Sample records for t-cell receptor ligand

  1. Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering.

    PubMed

    Cai, Haogang; Muller, James; Depoil, David; Mayya, Viveka; Sheetz, Michael P; Dustin, Michael L; Wind, Shalom J

    2018-04-30

    Elucidating the rules for receptor triggering in cell-cell and cell-matrix contacts requires precise control of ligand positioning in three dimensions. Here, we use the T cell receptor (TCR) as a model and subject T cells to different geometric arrangements of ligands, using a nanofabricated single-molecule array platform. This comprises monovalent TCR ligands anchored to lithographically patterned nanoparticle clusters surrounded by mobile adhesion molecules on a supported lipid bilayer. The TCR ligand could be co-planar with the supported lipid bilayer (2D), excluding the CD45 transmembrane tyrosine phosphatase, or elevated by 10 nm on solid nanopedestals (3D), allowing closer access of CD45 to engaged TCR. The two configurations resulted in different T cell responses, depending on the lateral spacing between the ligands. These results identify the important contributions of lateral and axial components of ligand positioning and create a more complete foundation for receptor engineering for immunotherapy.

  2. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells

    PubMed Central

    Tone, Masahide; Tone, Yukiko; Adams, Elizabeth; Yates, Stephen F.; Frewin, Mark R.; Cobbold, Stephen P.; Waldmann, Herman

    2003-01-01

    Recently, agonist antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) (tumor necrosis factor receptor superfamily 18) have been shown to neutralize the suppressive activity of CD4+CD25+ regulatory T cells. It was anticipated that this would be the role of the physiological ligand. We have identified and expressed the gene for mouse GITR ligand and have confirmed that its interaction with GITR reverses suppression by CD4+CD25+ T cells. It also, however, provides a costimulatory signal for the antigen-driven proliferation of naïve T cells and polarized T helper 1 and T helper 2 clones. RT-PCR and mAb staining revealed mouse GITR ligand expression in dendritic cells, macrophages, and B cells. Expression was controlled by the transcription factor NF-1 and potentially by alternative splicing of mRNA destabilization sequences. PMID:14608036

  3. Mutation in Fas Ligand Impairs Maturation of Thymocytes Bearing Moderate Affinity T Cell Receptors

    PubMed Central

    Boursalian, Tamar E.; Fink, Pamela J.

    2003-01-01

    Fas ligand, best known as a death-inducer, is also a costimulatory molecule required for maximal proliferation of mature antigen-specific CD4+ and CD8+ T cells. We now extend the role of Fas ligand by showing that it can also influence thymocyte development. T cell maturation in some, but not all, strains of TCR transgenic mice is severely impaired in thymocytes expressing mutant Fas ligand incapable of interacting with Fas. Mutant Fas ligand inhibits neither negative selection nor death by neglect. Instead, it appears to modulate positive selection of thymocytes expressing both class I– and class II–restricted T cell receptors of moderate affinity for their positively selecting ligands. Fas ligand is therefore an inducer of death, a costimulator of peripheral T cell activation, and an accessory molecule in positive selection. PMID:12860933

  4. ɣδ T cell receptor ligands and modes of antigen recognition

    PubMed Central

    Champagne, Eric

    2011-01-01

    T lymphocytes expressing the γδ-type of T cell receptors for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs. PMID:21298486

  5. γδ T cell receptor ligands and modes of antigen recognition.

    PubMed

    Champagne, Eric

    2011-04-01

    T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.

  6. T Cells Engineered With Chimeric Antigen Receptors Targeting NKG2D Ligands Display Lethal Toxicity in Mice

    PubMed Central

    VanSeggelen, Heather; Hammill, Joanne A; Dvorkin-Gheva, Anna; Tantalo, Daniela GM; Kwiecien, Jacek M; Denisova, Galina F; Rabinovich, Brian; Wan, Yonghong; Bramson, Jonathan L

    2015-01-01

    Ligands for the NKG2D receptor are overexpressed on tumors, making them interesting immunotherapy targets. To assess the tumoricidal properties of T cells directed to attack NKG2D ligands, we engineered murine T cells with two distinct NKG2D-based chimeric antigen receptors (CARs): (i) a fusion between the NKG2D receptor and the CD3ζ chain and (ii) a conventional second-generation CAR, where the extracellular domain of NKG2D was fused to CD28 and CD3ζ. To enhance the CAR surface expression, we also engineered T cells to coexpress DAP10. In vitro functionality and surface expression levels of all three CARs was greater in BALB/c T cells than C57BL/6 T cells, indicating strain-specific differences. Upon adoptive transfer of NKG2D-CAR-T cells into syngeneic animals, we observed significant clinical toxicity resulting in morbidity and mortality. The severity of these toxicities varied between the CAR configurations and paralleled their in vitro NKG2D surface expression. BALB/c mice were more sensitive to these toxicities than C57BL/6 mice, consistent with the higher in vitro functionality of BALB/c T cells. Treatment with cyclophosphamide prior to adoptive transfer exacerbated the toxicity. We conclude that while NKG2D ligands may be useful targets for immunotherapy, the pursuit of NKG2D-based CAR-T cell therapies should be undertaken with caution. PMID:26122933

  7. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis

    PubMed Central

    Quintana, Francisco J.; Murugaiyan, Gopal; Farez, Mauricio F.; Mitsdoerffer, Meike; Tukpah, Ann-Marcia; Burns, Evan J.; Weiner, Howard L.

    2010-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders. PMID:21068375

  8. Binding of Soluble Natural Ligands to a Soluble Human T-Cell Receptor Fragment Produced in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Hilyard, Katherine L.; Reyburn, Hugh; Chung, Shan; Bell, John I.; Strominger, Jack L.

    1994-09-01

    An Escherichia coli expression system has been developed to produce milligram quantities of the variable domains of a human T-cell receptor from a cytotoxic T cell that recognizes the HLA-A2-influenza matrix peptide complex as a single polypeptide chain. The recombinant protein was purified by metal-chelate chromatography and then refolded in a redox buffer system. The refolded protein was shown to directly bind both Staphylococcus aureus enterotoxin B and the major histocompatibility complex protein-peptide complex using a BIAcore biosensor. Thus this preparation of a single-chain, variable-domain, T-cell receptor fragment can bind both of its natural ligands and some of it is therefore a functional fragment of the receptor molecule.

  9. Inhibition of endothelial receptor expression and of T-cell ligand activity by mycophenolate mofetil.

    PubMed

    Blaheta, R A; Leckel, K; Wittig, B; Zenker, D; Oppermann, E; Harder, S; Scholz, M; Weber, S; Schuldes, H; Encke, A; Markus, B H

    1998-12-01

    The novel immunosuppressive drug mycophenolate mofetil (CellCept, MMF) blocks DNA-synthesis by the inhibition of the enzyme inosine monophosphate dehydrogenase (IMDH). IMDH is also involved in the synthesis of adhesion receptors which are known to play an important role in the regulation of cell-cell contacts. Therefore, application of MMF might lead to a reduction of cellular infiltrates in the course of transplant rejection. To evaluate the therapeutic value of MMF, we investigated to what extent MMF blocks T-lymphocyte infiltration in vitro with regard to (a) adhesion to endothelial cells, (b) horizontal migration along these cells and (c) penetration through the endothelial cells. The results demonstrated a strong inhibition of both CD4+ and CD8+ T-cell adhesion and penetration by MMF. The ID50 value for CD4+ T-cell adhesion was calculated to be 0.03 microM and the ID50 value for CD4+ T-cell penetration 1.21 microM. MMF did not significantly influence the horizontal migration of T-lymphocytes along the human vascular endothelial cell (HUVEC) borders. FACS-analysis revealed a diminished E-selectin and P-selectin expression on endothelial cell membranes in the presence of MMF. Although MMF did not interfere with the synthesis of T-cell adhesion ligands, the binding activity of lymphocytic leucocyte function associated antigen 1 (LFA-1), very late antigen 4 (VLA-4) and PSGL-1 (P-selectin glycoprotein ligand 1) to immobilized intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin was impaired. Moreover, MMF prevented VLA-4 and PSGL-1 receptor accumulation on the membranes of T-cell pseudopodia. It can be concluded that MMF possesses potent infiltration blocking properties. MMF evoked down-regulation of specific endothelial membrane molecules and the loss of protein localization in the lymphocyte protrusions might be predominantly responsible for the observed blockade of cell adhesion and penetration.

  10. Expression Profiles of Ligands for Activating Natural Killer Cell Receptors on HIV Infected and Uninfected CD4⁺ T Cells.

    PubMed

    Tremblay-McLean, Alexandra; Bruneau, Julie; Lebouché, Bertrand; Lisovsky, Irene; Song, Rujun; Bernard, Nicole F

    2017-10-12

    Natural Killer (NK) cell responses to HIV-infected CD4 T cells (iCD4) depend on the integration of signals received through inhibitory (iNKR) and activating NK receptors (aNKR). iCD4 activate NK cells to inhibit HIV replication. HIV infection-dependent changes in the human leukocyte antigen (HLA) ligands for iNKR on iCD4 are well documented. By contrast, less is known regarding the HIV infection related changes in ligands for aNKR on iCD4. We examined the aNKR ligand profiles HIV p24⁺ HIV iCD4s that maintained cell surface CD4 (iCD4⁺), did not maintain CD4 (iCD4 - ) and uninfected CD4 (unCD4) T cells for expression of unique long (UL)-16 binding proteins-1 (ULBP-1), ULBP-2/5/6, ULBP-3, major histocompatibility complex (MHC) class 1-related (MIC)-A, MIC-B, CD48, CD80, CD86, CD112, CD155, Intercellular adhesion molecule (ICAM)-1, ICAM-2, HLA-E, HLA-F, HLA-A2, HLA-C, and the ligands to NKp30, NKp44, NKp46, and killer immunoglobulin-like receptor 3DS1 (KIR3DS1) by flow cytometry on CD4 T cells from 17 HIV-1 seronegative donors activated and infected with HIV. iCD4⁺ cells had higher expression of aNKR ligands than did unCD4. However, the expression of aNKR ligands on iCD4 where CD4 was downregulated (iCD4 - ) was similar to (ULBP-1, ULBP-2/5/6, ULBP-3, MIC-A, CD48, CD80, CD86 and CD155) or significantly lower than (MIC-B, CD112 and ICAM-2) what was observed on unCD4. Thus, HIV infection can be associated with increased expression of aNKR ligands or either baseline or lower than baseline levels of aNKR ligands, concomitantly with the HIV-mediated downregulation of cell surface CD4 on infected cells.

  11. Ligand activation of peroxisome proliferator-activated receptor-beta/delta inhibits cell proliferation in human HaCaT keratinocytes.

    PubMed

    Borland, Michael G; Foreman, Jennifer E; Girroir, Elizabeth E; Zolfaghari, Reza; Sharma, Arun K; Amin, Shantu; Gonzalez, Frank J; Ross, A Catharine; Peters, Jeffrey M

    2008-11-01

    Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-beta/delta induces terminal differentiation and attenuates cell growth, some studies suggest that PPARbeta/delta actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARbeta/delta and potentiates cell proliferation by activating PPARbeta/delta. The present study examined the effect of ligand activation of PPARbeta/delta on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARbeta/delta ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARbeta/delta ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARbeta/delta target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARbeta/delta-null primary mouse keratinocytes to determine the specific role of PPARbeta/delta in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARbeta/delta-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARbeta/delta inhibits keratinocyte proliferation through PPARbeta/delta-dependent mechanisms. In contrast, the observed inhibition of

  12. Purinergic receptor ligands stimulate pro-opiomelanocortin gene expression in AtT-20 pituitary corticotroph cells.

    PubMed

    Zhao, L-F; Iwasaki, Y; Oki, Y; Tsugita, M; Taguchi, T; Nishiyama, M; Takao, T; Kambayashi, M; Hashimoto, K

    2006-04-01

    Although recent studies have suggested that purinergic receptors are expressed in the anterior pituitary gland, their involvement in the regulation of pituitary hormone gene expression is not completely understood. In the present study, we examined the expression of purinergic receptors and the effects of purinergic receptor ligands on pro-opiomelanocortin (POMC) gene expression, in AtT20 mouse corticotroph cells. We identified the expression of most of the purinergic receptor subtypes (A1, A2, P2X1, 3-7, P2Y1, 2, 4) mRNAs, analysed by the reverse transcriptase-polymerase chain reaction. We also found that adenosine and ATP, two representative and endogenous agonists of A1-3 and P2X/P2Y receptors, respectively, stimulated the 5'-promoter activity of the POMC gene in a dose- and time-related manner. When these ligands were simultaneously used with corticotrophin-releasing hormone (CRH), effects that were more than additive were observed, suggesting an enhancing role of these compounds in CRH-mediated adrenocorticotrophic hormone (ACTH) synthesis. These ligands also stimulated the expression of transcription factors involved in the regulation of the POMC gene, but did not enhance ACTH secretion. Finally, the positive effect of adenosine as well as CRH was completely inhibited by the protein kinase A inhibitor H89, whereas that of ATP was not influenced, indicating that different intracellular signalling pathways mediate these effects. Altogether, our results suggest a stimulatory role for these purinergic receptor ligands in the regulation of POMC gene expression in corticotroph cells. Because adenosine and ATP are known to be produced within the pituitary gland, it is possible they may be acting in an autocrine/paracrine fashion.

  13. Rigid-body Ligand Recognition Drives Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) Receptor Triggering

    PubMed Central

    Yu, Chao; Sonnen, Andreas F.-P.; George, Roger; Dessailly, Benoit H.; Stagg, Loren J.; Evans, Edward J.; Orengo, Christine A.; Stuart, David I.; Ladbury, John E.; Ikemizu, Shinji; Gilbert, Robert J. C.; Davis, Simon J.

    2011-01-01

    The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced “triggering” of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s). PMID:21156796

  14. How chimeric antigen receptor design affects adoptive T cell therapy

    PubMed Central

    Gacerez, Albert T.; Arellano, Benjamine; Sentman, Charles L.

    2016-01-01

    Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR’s function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. PMID:27163336

  15. Ligand Activation of Peroxisome Proliferator-Activated Receptor-β/δ Inhibits Cell Proliferation in Human HaCaT KeratinocytesS

    PubMed Central

    Borland, Michael G.; Foreman, Jennifer E.; Girroir, Elizabeth E.; Zolfaghari, Reza; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Ross, A. Catharine; Peters, Jeffrey M.

    2009-01-01

    Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-β/δ induces terminal differentiation and attenuates cell growth, some studies suggest that PPARβ/δ actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARβ/δ and potentiates cell proliferation by activating PPARβ/δ. The present study examined the effect of ligand activation of PPARβ/δ on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARβ/δ ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARβ/δ ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARβ/δ target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARβ/δ-null primary mouse keratinocytes to determine the specific role of PPARβ/δ in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARβ/δ-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARβ/δ inhibits keratinocyte proliferation through PPARβ/δ-dependent mechanisms. In contrast, the observed inhibition of cell proliferation in mouse and human keratinocytes by RA is

  16. The role of missing killer cell immunoglobulin-like receptor ligands in T cell replete peripheral blood stem cell transplantation from HLA-identical siblings.

    PubMed

    Clausen, Johannes; Kircher, Brigitte; Auberger, Jutta; Schumacher, Petra; Ulmer, Hanno; Hetzenauer, Gabriele; Wolf, Dominik; Gastl, Günther; Nachbaur, David

    2010-02-01

    The contribution of natural killer (NK) cells to graft-versus-malignancy (GVM) effects following hematopoietic stem cell transplantation (HSCT) remains uncertain, particularly in the HLA-identical setting. A model considering missing HLA ligands to the donor's inhibitory killer cell immunoglobulin-like receptor (KIR), termed the missing KIR ligand model, has been established in T cell depleted bone marrow transplantation (BMT), but lacks validity in other cohorts with different treatment characteristics. We hypothesized that the impact of missing KIR ligands on relapse-free survival (RFS) and overall survival (OS) in T cell replete peripheral blood SCT (PBSCT) differs from that in the T cell depleted BMT setting, and retrospectively evaluated 100 consecutive, HLA-identical sibling transplantations for hematologic malignancies. In addition to KIR ligand status, we considered the donors' activating KIRs and grafted NK, T, and CD34(+) cell doses. Our findings demonstrate noninferiority for OS (P = .005) and RFS (P = .002) for the heterozygous HLA-C group KIR ligand status (C1/2; n = 47) compared with patients missing either C1 or C2 (n = 53). Similarly, OS (P = .031) and RFS (P = .034) of Bw4-positive patients was noninferior to that of patients missing a Bw4 ligand to KIR3DL1. By multivariate analysis, C1/2 heterozygous patients had a favorable risk ratio (RR) for relapse (RR = 0.28; P = .003), RFS (RR = 0.56; P = .046), and acute graft-versus-host disease grade II-IV (RR = 0.36; P = .05). Following reduced-intensity conditioning (RIC), but not standard-intensity conditioning, myeloablative (MA) transplantation, a grafted NK cell dose above the median (3.4 x 10(7)/kg) was associated with a lower risk of relapse (RR = 0.57; P = .003) and improved survival (RR = 0.78; P = .03). Overall, our findings support a role for NK alloreactivity in HLA-identical HSCT, but argue against a favorable impact of missing KIR ligands in the given setting. We conclude that the mechanism

  17. How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy.

    PubMed

    Gacerez, Albert T; Arellano, Benjamine; Sentman, Charles L

    2016-12-01

    Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Hobbs, J.; Vigues, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain amore » large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.« less

  19. The T cell antigen receptor: the Swiss army knife of the immune system

    PubMed Central

    Attaf, M; Legut, M; Cole, D K; Sewell, A K

    2015-01-01

    The mammalian T cell receptor (TCR) orchestrates immunity by responding to many billions of different ligands that it has never encountered before and cannot adapt to at the protein sequence level. This remarkable receptor exists in two main heterodimeric isoforms: αβ TCR and γδ TCR. The αβ TCR is expressed on the majority of peripheral T cells. Most αβ T cells recognize peptides, derived from degraded proteins, presented at the cell surface in molecular cradles called major histocompatibility complex (MHC) molecules. Recent reports have described other αβ T cell subsets. These ‘unconventional’ T cells bear TCRs that are capable of recognizing lipid ligands presented in the context of the MHC-like CD1 protein family or bacterial metabolites bound to the MHC-related protein 1 (MR1). γδ T cells constitute a minority of the T cell pool in human blood, but can represent up to half of total T cells in tissues such as the gut and skin. The identity of the preferred ligands for γδ T cells remains obscure, but it is now known that this receptor can also functionally engage CD1-lipid, or immunoglobulin (Ig) superfamily proteins called butyrophilins in the presence of pyrophosphate intermediates of bacterial lipid biosynthesis. Interactions between TCRs and these ligands allow the host to discriminate between self and non-self and co-ordinate an attack on the latter. Here, we describe how cells of the T lymphocyte lineage and their antigen receptors are generated and discuss the various modes of antigen recognition by these extraordinarily versatile receptors. PMID:25753381

  20. Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands

    NASA Astrophysics Data System (ADS)

    Li, Long; Hu, Jinglei; Xu, Guangkui; Song, Fan

    2018-01-01

    Cell-cell adhesion and the adhesion of cells to tissues and extracellular matrix, which are pivotal for immune response, tissue development, and cell locomotion, depend sensitively on the binding constant of receptor and ligand molecules anchored on the apposing surfaces. An important question remains of whether the immobilization of ligands affects the affinity of binding with cell adhesion receptors. We have investigated the adhesion of multicomponent membranes to a flat substrate coated with immobile ligands using Monte Carlo simulations of a statistical mesoscopic model with biologically relevant parameters. We find that the binding of the adhesion receptors to ligands immobilized on the substrate is strongly affected by the ligand distribution. In the case of ligand clusters, the receptor-ligand binding constant can be significantly enhanced due to the less translational entropy loss of lipid-raft domains in the model cell membranes upon the formation of additional complexes. For ligands randomly or uniformly immobilized on the substrate, the binding constant is rather decreased since the receptors localized in lipid-raft domains have to pay an energetic penalty in order to bind ligands. Our findings help to understand why cell-substrate adhesion experiments for measuring the impact of lipid rafts on the receptor-ligand interactions led to contradictory results.

  1. Tumor-targeting domains for chimeric antigen receptor T cells.

    PubMed

    Bezverbnaya, Ksenia; Mathews, Ashish; Sidhu, Jesse; Helsen, Christopher W; Bramson, Jonathan L

    2017-01-01

    Immunotherapy with chimeric antigen receptor (CAR) T cells has been advancing steadily in clinical trials. Since the ability of engineered T cells to recognize intended tumor-associated targets is crucial for the therapeutic success, antigen-binding domains play an important role in shaping T-cell responses. Single-chain antibody and T-cell receptor fragments, natural ligands, repeat proteins, combinations of the above and universal tag-specific domains have all been used in the antigen-binding moiety of chimeric receptors. Here we outline the advantages and disadvantages of different domains, discuss the concepts of affinity and specificity, and highlight the recent progress of each targeting strategy.

  2. HIGH-AFFINITY T CELL RECEPTOR DIFFERENTIATES COGNATE PEPTIDE-MHC AND ALTERED PEPTIDE LIGANDS WITH DISTINCT KINETICS AND THERMODYNAMICS

    PubMed Central

    Persaud, Stephen P.; Donermeyer, David L.; Weber, K. Scott; Kranz, David M.; Allen, Paul M.

    2010-01-01

    Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor. PMID:20334923

  3. Activation requirements and responses to TLR ligands in human CD4+ T cells: comparison of two T cell isolation techniques.

    PubMed

    Lancioni, Christina L; Thomas, Jeremy J; Rojas, Roxana E

    2009-05-15

    Direct regulation of T cell function by microbial ligands through Toll-like receptors (TLR) is an emerging area of T cell biology. Currently either immunomagnetic cell sorting (IMACS) or fluorescence-activated cell sorting (FACS), are utilized to isolate T-cell subsets for such studies. However, it is unknown to what extent differences in T cell purity between these isolation techniques influence T cell functional assays. We compared the purity, response to mitogen, activation requirements, and response to TLR ligands between human CD4(+) T cells isolated either by IMACS (IMACS-CD4(+)) or by IMACS followed by FACS (IMACS/FACS-CD4(+)). As expected, IMACS-CD4(+) were less pure than IMACS/FACS-CD4(+) (92.5%+/-1.4% versus 99.7%+/-0.2%, respectively). Consequently, IMACS-CD4(+) proliferated and produced cytokines in response to mitogen alone and had lower activation requirements compared to IMACS/FACS-CD4(+). In addition IMACS-CD4(+) but not IMACS/FACS-CD4(+) responses were upregulated by the TLR-4 ligand lipopolysaccharide (LPS). On the other hand, TLR-2 and TLR-5 engagement induced costimulation in both IMACS-CD4(+) and highly purified IMACS-/FACS-CD4(+). Altogether these results indicate that small differences in cell purity can significantly alter T cell responses to TLR ligands. This study stresses the importance of a stringent purification method when investigating the role of microbial ligands in T cell function.

  4. Coreceptors and Their Ligands in Epithelial γδ T Cell Biology

    PubMed Central

    Witherden, Deborah A.; Johnson, Margarete D.; Havran, Wendy L.

    2018-01-01

    Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αβ T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor–ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes. PMID:29686687

  5. Lack of T-cell receptor-induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-cell lymphoma cells from activation-induced cell death.

    PubMed

    Klemke, Claus-Detlev; Brenner, Dirk; Weiss, Eva-Maria; Schmidt, Marc; Leverkus, Martin; Gülow, Karsten; Krammer, Peter H

    2009-05-15

    Restimulation of previously activated T cells via the T-cell receptor (TCR) leads to activation-induced cell death (AICD), which is, at least in part, dependent on the death receptor CD95 (APO-1, FAS) and its natural ligand (CD95L). Here, we characterize cutaneous T-cell lymphoma (CTCL) cells (CTCL tumor cell lines and primary CTCL tumor cells from CTCL patients) as AICD resistant. We show that CTCL cells have elevated levels of the CD95-inhibitory protein cFLIP. However, cFLIP is not responsible for CTCL AICD resistance. Instead, our data suggest that reduced TCR-proximal signaling in CTCL cells is responsible for the observed AICD resistance. CTCL cells exhibit no PLC-gamma1 activity, resulting in an impaired Ca(2+)release and reduced generation of reactive oxygen species upon TCR stimulation. Ca(2+) and ROS production are crucial for up-regulation of CD95L and reconstitution of both signals resulted in AICD sensitivity of CTCL cells. In accordance with these data, CTCL tumor cells from patients with Sézary syndrome do not up-regulate CD95L upon TCR-stimulation and are therefore resistant to AICD. These results show a novel mechanism of AICD resistance in CTCL that could have future therapeutic implications to overcome apoptosis resistance in CTCL patients.

  6. Integration of T Cell Receptor, Notch and Cytokine Signals Programs in Mouse γδ T Cell Effector Differentiation.

    PubMed

    Zarin, Payam; In, Tracy S H; Chen, Edward L Y; Singh, Jastaranpreet; Wong, Gladys W; Mohtashami, Mahmood; Wiest, David L; Anderson, Michele K; Zúñiga-Pflücker, Juan Carlos

    2018-05-13

    γδ T-cells perform a wide range of tissue and disease specific functions that are dependent on the effector cytokines produced by these cells. However, the aggregate signals required for the development of interferon-γ (IFNγ) and interleukin-17 (IL-17) producing γδ T-cells remain unknown. Here, we define the cues involved in the functional programming of γδ T-cells, by examining the roles of T-cell receptor (TCR), Notch, and cytokine-receptor signaling. KN6 γδTCR-transduced Rag2 -/- T-cell progenitors were cultured on stromal cells variably expressing TCR and Notch ligands, supplemented with different cytokines. We found that distinct combinations of these signals are required to program IFNγ versus IL-17 producing γδ T cell subsets, with Notch and weak TCR ligands optimally enabling development of γδ17 cells in the presence of IL-1β, IL-21 and IL-23. Notably, these cytokines were also shown to be required for the intrathymic development of γδ17 cells. Together, this work provides a framework of how signals downstream of TCR, Notch and cytokine receptors integrate to program the effector function of IFNγ and IL-17 producing γδ T-cell subsets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy.

    PubMed

    Yeku, Oladapo O; Brentjens, Renier J

    2016-04-15

    Chimaeric antigen receptor (CAR) T-cells are T-cells that have been genetically modified to express an artificial construct consisting of a synthetic T-cell receptor (TCR) targeted to a predetermined antigen expressed on a tumour. Coupling the T-cell receptor to a CD3ζ signalling domain paved the way for first generation CAR T-cells that were efficacious against cluster of differentiation (CD)19-expressing B-cell malignancies. Optimization with additional signalling domains such as CD28 or 4-1BB in addition to CD3ζ provided T-cell activation signal 2 and further improved the efficacy and persistence of these second generation CAR T-cells. Third generation CAR T-cells which utilize two tandem costimulatory domains have also been reported. In this review, we discuss a different approach to optimization of CAR T-cells. Through additional genetic modifications, these resultant armored CAR T-cells are typically modified second generation CAR T-cells that have been further optimized to inducibly or constitutively secrete active cytokines or express ligands that further armor CAR T-cells to improve efficacy and persistence. The choice of the 'armor' agent is based on knowledge of the tumour microenvironment and the roles of other elements of the innate and adaptive immune system. Although there are several variants of armored CAR T-cells under investigation, here we focus on three unique approaches using interleukin-12 (IL-12), CD40L and 4-1BBL. These agents have been shown to further enhance CAR T-cell efficacy and persistence in the face of a hostile tumour microenvironment via different mechanisms. © 2016 Authors; published by Portland Press Limited.

  8. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy

    PubMed Central

    Yeku, Oladapo O.; Brentjens, Renier J.

    2017-01-01

    Chimaeric antigen receptor (CAR) T-cells are T-cells that have been genetically modified to express an artificial construct consisting of a synthetic T-cell receptor (TCR) targeted to a predetermined antigen expressed on a tumour. Coupling the T-cell receptor to a CD3ζ signalling domain paved the way for first generation CAR T-cells that were efficacious against cluster of differentiation (CD)19-expressing B-cell malignancies. Optimization with additional signalling domains such as CD28 or 4-1BB in addition to CD3ζ provided T-cell activation signal 2 and further improved the efficacy and persistence of these second generation CAR T-cells. Third generation CAR T-cells which utilize two tandem costimulatory domains have also been reported. In this review, we discuss a different approach to optimization of CAR T-cells. Through additional genetic modifications, these resultant armored CAR T-cells are typically modified second generation CAR T-cells that have been further optimized to inducibly or constitutively secrete active cytokines or express ligands that further armor CAR T-cells to improve efficacy and persistence. The choice of the ‘armor’ agent is based on knowledge of the tumour microenvironment and the roles of other elements of the innate and adaptive immune system. Although there are several variants of armored CAR T-cells under investigation, here we focus on three unique approaches using interleukin-12 (IL-12), CD40L and 4-1BBL. These agents have been shown to further enhance CAR T-cell efficacy and persistence in the face of a hostile tumour microenvironment via different mechanisms. PMID:27068948

  9. T Cell Calcium Signaling Regulation by the Co-Receptor CD5

    PubMed Central

    Freitas, Claudia M. Tellez

    2018-01-01

    Calcium influx is critical for T cell effector function and fate. T cells are activated when T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions between the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and enhance Ca2+ signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ signaling and inhibit T cell activation. Immune checkpoint therapies block inhibitory co-receptors, such as cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), to increase T cell Ca2+ signaling and promote T cell survival. Similar to CTLA-4 and PD-1, the co-receptor CD5 has been known to act as a negative regulator of T cell activation and to alter Ca2+ signaling and T cell function. Though much is known about the role of CD5 in B cells, recent research has expanded our understanding of CD5 function in T cells. Here we review these recent findings and discuss how our improved understanding of CD5 Ca2+ signaling regulation could be useful for basic and clinical research. PMID:29701673

  10. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy.

    PubMed

    Legut, Mateusz; Cole, David K; Sewell, Andrew K

    2015-11-01

    γδ T cells form an important part of adaptive immune responses against infections and malignant transformation. The molecular targets of human γδ T cell receptors (TCRs) remain largely unknown, but recent studies have confirmed the recognition of phosphorylated prenyl metabolites, lipids in complex with CD1 molecules and markers of cellular stress. All of these molecules are upregulated on various cancer types, highlighting the potential importance of the γδ T cell compartment in cancer immunosurveillance and paving the way for the use of γδ TCRs in cancer therapy. Ligand recognition by the γδ TCR often requires accessory/co-stimulatory stress molecules on both T cells and target cells; this cellular stress context therefore provides a failsafe against harmful self-reactivity. Unlike αβ T cells, γδ T cells recognise their targets irrespective of HLA haplotype and therefore offer exciting possibilities for off-the-shelf, pan-population cancer immunotherapies. Here, we present a review of known ligands of human γδ T cells and discuss the promise of harnessing these cells for cancer treatment.

  11. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    PubMed

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  12. Coevolution of T-cell receptors with MHC and non-MHC ligands

    PubMed Central

    Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.

    2015-01-01

    Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470

  13. Modeling Multivalent Ligand-Receptor Interactions with Steric Constraints on Configurations of Cell-Surface Receptor Aggregates

    PubMed Central

    Monine, Michael I.; Posner, Richard G.; Savage, Paul B.; Faeder, James R.; Hlavacek, William S.

    2010-01-01

    Abstract We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcεRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important. PMID:20085718

  14. An aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress the Th17 response in allergic rhinitis patients.

    PubMed

    Wei, Ping; Hu, Guo-Hua; Kang, Hou-Yong; Yao, Hong-Bing; Kou, Wei; Liu, Hong; Zhang, Cheng; Hong, Su-Ling

    2014-05-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). The aryl hydrocarbon receptor (AhR) exhibits strong immunomodulation potential via regulation of the differentiation of T lymphocytes and dendritic cells (DCs) after activation by its ligand, such as 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). The aim of this study was to analyze the effect of AhR on Th17 differentiation by investigating the action of ITE on DCs and CD4(+) T cells from patients with AR. In all, 26 AR patients and 12 healthy controls were included in this study. The expression of interleukin (IL)-1β, IL-6, IL-10, and IL-17 in the culture supernatant and the presence of Th17 cells in CD4(+) T cells and DC-CD4(+) T-cell co-culture system were measured before and after treatment with ITE. We show that ITE significantly induced cell secretion of IL-10 and inhibited IL-1β and IL-6 production in DCs, and promoted IL-10 production and suppressed IL-17 expression in CD4(+) T cells in vitro. It also suppressed the expansion of Th17 cells in vitro. Our work demonstrates that ITE acts on DCs and CD4(+) T cells to inhibit the Th17 response that suppresses AR; the AhR-DC-Th17 axis may be an important pathway in the treatment of AR. ITE, a nontoxic AhR ligand, attenuated the Th17 response; thus, it appears to be a promising therapeutic candidate for suppressing the inflammatory responses associated with AR.

  15. A T-Cell Receptor Breaks the Rules | Center for Cancer Research

    Cancer.gov

    Most mature T cells function immunologically when a T-cell receptor (TCR) located on the cell surface encounters and engages its ligand, a major histocompatability complex (MHC), which displays a specific part of a target protein called an antigen. This antigen-presenting complex is assembled from one of the dozen or so MHC molecules that every person inherits from their

  16. Increased accuracy of ligand sensing by receptor diffusion on cell surface

    NASA Astrophysics Data System (ADS)

    Aquino, Gerardo; Endres, Robert G.

