Alain H

    2012-02-01

    Several histone deacetylase inhibitors (HDACi), including vorinostat, have been approved for the therapy of cutaneous T-cell lymphoma (CTCL). Emerging data suggest that HDACi may exert immune suppressive effects which would be disadvantageous for therapy of CTCL. We describe a patient with Sezary syndrome who was monitored for drug-induced immunosuppression while undergoing treatment with vorinostat. Analysis of the patient's natural killer cell function before and after initiation of treatment confirmed inhibition of this important cell-mediated immune function. In addition, the in vitro effects of vorinostat on the immunity of healthy volunteers confirmed that this class of drug can profoundly suppress multiple arms of the cellular immune response. These findings raise concerns of increased susceptibility to infection in this high-risk population.

  7. GARP-TGF-β complexes negatively regulate regulatory T cell development and maintenance of peripheral CD4+ T cells in vivo.

    PubMed

    Zhou, Angela X; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya

    2013-05-15

    The role of surface-bound TGF-β on regulatory T cells (Tregs) and the mechanisms that mediate its functions are not well defined. We recently identified a cell-surface molecule called Glycoprotein A Repetitions Predominant (GARP), which is expressed specifically on activated Tregs and was found to bind latent TGF-β and mediate a portion of Treg suppressive activity in vitro. In this article, we address the role of GARP in regulating Treg and conventional T cell development and immune suppression in vivo using a transgenic mouse expressing GARP on all T cells. We found that, despite forced expression of GARP on all T cells, stimulation through the TCR was required for efficient localization of GARP to the cell surface. In addition, IL-2 signals enhanced GARP cell surface expression specifically on Tregs. GARP-transgenic CD4(+) T cells and Tregs, especially those expressing higher levels of GARP, were significantly reduced in the periphery. Mature Tregs, but not conventional CD4(+) T cells, were also reduced in the thymus. CD4(+) T cell reduction was more pronounced within the effector/memory subset, especially as the mouse aged. In addition, GARP-overexpressing CD4(+) T cells stimulated through the TCR displayed reduced proliferative capacity, which was restored by inhibiting TGF-β signaling. Furthermore, inhibiting TGF-β signals greatly enhanced surface expression of GARP on Tregs and blocked the induction of Foxp3 in activated CD4(+) T cells overexpressing GARP. These findings suggest a role for GARP in natural and induced Treg development through activation of bound latent TGF-β and signaling, which negatively regulates GARP expression on Tregs.

  8. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation

    PubMed Central

    Hohl, Tobias M.; Collins, Nichole; Leiner, Ingrid; Gallegos, Alena; Saijo, Shinobu; Coward, Jesse W.; Iwakura, Yoichiro

    2011-01-01

    Pulmonary infection of mice with Aspergillus fumigatus induces concurrent T helper type 1 (Th1) and Th17 responses that depend on Toll-like receptor/MyD88 and Dectin-1, respectively. However, the mechanisms balancing Th1 and Th17 CD4 T cell populations during infection remain incompletely defined. In this study, we show that Dectin-1 deficiency disproportionally increases Th1 responses and decreases Th17 differentiation after A. fumigatus infection. Dectin-1 signaling in A. fumigatus–infected wild-type mice reduces IFN-γ and IL-12p40 expression in the lung, thereby decreasing T-bet expression in responding CD4 T cells and enhancing Th17 responses. Absence of IFN-γ or IL-12p35 in infected mice or T-bet in responding CD4 T cells enhances Th17 differentiation, independent of Dectin-1 expression, in A. fumigatus–infected mice. Transient deletion of monocyte-derived dendritic cells also reduces Th1 and boosts Th17 differentiation of A. fumigatus–specific CD4 T cells. Our findings indicate that Dectin-1–mediated signals alter CD4 T cell responses to fungal infection by decreasing the production of IL-12 and IFN-γ in innate cells, thereby decreasing T-bet expression in A. fumigatus–specific CD4 T cells and enabling Th17 differentiation. PMID:21242294

  9. How regulatory T cells work

    PubMed Central

    Vignali, Dario A. A.; Collison, Lauren W.; Workman, Creg J.

    2009-01-01

    Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. However, they also limit beneficial responses by suppressing sterilizing immunity and limiting anti-tumour immunity. Given that Treg cells can have both beneficial and deleterious effects, there is considerable interest in determining their mechanisms of action. In this Review, we discuss the basic mechanisms used by Treg cells to mediate suppression, and discuss whether one or many of these mechanisms are likely to be crucial for Treg-cell function. In addition, we present the hypothesis that effector T cells may not be ‘innocent’ parties in this suppressive process and might in fact potentiate Treg-cell function. PMID:18566595

  10. Polyfunctional CD4+ T Cells As Targets for Tuberculosis Vaccination

    PubMed Central

    Lewinsohn, Deborah A.; Lewinsohn, David M.; Scriba, Thomas J.

    2017-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of morbidity and mortality worldwide, despite the widespread use of the only licensed vaccine, Bacille Calmette Guerin (BCG). Eradication of TB will require a more effective vaccine, yet evaluation of new vaccine candidates is hampered by lack of defined correlates of protection. Animal and human studies of intracellular pathogens have extensively evaluated polyfunctional CD4+ T cells producing multiple pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2) as a possible correlate of protection from infection and disease. In this study, we review the published literature that evaluates whether or not BCG and/or novel TB vaccine candidates induce polyfunctional CD4+ T cells and if these T cell responses correlate with vaccine-mediated protection. Ample evidence suggests that BCG and several novel vaccine candidates evaluated in animal models and humans induce polyfunctional CD4+ T cells. However, while a number of studies utilizing the mouse TB model support that polyfunctional CD4+ T cells are associated with vaccine-induced protection, other studies in mouse and human infants demonstrate no correlation between these T cell responses and protection. We conclude that induction of polyfunctional CD4+ T cells is certainly not sufficient and may not even be necessary to mediate protection and suggest that other functional attributes, such as additional effector functions, T cell differentiation state, tissue homing potential, or long-term survival capacity of the T cell may be equally or more important to promote protection. Thus, a correlate of protection for TB vaccine development remains elusive. Future studies should address polyfunctional CD4+ T cells within the context of more comprehensive immunological signatures of protection that include other functions and phenotypes of T cells as well as the full spectrum of immune cells and mediators that participate in the immune

  11. T cell-B cell interactions in primary immunodeficiencies.

    PubMed

    Tangye, Stuart G; Deenick, Elissa K; Palendira, Umaimainthan; Ma, Cindy S

    2012-02-01

    Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes. © 2012 New York Academy of Sciences.

  12. Induction of suppression through human T cell interactions.

    PubMed

    Lydyard, P M; Hayward, A R

    1980-02-01

    Concanavalin A (Con A) activated T cells, devoid of cells bearing Fc receptors for IgG (T - TG) help human B lymphocytes to differentiate into plasma cells (PC) in response to pokeweed mitogen (PWM). PC differentiation is reduced when adult T cells are added to such cultures. The radiosensitivity of suppression and the radioresistance of help enabled us to show that adult T cells include a suppressor-precursor which is activated by irradiated Con A-precultured T cells. Newborn T cells which include active suppressors, are both poor stimulators of suppressor-precursors and poor helpers of B cells. Our results suggest that at least two cells may mediate Con A-induced suppression, one which suppresses directly and is radiosensitive and another which is radioresistant and stimulates suppressor-precursors in a target population of T cells.

  13. Nuclear Translocation of MEK1 Triggers a Complex T cell Response through the Co-repressor Silencing Mediator of Retinoid and Thyroid Hormone Receptor (SMRT)

    PubMed Central

    Guo, Lei; Chen, Chaoyu; Liang, Qiaoling; Karim, Md. Zunayet; Gorska, Magdalena M.; Alam, Rafeul

    2012-01-01

    MEK1 phosphorylates ERK1/2 and regulates T cell generation, differentiation and function. MEK1 has recently been shown to translocate to the nucleus. Its nuclear function is largely unknown. By studying human CD4 T cells we demonstrate that a low level of MEK1 is present in the nucleus of CD4 T cells under basal conditions. T cell activation further increases the nuclear translocation of MEK1. MEK1 interacts with the nuclear receptor co-repressor SMRT. MEK1 reduces the nuclear level of SMRT in an activation-dependent manner. MEK1 is recruited to the promoter of c-Fos upon TCR stimulation. Conversely, SMRT is bound to the c-Fos promoter under basal conditions and is removed upon TCR stimulation. We examined the role of SMRT in regulation of T cell function. siRNA-mediated knockdown of SMRT results in a biphasic effect on cytokine production. The production of the cytokines—IL2, IL4, IL10 and IFNγ increases in the early phase (8 hr) and then decreases in the late phase (48 hr). The late phase decrease is associated with inhibition of T cell proliferation. The late phase inhibition of T cell activation is, in part, mediated by IL10 that is produced in the early phase, and in part, by β-catenin signaling. Thus, we have identified a novel nuclear function of MEK1. MEK1 triggers a complex pattern of early T cell activation followed by a late inhibition through its interaction with SMRT. This biphasic dual effect likely reflects a homeostatic regulation of T cell function by MEK1. PMID:23225884

  14. Early Gag Immunodominance of the HIV-Specific T-Cell Response during Acute/Early Infection Is Associated with Higher CD8+ T-Cell Antiviral Activity and Correlates with Preservation of the CD4+ T-Cell Compartment

    PubMed Central

    Ghiglione, Yanina; Falivene, Juliana; Socias, María Eugenia; Laufer, Natalia; Coloccini, Romina Soledad; Rodriguez, Ana María; Ruiz, María Julia; Pando, María Ángeles; Giavedoni, Luis David; Cahn, Pedro; Sued, Omar; Salomon, Horacio; Gherardi, María Magdalena

    2013-01-01

    The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection. PMID:23616666

  15. Immunosuppression after Sepsis: Systemic Inflammation and Sepsis Induce a Loss of Naïve T-Cells but No Enduring Cell-Autonomous Defects in T-Cell Function

    PubMed Central

    Markwart, Robby; Condotta, Stephanie A.; Requardt, Robert P.; Borken, Farina; Schubert, Katja; Weigel, Cynthia; Bauer, Michael; Griffith, Thomas S.; Förster, Martin; Brunkhorst, Frank M.; Badovinac, Vladimir P.; Rubio, Ignacio

    2014-01-01

    Sepsis describes the life-threatening systemic inflammatory response (SIRS) of an organism to an infection and is the leading cause of mortality on intensive care units (ICU) worldwide. An acute episode of sepsis is characterized by the extensive release of cytokines and other mediators resulting in a dysregulated immune response leading to organ damage and/or death. This initial pro-inflammatory burst often transits into a state of immune suppression characterised by loss of immune cells and T-cell dysfunction at later disease stages in sepsis survivors. However, despite these appreciations, the precise nature of the evoked defect in T-cell immunity in post-acute phases of SIRS remains unknown. Here we present an in-depth functional analysis of T-cell function in post-acute SIRS/sepsis. We document that T-cell function is not compromised on a per cell basis in experimental rodent models of infection-free SIRS (LPS or CpG) or septic peritonitis. Transgenic antigen-specific T-cells feature an unaltered cytokine response if challenged in vivo and ex vivo with cognate antigens. Isolated CD4+/CD8+ T-cells from post-acute septic animals do not exhibit defects in T-cell receptor-mediated activation at the the level of receptor-proximal signalling, activation marker upregulation or expansion. However, SIRS/sepsis induced transient lymphopenia and gave rise to an environment of immune attenuation at post acute disease stages. Thus, systemic inflammation has an acute impact on T-cell numbers and adaptive immunity, but does not cause major cell-autonomous enduring functional defects in T-cells. PMID:25541945

  16. γδ T cell and other immune cells crosstalk in cellular immunity.

    PubMed

    He, Ying; Wu, Kangni; Hu, Yongxian; Sheng, Lixia; Tie, Ruxiu; Wang, Binsheng; Huang, He

    2014-01-01

    γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell.

  17. CD147-mediated chemotaxis of CD4+CD161+ T cells may contribute to local inflammation in rheumatoid arthritis.

    PubMed

    Lv, Minghua; Miao, Jinlin; Zhao, Peng; Luo, Xing; Han, Qing; Wu, Zhenbiao; Zhang, Kui; Zhu, Ping

    2018-01-01

    CD161 is used as a surrogate marker for Th17 cells, which are implicated in the pathogenesis of rheumatoid arthritis (RA). In this study, we evaluated the percentage, clinical significance, and CD98 and CD147 expression of CD4 + CD161 + T cells. The potential role of CD147 and CD98 in cyclophilin A-induced chemotaxis of CD4 + CD161 + T cells was analyzed. Thirty-seven RA patients, 15 paired synovial fluid (SF) of RA, and 22 healthy controls were recruited. The cell populations and surface expression of CD98 and CD147 were analyzed by flow cytometry. Spearman's rank correlation coefficient and multiple linear regression were applied to calculate the correlations. Chemotaxis assay was used to investigate CD4 + CD161 + T cell migration. We found that the percentage of CD4 + CD161 + T cells and their expression of CD147 and CD98 in SF were higher than in the peripheral blood of RA patients. Percentage of SF CD4 + CD161 + T cells was positively correlated with 28-Joint Disease Activity Score (DAS28). CD147 monoclonal antibody (HAb18) attenuated the chemotactic ability of CD4 + CD161 + T cells. An increased CD4 + CD161 + T cell percentage and expression of CD147 and CD98 were shown in RA SF. Percentage of SF CD4 + CD161 + T cells can be used as a predictive marker of disease activity in RA. CD147 block significantly decreased the chemotactic index of CD4 + CD161 + cells induced by cyclophilin A (CypA). These results imply that the accumulation of CD4 + CD161 + T cells in SF and their high expression of CD147 may be associated with CypA-mediated chemotaxis and contribute to local inflammation in RA.

  18. Autocrine Complement Inhibits IL10-Dependent T-Cell Mediated Antitumor Immunity to Promote Tumor Progression

    PubMed Central

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen

    2016-01-01

    In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552

  19. Increased Soluble CD226 in Sera of Patients with Cutaneous T-Cell Lymphoma Mediates Cytotoxic Activity against Tumor Cells via CD155.

    PubMed

    Takahashi, Naomi; Sugaya, Makoto; Suga, Hiraku; Oka, Tomonori; Kawaguchi, Makiko; Miyagaki, Tomomitsu; Fujita, Hideki; Inozume, Takashi; Sato, Shinichi

    2017-08-01

    Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clinical advances. CD155 is expressed in various types of cancer, and this surface molecule on tumor cells functions either as a co-stimulatory molecule or a co-inhibitory molecule, depending on its receptor. CD226, a CD155 ligand, is mainly expressed on natural killer cells and CD8 + T cells, playing important roles in natural killer cell-mediated cytotoxicity. In this study, we investigated the expression and function of CD155 and CD226 in cutaneous T-cell lymphoma (CTCL). CD155 was strongly expressed on tumor cells and CD155 mRNA expression levels were increased in CTCL lesional skin. CD226 expression on natural killer cells and CD8 + cells in peripheral blood of CTCL patients was decreased. On the other hand, serum CD226 levels were significantly elevated in CTCL patients, strongly reflecting disease activity, suggesting that soluble CD226 in sera was generated by shedding of its membrane form. Recombinant CD226 itself showed cytotoxic activity against CD155-expressing CTCL cells in vitro. These data suggest that soluble CD226 elevated in sera of CTCL patients would be important for tumor immunity by interacting with CD155 on tumor cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    NASA Technical Reports Server (NTRS)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  1. Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion.

    PubMed

    Morris, Eduardo A Rios; Bodin, Stéphane; Delaval, Bénédicte; Comunale, Franck; Georget, Virginie; Costa, Manoel L; Lutfalla, Georges; Gauthier-Rouvière, Cécile

    2017-05-01

    Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  2. The possible critical role of T-cell help in DSA-mediated graft loss.

    PubMed

    Süsal, Caner; Slavcev, Antonij; Pham, Lien; Zeier, Martin; Morath, Christian

    2018-06-01

    In this review, we discuss a possible central role of T-cell help in severe forms of graft damage mediated by donor-specific HLA antibodies (DSA). Some kidney transplant recipients with pretransplant DSA show a high graft failure rate, whereas in other patients DSA do not harm the transplanted kidney and in most cases, disappear shortly after transplantation. Analyzing 80 desensitized highly immunized kidney transplant recipients and another multicenter cohort of 385 patients with pretransplant HLA antibodies, we reported recently that an ongoing T-cell help from an activated immune system, as measured by an increased level of soluble CD30 in serum, might be necessary for the DSA to exert a deleterious effect. Patients positive for both pretransplant DSA and sCD30 appear to require special measures, such as the elimination of DSA from the circulation, potent immunosuppression, good HLA-matching, and intense post-transplant monitoring, whereas exclusion of DSA-positive patients from transplantation in the absence of high sCD30 may not be justified in all cases, even if the pretransplant DSA are strong and complement-activating. © 2018 Steunstichting ESOT.

  3. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality.

    PubMed

    Kalathil, Suresh; Lugade, Amit A; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin

    2013-04-15

    The extent to which T-cell-mediated immune surveillance is impaired in human cancer remains a question of major importance, given its potential impact on the development of generalized treatments of advanced disease where the highest degree of heterogeneity exists. Here, we report the first global analysis of immune dysfunction in patients with advanced hepatocellular carcinoma (HCC). Using multi-parameter fluorescence-activated cell sorting analysis, we quantified the cumulative frequency of regulatory T cells (Treg), exhausted CD4(+) helper T cells, and myeloid-derived suppressor cells (MDSC) to gain concurrent views on the overall level of immune dysfunction in these inoperable patients. We documented augmented numbers of Tregs, MDSC, PD-1(+)-exhausted T cells, and increased levels of immunosuppressive cytokines in patients with HCC, compared with normal controls, revealing a network of potential mechanisms of immune dysregulation in patients with HCC. In dampening T-cell-mediated antitumor immunity, we hypothesized that these processes may facilitate HCC progression and thwart the efficacy of immunotherapeutic interventions. In testing this hypothesis, we showed that combined regimens to deplete Tregs, MDSC, and PD-1(+) T cells in patients with advanced HCC restored production of granzyme B by CD8(+) T cells, reaching levels observed in normal controls and also modestly increased the number of IFN-γ producing CD4(+) T cells. These clinical findings encourage efforts to restore T-cell function in patients with advanced stage disease by highlighting combined approaches to deplete endogenous suppressor cell populations that can also expand effector T-cell populations. ©2013 AACR.

  4. Human influenza viruses and CD8(+) T cell responses.

    PubMed

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    PubMed

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  6. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    PubMed Central

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  7. Ethanol exacerbates T cell dysfunction after thermal injury.

    PubMed

    Choudhry, M A; Messingham, K A; Namak, S; Colantoni, A; Fontanilla, C V; Duffner, L A; Sayeed, M M; Kovacs, E J

    2000-07-01

    To understand the mechanism of suppressed immunity following alcohol consumption and thermal injury, we analyzed T cell functions in a mouse model of acute alcohol exposure and burn injury. Mice with blood alcohol levels at approximately 100 mg/dl were given a 15% scald or sham injury. Mice were sacrificed 48 h after injury. Our data demonstrated a 20-25% decrease in Con A-mediated splenic T cell proliferation (p<0.01) and 45-50% decrease in interleukin-2 (IL-2) production (p<0.01) following burn injury compared to the T cells from sham animals. A further decrease in the proliferation (25-30%) and IL-2 production (40-45%) was detected in T cells derived from burned animals receiving alcohol as compared to burn alone. No significant change in the proliferation and IL-2 production was observed in splenic T cells derived from sham-injured mice regardless of alcohol exposure. Additionally, there was no demonstrable difference in splenocyte apoptosis in any treatment group. These results suggest that alcohol consumption prior to burn injury causes a greater decrease in T cell proliferation and IL-2 production compared to either burn or alcohol injury alone that may further attenuate the cell-mediated immunity and thus enhance susceptibility to infection.

  8. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation.

    PubMed

    Piconese, Silvia; Gri, Giorgia; Tripodo, Claudio; Musio, Silvia; Gorzanelli, Andrea; Frossi, Barbara; Pedotti, Rosetta; Pucillo, Carlo E; Colombo, Mario P

    2009-09-24

    The development of inflammatory diseases implies inactivation of regulatory T (Treg) cells through mechanisms that still are largely unknown. Here we showed that mast cells (MCs), an early source of inflammatory mediators, are able to counteract Treg inhibition over effector T cells. To gain insight into the molecules involved in their interplay, we set up an in vitro system in which all 3 cellular components were put in contact. Reversal of Treg suppression required T cell-derived interleukin-6 (IL-6) and the OX40/OX40L axis. In the presence of activated MCs, concomitant abundance of IL-6 and paucity of Th1/Th2 cytokines skewed Tregs and effector T cells into IL-17-producing T cells (Th17). In vivo analysis of lymph nodes hosting T-cell priming in experimental autoimmune encephalomyelitis revealed activated MCs, Tregs, and Th17 cells displaying tight spatial interactions, further supporting the occurrence of an MC-mediated inhibition of Treg suppression in the establishment of Th17-mediated inflammatory responses.

  9. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation.

    PubMed

    Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-Chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y; Serody, Jonathan S; Chen, Xian; Xu, Xiaojiang; Wade, Paul A; Cook, Donald N; Ting, Jenny P Y; Wan, Yisong Y

    2017-11-02

    T helper 17 (T H 17) cells are critically involved in host defence, inflammation, and autoimmunity. Transforming growth factor β (TGFβ) is instrumental in T H 17 cell differentiation by cooperating with interleukin-6 (refs 6, 7). Yet, the mechanism by which TGFβ enables T H 17 cell differentiation remains elusive. Here we reveal that TGFβ enables T H 17 cell differentiation by reversing SKI-SMAD4-mediated suppression of the expression of the retinoic acid receptor (RAR)-related orphan receptor γt (RORγt). We found that, unlike wild-type T cells, SMAD4-deficient T cells differentiate into T H 17 cells in the absence of TGFβ signalling in a RORγt-dependent manner. Ectopic SMAD4 expression suppresses RORγt expression and T H 17 cell differentiation of SMAD4-deficient T cells. However, TGFβ neutralizes SMAD4-mediated suppression without affecting SMAD4 binding to the Rorc locus. Proteomic analysis revealed that SMAD4 interacts with SKI, a transcriptional repressor that is degraded upon TGFβ stimulation. SKI controls histone acetylation and deacetylation of the Rorc locus and T H 17 cell differentiation via SMAD4: ectopic SKI expression inhibits H3K9 acetylation of the Rorc locus, Rorc expression, and T H 17 cell differentiation in a SMAD4-dependent manner. Therefore, TGFβ-induced disruption of SKI reverses SKI-SMAD4-mediated suppression of RORγt to enable T H 17 cell differentiation. This study reveals a critical mechanism by which TGFβ controls T H 17 cell differentiation and uncovers the SKI-SMAD4 axis as a potential therapeutic target for treating T H 17-related diseases.

  10. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation

    PubMed Central

    Gross, Catharina C.; Schulte-Mecklenbeck, Andreas; Rünzi, Anna; Kuhlmann, Tanja; Posevitz-Fejfár, Anita; Schwab, Nicholas; Schneider-Hohendorf, Tilman; Herich, Sebastian; Held, Kathrin; Konjević, Matea; Hartwig, Marvin; Dornmair, Klaus; Hohlfeld, Reinhard; Ziemssen, Tjalf; Klotz, Luisa; Meuth, Sven G.; Wiendl, Heinz

    2016-01-01

    Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) resulting from a breakdown in peripheral immune tolerance. Although a beneficial role of natural killer (NK)-cell immune-regulatory function has been proposed, it still needs to be elucidated whether NK cells are functionally impaired as part of the disease. We observed NK cells in active MS lesions in close proximity to T cells. In accordance with a higher migratory capacity across the blood–brain barrier, CD56bright NK cells represent the major intrathecal NK-cell subset in both MS patients and healthy individuals. Investigating the peripheral blood and cerebrospinal fluid of MS patients treated with natalizumab revealed that transmigration of this subset depends on the α4β1 integrin very late antigen (VLA)-4. Although no MS-related changes in the migratory capacity of NK cells were observed, NK cells derived from patients with MS exhibit a reduced cytolytic activity in response to antigen-activated CD4+ T cells. Defective NK-mediated immune regulation in MS is mainly attributable to a CD4+ T-cell evasion caused by an impaired DNAX accessory molecule (DNAM)-1/CD155 interaction. Both the expression of the activating NK-cell receptor DNAM-1, a genetic alteration consistently found in MS-association studies, and up-regulation of the receptor’s ligand CD155 on CD4+ T cells are reduced in MS. Therapeutic immune modulation of IL-2 receptor restores impaired immune regulation in MS by increasing the proportion of CD155-expressing CD4+ T cells and the cytolytic activity of NK cells. PMID:27162345

  11. Targeting Inflammatory T Helper Cells via Retinoic Acid-Related Orphan Receptor Gamma t Is Ineffective to Prevent Allo-Response-Driven Colitis.

    PubMed

    Buchele, Vera; Abendroth, Benjamin; Büttner-Herold, Maike; Vogler, Tina; Rothamer, Johanna; Ghimire, Sakhila; Ullrich, Evelyn; Holler, Ernst; Neurath, Markus F; Hildner, Kai

    2018-01-01

    Intestinal graft-versus-host disease (GvHD) is a life-threatening, inflammatory donor T cell-mediated complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the light of the reported efficacy of interleukin-23 (IL-23)-blockade to mitigate syngeneic intestinal inflammation in inflammatory bowel disease patients, targeting IL-23 and thereby interleukin-17a (IL-17a) producing T helper (Th17) cells as the T cell subset assumed to be mostly regulated by IL-23, has emerged as a putatively general concept to harness immune-mediated mucosal inflammation irrespective of the underlying trigger. However, the role of Th17 cells during allo-response driven colitis remains ambiguous due to a series of studies with inconclusive results. Interestingly, we recently identified granulocyte-macrophage colony-stimulating factor (GM-CSF + ) T cells to be promoted by interleukin-7 (IL-7) signaling and controlled by the activating protein-1 transcription factor family member basic leucine zipper transcription factor ATF-like (BATF) as critical mediators of intestinal GvHD in mice. Given the dual role of BATF, the contribution of IL-23-mediated signaling within donor T cells and bona fide Th17 cells remains to be delineated from the regulation of GM-CSF + T cells in the absence of BATF. Here, we found in a complete MHC class I-mismatched model that genetic inactivation of the IL-23 receptor (IL-23R) or the transcription factor retinoic acid-related orphan receptor gamma t (RORγt) within donor T cells similarly ablated Th17 cell formation in vivo but preserved the T cells' ability to induce intestinal GvHD in a compared to wild-type controls indistinguishable manner. Importantly, RORγt-independent manifestation of intestinal GvHD was completely dependent on BATF-regulated GM-CSF + T cells as BATF/RORγt double-deficient T cells failed to induce colitis and the antibody-mediated blockage of IL-7/IL-7R interaction and GM-CSF significantly diminished signs

  12. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12.

    PubMed

    Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro

    2005-08-01

    When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-gamma. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8(+) T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-gamma produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells.

  13. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12

    PubMed Central

    Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro

    2005-01-01

    When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-γ. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8+ T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-γ produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells. PMID:16011514

  14. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells.

    PubMed

    Takeshige, Keiko; Sekido, Takashi; Kitahara, Jun-ichirou; Ohkubo, Yousuke; Hiwatashi, Dai; Ishii, Hiroaki; Nishio, Shin-ichi; Takeda, Teiji; Komatsu, Mitsuhisa; Suzuki, Satoru

    2014-01-01

    μ-Crystallin (CRYM) is also known as NADPH-dependent cytosolic T3-binding protein. A study using CRYM-null mice suggested that CRYM stores triiodothyronine (T3) in tissues. We previously established CRYM-expressing cells derived from parental GH3 cells. To examine the precise regulation of T3-responsive genes in the presence of CRYM, we evaluated serial alterations of T3-responsive gene expression by changing pericellular T3 concentrations in the media. We estimated the constitutive expression of three T3-responsive genes, growth hormone (GH), deiodinase 1 (Dio1), and deiodinase 2 (Dio2), in two cell lines. Subsequently, we measured the responsiveness of these three genes at 4, 8, 16, and 24 h after adding various concentrations of T3. We also estimated the levels of these mRNAs 24 and 48 h after removing T3. The levels of constitutive expression of GH and Dio1 were low and high in C8 cells, respectively, while Dio2 expression was not significantly different between GH3 and C8 cells. When treated with T3, Dio2 expression was significantly enhanced in C8 cells, while there were no differences in GH or Dio1 expression between GH3 and C8 cell lines. In contrast, removal of T3 retained the mRNA expression of GH and Dio2 in C8 cells. These results suggest that CRYM expression increases and sustains the T3 responsiveness of genes in cells, especially with alteration of the pericellular T3 concentration. The heterogeneity of T3-related gene expression is dependent on cellular CRYM expression in cases of dynamic changes in pericellular T3 concentration.

  15. Release of active TGF-β1 from the Latent TGF-β1/GARP complex on T regulatory cells is mediated by Integrin β81

    PubMed Central

    Edwards, Justin P.; Thornton, Angela M.; Shevach, Ethan M.

    2014-01-01

    Activated T regulatory cells (Treg) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4+Foxp3+ Treg, but not CD4+Foxp3− T cells, expressed integrin β8 (Itgb8) as detected by qRT-PCR. Itgb8 expression was a marker of thymically-derived (t)Treg, as it could not be detected on Foxp3+Helios− Tregs or on Foxp3+ T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis, but failed to provide TGF-β1 to drive Th17 or iTreg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF-β1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF-β1 from the latent TGF-β1/GARP complex on the surface of tTregs. PMID:25127859

  16. Release of active TGF-β1 from the latent TGF-β1/GARP complex on T regulatory cells is mediated by integrin β8.

    PubMed

    Edwards, Justin P; Thornton, Angela M; Shevach, Ethan M

    2014-09-15

    Activated T regulatory cells (Tregs) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4(+)Foxp3(+) Treg, but not CD4(+)Foxp3(-) T cells, expressed integrin β8 (Itgb8) as detected by quantitative RT-PCR. Itgb8 expression was a marker of thymically derived (t)Treg, because it could not be detected on Foxp3(+)Helios(-) Tregs or on Foxp3(+) T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis but failed to provide TGF-β1 to drive Th17 or induced Treg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF-β1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF-β1 from the latent TGF-β1/GARP complex on the surface of tTregs.

  17. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.

    PubMed

    Pan, Deng; Kobayashi, Aya; Jiang, Peng; Ferrari de Andrade, Lucas; Tay, Rong En; Luoma, Adrienne M; Tsoucas, Daphne; Qiu, Xintao; Lim, Klothilda; Rao, Prakash; Long, Henry W; Yuan, Guo-Cheng; Doench, John; Brown, Myles; Liu, X Shirley; Wucherpfennig, Kai W

    2018-02-16

    Many human cancers are resistant to immunotherapy, for reasons that are poorly understood. We used a genome-scale CRISPR-Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of antitumor immunity. Inactivation of >100 genes-including Pbrm1 , Arid2 , and Brd7 , which encode components of the PBAF form of the SWI/SNF chromatin remodeling complex-sensitized mouse B16F10 melanoma cells to killing by T cells. Loss of PBAF function increased tumor cell sensitivity to interferon-γ, resulting in enhanced secretion of chemokines that recruit effector T cells. Treatment-resistant tumors became responsive to immunotherapy when Pbrm1 was inactivated. In many human cancers, expression of PBRM1 and ARID2 inversely correlated with expression of T cell cytotoxicity genes, and Pbrm1 -deficient murine melanomas were more strongly infiltrated by cytotoxic T cells. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.

    PubMed

    Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

  19. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms

    PubMed Central

    Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco

    2009-01-01

    Background CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (α-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. Design and Methods We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and α-GalCer in the treatment of mice engrafted with CD1d+ lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. Results The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence α-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and α-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d+ masses. In addition, CD1d-restricted T-cell treatment plus α-GalCer eradicated small C1R-CD1d+ nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Conclusions Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and α-GalCer may represent a new immunotherapeutic tool for treatment of CD1d+ hematologic malignancies. PMID:19454494

  20. TLR8 stimulation enhances cetuximab-mediated natural killer cell lysis of head and neck cancer cells and dendritic cell cross priming of EGFR-specific CD8+ T cells

    PubMed Central

    Stephenson, Ryan M.; Lim, Chwee Ming; Matthews, Maura; Dietsch, Gregory; Hershberg, Robert; Ferris, Robert L.

    2013-01-01

    Background Cetuximab is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) that prolongs survival in the treatment of head and neck cancer (HNC), but only in 10–20% of patients. An immunological mechanism of action such as natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) has been suggested. We investigated the effects of activating toll-like receptor (TLR)-8 to enhance activity of cetuximab-stimulated, FcγR bearing cells. Objective To determine the capability of TLR8-stimulation to enhance the activation and function of NK cells and dendritic cells (DC) in the presence of cetuximab-coated HNC cells. Methods Peripheral blood mononuclear cells (PBMC), NK, DC and CD8+ T cells were isolated and analyzed using 51Cr release ADCC, flow cytometry analysis, cytokine ELISA, and EGFR853–861 tetramer staining. Results TLR8 stimulation of unfractionated PBMC led to enhanced cetuximab-mediated ADCC in healthy donors (p<0.01) and HNC patients (p<0.001), which was dependent on NK cells. Secretion of Th1 cytokines TNFα(p<0.0001), IFNγ(p<0.0001), and IL-12p40(p<0.005) was increased. TLR8 stimulation of PBMC augmented cetuximab-enhanced NK cell degranulation (p<0.001). TLR8 stimulated NK cells enhanced DC maturation markers CD80, CD83, and CD86 in co-culture with cetuximab-treated HNC cells. TLR8 stimulation of NK-DC co-cultures significantly increased DC priming of EGFR-specific CD8+ T cells in the presence of cetuximab. Discussion VTX-2337 and cetuximab combination therapy can activate innate and adaptive anti-cancer immune responses. Further investigation in human trials will be important for determining the clinical benefit of this combination, and for determining biomarkers of response. PMID:23685782

  1. T cell ignorance is bliss: T cells are not tolerized by Langerhans cells presenting human papillomavirus antigens in the absence of costimulation.

    PubMed

    Woodham, Andrew W; Yan, Lisa; Skeate, Joseph G; van der Veen, Daniel; Brand, Heike H; Wong, Michael K; Da Silva, Diane M; Kast, W Martin

    2016-12-01

    Human papillomavirus type 16 (HPV16) infections are intra-epithelial, and thus, HPV16 is known to interact with Langerhans cells (LCs), the resident epithelial antigen-presenting cells (APCs). The current paradigm for APC-mediated induction of T cell anergy is through delivery of T cell receptor signals via peptides on MHC molecules (signal 1), but without costimulation (signal 2). We previously demonstrated that LCs exposed to HPV16 in vitro present HPV antigens to T cells without costimulation, but it remained uncertain if such T cells would remain ignorant, become anergic, or in the case of CD4+ T cells, differentiate into Tregs. Here we demonstrate that Tregs were not induced by LCs presenting only signal 1, and through a series of in vitro immunizations show that CD8 + T cells receiving signal 1 + 2 from LCs weeks after consistently receiving signal 1 are capable of robust effector functions. Importantly, this indicates that T cells are not tolerized but instead remain ignorant to HPV, and are activated given the proper signals.

  2. Thymus-Derived Regulatory T Cell Development Is Regulated by C-Type Lectin-Mediated BIC/MicroRNA 155 Expression

    PubMed Central

    Sánchez-Díaz, Raquel; Blanco-Dominguez, Rafael; Lasarte, Sandra; Tsilingiri, Katerina; Martín-Gayo, Enrique; Linillos-Pradillo, Beatriz; de la Fuente, Hortensia; Sánchez-Madrid, Francisco; Nakagawa, Rinako; Toribio, María L.

    2017-01-01

    ABSTRACT Thymus-derived regulatory T (tTreg) cells are key to preventing autoimmune diseases, but the mechanisms involved in their development remain unsolved. Here, we show that the C-type lectin receptor CD69 controls tTreg cell development and peripheral Treg cell homeostasis through the regulation of BIC/microRNA 155 (miR-155) and its target, suppressor of cytokine signaling 1 (SOCS-1). Using Foxp3-mRFP/cd69+/− or Foxp3-mRFP/cd69−/− reporter mice and short hairpin RNA (shRNA)-mediated silencing and miR-155 transfection approaches, we found that CD69 deficiency impaired the signal transducer and activator of transcription 5 (STAT5) pathway in Foxp3+ cells. This results in BIC/miR-155 inhibition, increased SOCS-1 expression, and severely impaired tTreg cell development in embryos, adults, and Rag2−/− γc−/− hematopoietic chimeras reconstituted with cd69−/− stem cells. Accordingly, mirn155−/− mice have an impaired development of CD69+ tTreg cells and overexpression of the miR-155-induced CD69 pathway, suggesting that both molecules might be concomitantly activated in a positive-feedback loop. Moreover, in vitro-inducible CD25+ Treg (iTreg) cell development is inhibited in Il2rγ−/−/cd69−/− mice. Our data highlight the contribution of CD69 as a nonredundant key regulator of BIC/miR-155-dependent Treg cell development and homeostasis. PMID:28167605

  3. Mitomycin C-treated or irradiated concanavalin A-activated T cells augment the activation of cytotoxic T cells in vivo.

    PubMed

    Moyers, C; Pottmeyer-Gerber, C; Gerber, M; Buszello, H; Dröge, W

    1984-10-01

    The activation of cytotoxic T lymphocytes (CTL) in vivo after immunization of normal or cyclophosphamide-treated mice with allogeneic cells was strongly augmented by the administration of mitomycin C-treated or irradiated concanavalin A-activated spleen cells (Con A-spl). This effect of the Con A-spl was abrogated by treatment with Anti-Thy 1 antibody plus complement, and was therefore presumably mediated by activated "helper" T cells. (The term "helper" cell is only operationally defined in this context and indicates that the augmenting irradiation resistant T cells are obviously not CTL precursor cells). These observations indicated (i) that even the cytotoxic response against allogeneic stimulator cells suffers in vivo from insufficient "helper" T cell activity, and (ii) that the injection of Con A-spl may serve as a simple procedure to apply this "helper" activity in vivo. This procedure was at least as effective as the repeated injection of interleukin 2 (IL-2)-containing cell supernatants with up to four 30-unit doses of IL-2 per mouse. IL-2-containing cell supernatants were found to mediate similar effects only if injected into the footpads but not intravenously. This was in line with the reported observation that IL-2 has an extremely short half-life in vivo. The injection of Con A-spl was also found to augment the proliferative response in the regional lymph nodes.

  4. The Role of Heterotypic DENV-specific CD8+T Lymphocytes in an Immunocompetent Mouse Model of Secondary Dengue Virus Infection.

    PubMed

    Talarico, Laura B; Batalle, Juan P; Byrne, Alana B; Brahamian, Jorge M; Ferretti, Adrián; García, Ayelén G; Mauri, Aldana; Simonetto, Carla; Hijano, Diego R; Lawrence, Andrea; Acosta, Patricio L; Caballero, Mauricio T; Paredes Rojas, Yésica; Ibañez, Lorena I; Melendi, Guillermina A; Rey, Félix A; Damonte, Elsa B; Harris, Eva; Polack, Fernando P

    2017-06-01

    Dengue is the most prevalent arthropod-borne viral disease worldwide and is caused by the four dengue virus serotypes (DENV-1-4). Sequential heterologous DENV infections can be associated with severe disease manifestations. Here, we present an immunocompetent mouse model of secondary DENV infection using non mouse-adapted DENV strains to investigate the pathogenesis of severe dengue disease. C57BL/6 mice infected sequentially with DENV-1 (strain Puerto Rico/94) and DENV-2 (strain Tonga/74) developed low platelet counts, internal hemorrhages, and increase of liver enzymes. Cross-reactive CD8 + T lymphocytes were found to be necessary and sufficient for signs of severe disease by adoptively transferring of DENV-1-immune CD8 + T lymphocytes before DENV-2 challenge. Disease signs were associated with production of tumor necrosis factor (TNF)-α and elevated cytotoxicity displayed by heterotypic anti-DENV-1 CD8 + T lymphocytes. These findings highlight the critical role of heterotypic anti-DENV CD8 + T lymphocytes in manifestations of severe dengue disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Intracellular signaling required for CCL25-stimulated T cell adhesion mediated by the integrin alpha4beta1.

    PubMed

    Parmo-Cabañas, Marisa; García-Bernal, David; García-Verdugo, Rosa; Kremer, Leonor; Márquez, Gabriel; Teixidó, Joaquin

    2007-08-01

    The alpha4beta1 integrin is expressed on thymocytes and mediates cell attachment to its ligands CS-1/fibronectin (CS-1/FN) and VCAM-1 in the thymus. The chemokine CCL25 is highly expressed in the thymus, where it binds to its receptor CCR9 on thymocytes promoting migration and activation. We show here that alpha4beta1 and CCR9 are coexpressed mainly on double- and single-positive thymocytes and that CCL25 strongly stimulates CD4(+)CD8(+) and CD4(+)CD8(-) adhesion to CS-1/FN and VCAM-1. CCL25 rapidly activated the GTPases Rac and Rap1 on thymocytes, and this activation was required for stimulation of adhesion, as detected using the CCR9(+)/alpha4beta1(+) human T cell line Molt-4. To study the role on CCL25-stimulated adhesion of the Rac downstream effector Wiskott-Aldrich syndrome protein family verproline-homologous protein 2 (WAVE2) as well as of Rap1-GTP-interacting proteins, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP-interacting adapter molecule (RIAM), we knocked down their expression and tested transfectant attachment to alpha4beta1 ligands. We found that WAVE2 and RAPL but not RIAM were required for efficient triggering by CCL25 of T cell adhesion to CS-1/FN and VCAM-1. Although Rac and Rap1 activation was required during early steps of T cell adhesion stimulated by CCL25, WAVE2 was needed for the development of actin-dependent T cell spreading subsequent to adhesion strengthening but not during initial alpha4beta1-ligand interactions. These results suggest that regulation by CCL25 of adhesion of thymocyte subpopulations mediated by alpha4beta1 could contribute to control their trafficking in the thymus during maturation, and identify Rac-WAVE2 and Rap1-RAPL as pathways whose activation is required in inside-out signaling, leading to stimulated adhesion.

  6. Role of neutralizing antibodies and T-cells in pathogenesis of herpes simplex virus infection in congenitally athymic mice.

    PubMed

    Kapoor, A K; Buckmaster, A; Nash, A A; Field, H J; Wildy, P

    1982-11-01

    Congenitally athymic nude mice were infected with 10(4) p.f.u. herpes simplex type 1 (strain SC16). Following the passive transfer of neutralizing monoclonal antibodies (AP7, AP8 and AP12) it was observed that AP7 alone reduced the virus infectivity in the nervous system; AP8 and AP12 failed to protect mice probably due to poor in vivo binding to the neutralization site on the virus. Latent ganglionic infection could be established in nude mice following adoptive transfer of optimum number (2 x 10(7) cells/mouse) of immune lymph node cells from day 7 herpes virus-infected hairy immunocompetent donor mice. Moreover, in some of the immune lymph node cell protected nudes, latency could be maintained even in complete absence of neutralizing antibodies. Results of ear-ablation experiments revealed that removal of primary source of infection after day 5 of infection reduced the amount of virus in the ganglia and spinal cord. Acute neurological infection was not detected following transfer of protective anti-gp-D neutralizing antibody (LP2) in combination with removal of infected pinna. These data suggest that continuous seeding of virus occurs in related ganglia via the axonal route from infected ear pinna. It appears that local T-cell-mediated immune mechanisms are involved in maintenance of latency.