    2010-10-01

    The physical limit with which a cell senses external ligand concentration corresponds to the perfect absorber, where all ligand particles are absorbed and overcounting of same ligand particles does not occur. Here, we analyze how the lateral diffusion of receptors on the cell membrane affects the accuracy of sensing ligand concentration. Specifically, we connect our modeling to neurotransmission in neural synapses where the diffusion of glutamate receptors is already known to refresh synaptic connections. We find that receptor diffusion indeed increases the accuracy of sensing for both the glutamate α -Amino-3-hydroxy-5-Methyl-4-isoxazolePropionic Acid (AMPA) and N -Methyl-D-aspartic Acid (NMDA) receptor, although the NMDA receptor is overall much noisier. We propose that the difference in accuracy of sensing of the two receptors can be linked to their different roles in neurotransmission. Specifically, the high accuracy in sensing glutamate is essential for the AMPA receptor to start membrane depolarization, while the NMDA receptor is believed to work in a second stage as a coincidence detector, involved in long-term potentiation and memory.

  17. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and specificity of ligand-receptor interactions.

    PubMed

    Reshetnyak, Andrey V; Murray, Phillip B; Shi, Xiarong; Mo, Elizabeth S; Mohanty, Jyotidarsini; Tome, Francisco; Bai, Hanwen; Gunel, Murat; Lax, Irit; Schlessinger, Joseph

    2015-12-29

    Receptor tyrosine kinases (RTKs) are a class of cell surface receptors that, upon ligand binding, stimulate a variety of critical cellular functions. The orphan receptor anaplastic lymphoma kinase (ALK) is one of very few RTKs that remain without a firmly established protein ligand. Here we present a novel cytokine, FAM150B, which we propose naming augmentor-α (AUG-α), as a ligand for ALK. AUG-α binds ALK with high affinity and activates ALK in cells with subnanomolar potency. Detailed binding experiments using cells expressing ALK or the related receptor leukocyte tyrosine kinase (LTK) demonstrate that AUG-α binds and robustly activates both ALK and LTK. We show that the previously established LTK ligand FAM150A (AUG-β) is specific for LTK and only weakly binds to ALK. Furthermore, expression of AUG-α stimulates transformation of NIH/3T3 cells expressing ALK, induces IL-3 independent growth of Ba/F3 cells expressing ALK, and is expressed in neuroblastoma, a cancer partly driven by ALK. These experiments reveal the hierarchy and specificity of two cytokines as ligands for ALK and LTK and set the stage for elucidating their roles in development and disease states.

  18. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy

    PubMed Central

    Dai, Hanren; Wang, Yao; Lu, Xuechun

    2016-01-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  19. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.

    PubMed

    Dai, Hanren; Wang, Yao; Lu, Xuechun; Han, Weidong

    2016-07-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. © The Author 2016. Published by Oxford University Press.

  20. Sympathetic neural signaling via the β2-adrenergic receptor suppresses T-cell receptor-mediated human and mouse CD8(+) T-cell effector function.

    PubMed

    Estrada, Leonardo D; Ağaç, Didem; Farrar, J David

    2016-08-01

    Postganglionic sympathetic neurons innervate secondary lymphoid organs and secrete norepinephrine (NE) as the primary neurotransmitter. NE binds and signals through five distinct members of the adrenergic receptor family. In this study, we show elevated expression of the β2-adrenergic receptor (ADRB2) on primary human CD8(+) effector memory T cells. Treatment of both human and murine CD8(+) T cells with NE decreased IFN-γ and TNF-α secretion and suppressed their cytolytic capacity in response to T-cell receptor (TCR) activation. The effects of NE were specifically reversed by β2-specific antagonists. Adrb2(-/-) CD8(+) T cells were completely resistant to the effects of NE. Further, the ADRB2-specific pharmacological ligand, albuterol, significantly suppressed effector functions in both human and mouse CD8(+) T cells. While both TCR activation and stimulation with IL-12 + IL-18 were able to induce inflammatory cytokine secretion, NE failed to suppress IFN-γ secretion in response to IL-12 + IL18. Finally, the long-acting ADRB2-specific agonist, salmeterol, markedly reduced the cytokine secretion capacity of CD8(+) T cells in response to infection with vesicular stomatitis virus. This study reveals a novel intrinsic role for ADRB2 signaling in CD8(+) T-cell function and underscores the novel role this pathway plays in adaptive T-cell responses to infection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pre-T Cell Receptors (Pre-TCRs) Leverage Vβ Complementarity Determining Regions (CDRs) and Hydrophobic Patch in Mechanosensing Thymic Self-ligands.

    PubMed

    Das, Dibyendu Kumar; Mallis, Robert J; Duke-Cohan, Jonathan S; Hussey, Rebecca E; Tetteh, Paul W; Hilton, Mark; Wagner, Gerhard; Lang, Matthew J; Reinherz, Ellis L

    2016-12-02

    The pre-T cell receptor (pre-TCR) is a pTα-β heterodimer functioning in early αβ T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level. Like the αβTCR, the pre-TCR is a mechanosensor undergoing force-based structural transitions that dynamically enhance bond lifetimes and exploiting allosteric control regulated via the Cβ FG loop region. The pre-TCR structural transitions exhibit greater reversibility than TCRαβ and ordered force-bond lifetime curves. Higher piconewton force requires binding through both complementarity determining region loops and hydrophobic Vβ patch apposition. This patch functions in the pre-TCR as a surrogate Vα domain, fostering ligand promiscuity to favor development of β chains with self-reactivity but is occluded by α subunit replacement of pTα upon αβTCR formation. At the double negative 3 thymocyte stage where the pre-TCR is first expressed, pre-TCR interaction with self-pMHC ligands imparts growth and survival advantages as revealed in thymic stromal cultures, imprinting fundamental self-reactivity in the T cell repertoire. Collectively, our data imply the existence of sequential mechanosensor αβTCR repertoire tuning via the pre-TCR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, Boryana N.; Jackson, Bryan L.; Petit, Rebecca S.

    2011-05-31

    T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. In this study, we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC contentmore » within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. In conclusion, this threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.« less

  3. CD95 co-stimulation blocks activation of naive T cells by inhibiting T cell receptor signaling

    PubMed Central

    Lindquist, Jonathan A.; Arhel, Nathalie; Felder, Edward; Karl, Sabine; Haas, Tobias L.; Fulda, Simone; Walczak, Henning; Kirchhoff, Frank; Debatin, Klaus-Michael

    2009-01-01

    CD95 is a multifunctional receptor that induces cell death or proliferation depending on the signal, cell type, and cellular context. Here, we describe a thus far unknown function of CD95 as a silencer of T cell activation. Naive human T cells triggered by antigen-presenting cells expressing a membrane-bound form of CD95 ligand (CD95L) or stimulated by anti-CD3 and -CD28 antibodies in the presence of recombinant CD95L had reduced activation and proliferation, whereas preactivated, CD95-sensitive T cells underwent apoptosis. Triggering of CD95 during T cell priming interfered with proximal T cell receptor signaling by inhibiting the recruitment of ζ-chain–associated protein of 70 kD, phospholipase-γ, and protein kinase C-θ into lipid rafts, thereby preventing their mutual tyrosine protein phosphorylation. Subsequently, Ca2+ mobilization and nuclear translocation of transcription factors NFAT, AP1, and NF-κB were strongly reduced, leading to impaired cytokine secretion. CD95-mediated inhibition of proliferation in naive T cells could not be reverted by the addition of exogenous interleukin-2 and T cells primed by CD95 co-stimulation remained partially unresponsive upon secondary T cell stimulation. HIV infection induced CD95L expression in primary human antigeen-presenting cells, and thereby suppressed T cell activation, suggesting that CD95/CD95L-mediated silencing of T cell activation represents a novel mechanism of immune evasion. PMID:19487421

  4. T cell costimulation by chemokine receptors.

    PubMed

    Molon, Barbara; Gri, Giorgia; Bettella, Monica; Gómez-Moutón, Concepción; Lanzavecchia, Antonio; Martínez-A, Carlos; Mañes, Santos; Viola, Antonella

    2005-05-01

    Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.

  5. Increased Accuracy of Ligand Sensing by Receptor Internalization and Lateral Receptor Diffusion

    NASA Astrophysics Data System (ADS)

    Aquino, Gerardo; Endres, Robert

    2010-03-01

    Many types of cells can sense external ligand concentrations with cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound receptors are often internalized, a process also known as receptor-mediated endocytosis. While internalization is involved in a vast number of important functions for the life of a cell, it was recently also suggested to increase the accuracy of sensing ligand as overcounting of the same ligand molecules is reduced. A similar role may be played by receptor diffusion om the cell membrane. Fast, lateral receptor diffusion is known to be relevant in neurotransmission initiated by release of neurotransmitter glutamate in the synaptic cleft between neurons. By binding ligand and removal by diffusion from the region of release of the neurotransmitter, diffusing receptors can be reasonably expected to reduce the local overcounting of the same ligand molecules in the region of signaling. By extending simple ligand-receptor models to out-of-equilibrium thermodynamics, we show that both receptor internalization and lateral diffusion increase the accuracy with which cells can measure ligand concentrations in the external environment. We confirm this with our model and give quantitative predictions for experimental parameters values. We give quantitative predictions, which compare favorably to experimental data of real receptors.

  6. Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells.

    PubMed

    Kishimoto, Seishi; Muramatsu, Mayumi; Gokoh, Maiko; Oka, Saori; Waku, Keizo; Sugiura, Takayuki

    2005-02-01

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays important physiological roles in several mammalian tissues and cells, yet the details remain ambiguous. In this study, we first examined the effects of 2-arachidonoylglycerol on the motility of human natural killer cells. We found that 2-arachidonoylglycerol induces the migration of KHYG-1 cells (a natural killer leukemia cell line) and human peripheral blood natural killer cells. The migration of natural killer cells induced by 2-arachidonoylglycerol was abolished by treating the cells with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the 2-arachidonoylglycerol-induced migration. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, did not induce the migration. Delta9-tetrahydrocannabinol, a major psychoactive constituent of marijuana, also failed to induce the migration; instead, the addition of delta9-tetrahydrocannabinol together with 2-arachidonoylglycerol abolished the migration induced by 2-arachidonoylglycerol. It is conceivable that the endogenous ligand for the cannabinoid receptor, that is, 2-arachidonoylglycerol, affects natural killer cell functions such as migration, thereby contributing to the host-defense mechanism against infectious viruses and tumor cells.

  7. Pre-T Cell Receptors (Pre-TCRs) Leverage Vβ Complementarity Determining Regions (CDRs) and Hydrophobic Patch in Mechanosensing Thymic Self-ligands*♦

    PubMed Central

    Das, Dibyendu Kumar; Mallis, Robert J.; Duke-Cohan, Jonathan S.; Hussey, Rebecca E.; Tetteh, Paul W.; Hilton, Mark; Wagner, Gerhard; Lang, Matthew J.; Reinherz, Ellis L.

    2016-01-01

    The pre-T cell receptor (pre-TCR) is a pTα-β heterodimer functioning in early αβ T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level. Like the αβTCR, the pre-TCR is a mechanosensor undergoing force-based structural transitions that dynamically enhance bond lifetimes and exploiting allosteric control regulated via the Cβ FG loop region. The pre-TCR structural transitions exhibit greater reversibility than TCRαβ and ordered force-bond lifetime curves. Higher piconewton force requires binding through both complementarity determining region loops and hydrophobic Vβ patch apposition. This patch functions in the pre-TCR as a surrogate Vα domain, fostering ligand promiscuity to favor development of β chains with self-reactivity but is occluded by α subunit replacement of pTα upon αβTCR formation. At the double negative 3 thymocyte stage where the pre-TCR is first expressed, pre-TCR interaction with self-pMHC ligands imparts growth and survival advantages as revealed in thymic stromal cultures, imprinting fundamental self-reactivity in the T cell repertoire. Collectively, our data imply the existence of sequential mechanosensor αβTCR repertoire tuning via the pre-TCR. PMID:27707880

  8. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    NASA Astrophysics Data System (ADS)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  9. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity.

    PubMed

    Nugent, Lindsey F; Shi, Guangpu; Vistica, Barbara P; Ogbeifun, Osato; Hinshaw, Samuel J H; Gery, Igal

    2013-11-13

    Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.

  10. An endogenous aryl hydrocarbon receptor (AhR) ligand, ITE induces regulatory T cells (Tregs) and ameliorates experimental colitis.

    PubMed

    Abron, Jessicca D; Singh, Narendra P; Mishra, Manoj K; Price, Robert L; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Singh, Udai P

    2018-04-19

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that affects millions of people with high morbidity and health-care cost. The precise etiology of IBD is unknown, but clear evidence suggests that intestinal inflammation is caused by an excessive immune response to mucosal antigens. Recent studies have shown that activation of the aryl hydrocarbon receptor (AhR) induces regulatory T cells (Tregs) and suppresses autoimmune diseases. In the current study, we investigated if nontoxic ligand of AhR, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), can attenuate dextran sodium sulphate (DSS)-induced colitis. Our studies demonstrated that in mice that received ITE treatment, in-vivo colitis pathogenesis, including a decrease in body weight, was significantly reversed along with the systemic and intestinal inflammatory cytokines. ITE increased the expression of Tregs in spleen, mesenteric lymph nodes (MLNs) and colon lamina propria lymphocytes (cLPL) of mice with colitis when compared to controls. This induction of Tregs was reversed by AhR antagonist treatment in-vitro. ITE treatment also increased dendritic cells (DCs; CD11c+) and decreased F4/80+ (macrophage) from the spleen, MLNs and cLPL in mice with colitis. ITE also reversed the systemic and intestinal frequency of CD4+T cells during colitis and suppressed inflammatory cytokines including IFN-γ, TNF-α, IL-17, IL-6 and IL-1 as well as induced IL-10 levels. These findings suggest that ITE attenuates colitis through induction of Tregs and reduction in inflammatory CD4+ T cells and cytokines. Thus, our work demonstrates that the nontoxic endogenous AhR ligand ITE, may serve as a therapeutic modality to treat IBD.

  11. Methods for quantifying T cell receptor binding affinities and thermodynamics

    PubMed Central

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  12. Multiparameter flow cytometry of a pH sensitive ligand bound to receptors and inside cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fay, S.P.; Habbersett, R.; Posner, R.G.

    1993-01-01

    Because fluoresceinated ligands of the neutrophil formyl peptide receptor can be protonated either upon binding to the receptor on the cell surface or in acidified intracellular compartments, the authors synthesized a ligand conjugated to the pH sensitive fluorescent probe SNAFL (CHO-Met-Leu-Phe-Phe-Lys-SNAFL). In the three laser flow cytometer at LANL, protonated dye is excited at 488 nm and emits at 530 nm; unprotonated dye is excited at 568 nm and emits at 650 nm. Detection at the isobestic and isoemissive points at 528 and 600 nm is used to keep track of variations in ligand concentration from sample to sample. Themore » SNAFL-ligand bound to HL-60 cells (which overexpress the formyl peptide receptor) was compared to the free ligand in solution over a pH range from 6.5 to 9.0. The results suggest that the ligand bound to cell surface receptors was protonated in the binding pocket, possibly by virtue of its proximity to His 90, based on sequence data. When the cells were raised from 4[degrees] to 37[degrees], they also observed a time-dependent acidification of the ligand, indicative of ligand-receptor processing beginning 3-4 minutes after internalization.« less

  13. Modulation of T-cell receptor functional sensitivity via the opposing actions of protein tyrosine kinases and phosphatases: a mathematical model.

    PubMed

    Szomolay, Barbara; van den Berg, Hugo A

    2014-12-01

    Combining receptor kinetics and stochastic modelling of receptor activation, we show that a T-cell can specifically augment its functional sensitivity to one particular peptide ligand while simultaneously decreasing its sensitivity to other ligands, by coordinating the expression levels of the co-receptor CD8 and the relative activities of kinases and phosphatases in the vicinity of the T-cell receptor (TCR). We propose that this focusable degeneracy of epitope recognition allows a TCR to have a wide range of potential ligands but be specifically sensitive to only one or a few of these at any one time, which resolves the paradox of how a relatively small number of clones (∼10(6)) can maintain the potential to respond to a vast space of ligands (∼20(9)) whilst avoiding auto-immunity. We validate the model against experimental data and predict shifts in functional sensitivity following a shift in the kinase/phosphatase balance (which could in principle be induced by experimental means). Moreover, we propose that in vivo, the T-cell gauges ligand quality by monitoring changes in TCR triggering rate concomitant with shifts in this balance, for instance as the immunological synapse matures.

  14. Engineering death receptor ligands for cancer therapy.

    PubMed

    Wajant, Harald; Gerspach, Jeannette; Pfizenmaier, Klaus

    2013-05-28

    CD95, TNFR1, TRAILR1 and TRAILR2 belong to a subgroup of TNF receptors which is characterized by a conserved cell death-inducing protein domain that connects these receptors to the apoptotic machinery of the cell. Activation of death receptors in malignant cells attracts increasing attention as a principle to fight cancer. Besides agonistic antibodies the major way to stimulate death receptors is the use of their naturally occurring "death ligands" CD95L, TNF and TRAIL. However, dependent from the concept followed to develop a death ligand-based therapy various limiting aspects have to be taken into consideration on the way to a "bedside" usable drug. Problems arise in particular from the cell associated transmembrane nature of the death ligands, the poor serum half life of the soluble fragments derived from the transmembrane ligands, the ubiquitous expression of the death receptors and the existence of additional non-death receptors of the death ligands. Here, we summarize strategies how these limitations can be overcome by genetic engineering. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. The Expression of the Beta Cell-Derived Autoimmune Ligand for the Killer Receptor Nkp46 Is Attenuated in Type 2 Diabetes

    PubMed Central

    Weitman, Efraim; Bachar, Etty; Suissa, Yaron; Cohen, Guy; Schyr, Rachel Ben-Haroush; Sabanay, Helena; Horwitz, Elad; Glaser, Benjamin; Dor, Yuval; Pribluda, Ariel; Hanna, Jacob H.

    2013-01-01

    NK cells rapidly kill tumor cells, virus infected cells and even self cells. This is mediated via killer receptors, among which NKp46 (NCR1 in mice) is prominent. We have recently demonstrated that in type 1 diabetes (T1D) NK cells accumulate in the diseased pancreas and that they manifest a hyporesponsive phenotype. In addition, we found that NKp46 recognizes an unknown ligand expressed by beta cells derived from humans and mice and that blocking of NKp46 activity prevented diabetes development. Here we investigated the properties of the unknown NKp46 ligand. We show that the NKp46 ligand is mainly located in insulin granules and that it is constitutively secreted. Following glucose stimulation the NKp46 ligand translocates to the cell membrane and its secretion decreases. We further demonstrate by using several modalities that the unknown NKp46 ligand is not insulin. Finally, we studied the expression of the NKp46 ligand in type 2 diabetes (T2D) using 3 different in vivo models and 2 species; mice and gerbils. We demonstrate that the expression of the NKp46 ligand is decreased in all models of T2D studied, suggesting that NKp46 is not involved in T2D. PMID:24009765

  16. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    NASA Astrophysics Data System (ADS)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  17. Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis.

    PubMed

    Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna

    2016-01-01

    Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas-FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas-FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas-FasL in regulating Th17 and Treg cells' functions, in the context of MS.

  18. Quantification of Ligand Binding to G-Protein Coupled Receptors on Cell Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Widdowson, Robert; Smith, David P.; Abell, Ben M.

    2012-01-01

    G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins. PMID:23049983

  19. Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis

    PubMed Central

    Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna

    2016-01-01

    Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS. PMID:27729910

  20. Biotin-transfer from a trifunctional crosslinker for identification of cell surface receptors of soluble protein ligands

    PubMed Central

    Tremblay, Tammy-Lynn; Hill, Jennifer J.

    2017-01-01

    Here we describe a novel crosslinker and its application as a biotin-transfer reagent to identify cell surface receptors of soluble protein ligands on live cells. This crosslinker contains three functional groups: an aldehyde-reactive aminooxy group, a sulfhydryl, and a biotin (ASB). It is readily synthesized via a 3-step addition reaction using standard solid-phase peptide synthesis methods and commercially available intermediates, allowing access to laboratories without specialized synthetic chemistry capabilities. For the biotin-transfer method, ASB is linked to a protein ligand through the sulfhydryl group in a two-step process that allows the introduction of a disulfide bond between the ligand and the crosslinker. Incubation of the labelled ligand with oxidized live cells leads to the formation of crosslinks with aldehyde-containing glycans on the cell surface receptor. Subsequent reduction of the disulfide bond results in biotin transfer from the ligand to the cell surface receptor. Protein biotinylation that is mediated by ligand binding to its receptor is differentiated from background biotinylation events by comparison with a similarly labelled control protein using comparative proteomic mass spectrometry to quantify streptavidin-bound proteins. Using this method, we successfully identified the cell surface receptors of a peptide hormone, a monoclonal antibody, and a single-domain antibody-Fc fusion construct. PMID:28422167

  1. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells

    PubMed Central

    2013-01-01

    Background The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases. PMID:23731667

  2. Cell-specific targeting by heterobivalent ligands.

    PubMed

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  3. Cell-Specific Targeting by Heterobivalent Ligands

    PubMed Central

    Josan, Jatinder S.; Handl, Heather L.; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M.; Vagner, Josef; Mash, Eugene A.; Hruby, Victor J.; Gillies, Robert J.

    2012-01-01

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach—to specifically target combinations of cell-surface receptors using heteromultivalent ligands (“receptor combination approach”). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle4, DPhe7]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20–50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH2. Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging. PMID:21639139

  4. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells.

    PubMed

    Jensen, Michael C; Riddell, Stanley R

    2014-01-01

    A major advance in adoptive T-cell therapy (ACT) is the ability to efficiently endow patient's T cells with reactivity for tumor antigens through the stable or regulated introduction of genes that encode high affinity tumor-targeting T-cell receptors (TCRs) or synthetic chimeric antigen receptors (CARs). Case reports and small series of patients treated with TCR- or CAR-modified T cells have shown durable responses in a subset of patients, particularly with B-cell malignancies treated with T cells modified to express a CAR that targets the CD19 molecule. However, many patients do not respond to therapy and serious on and off-target toxicities have been observed with TCR- and CAR-modified T cells. Thus, challenges remain to make ACT with gene-modified T cells a reproducibly effective and safe therapy and to expand the breadth of patients that can be treated to include those with common epithelial malignancies. This review discusses research topics in our laboratories that focus on the design and implementation of ACT with CAR-modified T cells. These include cell intrinsic properties of distinct T-cell subsets that may facilitate preparing therapeutic T-cell products of defined composition for reproducible efficacy and safety, the design of tumor targeting receptors that optimize signaling of T-cell effector functions and facilitate tracking of migration of CAR-modified T cells in vivo, and novel CAR designs that have alternative ligand binding domains or confer regulated function and/or survival of transduced T cells. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

    PubMed

    Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib

    2016-11-01

    To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. TCR tuning of T cell subsets.

    PubMed

    Cho, Jae-Ho; Sprent, Jonathan

    2018-05-01

    After selection in the thymus, the post-thymic T cell compartments comprise heterogenous subsets of naive and memory T cells that make continuous T cell receptor (TCR) contact with self-ligands bound to major histocompatibility complex (MHC) molecules. T cell recognition of self-MHC ligands elicits covert TCR signaling and is particularly important for controlling survival of naive T cells. Such tonic TCR signaling is tightly controlled and maintains the cells in a quiescent state to avoid autoimmunity. Here, we review how naive and memory T cells are differentially tuned and wired for TCR sensitivity to self and foreign ligands. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Universal Artificial Antigen Presenting Cells to Selectively Propagate T Cells Expressing Chimeric Antigen Receptor Independent of Specificity

    PubMed Central

    Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.

    2014-01-01

    T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354

  8. TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    PubMed Central

    2010-01-01

    Background Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis. PMID:20799941

  9. Direct Force Measurements of Receptor-Ligand Interactions on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.

  10. In vitro reconstitution of T cell receptor-mediated segregation of the CD45 phosphatase

    PubMed Central

    Carbone, Catherine B.; Fernandes, Ricardo A.; Hui, Enfu; Su, Xiaolei; Garcia, K. Christopher; Vale, Ronald D.

    2017-01-01

    T cell signaling initiates upon the binding of peptide-loaded MHC (pMHC) on an antigen-presenting cell to the T cell receptor (TCR) on a T cell. TCR phosphorylation in response to pMHC binding is accompanied by segregation of the transmembrane phosphatase CD45 away from TCR–pMHC complexes. The kinetic segregation hypothesis proposes that CD45 exclusion shifts the local kinase–phosphatase balance to favor TCR phosphorylation. Spatial partitioning may arise from the size difference between the large CD45 extracellular domain and the smaller TCR–pMHC complex, although parsing potential contributions of extracellular protein size, actin activity, and lipid domains is difficult in living cells. Here, we reconstitute segregation of CD45 from bound receptor–ligand pairs using purified proteins on model membranes. Using a model receptor–ligand pair (FRB–FKBP), we first test physical and computational predictions for protein organization at membrane interfaces. We then show that the TCR–pMHC interaction causes partial exclusion of CD45. Comparing two developmentally regulated isoforms of CD45, the larger RABC variant is excluded more rapidly and efficiently (∼50%) than the smaller R0 isoform (∼20%), suggesting that CD45 isotypes could regulate signaling thresholds in different T cell subtypes. Similar to the sensitivity of T cell signaling, TCR–pMHC interactions with Kds of ≤15 µM were needed to exclude CD45. We further show that the coreceptor PD-1 with its ligand PD-L1, immunotherapy targets that inhibit T cell signaling, also exclude CD45. These results demonstrate that the binding energies of physiological receptor–ligand pairs on the T cell are sufficient to create spatial organization at membrane–membrane interfaces. PMID:29042512

  11. Characterization and validation of fluorescent receptor ligands: a case study of the ionotropic serotonin receptor.

    PubMed

    Hovius, Ruud

    2013-01-01

    The application of fluorescent receptor ligands has become widespread, incited by two important reasons. "Seeing is believing"-it is possible to visualize in real time in live cells ligand-receptor interactions, and to locate the receptors with subcellular precision allowing one to follow, e.g., internalization of the ligand-receptor complex. The high sensitivity of photon detection permits observation of on the one hand receptor-ligand interactions on cells with low, native receptor abundance, and on the other of individual fluorophores unveiling the stochastic properties of single ligand-receptor complexes.The major bottlenecks that impede extensive use of fluorescent ligands are due to possible dramatic changes of the pharmacological properties of a ligand upon chemical modification and fluorophore conjugation, aggravated by the observation that different fluorophores can provoke very dissimilar effects. This makes it virtually impossible to predict beforehand which labelling strategy to use to produce a fluorescent ligand with the desired qualities.Here, we focus on the design, synthesis, and evaluation of a high-affinity fluorescent antagonist for the ionotropic serotonin type-3 receptor.

  12. Sensing multiple ligands with single receptor

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Nemenman, Ilya

    2015-03-01

    Cells use surface receptors to measure concentrations of external ligand molecules. Limits on the accuracy of such sensing are well-known for the scenario where concentration of one molecular species is being determined by one receptor [Endres]. However, in more realistic scenarios, a cognate (high-affinity) ligand competes with many non-cognate (low-affinity) ligands for binding to the receptor. We analyze effects of this competition on the accuracy of sensing. We show that maximum-likelihood statistical inference allows determination of concentrations of multiple ligands, cognate and non-cognate, by the same receptor concurrently. While it is unclear if traditional biochemical circuitry downstream of the receptor can implement such inference exactly, we show that an approximate inference can be performed by coupling the receptor to a kinetic proofreading cascade. We characterize the accuracy of such kinetic proofreading sensing in comparison to the exact maximum-likelihood approach. We acknowledge the support from the James S. McDonnell Foundation and the Human Frontier Science Program.

  13. Disturbances of Ligand Potency and Enhanced Degradation of the Human Glycine Receptor at Affected Positions G160 and T162 Originally Identified in Patients Suffering from Hyperekplexia

    PubMed Central

    Atak, Sinem; Langlhofer, Georg; Schaefer, Natascha; Kessler, Denise; Meiselbach, Heike; Delto, Carolyn; Schindelin, Hermann; Villmann, Carmen

    2015-01-01

    Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof. PMID:26733802

  14. The synthetic ligand of peroxisome proliferator-activated receptor-gamma ciglitazone affects human glioblastoma cell lines.

    PubMed

    Strakova, Nicol; Ehrmann, Jiri; Dzubak, Petr; Bouchal, Jan; Kolar, Zdenek

    2004-06-01

    Glioblastoma multiforme is the most common malignant brain tumor in adults, and it is among the most lethal of all cancers. Recent studies have shown that ligand activation of peroxisome proliferator-activated receptor (PPAR)-gamma can induce differentiation and inhibit proliferation of several cancer cells. In this study, we have investigated whether one PPARgamma ligand in particular, ciglitazone, inhibits cell viability and, additionally, whether it affects the cell cycle and apoptosis of human glioblastoma cell lines T98G, U-87 MG, A172, and U-118 MG. All glioblastoma cell lines were found to express PPARgamma protein, and following treatment with ciglitazone, localization was unchanged. Ciglitazone inhibited viability in a dose-dependent manner in all four tested glioblastoma cells after 24 h of treatment. Analysis of the cell cycle showed arrest in the G(1) phase and partial block in G(2)/M phase of the cell cycle. Cyclin D1 and cyclin B expression was decreased. Phosphorylation of Rb protein dropped as well. We found that ciglitazone was followed by increased expression of p27(Kip1) and p21(Waf1/Cip1). It also led to apoptosis induction: bax expression in T98G was elevated. Expression of the antiapoptotic protein bcl-2 was reduced in U-118 MG and U-87 MG and showed a slight decrease in A172 cells. Flow cytometry confirmed the induction of apoptosis. Moreover, PPARgamma ligand decreased telomerase activity in U-87 MG and U-118 MG cell lines. Our results demonstrate that ciglitazone inhibits the viability of human glioblastoma cell lines via induction of apoptosis; as a result, this ligand may offer potential new therapy for the treatment of central nervous system neoplasms.

  15. Receptor-mediated cell mechanosensing

    PubMed Central

    Chen, Yunfeng; Ju, Lining; Rushdi, Muaz; Ge, Chenghao; Zhu, Cheng

    2017-01-01

    Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. PMID:28954860

  16. T lymphocyte recruitment into renal cell carcinoma tissue: a role for chemokine receptors CXCR3, CXCR6, CCR5, and CCR6.

    PubMed

    Oldham, Kimberley A; Parsonage, Greg; Bhatt, Rupesh I; Wallace, D Michael A; Deshmukh, Nayneeta; Chaudhri, Shalini; Adams, David H; Lee, Steven P

    2012-02-01

    Evidence suggests that some patients with renal cell carcinoma (RCC) respond to immunomodulatory therapies that activate T lymphocytes. A prerequisite for effective T cell therapy is efficient targeting of effector T cells to the tumour site, yet the molecular basis of T cell recruitment to RCC is unknown. Furthermore, some T cells that naturally infiltrate this cancer are regulatory T cells (Tregs) that may suppress antitumour immune responses. Determine the mechanisms of effector and regulatory T cell recruitment to RCC to allow targeted therapy that promotes local anti-tumour immunity. Tumour-infiltrating and peripheral blood T cells were collected from 70 patients undergoing nephrectomy for RCC. T cells were analysed by multicolour flow cytometry for expression of 19 chemokine receptors and 7 adhesion molecules. Receptors that were expressed at higher levels on tumour-infiltrating lymphocytes (TILs) compared with matched peripheral blood lymphocytes (PBLs) were analysed further for their ability to mediate migration responses in TILs and for expression of corresponding ligands in tumour tissue. Three chemokine receptors-CCR5, CXCR3, and CXCR6-were significantly overexpressed on TILs compared with matched PBLs (n=16 cases) and were capable of promoting migration in vitro. Their corresponding ligands CCL4-5, CXCL9-11, and CXCL16 were all detected in RCC tissue. However, since they were present in all cases studied, it was not possible to correlate ligand expression with levels of T cell infiltration. Foxp3(+) Tregs were enriched within TILs compared with matched PBLs and expressed high levels of CCR5, CXCR3, and CXCR6, as well as CCR6, the ligand for which (CCL20) was detectable in RCC tissue. Our data support a role for CCR5, CXCR3, and CXCR6 in the selective recruitment of T cells into RCC tissue and, together with CCR6, in the recruitment of Tregs. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. Non-conventional Frizzled ligands and Wnt receptors.

    PubMed

    Hendrickx, Marijke; Leyns, Luc

    2008-05-01

    The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of beta-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate beta-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions.

  18. A T-Cell Receptor Breaks the Rules | Center for Cancer Research

    Cancer.gov

    Most mature T cells function immunologically when a T-cell receptor (TCR) located on the cell surface encounters and engages its ligand, a major histocompatability complex (MHC), which displays a specific part of a target protein called an antigen. This antigen-presenting complex is assembled from one of the dozen or so MHC molecules that every person inherits from their parents; and the antigen fragment, called a peptide epitope, is excised from one of thousands of possible proteins—originally part of an invading pathogen or a cancer cell—that T cells are capable of identifying and attacking. The framework of an MHC molecule holding a centrally displayed or “presented” peptide is what engages the TCR and triggers T-cell action. This role of MHC molecules presenting antigens to the TCR is a central tenet of immunology, with the fit between a TCR and the MHC framework actually “hardwired” into their three-dimensional structures.

  19. Expression of NK cell receptors on decidual T cells in human pregnancy.

    PubMed

    Tilburgs, Tamara; van der Mast, Barbara J; Nagtzaam, Nicole M A; Roelen, Dave L; Scherjon, Sicco A; Claas, Frans H J

    2009-06-01

    Specific receptors enable NK cells to discriminate between cells with normal expression of MHC class I and cells that have low or absent expression of MHC class I molecules. In addition to NK cells, these receptors can be expressed on T cell subsets, mainly on CD8+ T cells but also on gammadeltaTCR+ T cells and CD4+ T cells. Although the function of NK cell receptor expression on T cells is not completely understood, various studies have shown that they are involved in down regulation of T cell receptor (TCR)-mediated activation and influence effector functions, like cytotoxicity and cytokine production. The aim of this study was to analyze expression of NK cell receptors on peripheral blood and decidual T cells during human pregnancy using flow cytometry. We demonstrate that a proportion of decidual T cells express HLA-C specific killer immunoglobulin-like receptors (KIRs). Furthermore, a small proportion of decidual T cells express the HLA-E specific CD94-NKG2A inhibitory and CD94-NKG2C activating receptors. Decidual KIR+ and CD94-NKG2+ T cells mainly display a CD3+CD4-CD8- phenotype. However, decidual tissue also contains higher percentages of KIR and CD94-NKG2 expressing CD4+ and CD8+ T cells compared to peripheral blood. So far, the functional capacities of decidual T cells expressing the NK cell receptors are unknown but NK cell receptor expression on decidual T cells may provide an alternative means by which decidual T cells distinguish self (maternal) cells from allogeneic fetal cells, and act to modulate the decidual immune response.

  20. Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions

    PubMed Central

    Kueng, Hans J.; Manta, Calin; Haiderer, Daniela; Leb, Victoria M.; Schmetterer, Klaus G.; Neunkirchner, Alina; Byrne, Ruth A.; Scheinecker, Clemens; Steinberger, Peter; Seed, Brian; Pickl, Winfried F.

    2010-01-01

    We describe for the first time fluorescent virus-like particles decorated with biologically active mono- and multisubunit immune receptors of choice and the basic application of such fluorosomes (FSs) to visualize and target immune receptor-ligand interactions. For that purpose, human embryonic kidney (HEK)-293 cells were stably transfected with Moloney murine leukemia virus (MoMLV) matrix protein (MA) GFP fusion constructs. To produce FSs, interleukins (ILs), IL-receptors (IL-Rs), and costimulatory molecules were fused to the glycosyl phosphatidyl inositol anchor acceptor sequence of CD16b and coexpressed along with MoMLV group-specific antigen-polymerase (gag-pol) in MA::GFP+ HEK-293 cells. We show that IL-2 decorated but not control-decorated FSs specifically identify normal and malignant IL-2 receptor-positive (IL-2R+) lymphocytes by flow cytometry. In addition to cytokines and costimulatory molecules, FSs were also successfully decorated with the heterotrimeric IL-2Rs, allowing identification of IL-2+ target cells. Specificity of binding was proven by complete inhibition with nonlabeled, soluble ligands. Moreover, IL-2R FSs efficiently neutralized soluble IL-2 and thus induced unresponsiveness of T cells receiving full activation stimuli via T-cell antigen receptor and CD28. FSs are technically simple, multivalent tools for assessing and blocking mono- and multisubunit immune receptor-ligand interactions with natural constituents in a plasma membrane context.—Kueng, H. J., Manta, C., Haiderer, D., Leb, V. M., Schmetterer, K. G., Neunkirchner, A., Byrne, R. A., Scheinecker, C., Steinberger, P., Seed, B., Pickl, W. F. Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions. PMID:20056716

  1. A Cleavable N-Terminal Signal Peptide Promotes Widespread Olfactory Receptor Surface Expression in HEK293T Cells

    PubMed Central

    Shepard, Blythe D.; Natarajan, Niranjana; Protzko, Ryan J.; Acres, Omar W.; Pluznick, Jennifer L.

    2013-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies. PMID:23840901

  2. Covalent modification of proteins by ligands of steroid hormone receptors.

    PubMed Central

    Takahashi, N; Breitman, T R

    1992-01-01

    Retinoylation, acylation with retinoic acid (RA), is a covalent modification of proteins occurring in a variety of eukaryotic cell lines. In this study, we found that proteins in HL-60 cells were labeled by 17 beta-[3H]estradiol (E2), [3H]progesterone (Pg), 1 alpha,25-dihydroxy[3H]vitamin D3 [1,25(OH)2D3], [125I]triiodothyronine (T3), [125I]thyroxine (T4), and [3H]prostaglandin E2 (PGE2). All of these hormones, except PGE2, are ligands of the steroid hormone receptor family. Addition to the growth medium of 5 microM ketoconazole, an inhibitor of cytochrome P450-dependent enzymes, increased about 2-fold the labeling of proteins by T3, T4, 1,25(OH)2D3, and PGE2. In contrast, ketoconazole did not change markedly the extent of labeling by RA, E2, or Pg. Alkaline methanolysis, which cleaves ester bonds, released variable percentages of the radioactive ligands bound to protein. These values were about 80% for RA and PGE2; 50% for T3, T4, and Pg; and 20% for E2 and 1,25(OH)2D3. Treatment with thioether-cleavage reagents, iodomethane or Raney nickel catalyst, released < 2% of the covalently bound ligands. Two-dimensional polyacrylamide gel electrophoresis patterns of labeled proteins were unique for each ligand. Proteins of M(r) 47,000 and 51,000 were labeled by RA, E2, T3, and T4. These proteins had the same mobilities as RI and RII, the cAMP-binding regulatory subunits of type I and type II cAMP-dependent protein kinases. 1,25(OH)2D3 also bound to proteins of M(r) 47,000 and 51,000. However, these proteins had pI values different from those of RI or RII. These results suggest that some activities of ligands of the steroid hormone receptor family and of PGE2 may be mediated by their covalent modification of proteins. Images PMID:1438281

  3. Covalent modification of proteins by ligands of steroid hormone receptors.

    PubMed

    Takahashi, N; Breitman, T R

    1992-11-15

    Retinoylation, acylation with retinoic acid (RA), is a covalent modification of proteins occurring in a variety of eukaryotic cell lines. In this study, we found that proteins in HL-60 cells were labeled by 17 beta-[3H]estradiol (E2), [3H]progesterone (Pg), 1 alpha,25-dihydroxy[3H]vitamin D3 [1,25(OH)2D3], [125I]triiodothyronine (T3), [125I]thyroxine (T4), and [3H]prostaglandin E2 (PGE2). All of these hormones, except PGE2, are ligands of the steroid hormone receptor family. Addition to the growth medium of 5 microM ketoconazole, an inhibitor of cytochrome P450-dependent enzymes, increased about 2-fold the labeling of proteins by T3, T4, 1,25(OH)2D3, and PGE2. In contrast, ketoconazole did not change markedly the extent of labeling by RA, E2, or Pg. Alkaline methanolysis, which cleaves ester bonds, released variable percentages of the radioactive ligands bound to protein. These values were about 80% for RA and PGE2; 50% for T3, T4, and Pg; and 20% for E2 and 1,25(OH)2D3. Treatment with thioether-cleavage reagents, iodomethane or Raney nickel catalyst, released < 2% of the covalently bound ligands. Two-dimensional polyacrylamide gel electrophoresis patterns of labeled proteins were unique for each ligand. Proteins of M(r) 47,000 and 51,000 were labeled by RA, E2, T3, and T4. These proteins had the same mobilities as RI and RII, the cAMP-binding regulatory subunits of type I and type II cAMP-dependent protein kinases. 1,25(OH)2D3 also bound to proteins of M(r) 47,000 and 51,000. However, these proteins had pI values different from those of RI or RII. These results suggest that some activities of ligands of the steroid hormone receptor family and of PGE2 may be mediated by their covalent modification of proteins.

  4. Membrane-bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases.

    PubMed Central

    Brambilla, R; Schnapp, A; Casagranda, F; Labrador, J P; Bergemann, A D; Flanagan, J G; Pasquale, E B; Klein, R

    1995-01-01

    The Eph-related family of receptor tyrosine kinases consists of at least 13 members, several of which display distinctive expression patterns in the developing and adult nervous system. Recently, a small family of ligands, structurally related to the B61 protein, was identified. Binding of these ligands to Eph-related receptors did not, however, elicit measurable biological signals in cultured cells. In order to study functional interactions between B61-related ligands and Eph-related receptors, we constructed chimeric receptors, containing an Eph-related ectodomain and the cytoplasmic domain of the TrkB neurotrophin receptor. Expression and activation of such chimeric receptors in NIH 3T3 cells induced transformation in focus formation assays. Membrane-bound LERK2 ligand is shown to signal through three different Eph-related receptors, namely Cek5, Cek10 and Elk. LERK2, however, fails to interact functionally with the Cek9 receptor. Quantitative analysis including binding assays indicates that Cek10 is the preferred LERK2 receptor. Preliminary mutagenesis of the LERK2 protein suggests a negative regulatory role for its cytoplasmic domain in LERK2 signaling. Images PMID:7621826

  5. Drug Hypersensitivity: How Drugs Stimulate T Cells via Pharmacological Interaction with Immune Receptors.

    PubMed

    Pichler, Werner J; Adam, Jacqueline; Watkins, Stephen; Wuillemin, Natascha; Yun, James; Yerly, Daniel

    2015-01-01

    Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions. © 2015 The Author(s) Published by S. Karger AG, Basel.

  6. Positive and Negative Selection in Transgenic Mice Expressing a T-Cell Receptor Specific for Influenza Nucleoprotein and Endogenous Superantigen

    PubMed Central

    Mamalaki, Clio; Elliott, James; Norton, Trisha; Yannoutsos, Nicholas; Townsend, Alain R.; Chandler, Phillip; Simpson, Elizabeth

    1993-01-01

    A transgenic mouse was generated expressing on most (>80%) of thymocytes and peripheral T cells a T-cell receptor isolated from a cytotoxic T-cell clone (F5). This clone is CD8+ and recognizes αα366-374 of the nucleoprotein (NP 366-374) of influenza virus (A/NT/60/68), in the context of Class ,MHC Db (Townsend et al., 1986). The receptor utilizes the Vβ11 and Vα4 gene segments for the β chain and α chain, respectively (Palmer et al., 1989). The usage of Vβ11 makes this TcR reactive to Class II IE molecules and an endogenous ligand recently identified as a product of the endogenous mammary tumour viruses (Mtv) 8, 9, and 11 (Dyson et al., 1991). Here we report the development of F5 transgenic T cells and their function in mice of the appropriate MHC (C57BL/10 H-2b, IE-) or in mice expressing Class II MHC IE (e.g., CBA/Ca H-2k and BALB/c H-2d) and the endogenous Mtv ligands. Positive selection of CD8+ T cells expressing the Vβ11 is seen in C57BL/10 transgenic mice (H-2b). Peripheral T cells from these mice are capable of killing target cells in an antigen-dependent manner after a period of in vitro culture with IL-2. In the presence of Class II MHC IE molecules and the endogenous Mtv ligand, most of the single-positive cells carrying the transgenic T-cell receptor are absent in the thymus. Unexpectedly, CD8+ peripheral T-cells in these (H-2k or H-2d) F5 mice are predominantly Vβ11 positive and also have the capacity to kill targets in an antigen-dependent manner. This is true even following backcrossing of the F5 TcR transgene to H-2d scid/scid mice, in which functional rearrangement of endogenous TcR alpha- and beta-chain genes is impaired. PMID:8281031

  7. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor.

    PubMed

    Freeman, Spencer A; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E; Wong, Harikesh S; Abraham, Libin; Graves, Marcia L; Coombs, Daniel; Roskelley, Calvin D; Das, Raibatak; Grinstein, Sergio; Gold, Michael R

    2015-02-03

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection.

  8. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

    PubMed Central

    Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.

    2015-01-01

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899

  9. The Activating Human NK Cell Receptor KIR2DS2 Recognizes a β2-Microglobulin-Independent Ligand on Cancer Cells.

    PubMed

    Thiruchelvam-Kyle, Lavanya; Hoelsbrekken, Sigurd E; Saether, Per C; Bjørnsen, Elisabeth Gyllensten; Pende, Daniela; Fossum, Sigbjørn; Daws, Michael R; Dissen, Erik

    2017-04-01

    The functions of activating members of the killer cell Ig-like receptor (KIR) family are not fully understood, as the ligands for these receptors are largely unidentified. In this study, we report that KIR2DS2 reporter cells recognize a ligand expressed by cancer cell lines. All cancer targets recognized by KIR2DS2 were also recognized by KIR2DL2 and KIR2DL3 reporters. Trogocytosis of membrane proteins from the cancer targets was observed with responding reporter cells, indicating the formation of KIR2DS2 ligand-specific immunological synapses. HLA-C typing of target cells showed that KIR2DS2 recognition was independent of the HLA C1 or C2 group, whereas targets cells that were only recognized by KIR2DL3 expressed C1 group alleles. Anti-HLA class I Abs blocked KIR2DL3 responses toward C1-expressing targets, but they did not block KIR2DS2 recognition of cancer cells. Small interfering RNA knockdown of β 2 -microglobulin reduced the expression of class I H chain on the cancer targets by >97%, but it did not reduce the KIR2DS2 reporter responses, indicating a β 2 -microglobulin-independent ligand for KIR2DS2. Importantly, KIR2DL3 responses toward some KIR2DS2 ligand-expressing cells were also undiminished after β 2 -microglobulin knockdown, and they were not blocked by anti-HLA class I Abs, suggesting that KIR2DL3, in addition to the traditional HLA-C ligands, can bind to the same β 2 -microglobulin-independent ligand as KIR2DS2. These observations indicate the existence of a novel, presently uncharacterized ligand for the activating NK cell receptor KIR2DS2. Molecular identification of this ligand may lead to improved KIR-HLA mismatching in hematopoietic stem cell transplantation therapy for leukemia and new, more specific NK cell-based cancer therapies. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  11. T-cell receptor transfer into human T cells with ecotropic retroviral vectors.

    PubMed

    Koste, L; Beissert, T; Hoff, H; Pretsch, L; Türeci, Ö; Sahin, U

    2014-05-01

    Adoptive T-cell transfer for cancer immunotherapy requires genetic modification of T cells with recombinant T-cell receptors (TCRs). Amphotropic retroviral vectors (RVs) used for TCR transduction for this purpose are considered safe in principle. Despite this, TCR-coding and packaging vectors could theoretically recombine to produce replication competent vectors (RCVs), and transduced T-cell preparations must be proven free of RCV. To eliminate the need for RCV testing, we transduced human T cells with ecotropic RVs so potential RCV would be non-infectious for human cells. We show that transfection of synthetic messenger RNA encoding murine cationic amino-acid transporter 1 (mCAT-1), the receptor for murine retroviruses, enables efficient transient ecotropic transduction of human T cells. mCAT-1-dependent transduction was more efficient than amphotropic transduction performed in parallel, and preferentially targeted naive T cells. Moreover, we demonstrate that ecotropic TCR transduction results in antigen-specific restimulation of primary human T cells. Thus, ecotropic RVs represent a versatile, safe and potent tool to prepare T cells for the adoptive transfer.

  12. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition

    PubMed Central

    Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily

    2016-01-01

    B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040

  13. Sub-millisecond ligand probing of cell receptors with multiple solution exchange

    PubMed Central

    Sylantyev, Sergiy; Rusakov, Dmitri A

    2013-01-01

    The accurate knowledge of receptor kinetics is crucial to our understanding of cell signal transduction in general and neural function in particular. The classical technique of probing membrane receptors on a millisecond scale involves placing a recording micropipette with a membrane patch in front of a double-barrel (θ-glass) application pipette mounted on a piezo actuator. Driven by electric pulses, the actuator can rapidly shift the θ-glass pipette tip, thus exposing the target receptors to alternating ligand solutions. However, membrane patches survive for only a few minutes, thus normally restricting such experiments to a single-application protocol. In order to overcome this deficiency, we have introduced pressurized supply microcircuits in the θ-glass channels, thus enabling repeated replacement of application solutions within 10–15 s. this protocol, which has been validated in our recent studies and takes 20–60 min to implement, allows the characterization of ligand-receptor interactions with high sensitivity, thereby also enabling a powerful paired-sample statistical design. PMID:23744290

  14. Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors

    PubMed Central

    Marini, Pietro; Cascio, Maria-Grazia; King, Angela; Pertwee, Roger G; Ross, Ruth A

    2013-01-01

    Background and Purpose Although cannabinoid CB2 receptor ligands have been widely characterized in recombinant systems in vitro, little pharmacological characterization has been performed in tissues natively expressing CB2 receptors. The aim of this study was to compare the pharmacology of CB2 receptor ligands in tissue natively expressing CB2 receptors (human, rat and mouse spleen) and hCB2-transfected CHO cells. Experimental Approach We tested the ability of well-known cannabinoid CB2 receptor ligands to stimulate or inhibit [35S]GTPγS binding to mouse, rat and human spleen membranes and to hCB2-transfected CHO cell membranes. cAMP assays were also performed in hCB2-CHO cells. Key Results The data presented demonstrate that: (i) CP 55,940, WIN 55,212-2 and JWH 133 behave as CB2 receptor full agonists both in spleen and hCB2-CHO cells, in both [35S]GTPγS and cAMP assays; (ii) JWH 015 behaves as a low-efficacy agonist in spleen as well as in hCB2-CHO cells when tested in the [35S]GTPγS assay, while it displays full agonism when tested in the cAMP assay using hCB2-CHO cells; (iii) (R)-AM 1241 and GW 405833 behave as agonists in the [35S]GTPγS assay using spleen, instead it behaves as a low-efficacy inverse agonist in hCB2-CHO cells; and (iv) SR 144528, AM 630 and JTE 907 behave as CB2 receptor inverse agonists in all the tissues. Conclusion and Implications Our results demonstrate that CB2 receptor ligands can display differential pharmacology when assays are conducted in tissues that natively express CB2 receptors and imply that conclusions from recombinant CB2 receptors should be treated with caution. PMID:23711022

  15. Tumor dormancy and cell signaling: anti-mu-induced apoptosis in human B-lymphoma cells is not caused by an APO-1-APO-1 ligand interaction.

    PubMed Central

    Racila, E; Hsueh, R; Marches, R; Tucker, T F; Krammer, P H; Scheuermann, R H; Uhr, J W

    1996-01-01

    Signal transduction initiated by crosslinking of antigen-specific receptors on T- and B-lymphoma cells induces apoptosis. In T-lymphoma cells, such crosslinking results in upregulation of the APO-1 ligand, which then interacts with induced or constitutively expressed APO-1, thereby triggering apoptosis. Here we show that crosslinking the membrane immunoglobulin on human lymphoma cells (Daudi) (that constitutively express APO-1) does not induce synthesis of APO-1 ligand. Further, a noncytotoxic fragment of anti-APO-1 antibody that blocks T-cell-receptor-mediated apoptosis in T-lymphoma cells does not block anti-mu-induced apoptosis. Hence, in B-lymphoma cells, apoptosis induced by signaling via membrane IgM is not mediated by the APO-1 ligand. Images Fig. 2 Fig. 3 PMID:8700902

  16. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens.

    PubMed

    Dörlich, René M; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G Ulrich

    2015-05-07

    Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.

  17. Recipient-donor KIR ligand matching prevents CMV reactivation post-haploidentical T cell-replete transplantation.

    PubMed

    Zhao, Xiang-Yu; Luo, Xue-Yi; Yu, Xing-Xing; Zhao, Xiao-Su; Han, Ting-Ting; Chang, Ying-Jun; Huo, Ming-Rui; Xu, Lan-Ping; Zhang, Xiao-Hui; Liu, Kai-Yan; Li, Dan; Jiang, Zheng-Fan; Huang, Xiao-Jun

    2017-06-01

    Licensed natural killer (NK) cells have been demonstrated to have anti-cytomegalovirus (CMV) activity. We prospectively analysed the human leucocyte antigen typing of donor-recipient pairs and the killer cell immunoglobulin-like receptor (KIR) typing of donors for 180 leukaemia patients to assess the predictive roles of licensed NK cells on CMV reactivation post-T-cell-replete haploidentical stem cell transplantation. Multivariate analysis showed that donor-recipient KIR ligand graft-versus-host or host-versus-graft direction mismatch was associated with increased refractory CMV infection (Hazard ratio = 2·556, 95% confidence interval, 1·377-4·744, P = 0·003) post-transplantation. Donor-recipient KIR ligand matching decreased CMV reactivation [51·65% (46·67, 56·62%) vs. 75·28% (70·87, 79·69%), P = 0·012], refractory CMV infection [17·58% (13·77, 21·40%) vs. 35·96% (31·09, 40·82%), P = 0·004] and CMV disease [3·30% (1·51, 5·08%) vs. 11·24% (8·04, 14·43%), P = 0·024] by day 100 post-transplantation. In addition, the percentage of γ-interferon expression on donor-derived NK cells was significantly higher in the recipients among the recipient-donor pairs with a KIR ligand match compared with that in the recipients among the pairs with a KIR ligand graft-versus-host or host-versus-graft direction mismatch on days 30 and 100 post-transplantation (P = 0·036 and 0·047, respectively). These findings have suggested that donor-recipient KIR ligand matching might promote the NK cell licensing process, thereby increasing NK cell-mediated protection against CMV reactivation. © 2017 John Wiley & Sons Ltd.

  18. Toxic ligand conjugates as tools in the study of receptor-ligand interactions.

    PubMed

    Herschman, H R; Simpson, D L; Cawley, D B

    1982-01-01

    We have constructed hybrid proteins in which the toxic A chains of ricin or diptheria toxin have been linked to either asialofetuin, fetuin, or epidermal growth factor (EGF). Both ASF-RTA and ASF-DTA are potent toxins on cultured rat hepatocytes, cells that display the asialoglycoprotein receptor. Toxicity of these two compounds is restricted to hepatocytes and can be blocked by asialoglycoproteins but not the native glycoproteins or asialoagalactoglycoprotein derivatives, indicating that the toxicity of the conjugates is mediated by the hepatic asialoglycoprotein receptor. The EGF-RTA conjugate is an extremely potent toxin on cells that can bind the hormone, but is only poorly effective on cells that are unable to bind EGF. The EGF-DTA conjugate, in contrast, is unable to kill 3T3 cells and is at least two orders of magnitude less effective than EGF-RTA on A431 cells, a cell line with 1-2 X 10(6) EGF receptors per cell. However, when EGF-RTA and EGF-DTA were tested on primary liver hepatocyte cultures, which were susceptible to both ASF-RTA and ASF-DTA, both EGF conjugates were potent toxins. Sensitivity of the hepatocyte cultures to ricin toxicity increases slightly during a 52-hr culture period. In contrast, sensitivity to EGF-RTA and ASF-RTA decline dramatically during this period. Receptors for both ligands remain plentiful on the cell surface during this time.

  19. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    PubMed Central

    Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.

    2016-01-01

    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389

  20. Modeling Conformational Transitions and Energetics of Ligand Binding with the Glutamate Receptor Ligand Binding Domain

    NASA Astrophysics Data System (ADS)

    Kurnikova, Maria

    2009-03-01

    Understanding of protein motion and energetics of conformational transitions is crucial to understanding protein function. The glutamate receptor ligand binding domain (GluR2 S1S2) is a two lobe protein, which binds ligand at the interface of two lobes and undergoes conformational transition. The cleft closure conformational transition of S1S2 has been implicated in gating of the ion channel formed by the transmembrane domain of the receptor. In this study we present a composite multi-faceted theoretical analysis of the detailed mechanism of this conformational transition based on rigid cluster decomposition of the protein structure [1] and identifying hydrogen bonds that are responsible for stabilizing the closed conformation [2]. Free energy of the protein reorganization upon ligand binding was calculated using combined Thermodynamic Integration (TI) and Umbrella Sampling (US) simulations [3]. Ligand -- protein interactions in the binding cleft were analyzed using Molecular Dynamics, continuum electrostatics and QM/MM models [4]. All model calculations compare well with corresponding experimental measurements. [4pt] [1] Protein Flexibility using Constraints from Molecular Dynamics Simulations T. Mamonova, B. Hespenheide, R. Straub, M. F. Thorpe, M. G. Kurnikova , Phys. Biol., 2, S137 (2005)[0pt] [2] Theoretical Study of the Glutamate Receptor Ligand Binding Domain Flexibility and Conformational Reorganization T. Mamonova, K. Speranskiy, and M. Kurnikova , Prot.: Struct., Func., Bioinf., 73,656 (2008)[0pt] [3] Energetics of the cleft closing transition and glutamate binding in the Glutamate Receptor ligand Binding Domain T. Mamonova, M. Yonkunas, and M. Kurnikova Biochemistry 47, 11077 (2008)[0pt] [4] On the Binding Determinants of the Glutamate Agonist with the Glutamate Receptor Ligand Binding Domain K. Speranskiy and M. Kurnikova Biochemistry 44, 11208 (2005)

  1. Suppressive effects of a novel CC chemokine receptor 4 antagonist on Th2 cell trafficking in ligand- and antigen-induced mouse models.

    PubMed

    Komiya, Takaki; Sugiyama, Tetsuya; Takeda, Kazuhiko; Watanabe, Noriki; Imai, Masamichi; Kokubo, Masaya; Tokuda, Natsuko; Ochiai, Hiroshi; Habashita, Hiromu; Shibayama, Shiro

    2013-11-15

    CC chemokine receptor 4 (CCR4) has been implicated as a preferential marker for T helper type 2 (Th2) cells, and is believed to be involved in the pathology of allergic diseases by controlling Th2 cell trafficking into inflamed tissues. The objective of the study was to characterize the pharmacological properties of E0001-163, a novel CCR4 antagonist. E0001-163 was tested in both in vitro chemotaxis assays as well as in vivo mouse models of CCR4 ligand-induced air pouch and antigen-induced airway inflammation by utilizing in vitro-polarized Th2 cells. In vitro, E0001-163 inhibited migratory response of human Th2-polarized cells to CCL22, a CCR4 ligand, with an IC50 value of 11.9 nM. E0001-163 significantly suppressed CCL22-induced Th2 cell trafficking into mouse air pouch in a dose-dependent manner at doses of 3 and 10mg/kg, suggesting that E0001-163 has an inhibitory effect on CCR4-mediated T cell trafficking in vivo. In addition, E0001-163 partially decreased Th2 cell trafficking and the level of IL-4 in the lungs in Th2-tansferred and ovalbumin (OVA)-challenged mice. T cell trafficking involves multiple chemokine receptors both in acute and chronic phases, and our findings suggest that CCR4, together with other chemokine receptors, may be involved in Th2 cell trafficking under disease conditions. © 2013 Elsevier B.V. All rights reserved.

  2. T-Cell Artificial Focal Triggering Tools: Linking Surface Interactions with Cell Response

    PubMed Central

    Carpentier, Benoît; Pierobon, Paolo; Hivroz, Claire; Henry, Nelly

    2009-01-01

    T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy. PMID:19274104

  3. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    PubMed Central

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  4. Identification of Natural RORγ Ligands that Regulate the Development of Lymphoid Cells

    PubMed Central

    Santori, Fabio R.; Huang, Pengxiang; van de Pavert, Serge A.; Douglass, Eugene F.; Leaver, David J.; Haubrich, Brad A.; Keber, Rok; Lorbek, Gregor; Konijn, Tanja; Rosales, Brittany N.; Horvat, Simon; Rozman, Damjana; Rahier, Alain; Mebius, Reina E.; Rastinejad, Fraydoon; Nes, W. David; Littman, Dan R.

    2015-01-01

    SUMMARY Mice deficient in the nuclear hormone receptor RORγt have defective development of thymocytes, lymphoid organs, Th17 cells and type 3 innate lymphoid cells. RORγt binds to oxysterols derived from cholesterol catabolism but it is not clear whether these are its natural ligands. Here, we show that sterol lipids are necessary and sufficient to drive RORγt-dependent transcription. We combined overexpression, RNA interference and genetic deletion of metabolic enzymes to study RORγ-dependent transcription. Our results are consistent with the RORγt ligand(s) being a cholesterol biosynthetic intermediate (CBI) downstream of lanosterol and upstream of zymosterol. Analysis of lipids bound to RORγ identified molecules with molecular weights consistent with CBIs. Furthermore, CBIs stabilized the RORγ ligand-binding domain and induced co-activator recruitment. Genetic deletion of metabolic enzymes upstream of the RORγt-ligand(s) affected the development of lymph nodes and Th17 cells. Our data suggest that CBIs play a role in lymphocyte development potentially through regulation of RORγt. PMID:25651181

  5. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  6. Ligand-induced internalization of neurotensin in transfected COS-7 cells: differential intracellular trafficking of ligand and receptor.

    PubMed

    Vandenbulcke, F; Nouel, D; Vincent, J P; Mazella, J; Beaudet, A

    2000-09-01

    The neuropeptide neurotensin (NT) is known to be internalized in a receptor-mediated fashion into its target cells. To gain insight into the mechanisms underlying this process, we monitored in parallel the migration of the NT1 neurotensin receptor subtype and a fluorescent analog of NT (fluo-NT) in COS-7 cells transfected with a tagged NT1 construct. Fluo-NT internalization was prevented by hypertonic sucrose, potassium depletion and cytosol acidification, demonstrating that it proceeded via clathrin-coated pits. Within 0-30 minutes, fluo-NT accumulated together with its receptor in Acridine Orange-positive, acidic organelles. These organelles concentrated transferrin and immunostained positively for rab 5A, therefore they were early endosomes. After 30-45 minutes, the ligand and its receptor no longer colocalized. Fluo-NT was first found in rab 7-positive late endosomes and later in a nonacidic juxtanuclear compartment identified as the Trans-Golgi Network (TGN) by virtue of its staining for syntaxin 6. This juxtanuclear compartment also stained positively for rab 7 and for the TGN/pericentriolar recycling endosome marker rab 11, suggesting that the ligand could have been recruited to the TGN from either late or recycling endosomes. By that time, internalized receptors were detected in Lamp-1-immunoreactive lysosomes. These results demonstrate that neurotensin/NT1 receptor complexes follow a recycling cycle that is unique among the G protein-coupled receptors studied to date, and provide the first evidence for the targeting of a nonendogenous protein from endosomes to the TGN.

  7. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.

    PubMed

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W; Kam, Lance C; Stokes, David L; Dustin, Michael L

    2014-03-06

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These

  8. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse

    NASA Astrophysics Data System (ADS)

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W.; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W.; Kam, Lance C.; Stokes, David L.; Dustin, Michael L.

    2014-03-01

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These

  9. Ligand recognition by RAR and RXR receptors: binding and selectivity.

    PubMed

    Sussman, Fredy; de Lera, Angel R

    2005-10-06

    Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.

  10. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma.

    PubMed

    Lynch, Adam; Hawk, William; Nylen, Emily; Ober, Sean; Autin, Pierre; Barber, Amorette

    2017-11-01

    Adoptive transfer of T cells is a promising cancer therapy and expression of chimeric antigen receptors can enhance tumour recognition and T-cell effector functions. The programmed death protein 1 (PD1) receptor is a prospective target for a chimeric antigen receptor because PD1 ligands are expressed on many cancer types, including lymphoma. Therefore, we developed a murine chimeric PD1 receptor (chPD1) consisting of the PD1 extracellular domain fused to the cytoplasmic domain of CD3ζ. Additionally, chimeric antigen receptor therapies use various co-stimulatory domains to enhance efficacy. Hence, the inclusion of a Dap10 or CD28 co-stimulatory domain in the chPD1 receptor was compared to determine which domain induced optimal anti-tumour immunity in a mouse model of lymphoma. The chPD1 T cells secreted pro-inflammatory cytokines and lysed RMA lymphoma cells. Adoptive transfer of chPD1 T cells significantly reduced established tumours and led to tumour-free survival in lymphoma-bearing mice. When comparing chPD1 receptors containing a Dap10 or CD28 domain, both receptors induced secretion of pro-inflammatory cytokines; however, chPD1-CD28 T cells also secreted anti-inflammatory cytokines whereas chPD1-Dap10 T cells did not. Additionally, chPD1-Dap10 induced a central memory T-cell phenotype compared with chPD1-CD28, which induced an effector memory phenotype. The chPD1-Dap10 T cells also had enhanced in vivo persistence and anti-tumour efficacy compared with chPD1-CD28 T cells. Therefore, adoptive transfer of chPD1 T cells could be a novel therapy for lymphoma and inclusion of the Dap10 co-stimulatory domain in chimeric antigen receptors may induce a preferential cytokine profile and T-cell differentiation phenotype for anti-tumour therapies. © 2017 John Wiley & Sons Ltd.

  11. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    PubMed

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  12. Anergic self-reactive B cells present self antigen and respond normally to CD40-dependent T-cell signals but are defective in antigen-receptor-mediated functions.