  7. T-kininogen inhibits kinin-mediated activation of ERK in endothelial cells.

    PubMed

    Leiva-Salcedo, Elias; Perez, Viviana; Acuña-Castillo, Claudio; Walter, Robin; Sierra, Felipe

    2002-01-01

    Serum levels of T-kininogen increase dramatically as rats approach the end of their lifespan. Stable expression of the protein in Balb/c 3T3 fibroblasts leads to a dramatic inhibition of cell proliferation, as well as inhibition of the ERK signaling pathway. T-kininogen is a potent inhibitor of cysteine proteinases, and we have described that the inhibition of ERK activity occurs, at least in part, via stabilization of the MAP kinase phosphatase, MKP-1. Since fibroblasts are not a physiological target of T-kininogen, we have now purified the protein from rat serum, and used it to assess the effect of T-kininogen on endothelial cells. Adding purified T-kininogen to EAhy 926 hybridoma cells resulted in inhibition of basal ERK activity levels, as estimated using appropriate anti-phospho ERK antibodies. Furthermore, exogenously added T-kininogen inhibited the activation of the ERK pathway induced by either bradykinin or T-kinin. We conclude that the age-related increase in hepatic T-kininogen gene expression and serum levels of the protein could have dramatic consequences on endothelial cell physiology, both under steady state conditions, and after activation by cell-specific stimuli. Our results are consistent with T-kininogen being an important modulator of the senescent phenotype in vivo.

  8. Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: A systematic review.

    PubMed

    Weltevrede, Marlies; Eilers, Renske; de Melker, Hester E; van Baarle, Debbie

    2016-05-01

    Immunosenescence is the age-related deterioration of immunocompetence which is reflected in a poorer response to new antigens. This process is characterized by decreases in naïve T cells and increases in memory T cells. The highly prevalent β-herpesvirus cytomegalovirus (CMV) is thought to enhance T-cell immunosenescence. The aim of this study was to perform a systematic review on the current evidence regarding the relation between CMV-infection and immunosenescence in Western people aged fifty years and older. Studies that investigated the relation between CMV infection and immune parameters in Western people aged 50 years and older were eligible for inclusion. No restrictions were placed on study type. This article focuses on the relation between CMV infections as measured by serology and T cell subsets. A narrative approach to data synthesis was applied. In the majority of included studies higher levels of Effector Memory (EM) and TEMRA (Effector Memory T cells re-expressing CD45RA) cells were found in the CD4+ and the CD8+ T cell pools in CMV-seropositive elderly compared to CMV-seronegative elderly. No clear evidence was found for lower levels of naïve T cells in CMV-seropositive elderly compared to CMV-seronegative elderly. The total CD8+ T cell pool appeared to be larger in CMV-seropositive elderly in three out of four studies, while the total CD4+ T cell pool appeared to be smaller in CMV-seropositive elderly in two out of four studies. CMV seems to enhance immunosenescence based on the high levels of the highly differentiated EM and TEMRA cells in the CD8+ and CD4+ T cell pools. The relation of the shifts within the T cell compartments in CMV-seropositive elderly in relation to susceptibility to infectious diseases remains to be investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Engineering T Cells to Functionally Cure HIV-1 Infection.

    PubMed

    Leibman, Rachel S; Riley, James L

    2015-07-01

    Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1-resistant cells, redirecting HIV-1-specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1-specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy-mediated functional cure.

  10. Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Galpha11-dependent, PLC-beta-mediated pathway.

    PubMed

    Bueno, Clara; Lemke, Caitlin D; Criado, Gabriel; Baroja, Miren L; Ferguson, Stephen S G; Rahman, A K M Nur-Ur; Tsoukas, Constantine D; McCormick, John K; Madrenas, Joaquin

    2006-07-01

    The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.

  11. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    NASA Astrophysics Data System (ADS)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  12. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy

    PubMed Central

    Van Acker, Heleen H; Anguille, Sébastien; Van Tendeloo, Viggo F; Lion, Eva

    2015-01-01

    Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists. PMID:26405575

  13. Herpes zoster duplex bilateralis in an immunocompetent adolescent boy: a case report and literature review.

    PubMed

    Yan, Chen; Laguna, Benjamin A; Marlowe, Lauren E; Keller, Michael D; Treat, James R

    2014-01-01

    Simultaneous involvement of herpes zoster in multiple dermatomes is uncommon, and even more so in immunocompetent individuals. We report a case wherein a healthy adolescent boy presented with herpes zoster in two distinct dermatomes, raising concern for immunodeficiency, but he was found to be immunocompetent on further testing. A 14-year-old boy with no significant past medical history developed painless vesicular eruptions in two distinct distributions. Varicella zoster virus polymerase chain reaction was positive from unroofed vesicles in both regions. Initial laboratory studies disclosed abnormalities of unknown significance in natural killer (NK) cell percentage and function. The patient was treated with appropriate antiviral therapy. Repeat studies while healthy were not suggestive of an underlying NK cell defect. There are few case reports describing herpes zoster in two or more dermatomes in children. Previously described presentations most commonly occurred in the context of primary immunodeficiency, acquired immunodeficiency, or immunosuppressive medications. Because of the rarity of this presentation in immunocompetent patients, the authors recommend a thorough immune evaluation of all children presenting with isolated multidermatomal zoster. © 2014 Wiley Periodicals, Inc.

  14. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    PubMed

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression

    PubMed Central

    Santoro, Stephen P.; Kim, Soorin; Motz, Gregory T.; Alatzoglou, Dimitrios; Li, Chunsheng; Irving, Melita; Powell, Daniel J.; Coukos, George

    2014-01-01

    Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of pro-tumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA+ endothelial targets in vitro, regardless of the signaling domain. T cells bearing the 3rd generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA+ vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. PMID:25358763

  16. A Chitin-Like Component on Sclerotic Cells of Fonsecaea pedrosoi Inhibits Dectin-1-Mediated Murine Th17 Development by Masking β-Glucans

    PubMed Central

    Li, Ruoyu; Chen, Sharon C.-A.; Liu, Weihuang; Liu, Wei; Chen, Liuqing; Chen, Yao; Zhang, Xu; Tong, Zhongsheng; Xia, Yun; Xia, Ping; Wang, Yan; Duan, Yiqun

    2014-01-01

    Fonsecaea pedrosoi (F. pedrosoi), a major agent of chromoblastomycosis, has been shown to be recognized primarily by C-type lectin receptors (CLRs) in a murine model of chromoblastomycosis. Specifically, the β-glucan receptor, Dectin-1, mediates Th17 development and consequent recruitment of neutrophils, and is evidenced to have the capacity to bind to saprophytic hyphae of F. pedrosoi in vitro. However, when embedded in tissue, most etiological agents of chromoblastomycosis including F. pedrosoi will transform into the sclerotic cells, which are linked to the greatest survival of melanized fungi in tissue. In this study, using immunocompetent and athymic (nu/nu) murine models infected subcutaneously or intraperitoneally with F. pedrosoi, we demonstrated that T lymphocytes play an active role in the resolution of localized footpad infection, and there existed a significantly decreased expression of Th17-defining transcription factor Rorγt and inefficient recruitment of neutrophils in chronically infected spleen where the inoculated mycelium of F. pedrosoi transformed into the sclerotic cells. We also found that Dectin-1-expressing histocytes and neutrophils participated in the enclosure of transformed sclerotic cells in the infectious foci. Furthermore, we induced the formation of sclerotic cells in vitro, and evidenced a significantly decreased binding capacity of human or murine-derived Dectin-1 to the induced sclerotic cells in comparison with the saprophytic mycelial forms. Our analysis of β-glucans-masking components revealed that it is a chitin-like component, but not the mannose moiety on the sclerotic cells, that interferes with the binding of β-glucans by human or murine Dectin-1. Notably, we demonstrated that although Dectin-1 contributed to the development of IL-17A-producing CD3+CD4+ murine splenocytes upon in vitro-stimulation by saprophytic F. pedrosoi, the masking effect of chitin components partly inhibited Dectin-1-mediated Th17 development

  17. Immunocompetence of breeding females is sensitive to cortisol levels but not to communal rearing in the degu (Octodon degus).

    PubMed

    Ebensperger, Luis A; León, Cecilia; Ramírez-Estrada, Juan; Abades, Sebastian; Hayes, Loren D; Nova, Esteban; Salazar, Fabián; Bhattacharjee, Joydeep; Becker, María Inés

    2015-03-01

    One hypothesis largely examined in social insects is that cooperation in the context of breeding benefits individuals through decreasing the burden of immunocompetence and provide passive immunity through social contact. Similarly, communal rearing in social mammals may benefit adult female members of social groups by reducing the cost of immunocompetence, and through the transfer of immunological compounds during allonursing. Yet, these benefits may come at a cost to breeders in terms of a need to increase investment in individual immunocompetence. We examined how these potential immunocompetence costs and benefits relate to reproductive success and survival in a natural population of the communally rearing rodent, Octodon degus. We related immunocompetence (based on ratios of white blood cell counts, total and specific immunoglobulins of G isotype titers) and fecal glucocorticoid metabolite (FGC) levels of adults immunized with hemocyanin from the mollusk Concholepas concholepas to measures of sociality (group size) and communal rearing (number of breeding females). Offspring immunocompetence was quantified based on circulating levels of the same immune parameters. Neither female nor offspring immunocompetence was influenced by communal rearing or sociality. These findings did not support that communal rearing and sociality enhance the ability of females to respond to immunological challenges during lactation, or contribute to enhance offspring condition (based on immunocompetence) or early survival (i.e., to 3months of age). Instead, levels of humoral and cellular components of immunocompetence were associated with variation in glucorcorticoid levels of females. We hypothesize that this covariation is driven by physiological (life-history) adjustments needed to sustain breeding. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  19. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses.

    PubMed

    Chen, Ping; Hübner, Wolfgang; Spinelli, Matthew A; Chen, Benjamin K

    2007-11-01

    Cell-free human immunodeficiency virus type 1 (HIV-1) can initiate infections, but contact between infected and uninfected T cells can enhance viral spread through intercellular structures called virological synapses (VS). The relative contribution of VS to cell-free viral transfer has not been carefully measured. Using an ultrasensitive, fluorescent virus transfer assay, we estimate that when VS between HIV-expressing Jurkat T cells and primary CD4(+) T cells are formed, cell-associated transfer of virus is 18,000-fold more efficient than uptake of cell-free virus. Furthermore, in contrast to cell-free virus uptake, the VS deposits virus rapidly into focal, trypsin-resistant compartments in target T cells. This massive virus internalization requires Env-CD4 receptor interactions but is resistant to inhibition by patient-derived neutralizing antisera that inhibit homologous cell-free virus. Deleting the Env cytoplasmic tail does not abrogate VS-mediated transfer, but it renders the VS sensitive to neutralizing antibodies, suggesting that the tail limits exposure of VS-neutralizing epitopes on the surface of infected cells. Dynamic live imaging of the VS reveals that HIV-expressing cells are polarized and make sustained, Env-dependent contacts with target cells through uropod-like structures. The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently. Future studies will discern to what extent this massive viral transfer contributes to productive infection or viral dissemination through the migration of virus-carrying T cells.

  20. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    PubMed Central

    Tay, Neil Q.; Lee, Debbie C. P.; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R. J.; Kemeny, David M.

    2017-01-01

    CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses. PMID:29163545

  1. Treating atherosclerosis with regulatory T cells.

    PubMed

    Foks, Amanda C; Lichtman, Andrew H; Kuiper, Johan

    2015-02-01

    Regulatory T cells (Tregs) play an important role in the regulation of T-cell-mediated immune responses through suppression of T-cell proliferation and secretion of inhibitory cytokines, such as interleukin-10 and transforming growth factor-β. Impaired Treg numbers and function have been associated with numerous diseases, and an imbalance between proinflammatory/proatherogenic cells and Tregs promotes atherosclerotic disease. Restoration of this balance by inducing Tregs has great therapeutic potential to prevent cardiovascular disease. In addition to suppressing differentiation and function of effector T cells, Tregs have been shown to induce anti-inflammatory macrophages, inhibit foam cell formation and to influence cholesterol metabolism. Furthermore, Tregs suppress immune responses of endothelial cells and innate lymphoid cells. In this review, we focus on the recent knowledge on Treg subsets, their activity and function in atherosclerosis, and discuss promising strategies to use Tregs as a therapeutic tool to prevent cardiovascular disease. © 2014 American Heart Association, Inc.

  2. Detecting T-cell reactivity to whole cell vaccines

    PubMed Central

    Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.

    2012-01-01

    BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257

  3. Follicular helper T cell in immunity and autoimmunity.

    PubMed

    Mesquita, D; Cruvinel, W M; Resende, L S; Mesquita, F V; Silva, N P; Câmara, N O S; Andrade, L E C

    2016-01-01

    The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  4. Human T-Cell Leukemia Virus Type 1 Tax-Deregulated Autophagy Pathway and c-FLIP Expression Contribute to Resistance against Death Receptor-Mediated Apoptosis

    PubMed Central

    Wang, Weimin; Zhou, Jiansuo; Shi, Juan; Zhang, Yaxi; Liu, Shilian

    2014-01-01

    ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) Tax protein is considered to play a central role in the process that leads to adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 Tax-expressing cells show resistance to apoptosis induced by Fas ligand (FasL) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). The regulation of Tax on the autophagy pathway in HeLa cells and peripheral T cells was recently reported, but the function and underlying molecular mechanism of the Tax-regulated autophagy are not yet well defined. Here, we report that HTLV-1 Tax deregulates the autophagy pathway, which plays a protective role during the death receptor (DR)-mediated apoptosis of human U251 astroglioma cells. The cellular FLICE-inhibitory protein (c-FLIP), which is upregulated by Tax, also contributes to the resistance against DR-mediated apoptosis. Both Tax-induced autophagy and Tax-induced c-FLIP expression require Tax-induced activation of IκB kinases (IKK). Furthermore, Tax-induced c-FLIP expression is regulated through the Tax-IKK-NF-κB signaling pathway, whereas Tax-triggered autophagy depends on the activation of IKK but not the activation of NF-κB. In addition, DR-mediated apoptosis is correlated with the degradation of Tax, which can be facilitated by the inhibitors of autophagy. IMPORTANCE Our study reveals that Tax-deregulated autophagy is a protective mechanism for DR-mediated apoptosis. The molecular mechanism of Tax-induced autophagy is also illuminated, which is different from Tax-increased c-FLIP. Tax can be degraded via manipulation of autophagy and TRAIL-induced apoptosis. These results outline a complex regulatory network between and among apoptosis, autophagy, and Tax and also present evidence that autophagy represents a new possible target for therapeutic intervention for the HTVL-1 related diseases. PMID:24352466

  5. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections

    PubMed Central

    Panagioti, Eleni; Klenerman, Paul; Lee, Lian N.; van der Burg, Sjoerd H.; Arens, Ramon

    2018-01-01

    For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines. PMID:29503649

  6. The relationship of autoantibodies to depression of cell-mediated immunity in infectious mononucleosis.

    PubMed Central

    Russell, A S; Percy, J S; Grace, M

    1975-01-01

    It has been postulated that autoantibody formation occurs as a consequence of a depression of function of certain thymus-derived lymphocytes (T cells). We have examined cell-mediated immunity, a T-cell function, in infectious mononucleosis, a condition in which autoantibodies are known to develop. We have shown some evidence of depressed cell-mediated immunity in patients with infectious mononucleosis but have been unable to correlate this with autoantibody production. These results do not support the hypothesis that depression of T-cell function leads to autoantibody formation. PMID:1081930

  7. The activating receptor NKG2D of natural killer cells promotes resistance against enterovirus-mediated inflammatory cardiomyopathy.

    PubMed

    Klingel, Karin; Fabritius, Cornelia; Sauter, Martina; Göldner, Katrin; Stauch, Diana; Kandolf, Reinhard; Ettischer, Nicole; Gahlen, Sabine; Schönberger, Tanja; Ebner, Susanne; Makrigiannis, Andrew P; Bélanger, Simon; Diefenbach, Andreas; Polić, Bojan; Pratschke, Johann; Kotsch, Katja

    2014-10-01

    In enterovirus-induced cardiomyopathy, information regarding the detailed impact of natural killer (NK) cells on the outcome of the disease is limited. We therefore hypothesized that NK cells and certain NK cell receptors determine the different outcome of coxsackievirus B3 (CVB3) myocarditis. Here, we demonstrate in murine models that resistance to chronic CVB3 myocarditis in immunocompetent C57BL/6 mice is characterized by significantly more mature CD11b(high) NK cells, the presence of NKG2D on NK cells, and enhanced NKG2D-dependent cytotoxicity compared to CVB3-susceptible A.BY/SnJ mice. The highly protective role of NKG2D in myocarditis was further proven by in vivo neutralization of NKG2D as well as in NKG2D-deficient mice but was shown to be independent of CD8(+) T-cell-dependent immunity. Moreover, the adoptive transfer of immunocompetent C57BL/6 NK cells pre- (day -1) as well as post-infectionem (day +2) displayed the potential to prevent permissive A.BY/SnJ mice from a progressive outcome of CVB3 myocarditis reflected by significantly improved cardiopathology and heart function. Altogether, our results provide firm evidence for a protective role of NKG2D-activated NK cells in CVB3 myocarditis leading to an effective virus clearance, thus offering novel therapeutic options in the treatment of virus-induced myocarditis. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. The molecular bases of δ/αβ T cell-mediated antigen recognition.

    PubMed

    Pellicci, Daniel G; Uldrich, Adam P; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B G; de Boer, Renate; Lim, Ricky T; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H M; Gras, Stephanie; Rossjohn, Jamie; Godfrey, Dale I

    2014-12-15

    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1(+) human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. © 2014 Pellicci et al.

  9. Elevated expression of CX3C chemokine receptor 1 mediates recruitment of T cells into bone marrow of patients with acquired aplastic anaemia.

    PubMed

    Ren, J; Hou, X Y; Ma, S H; Zhang, F K; Zhen, J H; Sun, L; Sun, Y X; Hao, Y L; Cheng, Y F; Hou, M; Xu, C G; Zhang, M H; Peng, J

    2014-11-01

    Acquired aplastic anaemia (AA) is a T-cell-mediated, organ-specific autoimmune disease characterized by haematopoietic stem cell destruction in the bone marrow. The exact molecular mechanism of T-cell trafficking into the bone marrow is unclear in AA. Very late activation antigen-4 (VLA-4) and CX3C chemokine receptor 1 (CX3CR1) play active roles in many autoimmune diseases. Therefore, we investigated whether VLA-4 and CX3CR1 also contribute to T-cell migration into the bone marrow in acquired AA. Expression levels of CX3CR1 and VLA-4 and their ligands [fractalkine (CX3CL1) and vascular cell adhesion molecule-1 (VCAM-1)] were examined in 63 patients with AA and 21 healthy control subjects. T-cell chemotaxis and adhesion were analysed in 17 patients with severe AA. We also prospectively evaluated the expression pattern of CX3CR1 during treatment with antithymocyte globulin plus cyclosporine in 11 patients with severe AA. The proportion of peripheral and bone marrow CD4(+) and CD8(+) T cells expressing CX3CR1 and the level of CX3CL1 was increased in patients with AA. However, there was no significant difference in VLA-4 expression or VCAM-1 levels. Functional studies demonstrated that chemotaxis towards autologous bone marrow plasma or soluble CX3CL1 was significantly higher in T cells from AA patients and could be blocked by CX3CR1 inhibitors. CX3CR1-mediated T-cell adhesion was also upregulated in these patients. The expression of CX3CR1 was associated with the efficacy of immunosuppressive therapy. The present findings demonstrate that CX3CR1 plays a pivotal role in recruitment of T cells into the bone marrow in acquired AA and is a potential therapeutic target for treatment of this disorder. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  10. A Marked Reduction in Priming of Cytotoxic CD8+ T Cells Mediated by Stress-Induced Glucocorticoids Involves Multiple Deficiencies in Cross-Presentation by Dendritic Cells

    PubMed Central

    Hunzeker, John T.; Elftman, Michael D.; Mellinger, Jennifer C.; Princiotta, Michael F.; Bonneau, Robert H.; Truckenmiller, Mary E.; Norbury, Christopher C.

    2013-01-01

    Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8+ T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8+ T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA257–264-specific T cells. Using a murine model of psychological stress and OVA-loaded β2-microglobulin knockout “donor” cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b−CD24+CD8α+ DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b−CD24+CD8α− DC precursors were increased, suggesting a block in development of CD8α+ DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice. PMID:21098225

  11. Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.

    PubMed Central

    Nash, G S; Niedt, G W; MacDermott, R P

    1980-01-01

    Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881

  12. Merkel cell polyomavirus in Merkel cell carcinogenesis: small T antigen-mediates c-Jun phosphorylation.

    PubMed

    Wu, Julie H; Simonette, Rebecca A; Nguyen, Harrison P; Rady, Peter L; Tyring, Stephen K

    2016-06-01

    Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer associated with the Merkel cell polyomavirus (MCPyV). The MCPyV genome, which is clonally integrated in the majority of MCCs, encodes the regulatory small T (sT) antigen. Previously, reports have established MCPyV sT antigen as a potent oncogene capable of inducing cell transformation. In the current study, we demonstrate a distinct role for c-Jun hyperactivation in MCPyV sT antigen pathogenesis. As MCPyV sT antigen's association with aggressive cancer growth has been previously established, this finding may represent a potential therapeutic target for the treatment of MCCs.

  13. Testicular toxoplasmosis in a 26-year-old immunocompetent man.

    PubMed

    Wong, Vincent; Amarasekera, Channa; Kundu, Shilajit

    2018-06-04

    Testicular toxoplasmosis is a very rare presentation of Toxoplasma gondii A 26-year-old immunocompetent man presented to us with right testicular pain and a right epididymal mass. Ultrasound was concerning for malignancy and a radical orchiectomy was performed. Surgical pathology revealed chronic granulomatous inflammation which stained positive for T. gondii . © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. The HLA-A2 Restricted T Cell Epitope HCV Core35–44 Stabilizes HLA-E Expression and Inhibits Cytolysis Mediated by Natural Killer Cells

    PubMed Central

    Nattermann, Jacob; Nischalke, Hans Dieter; Hofmeister, Valeska; Ahlenstiel, Golo; Zimmermann, Henning; Leifeld, Ludger; Weiss, Elisabeth H.; Sauerbruch, Tilman; Spengler, Ulrich

    2005-01-01

    Impaired activity of natural killer cells has been proposed as a mechanism contributing to viral persistence in hepatitis C virus (HCV) infection. Natural cytotoxicity is regulated by interactions of HLA-E with inhibitory CD94/NKG2A receptors on natural killer (NK) cells. Here, we studied whether HCV core encodes peptides that bind to HLA-E and inhibit natural cytotoxicity. We analyzed 30 HCV core-derived peptides. Peptide-induced stabilization of HLA-E expression was measured flow cytometrically after incubating HLA-E-transfected cells with peptides. NK cell function was studied with a 51chromium-release-assay. Intrahepatic HLA-E expression was analyzed by an indirect immunoperoxidase technique and flow cytometry of isolated cells using a HLA-E-specific antibody. We identified peptide aa35–44, a well-characterized HLA-A2 restricted T cell epitope, as a peptide stabilizing HLA-E expression and thereby inhibiting NK cell-mediated lysis. Blocking experiments confirmed that this inhibitory effect of peptide aa35–44 on natural cytotoxicity was mediated via interactions between CD94/NKG2A receptors and enhanced HLA-E expression. In line with these in vitro data we found enhanced intrahepatic HLA-E expression on antigen-presenting cells in HCV-infected patients. Our data indicate the existence of T cell epitopes that can be recognized by HLA-A2 and HLA-E. This dual recognition may contribute to viral persistence in hepatitis C. PMID:15681828

  15. Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-02-01

    The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.

  16. Severe polymyositis due to Toxoplasma gondii in an adult immunocompetent patient: a case report and review of the literature.

    PubMed

    Cuomo, G; D'Abrosca, V; Rizzo, V; Nardiello, S; La Montagna, G; Gaeta, G B; Valentini, G

    2013-08-01

    Toxoplasmosis, a worldwide zoonosis caused by a coccidian parasite Toxoplasma gondii, is more often asymptomatic in immunocompetent patients. We report the case of a 38-year-old immunocompetent male with a polymyositis as the presenting manifestation of T. gondii infection. The patient was hospitalized for a 30-day history of fever (T max 39.5°C), muscle pain, and progressive weakness of the muscles. A diagnosis of polymyositis was made, and he was started on corticosteroid treatment, which caused no reduction of symptoms. After finding a positive polymerase chain reaction (PCR) assay for T. gondii, together with additional clinical findings, a diagnosis of acute toxoplasmosis was made. Specific treatment with pyrimethamine and sulfadiazine was started, with a progressive reduction of symptoms and normalization of laboratory tests.

  17. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    PubMed

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  18. The effect of dehydroglyasperin C on UVB-mediated MMPs expression in human HaCaT cells.

    PubMed

    Xuan, Song Hua; Park, Young Min; Ha, Ji Hoon; Jeong, Yoon Ju; Park, Soo Nam

    2017-12-01

    The ultraviolet B (UVB) from solar radiation increases the generation of reactive oxygen species (ROS), which mediate the production of matrix metalloproteinases (MMPs), and acts mainly on the epidermis layer of the skin. This study was aimed at assessing the anti-photoaging effects of dehydroglyasperin C isolated from Glycyrrhiza uralensis Fisch on MMPs levels in HaCaT human keratinocytes and to elucidate the underlying mechanism. The cell viability was measured by MTT assay. Expression, phosphorylation and enzymatic activity of the protein were examined using ELISA, Western blot or gelatin zymography. Intracellular ROS measurement was evaluated by fluorescent ELISA and 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCF-DA) assay. In the present study, we found that dehydroglyasperin C markedly inhibited UVB-mediated expression of collagenase (MMP-1) and gelatinase (MMP-9) by inhibiting ROS generation. Dehydroglyasperin C treatment also decreased the UVB irradiation-mediated activation of mitogen-activated protein kinase (MAPK), c-Jun phosphorylation, and c-Fos expression. In addition, the down-regulation of UVB-induced c-Jun phosphorylation caused by dehydroglyasperin C treatment was more than the down-regulation of c-Fos expression in the HaCaT human keratinocytes. Our results indicated that dehydroglyasperin C may function as a potential anti-photoaging agent by inhibiting UVB-mediated MMPs expression via suppression of MAPK and AP-1 signaling. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8+CD28− regulatory T cells

    PubMed Central

    Liu, Qiuli; Zheng, Haiqing; Chen, Xiaoyong; Peng, Yanwen; Huang, Weijun; Li, Xiaobo; Li, Gang; Xia, Wenjie; Sun, Qiquan; Xiang, Andy Peng

    2015-01-01

    One important aspect of mesenchymal stromal cells (MSCs)-mediated immunomodulation is the recruitment and induction of regulatory T (Treg) cells. However, we do not yet know whether MSCs have similar effects on the other subsets of Treg cells. Herein, we studied the effects of MSCs on CD8+CD28− Treg cells and found that the MSCs could not only increase the proportion of CD8+CD28− T cells, but also enhance CD8+CD28−T cells' ability of hampering naive CD4+ T-cell proliferation and activation, decreasing the production of IFN-γ by activated CD4+ T cells and inducing the apoptosis of activated CD4+ T cells. Mechanistically, the MSCs affected the functions of the CD8+CD28− T cells partially through moderate upregulating the expression of IL-10 and FasL. The MSCs had no distinct effect on the shift from CD8+CD28+ T cells to CD8+CD28− T cells, but did increase the proportion of CD8+CD28− T cells by reducing their rate of apoptosis. In summary, this study shows that MSCs can enhance the regulatory function of CD8+CD28− Treg cells, shedding new light on MSCs-mediated immune regulation. PMID:25482073

  20. Interruption of the Sequential Release of Small and Large Molecules from Tumor Cells by Low Temperature During Cytolysis Mediated by Immune T-Cells or Complement

    PubMed Central

    Martz, Eric; Burakoff, Steven J.; Benacerraf, Baruj

    1974-01-01

    Specific lysis of tumor cells by thymus-derived lymphocytes from alloimmunized mice (T-effector specific lysis) was studied with target cells labeled with isotopes attached to both small (14C-labeled nicotinamide) and large (51Cr-labeled) molecules. The results confirm and extend previous reports that target cells release small molecules considerably earlier than large molecules during T-effector specific lysis. After interruption of T-effector specific lysis by specific antibody and complement directed against the killer cells, or by ethylenediaminetetraacetic acid, release of both isotopes continued, eventually reaching identical levels of specific release, the value of which represents the fraction of the target cell population which had been committed to die at the time these treatments were applied. On the other hand, release of both isotopes during T-effector specific lysis stops immediately when the cultures are cooled to 0°. Thus, while ethylenediaminetetraacetic acid or specific complement-mediated lysis of the killer cells merely prevents the initiation of any new damage to target cells, cooling to 0° also stops the lytic process in already-damaged target cells. The colloid osmotic phase of target cell lysis induced by specific antibody and complement was similarly stopped at 0° in tumor cells, but not in erythrocytes. Thus, in tumor target cells, both T-effector specific lysis and complement cause a sequential release of progressively larger molecules which can be immediately stopped at any point by cooling to 0°. PMID:4359327

  1. Cyclosporine-resistant, Rab27a-independent Mobilization of Intracellular Preformed CD40L Mediates Antigen-specific T Cell Help In Vitro

    PubMed Central

    Koguchi, Yoshinobu; Gardell, Jennifer L.; Thauland, Timothy J.; Parker, David C.

    2011-01-01

    CD40L is critically important for the initiation and maintenance of adaptive immune responses. It is generally thought that CD40L expression in CD4+ T cells is regulated transcriptionally and made from new mRNA following antigen recognition. However, recent studies with two-photon microscopy revealed that the majority of cognate interactions between effector CD4+ T cells and APCs are too short for de novo synthesis of CD40L. Given that effector and memory CD4+ T cells store preformed CD40L (pCD40L) in lysosomal compartments and that pCD40L comes to the cell surface within minutes of antigenic stimulation, we and others have proposed that pCD40L might mediate T cell-dependent activation of cognate APCs during brief encounters in vivo. However, it has not been shown that this relatively small amount of pCD40L is sufficient to activate APCs, owing to the difficulty of separating the effects of pCD40L from those of de novo CD40L and other cytokines in vitro. Here we show that pCD40L surface mobilization is resistant to cyclosporine or FK506 treatment, while de novo CD40L and cytokine expression are completely inhibited. These drugs thus provide a tool to dissect the role of pCD40L in APC activation. We find that pCD40L mediates selective activation of cognate but not bystander APCs in vitro and that mobilization of pCD40L does not depend on Rab27a, which is required for mobilization of lytic granules. Therefore, effector CD4+ T cells deliver pCD40L specifically to APCs on the same time scale as the lethal hit of CTLs but with distinct molecular machinery. PMID:21677130

  2. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    PubMed

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  3. The ubiquitin ligase Cbl-b limits Pseudomonas aeruginosa exotoxin T-mediated virulence.

    PubMed

    Balachandran, Priya; Dragone, Leonard; Garrity-Ryan, Lynne; Lemus, Armando; Weiss, Arthur; Engel, Joanne

    2007-02-01

    Pseudomonas aeruginosa, an important cause of opportunistic infections in humans, delivers bacterial cytotoxins by type III secretion directly into the host cell cytoplasm, resulting in disruption of host cell signaling and host innate immunity. However, little is known about the fate of the toxins themselves following injection into the host cytosol. Here, we show by both in vitro and in vivo studies that the host ubiquitin ligase Cbl-b interacts with the type III-secreted effector exotoxin T (ExoT) and plays a key role in vivo in limiting bacterial dissemination mediated by ExoT. We demonstrate that, following polyubiquitination, ExoT undergoes regulated proteasomal degradation in the host cell cytosol. ExoT interacts with the E3 ubiquitin ligase Cbl-b and Crk, the substrate for the ExoT ADP ribosyltransferase (ADPRT) domain. The efficiency of degradation is dependent upon the activity of the ADPRT domain. In mouse models of acute pneumonia and systemic infection, Cbl-b is specifically required to limit the dissemination of ExoT-producing bacteria whereas c-Cbl plays no detectable role. To the best of our knowledge, this represents the first identification of a mammalian gene product that is specifically required for in vivo resistance to disease mediated by a type III-secreted effector.

  4. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling

    PubMed Central

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-01-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334

  5. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling.

    PubMed

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-09-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.

  6. CD8(+) T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types.

    PubMed

    Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark

    2015-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people.

  7. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax.

    PubMed

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-12-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion-induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax

    PubMed Central

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion–induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. PMID:25175936

  9. Do pheromones reveal male immunocompetence?

    PubMed Central

    Rantala, Markus J; Jokinen, Ilmari; Kortet, Raine; Vainikka, Anssi; Suhonen, Jukka

    2002-01-01

    Pheromones function not only as mate attractors, but they may also relay important information to prospective mates. It has been shown that vertebrates can distinguish, via olfactory mechanisms, major histocompatibility complex types in their prospective mates. However, whether pheromones can transmit information about immunocompetence is unknown. Here, we show that female mealworm beetles (Tenebrio molitor) prefer pheromones from males with better immunocompetence, indicated by a faster encapsulation rate against a novel antigen, and higher levels of phenoloxidase in haemolymph. Thus, the present study indicates that pheromones could transmit information about males' parasite resistance ability and may work as a reliable sexual ornament for female choice. PMID:12204128

  10. T lymphocyte mediated lysis of mitomycin C treated Tenon’s capsule fibroblasts

    PubMed Central

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-01-01

    Aims: To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon’s capsule fibroblasts. Methods: IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. Results: T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). Conclusion: T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically. PMID:14977777

  11. Protein S is inducible by interleukin 4 in T cells and inhibits lymphoid cell procoagulant activity

    PubMed Central

    Smiley, Stephen T.; Boyer, Sarah N.; Heeb, Mary J.; Griffin, John H.; Grusby, Michael J.

    1997-01-01

    Extravascular procoagulant activity often accompanies cell-mediated immune responses and systemic administration of pharmacologic anticoagulants prevents cell-mediated delayed-type hypersensitivity reactions. These observations suggest a direct association between coagulation and cell-mediated immunity. The cytokine interleukin (IL)-4 potently suppresses cell-mediated immune responses, but its mechanism of action remains to be determined. Herein we demonstrate that the physiologic anticoagulant protein S is IL-4-inducible in primary T cells. Although protein S was known to inhibit the classic factor Va-dependent prothrombinase assembled by endothelial cells and platelets, we found that protein S also inhibits the factor Va-independent prothrombinase assembled by lymphoid cells. Thus, protein S-mediated down-regulation of lymphoid cell procoagulant activity may be one mechanism by which IL-4 antagonizes cell-mediated immunity. PMID:9326636

  12. Integrated Assessment of Diclofenac Biotransformation, Pharmacokinetics, and Omics-Based Toxicity in a Three-Dimensional Human Liver-Immunocompetent Coculture System

    PubMed Central

    Ravindra, Kodihalli C.; Large, Emma; Young, Carissa L.; Rivera-Burgos, Dinelia; Yu, Jiajie; Cirit, Murat; Hughes, David J.; Wishnok, John S.; Lauffenburger, Douglas A.; Griffith, Linda G.

    2017-01-01

    In vitro hepatocyte culture systems have inherent limitations in capturing known human drug toxicities that arise from complex immune responses. Therefore, we established and characterized a liver immunocompetent coculture model and evaluated diclofenac (DCF) metabolic profiles, in vitro–in vivo clearance correlations, toxicological responses, and acute phase responses using liquid chromatography–tandem mass spectrometry. DCF biotransformation was assessed after 48 hours of culture, and the major phase I and II metabolites were similar to the in vivo DCF metabolism profile in humans. Further characterization of secreted bile acids in the medium revealed that a glycine-conjugated bile acid was a sensitive marker of dose-dependent toxicity in this three-dimensional liver microphysiological system. Protein markers were significantly elevated in the culture medium at high micromolar doses of DCF, which were also observed previously for acute drug-induced toxicity in humans. In this immunocompetent model, lipopolysaccharide treatment evoked an inflammatory response that resulted in a marked increase in the overall number of acute phase proteins. Kupffer cell–mediated cytokine release recapitulated an in vivo proinflammatory response exemplified by a cohort of 11 cytokines that were differentially regulated after lipopolysaccharide induction, including interleukin (IL)-1β, IL-1Ra, IL-6, IL-8, IP-10, tumor necrosis factor-α, RANTES (regulated on activation normal T cell expressed and secreted), granulocyte colony-stimulating factor, macrophage colony-stimulating factor, macrophage inflammatory protein-1β, and IL-5. In summary, our findings indicate that three-dimensional liver microphysiological systems may serve as preclinical investigational platforms from the perspective of the discovery of a set of clinically relevant biomarkers including potential reactive metabolites, endogenous bile acids, excreted proteins, and cytokines to predict early drug

  13. Monocyte:T cell interaction regulates human T cell activation through a CD28/CD46 crosstalk

    PubMed Central

    Charron, Lauren; Doctrinal, Axelle; Choileain, Siobhan Ni; Astier, Anne L.

    2015-01-01

    T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation. PMID:25787182

  14. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma.

    PubMed

    Day, Yuan-Ji; Huang, Liping; Ye, Hong; Li, Li; Linden, Joel; Okusa, Mark D

    2006-03-01

    A(2A) adenosine receptor (A(2A)R)-expressing bone marrow (BM)-derived cells contribute to the renal protective effect of A(2A) agonists in renal ischemia-reperfusion injury (IRI). We performed IRI in mice lacking T and B cells to determine whether A(2A)R expressed in CD4+ cells mediate protection from IRI. Rag-1 knockout (KO) mice were protected in comparison to wild-type (WT) mice when subjected to IRI. ATL146e, a selective A(2A) agonist, did not confer additional protection. IFN-gamma is an important early signal in IRI and is thought to contribute to reperfusion injury. Because IFN-gamma is produced by kidney cells and T cells we performed IRI in BM chimeras in which the BM of WT mice was reconstituted with BM from IFN-gamma KO mice (IFN-gamma KO-->WT chimera). We observed marked reduction in IRI in comparison to WT-->WT chimeras providing additional indirect support for the role of T cells. To confirm the role of CD4+ A(2A)R in mediating protection from IRI, Rag-1 KO mice were subjected to ischemia-reperfusion. The protection observed in Rag-1 KO mice was reversed in Rag-1 KO mice that were adoptively transferred WT CD4+ cells (WT CD4+-->Rag-1 KO) or A(2A) KO CD4+ cells (A(2A) KO CD4+-->Rag-1 KO). ATL146e reduced injury in WT CD4+-->Rag-1 KO mice but not in A(2A) KO CD4+-->Rag-1 KO mice. Rag-1 KO mice reconstituted with CD4+ cells derived from IFN-gamma KO mice (IFN-gamma CD4+-->Rag-1 KO) were protected from IRI; ATL146e conferred no additional protection. These studies demonstrate that CD4+ IFN-gamma contributes to IRI and that A(2A) agonists mediate protection from IRI through action on CD4+ cells.

  15. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.

    PubMed

    Curiel, Tyler J; Coukos, George; Zou, Linhua; Alvarez, Xavier; Cheng, Pui; Mottram, Peter; Evdemon-Hogan, Melina; Conejo-Garcia, Jose R; Zhang, Lin; Burow, Matthew; Zhu, Yun; Wei, Shuang; Kryczek, Ilona; Daniel, Ben; Gordon, Alan; Myers, Leann; Lackner, Andrew; Disis, Mary L; Knutson, Keith L; Chen, Lieping; Zou, Weiping

    2004-09-01

    Regulatory T (T(reg)) cells mediate homeostatic peripheral tolerance by suppressing autoreactive T cells. Failure of host antitumor immunity may be caused by exaggerated suppression of tumor-associated antigen-reactive lymphocytes mediated by T(reg) cells; however, definitive evidence that T(reg) cells have an immunopathological role in human cancer is lacking. Here we show, in detailed studies of CD4(+)CD25(+)FOXP3(+) T(reg) cells in 104 individuals affected with ovarian carcinoma, that human tumor T(reg) cells suppress tumor-specific T cell immunity and contribute to growth of human tumors in vivo. We also show that tumor T(reg) cells are associated with a high death hazard and reduced survival. Human T(reg) cells preferentially move to and accumulate in tumors and ascites, but rarely enter draining lymph nodes in later cancer stages. Tumor cells and microenvironmental macrophages produce the chemokine CCL22, which mediates trafficking of T(reg) cells to the tumor. This specific recruitment of T(reg) cells represents a mechanism by which tumors may foster immune privilege. Thus, blocking T(reg) cell migration or function may help to defeat human cancer.

  16. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy

    PubMed Central

    Chen, Can; Tan, Wee-Kiat; Chi, Zhixia; Xu, Xue-Hu; Wang, Shu

    2016-01-01

    Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer. PMID:27598655

  17. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression.

    PubMed

    Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S; Li, Wanda Y; Dominguez, Carmen; Sylvester, Jennifer; Su, Yu-Wen; Lin, Gloria H Y; Snow, Bryan E; Brenner, Dirk; You-Ten, Annick; Haight, Jillian; Inoue, Satoshi; Wakeham, Andrew; Elford, Alisha; Hamilton, Sara; Liang, Yi; Zúñiga-Pflücker, Juan C; He, Housheng Hansen; Ohashi, Pamela S; Mak, Tak W

    2017-01-13

    T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.

  18. Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly(lactic acid)-Poly(ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells.

    PubMed

    Dixit, Saurabh; Sahu, Rajnish; Verma, Richa; Duncan, Skyla; Giambartolomei, Guillermo H; Singh, Shree R; Dennis, Vida A

    2018-03-01

    We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3 + lymphoproliferation, CD3 + CD4 + IFN-γ-secreting cells along with CD3 + CD4 + memory (CD44 high and CD62L high ) and effector (CD44 high and CD62L low ) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4 + T cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy.

    PubMed

    Martino, David; Joo, Jihoon E; Sexton-Oates, Alexandra; Dang, Thanh; Allen, Katrina; Saffery, Richard; Prescott, Susan

    2014-07-01

    Food allergy is mediated by a combination of genetic and environmental risk factors, potentially mediated by epigenetic mechanisms. CD4+ T-cells are key drivers of the allergic response, and may therefore harbor epigenetic variation in association with the disease phenotype. Here we retrospectively examined genome-wide DNA methylation profiles (~450,000 CpGs) from CD4+ T-cells on a birth cohort of 12 children with IgE-mediated food allergy diagnosed at 12-months, and 12 non-allergic controls. DNA samples were available at two time points, birth and 12-months. control comparisons of CD4+ methylation profiles identified 179 differentially methylated probes (DMP) at 12-months and 136 DMP at birth (FDR-adjusted P value<0.05, delta β>0.1). Approximately 30% of DMPs were coincident with previously annotated SNPs. A total of 92 [corrected] allergy-associated non-SNP DMPs were present at birth when individuals were initially disease-free, potentially implicating these loci in the causal pathway. Pathway analysis of differentially methylated genes identified several MAP kinase signaling molecules. Mass spectrometry was used to validate 15 CpG sites at 3 candidate genes. Combined analysis of differential methylation with gene expression profiles revealed gene expression differences at some but not all allergy associated differentially methylated genes. Thus, dysregulation of DNA methylation at MAPK signaling-associated genes during early CD4+ T-cell development may contribute to suboptimal T-lymphocyte responses in early childhood associated with the development of food allergy.

  20. Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors

    PubMed Central

    Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya

    2013-01-01

    Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112

  1. Rethinking the role of myeloid-derived suppressor cells in adoptive T-cell therapy for cancer

    PubMed Central

    Arina, Ainhoa

    2014-01-01

    The expansion of cancer-induced myeloid cells is thought to be one of the main obstacles to successful immunotherapy. Nevertheless, in murine tumors undergoing immune-mediated destruction by adoptively transferred T cells, we have recently shown that such cells maintain their immunosuppressive properties. Therefore, adoptive T-cell therapy can, under certain conditions, overcome myeloid cell immunosuppression. PMID:25050213

  2. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    PubMed

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  3. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions*

    PubMed Central

    Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M.; Barron, Luke; Qualls, Joseph E.; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O.; Wynn, Thomas A.; Murray, Peter J.