    PubMed Central

    Eris, J M; Basten, A; Brink, R; Doherty, K; Kehry, M R; Hodgkin, P D

    1994-01-01

    B-cell tolerance to soluble protein self antigens such as hen egg lysozyme (HEL) is mediated by clonal anergy. Anergic B cells fail to mount antibody responses even in the presence of carrier-primed T cells, suggesting an inability to activate or respond to T helper cells. To investigate the nature of this defect, B cells from tolerant HEL/anti-HEL double-transgenic mice were incubated with a membrane preparation from activated T-cell clones expressing the CD40 ligand. These membranes, together with interleukin 4 and 5 deliver the downstream antigen-independent CD40-dependent B-cell-activating signals required for productive T-B collaboration. Anergic B cells responded to this stimulus by proliferating and secreting antibody at levels comparable to or better than control B cells. Furthermore, anergic B cells presented HEL acquired in vivo and could present the unrelated antigen, conalbumin, targeted for processing via surface IgD. In contrast, the low immunoglobulin receptor levels on anergic B cells were associated with reduced de novo presentation of HEL and a failure to upregulate costimulatory ligands for CD28. These defects in immunoglobulin-receptor-mediated functions could be overcome in vivo, suggesting a number of mechanisms for induction of autoantibody responses. Images PMID:7514304

  13. Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity

    PubMed Central

    Huan, Jianya Y; Meza-Romero, Roberto; Mooney, Jeffery L; Chou, Yuan K; Edwards, David M; Rich, Cathleen; Link, Jason M; Vandenbark, Arthur A; Bourdette, Dennis N; Bächinger, Hans-Peter; Burrows, Gregory G

    2012-01-01

    Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the β-sheet platform of the DR2-derived RTLs, obtaining two variants that were monomeric in solution by replacing hydrophobic residues with polar (serine) or charged (aspartic acid) residues. Size exclusion chromatography and dynamic light scattering demonstrated that the modified RTLs were monomeric in solution, and structural characterization using circular dichroism demonstrated the highly ordered secondary structure of the RTLs. Peptide binding to the `empty' RTLs was quantified using biotinylated peptides, and functional studies showed that the modified RTLs containing covalently tethered peptides were able to inhibit antigen-specific T cell proliferation in vitro, as well as suppress experimental autoimmune encephalomyelitis in vivo. These studies demonstrated that RTLs encoding the Ag-binding/TCR recognition domain of MHC class II molecules are innately very robust structures, capable of retaining potent biological activity separate from the Ig-fold domains of the progenitor class II structure, with prevention of aggregation accomplished by modification of an exposed surface that was buried in the progenitor structure. PMID:22973070

  14. An Analytical Model for Determining Two-Dimensional Receptor-Ligand Kinetics

    PubMed Central

    Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos

    2011-01-01

    Cell-cell adhesive interactions play a pivotal role in major pathophysiological vascular processes, such as inflammation, infection, thrombosis, and cancer metastasis, and are regulated by hemodynamic forces generated by blood flow. Cell adhesion is mediated by the binding of receptors to ligands, which are both anchored on two-dimensional (2-D) membranes of apposing cells. Biophysical assays have been developed to determine the unstressed (no-force) 2-D affinity but fail to disclose its dependence on force. Here we develop an analytical model to estimate the 2-D kinetics of diverse receptor-ligand pairs as a function of force, including antibody-antigen, vascular selectin-ligand, and bacterial adhesin-ligand interactions. The model can account for multiple bond interactions necessary to mediate adhesion and resist detachment amid high hemodynamic forces. Using this model, we provide a generalized biophysical interpretation of the counterintuitive force-induced stabilization of cell rolling observed by a select subset of receptor-ligand pairs with specific intrinsic kinetic properties. This study enables us to understand how single-molecule and multibond biophysics modulate the macroscopic cell behavior in diverse pathophysiological processes. PMID:21575567

  15. Glucocorticoid receptor ligand binding in monocytic cells using a microplate assay.

    PubMed

    Jansen, J; Uitdehaag, B; Koper, J W; van Den Berg, T K

    1999-01-01

    Glucocorticoids have profound effects on macrophage function and are widely used as anti-inflammatory drugs. Glucocorticoids receptor (GR) ligand binding capacity is a major determinant of cellular glucocorticoid sensitivity. The number and affinity of GR can be measured in a whole cell binding assay using (3)H-dexamethasone. Here, we describe a rapid and simple microplate assay for GR measurement using the human promonocytic cell line THP-1. Copyright 2000 S. Karger AG, Basel.

  16. Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms Tumor 1 antigen

    PubMed Central

    Rafiq, S; Purdon, TJ; Daniyan, AF; Koneru, M; Dao, T; Liu, C; Scheinberg, DA; Brentjens, RJ

    2017-01-01

    CD19-directed chimeric antigen receptor (CAR) T cells are clinically effective in a limited set of leukemia patients. However, CAR T-cell therapy thus far has been largely restricted to targeting extracellular tumor-associated antigens (TAA). Herein, we report a T-cell receptor-mimic (TCRm) CAR, termed WT1-28z, that is reactive to a peptide portion of the intracellular onco-protein Wilms Tumor 1(WT1), as it is expressed on the surface of the tumor cell in the context of HLA-A*02:01. T cells modified to express WT1-28z specifically targeted and lysed HLA-A*02:01+ WT1+ tumors and enhanced survival of mice engrafted with HLA-A*02:01+, WT1+ leukemia or ovarian tumors. This in vivo functional validation of TCRm CAR T cells provides the proof-of-concept necessary to expand the range of TAA that can be effectively targeted for immunotherapy to include attractive intracellular targets, and may hold great potential to expand on the success of CAR T-cell therapy. PMID:27924074

  17. Working in "NK Mode": Natural Killer Group 2 Member D and Natural Cytotoxicity Receptors in Stress-Surveillance by γδ T Cells.

    PubMed

    Silva-Santos, Bruno; Strid, Jessica

    2018-01-01

    Natural killer cell receptors (NKRs) are germline-encoded transmembrane proteins that regulate the activation and homeostasis of NK cells as well as other lymphocytes. For γδ T cells, NKRs play critical roles in discriminating stressed (transformed or infected) cells from their healthy counterparts, as proposed in the "lymphoid stress-surveillance" theory. Whereas the main physiologic role is seemingly fulfilled by natural killer group 2 member D, constitutively expressed by γδ T cells, enhancement of their therapeutic potential may rely on natural cytotoxicity receptors (NCRs), like NKp30 or NKp44, that can be induced selectively on human Vδ1 + T cells. Here, we review the contributions of NCRs, NKG2D, and their multiple ligands, to γδ T cell biology in mouse and human.

  18. On the composition of the preimmune repertoire of T cells specific for Peptide-major histocompatibility complex ligands.

    PubMed

    Jenkins, Marc K; Chu, H Hamlet; McLachlan, James B; Moon, James J

    2010-01-01

    Millions of T cells are produced in the thymus, each expressing a unique alpha/beta T cell receptor (TCR) capable of binding to a foreign peptide in the binding groove of a host major histocompatibility complex (MHC) molecule. T cell-mediated immunity to infection is due to the proliferation and differentiation of rare clones in the preimmune repertoire that by chance express TCRs specific for peptide-MHC (pMHC) ligands derived from the microorganism. Here we review recent findings that have altered our understanding of how the preimmune repertoire is established. Recent structural studies indicate that a germline-encoded tendency of TCRs to bind MHC molecules contributes to the MHC bias of T cell repertoires. It has also become clear that the preimmune repertoire contains functionally heterogeneous subsets including recent thymic emigrants, mature naive phenotype cells, memory phenotype cells, and natural regulatory T cells. In addition, sensitive new detection methods have revealed that the repertoire of naive phenotype T cells consists of distinct pMHC-specific populations that consistently vary in size in different individuals. The implications of these new findings for the clonal selection theory, self-tolerance, and immunodominance are discussed.

  19. γδ T cell receptors recognize the non-classical major histocompatibility complex (MHC) molecule T22 via conserved anchor residues in a MHC peptide-like fashion.

    PubMed

    Sandstrom, Andrew; Scharf, Louise; McRae, Gabrielle; Hawk, Andrew J; Meredith, Stephen C; Adams, Erin J

    2012-02-17

    The molecular mechanisms by which γδ T cells recognize ligand remain a mystery. The non-classical MHC molecule T22 represents the best characterized ligand for murine γδ T cells, with a motif (W … EGYEL) present in the γδ T cell receptor complementary-determining region 3δ (CDR3δ) loop mediating γδ T cell recognition of this molecule. Produced through V(D)J recombination, this loop is quite diverse, with different numbers and chemical types of amino acids between Trp and EGYEL, which have unknown functional consequences for T22 recognition. We have investigated the biophysical and structural effects of CDR3δ loop diversity, revealing a range of affinities for T22 but a common thermodynamic pattern. Mutagenesis of these CDR3δ loops defines the key anchor residues involved in T22 recognition as W … EGYEL, similar to those found for the G8 CDR3δ loop, and demonstrates that spacer residues modulate but are not required for T22 recognition. Comparison of the location of these residues in the T22 interface reveals a striking similarity to peptide anchor residues in classically presented MHC peptides, with the key Trp residue of the CDR3δ motif completing the deficient peptide-binding groove of T22. This suggests that γδ T cell recognition of T22 utilizes the conserved ligand-presenting nature of the MHC fold.

  20. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  1. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever.

    PubMed

    de-Oliveira-Pinto, Luzia Maria; Marinho, Cíntia Ferreira; Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C; Alves, Ada M B; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by

  2. Regulation of Inflammatory Chemokine Receptors on Blood T Cells Associated to the Circulating Versus Liver Chemokines in Dengue Fever

    PubMed Central

    Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C.; Alves, Ada M. B.; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES+ cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44HIGH and CD127LOW markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by chemokines

  3. Phosphorylation of a Tyrosine Residue on Zap70 by Lck and Its Subsequent Binding via an SH2 Domain May Be a Key Gatekeeper of T Cell Receptor Signaling In Vivo.

    PubMed

    Thill, Peter A; Weiss, Arthur; Chakraborty, Arup K

    2016-09-15

    The initiation of signaling in T lymphocytes in response to the binding of the T cell receptor (TCR) to cognate ligands is a key step in the emergence of adaptive immune responses. Conventional models posit that TCR signaling is initiated by the phosphorylation of receptor-associated immune receptor activation motifs (ITAMs). The cytoplasmic tyrosine kinase Zap70 binds to phosphorylated ITAMs, is subsequently activated, and then propagates downstream signaling. While evidence for such models is provided by experiments with cell lines, in vivo, Zap70 is bound to phosphorylated ITAMs in resting T cells. However, Zap70 is activated only upon TCR binding to cognate ligand. We report the results of computational studies of a new model for the initiation of TCR signaling that incorporates these in vivo observations. Importantly, the new model is shown to allow better and faster TCR discrimination between self-ligands and foreign ligands. The new model is consistent with many past experimental observations, and experiments that could further test the model are proposed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Crystal structure of a gammadelta T-cell receptor specific for the human MHC class I homolog MICA.

    PubMed

    Xu, Bin; Pizarro, Juan C; Holmes, Margaret A; McBeth, Christine; Groh, Veronika; Spies, Thomas; Strong, Roland K

    2011-02-08

    γδ T cells play important roles in bridging innate and adaptive immunity, but their recognition mechanisms remain poorly understood. Human γδ T cells of the V(δ)1 subset predominate in intestinal epithelia and respond to MICA and MICB (MHC class I chain-related, A and B; MIC) self-antigens, mediating responses to tumorigenesis or viral infection. The crystal structure of an MIC-reactive V(δ)1 γδ T-cell receptor (TCR) showed expected overall structural homology to antibodies, αβ, and other γδ TCRs, but complementary determining region conformations and conservation of V(δ)1 use revealed an uncharacteristically flat potential binding surface. MIC, likewise, serves as a ligand for the activating immunoreceptor natural killer group 2, D (NKG2D), also expressed on γδ T cells. Although MIC recognition drives both the TCR-dependent stimulatory and NKG2D-dependent costimulatory signals necessary for activation, interaction analyses showed that MIC binding by the two receptors was mutually exclusive. Analysis of relative binding kinetics suggested sequential recognition, defining constraints for the temporal organization of γδ T-cell/target cell interfaces.

  5. T Cell Receptor Engineering and Analysis Using the Yeast Display Platform

    PubMed Central

    Smith, Sheena N.; Harris, Daniel T.; Kranz, David M.

    2017-01-01

    The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g. a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g. T cell activation by as few as 1 to 3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with KD values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072

  6. Lysosomal membrane permeabilization is an early event in Sigma-2 receptor ligand mediated cell death in pancreatic cancer.

    PubMed

    Hornick, John R; Vangveravong, Suwanna; Spitzer, Dirk; Abate, Carmen; Berardi, Francesco; Goedegebuure, Peter; Mach, Robert H; Hawkins, William G

    2012-05-02

    Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD

  7. Expression of activating natural killer-cell receptors is a hallmark of the innate-like T-cell neoplasm in peripheral T-cell lymphomas.

    PubMed

    Uemura, Yu; Isobe, Yasushi; Uchida, Akiko; Asano, Junko; Nishio, Yuji; Sakai, Hirotaka; Hoshikawa, Masahiro; Takagi, Masayuki; Nakamura, Naoya; Miura, Ikuo

    2018-04-01

    Peripheral T- or natural killer (NK)-cell lymphomas are rare and difficult-to-recognize diseases. It remains arduous to distinguish between NK cell- and cytotoxic T-lymphocyte-derived lymphomas through routine histological evaluation. To clarify the cells of origin, we focused on NK-cell receptors and examined the expression using immunohistochemistry in 22 cases with T- and NK-cell neoplasms comprising angioimmunoblastic T-cell lymphoma, anaplastic lymphoma kinase (ALK)-positive and -negative anaplastic large-cell lymphomas, extranodal NK/T-cell lymphoma, nasal type, monomorphic epitheliotropic intestinal T-cell lymphoma, aggressive NK-cell leukemia, and other peripheral T-cell lymphomas. Inhibitory receptor leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) was detected in 14 (64%) cases, whereas activating receptors DNAM1, NKp46, and NKG2D were expressed in 7 (32%), 9 (41%), and 5 (23%) cases, respectively. Although LILRB1 was detected regardless of the disease entity, the activating NK-cell receptors were expressed predominantly in TIA-1-positive neoplasms (DNAM1, 49%; NKp46, 69%; and NKG2D, 38%). In addition, NKp46 and NKG2D were detected only in NK-cell neoplasms and cytotoxic T-lymphocyte-derived lymphomas including monomorphic epitheliotropic intestinal T-cell lymphoma. One Epstein-Barr virus-harboring cytotoxic T-lymphocyte-derived lymphoma mimicking extranodal NK/T-cell lymphoma, nasal type lacked these NK-cell receptors, indicating different cell origin from NK and innate-like T cells. Furthermore, NKG2D expression showed a negative impact on survival among the 22 examined cases, which mainly received the standard chemotherapy regimen (log-rank test, P = .024). We propose that the presence of activating NK-cell receptors may provide new insights into understanding peripheral T-cell lymphomas and characterizing them as innate-like T-cell neoplasm. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on

  8. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    PubMed

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  9. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.

    PubMed

    Grupp, Stephan A; Kalos, Michael; Barrett, David; Aplenc, Richard; Porter, David L; Rheingold, Susan R; Teachey, David T; Chew, Anne; Hauck, Bernd; Wright, J Fraser; Milone, Michael C; Levine, Bruce L; June, Carl H

    2013-04-18

    Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.

  10. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  11. The complex role of NOTCH receptors and their ligands in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma.

    PubMed

    Gil-García, Borja; Baladrón, Victoriano

    2016-02-01

    The NOTCH signalling pathway is one of the key molecular pathways of embryonic development and adult tissues homeostasis in mammals. Mammals have four NOTCH receptors and various ligands that modulate their activity. Many cell disorders, whose genesis involves the NOTCH signalling pathway, have been discovered, including cancer. The mechanisms by which these receptors and their ligands affect liver cell transformation are not yet well understood, and they seem to behave as both oncogenes and tumour-suppressor proteins. In this review, we discuss the published data regarding the role of these proteins in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma malignancies. The alteration of the NOTCH signalling pathway may be one of the main drivers of hepatic neoplastic growth. However, this signalling pathway might also modulate the development of specific liver tumour features. The complexity of the function of NOTCH receptors and their ligands may be due to their interactions with many other cell signalling pathways. Furthermore, the different levels of expression and activation of these receptors could be a reason for their distinct and sometimes contradictory effects. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  12. Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.

    PubMed

    Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E

    2017-09-01

    We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mutations in the Polybasic Juxtamembrane Sequence of Both Plasma Membrane- and Endoplasmic Reticulum-localized Epidermal Growth Factor Receptors Confer Ligand-independent Cell Transformation*

    PubMed Central

    Bryant, Kirsten L.; Antonyak, Marc A.; Cerione, Richard A.; Baird, Barbara; Holowka, David

    2013-01-01

    Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling. PMID:24142702

  14. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    PubMed Central

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  15. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    PubMed

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  16. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production

    PubMed Central

    Sprokholt, Joris K.; Kaptein, Tanja M.; van Hamme, John L.; Overmars, Ronald J.; Gringhuis, Sonja I.

    2017-01-01

    Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies. PMID:29186193

  17. The Sigma Receptor Ligand (+)-Pentazocine Prevents Apoptotic Retinal Ganglion Cell Death induced in vitro by Homocysteine and Glutamate

    PubMed Central

    Martin, Pamela Moore; Ola, Mohammad S.; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Recent studies demonstrated that the excitotoxic amino acid homocysteine induces apoptotic death of retinal ganglion cells in vivo. In the present study, an in vitro rat retinal ganglion cell (RGC-5) culture system was used to analyze the toxicity of acute exposure to high levels of homocysteine, the mechanism of homocysteine-induced toxicity and the usefulness of σR1 ligands as neuroprotectants. When cultured RGC-5 cells were subjected to treatment with 1 mM D, L- homocysteine, a significant increase in cell death was detected by TUNEL analysis and analysis of activated caspase. When cells were treated with homocysteine- or glutamate in the presence of MK-801, an antagonist of the NMDA receptor, the cell death was inhibited significantly. In contrast, NBQX, an antagonist of the AMPA/Kainate receptor, and nifedipine, a calcium channel blocker, did not prevent the homocysteine- or glutamate-induced cell death. Semi-quantitative RT-PCR and immunocytochemical analysis demonstrated that RGC-5 cells exposed to homocysteine or glutamate express type 1 sigma receptor at levels similar to control cells. Treatment of RGC-5 cells with 3 µM or 10 µM concentrations of the σR1-specific ligand (+)-pentazocine inhibited significantly the apoptotic cell death induced by homocysteine or glutamate. The results suggest that homocysteine is toxic to ganglion cells in vitro, that the toxicity is mediated via NMDA receptor activation, and that the σR1-specific ligand (+)-pentazocine can block the RGC-5 cell death induced by homocysteine and glutamate. PMID:15046867

  18. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast,more » amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.« less

  19. ITE, A Novel Endogenous Nontoxic Aryl Hydrocarbon Receptor Ligand, Efficiently Suppresses EAU and T-Cell–Mediated Immunity

    PubMed Central

    Nugent, Lindsey F.; Shi, Guangpu; Vistica, Barbara P.; Ogbeifun, Osato; Hinshaw, Samuel J. H.; Gery, Igal

    2013-01-01

    Purpose. Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. Methods. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Results. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. Conclusions. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans. PMID:24150760

  20. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells

    PubMed Central

    2012-01-01

    Introduction The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Methods Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. Results MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Conclusions Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at

  1. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    PubMed

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  2. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    PubMed

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  3. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    PubMed

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.

  4. Characterization of B61, the ligand for the Eck receptor protein-tyrosine kinase.

    PubMed

    Shao, H; Pandey, A; O'Shea, K S; Seldin, M; Dixit, V M

    1995-03-10

    B61 was originally described as a novel secreted tumor necrosis factor-alpha-inducible gene product in endothelial cells (Holzman, L. B., Marks, R. M., and Dixit, V. M. (1990) Mol. Cell. Biol. 10, 5830-5838). It was recently discovered that soluble recombinant B61 could serve as a ligand for the Eck receptor protein-tyrosine kinase, a member of the Eph/Eck subfamily of receptor protein-tyrosine kinases (Bartley, T.D., Hunt, R. W., Welcher, A. A., Boyle, W. J., Parker, V. P., Lindberg, R. A., Lu, H. S., Colombero, A. M., Elliott, R. L., Guthrie, R. A., Holst, P. L., Skrine, J. D., Toso, R. J., Zhang, M., Fernandez, E., Trail, G., Yarnum, B., Yarden, Y., Hunter, T., and Fox, G. M. (1994) Nature 368, 558-560). We now show that B61 can also exist as a cell surface glycosylphosphatidyl-inositol-linked protein that is capable of activating the Eck receptor protein-tyrosine kinase, the first such report of a receptor protein-tyrosine kinase ligand that is glycosylphosphatidylinositol-linked. In addition, the expression patterns of B61 and Eck during mouse ontogeny were determined by in situ hybridization. Both were found to be highly expressed in the developing lung and gut, while Eck was preferentially expressed in the thymus. Finally, the gene for B61 was localized to a specific position on mouse chromosome 3 by interspecific back-cross analysis.

  5. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells

    PubMed Central

    Chmielewski, Markus; Hombach, Andreas A.; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient’s T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a “tumor-associated antigen” and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer. PMID:24273543

  6. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells.

    PubMed

    Chmielewski, Markus; Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a "tumor-associated antigen" and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer.

  7. Stabilization of peroxisome proliferator-activated receptor alpha by the ligand.

    PubMed

    Hirotani, M; Tsukamoto, T; Bourdeaux, J; Sadano, H; Osumi, T

    2001-10-19

    Peroxisome proliferator-activated receptor (PPAR) constitutes a subfamily among a large group of ligand-activated transcription factors, the nuclear receptor superfamily. We studied the effects of ligand on the intracellular behaviors of PPARalpha. Although nuclear localization of PPARalpha was not affected by a selective ligand, Wy14643, we observed that exogenously expressed PPARalpha was rapidly degraded in HeLa cells, and the ligand significantly stabilized the protein. The stability of PPARalpha was also improved by coexpression of the heterodimer partner retinoid X receptor (RXR) alpha, and further stabilization was not observed with the ligand. These results indicate that PPARalpha is stabilized through heterodimerization with RXR, and the excess protein unpaired with RXR is rapidly turned over, if not bound by an appropriate ligand. These observations on PPARalpha are in sharp contrast to the ligand-stimulated degradation reported on PPARgamma. The ligand-dependent stabilization would have physiological significance when the synthesis of PPARalpha is elevated exceeding the available level of RXR. Copyright 2001 Academic Press.

  8. Naive T-cell receptor transgenic T cells help memory B cells produce antibody

    PubMed Central

    Duffy, Darragh; Yang, Chun-Ping; Heath, Andrew; Garside, Paul; Bell, Eric B

    2006-01-01

    Injection of the same antigen following primary immunization induces a classic secondary response characterized by a large quantity of high-affinity antibody of an immunoglobulin G class produced more rapidly than in the initial response – the products of memory B cells are qualitatively distinct from that of the original naive B lymphocytes. Very little is known of the help provided by the CD4 T cells that stimulate memory B cells. Using antigen-specific T-cell receptor transgenic CD4 T cells (DO11.10) as a source of help, we found that naive transgenic T cells stimulated memory B cells almost as well (in terms of quantity and speed) as transgenic T cells that had been recently primed. There was a direct correlation between serum antibody levels and the number of naive transgenic T cells transferred. Using T cells from transgenic interleukin-2-deficient mice we showed that interleukin-2 was not required for a secondary response, although it was necessary for a primary response. The results suggested that the signals delivered by CD4 T cells and required by memory B cells for their activation were common to both antigen-primed and naive CD4 T cells. PMID:17067314

  9. Interleukin-29 induces epithelial production of CXCR3A ligands and T-cell infiltration.

    PubMed

    Witte, Ellen; Kokolakis, Georgios; Witte, Katrin; Warszawska, Katarzyna; Friedrich, Markus; Christou, Demetrios; Kirsch, Stefan; Sterry, Wolfram; Volk, Hans-Dieter; Sabat, Robert; Wolk, Kerstin

    2016-04-01

    Psoriasis is considered as a model for chronic immune-mediated disorders. Th17-cells are pivotal players in those diseases. Recently, we demonstrated that Th17-cells produce interleukin (IL)-29 and that IL-29 is highly present in psoriatic lesions. Whether IL-29, with its action on epithelial cells and melanocytes, contributes to psoriasis pathogenesis, was unknown so far. Analysis of IL-29-treated human keratinocytes revealed induction of the chemokines CXCL10, CXCL11, and, to a much lesser extent, CXCL9. Unlike these CXCR3A ligands, known to attract Th1-, CD8(+), NK-, and Th1/Th17 transient cells, no influence was found on chemokines attracting other immune cell populations or on molecules modulating the CXCR3A/CXCR3A ligand interaction. CXCR3A ligand expression was also induced by IL-29 in melanocytes and in epidermis models and explanted skin. Regarding other psoriasis-relevant cytokines, interferon-γ and, less potently, tumor necrosis factor-α and IL-1β shared and strengthened IL-29's capacity. Murine IL-29 counterpart injected into mouse skin provoked local CXCL10 and CXCL11 expression, T-cell infiltration, and, in consequence, skin swelling. The elevated IL-29 expression in psoriatic lesions was associated with upregulation of CXCR3A ligands compared to non-lesional skin of these patients and to the skin of healthy donors and atopic dermatitis patients, which lack IL-29 production. Importantly, neutralization of IL-29 reduced CXCR3A ligand levels in explant cultures of psoriatic lesions. Finally, elevated blood CXCL11 levels were found in psoriasis that might be useful for monitoring lesional activity of the IL-29 axis. In summary, the Th17-cytokine IL-29 induces specific chemokines and, in consequence, provokes skin infiltration of potentially pathogenic T-cells. IL-29 selectively induces CXCR3A-binding chemokines (CXCL9, CXCL10, CXCL11) in skin cells. Murine IL-29 counterpart induces skin T-cell infiltration and inflammation in mice. CXCR3A ligands are

  10. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach

    NASA Astrophysics Data System (ADS)

    Lam, Polo C.-H.; Abagyan, Ruben; Totrov, Maxim

    2018-01-01

    Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace.

  11. Lysosomal Membrane Permeabilization is an Early Event in Sigma-2 Receptor Ligand Mediated Cell Death in Pancreatic Cancer

    PubMed Central

    2012-01-01

    Background Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Results Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Conclusions Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death

  12. Impact of lipid rafts on the T -cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions

    NASA Astrophysics Data System (ADS)

    Li, Long; Xu, Guang-Kui; Song, Fan

    2017-01-01

    The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.

  13. Intermittent IL-7 Signaling Essential for T cell Homeostasis | Center for Cancer Research

    Cancer.gov

    In order for the immune system to mount an appropriate response to foreign antigens throughout a person’s life, the body must maintain a sufficient population of circulating mature, naïve T cells, a process known as T cell homeostasis. Previous studies revealed that this process depends upon signaling from the cytokine interleukin-7 (IL-7) as well as from the T cell antigen receptor (TCR). Intriguingly, signals from each pathway affect the other and lead to their alternating activation: IL-7 binding to its receptor leads to increasing expression of the TCR co-receptor CD8; sufficient CD8 expression allows TCRs to signal when bound to self-ligands, blocking IL-7 signaling; suppressed IL-7 signals lead to down-regulation of CD8 and ligand disengagement, which allows T cells to again respond to IL-7. Alfred Singer, M.D., and his colleagues in CCR’s Experimental Immunology Branch set out to understand how this intricate pathway promotes T cell survival.

  14. Regulation of gonadotropin receptors on cultured porcine Leydig and Sertoli cells: effect of potassium depletion.

    PubMed

    Bernier, M; Laferrere, B; Jaillard, C; Clerget, M; Saez, J M

    1986-06-01

    We have examined the role of the NaK-ATPase pump activity on the ligand-induced down-regulation of gonadotropin receptors in cultured porcine Leydig and Sertoli cells. In both cells, inhibition of the NaK pump by ouabain produced a depletion of intracellular K+ levels (ID50, 10(-7) M) after a lag period of about 8 h. In the absence of ligand, the number of FSH receptors in ouabain-treated Sertoli cells was unaffected or slightly reduced, whereas a 2-fold increase in the number of human CG (hCG)/LH receptors with small changes in the binding affinity was observed in Leydig cells treated by ouabain. The effect of ouabain was dose dependent. Differences were also observed in the down-regulation process of gonadotropin receptors in ouabain-treated cells. The hCG-induced receptor loss in Leydig cells was completely reversed by ouabain whereas the drug had no effect on ligand-induced loss of FSH receptors in Sertoli cells. Similar results were observed when the cells were incubated in K+-free medium. Kinetics studies with labeled hCG have shown that ouabain treatment slows down significantly the rate of [125I]iodo-hCG internalization (t 1/2, 18 h; control cells, t 1/2, 6 h), but had no effect on the degradation of internalized hormone. The internalization of receptor-bound [125I]iodo-hCG was also reduced when Leydig cells were incubated in K+-free medium, but was restored when this medium was supplemented with rubidium. The influence of the NaK pump on the receptor regulation of a ligand common to both types of cells, such as epidermal growth factor, was studied under the same experimental conditions. Neither ouabain nor K+-free medium were able to prevent the epidermal growth factor-induced reduction of receptor levels in Leydig and Sertoli cells. Thus, it appears that modulation of ligand-induced receptor loss by depletion of cellular K+ levels is not dependent on the cell type, but on the ligand-receptor complex. The data also show a striking difference in the

  15. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity.

    PubMed

    Labani-Motlagh, Alireza; Israelsson, Pernilla; Ottander, Ulrika; Lundin, Eva; Nagaev, Ivan; Nagaeva, Olga; Dehlin, Eva; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2016-04-01

    Cancers constitutively produce and secrete into the blood and other biofluids 30-150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity-the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.

  16. At the Bench: Chimeric antigen receptor (CAR) T cell therapy for the treatment of B cell malignancies.

    PubMed

    Daniyan, Anthony F O; Brentjens, Renier J

    2016-12-01

    The chimeric antigen receptor (CAR) represents the epitome of cellular engineering and is one of the best examples of rational biologic design of a synthetic molecule. The CAR is a single polypeptide with modular domains, consisting of an antibody-derived targeting moiety, fused in line with T cell-derived signaling domains, allowing for T cell activation upon ligand binding. T cells expressing a CAR are able to eradicate selectively antigen-expressing tumor cells in a MHC-independent fashion. CD19, a tumor-associated antigen (TAA) present on normal B cells, as well as most B cell-derived malignancies, was an early target of this technology. Through years of experimental refinement and preclinical optimization, autologously derived CD19-targeting CAR T cells have been successfully, clinically deployed, resulting in dramatic and durable antitumor responses but not without therapy-associated toxicity. As CD19-targeted CAR T cells continue to show clinical success, work at the bench continues to be undertaken to increase further the efficacy of this therapy, while simultaneously minimizing the risk for treatment-related morbidities. In this review, we cover the history and evolution of CAR technology and its adaptation to targeting CD19. Furthermore, we discuss the future of CAR T cell therapy and the need to ask, as well as answer, critical questions as this treatment modality is being translated to the clinic. © Society for Leukocyte Biology.

  17. Aryl Hydrocarbon Receptor Promotes RORγt+ ILCs and Controls Intestinal Immunity and Inflammation

    PubMed Central

    Qiu, Ju; Zhou, Liang

    2013-01-01

    Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptors (RORγt)+ ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt+ ILCs (e.g., lymphoid tissue inducer-LTi cells) are required for lymphoid organogenesis. In adult mice, RORγt+ ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt+ ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt+ ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells (APCs). In this review, we will focus on the development and function of RORγt+ ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. Better understanding the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases. PMID:23975386

  18. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  19. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  20. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia

    PubMed Central

    Catakovic, Kemal; Gassner, Franz Josef; Ratswohl, Christoph; Zaborsky, Nadja; Rebhandl, Stefan; Schubert, Maria; Steiner, Markus; Gutjahr, Julia Christine; Pleyer, Lisa; Egle, Alexander; Hartmann, Tanja Nicole; Greil, Richard; Geisberger, Roland

    2018-01-01

    ABSTRACT While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment. PMID:29296521

  1. B61 is a ligand for the ECK receptor protein-tyrosine kinase.

    PubMed

    Bartley, T D; Hunt, R W; Welcher, A A; Boyle, W J; Parker, V P; Lindberg, R A; Lu, H S; Colombero, A M; Elliott, R L; Guthrie, B A

    1994-04-07

    A protein ligand for the ECK receptor protein-tyrosine kinase has been isolated by using the extracellular domain (ECK-X) of the receptor as an affinity reagent. Initially, concentrated cell culture supernatants were screened for receptor binding activity using immobilized ECK-X in a surface plasmon resonance detection system. Subsequently, supernatants from selected cell lines were fractionated directly by receptor affinity chromatography, resulting in the single-step purification of B61, a protein previously identified as the product of an early response gene induced by tumour necrosis factor-alpha. We report here that recombinant B61 induces autophosphorylation of ECK in intact cells, consistent with B61 being an authentic ligand for ECK. ECK is a member of a large orphan receptor protein-tyrosine kinase family headed by EPH, and we suggest that ligands for other members of this family will be related to B61, and can be isolated in the same way.