    2017-01-01

    Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. PMID:27903651

  4. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray.

    PubMed

    Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania

    2015-06-01

    Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells.

  5. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis

    PubMed Central

    Latta, Markus; Mohan, Karkada; Issekutz, Thomas B

    2007-01-01

    Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4–6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6+ T cells to 35–50% and anti-T-cell receptor (TCR) activation to 60–80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6+ T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6+ in virus-induced peritoneal exudates (∼47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6+, whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6+, but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge. PMID:17437534

  6. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis.

    PubMed

    Latta, Markus; Mohan, Karkada; Issekutz, Thomas B

    2007-08-01

    Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4-6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6(+) T cells to 35-50% and anti-T-cell receptor (TCR) activation to 60-80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6(+) T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6(+) in virus-induced peritoneal exudates (approximately 47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6(+), whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6(+), but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge.

  7. Interleukin-7 induces HIV replication in primary naive T cells through a nuclear factor of activated T cell (NFAT)-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Managlia, Elizabeth Z.; Landay, Alan; Al-Harthi, Lena

    2006-07-05

    Interleukin (IL)-7 plays several roles critical to T cell maturation, survival, and homeostasis. Because of these functions, IL-7 is under investigation as an immune-modulator for therapeutic use in lymphopenic clinical conditions, including HIV. We reported that naive T cells, typically not permissive to HIV, can be productively infected when pre-treated with IL-7. We evaluated the mechanism by which IL-7-mediates this effect. IL-7 potently up-regulated the transcriptional factor NFAT, but had no effect on NF{kappa}B. Blocking NFAT activity using a number of reagents, such as Cyclosporin A, FK-506, or the NFAT-specific inhibitor known as VIVIT peptide, all markedly reduced IL-7-mediated inductionmore » of HIV replication in naive T cells. Additional neutralization of cytokines present in IL-7-treated cultures and/or those that have NFAT-binding sequences within their promotors indicated that IL-10, IL-4, and most significantly IFN{gamma}, all contribute to IL-7-induction of HIV productive replication in naive T cells. These data clarify the mechanism by which IL-7 can overcome the block to HIV productive infection in naive T cells, despite their quiescent cell status. These findings are relevant to the treatment of HIV disease and understanding HIV pathogenesis in the naive CD4+ T cell compartment, especially in light of the vigorous pursuit of IL-7 as an in vivo immune modulator.« less

  8. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects

    PubMed Central

    Sylwester, Andrew W.; Mitchell, Bridget L.; Edgar, John B.; Taormina, Cara; Pelte, Christian; Ruchti, Franziska; Sleath, Paul R.; Grabstein, Kenneth H.; Hosken, Nancy A.; Kern, Florian; Nelson, Jay A.; Picker, Louis J.

    2005-01-01

    Human cytomegalovirus (HCMV) infections of immunocompetent hosts are characterized by a dynamic, life-long interaction in which host immune responses, particularly of T cells, restrain viral replication and prevent disease but do not eliminate the virus or preclude transmission. Because HCMV is among the largest and most complex of known viruses, the T cell resources committed to maintaining this balance have never been characterized completely. Here, using cytokine flow cytometry and 13,687 overlapping 15mer peptides comprising 213 HCMV open reading frames (ORFs), we found that 151 HCMV ORFs were immunogenic for CD4+ and/or CD8+ T cells, and that ORF immunogenicity was influenced only modestly by ORF expression kinetics and function. We further documented that total HCMV-specific T cell responses in seropositive subjects were enormous, comprising on average ∼10% of both the CD4+ and CD8+ memory compartments in blood, whereas cross-reactive recognition of HCMV proteins in seronegative individuals was limited to CD8+ T cells and was rare. These data provide the first glimpse of the total human T cell response to a complex infectious agent and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans. PMID:16147978

  9. Diversity in T cell memory: An embarrassment of riches

    PubMed Central

    Jameson, Stephen C.; Masopust, David

    2010-01-01

    The adaptive immune response meets the needs of the organism to generate effector cells capable of controlling pathogens, but also leads to production of memory cells, which mediate more effective protection during rechallenge. In this review we focus on the generation, maintenance and function of memory T cells, with a special emphasis on the increasing evidence for great diversity among functional memory T cell subsets. PMID:20064446

  10. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation.

    PubMed

    Fink, Lisbeth N; Zeuthen, Louise H; Ferlazzo, Guido; Frøkiaer, Hanne

    2007-12-01

    The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However, in vitro assessment of the immunomodulatory effects of distinct strains may depend strongly on the cell type used as a model. To select the most appropriate model for screening of beneficial bacteria in human cells, the response to strains of intestinal bacteria of three types of antigen-presenting cells (APC) was compared; blood myeloid dendritic cells (DC), monocyte-derived DC and monocytes, and the effector response of natural killer cells and naïve T cells was characterized. Maturation induced by gut-derived bacteria differed between APC, with blood DC and monocytes responding with the production of IL-6 and tumour necrosis factor-alpha to bacteria, which elicited mainly IL-10 in monocyte-derived DC. In contrast, comparable IFN-gamma production patterns were found in both natural killer cells and T cells induced by all bacteria-matured APC. An inhibitory effect of certain strains on this IFN-gamma production was also mediated by all types of APC. The most potent responses were induced by monocyte-derived DC, which thus constitute a sensitive screening model.

  11. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma

    PubMed Central

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A.; Chen, Benjamin J.

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management. PMID:24955327

  12. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma.

    PubMed

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A; Chen, Benjamin J

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management.

  13. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer.

    PubMed

    Su, Shu; Zou, Zhengyun; Chen, Fangjun; Ding, Naiqing; Du, Juan; Shao, Jie; Li, Lin; Fu, Yao; Hu, Bian; Yang, Yang; Sha, Huizi; Meng, Fanyan; Wei, Jia; Huang, Xingxu; Liu, Baorui

    2017-01-01

    The successful use of immune cell checkpoint inhibitors PD-1 and PD-L1, over the past 5 y has raised the concern of using immunotherapy to treat various cancers. Epstein-Barr virus-associated gastric cancer (EBVaGC) exhibits high infiltration of lymphocytes and high amplification of immune-related genes including PD-L1 as distinguished from Epstein-Barr virus-non-associated gastric cancer (EBVnGC). Here, we presume that this PD-1/PD-L1 pathway may hinder the efficacy of adoptive T cell therapy toward EBVaGC. These studies reveal possibility of generating PD-1-disrupted CTL by CRISPR-Cas9 system and demonstrate enhanced immune response of these PD-1-disrupted CTLs to the EBV-LMP2A antigen and superior cytotoxicity to the EBV-positive gastric cancer cell. In addition, when combined with low-dose radiotherapy, these PD-1-disrupted CTLs mediated an impressive antitumor effect in a xenograft mouse model of EBVaGC. Taken together, these studies illustrate PD-1/PD-L1-mediated immune tolerance of EBVaGC and provide a new strategy for targeting immune checkpoints to break the tolerance for the T cell-based adoptive therapy.

  14. CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8 + T cells aid progression of environment-linked nonalcoholic steatohepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seth, Ratanesh Kumar; Das, Suvarthi; Kumar, Ashutosh

    2014-01-01

    Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radicalmore » formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8 + CD57 + cytotoxic T cells but not CD4 + CD57 + cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1β, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8 + CD57 + T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH. - Highlights: • Metabolic oxidative stress caused increased levels of hepatic CD57 expression. • CD8+ CD57+ cytotoxic T cells were decreased in mice lacking CYP2E1 and leptin. • There was a significant increase in T cell cytokines in toxin-treated mice. • Apoptosis was significantly lower in leptin and

  15. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    PubMed

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  16. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab

    PubMed Central

    Fujii, Rika; Friedman, Eitan R.; Richards, Jacob; Tsang, Kwong Y.; Heery, Christopher R.; Schlom, Jeffrey; Hodge, James W.

    2016-01-01

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC. PMID:27172898

  17. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    PubMed

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  19. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells.

    PubMed

    Bai, Chunxiang; He, Juanjuan; Niu, Hongxia; Hu, Lina; Luo, Yanping; Liu, Xun; Peng, Liang; Zhu, Bingdong

    2018-05-01

    It is believed that central memory T cells (T CM ) provide long-term protection against tuberculosis (TB). However, the effects of TB subunit vaccine immunization schedule, especially the vaccination intervals, on T cell immune memory is still unclear. In this study, mice were immunized with fusion protein ESAT6-Ag85B-MPT64 (190-198)-Mtb8.4-Rv2626c (LT70) based subunit vaccine three times according to the following schedules: ① 0, 3rd and 6th week respectively (0-3-6w), ② 0, 4th and 12th week (0-4-12w), and ③ 0, 4th and 24th week (0-4-24w). We found that both schedules of 0-4-12w and 0-4-24w induced higher level of antigen specific IL-2, IFN-γ and TNF-α than 0-3-6w immunization. Among them, 0-4-12w induced the highest level of IL-2, which is a key cytokine mainly produced by T CM . Moreover, by cultured IFN-γ ELISPOT and cell proliferation assay etc., we found that the vaccination schedule of 0-4-12w elicited higher numbers of T CM like cells, stronger T CM - mediated immune responses and higher protective efficacy against M. bovis BCG challenge than 0-3-6w did. It suggests that prolonging the vaccination interval of TB subunit vaccine to some extent contributes to inducing more abundant T CM like cells and providing stronger immune protection against mycobacteria infection. Copyright © 2018. Published by Elsevier Ltd.

  20. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen.

    PubMed

    Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N

    2013-02-21

    Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Antitumor immune responses mediated by dendritic cells

    PubMed Central

    Spel, Lotte; Boelens, Jaap-Jan; Nierkens, Stefan; Boes, Marianne

    2013-01-01

    Dendritic cells (DCs) are essential for the induction of adaptive immune responses against malignant cells by virtue of their capacity to effectively cross-present exogenous antigens to T lymphocytes. Dying cancer cells are indeed a rich source of antigens that may be harnessed for the development of DC-based vaccines. In particular, malignant cells succumbing to apoptosis, rather than necrosis, appear to release antigens in a manner that allows for the elicitation of adaptive immune responses. In this review, we describe the processes that mediate the cross-presentation of antigens released by apoptotic cancer cells to CD8+ T lymphocytes, resulting in the activation of protective tumor-specific immune responses. PMID:24482744

  2. Control of regulatory T cell lineage commitment and maintenance.

    PubMed

    Josefowicz, Steven Z; Rudensky, Alexander

    2009-05-01

    Foxp3-expressing regulatory T (Treg) cells suppress pathology mediated by immune responses against self and foreign antigens and commensal microorganisms. Sustained expression of the transcription factor Foxp3, a key distinguishing feature of Treg cells, is required for their differentiation and suppressor function. In addition, Foxp3 expression prevents deviation of Treg cells into effector T cell lineages and confers dependence of Treg cell survival and expansion on growth factors, foremost interleukin-2, provided by activated effector T cells. In this review we discuss Treg cell differentiation and maintenance with a particular emphasis on molecular regulation of Foxp3 expression, arguably a key to mechanistic understanding of biology of regulatory T cells.

  3. CD8+ T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types

    PubMed Central

    Migueles, Stephen A.; Mendoza, Daniel; Zimmerman, Matthew G.; Martins, Kelly M.; Toulmin, Sushila A.; Kelly, Elizabeth P.; Peterson, Bennett A.; Johnson, Sarah A.; Galson, Eric; Poropatich, Kate O.; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A.; Jones, Sara; Hallahan, Claire W.; Follmann, Dean A.; Connors, Mark

    2014-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8+ T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8+ T-cell specificity and function of B*27/57neg LTNP/EC (n = 23), B*27/57pos LTNP/EC (n = 23) and B*27/57neg progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57neg LTNP/EC did not target more highly conserved epitopes, their CD8+ T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57pos LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8+ T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533

  4. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    PubMed Central

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  5. Rescue of CD8+ T cell vaccine memory following sublethal γ irradiation.

    PubMed

    McFarland, Hugh I; Berkson, Julia D; Lee, Jay P; Elkahloun, Abdel G; Mason, Karen P; Rosenberg, Amy S

    2015-07-31

    Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (D(d)) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1-3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic "signature of rescue" identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated D(d) skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic D(d) expressing bone marrow cells 1-4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation. Published by Elsevier Ltd.

  6. HIV-1 Triggers WAVE2 Phosphorylation in Primary CD4 T Cells and Macrophages, Mediating Arp2/3-dependent Nuclear Migration*

    PubMed Central

    Spear, Mark; Guo, Jia; Turner, Amy; Yu, Dongyang; Wang, Weifeng; Meltzer, Beatrix; He, Sijia; Hu, Xiaohua; Shang, Hong; Kuhn, Jeffrey; Wu, Yuntao

    2014-01-01

    The human immunodeficiency virus type 1 (HIV-1) initiates receptor signaling and early actin dynamics during viral entry. This process is required for viral infection of primary targets such as resting CD4 T cells. WAVE2 is a component of a multiprotein complex linking receptor signaling to dynamic remodeling of the actin cytoskeleton. WAVE2 directly activates Arp2/3, leading to actin nucleation and filament branching. Although several bacterial and viral pathogens target Arp2/3 for intracellular mobility, it remains unknown whether HIV-1 actively modulates the Arp2/3 complex through virus-mediated receptor signal transduction. Here we report that HIV-1 triggers WAVE2 phosphorylation at serine 351 through gp120 binding to the chemokine coreceptor CXCR4 or CCR5 during entry. This phosphorylation event involves both Gαi-dependent and -independent pathways, and is conserved both in X4 and R5 viral infection of resting CD4 T cells and primary macrophages. We further demonstrate that inhibition of WAVE2-mediated Arp2/3 activity through stable shRNA knockdown of Arp3 dramatically diminished HIV-1 infection of CD4 T cells, preventing viral nuclear migration. Inhibition of Arp2/3 through a specific inhibitor, CK548, also drastically inhibited HIV-1 nuclear migration and infection of CD4 T cells. Our results suggest that Arp2/3 and the upstream regulator, WAVE2, are essential co-factors hijacked by HIV for intracellular migration, and may serve as novel targets to prevent HIV transmission. PMID:24415754

  7. HIV-1 triggers WAVE2 phosphorylation in primary CD4 T cells and macrophages, mediating Arp2/3-dependent nuclear migration.

    PubMed

    Spear, Mark; Guo, Jia; Turner, Amy; Yu, Dongyang; Wang, Weifeng; Meltzer, Beatrix; He, Sijia; Hu, Xiaohua; Shang, Hong; Kuhn, Jeffrey; Wu, Yuntao

    2014-03-07

    The human immunodeficiency virus type 1 (HIV-1) initiates receptor signaling and early actin dynamics during viral entry. This process is required for viral infection of primary targets such as resting CD4 T cells. WAVE2 is a component of a multiprotein complex linking receptor signaling to dynamic remodeling of the actin cytoskeleton. WAVE2 directly activates Arp2/3, leading to actin nucleation and filament branching. Although several bacterial and viral pathogens target Arp2/3 for intracellular mobility, it remains unknown whether HIV-1 actively modulates the Arp2/3 complex through virus-mediated receptor signal transduction. Here we report that HIV-1 triggers WAVE2 phosphorylation at serine 351 through gp120 binding to the chemokine coreceptor CXCR4 or CCR5 during entry. This phosphorylation event involves both Gαi-dependent and -independent pathways, and is conserved both in X4 and R5 viral infection of resting CD4 T cells and primary macrophages. We further demonstrate that inhibition of WAVE2-mediated Arp2/3 activity through stable shRNA knockdown of Arp3 dramatically diminished HIV-1 infection of CD4 T cells, preventing viral nuclear migration. Inhibition of Arp2/3 through a specific inhibitor, CK548, also drastically inhibited HIV-1 nuclear migration and infection of CD4 T cells. Our results suggest that Arp2/3 and the upstream regulator, WAVE2, are essential co-factors hijacked by HIV for intracellular migration, and may serve as novel targets to prevent HIV transmission.

  8. Nestling immunocompetence and testosterone covary with brood size in a songbird.

    PubMed Central

    Naguib, Marc; Riebel, Katharina; Marzal, Alfonso; Gil, Diego

    2004-01-01

    The social and ecological conditions that individuals experience during early development have marked effects on their developmental trajectory. In songbirds, brood size is a key environmental factor affecting development, and experimental increases in brood size have been shown to have negative effects on growth, condition and fitness. Possible causes of decreased growth in chicks from enlarged broods are nutritional stress, crowding and increased social competition, i.e. environmental factors known to affect adult steroid levels (especially of testosterone and corticosteroids) in mammals and birds. Little, however, is known about environmental effects on steroid synthesis in nestlings. We addressed this question by following the development of zebra finch (Taeniopygia guttata) chicks that were cross-fostered and raised in different brood sizes. In line with previous findings, nestling growth and cell-mediated immunocompetence were negatively affected by brood size. Moreover, nestling testosterone levels covaried with treatment: plasma testosterone increased with experimental brood size. This result provides experimental evidence that levels of circulating testosterone in nestlings can be influenced by their physiological response to environmental conditions. PMID:15255102

  9. Cystoisospora belli Infection of the Gallbladder in Immunocompetent Patients: A Clinicopathologic Review of 18 Cases.

    PubMed

    Lai, Keith K; Goyne, Hannah E; Hernandez-Gonzalo, David; Miller, Kennon A; Tuohy, Marion; Procop, Gary W; Lamps, Laura W; Patil, Deepa T

    2016-08-01

    Cystoisospora belli, previously known as Isospora belli, is an obligate intracellular coccidian parasite that is most often associated with gastrointestinal disease in immunocompromised patients. In this study, we detail the clinicopathologic features of 18 cases of Cystoisospora infection affecting the gallbladder in immunocompetent individuals and compare them with a control group. Each case was reviewed for cholecystitis (none, acute, chronic), epithelial disarray, presence of intraepithelial lymphocytes (none, rare [≤5 per 20 epithelial cells], present [>5 per 20 epithelial cells]), architectural distortion, intramucosal eosinophilia, and mural thickening/serositis. The mean age of patients with Cystoisospora infection was 33 years and the male to female ratio 1:4.3. Cholecystectomy was performed for biliary dyskinesia (n=7), abdominal pain (n=7), suspected cholelithiasis (n=5), and cholecystitis (n=3). In 2 cases, Cystoisospora was found in donor gallbladders resected at the time of liver transplantation. Each case was characterized by eosinophilic, oval or banana-shaped intraepithelial parasites within perinuclear parasitophorous vacuoles. Most cases showed epithelial disarray and minimal intraepithelial lymphocytosis. Of the 11 cases with an average follow-up of 15 months, none had evidence of disease related to Cystoisospora infection within the biliary tract or elsewhere in the gastrointestinal tract. We present the largest series of gallbladder cystoisosporiasis in immunocompetent patients to date. Cystoisospora infection is underrecognized in the gallbladders of immunocompetent patients, in part due to the subtle findings in routine cholecystectomy specimens. On the basis of the clinical follow-up, gallbladder cystoisosporiasis in immunocompetent individuals appears to be a self-limited infection.

  10. Pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    PubMed Central

    Doitsh, Gilad; Galloway, Nicole LK; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood. Apoptosis has been proposed as the key mechanism for CD4 T-cell loss. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of productively infected cells. The remaining >95% of quiescent lymphoid CD4 T-cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death where cytoplasmic contents and pro-inflammatory cytokines including IL-1β, are released. This death pathway thus links the two signature events in HIV infection––CD4 T-cell depletion and chronic inflammation––and creates a vicious pathogenic cycle where dying CD4 T-cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase-1 inhibitors shown to be safe in humans, raising the possibility of a new class of “anti-AIDS” therapeutics targeting the host rather than the virus. PMID:24356306

  11. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    PubMed

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  12. Parasitemia in an immunocompetent horse experimentally challenged with Sarcocystis neurona sporocysts.

    PubMed

    Rossano, M G; Schott, H C; Murphy, A J; Kaneene, J B; Sellon, D C; Hines, M T; Hochstatter, T; Bell, J A; Mansfield, L S

    2005-01-04

    Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in Americans. Most cases are attributed to infection of the central nervous system with Sarcocystis neurona. Parasitemia has not been demonstrated in immunocompetent horses, but has been documented in one immunocompromised foal. The objective of this study was to isolate viable S. neurona from the blood of immunocompetent horses. Horses used in this study received orally administered S. neurona sporocysts (strain SN 37-R) daily for 112 days at the following doses: 100/day for 28 days, followed by 500/day for 28 days, followed by 1000/day for 56 days. On day 98 of the study, six yearling colts were selected for attempted culture of S. neurona from blood, two testing positive, two testing suspect and two testing negative for antibodies against S. neurona on day 84 of the study. Two 10 ml tubes with EDTA were filled from each horse by jugular venipuncture and the plasma fraction rich in mononuclear cells was pipetted onto confluent equine dermal cell cultures. The cultures were monitored weekly for parasite growth for 12 weeks. Merozoites grown from cultures were harvested and tested using S. neurona-specific PCR with RFLP to confirm species identity. PCR products were sequenced and compared to known strains of S. neurona. After 38 days of in vitro incubation, one cell culture from a horse testing positive for antibodies against S. neurona was positive for parasite growth while the five remaining cultures remained negative for parasite growth for all 12 weeks. The Sarcocystis isolate recovered from cell culture was confirmed to be S. neurona by PCR with RFLP. Gene sequence analysis revealed that the isolate was identical to the challenge strain SN-37R and differed from two known strains UCD1 and MIH1. To our knowledge this is the first report of parasitemia with S. neurona in an immunocompetent horse.

  13. Identification of IFN-γ-producing T cells as the main mediators of the side effects associated to mouse interleukin-15 sustained exposure

    PubMed Central

    Scala, Marianna Di; Gil-Fariña, Irene; Olagüe, Cristina; Vales, Africa; Sobrevals, Luciano; Fortes, Puri; Corbacho, David; González-Aseguinolaza, Gloria

    2016-01-01

    Interleukin-15 (IL-15) is a cell growth-factor that regulates lymphocyte function and homeostasis. Its strong immunostimulatory activity coupled with an apparent lack of toxicity makes IL-15 an exciting candidate for cancer therapy, somehow limited by its short half-life in circulation. To increase IL-15 bioavailability we constructed a recombinant adeno-associated vector expressing murine IL-15 (AAV-mIL15) in the liver. Mice injected with AAV-mIL15 showed sustained and vector dose-dependent levels of IL-15/IL-15Rα complexes in serum, production of IFN-γ and activation of CD8+ T-cells and macrophages. The antitumoral efficacy of AAV-mIL15 was tested in a mouse model of metastatic colorectal cancer established by injection of MC38 cells. AAV-mIL15 treatment slightly inhibits MC38 tumor-growth and significantly increases the survival of mice. However, mIL-15 sustained expression was associated with development of side effects like hepatosplenomegaly, liver damage and the development of haematological stress, which results in the expansion of hematopoietic precursors in the bone marrow. To elucidate the mechanism, we treated IFN-γ receptor-, RAG1-, CD1d- and μMT-deficient mice and performed adoptive transfer of bone marrow cells from WT mice to RAG1-defcient mice. We demonstrated that the side effects of murine IL-15 administration were mainly mediated by IFN-γ-producing T-cells. Conclusion IL-15 induces the activation and survival of effector immune cells that are necessary for its antitumoral activity; but, long-term exposure to IL-15 is associated with the development of important side effects mainly mediated by IFN-γ-producing T-cells. Strategies to modulate T-cell activation should be combined with IL-15 administration to reduce secondary adverse events while maintaining its antitumoral effect. PMID:27356750

  14. B cells and TCR avidity determine distinct functions of CD4+ T cells in retroviral infection1

    PubMed Central

    Ploquin, Mickaël J-Y; Eksmond, Urszula; Kassiotis, George

    2011-01-01

    The T-cell-dependent B-cell response relies on cognate interaction between B cells and CD4+ Th cells. However, the consequences of this interaction for CD4+ T cells are not entirely known. B cells generally promote CD4+ T-cell responses to pathogens, albeit to a variable degree. In contrast, CD4+ T-cell responses to self or tumor antigens are often suppressed by B cells. Here we demonstrated that interaction with B cells dramatically inhibited the function of virus-specific CD4+ T cells in retroviral infection. We have used Friend virus (FV) infection of mice as a model for retroviral infection, in which the behavior of virus-specific CD4+ T cells was monitored according to their TCR avidity. We report that avidity for antigen and interaction with B cells determine distinct aspects of the primary CD4+ T-cell response to FV infection. Virus-specific CD4+ T cells followed exclusive Th1 and T follicular helper (Tfh) differentiation. High avidity for antigen facilitated expansion during priming and enhanced the capacity for IFN-γ and IL-21 production. In contrast, Tfh differentiation was not affected by avidity for antigen. By reducing or preventing B-cell interaction we found that B cells promoted Tfh differentiation, induced programmed death 1 (PD-1) expression and inhibited IFN-γ production by virus-specific CD4+ T cells. Ultimately, B cells protected hosts from CD4+ T-cell-mediated immune pathology, at the detriment of CD4+ T-cell-mediated protective immunity. Our results suggest that B-cell presentation of vaccine antigens could be manipulated to direct the appropriate CD4+ T-cell response. PMID:21841129

  15. PI3Kγ Is Critical for Dendritic Cell-Mediated CD8+ T Cell Priming and Viral Clearance during Influenza Virus Infection

    PubMed Central

    Nobs, Samuel Philip; Schneider, Christoph; Heer, Alex Kaspar; Huotari, Jatta; Helenius, Ari; Kopf, Manfred

    2016-01-01

    Phosphoinositide-3-kinases have been shown to be involved in influenza virus pathogenesis. They are targeted directly by virus proteins and are essential for efficient viral replication in infected lung epithelial cells. However, to date the role of PI3K signaling in influenza infection in vivo has not been thoroughly addressed. Here we show that one of the PI3K subunits, p110γ, is in fact critically required for mediating the host’s antiviral response. PI3Kγ deficient animals exhibit a delayed viral clearance and increased morbidity during respiratory infection with influenza virus. We demonstrate that p110γ is required for the generation and maintenance of potent antiviral CD8+ T cell responses through the developmental regulation of pulmonary cross-presenting CD103+ dendritic cells under homeostatic and inflammatory conditions. The defect in lung dendritic cells leads to deficient CD8+ T cell priming, which is associated with higher viral titers and more severe disease course during the infection. We thus identify PI3Kγ as a novel key host protective factor in influenza virus infection and shed light on an unappreciated layer of complexity concerning the role of PI3K signaling in this context. PMID:27030971

  16. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells.

    PubMed

    Park, Jae H; Brentjens, Renier J

    2010-04-01

    Chemotherapy-resistant B-cell hematologic malignancies may be cured with allogeneic hematopoietic stem cell transplantation (HSCT), demonstrating the potential susceptibility of these tumors to donor T-cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. For this reason, there is an urgent need for less-toxic forms of immune-based cellular therapy to treat these malignancies. Adoptive transfer of autologous T cells genetically modified to express chimeric antigen receptors (CARs) targeted to specific tumor-associated antigens represents an attractive means of overcoming the limitations of conventional HSCT. To this end, investigators have generated CARs targeted to various antigens expressed by B-cell malignancies, optimized the design of these CARs to enhance receptor mediated T cell signaling, and demonstrated significant anti-tumor efficacy of the resulting CAR modified T cells both in vitro and in vivo mouse tumor models. These encouraging preclinical data have justified the translation of this approach to the clinical setting with currently 12 open clinical trials and one completed clinical trial treating various B-cell malignancies utilizing CAR modified T cells targeted to either the CD19 or CD20 B-cell specific antigens.

  17. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia

    PubMed Central

    Paszkiewicz, Paulina J.; Fräßle, Simon P.; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C.; Riddell, Stanley R.; Busch, Dirk H.

    2016-01-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies. PMID:27760047

  18. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia.

    PubMed

    Paszkiewicz, Paulina J; Fräßle, Simon P; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Drexler, Ingo; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C; Riddell, Stanley R; Busch, Dirk H

    2016-11-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.

  19. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71more » and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. - Highlights:: • Withaferin A (WA) inhibited T-cell and B-cell mediated immune responses. • WA increased basal ROS levels in lymphocytes. • WA directly interacted with GSH as studied using spectrophotometry and HPLC. • WA inhibited NF-κB nuclear translocation and binding of nuclear NF-κB to DNA. • WA inhibited induction of the graft-versus-host disease in mice.« less

  20. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    PubMed

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and

  1. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions.

    PubMed

    Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M; Barron, Luke; Qualls, Joseph E; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O; Wynn, Thomas A; Murray, Peter J

    2017-01-06

    Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G 1 , and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G 1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Identification of Regulatory T Cells in Tolerated Allografts

    PubMed Central

    Graca, Luis; Cobbold, Stephen P.; Waldmann, Herman

    2002-01-01

    Induction of transplantation tolerance with certain therapeutic nondepleting monoclonal antibodies can lead to a robust state of peripheral “dominant” tolerance. Regulatory CD4+ T cells, which mediate this form of “dominant” tolerance, can be isolated from spleens of tolerant animals. To determine whether there were any extra-lymphoid sites that might harbor regulatory T cells we sought their presence in tolerated skin allografts and in normal skin. When tolerated skin grafts are retransplanted onto T cell–depleted hosts, graft-infiltrating T cells exit the graft and recolonize the new host. These colonizing T cells can be shown to contain members with regulatory function, as they can prevent nontolerant lymphocytes from rejecting fresh skin allografts, without hindrance of rejection of third party skin. Our results suggest that T cell suppression of graft rejection is an active process that operates beyond secondary lymphoid tissue, and involves the persistent presence of regulatory T cells at the site of the tolerated transplant. PMID:12070291

  3. Reduction of CD147 surface expression on primary T cells leads to enhanced cell proliferation.

    PubMed

    Biegler, Brian; Kasinrerk, Watchara

    2012-12-01

    CD147 is a ubiquitously expressed membrane glycoprotein that has numerous functional associations in health and disease. However, the molecular mechanisms by which CD147 participates in these processes are unclear. Establishing physiologically relevant silencing of CD147 in primary T cells could provide clues essential for elucidating some aspects of CD147 biology. To date, achieving the knockdown of CD147 in primary T cells has remained elusive. Utilizing RNA interference and the Nucleofector transfection system, we were able to reduce the expression of CD147 in primary T cells. Comparison of basic functions, such as proliferation and CD25 expression, were then made between control populations and populations with reduced expression. Up-regulation of CD147 was found upon T-cell activation, indicating a role in T-cell responses. To better understand the possible importance of this up-regulation, we knocked down the expression of CD147 using RNA interference. When compared to control populations the CD147 knockdown populations exhibited increased proliferation. This alteration of cell proliferation, however, was not linked to a change in CD25 expression. We achieved reduction of CD147 surface expression in primary T cells by siRNA-mediated gene silencing. Our results point to CD147 having a possible negative regulatory role in T cell-mediated immune responses.

  4. c-Myc-Induced Survivin Is Essential for Promoting the Notch-Dependent T Cell Differentiation from Hematopoietic Stem Cells

    PubMed Central

    Haque, Rizwanul; Song, Jianyong; Haque, Mohammad; Lei, Fengyang; Sandhu, Praneet; Ni, Bing; Zheng, Songguo; Fang, Deyu; Yang, Jin-Ming; Song, Jianxun

    2017-01-01

    Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling–regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc–dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling–regulated differentiation of T lymphocytes from hematopoietic stem cells. PMID:28272325

  5. Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism

    PubMed Central

    Moreno-Fernandez, Maria E.; Rueda, Cesar Mauricio; Rusie, Laura K.

    2011-01-01

    We hypothesized that regulatory T cells (Tregs) could play a beneficial role during HIV infection by controlling HIV replication in conventional T cells (Tcons). Purified Tregs and Tcons from healthy donors were activated separately. Tcons were infected with the X4 or R5 HIV strains and cultured with or without autologous Tregs. Coculture of Tcons and Tregs resulted in a dose-dependent inhibition of Tcon infection, which was significant when a 1:1 Treg:Tcon ratio was used. Treg suppression of HIV infection was largely mediated by contact-dependent mechanisms. Blockage of cytotoxic T-lymphocyte–associated antigen-4 did not significantly reduce Treg function. In contrast, Tregs acted through cAMP-dependent mechanisms, because the decrease of cAMP levels in Tregs, the blockade of gap junction formation between Tregs and Tcons, the blockage of CD39 activity, and the blockage of protein kinase A in Tcons all abolished Treg-mediated suppression of HIV replication. Our data suggest a complex role for Tregs during HIV infection. Although Tregs inhibit specific immune responses, their inhibition of HIV replication in Tcons may play a beneficial role, particularly during early HIV infection, when the effector immune cells are not yet activated. Such a protective role of Tregs could have a profound impact on infection outcome. PMID:21436067

  6. Mechanisms Underlying Helper T cell Plasticity: Implications for Immune-mediated Disease

    PubMed Central

    Hirahara, Kiyoshi; Poholek, Amanda; Vahedi, Golnaz; Laurence, Arian; Kanno, Yuka; Milner, Joshua D.; O’Shea, John J.

    2013-01-01

    CD4 helper T cells are critical for proper immune cell homeostasis and host defense, but are also major contributes to immune and inflammatory disease. Arising from a simple, biphasic model of differentiation, Th1 and Th2 cells, a bewildering number of fates seem to possible for helper T cells. To what extent different helper cell subsets maintain their characteristic gene expression profiles or exhibit functional plasticity is a hotly debated topic. In this review, we will discuss how the expression of “signature cytokines” and “master regulator” transcription factors do not neatly conform to a simple T helper paradigm. While this may seem confusing, the good news is that the newly recognized complexity fits better with our understanding of immunopathogenesis. Finally, we will discuss factors include epigenetic regulation and metabolic alterations that contribute to helper cell specific and plasticity. PMID:23622118

  7. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Kyoung Jun; Lee, Yura; Kim, Soon Ae

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependentmore » apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation. - Highlights: • Plumbagin induces caspase-dependent apoptosis in T-ALL MOLT-4 cells. • Plumbagin activates phosphorylation of stress-activated protein kinase (SAPK) JNK and p38. • Plumbagin inhibits LPS-mediated NF-κB signaling cascade. • Plumbagin inhibits LPS-mediated transcriptional activity of pro-inflammatory cytokines.« less

  8. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits.

    PubMed

    Labrador Velandia, Sonia; Di Lauro, Salvatore; Alonso-Alonso, Maria Luz; Tabera Bartolomé, Soraya; Srivastava, Girish Kumar; Pastor, José Carlos; Fernandez-Bueno, Ivan

    2018-01-01

    To evaluate the feasibility, safety, and biocompatibility of intravitreal injection of human mesenchymal stem cells (MSCs) in immunocompetent pigmented rabbits. Thirty-two pigmented rabbits (24 females, 8 males; Chinchilla-New Zealand White) were divided into 8 groups of 4 animals. Commercially prepared human MSCs were injected (0.05 ml) into the post-lens vitreous of the right eyes. Groups 1 and 4 received isotonic medium (Ringer lactate-based), groups 2, 5, 7, and 8 received a low dose of 15 × 10 6 cells/ml. Groups 3 and 6 received a high dose of 30 × 10 6 cells/ml. Clinical signs were evaluated and scored before MSCs injection and weekly for 2 or 6 weeks. Animals were sacrificed at 2 or 6 weeks after injection. Eyes, liver, spleen, and gonads were assessed by histology and by fluorescent in situ hybridization to evaluate survival and extraocular migration of MSCs. There were no relevant clinical findings between control and MSC-injected rabbit eyes at any time point. There were also no relevant histological findings between control and MSC-injected rabbits related to ocular, liver, spleen, or gonad tissues modifications. MSCs survived intravitreally for at least 2 weeks after injection. Extraocular migration of MSCs was not detected. MSCs are safe and well-tolerated when administered intravitreally at a dose of 15 × 10 6 cells/ml in pigmented rabbits. These findings enable future research to explore the intravitreal use of commercially prepared allogenic human MSCs in clinical trials of retinal diseases.

  9. The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies.

    PubMed

    Neal, Lillian R; Bailey, Stefanie R; Wyatt, Megan M; Bowers, Jacob S; Majchrzak, Kinga; Nelson, Michelle H; Haupt, Carl; Paulos, Chrystal M; Varela, Juan C

    2017-01-01

    Adoptive T cell transfer (ACT) can mediate objective responses in patients with advanced malignancies. There have been major advances in this field, including the optimization of the ex vivo generation of tumor-reactive lymphocytes to ample numbers for effective ACT therapy via the use of natural and artificial antigen presenting cells (APCs). Herein we review the basic properties of APCs and how they have been manufactured through the years to augment vaccine and T cell-based cancer therapies. We then discuss how these novel APCs impact the function and memory properties of T cells. Finally, we propose new ways to synthesize aAPCs to augment the therapeutic effectiveness of antitumor T cells for ACT therapy.

  10. The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies

    PubMed Central

    Neal, Lillian R.; Bailey, Stefanie R.; Wyatt, Megan M.; Bowers, Jacob S.; Majchrzak, Kinga; Nelson, Michelle H.; Haupt, Carl; Paulos, Chrystal M.; Varela, Juan C.

    2017-01-01

    Adoptive T cell transfer (ACT) can mediate objective responses in patients with advanced malignancies. There have been major advances in this field, including the optimization of the ex vivo generation of tumor-reactive lymphocytes to ample numbers for effective ACT therapy via the use of natural and artificial antigen presenting cells (APCs). Herein we review the basic properties of APCs and how they have been manufactured through the years to augment vaccine and T cell-based cancer therapies. We then discuss how these novel APCs impact the function and memory properties of T cells. Finally, we propose new ways to synthesize aAPCs to augment the therapeutic effectiveness of antitumor T cells for ACT therapy. PMID:28825053

  11. Pneumococcal surface protein A (PspA) is effective at eliciting T cell-mediated responses during invasive pneumococcal disease in adults

    PubMed Central

    Baril, L; Dietemann, J; Essevaz-Roulet, M; Béniguel, L; Coan, P; Briles, D E; Guy, B; Cozon, G

    2006-01-01

    Humoral immune response is essential for protection against invasive pneumococcal disease and this property is the basis of the polysaccharide-based anti-pneumococcal vaccines. Pneumococcal surface protein A (PspA), a cell-wall-associated surface protein, is a promising component for the next generation of pneumococcal vaccines. This PspA antigen has been shown to stimulate an antibody-based immunity. In the present study, we evaluated the capacity of PspA to stimulate CD4+ T cells which are needed for the correct development of a B cell based immune response in humans. Cellular immunity to PspA was evaluated by whole-blood culture with different pneumococcal antigens, followed by flow cytometric detection of activated CD4+CD25+ T cells. T cell-mediated immune responses to recombinant PspA proteins were assessed in acute-phase and convalescent blood from adults with invasive pneumococcal disease and in blood from healthy subjects. All cases had detectable antibodies against PspA on admission. We found that invasive pneumococcal disease induced transient T cell depletion but adaptive immune responses strengthened markedly during convalescence. The increased production of both interleukin (IL)-10 and interferon (IFN)-γ during convalescence suggests that these cytokines may be involved in modulating antibody-based immunity to pneumococcal disease. We demonstrated that PspA is efficient at eliciting T cell immune responses and antibodies to PspA. This study broadens the applicability of recombinant PspA as potent pneumococcal antigen for vaccination against S. pneumoniae. PMID:16879247

  12. Vanadium-induced apoptosis of HaCaT cells is mediated by c-fos and involves nuclear accumulation of clusterin

    PubMed Central

    Markopoulou, Soultana; Kontargiris, Evangelos; Batsi, Christina; Tzavaras, Theodore; Trougakos, Ioannis; Boothman, David A.; Gonos, Efstathios S.; Kolettas, Evangelos

    2016-01-01

    Vanadium exerts a variety of biological effects, including antiproliferative responses through activation of the respective signaling pathways and the generation of reactive oxygen species. As epidermal cells are exposed to environmental insults, human keratinocytes (HaCaT) were used to investigate the mechanism of the antiproliferative effects of vanadyl(IV) sulfate (VOSO4). Treatment of HaCaT cells with VOSO4 inhibited proliferation and induced apoptosis in a dose-dependent manner. Inhibition of proliferation was associated with downregulation of cyclins D1 and E, E2F1, and the cyclin-dependent kinase inhibitors p21Cip1/Waf1 and p27Kip1. Induction of apoptosis correlated with upregulation of the c-fos oncoprotein, changes in the expression of clusterin (CLU), an altered ratio of antiapoptotic to proapoptotic Bcl-2 protein family members, and poly(ADP-ribose) poly-merase-1 cleavage. Forced overexpression of c-fos induced apoptosis in HaCaT cells that correlated with secretory CLU downregulation and upregulation of nuclear CLU (nCLU), a pro-death protein. Overexpression of Bcl-2 protected HaCaT cells from vanadium-induced apoptosis, whereas secretory CLU overexpression offered no cytoprotection. In contrast, nCLU sensitized HaCaT cells to apoptosis. Our data suggest that vanadium-mediated apoptosis was promoted by c-fos, leading to alterations in CLU isoform processing and induction of the pro-death nCLU protein. PMID:19531052

  13. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss.

    PubMed

    Sampson, John H; Choi, Bryan D; Sanchez-Perez, Luis; Suryadevara, Carter M; Snyder, David J; Flores, Catherine T; Schmittling, Robert J; Nair, Smita K; Reap, Elizabeth A; Norberg, Pamela K; Herndon, James E; Kuan, Chien-Tsun; Morgan, Richard A; Rosenberg, Steven A; Johnson, Laura A

    2014-02-15

    Chimeric antigen receptor (CAR) transduced T cells represent a promising immune therapy that has been shown to successfully treat cancers in mice and humans. However, CARs targeting antigens expressed in both tumors and normal tissues have led to significant toxicity. Preclinical studies have been limited by the use of xenograft models that do not adequately recapitulate the immune system of a clinically relevant host. A constitutively activated mutant of the naturally occurring epidermal growth factor receptor (EGFRvIII) is antigenically identical in both human and mouse glioma, but is also completely absent from any normal tissues. We developed a third-generation, EGFRvIII-specific murine CAR (mCAR), and performed tests to determine its efficacy in a fully immunocompetent mouse model of malignant glioma. At elevated doses, infusion with EGFRvIII mCAR T cells led to cures in all mice with brain tumors. In addition, antitumor efficacy was found to be dependent on lymphodepletive host conditioning. Selective blockade with EGFRvIII soluble peptide significantly abrogated the activity of EGFRvIII mCAR T cells in vitro and in vivo, and may offer a novel strategy to enhance the safety profile for CAR-based therapy. Finally, mCAR-treated, cured mice were resistant to rechallenge with EGFRvIII(NEG) tumors, suggesting generation of host immunity against additional tumor antigens. All together, these data support that third-generation, EGFRvIII-specific mCARs are effective against gliomas in the brain and highlight the importance of syngeneic, immunocompetent models in the preclinical evaluation of tumor immunotherapies. ©2013 AACR

  14. Quiescence of Memory CD8(+) T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4.

    PubMed

    Kalia, Vandana; Penny, Laura Anne; Yuzefpolskiy, Yevgeniy; Baumann, Florian Martin; Sarkar, Surojit

    2015-06-16

    Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    PubMed

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  16. Hypercholesterolemia induces T cell expansion in humanized immune mice.

    PubMed

    Proto, Jonathan D; Doran, Amanda C; Subramanian, Manikandan; Wang, Hui; Zhang, Mingyou; Sozen, Erdi; Rymond, Christina C; Kuriakose, George; D'Agati, Vivette; Winchester, Robert; Sykes, Megan; Yang, Yong-Guang; Tabas, Ira

    2018-06-01

    Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with adeno-associated virus 8-proprotein convertase subtilisin/kexin type 9 (AAV8-PCSK9) and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice that had lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, whereas splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis, but also contribute to T cell-mediated inflammatory diseases in the hypercholesterolemia setting.