  2. Ligand-independent Thrombopoietin Mutant Receptor Requires Cell Surface Localization for Endogenous Activity*

    PubMed Central

    Marty, Caroline; Chaligné, Ronan; Lacout, Catherine; Constantinescu, Stefan N.; Vainchenker, William; Villeval, Jean-Luc

    2009-01-01

    The activating W515L mutation in the thrombopoietin receptor (MPL) has been identified in primary myelofibrosis and essential thrombocythemia. MPL belongs to a subset of the cytokine receptor superfamily that requires the JAK2 kinase for signaling. We examined whether the ligand-independent MPLW515L mutant could signal intracellularly. Addition of the endoplasmic reticulum (ER) retention KDEL sequence to the receptor C terminus efficiently locked MPLW515L within its natural ER/Golgi maturation pathway. In contrast to cells expressing the parental MPLW515L, MPLW515L-KDEL-expressing FDC-P1 cells were unable to grow autonomously and to produce tumors in nude mice. When observed, tumor nodules resulted from in vivo selection of cells leaking the receptor at their surface. JAK2 co-immunoprecipitated with MPLW515L-KDEL but was not phosphorylated. We generated disulfide-bonded MPLW515L homodimers by the S402C substitution, both in the normal and KDEL context. Unlike MPLW515L-KDEL, MPLW515L-S402C-KDEL signaled constitutively and exhibited cell surface localization. These data establish that MPLW515L with appended JAK2 matures through the ER/Golgi system in an inactive conformation and suggest that the MPLW515L/JAK2 complex requires membrane localization for JAK2 phosphorylation, resulting in autonomous receptor signaling. PMID:19261614

  3. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells

    PubMed Central

    Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S.; Song, Jia-Sheng; Zheng, Jing

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. PMID:23851185

  4. Lineage-specific co-evolution of the Egf receptor/ligand signaling system.

    PubMed

    Laisney, Juliette A G C; Braasch, Ingo; Walter, Ronald B; Meierjohann, Svenja; Schartl, Manfred

    2010-01-27

    The epidermal growth factor receptor (Egfr) with its numerous ligands has fundamental roles in development, cell differentiation and physiology. Dysfunction of the receptor-ligand system contributes to many human malignancies. Consistent with such various tasks, the Egfr gene family has expanded during vertebrate evolution as a consequence of several rounds of whole genome duplication. Of particular interest is the effect of the fish-specific whole genome duplication (FSGD) on the ligand-receptor system, as it has supplied this largest group of vertebrates with additional opportunities for sub- and/or neofunctionalization in this signaling system. We identified the predicted components of the Egf receptor-ligand signaling system in teleost fishes (medaka, platyfish, stickleback, pufferfishes and zebrafish). We found two duplicated egfr genes, egfra and egfrb, in all available teleost genomes. Surprisingly only one copy for each of the seven Egfr ligands could be identified in most fishes, with zebrafish hbegf being the only exception. Special focus was put on medaka, for which we more closely investigated all Egf receptors and Egfr ligands. The different expression patterns of egfra, egfrb and their ligands in medaka tissues and embryo stages suggest differences in role and function. Preferential co-expression of different subsets of Egfr ligands corroborates the possible subfunctionalization and specialization of the two receptors in adult tissues. Bioinformatic analyses of the ligand-receptor interface between Egfr and its ligands show a very weak evolutionary conservation within this region. Using in vitro analyses of medaka Egfra, we could show that this receptor is only activated by medaka ligands, but not by human EGF. Altogether, our data suggest a lineage-specific Egfr/Egfr ligand co-evolution. Our data indicate that medaka Egfr signaling occurs via its two copies, Egfra and Egfrb, each of them being preferentially coexpressed with different subsets of Egfr

  5. Lineage-specific co-evolution of the Egf receptor/ligand signaling system

    PubMed Central

    2010-01-01

    Background The epidermal growth factor receptor (Egfr) with its numerous ligands has fundamental roles in development, cell differentiation and physiology. Dysfunction of the receptor-ligand system contributes to many human malignancies. Consistent with such various tasks, the Egfr gene family has expanded during vertebrate evolution as a consequence of several rounds of whole genome duplication. Of particular interest is the effect of the fish-specific whole genome duplication (FSGD) on the ligand-receptor system, as it has supplied this largest group of vertebrates with additional opportunities for sub- and/or neofunctionalization in this signaling system. Results We identified the predicted components of the Egf receptor-ligand signaling system in teleost fishes (medaka, platyfish, stickleback, pufferfishes and zebrafish). We found two duplicated egfr genes, egfra and egfrb, in all available teleost genomes. Surprisingly only one copy for each of the seven Egfr ligands could be identified in most fishes, with zebrafish hbegf being the only exception. Special focus was put on medaka, for which we more closely investigated all Egf receptors and Egfr ligands. The different expression patterns of egfra, egfrb and their ligands in medaka tissues and embryo stages suggest differences in role and function. Preferential co-expression of different subsets of Egfr ligands corroborates the possible subfunctionalization and specialization of the two receptors in adult tissues. Bioinformatic analyses of the ligand-receptor interface between Egfr and its ligands show a very weak evolutionary conservation within this region. Using in vitro analyses of medaka Egfra, we could show that this receptor is only activated by medaka ligands, but not by human EGF. Altogether, our data suggest a lineage-specific Egfr/Egfr ligand co-evolution. Conclusions Our data indicate that medaka Egfr signaling occurs via its two copies, Egfra and Egfrb, each of them being preferentially coexpressed

  6. Characterization of ligand binding and processing by gastrin-releasing peptide receptors in a small-cell lung cancer cell line.

    PubMed Central

    Cardona, C; Bleehen, N M; Reeve, J G

    1992-01-01

    The ligand-binding properties of the gastrin-releasing peptide (GRP) receptor and the cellular processing of GRP have been studied in the small-cell lung cancer (SCLC) cell line COR-L42. Scatchard analysis of GRP receptor expression indicated a single class of high-affinity receptors (Kd 1.5 nM) and approx. 6700 receptors/cell. GRP bound to its receptor with a Ki of 2.4 nM. The bombesin-related peptides neuromedin B (NMB) and phyllolitorin also bound to GRP receptors with Ki values of 22.7 and 59.1 nM respectively. Binding of 125I-GRP to COR-L42 cells increased rapidly at 37 degrees, achieved a maximum at 10 min and declined rapidly thereafter. At 4 degrees C, maximum binding was achieved at 30 min and the subsequent decline in cell-associated radioactivity was slower than that seen at 37 degrees C. Acid/salt extraction, to separate surface-bound ligand from internalized GRP, indicated that after receptor binding 125I-GRP was rapidly internalized. To determine the pathway of 125I-GRP degradation, binding studies were carried out with the lysosomotropic agent chloroquine (5 mM), and with phosphoramidon (10 microM), an inhibitor of the membrane-bound enzyme (EC 3.4.24.11). Both agents markedly inhibited the degradation of GRP, indicating that this process involves a lysosomal pathway and a phosphoramidon-sensitive pathway, possibly involving the EC 3.4.24.11 enzyme. GRP receptor down-regulation was observed following a 10 min exposure to 100 nM-GRP. With longer pretreatment times the number of binding sites recovered to 80% of control values. Treatment with 5 mM-chloroquine plus GRP or cycloheximide (10 micrograms/ml) plus GRP demonstrated that the majority of GRP receptors are recycled. NMB and phyllolitorin pretreatment did not influence the subsequent binding of 125I-GRP, suggesting that these peptides do not down-regulate GRP receptors. PMID:1310003

  7. Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-02-01

    The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.

  8. Chimeric antigen receptor T cells: a novel therapy for solid tumors.

    PubMed

    Yu, Shengnan; Li, Anping; Liu, Qian; Li, Tengfei; Yuan, Xun; Han, Xinwei; Wu, Kongming

    2017-03-29

    The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.

  9. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    PubMed

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  10. Sigma-2 ligands and PARP inhibitors synergistically trigger cell death in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Elizabeth S.; Mankoff, Julia; Makvandi, Mehran

    The sigma-2 receptor is overexpressed in proliferating cells compared to quiescent cells and has been used as a target for imaging solid tumors by positron emission tomography. Recent work has suggested that the sigma-2 receptor may also be an effective therapeutic target for cancer therapy. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage response. In this study, we looked for potential synergy of cytotoxicity between PARP inhibitors and sigma-2 receptor ligands in breast cancer cell lines. We showed that the PARP inhibitor, YUN3-6, sensitized mouse breast cancer cell line, EMT6, to sigma-2 receptor ligand (SV119,more » WC-26, and RHM-138) induced cell death determined by cell viability assay and colony forming assay. The PARP inhibitor, olaparib, sensitized tumor cells to a different sigma-2 receptor ligand SW43-induced apoptosis and cell death in human triple negative cell line, MDA-MB-231. Olaparib inhibited PARP activity and cell proliferation, and arrested cells in G2/M phase of the cell cycle in MDA-MB-231 cells. Subsequently cells became sensitized to SW43 induced cell death. In conclusion, the combination of sigma-2 receptor ligands and PARP inhibitors appears to hold promise for synergistically triggering cell death in certain types of breast cancer cells and merits further investigation. - Highlights: • PARPi, YUN3-6 and olaparib, and σ2 ligands, SV119 and SW43, were evaluated. • Mouse and human breast cancer cells, EMT6 and MDA-MB-231 respectively, were used. • YUN3-6 and SV119 synergistically triggered cell death in EMT6 cells. • Olaparib and SW43 additively triggered cell death in MDA-MB-231 cells. • Olaparib arrested cells in G2/M in MDA-MB-231 cells.« less

  11. Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity

    PubMed Central

    Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2013-01-01

    To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645

  12. Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2017-07-01

    The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.

  13. T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder

    PubMed Central

    Patas, Kostas; Willing, Anne; Demiralay, Cüneyt; Engler, Jan Broder; Lupu, Andreea; Ramien, Caren; Schäfer, Tobias; Gach, Christian; Stumm, Laura; Chan, Kenneth; Vignali, Marissa; Arck, Petra C.; Friese, Manuel A.; Pless, Ole; Wiedemann, Klaus; Agorastos, Agorastos; Gold, Stefan M.

    2018-01-01

    While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD) is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder. PMID:29515587

  14. A liver-X-receptor ligand, T0901317, attenuates IgE production and airway remodeling in chronic asthma model of mice.

    PubMed

    Shi, Ying; Xu, Xiantao; Tan, Yan; Mao, Shan; Fang, Surong; Gu, Wei

    2014-01-01

    The liver-X-receptors have shown anti-inflammatory ability in several animal models of respiratory disease. Our purpose is to investigate the effect of LXR ligand in allergen-induced airway remodeling in mice. Ovalbumin-sensitized mice were chronically challenged with aerosolized ovalbumin for 8 weeks. Some mice were administered a LXR agonist, T0901317 (12.5, 25, 50 mg/kg bodyweight) before challenge. Then mice were evaluated for airway inflammation, airway hyperresponsiveness and airway remodeling. T0901317 failed to attenuate the inflammatory cells and Th2 cytokines in bronchoalveolar lavage fluid. But the application of T0901317 reduced the thickness of airway smooth muscle and the collagen deposition. Meanwhile, T0901317 treatment evidently abolished the high level of OVA-specific IgE, TGF-β1 and MMP-9 in lung. So LXRs may attenuate the progressing of airway remodeling, providing a potential treatment of asthma.

  15. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    PubMed

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma.

    PubMed

    Harrer, Dennis C; Simon, Bianca; Fujii, Shin-Ichiro; Shimizu, Kanako; Uslu, Ugur; Schuler, Gerold; Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels

    2017-08-17

    Adoptive T-cell therapy relying on conventional T cells transduced with T-cell receptors (TCRs) or chimeric antigen receptors (CARs) has caused substantial tumor regression in several clinical trials. However, genetically engineered T cells have been associated with serious side-effects due to off-target toxicities and massive cytokine release. To obviate these concerns, we established a protocol adaptable to GMP to expand and transiently transfect γ/δ T cells with mRNA. PBMC from healthy donors were stimulated using zoledronic-acid or OKT3 to expand γ/δ T cells and bulk T cells, respectively. Additionally, CD8 + T cells and γ/δ T cells were MACS-isolated from PBMC and expanded with OKT3. Next, these four populations were electroporated with RNA encoding a gp100/HLA-A2-specific TCR or a CAR specific for MCSP. Thereafter, receptor expression, antigen-specific cytokine secretion, specific cytotoxicity, and killing of the endogenous γ/δ T cell-target Daudi were analyzed. Using zoledronic-acid in average 6 million of γ/δ T cells with a purity of 85% were generated from one million PBMC. MACS-isolation and OKT3-mediated expansion of γ/δ T cells yielded approximately ten times less cells. OKT3-expanded and CD8 + MACS-isolated conventional T cells behaved correspondingly similar. All employed T cells were efficiently transfected with the TCR or the CAR. Upon respective stimulation, γ/δ T cells produced IFNγ and TNF, but little IL-2 and the zoledronic-acid expanded T cells exceeded MACS-γ/δ T cells in antigen-specific cytokine secretion. While the cytokine production of γ/δ T cells was in general lower than that of conventional T cells, specific cytotoxicity against melanoma cell lines was similar. In contrast to OKT3-expanded and MACS-CD8 + T cells, mock-electroporated γ/δ T cells also lysed tumor cells reflecting the γ/δ T cell-intrinsic anti-tumor activity. After transfection, γ/δ T cells were still able to kill MHC-deficient Daudi cells. We

  17. Bortezomib Improves Adoptive T-cell Therapy by Sensitizing Cancer Cells to FasL Cytotoxicity.

    PubMed

    Shanker, Anil; Pellom, Samuel T; Dudimah, Duafalia F; Thounaojam, Menaka C; de Kluyver, Rachel L; Brooks, Alan D; Yagita, Hideo; McVicar, Daniel W; Murphy, William J; Longo, Dan L; Sayers, Thomas J

    2015-12-15

    Cancer immunotherapy shows great promise but many patients fail to show objective responses, including in cancers that can respond well, such as melanoma and renal adenocarcinoma. The proteasome inhibitor bortezomib sensitizes solid tumors to apoptosis in response to TNF-family death ligands. Because T cells provide multiple death ligands at the tumor site, we investigated the effects of bortezomib on T-cell responses in immunotherapy models involving low-avidity antigens. Bortezomib did not affect lymphocyte or tissue-resident CD11c(+)CD8(+) dendritic cell counts in tumor-bearing mice, did not inhibit dendritic cell expression of costimulatory molecules, and did not decrease MHC class I/II-associated antigen presentation to cognate T cells. Rather, bortezomib activated NF-κB p65 in CD8(+) T cells, stabilizing expression of T-cell receptor CD3ζ and IL2 receptor-α, while maintaining IFNγ secretion to improve FasL-mediated tumor lysis. Notably, bortezomib increased tumor cell surface expression of Fas in mice as well as human melanoma tissue from a responsive patient. In renal tumor-bearing immunodeficient Rag2(-/-) mice, bortezomib treatment after adoptive T-cell immunotherapy reduced lung metastases and enhanced host survival. Our findings highlight the potential of proteasome inhibitors to enhance antitumor T-cell function in the context of cancer immunotherapy. ©2015 American Association for Cancer Research.

  18. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy.

    PubMed

    Bollino, Dominique; Webb, Tonya J

    2017-09-01

    Natural killer (NK) cells of the innate immune system and natural killer T (NKT) cells, which have roles in both the innate and adaptive responses, are unique lymphocyte subsets that have similarities in their functions and phenotypes. Both cell types can rapidly respond to the presence of tumor cells and participate in immune surveillance and antitumor immune responses. This has incited interest in the development of novel cancer therapeutics based on NK and NKT cell manipulation. Chimeric antigen receptors (CARs), generated through the fusion of an antigen-binding region of a monoclonal antibody or other ligand to intracellular signaling domains, can enhance lymphocyte targeting and activation toward diverse malignancies. Most of the CAR studies have focused on their expression in T cells; however, the functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. CAR-modified NK and NKT cells are becoming more prevalent because they provide a method to direct these cells more specifically to target cancer cells, with less risk of adverse effects. This review will outline current NK and NKT cell CAR constructs and how they compare to conventional CAR T cells, and discuss future modifications that can be explored to advance adoptive cell transfer of NK and NKT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Receptor for Advanced Glycation Endproducts Drives T Cell Survival and Inflammation in Type 1 Diabetes Mellitus.

    PubMed

    Durning, Sean P; Preston-Hurlburt, Paula; Clark, Paul R; Xu, Ding; Herold, Kevan C

    2016-10-15

    The ways in which environmental factors participate in the progression of autoimmune diseases are not known. After initiation, it takes years before hyperglycemia develops in patients at risk for type 1 diabetes (T1D). The receptor for advanced glycation endproducts (RAGE) is a scavenger receptor of the Ig family that binds damage-associated molecular patterns and advanced glycated endproducts and can trigger cell activation. We previously found constitutive intracellular RAGE expression in lymphocytes from patients with T1D. In this article, we show that there is increased RAGE expression in T cells from at-risk euglycemic relatives who progress to T1D compared with healthy control subjects, and in the CD8 + T cells in the at-risk relatives who do versus those who do not progress to T1D. Detectable levels of the RAGE ligand high mobility group box 1 were present in serum from at-risk subjects and patients with T1D. Transcriptome analysis of RAGE + versus RAGE - T cells from patients with T1D showed differences in signaling pathways associated with increased cell activation and survival. Additional markers for effector memory cells and inflammatory function were elevated in the RAGE + CD8 + cells of T1D patients and at-risk relatives of patients before disease onset. These studies suggest that expression of RAGE in T cells of subjects progressing to disease predates dysglycemia. These findings imply that RAGE expression enhances the inflammatory function of T cells, and its increased levels observed in T1D patients may account for the chronic autoimmune response when damage-associated molecular patterns are released after cell injury and killing. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.

    PubMed

    Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O

    1998-01-15

    The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation.

  1. T-cell receptor signaling activates an ITK/NF-κB/GATA-3 axis in T-cell lymphomas facilitating resistance to chemotherapy

    PubMed Central

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C.; Lim, Megan S.; Bailey, Nathanael G.; Wilcox, Ryan A.

    2016-01-01

    Purpose T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T-cell specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR’s role in mediating resistance to chemotherapy. Experimental Design Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following T-cell receptor (TCR) engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results Here we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3, and promotes chemotherapy resistance. Conclusions These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented activation of this signaling axis and overcame chemotherapy resistance. PMID:27780854

  2. Ligand-independent pathway that controls stability of interferon alpha receptor

    PubMed Central

    Liu, Jianghuai; Plotnikov, Alexander; Banerjee, Anamika; Kumar, K.G. Suresh; Ragimbeau, Josiane; Marijanovic, Zrinka; Baker, Darren P.; Pellegrini, Sandra; Fuchs, Serge Y.

    2008-01-01

    SUMMARY Ligand-specific negative regulation of cytokine-induced signaling relies on down regulation of the cytokine receptors. Down regulation of the IFNAR1 sub-unit of the Type I interferon (IFN) receptor proceeds via lysosomal receptor proteolysis, which is triggered by ubiquitination that depends on IFNAR1 serine phosphorylation. While IFN-inducible phosphorylation, ubiquitination and degradation requires the catalytic activity of the Tyk2 Janus kinase, here we found the ligand- and Tyk2-independent pathway that promotes IFNAR1 phosphorylation, ubiquitination, and degradation when IFNAR1 is expressed at high levels. A major cellular kinase activity that is responsible for IFNAR1 phosphorylation in vitro does not depend on either ligand or Tyk2 activity. Inhibition of ligand-independent IFNAR1 degradation suppresses cell proliferation. We discuss the signaling events that might lead to ubiquitination and degradation of IFNAR1 via ligand-dependent and independent pathways and their potential physiologic significance. PMID:18166147

  3. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  4. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.

    PubMed

    Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K

    2015-08-20

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. © 2015 by The American Society of Hematology.

  5. Ligand affinity of the 67-kD elastin/laminin binding protein is modulated by the protein's lectin domain: visualization of elastin/laminin-receptor complexes with gold-tagged ligands

    PubMed Central

    1991-01-01

    Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have revealed important aspects of the regulation of affinity of ligand-receptor interaction in situ. Both elastin and laminin were found to compete for binding to the cell surface and lactose dramatically decreased the affinity of the receptor(s) for both elastin and laminin. These findings were supported by in vitro studies of the detergent-solubilized receptor. Further, immobilization of the ligand-receptor complexes through binding to the cytoskeleton dramatically decreased the ability of bound particles to leave the receptor. The changes in the kinetics of ligand-coated gold binding to living cells suggest that both laminin and elastin binding is inhibited by lactose and that attachment of receptor to the cytoskeleton increases its affinity for the ligand. PMID:1848864

  6. Chimeric antigen receptor T cells targeting Fc μ receptor selectively eliminate CLL cells while sparing healthy B cells.

    PubMed

    Faitschuk, Elena; Hombach, Andreas A; Frenzel, Lukas P; Wendtner, Clemens-Martin; Abken, Hinrich

    2016-09-29

    Adoptive cell therapy of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR)-modified T cells targeting CD19 induced lasting remission of this refractory disease in a number of patients. However, the treatment is associated with prolonged "on-target off-tumor" toxicities due to the targeted elimination of healthy B cells demanding more selectivity in targeting CLL cells. We identified the immunoglobulin M Fc receptor (FcμR), also known as the Fas apoptotic inhibitory molecule-3 or TOSO, as a target for a more selective treatment of CLL by CAR T cells. FcμR is highly and consistently expressed by CLL cells; only minor levels are detected on healthy B cells or other hematopoietic cells. T cells with a CAR specific for FcμR efficiently responded toward CLL cells, released a panel of proinflammatory cytokines and lytic factors, like soluble FasL and granzyme B, and eliminated the leukemic cells. In contrast to CD19 CAR T cells, anti-FcμR CAR T cells did not attack healthy B cells. T cells with anti-FcμR CAR delayed outgrowth of Mec-1-induced leukemia in a xenograft mouse model. T cells from CLL patients in various stages of the disease, modified by the anti-FcμR CAR, purged their autologous CLL cells in vitro without reducing the number of healthy B cells, which is the case with anti-CD19 CAR T cells. Compared with the currently used therapies, the data strongly imply a superior therapeutic index of anti-FcμR CAR T cells for the treatment of CLL. © 2016 by The American Society of Hematology.

  7. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance.

    PubMed

    Mincheva-Nilsson, Lucia; Baranov, Vladimir

    2014-10-01

    Human cancers constitutively produce and release endosome-derived nanometer-sized vesicles called exosomes that carry biologically active proteins, messenger and micro RNAs and serve as vehicles of intercellular communication. The tumour exosomes are present in the blood, urine and various malignant effusions such as peritoneal and pleural fluid of cancer patients and can modulate immune cells and responses thus deranging the immune system of cancer patients and giving advantage to the cancer to establish and spread itself. Here, the role of exosomes in the NKG2D receptor-ligand system's interactions is discussed. The activating NK cell receptor NKG2D and its multiple ligands, the MHC class I-related chain (MIC) A/B and the retinoic acid transcript-1/UL-16 binding proteins (RAET1/ULBP) 1-6 comprise a powerful stress-inducible danger detector system that targets infected, inflamed and malignantly transformed cells and plays a decisive role in anti-tumour immune surveillance. Mounting evidence reveals that the MIC- and RAET1/ULBP ligand family members are enriched in the endosomal compartment of various tumour cells and expressed and released into the intercellular space and bodily fluids on exosomes thus preserving their entire molecule, three-dimensional protein structure and biologic activity. The NKG2D ligand-expressing exosomes serve as decoys with a powerful ability to down regulate the cognate receptor and impair the cytotoxic function of NK-, NKT-, gamma/delta- and cytotoxic T cells. This review summarizes recent findings concerning the role of NKG2D receptor-ligand system in cancer with emphasis on regulation of NKG2D ligand expression and the immunosuppressive role of exosomally expressed NKG2D ligands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range

    PubMed Central

    Ventura, Alejandra C.; Bush, Alan; Vasen, Gustavo; Goldín, Matías A.; Burkinshaw, Brianne; Bhattacharjee, Nirveek; Folch, Albert; Brent, Roger; Chernomoretz, Ariel; Colman-Lerner, Alejandro

    2014-01-01

    Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. PMID:25172920

  10. A Synthetic MUC1 Anticancer Vaccine Containing Mannose Ligands for Targeting Macrophages and Dendritic Cells.

    PubMed

    Glaffig, Markus; Stergiou, Natascha; Hartmann, Sebastian; Schmitt, Edgar; Kunz, Horst

    2018-01-08

    A MUC1 anticancer vaccine equipped with covalently linked divalent mannose ligands was found to improve the antigen uptake and presentation by targeting mannose-receptor-positive macrophages and dendritic cells. It induced much stronger specific IgG immune responses in mice than the non-mannosylated reference vaccine. Mannose coupling also led to increased numbers of macrophages, dendritic cells, and CD4 + T cells in the local lymph organs. Comparison of di- and tetravalent mannose ligands revealed an increased binding of the tetravalent version, suggesting that higher valency improves binding to the mannose receptor. The mannose-coupled vaccine and the non-mannosylated reference vaccine induced IgG antibodies that exhibited similar binding to human breast tumor cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A highly sensitive quantitative cytosensor technique for the identification of receptor ligands in tissue extracts.

    PubMed

    Lenkei, Z; Beaudet, A; Chartrel, N; De Mota, N; Irinopoulou, T; Braun, B; Vaudry, H; Llorens-Cortes, C

    2000-11-01

    Because G-protein-coupled receptors (GPCRs) constitute excellent putative therapeutic targets, functional characterization of orphan GPCRs through identification of their endogenous ligands has great potential for drug discovery. We propose here a novel single cell-based assay for identification of these ligands. This assay involves (a) fluorescent tagging of the GPCR, (b) expression of the tagged receptor in a heterologous expression system, (c) incubation of the transfected cells with fractions purified from tissue extracts, and (d) imaging of ligand-induced receptor internalization by confocal microscopy coupled to digital image quantification. We tested this approach in CHO cells stably expressing the NT1 neurotensin receptor fused to EGFP (enhanced green fluorescent protein), in which neurotensin promoted internalization of the NT1-EGFP receptor in a dose-dependent fashion (EC(50) = 0.98 nM). Similarly, four of 120 consecutive reversed-phase HPLC fractions of frog brain extracts promoted internalization of the NT1-EGFP receptor. The same four fractions selectively contained neurotensin, an endogenous ligand of the NT1 receptor, as detected by radioimmunoassay and inositol phosphate production. The present internalization assay provides a highly specific quantitative cytosensor technique with sensitivity in the nanomolar range that should prove useful for the identification of putative natural and synthetic ligands for GPCRs.

  12. Involvement of tumour necrosis factor-alpha-related apoptosis-inducing ligand in enhanced cytotoxicity of lipopolysaccharide-stimulated dendritic cells to activated T cells.

    PubMed

    Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao

    2002-07-01

    Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257-264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand-tumour necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses.

  13. Sigma Receptor (σR) Ligands with Antiproliferative and Anticancer Activity.

    PubMed

    Georgiadis, Markos-Orestis; Karoutzou, Olga; Foscolos, Angeliki-Sofia; Papanastasiou, Ioannis

    2017-08-25

    Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited promising results against numerous human and rodent cancers and are investigated under preclinical and clinical study trials, indicating a new category of drugs in cancer therapy.

  14. Multivalent ligands control stem cell behaviour in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Conway, Anthony; Vazin, Tandis; Spelke, Dawn P.; Rode, Nikhil A.; Healy, Kevin E.; Kane, Ravi S.; Schaffer, David V.

    2013-11-01

    There is broad interest in designing nanostructured materials that can interact with cells and regulate key downstream functions. In particular, materials with nanoscale features may enable control over multivalent interactions, which involve the simultaneous binding of multiple ligands on one entity to multiple receptors on another and are ubiquitous throughout biology. Cellular signal transduction of growth factor and morphogen cues (which have critical roles in regulating cell function and fate) often begins with such multivalent binding of ligands, either secreted or cell-surface-tethered to target cell receptors, leading to receptor clustering. Cellular mechanisms that orchestrate ligand-receptor oligomerization are complex, however, so the capacity to control multivalent interactions and thereby modulate key signalling events within living systems is currently very limited. Here, we demonstrate the design of potent multivalent conjugates that can organize stem cell receptors into nanoscale clusters and control stem cell behaviour in vitro and in vivo. The ectodomain of ephrin-B2, normally an integral membrane protein ligand, was conjugated to a soluble biopolymer to yield multivalent nanoscale conjugates that potently induce signalling in neural stem cells and promote their neuronal differentiation both in culture and within the brain. Super-resolution microscopy analysis yielded insights into the organization of the receptor-ligand clusters at the nanoscale. We also found that synthetic multivalent conjugates of ephrin-B1 strongly enhance human embryonic and induced pluripotent stem cell differentiation into functional dopaminergic neurons. Multivalent bioconjugates are therefore powerful tools and potential nanoscale therapeutics for controlling the behaviour of target stem cells in vitro and in vivo.

  15. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    PubMed

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  17. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression.

    PubMed

    Le, Hai Van; Kim, Jae Young

    2016-06-01

    Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C-C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.

  18. Measuring two-dimensional receptor-ligand binding kinetics by micropipette.

    PubMed Central

    Chesla, S E; Selvaraj, P; Zhu, C

    1998-01-01

    We report a novel method for measuring forward and reverse kinetic rate constants, kf0 and kr0, for the binding of individual receptors and ligands anchored to apposing surfaces in cell adhesion. Not only does the method examine adhesion between a single pair of cells; it also probes predominantly a single receptor-ligand bond. The idea is to quantify the dependence of adhesion probability on contact duration and densities of the receptors and ligands. The experiment was an extension of existing micropipette protocols. The analysis was based on analytical solutions to the probabilistic formulation of kinetics for small systems. This method was applied to examine the interaction between Fc gamma receptor IIIA (CD16A) expressed on Chinese hamster ovary cell transfectants and immunoglobulin G (IgG) of either human or rabbit origin coated on human erythrocytes, which were found to follow a monovalent biomolecular binding mechanism. The measured rate constants are Ackf0 = (2.6 +/- 0.32) x 10(-7) micron 4 s-1 and kr0 = (0.37 +/- 0.055) s-1 for the CD16A-hIgG interaction and Ackf0 = (5.7 +/- 0.31) X 10(-7) micron 4 s-1 and kr0 = (0.20 +/- 0.042) s-1 for the CD16A-rIgG interaction, respectively, where Ac is the contact area, estimated to be a few percent of 3 micron 2. PMID:9726957

  19. Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists

    PubMed Central

    Charfi, Iness; Nagi, Karim; Mnie-Filali, Ouissame; Thibault, Dominic; Balboni, Gianfranco; Schiller, Peter W.; Trudeau, Louis-Eric

    2014-01-01

    Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of Emax values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase Emax values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells. PMID:24022593

  20. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy.

    PubMed

    Brown, Christine E; Alizadeh, Darya; Starr, Renate; Weng, Lihong; Wagner, Jamie R; Naranjo, Araceli; Ostberg, Julie R; Blanchard, M Suzette; Kilpatrick, Julie; Simpson, Jennifer; Kurien, Anita; Priceman, Saul J; Wang, Xiuli; Harshbarger, Todd L; D'Apuzzo, Massimo; Ressler, Julie A; Jensen, Michael C; Barish, Michael E; Chen, Mike; Portnow, Jana; Forman, Stephen J; Badie, Behnam

    2016-12-29

    A patient with recurrent multifocal glioblastoma received chimeric antigen receptor (CAR)-engineered T cells targeting the tumor-associated antigen interleukin-13 receptor alpha 2 (IL13Rα2). Multiple infusions of CAR T cells were administered over 220 days through two intracranial delivery routes - infusions into the resected tumor cavity followed by infusions into the ventricular system. Intracranial infusions of IL13Rα2-targeted CAR T cells were not associated with any toxic effects of grade 3 or higher. After CAR T-cell treatment, regression of all intracranial and spinal tumors was observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid. This clinical response continued for 7.5 months after the initiation of CAR T-cell therapy. (Funded by Gateway for Cancer Research and others; ClinicalTrials.gov number, NCT02208362 .).

  1. Chimeric Antigen Receptor T-Cell Therapy for the Community Oncologist

    PubMed Central

    Levine, Bruce L.

    2016-01-01

    The field of cancer immunotherapy has rapidly progressed in the past decade as several therapeutic modalities have entered into the clinic. One such immunotherapy that has shown promise in the treatment of cancer is the use of chimeric antigen receptor (CAR)-modified T lymphocytes. CARs are engineered receptors constructed from antigen recognition regions of antibodies fused to T-cell signaling and costimulatory domains that can be used to reprogram a patient’s T cells to specifically target tumor cells. CAR T-cell therapy has demonstrated sustained complete responses for some patients with advanced leukemia, and a number of CAR therapies are being evaluated in clinical studies. CAR T-cell therapy-associated toxicities, including cytokine release syndrome, macrophage activation syndrome, and tumor lysis syndrome, have been observed and effectively managed in the clinic. In patients with significant clinical responses, sustained B-cell aplasia has also been observed and is a marker of CAR T-cell persistence that might provide long-term disease control. Education on CAR T-cell therapy efficacy and safety management is critical for clinicians and patients who are considering this novel type of treatment. In the present report, the current landscape of CAR T-cell therapy, the effective management of patients undergoing treatment, and which patients are the most suitable candidates for current trials are discussed. Implications for Practice: The present report describes the current status of chimeric antigen receptor (CAR) T lymphocytes as an immunotherapy for patients with relapsed or refractory B-cell malignancies. CAR T cells targeting CD19, a protein expressed on many B-cell malignancies, typically induce high complete response rates in patients with B-cell leukemia or lymphoma who have very limited therapeutic options. Recent clinical trial results of CD19 CAR T-cell therapies and the management of CAR T-cell-associated adverse events are discussed. The present

  2. Expression of σ receptors of human urinary bladder tumor cells (RT-4 cells) and development of a competitive receptor binding assay for the determination of ligand affinity to human σ(2) receptors.