  17. Dasatinib-Induced T-Cell-Mediated Colitis: A Case Report and Review of the Literature.

    PubMed

    Shanshal, Mohamed; Shakespeare, Andrew; Thirumala, Seshadri; Fenton, Boyd; Quick, Donald P

    2016-01-01

    Dasatinib is a potent inhibitor of the altered tyrosine kinase activity in disease states associated with BCR/ABL1. This agent has been shown to exhibit broad off-target kinase inhibition and immunomodulating properties. These effects may be responsible for dasatinib's unique side effects including a distinctive form of hemorrhagic colitis. We report a case of hemorrhagic colitis associated with dasatinib use in a patient with chronic myelogenous leukemia. Colon biopsies at the time of symptomatic colitis confirmed CD3+CD8+ T cell infiltration. The process rapidly resolved following drug discontinuation, but relapsed when rechallenged with a reduced dose of dasatinib. Colitis did not recur when the patient was treated with an alternative agent. A literature review of prior cases involving dasatinib-induced T-cell mediated colitis provides insight into commonalities that may facilitate the recognition and management of this entity. Most incidences occurred after a 3-month drug exposure and may be accompanied by large granular lymphocytes. The process uniformly resolves within a few days following drug discontinuation and will generally recur in a shorter period of time if the drug is reintroduced. Most patients will require an alternative agent, although select patients could be continued on dasatinib if other options are limited. © 2016 S. Karger AG, Basel.

  18. Mitochondrial function, ornamentation, and immunocompetence.

    PubMed

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2017-08-01

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology. © 2016 Cambridge Philosophical Society.

  19. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    PubMed

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  20. FAS system deregulation in T-cell lymphoblastic lymphoma

    PubMed Central

    Villa-Morales, M; Cobos, M A; González-Gugel, E; Álvarez-Iglesias, V; Martínez, B; Piris, M A; Carracedo, A; Benítez, J; Fernández-Piqueras, J

    2014-01-01

    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations. PMID:24603338

  1. CD4+CD25+ T-Cells Control Autoimmunity in the Absence of B-Cells

    PubMed Central

    Mariño, Eliana; Villanueva, Jeanette; Walters, Stacey; Liuwantara, David; Mackay, Fabienne; Grey, Shane T.

    2009-01-01

    OBJECTIVE Tumor necrosis factor ligand family members B-cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) can exert powerful effects on B-cell activation and development, type 1 T-helper cell (Th1) immune responses, and autoimmunity. We examined the effect of blocking BAFF and APRIL on the development of autoimmune diabetes. RESEARCH DESIGN AND METHODS Female NOD mice were administered B-cell maturation antigen (BCMA)-Fc from 9 to 15 weeks of age. Diabetes incidence, islet pathology, and T- and B-cell populations were examined. RESULTS BCMA-Fc treatment reduced the severity of insulitis and prevented diabetes development in NOD mice. BCMA-Fc–treated mice showed reduced follicular, marginal-zone, and T2MZ B-cells. B-cell reduction was accompanied by decreased frequencies of pathogenic CD4+CD40+ T-cells and reduced Th1 cytokines IL-7, IL-15, and IL-17. Thus, T-cell activation was blunted with reduced B-cells. However, BCMA-Fc–treated mice still harbored detectable diabetogenic T-cells, suggesting that regulatory mechanisms contributed to diabetes prevention. Indeed, BCMA-Fc–treated mice accumulated increased CD4+CD25+ regulatory T-cells (Tregs) with age. CD4+CD25+ cells were essential for maintaining euglycemia because their depletion abrogated BCMA-Fc–mediated protection. BCMA-Fc did not directly affect Treg homeostasis given that CD4+CD25+Foxp3+ T-cells did not express TACI or BR3 receptors and that CD4+CD25+Foxp3+ T-cell frequencies were equivalent in wild-type, BAFF−/−, TACI−/−, BCMA−/−, and BR3−/− mice. Rather, B-cell depletion resulted in CD4+CD25+ T-cell–mediated protection from diabetes because anti-CD25 monoclonal antibody treatment precipitated diabetes in both diabetes-resistant NOD.μMT−/− and BCMA-Fc–treated mice. CONCLUSIONS BAFF/APRIL blockade prevents diabetes. BCMA-Fc reduces B-cells, subsequently blunting autoimmune activity and allowing endogenous regulatory mechanisms to preserve a

  2. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    PubMed

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  3. Non-healing genital herpes mimicking donovanosis in an immunocompetent man.

    PubMed

    Gupta, Vishal; Khute, Prakash; Patel, Anjali; Gupta, Somesh

    2016-01-01

    Although atypical presentations of herpetic infection in immunocompetent individuals are common, they very rarely have the extensive, chronic and verrucous appearances seen in the immunocompromised host. We report a case of genital herpes manifesting as painless chronic non-healing genital ulcers with exuberant granulation tissue in an immunocompetent man. Owing to this morphology, the ulcers were initially mistaken for donovanosis. To the best of our knowledge, such a presentation of genital herpes in an immunocompetent individual has not been described previously. © The Author(s) 2015.

  4. Detection of cell mediated immune response to avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...

  5. Upregulation of interleukin 7 receptor alpha and programmed death 1 marks an epitope-specific CD8+ T-cell response that disappears following primary Epstein-Barr virus infection.

    PubMed

    Sauce, Delphine; Larsen, Martin; Abbott, Rachel J M; Hislop, Andrew D; Leese, Alison M; Khan, Naeem; Papagno, Laura; Freeman, Gordon J; Rickinson, Alan B

    2009-09-01

    In immunocompetent individuals, the stability of the herpesvirus-host balance limits opportunities to study the disappearance of a virus-specific CD8(+) T-cell response. However, we noticed that in HLA-A 0201-positive infectious mononucleosis (IM) patients undergoing primary Epstein-Barr virus (EBV) infection, the initial CD8 response targets three EBV lytic antigen-derived epitopes, YVLDHLIVV (YVL), GLCTLVAML (GLC), and TLDYKPLSV (TLD), but only the YVL and GLC reactivities persist long-term; the TLD response disappears within 10 to 27 months. While present, TLD-specific cells remained largely indistinguishable from YVL and GLC reactivities in many phenotypic and functional respects but showed unique temporal changes in two markers of T-cell fate, interleukin 7 receptor alpha (IL-7Ralpha; CD127) and programmed death 1 (PD-1). Thus, following the antigen-driven downregulation of IL-7Ralpha seen on all populations in acute IM, in every case, the TLD-specific population recovered expression unusually quickly post-IM. As well, in four of six patients studied, TLD-specific cells showed very strong PD-1 upregulation in the last blood sample obtained before the cells' disappearance. Our data suggest that the disappearance of this individual epitope reactivity from an otherwise stable EBV-specific response (i) reflects a selective loss of cognate antigen restimulation (rather than of IL-7-dependent signals) and (ii) is immediately preceded, and perhaps mediated, by PD-1 upregulation to unprecedented levels.

  6. CD4+ CD25+ Regulatory T Cells Impair HIV-1-Specific CD4 T Cell Responses by Upregulating Interleukin-10 Production in Monocytes

    PubMed Central

    Kwon, Douglas S.; Angin, Mathieu; Hongo, Tomoyuki; Law, Kenneth M.; Johnson, Jessica; Porichis, Filippos; Hart, Meghan G.; Pavlik, David F.; Tighe, Daniel P.; Kavanagh, Daniel G.; Streeck, Hendrik; Addo, Marylyn M.

    2012-01-01

    T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14+ monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. PMID:22496237

  7. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    PubMed

    Lu, Chenggang; Fuller, Margaret T

    2015-12-01

    Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  8. Immunomodulation by memantine in therapy of Alzheimer's disease is mediated through inhibition of Kv1.3 channels and T cell responsiveness

    PubMed Central

    Lowinus, Theresa; Bose, Tanima; Busse, Stefan; Busse, Mandy; Reinhold, Dirk; Schraven, Burkhart; Bommhardt, Ursula H.H.

    2016-01-01

    Memantine is approved for the treatment of advanced Alzheimer's disease (AD) and reduces glutamate-mediated neuronal excitotoxicity by antagonism of N-methyl-D-aspartate receptors. In the pathophysiology of AD immune responses deviate and infectious side effects are observed during memantine therapy. However, the particular effects of memantine on human T lymphocytes are unresolved. Here, we provide evidence that memantine blocks Kv1.3 potassium channels, inhibits CD3-antibody- and alloantigen-induced proliferation and suppresses chemokine-induced migration of peripheral blood T cells of healthy donors. Concurrent with the in vitro data, CD4+ T cells from AD patients receiving therapeutic doses of memantine show a transient decline of Kv1.3 channel activity and a long-lasting reduced proliferative response to alloantigens in mixed lymphocyte reactions. Furthermore, memantine treatment provokes a profound depletion of peripheral blood memory CD45RO+ CD4+ T cells. Thus, standard doses of memantine profoundly reduce T cell responses in treated patients through blockade of Kv1.3 channels. This may normalize deviant immunopathology in AD and contribute to the beneficial effects of memantine, but may also account for the enhanced infection rate. PMID:27462773

  9. Immunomodulation by memantine in therapy of Alzheimer's disease is mediated through inhibition of Kv1.3 channels and T cell responsiveness.

    PubMed

    Lowinus, Theresa; Bose, Tanima; Busse, Stefan; Busse, Mandy; Reinhold, Dirk; Schraven, Burkhart; Bommhardt, Ursula H H

    2016-08-16

    Memantine is approved for the treatment of advanced Alzheimer´s disease (AD) and reduces glutamate-mediated neuronal excitotoxicity by antagonism of N-methyl-D-aspartate receptors. In the pathophysiology of AD immune responses deviate and infectious side effects are observed during memantine therapy. However, the particular effects of memantine on human T lymphocytes are unresolved. Here, we provide evidence that memantine blocks Kv1.3 potassium channels, inhibits CD3-antibody- and alloantigen-induced proliferation and suppresses chemokine-induced migration of peripheral blood T cells of healthy donors. Concurrent with the in vitro data, CD4+ T cells from AD patients receiving therapeutic doses of memantine show a transient decline of Kv1.3 channel activity and a long-lasting reduced proliferative response to alloantigens in mixed lymphocyte reactions. Furthermore, memantine treatment provokes a profound depletion of peripheral blood memory CD45RO+ CD4+ T cells. Thus, standard doses of memantine profoundly reduce T cell responses in treated patients through blockade of Kv1.3 channels. This may normalize deviant immunopathology in AD and contribute to the beneficial effects of memantine, but may also account for the enhanced infection rate.

  10. PTPROt maintains T cell immunity in the microenvironment of hepatocellular carcinoma.

    PubMed

    Hou, Jiajie; Deng, Lei; Zhuo, Han; Lin, Zhe; Chen, Yun; Jiang, Runqiu; Chen, Dianyu; Zhang, Xudong; Huang, Xingxu; Sun, Beicheng

    2015-08-01

    Intratumoral T cells play a central role in anti-tumor immunity, and the balance between T effector cells (Teff) and regulatory T cells (Treg) affects the prognosis of cancer patients. However, educated by tumor microenvironment, T cells frequently fail in their responsibility. In this study, we aimed to investigate the role of truncated isoform of protein tyrosine phosphatase receptor-type O (PTPROt) in T cell-mediated anti-tumor immunity. We recruited 70 hepatocellular carcinoma (HCC) patients and 30 healthy volunteers for clinical investigation, and analyzed cellular tumor immunity by using ptpro(-/-) C57BL/6 mice and NOD/SCID mice. PTPROt expression was significantly downregulated in human HCC-infiltrating T cells due to the hypoxia microenvironment; PTPROt expression highly correlated with the intratumoral Teff/Treg ratio and clinicopathologic characteristics. Moreover, PTPROt deficiency attenuated T cell-mediated anti-tumor immunity and remarkably promoted mouse HCC growth. Mechanistically, deletion of PTPROt decreased Teff quantity and quality through phosphorylation of lymphocyte-specific tyrosine kinase, but increased Treg differentiation through phosphorylation of signal transducer and activator of transcription 5. In support of the Teff/Treg homeostasis, PTPROt serves as an important tumor suppressor in HCC microenvironment. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  11. T-cell receptor signaling activates an ITK/NF-κB/GATA-3 axis in T-cell lymphomas facilitating resistance to chemotherapy

    PubMed Central

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C.; Lim, Megan S.; Bailey, Nathanael G.; Wilcox, Ryan A.

    2016-01-01

    Purpose T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T-cell specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR’s role in mediating resistance to chemotherapy. Experimental Design Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following T-cell receptor (TCR) engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results Here we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3, and promotes chemotherapy resistance. Conclusions These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented activation of this signaling axis and overcame chemotherapy resistance. PMID:27780854

  12. Designing bovine T-cell vaccines via reverse immunology

    USDA-ARS?s Scientific Manuscript database

    T-cell responses contribute to immunity against many intra-cellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphop...

  13. Expression of NK cell receptors on decidual T cells in human pregnancy.

    PubMed

    Tilburgs, Tamara; van der Mast, Barbara J; Nagtzaam, Nicole M A; Roelen, Dave L; Scherjon, Sicco A; Claas, Frans H J

    2009-06-01

    Specific receptors enable NK cells to discriminate between cells with normal expression of MHC class I and cells that have low or absent expression of MHC class I molecules. In addition to NK cells, these receptors can be expressed on T cell subsets, mainly on CD8+ T cells but also on gammadeltaTCR+ T cells and CD4+ T cells. Although the function of NK cell receptor expression on T cells is not completely understood, various studies have shown that they are involved in down regulation of T cell receptor (TCR)-mediated activation and influence effector functions, like cytotoxicity and cytokine production. The aim of this study was to analyze expression of NK cell receptors on peripheral blood and decidual T cells during human pregnancy using flow cytometry. We demonstrate that a proportion of decidual T cells express HLA-C specific killer immunoglobulin-like receptors (KIRs). Furthermore, a small proportion of decidual T cells express the HLA-E specific CD94-NKG2A inhibitory and CD94-NKG2C activating receptors. Decidual KIR+ and CD94-NKG2+ T cells mainly display a CD3+CD4-CD8- phenotype. However, decidual tissue also contains higher percentages of KIR and CD94-NKG2 expressing CD4+ and CD8+ T cells compared to peripheral blood. So far, the functional capacities of decidual T cells expressing the NK cell receptors are unknown but NK cell receptor expression on decidual T cells may provide an alternative means by which decidual T cells distinguish self (maternal) cells from allogeneic fetal cells, and act to modulate the decidual immune response.

  14. LFA-1 Mediates Cytotoxicity and Tissue Migration of Specific CD8+ T Cells after Heterologous Prime-Boost Vaccination against Trypanosoma cruzi Infection

    PubMed Central

    Ferreira, Camila Pontes; Cariste, Leonardo Moro; Santos Virgílio, Fernando Dos; Moraschi, Barbara Ferri; Monteiro, Caroline Brandão; Vieira Machado, Alexandre M.; Gazzinelli, Ricardo Tostes; Bruna-Romero, Oscar; Menin Ruiz, Pedro Luiz; Ribeiro, Daniel Araki; Lannes-Vieira, Joseli; Lopes, Marcela de Freitas; Rodrigues, Mauricio Martins; de Vasconcelos, José Ronnie Carvalho

    2017-01-01

    Integrins mediate the lymphocyte migration into an infected tissue, and these cells are essential for controlling the multiplication of many intracellular parasites such as Trypanosoma cruzi, the causative agent of Chagas disease. Here, we explore LFA-1 and VLA-4 roles in the migration of specific CD8+ T cells generated by heterologous prime-boost immunization during experimental infection with T. cruzi. To this end, vaccinated mice were treated with monoclonal anti-LFA-1 and/or anti-VLA-4 to block these molecules. After anti-LFA-1, but not anti-VLA-4 treatment, all vaccinated mice displayed increased blood and tissue parasitemia, and quickly succumbed to infection. In addition, there was an accumulation of specific CD8+ T cells in the spleen and lymph nodes and a decrease in the number of those cells, especially in the heart, suggesting that LFA-1 is important for the output of specific CD8+ T cells from secondary lymphoid organs into infected organs such as the heart. The treatment did not alter CD8+ T cell effector functions such as the production of pro-inflammatory cytokines and granzyme B, and maintained the proliferative capacity after treatment. However, the specific CD8+ T cell direct cytotoxicity was impaired after LFA-1 blockade. Also, these cells expressed higher levels of Fas/CD95 on the surface, suggesting that they are susceptible to programmed cell death by the extrinsic pathway. We conclude that LFA-1 plays an important role in the migration of specific CD8+ T cells and in the direct cytotoxicity of these cells. PMID:29081775

  15. Tolerance to the Intestinal Microbiota Mediated by ROR(γt)(+) Cells.

    PubMed

    Ohnmacht, Caspar

    2016-07-01

    Harmless microbes colonizing the gut require the establishment of a well-equilibrated symbiosis between this microbiota and its host. However, the immune system is primed to recognize both conserved microbial patterns and foreign antigens, and therefore developed strong tolerance mechanisms to prevent potential fatal immune reactivity to symbiotic microbes. The transcription factor RAR-related orphan-like γt [ROR(γt); encoded by Rorc] plays a key role in the gut for lymphoid tissue organogenesis, development of innate lymphoid cells type 3 (ILC3s) and proinflammatory type 17 T helper (Th17) cells. Surprisingly, recent research has revealed a contribution of ROR(γt)-expressing cells in a variety of tolerance mechanisms in both the innate and adaptive immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. NK Cells and Their Ability to Modulate T Cells during Virus Infections

    PubMed Central

    Cook, Kevin D.; Waggoner, Stephen N.; Whitmire, Jason K.

    2014-01-01

    Natural killer (NK) cells are important in protection against virus infections, and many viruses have evolved mechanisms to thwart NK cell activity. NK cells respond to inflammatory signals at an early stage of virus infection, resulting in proliferation, cytokine production, and cytolytic activity that can reduce virus loads. Moreover, the rapid kinetics of the NK cell response enables NK cells to influence other populations of innate immune cells, affect the inflammatory milieu, and guide adaptive immune responses to infection. Early NK cell interactions with other leukocytes can have long-lasting effects on the number and quality of memory T cells, as well as impact the exhaustion of T cells during chronic infections. The ability of NK cells to modulate T cell responses can be mediated through direct T-NK interactions, cytokine production, or indirectly through dendritic cells and other cell types. Herein, we summarize our current understanding of how NK cells interact with T cells, dendritic cells, B cells, and other cell types involved in adaptive immune responses to virus infection. We outline several mechanisms by which NK cells enhance or suppress adaptive immune response and long-lived immunological memory. PMID:25404045

  17. Bet v 1-specific T-cell receptor/forkhead box protein 3 transgenic T cells suppress Bet v 1-specific T-cell effector function in an activation-dependent manner.

    PubMed

    Schmetterer, Klaus G; Haiderer, Daniela; Leb-Reichl, Victoria M; Neunkirchner, Alina; Jahn-Schmid, Beatrice; Küng, Hans J; Schuch, Karina; Steinberger, Peter; Bohle, Barbara; Pickl, Winfried F

    2011-01-01

    Regulatory T (Treg) cells establish and maintain tolerance to self-antigens and many foreign antigens, such as allergens, by suppressing effector T-cell proliferation and function. We have previously shown that human T-cell receptor (TCR) αβ-chains specific for allergen-derived epitopes confer allergen specificity on peripheral blood T cells of individuals with and without allergy. To study the feasibility of generating allergen-specific human Treg cells by retroviral transduction of a transcription unit encoding forkhead box protein 3 (FOXP3) and allergen-specific TCR αβ-chains. cDNAs encoding the α and β-chains of a Bet v 1(142-153)-specific TCR (TCR alpha variable region 6/TCR beta variable region 20) and human FOXP3 were linked via picornaviral 2A sequences and expressed as single translational unit from an internal ribosomal entry site-green fluorescence protein-containing retroviral vector. Retrovirally transduced peripheral blood T cells were tested for expression of transgenes, Treg phenotype, and regulatory capacity toward allergen-specific effector T cells. Transduced T cells displayed a Treg phenotype with clear-cut upregulation of CD25, CD39, and cytotoxic T-lymphocyte antigen 4. The transduced cells were hyporesponsive in cytokine production and secretion and, like naturally occurring Treg cells, did not proliferate after antigen-specific or antigen-mimetic stimulation. However, proliferation was inducible upon exposure to exogenous IL-2. In coculture experiments, TRAV6(+)TRBV20(+)FOXP3(+) transgenic T cells, unlike FOXP3(+) single transgenic T cells or naturally occurring Treg cells, highly significantly suppressed T cell cytokine production and proliferation of corresponding allergen-specific effector T cells in an allergen-specific, dose-dependent manner. We demonstrate a transgenic approach to engineer human allergen-specific Treg cells that exert their regulatory function in an activation-dependent manner. Customized Treg cells might become

  18. The Effects of TLR Activation on T-Cell Development and Differentiation

    PubMed Central

    Jin, Bo; Sun, Tao; Yu, Xiao-Hong; Yang, Ying-Xiang; Yeo, Anthony E. T.

    2012-01-01

    Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed. PMID:22737174

  19. Genetic engineering with T cell receptors.

    PubMed

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  20. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells

    PubMed Central

    Witkover, Aviva; Tanaka, Yuetsu; Fields, Paul; Bangham, Charles R. M.

    2016-01-01

    There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease. PMID:27893842

  1. Micronutrient supplementation and T cell-mediated immune responses in patients with tuberculosis in Tanzania

    PubMed Central

    KAWAI, K.; MEYDANI, S. N.; URASSA, W.; WU, D.; MUGUSI, F. M.; SAATHOFF, E.; BOSCH, R. J.; VILLAMOR, E.; SPIEGELMAN, D.; FAWZI, W. W.