    PubMed

    Schepmann, Dirk; Lehmkuhl, Kirstin; Brune, Stefanie; Wünsch, Bernhard

    2011-07-15

    A selective competitive binding assay for the determination of the affinity of compounds to the human σ(2) receptor using 96-well multiplates and a solid state scintillator was developed. In the assay system, [(3)H]ditolylguanidine (DTG) was used as radioligand and membrane homogenates from human RT-4 cells physiologically expressing σ(2) receptors served as receptor material. In order to block the interaction of the unselective radioligand [(3)H]DTG with σ(1) receptors, all experiments were performed in the presence of the σ(1) selective ligand (+)-pentazocine. The density of σ(2) receptors of the cells was analyzed by a saturation experiment with [(3)H]DTG. The radioligand [(3)H]DTG was bound to a single, saturable site on human σ(2) receptors, resulting in a B(max) value of 2108±162fmol/mg protein and K(d)-value of 8.3±2.0nM. The expression of competing σ(1) receptors was evaluated by performing a saturation experiment using the σ(1) selective radioligand [(3)H](+)-pentazocine, which resulted in a B(max) value of 279±40fmol/mg protein and K(d) value of 13.4±1.6nM. For validation of the σ(2) binding assay, the K(i)-values of four σ(2) ligands (ditolylguanidine, haloperidol, rimczole and BMY-14802) were determined with RT-4 cell membrane preparations. The K(i) values obtained from these experiments are in good accordance with the K(i)-values obtained with rat liver membrane preparations as receptor material and with K(i) values given in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    PubMed

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  4. HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation

    PubMed Central

    Deng, Jing; Mitsuki, Yu-ya; Shen, Guomiao; Ray, Jocelyn C.; Cicala, Claudia; Arthos, James; Dustin, Michael L.

    2016-01-01

    ABSTRACT HIV is transmitted most efficiently from cell to cell, and productive infection occurs mainly in activated CD4 T cells. It is postulated that HIV exploits immunological synapses formed between CD4 T cells and antigen-presenting cells to facilitate the targeting and infection of activated CD4 T cells. This study sought to evaluate how the presence of the HIV envelope (Env) in the CD4 T cell immunological synapse affects synapse formation and intracellular signaling to impact the downstream T cell activation events. CD4 T cells were applied to supported lipid bilayers that were reconstituted with HIV Env gp120, anti-T cell receptor (anti-TCR) monoclonal antibody, and ICAM-1 to represent the surface of HIV Env-bearing antigen-presenting cells. The results showed that the HIV Env did not disrupt immunological synapse formation. Instead, the HIV Env accumulated with TCR at the center of the synapse, altered the kinetics of TCR recruitment to the synapse and affected synapse morphology over time. The HIV Env also prolonged Lck phosphorylation at the synapse and enhanced TCR-induced CD69 upregulation, interleukin-2 secretion, and proliferation to promote virus infection. These results suggest that HIV uses the immunological synapse as a conduit not only for selective virus transmission to activated CD4 T cells but also for boosting the T cell activation state, thereby increasing its likelihood of undergoing productive replication in targeted CD4 T cells. IMPORTANCE There are about two million new HIV infections every year. A better understanding of how HIV is transmitted to susceptible cells is critical to devise effective strategies to prevent HIV infection. Activated CD4 T cells are preferentially infected by HIV, although how this is accomplished is not fully understood. This study examined whether HIV co-opts the normal T cell activation process through the so-called immunological synapse. We found that the HIV envelope is recruited to the center of the

  5. How nonuniform contact profiles of T cell receptors modulate thymic selection outcomes

    NASA Astrophysics Data System (ADS)

    Chen, Hanrong; Chakraborty, Arup K.; Kardar, Mehran

    2018-03-01

    T cell receptors (TCRs) bind foreign or self-peptides attached to major histocompatibility complex (MHC) molecules, and the strength of this interaction determines T cell activation. Optimizing the ability of T cells to recognize a diversity of foreign peptides yet be tolerant of self-peptides is crucial for the adaptive immune system to properly function. This is achieved by selection of T cells in the thymus, where immature T cells expressing unique, stochastically generated TCRs interact with a large number of self-peptide-MHC; if a TCR does not bind strongly enough to any self-peptide-MHC, or too strongly with at least one self-peptide-MHC, the T cell dies. Past theoretical work cast thymic selection as an extreme value problem and characterized the statistical enrichment or depletion of amino acids in the postselection TCR repertoire, showing how T cells are selected to be able to specifically recognize peptides derived from diverse pathogens yet have limited self-reactivity. Here, we investigate how the diversity of the postselection TCR repertoire is modified when TCRs make nonuniform contacts with peptide-MHC. Specifically, we were motivated by recent experiments showing that amino acids at certain positions of a TCR sequence have large effects on thymic selection outcomes, and crystal structure data that reveal a nonuniform contact profile between a TCR and its peptide-MHC ligand. Using a representative TCR contact profile as an illustration, we show via simulations that the statistical enrichment or depletion of amino acids now varies by position according to the contact profile, and, importantly, it depends on the implementation of nonuniform contacts during thymic selection. We explain these nontrivial results analytically. Our study has implications for understanding the selection forces that shape the functionality of the postselection TCR repertoire.

  6. Bayesian multivariate Poisson abundance models for T-cell receptor data.

    PubMed

    Greene, Joshua; Birtwistle, Marc R; Ignatowicz, Leszek; Rempala, Grzegorz A

    2013-06-07

    A major feature of an adaptive immune system is its ability to generate B- and T-cell clones capable of recognizing and neutralizing specific antigens. These clones recognize antigens with the help of the surface molecules, called antigen receptors, acquired individually during the clonal development process. In order to ensure a response to a broad range of antigens, the number of different receptor molecules is extremely large, resulting in a huge clonal diversity of both B- and T-cell receptor populations and making their experimental comparisons statistically challenging. To facilitate such comparisons, we propose a flexible parametric model of multivariate count data and illustrate its use in a simultaneous analysis of multiple antigen receptor populations derived from mammalian T-cells. The model relies on a representation of the observed receptor counts as a multivariate Poisson abundance mixture (m PAM). A Bayesian parameter fitting procedure is proposed, based on the complete posterior likelihood, rather than the conditional one used typically in similar settings. The new procedure is shown to be considerably more efficient than its conditional counterpart (as measured by the Fisher information) in the regions of m PAM parameter space relevant to model T-cell data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy

    PubMed Central

    Beavis, Paul A.; Henderson, Melissa A.; Giuffrida, Lauren; Mills, Jane K.; Sek, Kevin; Cross, Ryan S.; Davenport, Alexander J.; John, Liza B.; Mardiana, Sherly; Slaney, Clare Y.; Johnstone, Ricky W.; Trapani, Joseph A.; Stagg, John; Loi, Sherene; Kats, Lev; Gyorki, David; Kershaw, Michael H.; Darcy, Phillip K.

    2017-01-01

    Chimeric antigen receptor (CAR) T cells have been highly successful in treating hematological malignancies, including acute and chronic lymphoblastic leukemia. However, treatment of solid tumors using CAR T cells has been largely unsuccessful to date, partly because of tumor-induced immunosuppressive mechanisms, including adenosine production. Previous studies have shown that adenosine generated by tumor cells potently inhibits endogenous antitumor T cell responses through activation of adenosine 2A receptors (A2ARs). Herein, we have observed that CAR activation resulted in increased A2AR expression and suppression of both murine and human CAR T cells. This was reversible using either A2AR antagonists or genetic targeting of A2AR using shRNA. In 2 syngeneic HER2+ self-antigen tumor models, we found that either genetic or pharmacological targeting of the A2AR profoundly increased CAR T cell efficacy, particularly when combined with PD-1 blockade. Mechanistically, this was associated with increased cytokine production of CD8+ CAR T cells and increased activation of both CD8+ and CD4+ CAR T cells. Given the known clinical relevance of the CD73/adenosine pathway in several solid tumor types, and the initiation of phase I trials for A2AR antagonists in oncology, this approach has high translational potential to enhance CAR T cell efficacy in several cancer types. PMID:28165340

  8. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    PubMed

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins.

  9. Efficient cell-free production of olfactory receptors: Detergent optimization, structure, and ligand binding analyses

    PubMed Central

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-01-01

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a α-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins. PMID:18840687

  10. Genetic engineering with T cell receptors.

    PubMed

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  11. Single-molecule force spectroscopy study of interactions between angiotensin II type 1 receptor and different biased ligands in living cells.

    PubMed

    Li, Wenhui; Xu, Jiachao; Kou, Xiaolong; Zhao, Rong; Zhou, Wei; Fang, Xiaohong

    2018-05-01

    Angiotensin II type 1 receptor (AT1R), a typical G protein-coupled receptor, plays a key role in regulating many cardiovascular functions. Different ligands can bind with AT1R to selectively activate either G protein (Gq) or β-arrestin (β-arr) pathway, or both pathways, but the molecular mechanism is not clear yet. In this work, we used, for the first time, atomic force microscopy-based single molecule force spectroscopy (SMFS) to study the interactions of AT1R with three types of ligands, balanced ligand, Gq-biased ligand, and β-arr-biased ligand, in living cells. The results revealed their difference in binding force and binding stability. The complex of the Gq-biased ligand-AT1R overcame two energy barriers with an intermediate state during dissociation, whereas that of β-arr-biased ligand-AT1R complex overcame one energy barrier. This indicated that AT1R had different ligand-binding conformational substates and underwent different structural changes to activate downstream signaling pathways with variable agonist efficacies. Quantitative analysis of AT1R-ligand binding in living cells at the single-molecule level offers a new tool to study the molecular mechanism of AT1R biased activation. Graphical Abstract Single-molecule force measurement on the living cell expressing AT1R-eGFP with a ligand modified AFM tip (left), the dynamic force spectra of β-arrestin biased ligands-AT1R (middle), and Gq-biased ligands-AT1R (right). The complexes of β-arr-biased ligand-AT1R overcame one energy barrier, with one linear region in the spectra, whereas the Gq-biased ligand-AT1R complexes overcame two energy barriers with two linear regions.

  12. Glutamine supplementation attenuates expressions of adhesion molecules and chemokine receptors on T cells in a murine model of acute colitis.

    PubMed

    Hou, Yu-Chen; Wu, Jin-Ming; Wang, Ming-Yang; Wu, Ming-Hsun; Chen, Kuen-Yuan; Yeh, Sung-Ling; Lin, Ming-Tsan

    2014-01-01

    Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln) supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS-) induced colitis. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL-) 1, leukocyte function-associated antigen- (LFA-) 1, and C-C chemokine receptor type 9 (CCR9) by T helper (Th) and cytotoxic T (Tc) cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  13. Decoy receptor 3 attenuates collagen-induced arthritis by modulating T cell activation and B cell expansion.

    PubMed

    Cheng, Chia-Pi; Sytwu, Huey-Kang; Chang, Deh-Ming

    2011-12-01

    To investigate the immune-modulated effects of decoy receptor 3 (DCR3) in an experimental model of rheumatoid arthritis (RA). We delivered DCR3 plasmid into collagen-induced arthritis (CIA) mice using the hydrodynamic method and evaluated the serum level of DCR3 protein by ELISA. After immunization, we assessed disease severity of arthritis incidence, arthritis scores, paw thickness, and means of arthritic limbs, and used hematoxylin and eosin staining to observe synovial hyperplasia. We analyzed numbers of murine splenocytes and inguinal lymphocyte cells, cell populations, and serum proinflammatory cytokines by flow cytometry. We investigated B cell proliferation by carboxyfluorescein succinimidyl ester assay. We evaluated serum levels of total IgG2a and type II collagen-specific IgG and IgG2a using ELISA. DCR3 expression in sera significantly attenuated disease severity in CIA mice. We found that DCR3 inhibited the volume of inguinal lymph nodes, numbers of CD19+ B cells, and populations of interferon-γ, interleukin 4 (IL-4), IL-17A, and Foxp3-producing CD4+ T cell in vivo. We found that DCR3 inhibited Pam3CSK4 (Toll-like receptor 1/2 ligand)-induced B220+ B cell proliferation in vitro. DCR3 treatment reduced the serum level of IL-6, total IgG2a, and CII-specific IgG2a antibody. We postulated that the protective effects of DCR3 in CIA resulted from modulation of the immune system by maintaining the B/T cell balance and decreasing lymphocyte expansion. We suggest DCR3 as a prophylactic and potential therapeutic agent in the treatment of RA.

  14. Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells.

    PubMed

    Davies, David Marc; Maher, John

    2010-06-01

    Harnessing the power of the immune system to target cancer has long been a goal of tumor immunologists. One avenue under investigation is the modification of T cells to express a chimeric antigen receptor (CAR). Expression of such a receptor enables T-cell specificity to be redirected against a chosen tumor antigen. Substantial research in this field has been carried out, incorporating a wide variety of malignancies and tumor-associated antigens. Ongoing investigations will ensure this area continues to expand at a rapid pace. This review will explain the evolution of CAR technology over the last two decades in addition to detailing the associated benefits and disadvantages. The outcome of recent phase I clinical trials and the impact that these have had upon the direction of future research in this field will also be addressed.

  15. Decoy receptor 3 suppresses TLR2-mediated B cell activation by targeting NF-κB.

    PubMed

    Huang, Zi-Ming; Kang, Jhi-Kai; Chen, Chih-Yu; Tseng, Tz-Hau; Chang, Chien-Wen; Chang, Yung-Chi; Tai, Shyh-Kuan; Hsieh, Shie-Liang; Leu, Chuen-Miin

    2012-06-15

    Decoy receptor 3 (DcR3) is a soluble protein in the TNFR superfamily. Its known ligands include Fas ligand, homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes, TNF-like molecule 1A, and heparan sulfate proteoglycans. DcR3 has been reported to modulate the functions of T cells, dendritic cells, and macrophages; however, its role in regulating B cell activation is largely unknown. In this study, we found that the DcR3.Fc fusion protein bound to human and mouse B cells and suppressed the activation of B cells. DcR3.Fc attenuated Staphylococcus aureus, IgM-, Pam(3)CSK(4)-, and LPS-mediated B cell proliferation but did not affect cytokine-induced B cell growth. In the presence of these mitogens, DcR3.Fc did not induce B cell apoptosis, suggesting that DcR3 may inhibit the signal(s) important for B cell activation. Because the combination of Fas.Fc, LT-βR.Fc (homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes receptor), and DR3.Fc (TNF-like molecule 1A receptor) did not suppress B cell proliferation and because the biological effect of DcR3.Fc on B cells was not blocked by heparin, we hypothesize that a novel ligand(s) of DcR3 mediates its inhibitory activity on B cells. Moreover, we found that TLR2-stimulated NF-κB p65 activation and NF-κB-driven luciferase activity were attenuated by DcR3.Fc. The TLR2-induced cytokine production by B cells was consistently reduced by DcR3. These results imply that DcR3 may regulate B cell activation by suppressing the activation of NF-κB.

  16. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    PubMed

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. T-cell receptor accessory and co-receptor molecules in channel catfish

    USDA-ARS?s Scientific Manuscript database

    T cell receptor (TCR) associated invariant chains CD3gamma/delta,epsilon, and zeta as well as TCR co-receptors CD8alpha and CD8beta were isolated from the channel catfish, Ictalurus punctatus, at both the gene and cDNA levels. All of catfish CD3 sequences encode for proteins that resemble their resp...

  18. Detection of receptor ligands by monitoring selective stabilization of a Renilla luciferase-tagged, constitutively active mutant, G-protein-coupled receptor

    PubMed Central

    Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme

    2001-01-01

    The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868

  19. Significant role of Fas ligand-binding but defective Fas receptor (CD95) in lymph node hyperplasia composed of abnormal double-negative T cells

    PubMed Central

    Matsuzawa, Akio; Shimizu, Motomu; Takeda, Yasutaka; Nagase, Hisashi; Sayama, Kazutoshi; Kimura, Mikio

    2002-01-01

    The functional differences between two mutations of the Fas (CD95) locus, Faslpr (lpr) and Faslprcg (lprcg), were investigated using bone marrow (BM) transplantation on the C3H mouse background. Both lpr/lpr and lprcg/lprcg BM transferred caused lymph node (LN) hyperplasia in lpr/+ and lprcg/+ recipients, although it was clearly smaller than that in lpr/lpr and lprcg/lprcg recipients of lpr/lpr and lprcg/lprcg BM. In addition, both BM induced significantly larger LN hyperplasia in lprcg/+ than lpr/+ recipients. Appearance of CD4− CD8−[double negative (DN)] T cells in the periphery is the most consistent phenotype of Fas mutations. Importantly, the proportion of DN T cells was higher in larger LN hyperplasia in the order of lpr/+, lprcg/+ and lpr/lpr or lprcg/lprcg recipients. On the other hand, both lpr/lpr and lprcg/lprcg BM transferred into wild-type (+/+) mice caused marked LN atrophy. The former, but not the latter, induced wasting syndrome. Faslg1d (gld)-homozygous lpr/lpr BM transferred into +/+ mice elicited LN hyperplasia of the same extent as that in lpr/lpr mice transferred with lpr/lpr BM, but not wasting syndrome. Taken together with the fact that DN T cells massively express Fas ligand (FasL), this study implied that FasL overexpressed on DN cells may be involved in the accumulation of DN T cells in LN, LN atrophy and wasting syndrome, and that lprcg Fas, which can bind to Fas ligand but not transduce apoptosis signal into cells, may modulate these pathological conditions by interfering with the binding of FasL to Fas. PMID:12153509

  20. T-cell receptor revision: friend or foe?

    PubMed Central

    Hale, J Scott; Fink, Pamela J

    2010-01-01

    T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue. PMID:20201984

  1. T-cell receptor revision: friend or foe?

    PubMed

    Hale, J Scott; Fink, Pamela J

    2010-04-01

    T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.

  2. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors.

    PubMed

    Aldoss, I; Bargou, R C; Nagorsen, D; Friberg, G R; Baeuerle, P A; Forman, S J

    2017-04-01

    Recent advances in antibody technology to harness T cells for cancer immunotherapy, particularly in the difficult-to-treat setting of relapsed/refractory acute lymphoblastic leukemia (r/r ALL), have led to innovative methods for directing cytotoxic T cells to specific surface antigens on cancer cells. One approach involves administration of soluble bispecific (or dual-affinity) antibody-based constructs that temporarily bridge T cells and cancer cells. Another approach infuses ex vivo-engineered T cells that express a surface plasma membrane-inserted antibody construct called a chimeric antigen receptor (CAR). Both bispecific antibodies and CARs circumvent natural target cell recognition by creating a physical connection between cytotoxic T cells and target cancer cells to activate a cytolysis signaling pathway; this connection allows essentially all cytotoxic T cells in a patient to be engaged because typical tumor cell resistance mechanisms (such as T-cell receptor specificity, antigen processing and presentation, and major histocompatibility complex context) are bypassed. Both the bispecific T-cell engager (BiTE) antibody construct blinatumomab and CD19-CARs are immunotherapies that have yielded encouraging remission rates in CD19-positive r/r ALL, suggesting that they might serve as definitive treatments or bridging therapies to allogeneic hematopoietic cell transplantation. With the introduction of these immunotherapies, new challenges arise related to unique toxicities and distinctive pathways of resistance. An increasing body of knowledge is being accumulated on how to predict, prevent, and manage such toxicities, which will help to better stratify patient risk and tailor treatments to minimize severe adverse events. A deeper understanding of the precise mechanisms of action and immune resistance, interaction with other novel agents in potential combinations, and optimization in the manufacturing process will help to advance immunotherapy outcomes in the r

  3. Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don’t Forget the Fuel

    PubMed Central

    Irving, Melita; Vuillefroy de Silly, Romain; Scholten, Kirsten; Dilek, Nahzli; Coukos, George

    2017-01-01

    T-cells play a critical role in tumor immunity. Indeed, the presence of tumor-infiltrating lymphocytes is a predictor of favorable patient prognosis for many indications and is a requirement for responsiveness to immune checkpoint blockade therapy targeting programmed cell death 1. For tumors lacking immune infiltrate, or for which antigen processing and/or presentation has been downregulated, a promising immunotherapeutic approach is chimeric antigen receptor (CAR) T-cell therapy. CARs are hybrid receptors that link the tumor antigen specificity and affinity of an antibody-derived single-chain variable fragment with signaling endodomains associated with T-cell activation. CAR therapy targeting CD19 has yielded extraordinary clinical responses against some hematological tumors. Solid tumors, however, remain an important challenge to CAR T-cells due to issues of homing, tumor vasculature and stromal barriers, and a range of obstacles in the tumor bed. Protumoral immune infiltrate including T regulatory cells and myeloid-derived suppressor cells have been well characterized for their ability to upregulate inhibitory receptors and molecules that hinder effector T-cells. A critical role for metabolic barriers in the tumor microenvironment (TME) is emerging. High glucose consumption and competition for key amino acids by tumor cells can leave T-cells with insufficient energy and biosynthetic precursors to support activities such as cytokine secretion and lead to a phenotypic state of anergy or exhaustion. CAR T-cell expansion protocols that promote a less differentiated phenotype, combined with optimal receptor design and coengineering strategies, along with immunomodulatory therapies that also promote endogenous immunity, offer great promise in surmounting immunometabolic barriers in the TME and curing solid tumors. PMID:28421069

  4. Characterization and Evaluation of Two Novel Fluorescent Sigma-2 Receptor Ligands as Proliferation Probes

    PubMed Central

    Zeng, Chenbo; Vangveravong, Suwanna; Jones, Lynne A.; Hyrc, Krzysztof; Chang, Katherine C.; Xu, Jinbin; Rothfuss, Justin M.; Goldberg, Mark P.; Hotchkiss, Richard S.; Mach, Robert H.

    2015-01-01

    We synthesized and characterized two novel fluorescent sigma-2 receptor selective ligands, SW120 and SW116, and evaluated these ligands as potential probes for imaging cell proliferation. Both ligands are highly selective for sigma-2 receptors versus sigma-1 receptors. SW120 and SW116 were internalized into MDA-MB-435 cells, and 50% of the maximum fluorescent intensity was reached in 11 and 24 minutes, respectively. In vitro studies showed that 50% of SW120 or SW116 washed out of cells in 1 hour. The internalization of SW120 was reduced ≈30% by phenylarsine oxide, an inhibitor of endocytosis, suggesting that sigma-2 ligands are internalized, in part, by an endocytotic pathway. Subcellular localization studies using confocal and two-photon microscopy showed that SW120 and SW116 partially colocalized with fluorescent markers of mitochondria, endoplasmic reticulum, lysosomes, and the plasma membrane, suggesting that sigma-2 receptors localized to the cytoplasmic organelles and plasma membrane. SW120 did not colocalize with the nuclear dye 4′,6-diamidino-2-phenylindole. In vivo studies showed that the uptake of SW120 in solid tumors and peripheral blood mononuclear cells of mice positively correlated with the expression level of the cell proliferation marker Ki-67, suggesting that sigma-2 fluorescent probes may be used to image cell proliferation in mice. PMID:22201533

  5. Premature cell senescence and T cell receptor-independent activation of CD8T cells in Juvenile Idiopathic Arthritis*

    PubMed Central

    Dvergsten, Jeffrey A.; Mueller, Robert G.; Griffin, Patricia; Abedin, Sameem; Pishko, Allyson; Michel, Joshua J.; Rosenkranz, Margalit E.; Reed, Ann M.; Kietz, Daniel A.; Vallejo, Abbe N.

    2013-01-01

    Objectives CD8T cells lacking CD28 were originally reported by Wedderburn and colleagues as a characteristic feature of JIA, but the relevance of these unusual cells to JIA remains to be elucidated. Because of recent evidence that CD28 loss is typical of terminally differentiated lymphocytes, we examined for functional subsets of CD8T cells in JIA. Methods Following informed consent/assent, blood and/or waste synovial fluid were collected from children with definite diagnosis of JIA (n = 98). De-identified blood (n = 33) and cord blood (n = 13) samples from healthy donors were also collected. CD8T and CD4T cells were screened for novel receptors, and where indicated, bioassays were performed to determine functional relevance of the identified receptor. Results Patients had a naïve T cell compartment with shortened telomeres, and their entire T cell pool had reduced proliferative capacity. They had an over abundance of CD31+CD28null CD8T cells, which was a significant feature of oligoarticular JIA (n = 62) compared to polyarticular JIA (n = 36). CD31+CD28null CD8T cells had limited mitotic capacity, and expressed high levels of the senescence antigens γH2Ax and/or p16. Ligation of CD31, independent of the TCR, sufficiently induced tyrosine phosphorylation, vesicle exocytosis, and production of IFN-γ and IL-10. Conclusion These data provide the first evidence for cell senescence, represented by CD31+CD28null CD8T cells, in the pathophysiology of JIA. Activation of these unusual cells in a TCR-independent manner suggests they are maladaptive, and could be potential targets for immunotherapy. PMID:23686519

  6. Construction of an anti-programmed death-ligand 1 chimeric antigen receptor and determination of its antitumor function with transduced cells

    PubMed Central

    Xie, Jiasen; Zhou, Zishan; Jiao, Shunchang; Li, Xiaokun

    2018-01-01

    A chimeric antigen receptor (CAR) is a type of fusion protein that comprises an antigen-recognition domain and signaling domains. In the present study, a programmed death-ligand 1 (PD-L1)-specific CAR, comprised of a single-chain variable fragment (scFv) derived from a monoclonal antibody, co-stimulatory domains of cluster of differentiation (CD) 28 and 4-1BB and a T-cell-activation domain derived from CD3ζ, was designed. The construction was cloned and packaged into the lentiviral vector pLVX. Flow cytometry confirmed that peripheral blood mononuclear cells were efficiently transduced and that the CAR was successfully expressed on T cells. The cytotoxicity of transduced T cells was detected using PD-L1-positive NCI-H358 bronchioalveolar carcinoma cells and A549 lung adenocarcinoma cells (with a low expression of PD-L1, only in the A549 cells). The results demonstrated mild cytotoxicity at an effector-to-target ratio of 10:1. An ELISA revealed a significant increase in the level of interferon-γ released from T cells transduced with scFv-28Bz when the cells were co-cultured with PD-L1-positive NCI-H358 cells, while interkeukin-2 and tumor necrosis factor-α levels remained unchanged. These data indicated a potential method for the treatment of solid tumors. PMID:29928397

  7. Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms.

    PubMed

    Ries, Jonas; Yu, Shuizi Rachel; Burkhardt, Markus; Brand, Michael; Schwille, Petra

    2009-09-01

    Analysis of receptor-ligand interactions in vivo is key to biology but poses a considerable challenge to quantitative microscopy. Here we combine static-volume, two-focus and dual-color scanning fluorescence correlation spectroscopy to solve this task at cellular resolution in complex biological environments. We quantified the mobility of fibroblast growth factor receptors Fgfr1 and Fgfr4 in cell membranes of living zebrafish embryos and determined their in vivo binding affinities to their ligand Fgf8.

  8. Differential immunomodulatory activity of tumor cell death induced by cancer therapeutic toll-like receptor ligands.

    PubMed

    Klein, Johanna C; Wild, Clarissa A; Lang, Stephan; Brandau, Sven

    2016-06-01

    Synthetic toll-like receptor (TLR) ligands stimulate defined immune cell subsets and are currently tested as novel immunotherapeutic agents against cancer with, however, varying clinical efficacy. Recent data showed the expression of TLR receptors also on tumor cells. In this study we investigated immunological events associated with the induction of tumor cell death by poly(I:C) and imiquimod. A human head and neck squamous cell carcinoma (HNSCC) cell line was exposed to poly(I:C) and imiquimod, which were delivered exogenously via culture medium or via electroporation. Cell death and cell biological consequences thereof were analyzed. For in vivo analyses, a human xenograft and a syngeneic immunocompetent mouse model were used. Poly(I:C) induced cell death only if delivered by electroporation into the cytosol. Cell death induced by poly(I:C) resulted in cytokine release and activation of monocytes in vitro. Monocytes activated by the supernatant of cancer cells previously exposed to poly(I:C) recruited significantly more Th1 cells than monocytes exposed to control supernatants. If delivered exogenously, imiquimod also induced tumor cell death and some release of interleukin-6, but cell death was not associated with release of Th1 cytokines, interferons, monocyte activation and Th1 recruitment. Interestingly, intratumoral injection of poly(I:C) triggered tumor cell death in tumor-bearing mice and reduced tumor growth independent of TLR signaling on host cells. Imiquimod did not affect tumor size. Our data suggest that common cancer therapeutic RNA compounds can induce functionally diverse types of cell death in tumor cells with implications for the use of TLR ligands in cancer immunotherapy.

  9. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation

    PubMed Central

    Gross, Catharina C.; Schulte-Mecklenbeck, Andreas; Rünzi, Anna; Kuhlmann, Tanja; Posevitz-Fejfár, Anita; Schwab, Nicholas; Schneider-Hohendorf, Tilman; Herich, Sebastian; Held, Kathrin; Konjević, Matea; Hartwig, Marvin; Dornmair, Klaus; Hohlfeld, Reinhard; Ziemssen, Tjalf; Klotz, Luisa; Meuth, Sven G.; Wiendl, Heinz

    2016-01-01

    Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) resulting from a breakdown in peripheral immune tolerance. Although a beneficial role of natural killer (NK)-cell immune-regulatory function has been proposed, it still needs to be elucidated whether NK cells are functionally impaired as part of the disease. We observed NK cells in active MS lesions in close proximity to T cells. In accordance with a higher migratory capacity across the blood–brain barrier, CD56bright NK cells represent the major intrathecal NK-cell subset in both MS patients and healthy individuals. Investigating the peripheral blood and cerebrospinal fluid of MS patients treated with natalizumab revealed that transmigration of this subset depends on the α4β1 integrin very late antigen (VLA)-4. Although no MS-related changes in the migratory capacity of NK cells were observed, NK cells derived from patients with MS exhibit a reduced cytolytic activity in response to antigen-activated CD4+ T cells. Defective NK-mediated immune regulation in MS is mainly attributable to a CD4+ T-cell evasion caused by an impaired DNAX accessory molecule (DNAM)-1/CD155 interaction. Both the expression of the activating NK-cell receptor DNAM-1, a genetic alteration consistently found in MS-association studies, and up-regulation of the receptor’s ligand CD155 on CD4+ T cells are reduced in MS. Therapeutic immune modulation of IL-2 receptor restores impaired immune regulation in MS by increasing the proportion of CD155-expressing CD4+ T cells and the cytolytic activity of NK cells. PMID:27162345

  10. A Mechanical Switch Couples T Cell Receptor Triggering to the Cytoplasmic Juxtamembrane Regions of CD3ζζ.

    PubMed

    Lee, Mark S; Glassman, Caleb R; Deshpande, Neha R; Badgandi, Hemant B; Parrish, Heather L; Uttamapinant, Chayasith; Stawski, Philipp S; Ting, Alice Y; Kuhns, Michael S

    2015-08-18

    The eight-subunit T cell receptor (TCR)-CD3 complex is the primary determinant for T cell fate decisions. Yet how it relays ligand-specific information across the cell membrane for conversion to chemical signals remains unresolved. We hypothesized that TCR engagement triggers a change in the spatial relationship between the associated CD3ζζ subunits at the junction where they emerge from the membrane into the cytoplasm. Using three in situ proximity assays based on ID-PRIME, FRET, and EPOR activity, we determined that the cytosolic juxtamembrane regions of the CD3ζζ subunits are spread apart upon assembly into the TCR-CD3 complex. TCR engagement then triggered their apposition. This mechanical switch resides upstream of the CD3ζζ intracellular motifs that initiate chemical signaling, as well as the polybasic stretches that regulate signal potentiation. These findings provide a framework from which to examine triggering events for activating immune receptors and other complex molecular machines. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Predicting receptor-ligand pairs through kernel learning

    PubMed Central

    2011-01-01

    Background Regulation of cellular events is, often, initiated via extracellular signaling. Extracellular signaling occurs when a circulating ligand interacts with one or more membrane-bound receptors. Identification of receptor-ligand pairs is thus an important and specific form of PPI prediction. Results Given a set of disparate data sources (expression data, domain content, and phylogenetic profile) we seek to predict new receptor-ligand pairs. We create a combined kernel classifier and assess its performance with respect to the Database of Ligand-Receptor Partners (DLRP) 'golden standard' as well as the method proposed by Gertz et al. Among our findings, we discover that our predictions for the tgfβ family accurately reconstruct over 76% of the supported edges (0.76 recall and 0.67 precision) of the receptor-ligand bipartite graph defined by the DLRP "golden standard". In addition, for the tgfβ family, the combined kernel classifier is able to relatively improve upon the Gertz et al. work by a factor of approximately 1.5 when considering that our method has an F-measure of 0.71 while that of Gertz et al. has a value of 0.48. Conclusions The prediction of receptor-ligand pairings is a difficult and complex task. We have demonstrated that using kernel learning on multiple data sources provides a stronger alternative to the existing method in solving this task. PMID:21834994

  12. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Lartigue, Lydia; Giannone, Gregory; de Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent

    2013-08-01

    Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule Förster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-localization. This methodology which is specifically devoted to the study of molecules in interaction, may find other applications in biological systems where understanding of molecular organization is crucial.

  13. The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms

    PubMed Central

    Ophir, Michael J.; Liu, Beiyun C.

    2013-01-01

    The T cell receptor (TCR) triggers the assembly of “SLP-76 microclusters,” which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase–associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require the dimerization of SKAP55 and its interaction with the adaptor adhesion and degranulation-promoting adaptor protein (ADAP). A “tandem dimer” containing two ADAP-binding SKAP55 Src homology 3 (SH3) domains stabilized SLP-76 microclusters and promoted T cell adhesion via the TCR, but could not support adhesion to integrin ligands. Finally, the SKAP55 dimerization motif (DM) enabled the coimmunoprecipitation of the Rap1-dependent integrin regulator Rap1-GTP–interacting adaptor molecule (RIAM), the recruitment of talin into TCR-induced adhesive junctions, and “inside-out” signaling to β1 integrins. Our data indicate that SKAP55 dimers stabilize SLP-76 microclusters, couple SLP-76 to the force-generating systems responsible for microcluster movement, and enable adhesion via the TCR by mechanisms independent of RIAM, talin, and β1 integrins. PMID:24368808

  14. Basigin-2 Is a Cell Surface Receptor for Soluble Basigin Ligand*S⃞

    PubMed Central

    Belton, Robert J.; Chen, Li; Mesquita, Fernando S.; Nowak, Romana A.

    2008-01-01

    The metastatic spread of a tumor is dependent upon the ability of the tumor to stimulate surrounding stromal cells to express enzymes required for tissue remodeling. The immunoglobulin superfamily protein basigin (EMMPRIN/CD147) is a cell surface glycoprotein expressed by tumor cells that stimulates matrix metalloproteinase and vascular endothelial growth factor expression in stromal cells. The ability of basigin to stimulate expression of molecules involved in tissue remodeling and angiogenesis makes basigin a potential target for the development of strategies to block metastasis. However, the identity of the cell surface receptor for basigin remains controversial. The goal of this study was to determine the identity of the receptor for basigin. Using a novel recombinant basigin protein (rBSG) corresponding to the extracellular domain of basigin, it was demonstrated that the native, nonglycosylated rBSG protein forms dimers in solution. Furthermore, rBSG binds to the surface of uterine fibroblasts, activates the ERK1/2 signaling pathway, and induces expression of matrix metalloproteinases 1, 2, and 3. Proteins that interact with rBSG were isolated using a biotin label transfer technique and sequenced by matrix-assisted laser desorption ionization tandem mass spectrophotometry. The results demonstrate that rBSG interacts with basigin expressed on the surface of fibroblasts and is subsequently internalized. During internalization, rBSG associates with a novel form of human basigin (basigin-3). It was concluded that cell surface basigin functions as a membrane receptor for soluble basigin and this homophilic interaction is not dependent upon glycosylation of the basigin ligand. PMID:18434307

  15. Ecto-Fc MS identifies ligand-receptor interactions through extracellular domain Fc fusion protein baits and shotgun proteomic analysis

    PubMed Central

    Savas, Jeffrey N.; De Wit, Joris; Comoletti, Davide; Zemla, Roland; Ghosh, Anirvan

    2015-01-01

    Ligand-receptor interactions represent essential biological triggers which regulate many diverse and important cellular processes. We have developed a discovery-based proteomic biochemical protocol which couples affinity purification with multidimensional liquid chromatographic tandem mass spectrometry (LCLC-MS/MS) and bioinformatic analysis. Compared to previous approaches, our analysis increases sensitivity, shortens analysis duration, and boosts comprehensiveness. In this protocol, receptor extracellular domains are fused with the Fc region of IgG to generate fusion proteins that are purified from transfected HEK293T cells. These “ecto-Fcs” are coupled to protein A beads and serve as baits for binding assays with prey proteins extracted from rodent brain. After capture, the affinity purified proteins are digested into peptides and comprehensively analyzed by LCLC-MS/MS with ion trap mass spectrometers. In four working days, this protocol can generate shortlists of candidate ligand-receptor protein-protein interactions. Our “Ecto-Fc MS” approach outperforms antibody-based approaches and provides a reproducible and robust framework to identify extracellular ligandreceptor interactions. PMID:25101821

  16. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses.

    PubMed

    Kuramitsu, S; Ohno, M; Ohka, F; Shiina, S; Yamamichi, A; Kato, A; Tanahashi, K; Motomura, K; Kondo, G; Kurimoto, M; Senga, T; Wakabayashi, T; Natsume, A

    2015-10-01

    The epidermal growth factor receptor variant III (EGFRvIII) is exclusively expressed on the cell surface in ~50% of glioblastoma multiforme (GBM). This variant strongly and persistently activates the phosphatidylinositol 3-kinase-Akt signaling pathway in a ligand-independent manner resulting in enhanced tumorigenicity, cellular motility and resistance to chemoradiotherapy. Our group generated a recombinant single-chain variable fragment (scFv) antibody specific to the EGFRvIII, referred to as 3C10-scFv. In the current study, we constructed a lentiviral vector transducing the chimeric antigen receptor (CAR) that consisted of 3C10-scFv, CD3ζ, CD28 and 4-1BB (3C10-CAR). The 3C10-CAR-transduced peripheral blood mononuclear cells (PBMCs) and CD3(+) T cells specifically lysed the glioma cells that express EGFRvIII. Moreover, we demonstrated that CAR CD3(+) T cells migrated to the intracranial xenograft of GBM in the mice treated with 3C10-CAR PBMCs. An important and novel finding of our study was that a thalidomide derivative lenalidomide induced 3C10-CAR PBMC proliferation and enhanced the persistent antitumor effect of the cells in vivo. Lenalidomide also exhibited enhanced immunological synapses between the effector cells and the target cells as determined by CD11a and F-actin polymerization. Collectively, lentiviral-mediated transduction of CAR effectors targeting the EGFRvIII showed specific efficacy, and lenalidomide even intensified CAR cell therapy by enhanced formation of immunological synapses.

  17. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies.

    PubMed

    Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah

    2016-07-01

    Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.

  18. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    PubMed

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  19. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR) and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    PubMed Central

    Williams, Chad M.; Schonnesen, Alexandra A.; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S. Gail; Klebanoff, Christopher A.; Jiang, Ning

    2017-01-01

    The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously

  20. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells

    PubMed Central

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi

    2015-01-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. PMID:25910782

  1. Probing receptor-ligand interactions by sedimentation equilibrium

    NASA Astrophysics Data System (ADS)

    Philo, John S.

    1997-05-01

    While sedimentation equilibrium is most commonly used to characterize the molecular weight and state of association of single proteins, this technique is also a very powerful tool for probing the interactions between two or more different proteins, and can characterize both the binding stoichiometry and the equilibrium constants. To resolve the complex binding interactions that can occur in such systems, it is crucial to globally fit data from many experiments to a common binding model, including samples made with different mixing ratios and a wide range of total concentration. It is often also essential to constrain the parameters during fitting so that the fits correctly reproduce the molar ratio of proteins used in making each sample. We have applied this methodology to probe mechanisms of receptor activation for a number of hematopoietic receptors and their cognate ligands, using receptor extracellular domains expressed as soluble proteins. Such data can potentially help in the design of improved or new protein therapeutics, as well as in efforts to create small- molecular mimetics of protein hormones through structure- based drug design. Sedimentation equilibrium has shown that stem cell factor, erythropoietin, and granulocyte-colony stimulating factor can each dimerize their respective receptors in solution, but the mechanism of ligand-induced receptor dimerization for these three systems are strikingly different.

  2. Functional expression of Squalus acanthias melanocortin-5 receptor in CHO cells: ligand selectivity and interaction with MRAP.

    PubMed

    Reinick, Christina L; Liang, Liang; Angleson, Josepha K; Dores, Robert M

    2012-04-05

    The melanocortin-5 receptor (MC(5)) of the dogfish Squalus acanthias (SacMC(5) receptor) can be functionally expressed in CHO cells in the absence of the co-expression of an exogenous MRAP cDNA. Both human ACTH(1-24) and dogfish ACTH(1-25) were much better stimulators of the SacMC(5) receptor than any of the mammalian or dogfish MSH ligands that were tested. The order of ligand selectivity for the dogfish melanocortins was ACTH(1-25)>αMSH>γ-MSH=δ-MSH>β-MSH. Unlike mammalian MC(5) receptors, the functional expression of the SacMC(5) receptor was not negatively impacted when the receptor was co-expressed with a cartilaginous fish (Callorhinchus milii) MRAP2 cDNA. However, co-expression with either mouse mMRAP1 or zebrafish zfMRAP1 increased the sensitivity of SacMC(5) receptor for hACTH(1-24) by at least one order of magnitude. Hence, SacMC(5) receptor has the potential to interact with MRAP1 orthologs and in this regard behaved more like a melanocortin MC(2) receptor ortholog than a melanocortin MC(5) receptor ortholog. These observations are discussed in light of the evolution of the melanocortin receptor gene family in cartilaginous fish, and the physiological implications of these observations are considered. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Protein-scaffold Directed Nanoscale Assembly of T Cell Ligands: Artificial Antigen Presentation with Defined Valency, Density and Ratio.

    PubMed

    Smith, Mason R; Tolbert, Stephanie V; Wen, Fei

    2018-05-07

    Tuning antigen presentation to T cells is a critical step in investigating key aspects of T cell activation. However, existing technologies have limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial antigen presentation platform based on protein-scaffold directed assembly that allows fine control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast-cell surface. Using this system, we observed that the T cell activation threshold on a 3D surface is independent of peptide-major histocompatibility complex (pMHC) valency, but instead determined by the overall pMHC surface density. When intercellular adhesion molecule 1 (ICAM-1) was co-assembled with pMHC, it enhanced antigen recognition sensitivity by 6-fold. Further, T cells responded with different magnitudes to varying ratios of pMHC and ICAM-1 and exhibited a maximum response at a ratio of 15% pMHC and 85% ICAM-1, introducing an additional parameter for tuning T cell activation. This protein-scaffold directed assembly technology is readily transferrable to acellular surfaces for translational research as well as large-scale T-cell manufacturing.

  4. Inhibition of T Helper Cell Type 2 Cell Differentiation and Immunoglobulin E Response by Ligand-Activated Vα14 Natural Killer T Cells

    PubMed Central

    Cui, Junqing; Watanabe, Naohiro; Kawano, Tetsu; Yamashita, Masakatsu; Kamata, Tohru; Shimizu, Chiori; Kimura, Motoko; Shimizu, Eiko; Koike, Jyunzo; Koseki, Haruhiko; Tanaka, Yujiro; Taniguchi, Masaru; Nakayama, Toshinori

    1999-01-01

    Murine Vα14 natural killer T (NKT) cells are thought to play a crucial role in various immune responses, including infectious, allergic, and autoimmune diseases. Because Vα14 NKT cells produce large amounts of both interleukin (IL)-4 and interferon (IFN)-γ upon in vivo stimulation with a specific ligand, α-galactosylceramide (α-GalCer), or after treatment with anti-CD3 antibody, a regulatory role on helper T (Th) cell differentiation has been proposed for these cells. However, the identity of the cytokine produced by Vα14 NKT cells that play a dominant role on the Th cell differentiation still remains controversial. Here, we demonstrate by using Vα14 NKT-deficient mice that Vα14 NKT cells are dispensable for the induction of antigen-specific immunoglobulin (Ig)E responses induced by ovalbumin immunization or Nippostrongylus brasiliensis infection. However, upon in vivo activation with α-GalCer, Vα14 NKT cells are found to suppress antigen-specific IgE production. The suppression appeared to be IgE specific, and was not detected in either Vα14 NKT– or IFN-γ–deficient mice. Consistent with these results, we also found that ligand-activated Vα14 NKT cells inhibited Th2 cell differentiation in an in vitro induction culture system. Thus, it is likely that activated Vα14 NKT cells exert a potent inhibitory effect on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-γ. In marked contrast, our studies have revealed that IL-4 produced by Vα14 NKT cells has only a minor effect on Th2 cell differentiation. PMID:10499917

  5. Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors.

    PubMed Central

    Beckmann, M P; Cerretti, D P; Baum, P; Vanden Bos, T; James, L; Farrah, T; Kozlosky, C; Hollingsworth, T; Shilling, H; Maraskovsky, E

    1994-01-01

    A family of tyrosine kinase receptors related to the product of the eph gene has been described recently. One of these receptors, elk, has been shown to be expressed only in brain and testes. Using a direct expression cloning technique, a ligand for the elk receptor has been isolated by screening a human placenta cDNA library with a fusion protein containing the extracellular domain of the receptor. This isolated cDNA encodes a transmembrane protein. While the sequence of the ligand cDNA is unique, it is related to a previously described sequence known as B61. Northern blot analysis of human tissue mRNA showed that the elk ligand's mRNA is 3.5 kb long and is found in placenta, heart, lung, liver, skeletal muscle, kidney and pancreas. Southern blot analysis showed that the gene is highly conserved in a wide variety of species. Both elk ligand and B61 mRNAs are inducible by tumour necrosis factor in human umbilical vein endothelial cells. In addition, both proteins show promiscuity in binding to the elk and the related hek receptors. Since these two ligand sequences are similar, and since elk and hek are members of a larger family of eph-related receptor molecules, we refer to these ligands as LERKs (ligands for eph-related kinases). Images PMID:8070404

  6. New ligands for melanocortin receptors.

    PubMed

    Kaelin, C B; Candille, S I; Yu, B; Jackson, P; Thompson, D A; Nix, M A; Binkley, J; Millhauser, G L; Barsh, G S

    2008-12-01

    Named originally for their effects on peripheral end organs, the melanocortin system controls a diverse set of physiological processes through a series of five G-protein-coupled receptors and several sets of small peptide ligands. The central melanocortin system plays an essential role in homeostatic regulation of body weight, in which two alternative ligands, alpha-melanocyte-stimulating hormone and agouti-related protein, stimulate and inhibit receptor signaling in several key brain regions that ultimately affect food intake and energy expenditure. Much of what we know about the relationship between central melanocortin signaling and body weight regulation stems from genetic studies. Comparative genomic studies indicate that melanocortin receptors used for controlling pigmentation and body weight regulation existed more than 500 million years ago in primitive vertebrates, but that fine-grained control of melanocortin receptors through neuropeptides and endogenous antagonists developed more recently. Recent studies based on dog coat-color genetics revealed a new class of melanocortin ligands, the beta-defensins, which reveal the potential for cross talk between the melanocortin and the immune systems.

  7. [Functional selectivity of opioid receptors ligands].

    PubMed

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  8. Modelling the interdependence between the stoichiometry of receptor oligomerization and ligand binding for a coexisting dimer/tetramer receptor system.

    PubMed

    Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J

    2009-01-01

    Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.

  9. Human NK cells: From surface receptors to clinical applications.

    PubMed

    Moretta, Lorenzo; Pietra, Gabriella; Vacca, Paola; Pende, Daniela; Moretta, Francesca; Bertaina, Alice; Mingari, Maria Cristina; Locatelli, Franco; Moretta, Alessandro

    2016-10-01

    Natural killer (NK) cells play a major role in innate defenses against pathogens, primarily viruses, and are also thought to be part of the immunosurveillance against tumors. They express an array of surface receptors that mediate NK cell function. The human leukocytes antigen (HLA) class I-specific inhibitory receptors allow NK cells to detect and kill cells that have lost or under-express HLA class I antigens, a typical feature of tumor or virally infected cells. However, NK cell activation and induction of cytolytic activity and cytokine production depends on another important checkpoint, namely the expression on target cells of ligands recognized by activating NK receptors. Despite their potent cytolytic activity, NK cells frequently fail to eliminate tumors. This is due to mechanisms of tumor escape, determined by the tumor cells themselves or by tumor-associated cells (i.e. the tumor microenvironment) via the release of soluble suppressive factors or the induction of inhibitory loops involving induction of regulatory T cells, M2-polarized macrophages and myeloid-derived suppressor cells. The most important clinical application involving NK cells is the cure of high-risk leukemias in the haplo-identical hematopoietic stem cell transplant (HSCT) setting. NK cells originated from hematopoietic stem cells (HSC) of HLA-haploidentical donors may express Killer Immunoglobulin-like receptors (KIRs) that are mismatched with the HLA class I alleles of the recipient. This allows NK cells to kill leukemia blasts residual after the conditioning regimen, while sparing normal cells (that do not express ligands for activating NK receptors). More recent approaches based on the specific removal of TCR α/β(+) T cells and of CD19(+) B cells, allow the infusion, together with CD34(+) HSC, of mature KIR(+) NK cells and of TCR γ/δ(+) T cells, both characterized by a potent anti-leukemia activity. This greatly reduces the time interval necessary to obtain alloreactive, KIR(+) NK

  10. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies.

    PubMed

    Schmitt, Thomas M; Stromnes, Ingunn M; Chapuis, Aude G; Greenberg, Philip D

    2015-12-01

    The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion. ©2015 American Association for Cancer Research.

  11. T-cell receptor gene rearrangement in Epstein-Barr virus infectious mononucleosis.

    PubMed

    Marbello, L; Riva, M; Veronese, S; Nosari, A M; Ravano, E; Colosimo, A; Paris, L; Morra, E

    2012-09-01

    This report describes the case of a previously healthy young man who presented with fever, pharyngitis, cervical lymphadenopathy, lymphocytosis, and severe thrombocytopenia. Serological tests for Epstein-Barr virus were diagnostic of a primary Epstein-Barr virus infectious mononucleosis but severe thrombocytopenia aroused the suspicion of a lymphoproliferative disease. T-cell receptor gene analysis performed on peripheral and bone marrow blood revealed a T-cell receptor γ-chain rearrangement without the evidence of malignancy using standard histologic and immunophenotype studies. Signs and symptoms of the infectious disease, blood count, and T-cell receptor gene rearrangement resolved with observation without the evidence of emergence of a lymphoproliferative disease. In the contest of a suspected lymphoproliferative disease, molecular results should be integrated with all available data for an appropriate diagnosis.

  12. TCDD, FICZ, and Other High Affinity AhR Ligands Dose-Dependently Determine the Fate of CD4+ T Cell Differentiation.

    PubMed

    Ehrlich, Allison K; Pennington, Jamie M; Bisson, William H; Kolluri, Siva K; Kerkvliet, Nancy I

    2018-02-01

    FICZ and TCDD, two high-affinity AhR ligands, are reported to have opposite effects on T cell differentiation with TCDD inducing regulatory T cells and FICZ inducing Th17 cells. This dichotomy has been attributed to ligand-intrinsic differences in AhR activation, although differences in sensitivity to metabolism complicate the issue. TCDD is resistant to AhR-induced metabolism and produces sustained AhR activation following a single dose in the μg/kg range, whereas FICZ is rapidly metabolized and AhR activation is transient. Nonetheless, prior studies comparing FICZ with TCDD have generally used the same 10-50 μg/kg dose range, and thus the two ligands would not equivalently activate AhR. We hypothesized that high-affinity AhR ligands can promote CD4+ T cell differentiation into both Th17 cells and Tregs, with fate depending on the extent and duration of AhR activation. We compared the immunosuppressive effects of TCDD and FICZ, along with two other rapidly metabolized ligands (ITE and 11-Cl-BBQ) in an acute alloresponse mouse model. The dose and timing of administration of each ligand was optimized for TCDD-equivalent Cyp1a1 induction. When optimized, all of the ligands suppressed the alloresponse in conjunction with the induction of Foxp3- Tr1 cells on day 2 and the expansion of natural Foxp3+ Tregs on day 10. In contrast, a low dose of FICZ induced transient expression of Cyp1a1 and did not induce Tregs or suppress the alloresponse but enhanced IL-17 production. Interestingly, low doses of the other ligands, including TCDD, also increased IL-17 production on day 10. These findings support the conclusion that the dose and the duration of AhR activation by high-affinity AhR ligands are the primary factors driving the fate of T cell differentiation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. T-cell Receptor Signaling Activates an ITK/NF-κB/GATA-3 axis in T-cell Lymphomas Facilitating Resistance to Chemotherapy.

    PubMed

    Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C; Lim, Megan S; Bailey, Nathanael G; Wilcox, Ryan A

    2017-05-15

    Purpose: T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T cell-specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR's role in mediating resistance to chemotherapy. Experimental Design: Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following TCR engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results: Here, we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3 and promotes chemotherapy resistance. Conclusions: These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented the activation of this signaling axis and overcame chemotherapy resistance. Clin Cancer Res; 23(10); 2506-15. ©2016 AACR . ©2016 American Association for Cancer Research.

  14. Model of the initiation of signal transduction by ligands in a cell culture: Simulation of molecules near a plane membrane comprising receptors

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-11-01

    Cell communication is a key mechanism in tissue responses to radiation. Several molecules are implicated in radiation-induced signaling between cells, but their contributions to radiation risk are poorly understood. Meanwhile, Green's functions for diffusion-influenced reactions have appeared in the literature, which are applied to describe the diffusion of molecules near a plane membrane comprising bound receptors with the possibility of reversible binding of a ligand and activation of signal transduction proteins by the ligand-receptor complex. We have developed Brownian dynamics algorithms to simulate particle histories in this system which can accurately reproduce the theoretical distribution of distances of a ligand from the membrane, the number of reversibly bound particles, and the number of receptor complexes activating signaling proteins as a function of time, regardless of the number of time steps used for the simulation. These simulations will be of great importance to model interactions at low doses where stochastic effects induced by a small number of molecules or interactions come into play.

  15. Toxicities of chimeric antigen receptor T cells: recognition and management

    PubMed Central

    Brudno, Jennifer N.

    2016-01-01

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy. PMID:27207799

  16. Therapeutic androgen receptor ligands

    PubMed Central

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs). PMID:16604181

  17. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10more » U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.« less

  18. Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor

    PubMed Central

    2018-01-01

    Insulin receptor (IR) signaling plays a critical role in the regulation of metabolism and growth in multicellular organisms. IRs are unique among receptor tyrosine kinases in that they exist exclusively as covalent (αβ)2 homodimers at the cell surface. Transmembrane signaling by the IR can therefore not be based on ligand-induced dimerization as such but must involve structural changes within the existing receptor dimer. In this study, using glycosylated full-length human IR reconstituted into lipid nanodiscs, we show by single-particle electron microscopy that insulin binding to the dimeric receptor converts its ectodomain from an inverted U-shaped conformation to a T-shaped conformation. This structural rearrangement of the ectodomain propagates to the transmembrane domains, which are well separated in the inactive conformation but come close together upon insulin binding, facilitating autophosphorylation of the cytoplasmic kinase domains. PMID:29453311

  19. Glucose-Sensing Receptor T1R3: A New Signaling Receptor Activated by Glucose in Pancreatic β-Cells.

    PubMed

    Kojima, Itaru; Nakagawa, Yuko; Hamano, Kunihisa; Medina, Johan; Li, Longfei; Nagasawa, Masahiro

    2015-01-01

    Subunits of the sweet taste receptors T1R2 and T1R3 are expressed in pancreatic β-cells. Compared with T1R3, mRNA expression of T1R2 is considerably lower. At the protein level, expression of T1R2 is undetectable in β-cells. Accordingly, a major component of the sweet taste-sensing receptor in β-cells may be a homodimer of T1R3 rather than a heterodimer of T1R2/T1R3. Inhibition of this receptor by gurmarin or deletion of the T1R3 gene attenuates glucose-induced insulin secretion from β-cells. Hence the T1R3 homodimer functions as a glucose-sensing receptor (GSR) in pancreatic β-cells. When GSR is activated by the T1R3 agonist sucralose, elevation of intracellular ATP concentration ([ATP]i) is observed. Sucralose increases [ATP]i even in the absence of ambient glucose, indicating that sucralose increases [ATP]i not simply by activating glucokinase, a rate-limiting enzyme in the glycolytic pathway. In addition, sucralose augments elevation of [ATP]i induced by methylsuccinate, suggesting that sucralose activates mitochondrial metabolism. Nonmetabolizable 3-O-methylglucose also increases [ATP]i and knockdown of T1R3 attenuates elevation of [ATP]i induced by high concentration of glucose. Collectively, these results indicate that the T1R3 homodimer functions as a GSR; this receptor is involved in glucose-induced insulin secretion by activating glucose metabolism probably in mitochondria.

  20. How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia.

    PubMed

    Ruella, Marco; Gill, Saar

    2015-06-01

    Antigen-specific T cell-based immunotherapy is getting its day in the sun. The contemporaneous development of two potent CD19-specific immunotherapeutic modalities for the treatment of B-cell malignancies provides exciting opportunities for patients, physicians and scientists alike. Patients with relapsed, refractory or poor-risk B-cell acute lymphoblastic leukemia (ALL) previously had few therapeutic options and now have two potential new lifelines. Physicians will have the choice between two powerful modalities and indeed could potentially enroll some patients on trials exploring both modalities if needed. For scientists interested in tumor immunology, the advent of chimeric antigen receptor T-cell therapy and of bispecific T-cell engagers (BiTEs) provides unprecedented opportunities to explore the promise and limitations of antigen-specific T-cell therapy in the context of human leukemia. In this article, we compare chimeric antigen receptor T cells and BiTEs targeting CD19 in B-cell ALL in the setting of the available clinical literature.

  1. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy.

    PubMed

    Zhang, Erhao; Xu, Hanmei

    2017-01-03

    Adoptive cell therapy using chimeric antigen receptor (CAR)-engineered T cells has emerged as a very promising approach to combating cancer. Despite its ability to eliminate tumors shown in some clinical trials, CAR-T cell therapy involves some significant safety challenges, such as cytokine release syndrome (CRS) and "on-target, off-tumor" toxicity, which is related to poor control of the dose, location, and timing of T cell activity. In the past few years, some strategies to avoid the side effects of CAR-T cell therapy have been reported, including suicide gene, inhibitory CAR, dual-antigen receptor, and the use of exogenous molecules as switches to control the CAR-T cell functions. Because of the advances of the CAR paradigm and other forms of cancer immunotherapy, the most effective means of defeating the cancer has become the integration therapy with the combinatorial control system of switchable dual-receptor CAR-T cell and immune checkpoint blockade.

  2. Chimeric antigen receptor T-cell therapy for glioblastoma.

    PubMed

    Rodriguez, Analiz; Brown, Christine; Badie, Behnam

    2017-09-01

    Chimeric antigen receptor (CAR) T-cell therapy has shown great promise in the treatment of hematological disease, and its utility for treatment of solid tumors is beginning to unfold. Glioblastoma continues to portend a grim prognosis and immunotherapeutic approaches are being explored as a potential treatment strategy. Identification of appropriate glioma-associated antigens, barriers to cell delivery, and presence of an immunosuppressive microenvironment are factors that make CAR T-cell therapy for glioblastoma particularly challenging. However, insights gained from preclinical studies and ongoing clinical trials indicate that CAR T-cell therapy will continue to evolve and likely become integrated with current therapeutic strategies for malignant glioma. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Chimeric Antigen Receptor (CAR) T Cell Therapy for Malignant Pleural Mesothelioma (MPM)

    PubMed Central

    Klampatsa, Astero; Haas, Andrew R.; Moon, Edmund K.; Albelda, Steven M.

    2017-01-01

    Cancer immunotherapy has now become a recognized approach to treating cancers. In addition to checkpoint blockade, adoptive T cell transfer (ACT) using chimeric antigen receptors (CARs) has shown impressive clinical outcomes in leukemias and is now being explored in solid tumors. CARs are engineered receptors, stably or transiently transduced into T cells, that aim to enhance T cell effector function by recognizing and binding to a specific tumor-associated antigen. In this review, we provide a summary of CAR T cell preclinical studies and clinical trials for malignant pleural mesothelioma (MPM), a rare, locally invasive pleural cancer with poor prognosis. We list other attractive potential targets for CAR T cell therapy for MPM, and discuss augmentation strategies of CAR T cell therapy with other forms of immunotherapy in this disease. PMID:28862644

  4. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.

    PubMed

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-09-02

    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  5. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    PubMed Central

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  6. Notch ligands Delta1 and Jagged1 transmit distinct signals to T-cell precursors

    PubMed Central

    Lehar, Sophie M.; Dooley, James; Farr, Andrew G.; Bevan, Michael J.

    2009-01-01

    Signaling through the Notch pathway plays an essential role in inducing T-lineage commitment and promoting the maturation of immature thymocytes. Using an in vitro culture system, we show that 2 different classes of Notch ligands, Jagged1 or Delta1, transmit distinct signals to T-cell progenitors. OP9 stromal cells expressing either Jagged1 or Delta1 inhibit the differentiation of DN1 thymocytes into the B-cell lineage, but only the Delta1-expressing stromal cells promote the proliferation and maturation of T-cell progenitors through the early double-negative (DN) stages of thymocyte development. Whereas the majority of bone marrow-derived stem cells do not respond to Jagged1 signals, T-cell progenitors respond to Jagged1 signals during a brief window of their development between the DN1 and DN3 stages of thymic development. During these stages, Jagged1 signals can influence the differentiation of immature thymocytes along the natural killer (NK) and γδ T-cell lineages. PMID:15486060

  7. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model.

    PubMed

    Suarez, Eloah Rabello; Chang, De Kuan; Sun, Jiusong; Sui, Jianhua; Freeman, Gordon J; Signoretti, Sabina; Zhu, Quan; Marasco, Wayne A

    2016-06-07

    Advances in the treatment of metastatic clear cell renal cell carcinoma (ccRCC) have led to improved progression-free survival of many patients; however the therapies are toxic, rarely achieve durable long-term complete responses and are not curative. Herein we used a single bicistronic lentiviral vector to develop a new combination immunotherapy that consists of human anti-carbonic anhydrase IX (CAIX)-targeted chimeric antigen receptor (CAR) T cells engineered to secrete human anti-programmed death ligand 1 (PD-L1) antibodies at the tumor site. The local antibody delivery led to marked immune checkpoint blockade. Tumor growth diminished 5 times and tumor weight reduced 50-80% when compared with the anti-CAIX CAR T cells alone in a humanized mice model of ccRCC. The expression of PD-L1 and Ki67 in the tumors decreased and an increase in granzyme B levels was found in CAR T cells. The anti-PD-L1 IgG1 isotype, which is capable of mediating ADCC, was also able to recruit human NK cells to the tumor site in vivo. These armed second-generation CAR T cells empowered to secrete human anti-PD-L1 antibodies in the ccRCC milieu to combat T cell exhaustion is an innovation in this field that should provide renewed potential for CAR T cell immunotherapy of solid tumors where limited efficacy is currently seen.

  8. The function of the chemokine receptor CXCR6 in the T cell response of mice against Listeria monocytogenes.

    PubMed

    Heesch, Kira; Raczkowski, Friederike; Schumacher, Valéa; Hünemörder, Stefanie; Panzer, Ulf; Mittrücker, Hans-Willi

    2014-01-01

    The chemokine receptor CXCR6 is expressed on different T cell subsets and up-regulated following T cell activation. CXCR6 has been implicated in the localization of cells to the liver due to the constitutive expression of its ligand CXCL16 on liver sinusoidal endothelial cells. Here, we analyzed the role of CXCR6 in CD8+ T cell responses to infection of mice with Listeria monocytogenes. CD8+ T cells responding to listerial antigens acquired high expression levels of CXCR6. However, deficiency of mice in CXCR6 did not impair control of the L. monocytogenes infection. CXCR6-deficient mice were able to generate listeria-specific CD4+ and CD8+ T cell responses and showed accumulation of T cells in the infected liver. In transfer assays, we detected reduced accumulation of listeria-specific CXCR6-deficient CD8+ T cells in the liver at early time points post infection. Though, CXCR6 was dispensable at later time points of the CD8+ T cell response. When transferred CD8+ T cells were followed for extended time periods, we observed a decline in CXCR6-deficient CD8+ T cells. The manifestation of this cell loss depended on the tissue analyzed. In conclusion, our results demonstrate that CXCR6 is not required for the formation of a T cell response to L. monocytogenes and for the accumulation of T cells in the infected liver but CXCR6 appears to influence long-term survival and tissue distribution of activated cells.

  9. The Function of the Chemokine Receptor CXCR6 in the T Cell Response of Mice against Listeria monocytogenes

    PubMed Central

    Heesch, Kira; Raczkowski, Friederike; Schumacher, Valéa; Hünemörder, Stefanie; Panzer, Ulf; Mittrücker, Hans-Willi

    2014-01-01

    The chemokine receptor CXCR6 is expressed on different T cell subsets and up-regulated following T cell activation. CXCR6 has been implicated in the localization of cells to the liver due to the constitutive expression of its ligand CXCL16 on liver sinusoidal endothelial cells. Here, we analyzed the role of CXCR6 in CD8+ T cell responses to infection of mice with Listeria monocytogenes. CD8+ T cells responding to listerial antigens acquired high expression levels of CXCR6. However, deficiency of mice in CXCR6 did not impair control of the L. monocytogenes infection. CXCR6-deficient mice were able to generate listeria-specific CD4+ and CD8+ T cell responses and showed accumulation of T cells in the infected liver. In transfer assays, we detected reduced accumulation of listeria-specific CXCR6-deficient CD8+ T cells in the liver at early time points post infection. Though, CXCR6 was dispensable at later time points of the CD8+ T cell response. When transferred CD8+ T cells were followed for extended time periods, we observed a decline in CXCR6-deficient CD8+ T cells. The manifestation of this cell loss depended on the tissue analyzed. In conclusion, our results demonstrate that CXCR6 is not required for the formation of a T cell response to L. monocytogenes and for the accumulation of T cells in the infected liver but CXCR6 appears to influence long-term survival and tissue distribution of activated cells. PMID:24832098

  10. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system.