    2017-01-01

    SUMMARY Limited studies exist regarding whether incorporating micronutrient supplements during tuberculosis (TB) treatment may improve cell-mediated immune response. We examined the effect of micronutrient supplementation on lymphocyte proliferation response to mycobacteria or T-cell mitogens in a randomized trial conducted on 423 patients with pulmonary TB. Eligible participants were randomly assigned to receive a daily dose of micronutrients (vitamins A, B-complex, C, E, and selenium) or placebo at the time of initiation of TB treatment. We found no overall effect of micronutrient supplements on lymphocyte proliferative responses to phytohaemagglutinin or purified protein derivatives in HIV-negative and HIV-positive TB patients. Of HIV-negative TB patients, the micronutrient group tended to show higher proliferative responses to concanavalin A than the placebo group, although the clinical relevance of this finding is not readily notable. The role of nutritional intervention in this vulnerable population remains an important area of future research. PMID:24093552

  2. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging.

    PubMed

    Renkema, Kristin R; Li, Gang; Wu, Angela; Smithey, Megan J; Nikolich-Žugich, Janko

    2014-01-01

    Naive T cell responses are eroded with aging. We and others have recently shown that unimmunized old mice lose ≥ 70% of Ag-specific CD8 T cell precursors and that many of the remaining precursors acquire a virtual (central) memory (VM; CD44(hi)CD62L(hi)) phenotype. In this study, we demonstrate that unimmunized TCR transgenic (TCRTg) mice also undergo massive VM conversion with age, exhibiting rapid effector function upon both TCR and cytokine triggering. Age-related VM conversion in TCRTg mice directly depended on replacement of the original TCRTg specificity by endogenous TCRα rearrangements, indicating that TCR signals must be critical in VM conversion. Importantly, we found that VM conversion had adverse functional effects in both old wild-type and old TCRTg mice; that is, old VM, but not old true naive, T cells exhibited blunted TCR-mediated, but not IL-15-mediated, proliferation. This selective proliferative senescence correlated with increased apoptosis in old VM cells in response to peptide, but decreased apoptosis in response to homeostatic cytokines IL-7 and IL-15. Our results identify TCR as the key factor in differential maintenance and function of Ag-specific precursors in unimmunized mice with aging, and they demonstrate that two separate age-related defects--drastic reduction in true naive T cell precursors and impaired proliferative capacity of their VM cousins--combine to reduce naive T cell responses with aging.

  3. Immunosuppressive Environment in Basal Cell Carcinoma: The Role of Regulatory T Cells.

    PubMed

    Omland, Silje H; Nielsen, Patricia S; Gjerdrum, Lise M R; Gniadecki, Robert

    2016-11-02

    Interaction between tumour survival tactics and anti-tumour immune response is a major determinant for cancer growth. Regulatory T cells (T-regs) contribute to tumour immune escape, but their role in basal cell carcinoma (BCC) is not understood. The fraction of T-regs among T cells was analysed by immunohistochemistry followed by automated image analysis in facial BCC, peritumoural skin and normal, buttock skin. Quantitative real-time PCR (qRT-PCR) was performed for FOXP3 and cytokines involved in T-reg attraction and T-cell activation. T-regs comprised 45% of CD4-cells surrounding BCC. FOXP3 was highly expressed in BCC, but absent in buttock skin. Unexpectedly, expression of FOXP3 was increased in peritumoural skin, with the FOXP3/CD3 fractions exceeding those of BCC (p?=?0.0065). Transforming growth factor (TGF)-? and T-reg chemokine expression was increased in BCC and peritumoural skin, but not in buttock skin, with expression levels correlating with FOXP3. T-regs are abundantly present both in BCC and in peritumoural skin, mediating an immunosuppressed microenvironment permissive for skin cancer.

  4. Cytokines affecting CD4+T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4+T regulatory cells.

    PubMed

    Nomura, Masaru; Hodgkinson, Suzanne J; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2017-06-01

    CD4 + T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4 + T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4 + T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4 + T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4 + T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4 + T cells. Tolerant CD4 + CD25 + T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4 + CD25 + T cells to third-party Lewis. Tolerant CD4 + CD25 + T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4 + CD25 + T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. T-cell proliferative responses following sepsis in neonatal rats.

    PubMed

    Dallal, Ousama; Ravindranath, Thyyar M; Choudhry, Mashkoor A; Kohn, Annamarie; Muraskas, Jonathan K; Namak, Shahla Y; Alattar, Mohammad H; Sayeed, Mohammed M

    2003-01-01

    Both experimental and clinical evidence suggest a suppression of T-cell function in burn and sepsis. The objective of the present study was to evaluate splenocyte and purified T-cell proliferative response and IL-2 production in septic neonatal rats. We also examined if alterations in T-cell proliferation and IL-2 production in neonatal sepsis is due to elevation in PGE2. PGE2 is known to play a significant role in T-cell suppression during sepsis in adults. Sepsis was induced in 15-day-old neonatal Sprague-Dawley rats by implanting 0.1 cm3 of fecal pellet impregnated with Escherichia coli (50 CFU) and Bacteroides fragilis (10(3) CFU). Animals receiving fecal pellets without the bacteria were designated as sterile. A group of septic and sterile rats were treated with PGE2 synthesis inhibitors, NS398 and resveratrol. These treatments of animals allowed us to evaluate the role of PGE2 in T-cell suppression during neonatal sepsis. Splenocytes as well as purified T cells were prepared and then proliferative response and IL-2 productive capacities were measured. A significant suppression of splenocyte proliferation and IL-2 production was noticed in both sterile and septic animals compared to the T cells from unoperated control rats. In contrast, the proliferation and IL-2 production by nylon wool purified T cells in sterile rats was not significantly different from control rats, whereas, a significant suppression in Con A-mediated T-cell proliferation and IL-2 production noticed in septic rat T cells compared to the sterile and control rat T cells. Such decrease in T-cell proliferation and IL-2 production was accompanied with 20-25% deaths in neonates implanted with septic pellets. No mortality was noted in sterile-implanted neonates. Treatment of animals with COX-1 inhibitor had no effect on T-cell proliferation response in both septic and sterile groups, whereas COX-2 inhibitor abrogated the decrease in T-cell proliferative response in the septic group. The treatment

  6. In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages

    PubMed Central

    Cockburn, Ian A.; Amino, Rogerio; Kelemen, Reka K.; Kuo, Scot C.; Tse, Sze-Wah; Radtke, Andrea; Mac-Daniel, Laura; Ganusov, Vitaly V.; Zavala, Fidel; Ménard, Robert

    2013-01-01

    CD8+ T cells are specialized cells of the adaptive immune system capable of finding and eliminating pathogen-infected cells. To date it has not been possible to observe the destruction of any pathogen by CD8+ T cells in vivo. Here we demonstrate a technique for imaging the killing of liver-stage malaria parasites by CD8+ T cells bearing a transgenic T cell receptor specific for a parasite epitope. We report several features that have not been described by in vitro analysis of the process, chiefly the formation of large clusters of effector CD8+ T cells around infected hepatocytes. The formation of clusters requires antigen-specific CD8+ T cells and signaling by G protein-coupled receptors, although CD8+ T cells of unrelated specificity are also recruited to clusters. By combining mathematical modeling and data analysis, we suggest that formation of clusters is mainly driven by enhanced recruitment of T cells into larger clusters. We further show various death phenotypes of the parasite, which typically follow prolonged interactions between infected hepatocytes and CD8+ T cells. These findings stress the need for intravital imaging for dissecting the fine mechanisms of pathogen recognition and killing by CD8+ T cells. PMID:23674673

  7. Differentiation of Effector CD4 T Cell Populations*

    PubMed Central

    Zhu, Jinfang; Yamane, Hidehiro; Paul, William E.

    2012-01-01

    CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation. PMID:20192806

  8. Vav1 GEF activity is required for T cell mediated allograft rejection.

    PubMed

    Haubert, Dirk; Li, Jianping; Saveliev, Alexander; Calzascia, Thomas; Sutter, Esther; Metzler, Barbara; Kaiser, Daniel; Tybulewicz, Victor L J; Weckbecker, Gisbert

    2012-06-01

    The GDP exchange factor (GEF) Vav1 is a central signal transducer downstream of the T cell receptor and has been identified as a key factor for T cell activation in the context of allograft rejection. Vav1 has been shown to transduce signals both dependent and independent of its GEF function. The most promising approach to disrupt Vav1 activity by pharmacological inhibition would be to target its GEF function. However, the contribution of Vav1 GEF activity for allogeneic T cell activation has not been clarified yet. To address this question, we used knock-in mice bearing a mutated Vav1 with disrupted GEF activity but intact GEF-independent functions. T cells from these mice showed strongly reduced proliferation and activation in response to allogeneic stimulation. Furthermore, lack of Vav1 GEF activity strongly abrogated the in vivo expansion of T cells in a systemic graft-versus-host model. In a cardiac transplantation model, mice with disrupted Vav1 GEF activity show prolonged allograft survival. These findings demonstrate a strong requirement for Vav1 GEF activity for allogeneic T cell activation and graft rejection suggesting that disruption of Vav1 GEF activity alone is sufficient to induce significant immunosuppression. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Vav1 GEF activity is required for T cell mediated allograft rejection

    PubMed Central

    Haubert, Dirk; Li, Jianping; Saveliev, Alexander; Calzascia, Thomas; Sutter, Esther; Metzler, Barbara; Kaiser, Daniel; Tybulewicz, Victor L.J.; Weckbecker, Gisbert

    2012-01-01

    The GDP exchange factor (GEF) Vav1 is a central signal transducer downstream of the T cell receptor and has been identified as a key factor for T cell activation in the context of allograft rejection. Vav1 has been shown to transduce signals both dependent and independent of its GEF function. The most promising approach to disrupt Vav1 activity by pharmacological inhibition would be to target its GEF function. However, the contribution of Vav1 GEF activity for allogeneic T cell activation has not been clarified yet. To address this question, we used knock-in mice bearing a mutated Vav1 with disrupted GEF activity but intact GEF-independent functions. T cells from these mice showed strongly reduced proliferation and activation in response to allogeneic stimulation. Furthermore, lack of Vav1 GEF activity strongly abrogated the in vivo expansion of T cells in a systemic graft-versus-host model. In a cardiac transplantation model, mice with disrupted Vav1 GEF activity show prolonged allograft survival. These findings demonstrate a strong requirement for Vav1 GEF activity for allogeneic T cell activation and graft rejection suggesting that disruption of Vav1 GEF activity alone is sufficient to induce significant immunosuppression. PMID:22456277

  10. Sex differences in T cells in hypertension.

    PubMed

    Tipton, Ashlee J; Sullivan, Jennifer C

    2014-12-01

    Hypertension is a major risk factor for cardiovascular disease, stroke, and end-organ damage. There is a sex difference in blood pressure (BP) that begins in adolescence and continues into adulthood, in which men have a higher prevalence of hypertension compared with women until the sixth decade of life. Less than 50% of hypertensive adults in the United States manage to control their BP to recommended levels using current therapeutic options, and women are more likely than are men to have uncontrolled high BP. This, is despite the facts that more women compared with men are aware that they have hypertension and that women are more likely to seek treatment for the disease. Novel therapeutic targets need to be identified in both sexes to increase the percentage of hypertensive individuals with controlled BP. The purpose of this article was to review the available literature on the role of T cells in BP control in both sexes, and the potential therapeutic application/implications of targeting immune cells in hypertension. A search of PubMed was conducted to determine the impact of sex on T cell-mediated control of BP. The search terms included sex, gender, estrogen, testosterone, inflammation, T cells, T regulatory cells, Th17 cells, hypertension, and blood pressure. Additional data were included from our laboratory examinations of cytokine expression in the kidneys of male and female spontaneously hypertensive rats (SHRs) and differential gene expression in both the renal cortex and mesenteric arterial bed of male and female SHRs. There is a growing scientific literature base regarding the role of T cells in the pathogenesis of hypertension and BP control; however, the majority of these studies have been performed exclusively in males, despite the fact that both men and women develop hypertension. There is increasing evidence that although T cells also mediate BP in females, there are distinct differences in both the T-cell profile and the functional impact of sex

  11. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation

    PubMed Central

    Gerami-Nejad, Maryam; Kumamoto, Yosuke; Mohammed, Javed A.; Jarrett, Elizabeth; Drummond, Rebecca A.; Zurawski, Sandra M.; Zurawski, Gerard; Berman, Judith; Iwasaki, Akiko; Brown, Gordon D.; Kaplan, Daniel H.

    2015-01-01

    Summary Candida albicans is a dimorphic fungus responsible for chronic mucocutaneous and systemic infections. Mucocutaneous immunity to C. albicans requires T helper-17 (Th17) cell differentiation that is thought to depend on recognition of filamentous C. albicans. Systemic immunity is considered T cell independent. Using a murine skin infection model, we compared T helper cell responses to yeast and filamentous C. albicans, We found that only yeast induced Th17 cell responses through a mechanism that required Dectin-1 mediated expression of interleukin-6 (IL-6) by Langerhans cells. Filamentous forms induced Th1 without Th17 cell responses due to the absence of Dectin-1 ligation. Notably, Th17 cell responses provided protection against cutaneous infection while Th1 cell responses provided protection against systemic infection. Thus, C. albicans morphology drives distinct T helper cell responses that provide tissue specific protection. These findings provide insight into compartmentalization of Th responses, C. albicans pathogenesis and have critical implications for vaccine strategies. PMID:25680275

  12. Mutation in the Fas Pathway Impairs CD8+ T Cell Memory1

    PubMed Central

    Dudani, Renu; Russell, Marsha; van Faassen, Henk; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-γ and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections. PMID:18292515

  13. Research opportunities on immunocompetence in space

    NASA Technical Reports Server (NTRS)

    Beisel, W. R. (Editor); Talbot, J. M. (Editor)

    1985-01-01

    The most significant of the available data on the effects of space flight on immunocompetences and the potential operational and clinical significance of reported changes are as follows: (1) reduced postflight blastogenic response of peripheral lymphocytes from space crew members; (2) postflight neutrophilia persisting up to 7 days; (3) gingival inflammation of the Skylab astronauts; (4) postflight lymphocytopenia, eosinopenia, and monocytopenia; (5) modifications and shifts in the microflora of space crews and spacecraft; and (6) microbial contamination of cabin air and drinking water. These responses and data disclose numerous gaps in the knowledge that is essential for an adequate understanding of space-related changes in immunocompetence.

  14. N-acetyl cysteine inhibits lipopolysaccharide-mediated induction of interleukin-6 synthesis in MC3T3-E1 cells through the NF-kB signaling pathway.

    PubMed

    Guo, Ling; Zhang, Hui; Li, Wangyang; Zhan, Danting; Wang, Min

    2018-06-06

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic activity. Lipopolysaccharide (LPS) has been shown to regulate the expression of potent inflammatory factors, including TNF-α and IL-6. Currently, effective therapeutic treatments for bacteria-caused bone destruction are limited. N-acetyl cysteine (NAC) is an antioxidant small molecule that possibly modulates osteoblastic differentiation. However, whether NAC can affect the LPS-mediated reduction of IL-6 synthesis in MC3T3-E1 cells is still unknown. The aim of this study was to investigate the role of NAC in the LPS -mediated reduction of IL-6 synthesis by MC3T3-E1 cells and to explore the underlying molecular mechanisms. In addition, we aimed to determine the involvement of the NF-kB pathway in any changes in IL-6 expression observed in response to LPS and NAC. MC3T3-E1 cells (ATCC, CRL-2593) were cultured in α-minimum essential medium. Cells were stimulated using NAC or LPS at various concentrations. Cell proliferation was observed at multiple time points using a cell counting kit 8 (CCK-8). IL-6 mRNA expression and protein synthesis were determined using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses. NF-kB mRNA expression and protein synthesis was determined using qPCR and Western blots analyses. The results demonstrate that LPS induced IL-6 and NF-kB mRNA expression and protein synthesis in the cultured MC3T3-E1 cells. However, these effects were abolished following pre-treatment with NAC. Pretreatment with NAC (1 mmol/l) or BAY11-7082 (10 μmol/l) both significantly inhibited the NF-kB activity induced by LPS. NAC inhibits the LPS-mediated induction of IL-6 synthesis in MC3T3-E1 cells through the NF-kB pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. New insights of T cells in the pathogenesis of psoriasis

    PubMed Central

    Cai, Yihua; Fleming, Chris; Yan, Jun

    2012-01-01

    Psoriasis is one of the most common immune-mediated chronic, inflammatory skin diseases characterized by hyperproliferative keratinocytes and infiltration of T cells, dendritic cells, macrophages and neutrophils. Although the pathogenesis of psoriasis is not fully understood, there is ample evidence suggesting that the dysregulation of immune cells in the skin, particularly T cells, plays a critical role in psoriasis development. In this review, we mainly focus on the pathogenic T cells and discuss how these T cells are activated and involved in the disease pathogenesis. Newly identified ‘professional' IL-17-producing dermal γδ T cells and their potential role in psoriasis will also be included. Finally, we will briefly summarize the recent progress on the T cell and its related cytokine-targeted therapy for psoriasis treatment. PMID:22705915

  16. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    PubMed

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. © The Author(s) 2015.

  17. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms.

    PubMed

    Xiao, Sheng; Yosef, Nir; Yang, Jianfei; Wang, Yonghui; Zhou, Ling; Zhu, Chen; Wu, Chuan; Baloglu, Erkan; Schmidt, Darby; Ramesh, Radha; Lobera, Mercedes; Sundrud, Mark S; Tsai, Pei-Yun; Xiang, Zhijun; Wang, Jinsong; Xu, Yan; Lin, Xichen; Kretschmer, Karsten; Rahl, Peter B; Young, Richard A; Zhong, Zhong; Hafler, David A; Regev, Aviv; Ghosh, Shomir; Marson, Alexander; Kuchroo, Vijay K

    2014-04-17

    We identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator of Th17 cell signature genes and a direct repressor of signature genes from other T cell lineages; its strongest transcriptional effects are on cis-regulatory sites containing the RORα binding motif. RORγt is central in a densely interconnected regulatory network that shapes the balance of T cell differentiation. Here, the three inhibitors modulated the RORγt-dependent transcriptional network to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target loci, the other two inhibitors affected transcription predominantly without removing DNA binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. T cells raised against allogeneic HLA-A2/CD20 kill primary follicular lymphoma and acute lymphoblastic leukemia cells.

    PubMed

    Abrahamsen, Ingerid Weum; Kjellevoll, Synneva; Greve-Isdahl, Margrethe; Mensali, Nadia; Wälchli, Sébastien; Kumari, Shraddha; Loland, Beate Fossum; Egeland, Torstein; Kolstad, Arne; Olweus, Johanna

    2012-04-15

    T cells mediating a graft-versus-leukemia/lymphoma effects without causing graft-versus-host disease would greatly improve the safety and applicability of hematopoietic stem cell transplantation. We recently demonstrated that highly peptide- and HLA-specific T cells can readily be generated against allogeneic HLA-A*02:01 in complex with a peptide from the B cell-restricted protein CD20. Here, we show that such CD20-specific T cells can easily be induced from naïve precursors in cord blood, demonstrating that they do not represent cross-reactive memory cells. The cells displayed high avidity and mediated potent cytotoxic effects on cells from patients with the CD20(pos) B cell malignancies follicular lymphoma (FL) and acute lymphoblastic leukemia (ALL). However, the cytotoxicity was consistently lower for cells from two of the ALL patients. The ALL cells that were less efficiently killed did not display lower surface expression of CD20 or HLA-A*02:01, or mutations in the CD20 sequence. Peptide pulsing fully restored the levels of cytotoxicity, indicating that they are indeed susceptible to T cell-mediated killing. Adoptive transfer of CD20-specific T cells to an HLA-A*02:01(pos) patient requires an HLA-A*02:01(neg) , but otherwise HLA identical, donor. A search clarified that donors meeting these criteria can be readily identified even for patients with rare haplotypes. The results bear further promise for the clinical utility of CD20-specific T cells in B cell malignancies. Copyright © 2011 UICC.

  19. Within Host Evolution Selects for a Dominant Genotype of Mycobacterium tuberculosis while T Cells Increase Pathogen Genetic Diversity.

    PubMed

    Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D

    2016-12-01

    Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.

  20. Lmo2 expression defines tumor cell identity during T-cell leukemogenesis.

    PubMed

    García-Ramírez, Idoia; Bhatia, Sanil; Rodríguez-Hernández, Guillermo; González-Herrero, Inés; Walter, Carolin; González de Tena-Dávila, Sara; Parvin, Salma; Haas, Oskar; Woessmann, Wilhelm; Stanulla, Martin; Schrappe, Martin; Dugas, Martin; Natkunam, Yasodha; Orfao, Alberto; Domínguez, Verónica; Pintado, Belén; Blanco, Oscar; Alonso-López, Diego; De Las Rivas, Javier; Martín-Lorenzo, Alberto; Jiménez, Rafael; García Criado, Francisco Javier; García Cenador, María Begoña; Lossos, Izidore S; Vicente-Dueñas, Carolina; Borkhardt, Arndt; Hauer, Julia; Sánchez-García, Isidro

    2018-06-07

    The impact of LMO2 expression on cell lineage decisions during T-cell leukemogenesis remains largely elusive. Using genetic lineage tracing, we have explored the potential of LMO2 in dictating a T-cell malignant phenotype. We first initiated LMO2 expression in hematopoietic stem/progenitor cells and maintained its expression in all hematopoietic cells. These mice develop exclusively aggressive human-like T-ALL In order to uncover a potential exclusive reprogramming effect of LMO2 in murine hematopoietic stem/progenitor cells, we next showed that transient LMO2 expression is sufficient for oncogenic function and induction of T-ALL The resulting T-ALLs lacked LMO2 and its target-gene expression, and histologically, transcriptionally, and genetically similar to human LMO2-driven T-ALL We next found that during T-ALL development, secondary genomic alterations take place within the thymus. However, the permissiveness for development of T-ALL seems to be associated with wider windows of differentiation than previously appreciated. Restricted Cre-mediated activation of Lmo2 at different stages of B-cell development induces systematically and unexpectedly T-ALL that closely resembled those of their natural counterparts. Together, these results provide a novel paradigm for the generation of tumor T cells through reprogramming in vivo and could be relevant to improve the response of T-ALL to current therapies. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.