    PubMed

    Kutlesa, Snjezana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B; Jurecic, Roland

    2009-08-01

    Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Talpha, RAG-1, and T-cell receptor-Vbeta genes; and 3) produced interferon-gamma in response to T-cell receptor stimulation. These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation.

  11. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.

    PubMed

    Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige

    2016-02-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR.

  12. Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells.

    PubMed

    Badache, A; Hynes, N E

    2001-01-01

    Interleukin (IL)-6, a multifunctional regulator of immune response, hematopoiesis, and acute phase reactions, has also been shown to regulate cancer cell proliferation. We have investigated IL-6 signaling pathways and cellular responses in the T47D breast carcinoma cell line. The IL-6-type cytokines, IL-6 and oncostatin M, simultaneously inhibited cell proliferation and increased cell migration. In T47D cells, IL-6 stimulated the activation of Janus-activated kinase 1 tyrosine kinase and signal transducers and activators of transcription (STAT) 1 and STAT3 transcription factors. Expression of dominant negative STAT3 in the cells strongly reduced IL-6-mediated growth inhibition but did not prevent IL-6-induced cell migration. IL-6 treatment led to activation of the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3'-kinase (PI3K) pathways. Inhibition of MAPK or PI3K activity reversed IL-6- and oncostatin M-stimulated migration. Because cross-talk between cytokine receptors and members of the ErbB family of receptor tyrosine kinases has been described previously, we have examined their interaction in T47D cells. Down-regulation of ErbB receptor activity, through the use of specific pharmacological inhibitors or dominant negative receptor constructs, revealed that IL-6-induced MAPK activation was largely dependent on epidermal growth factor (EGF) receptor activity, but not on ErbB-2 activity. Using a monoclonal antibody that interferes with EGF receptor-ligand interaction, we have shown that in T47D cells, IL-6 cooperates with an EGF receptor autocrine activity loop for signaling through the MAPK and PI3K pathways and for cell migration. Both the tyrosine phosphatase SHP-2 and the multisubstrate docking molecule Gab1, which are potential links between IL-6 and the MAPK/PI3K pathways, were constitutively associated with the active EGF receptor. On IL-6 stimulation, SHP-2 and Gab1 were recruited to the gp130 subunit of the IL-6 receptor and tyrosine

  13. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    PubMed

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  14. Distribution of Endo180 receptor and ligand in developing articular cartilage.

    PubMed

    Howard, M J; Chambers, M G; Mason, R M; Isacke, C M

    2004-01-01

    To investigate the expression of a novel member of the mannose receptor family, Endo180 (also known as uPARAP), and the distribution of Endo180 ligand(s) in the articular cartilage and growth plate of normal CBA mice and STR/ort mice, a well characterized model of spontaneous osteoarthritis. A polyclonal anti-Endo180 antibody was used to determine receptor expression. The Endo180 extracellular domain fused to a human immunoglobulin Fc tail was used to detect ligand. Endo180 receptor was strongly expressed in chondrocytes both in vitro and throughout the articular cartilage of young CBA and STR/ort mice. Expression decreased in older animals. In STR/ort mice with osteoarthritic lesions, no upregulation of Endo180 was detected. In the developing growth plate, Endo180 was expressed strongly by the proliferating chondrocytes. In contrast, Endo180 ligand was detected most strongly in hypertrophic zone of the growth plate and only at low levels in articular cartilage. In cultured chondrocytes, Endo180 was localized on the cell surface and in intracellular vesicles. Constitutively recycling endocytic receptors function to internalize ligand from the extracellular milieu and the ability of Endo180 to bind both glycosylated ligands and collagens suggests a role in extracellular matrix remodeling. Expression of Endo180 in articular cartilage chondrocytes of young, but not old, mice and the reciprocal expression of Endo180 and its ligands in the growth plate suggest that this receptor is involved in cartilage development but not in cartilage homeostasis. In addition, our data indicates that Endo180 does not appear to play a role in the development or progression of murine osteoarthritis.

  15. The identification of high-affinity G protein-coupled receptor ligands from large combinatorial libraries using multicolor quantum dot-labeled cell-based screening

    PubMed Central

    Fu, Junjie; Lee, Timothy; Qi, Xin

    2014-01-01

    G protein-coupled receptors (GPCRs), which are involved in virtually every biological process, constitute the largest family of transmembrane receptors. Many top-selling and newly approved drugs target GPCRs. In this review, we aim to recapitulate efforts and progress in combinatorial library-assisted GPCR ligand discovery, particularly focusing on one-bead-one-compound library synthesis and quantum dot-labeled cell-based assays, which both effectively enhance the rapid identification of GPCR ligands with higher affinity and specificity. PMID:24941874

  16. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development.

    PubMed

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-04-07

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.

  17. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development

    PubMed Central

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-01-01

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ɛ proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development. PMID:20150895

  18. Site-Selective Regulation of Platelet-Derived Growth Factor β Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase

    PubMed Central

    Persson, Camilla; Sävenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L.; Markova, Boyka; Böhmer, Frank D.; Haj, Fawaz G.; Neel, Benjamin G.; Elson, Ari; Heldin, Carl-Henrik; Rönnstrand, Lars; Östman, Arne; Hellberg, Carina

    2004-01-01

    The platelet-derived growth factor (PDGF) β receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF β receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF β receptor, we compared PDGF β receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF β receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cγ1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cγ1 activity and migratory hyperresponsiveness to PDGF. PDGF β receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPɛ ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF β receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors. PMID:14966296

  19. Retinoid X receptor suppresses a metastasis-promoting transcriptional program in myeloid cells via a ligand-insensitive mechanism

    PubMed Central

    Kiss, Mate; Czimmerer, Zsolt; Nagy, Gergely; Bieniasz-Krzywiec, Pawel; Ehling, Manuel; Pap, Attila; Poliska, Szilard; Boto, Pal; Tzerpos, Petros; Horvath, Attila; Kolostyak, Zsuzsanna; Daniel, Bence; Szatmari, Istvan; Mazzone, Massimiliano; Nagy, Laszlo

    2017-01-01

    Retinoid X receptor (RXR) regulates several key functions in myeloid cells, including inflammatory responses, phagocytosis, chemokine secretion, and proangiogenic activity. Its importance, however, in tumor-associated myeloid cells is unknown. In this study, we demonstrate that deletion of RXR in myeloid cells enhances lung metastasis formation while not affecting primary tumor growth. We show that RXR deficiency leads to transcriptomic changes in the lung myeloid compartment characterized by increased expression of prometastatic genes, including important determinants of premetastatic niche formation. Accordingly, RXR-deficient myeloid cells are more efficient in promoting cancer cell migration and invasion. Our results suggest that the repressive activity of RXR on prometastatic genes is mediated primarily through direct DNA binding of the receptor along with nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors and is largely unresponsive to ligand activation. In addition, we found that expression and transcriptional activity of RXRα is down-modulated in peripheral blood mononuclear cells of patients with lung cancer, particularly in advanced and metastatic disease. Overall, our results identify RXR as a regulator in the myeloid cell-assisted metastatic process and establish lipid-sensing nuclear receptors in the microenvironmental regulation of tumor progression. PMID:28923935

  20. Chimaeric antigen receptor T-cell therapy for tumour immunotherapy

    PubMed Central

    Sha, Huan-huan; Wang, Dan-dan; Yan, Da-li; Hu, Yong; Yang, Su-jin; Liu, Si-wen

    2017-01-01

    Chimaeric antigen receptor (CAR) T-cell therapies, as one of the cancer immunotherapies, have heralded a new era of treating cancer. The accumulating data, especially about CAR-modified T cells against CD19 support that CAR T-cell therapy is a highly effective immune therapy for B-cell malignancies. Apart from CD19, there have been many trials of CAR T cells directed other tumour specific or associated antigens (TSAs/TAAs) in haematologic malignancies and solid tumours. This review will briefly summarize basic CAR structure, parts of reported TSAs/TAAs, results of the clinical trials of CAR T-cell therapies as well as two life-threatening side effects. Experiments in vivo or in vitro, ongoing clinical trials and the outlook for CAR T-cell therapies also be included. Our future efforts will focus on identification of more viable cancer targets and more strategies to make CAR T-cell therapy safer. PMID:28053197

  1. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    PubMed

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  2. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity

    PubMed Central

    Davenport, A. J.; Cross, R. S.; Watson, K. A.; Liao, Y.; Shi, W.; Prince, H. M.; Beavis, P. A.; Trapani, J. A.; Kershaw, M. H.; Ritchie, D. S.; Darcy, P. K.; Jenkins, M. R.

    2018-01-01

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. PMID:29440406

  3. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

    PubMed

    Coursey, Terry G; Gandhi, Niral B; Volpe, Eugene A; Pflugfelder, Stephen C; de Paiva, Cintia S

    2013-01-01

    CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.

  4. Chemokine Receptors CCR6 and CXCR3 Are Necessary for CD4+ T Cell Mediated Ocular Surface Disease in Experimental Dry Eye Disease

    PubMed Central

    Coursey, Terry G.; Gandhi, Niral B.; Volpe, Eugene A.; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2013-01-01

    CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease. PMID:24223818

  5. Prenatal Exposure of Mice to Diethylstilbestrol Disrupts T-Cell Differentiation by Regulating Fas/Fas Ligand Expression through Estrogen Receptor Element and Nuclear Factor-κB Motifs

    PubMed Central

    Singh, Narendra P.; Singh, Udai P.; Nagarkatti, Prakash S.

    2012-01-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions. PMID:22888145

  6. Prenatal exposure of mice to diethylstilbestrol disrupts T-cell differentiation by regulating Fas/Fas ligand expression through estrogen receptor element and nuclear factor-κB motifs.

    PubMed

    Singh, Narendra P; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2012-11-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions.

  7. Engineering Chimeric Antigen Receptor T cells to Treat Glioblastoma.

    PubMed

    Choi, Bryan D; O'Rourke, Donald M; Maus, Marcela V

    2017-08-01

    Immunotherapy has emerged as a promising strategy for glioblastoma (GBM), a disease that remains universally fatal despite currently available standard-of-care. Adoptive T cell therapy has been shown to produce potent antitumor immunity while obviating the need for traditional antigen presentation and primary immune responses. Chimeric antigen receptors (CARs) are specialized molecules that can be expressed on the surface of T cells allowing for redirected cytotoxicity against tumor antigens of interest. To date, the application of CAR T cells for GBM has been relatively limited, in large part due to a dearth of well-described tumor specific antigens that are both homogenously and frequently expressed. A mutated version of the epidermal growth factor receptor, EGFRvIII, is a constitutively activated tyrosine kinase that is expressed on the surface of GBM and other common neoplasms, but completely absent from all normal tissues. We have recently generated CAR T cells directed against EGFRvIII and reported results from a Phase I clinical trial investigating this platform in patients with EGFRvIII-expressing GBM. Our study showed that despite conventional notions of central nervous system "immune-privilege," EGFRvIII CAR T cells trafficked to intracerebral tumors, leading to successful targeting and eradication of this antigen in the brain. Here, we review our experience with EGFRvIII CAR T cells and highlight important considerations for the clinical translation of this therapy in patients with GBM.

  8. Direct Measurement of T Cell Receptor Affinity and Sequence from Naïve Anti-Viral T Cells

    PubMed Central

    Zhang, Shuqi; Parker, Patricia; Ma, Keyue; He, Chenfeng; Shi, Qian; Cui, Zhonghao; Williams, Chad; Wendel, Ben S.; Meriwether, Amanda; Salazar, Mary A.; Jiang, Ning

    2016-01-01

    T cells recognize and kill a myriad of pathogen-infected or cancer cells using a diverse set of T cell receptors (TCR). The affinity of TCR to cognate antigen is of high interest in adoptive T cell transfer immunotherapy and antigen-specific T cell repertoire immune profiling because it is widely known to correlate with downstream T cell responses. Here, we introduce the in situ TCR affinity and sequence test (iTAST) for simultaneous measurement of TCR affinity and sequence from single primary CD8+ T cells in human blood. We demonstrate that the repertoire of primary antigen-specific T cells from pathogen inexperienced individuals has a surprisingly broad affinity range of 1000-fold composed of diverse TCR sequences. Within this range, samples from older individuals contained a reduced frequency of high affinity T cells compared to young individuals, demonstrating an age-related effect of T cell attrition that could cause holes in the repertoire. iTAST should enable the rapid selection of high affinity TCRs ex vivo for adoptive immunotherapy and measurement of T cell response for immune monitoring applications. PMID:27252176

  9. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer.

    PubMed

    Chen, Zehong; Hu, Kang; Feng, Lieting; Su, Ruxiong; Lai, Nan; Yang, Zike; Kang, Shijun

    2018-06-01

    Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent-cell-based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple-negative breast cancer. However, the programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor-1 (sPD1)-expressing senescent cells to overcome PD-L1/PD-1-mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T-cell activation. In the present study, sPD1-expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1-expressing senescent tumor cell vaccine (STCV/sPD-1) treatment attracted more mature DC and fewer exhausted-PD1 + T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD-1 than for control treatments. STCV/sPD-1 pre-injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD-1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD-1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors.

    PubMed

    Vezzi, Vanessa; Onaran, H Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-08-16

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.

  11. A Novel Bcl-x Isoform Connected to the T Cell Receptor Regulates Apoptosis in T Cells

    PubMed Central

    Yang, Xiao-Feng; Weber, Georg F.

    2014-01-01

    Summary We define a novel Bcl-x isoform, Bcl-xγ, that is generated by alternative splicing and characterized by a unique 47 amino acid C-terminus. Bcl-xγ is expressed primarily in thymocytes, where it may depend on an interaction between the TCR and host MHC products, and in mature T cells, where its expression is associated with ligation of the T cell receptor. Overexpression of Bcl-xγ in T cells inhibits activation-induced apoptosis; inhibition of Bcl-xγ, after stable expression of Bcl-xγ antisense cDNA, enhances activation-induced apoptosis. In contrast to other Bcl-x isoforms, cells that fail to express Bcl-xγ after CD3 ligation undergo programmed cell death, while activated T cells that express Bcl-xγ are spared. Identification of Bcl-xγ helps provide amolecular explanation of T cell activation and death after antigen engagement. PMID:9390687

  12. Interaction study between synthetic glycoconjugate ligands and endocytic receptors using flow cytometry.

    PubMed

    Yura, Hirofumi; Ishihara, Masayuki; Kanatani, Yasuhiro; Takase, Bonpei; Hattori, Hidemi; Suzuki, Shinya; Kawakami, Mitsuyuki; Matsui, Takemi

    2006-04-01

    Flow cytometric analysis of synthetic galactosyl polymers, asialofetuin and LDL derivatives labeled with FITC (Fluorescein Isothiocyanate) was carried out to determine the phenotypes of endocytic receptors, such as asialoglycoprotein (ASPG) and the LDL receptor, on various types of cells. When FITC-labeled galactosyl polystyrene (GalCPS), being a synthetic ligand of ASPG, was applied to rat hepatocytes and human cancer cells (Hep G2 and Chang Liver), surface fluorescence intensities varied according to receptor expression on the cells. The fluorescence intensity originates from the calcium-dependent binding of the FITC-labeled GalCPS. Although unaltered by pre-treatment with glucosyl polystyrene (GluCPS), fetuin and LDL, the fluorescence intensity was suppressed by pre-treatment with (non-labeled) GalCPS and asialofetuin. Flow cytometry allowed us to demonstrate that the calcium-dependent binding of FITC-labeled LDL (prepared from rabbits) upon the addition of 17alpha-ethinyl estradiol enhances LDL receptor expression, and the expression is suppressed upon the addition of a monoclonal antibody to the LDL receptor. The binding efficiency based on the combination of FITC-labeled ligands suggests a possible application for the classification of cell types and conditions corresponding to endocytic receptor expression without the need for immuno-active antibodies or radiolabeled substances. Furthermore, the synthetic glycoconjugate (GalCPS) is shown to be a sensitive and useful marker for classification based on cell phenotype using flow cytometry.

  13. EGF receptor ligands: recent advances.

    PubMed

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.

  14. EGF receptor ligands: recent advances

    PubMed Central

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR. PMID:27635238

  15. Involvement of apoptosis and autophagy in the death of RPMI 8226 multiple myeloma cells by two enantiomeric sigma receptor ligands.

    PubMed

    Korpis, Katharina; Weber, Frauke; Brune, Stefanie; Wünsch, Bernhard; Bednarski, Patrick J

    2014-01-01

    Over-expression of σ receptors by many tumor cell lines makes ligands for these receptors attractive as potential chemotherapeutic drugs. Enantiomeric piperazines (S)-4 and (R)-4 were prepared as potential σ-receptor ligands in a chiral pool synthesis starting from (S)- and (R)-aspartate. Both compounds showed high affinities for the σ₁ and σ₂ receptors. In the human multiple myeloma cell line RPMI 8226, a line expressing high levels of σ receptors, both compounds inhibited cell proliferation with IC₅₀ values in the low μM range. No chiral differentiation between either the σ receptor binding affinity or the cytotoxicity of the two enantiomers was observed. Both compounds induced apoptosis, which was evidenced by nuclear condensation, binding of annexin-V to phosphatidylserine in the outer leaf of the cell membrane, cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1) and caspase-8 as well as the expression of bcl₂ family members bax, bad and bid. However, apoptosis appeared to be caspase independent. Increased levels of the phosphorylated form of the microtubule associated protein light chain 3-II (LC3-II), an autophagosome marker, gave evidence that both compounds induced autophagy. However, further data (e.g., treatment with wortmannin) indicate that autophagy is incomplete and not cytoprotective. Lipid peroxidation (LPO) was observed in RPMI 8226 cells treated with the two compounds, and the lipid antioxidant α-tocopherol attenuated LPO. Interestingly, α-tocopherol reduced significantly both apoptosis and autophagy induced by the compounds. These results provide evidence that, by initiating LPO and changes in mitochondrial membrane potential, both compounds induce apoptosis and autophagy in RPMI 8226 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. SKCa Channels Blockage Increases the Expression of Adenosine A2A Receptor in Jurkat Human T Cells

    PubMed Central

    Regaya, Imed; Aidi-Knani, Sabrine; By, Youlet; Condo, Jocelyne; Gerolami, Victoria; Berge-Lefranc, Jean-Louis; Ben Hamida, Jeannette; Sabatier, Jean-Marc; Fenouillet, Emmanuel; Guieu, Régis

    2013-01-01

    Abstract Adenosine is a nucleoside displaying various biological effects via stimulation of four G-protein–coupled receptors, A1, A2A, A2B, and A3. Adenosine also modulates voltage-gated (Kv) and small conductance calcium-activated (SKCa) potassium channels. The effect of these potassium channels on the expression of adenosine receptors is poorly understood. We evaluated the action of BgK (a natural Kv channel blocker) and Lei-Dab7 (a synthetic SKCa channel blocker) on the expression of adenosine A2A receptors (A2AR) in Jurkat human T cells. We found that Lei-Dab7, but not BgK, increased the maximal binding value of the tritiated ligand ZM241385 to A2AR in a dose-dependent manner (+45% at 5 nM; +70% at 50 nM as compared to control). These results were further confirmed by Western blotting using a specific monoclonal antibody to human A2AR. The ligand affinity-related dissociation constant and A2AR mRNA amount were not significantly modified by either drug. We suggest that modulation of SKCa channels can influence membrane expression of A2AR and thus has a therapeutic potential. PMID:23593569

  17. Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments

    NASA Astrophysics Data System (ADS)

    Richter, David; Moraga, Ignacio; Winkelmann, Hauke; Birkholz, Oliver; Wilmes, Stephan; Schulte, Markos; Kraich, Michael; Kenneweg, Hella; Beutel, Oliver; Selenschik, Philipp; Paterok, Dirk; Gavutis, Martynas; Schmidt, Thomas; Garcia, K. Christopher; Müller, Thomas D.; Piehler, Jacob

    2017-07-01

    The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.

  18. Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.

    PubMed

    Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G

    1998-04-10

    The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.

  19. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    PubMed Central

    Girroir, Elizabeth E.; Hollingshead, Holly E.; Billin, Andrew N.; Willson, Timothy M.; Robertson, Gavin P.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines, or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoetin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines. PMID:18054822

  20. Sulfamethoxazole Induces a Switch Mechanism in T Cell Receptors Containing TCRVβ20-1, Altering pHLA Recognition

    PubMed Central

    Watkins, Stephan; Pichler, Werner J.

    2013-01-01

    T cell receptors (TCR) containing Vβ20-1 have been implicated in a wide range of T cell mediated disease and allergic reactions, making it a target for understanding these. Mechanics of T cell receptors are largely unexplained by static structures available from x-ray crystallographic studies. A small number of molecular dynamic simulations have been conducted on TCR, however are currently lacking either portions of the receptor or explanations for differences between binding and non-binding TCR recognition of respective peptide-HLA. We performed molecular dynamic simulations of a TCR containing variable domain Vβ20-1, sequenced from drug responsive T cells. These were initially from a patient showing maculopapular eruptions in response to the sulfanilamide-antibiotic sulfamethoxazole (SMX). The CDR2β domain of this TCR was found to dock SMX with high affinity. Using this compound as a perturbation, overall mechanisms involved in responses mediated by this receptor were explored, showing a chemical action on the TCR free from HLA or peptide interaction. Our simulations show two completely separate modes of binding cognate peptide-HLA complexes, with an increased affinity induced by SMX bound to the Vβ20-1. Overall binding of the TCR is mediated through a primary recognition by either the variable β or α domain, and a switch in recognition within these across TCR loops contacting the peptide and HLA occurs when SMX is present in the CDR2β loop. Large binding affinity differences are induced by summed small amino acid changes primarily by SMX modifying only three critical CDR2β loop amino acid positions. These residues, TYRβ57, ASPβ64, and LYSβ65 initially hold hydrogen bonds from the CDR2β to adjacent CDR loops. Effects from SMX binding are amplified and traverse longer distances through internal TCR hydrogen bonding networks, controlling the overall TCR conformation. Thus, the CDR2β of Vβ20-1 acts as a ligand controlled switch affecting overall TCR

  1. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  2. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response.

    PubMed

    Davra, Viralkumar; Kimani, Stanley G; Calianese, David; Birge, Raymond B

    2016-11-29

    The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice.

  4. Expression pattern and signalling pathways in neutrophil like HL-60 cells after treatment with estrogen receptor selective ligands.

    PubMed

    Blesson, Chellakkan Selvanesan; Sahlin, Lena

    2012-09-25

    Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy.

    PubMed

    Mirzaei, Hamid Reza; Mirzaei, Hamed; Lee, Sang Yun; Hadjati, Jamshid; Till, Brian G

    2016-10-01

    Excitement is growing for therapies that harness the power of patients' immune systems to combat their diseases. One approach to immunotherapy involves engineering patients' own T cells to express a chimeric antigen receptor (CAR) to treat advanced cancers, particularly those refractory to conventional therapeutic agents. Although these engineered immune cells have made remarkable strides in the treatment of patients with certain hematologic malignancies, success with solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our perspective that these features make γδ T cells promising for use in cellular therapy against several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, David Yin-wei; Tanaka, Yoshimasa; Iwasaki, Masashi

    2008-07-29

    Signaling through the programmed death 1 (PD-1) inhibitory receptor upon binding its ligand, PD-L1, suppresses immune responses against autoantigens and tumors and plays an important role in the maintenance of peripheral immune tolerance. Release from PD-1 inhibitory signaling revives 'exhausted' virus-specific T cells in chronic viral infections. Here we present the crystal structure of murine PD-1 in complex with human PD-L1. PD-1 and PD-L1 interact through the conserved front and side of their Ig variable (IgV) domains, as do the IgV domains of antibodies and T cell receptors. This places the loops at the ends of the IgV domains onmore » the same side of the PD-1/PD-L1 complex, forming a surface that is similar to the antigen-binding surface of antibodies and T cell receptors. Mapping conserved residues allowed the identification of residues that are important in forming the PD-1/PD-L1 interface. Based on the structure, we show that some reported loss-of-binding mutations involve the PD-1/PD-L1 interaction but that others compromise protein folding. The PD-1/PD-L1 interaction described here may be blocked by antibodies or by designed small-molecule drugs to lower inhibitory signaling that results in a stronger immune response. The immune receptor-like loops offer a new surface for further study and potentially the design of molecules that would affect PD-1/PD-L1 complex formation and thereby modulate the immune response.« less

  7. T Cell Development in Mice Lacking All T Cell Receptor ζ Family Members (ζ, η, and FcεRIγ)

    PubMed Central

    Shores, Elizabeth W.; Ono, Masao; Kawabe, Tsutomo; Sommers, Connie L.; Tran, Tom; Lui, Kin; Udey, Mark C.; Ravetch, Jeffrey; Love, Paul E.

    1998-01-01

    The ζ family includes ζ, η, and FcεRIγ (Fcγ). Dimers of the ζ family proteins function as signal transducing subunits of the T cell antigen receptor (TCR), the pre-TCR, and a subset of Fc receptors. In mice lacking ζ/η chains, T cell development is impaired, yet low numbers of CD4+ and CD8+ T cells develop. This finding suggests either that pre-TCR and TCR complexes lacking a ζ family dimer can promote T cell maturation, or that in the absence of ζ/η, Fcγ serves as a subunit in TCR complexes. To elucidate the role of ζ family dimers in T cell development, we generated mice lacking expression of all of these proteins and compared their phenotype to mice lacking only ζ/η or Fcγ. The data reveal that surface complexes that are expressed in the absence of ζ family dimers are capable of transducing signals required for α/β–T cell development. Strikingly, T cells generated in both ζ/η−/− and ζ/η−/−–Fcγ−/− mice exhibit a memory phenotype and elaborate interferon γ. Finally, examination of different T cell populations reveals that ζ/η and Fcγ have distinct expression patterns that correlate with their thymus dependency. A possible function for the differential expression of ζ family proteins may be to impart distinctive signaling properties to TCR complexes expressed on specific T cell populations. PMID:9529325

  8. Ligand binding was acquired during evolution of nuclear receptors

    PubMed Central

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organisms. The analysis of the NR gene duplication pattern during the evolution of metazoans shows that the present NR diversity arose from two waves of gene duplications. Strikingly, our results suggest that the ancestral NR was an orphan receptor that acquired ligand-binding ability during subsequent evolution. PMID:9192646

  9. Impairment of Fas-ligand-caveolin-1 interaction inhibits Fas-ligand translocation to rafts and Fas-ligand-induced cell death.

    PubMed

    Glukhova, Xenia A; Trizna, Julia A; Proussakova, Olga V; Gogvadze, Vladimir; Beletsky, Igor P

    2018-01-22

    Fas-ligand/CD178 belongs to the TNF family proteins and can induce apoptosis through death receptor Fas/CD95. The important requirement for Fas-ligand-dependent cell death induction is its localization to rafts, cholesterol- and sphingolipid-enriched micro-domains of membrane, involved in regulation of different signaling complexes. Here, we demonstrate that Fas-ligand physically associates with caveolin-1, the main protein component of rafts. Experiments with cells overexpressing Fas-ligand revealed a FasL N-terminal pre-prolin-rich region, which is essential for the association with caveolin-1. We found that the N-terminal domain of Fas-ligand bears two caveolin-binding sites. The first caveolin-binding site binds the N-terminal domain of caveolin-1, whereas the second one appears to interact with the C-terminal domain of caveolin-1. The deletion of both caveolin-binding sites in Fas-ligand impairs its distribution between cellular membranes, and attenuates a Fas-ligand-induced cytotoxicity. These results demonstrate that the interaction of Fas-ligand and caveolin-1 represents a molecular basis for Fas-ligand translocation to rafts, and the subsequent induction of Fas-ligand-dependent cell death. A possibility of a similar association between other TNF family members and caveolin-1 is discussed.

  10. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    PubMed

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Regulation of dendritic cell function through toll-like receptors.

    PubMed

    Kaisho, Tsuneyasu; Akira, Shizuo

    2003-12-01

    Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants.

  12. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    PubMed Central

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  13. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities

    PubMed Central

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-01-01

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives. PMID:29163850

  14. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    PubMed

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Chimeric switch receptor: switching for improved adoptive T-cell therapy against cancers.

    PubMed

    Tay, Johan Ck; Zha, Shijun; Wang, Shu

    2017-12-01

    Adoptive T-lymphocyte transfer-based immunotherapy for cancers has seen huge leaps with both CARs and engineered TCRs. Despite this, issues relating to safety and efficacy persist. To address this, chimeric switch receptors have been created to reverse the outcomes of their original signaling pathways in order to confer immune cells with the ability to overcome the immunosuppressive tumor microenvironment and to allow them to have greater in vivo persistence. Activating switch receptors exploit the inhibitory molecules expressed by cancer cells to further stimulate the tumor antigen-specific T lymphocytes. On the other hand, inhibitory switch receptors inhibit the effects of tumor-reactive T lymphocytes on unintended targets. This paper reviews the switch receptors reported thus far, and lists out potential improvements and future works.

  16. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold naoparticles

    PubMed Central

    Li, Xi; Zhou, Hongyu; Yang, Lei; Du, Guoqing; Pai-Panandiker, Atmaram; Huang, Xuefei; Yan, Bing

    2011-01-01

    A dual-ligand gold nanoparticle (DLGNP) was designed and synthesized to explore the therapeutic benefits of multivalent interactions between gold nanoparticles (GNPs) and cancer cells. DLGNP was tested on human epidermal cancer cells (KB), which had high expression of folate receptor. The cellular uptake of DLGNP was increased by 3.9 and 12.7 folds compared with GNP-folate or GNP-glucose. The enhanced cell recognition was due to multivalent interactions between both ligands on GNPs and cancer cells as shown by the ligand competition experiments. Furthermore, the multivalent interactions increased contrast between cells with high and low expression of folate receptors. The enhanced cell recognition enabled DLGNP to kill KB cells under X-ray irradiation at a dose that was safe to folate receptor low-expression (such as normal) cells. Thus DLGP has the potential to be a cancer-specific nano-theranostic agent. PMID:21232787

  17. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation.

    PubMed

    Yu, Junli; Venstrom, Jeffrey M; Liu, Xiao-Rong; Pring, James; Hasan, Reenat S; O'Reilly, Richard J; Hsu, Katharine C

    2009-04-16

    Alloreactive natural killer (NK) cells are an important influence on hematopoietic stem cell transplantation (HSCT) outcome. In HLA-mismatched HSCT, alloreactivity occurs when licensed donor NK cells expressing inhibitory killer Ig-like receptors (KIR) for donor MHC class I ligands recognize the lack of the class I ligands in the mismatched recipient ("missing self"). Studies in HLA-matched HSCT, however, have also demonstrated improved outcome in patients lacking class I ligands for donor inhibitory KIR ("missing ligand"), indicating that classically nonlicensed donor NK cells expressing KIR for non-self MHC class I ligands may exhibit functional competence in HSCT. We examined NK function in 16 recipients of T cell-depleted allografts from HLA-identical or KIR-ligand matched donors after myeloablative therapy. After HSCT, nonlicensed NK cells expressing inhibitory KIR for non-self class I exhibit robust intracellular IFN-gamma and cytotoxic response to target cells lacking cognate ligand, gradually becoming tolerized to self by day 100. These findings could not be correlated with cytokine environment or phenotypic markers of NK development, nor could they be attributed to non-KIR receptors such as CD94/NKG2A. These findings confirm that NK alloreactivity can occur in HLA-matched HSCT, where tolerance to self is either acquired by the stem cell-derived NK cell after exiting the bone marrow or where tolerance to self can be temporarily overcome.

  18. Control of scavenger receptor-mediated endocytosis by novel ligands of different length.

    PubMed

    Guaderrama-Díaz, Margarita; Solís, Carlos F; Velasco-Loyden, Gabriela; Laclette, Juan P; Mas-Oliva, Jaime

    2005-03-01

    The scavenger receptor recognized as a multiligand family of receptors falls in the group that is internalised through endocytosis. In this report we used several recombinant fragments of the tapeworm protein paramyosin, known to form filamentous dimers that bind collagenous structures as ligands of different length for the class A type I scavenger receptor (SR-AI). While native CHO cells are unresponsive to any of the recombinant fragments, it is shown that CHO cells transfected with this receptor efficiently internalise recombinant fragments that correspond to two thirds of the full-length paramyosin. In contrast, recombinant products corresponding to one-third of the full-length paramyiosin are not internalised. It is also shown that important molecules in the organization of the coated pit, are enriched when the two-thirds long paramyosin fragments were bound and internalised through the SR-AI. Moreover, internalisation of these fragments trigger a classical apoptotic pathway shown by the presence of TUNEL positive cells and the appearance of apoptotic bodies. We report paramyosin as a new ligand for the scavenger receptor and provide evidence supporting the notion that these receptors upon the formation of arrays with length-specific molecules, not only trigger endocytosis but also seem to regulate the synthesis of molecules involved in the organization of coated pits.

  19. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma.

    PubMed

    Kearl, Tyce J; Jing, Weiqing; Gershan, Jill A; Johnson, Bryon D

    2013-06-01

    Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.

  20. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies

    PubMed Central

    Mamonkin, Maksim; Rouce, Rayne H.; Tashiro, Haruko

    2015-01-01

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. PMID:26056165

  1. Ligand-Induced Dynamics of Neurotrophin Receptors Investigated by Single-Molecule Imaging Approaches

    PubMed Central

    Marchetti, Laura; Luin, Stefano; Bonsignore, Fulvio; de Nadai, Teresa; Beltram, Fabio; Cattaneo, Antonino

    2015-01-01

    Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells. PMID:25603178

  2. Small potent ligands to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor.

    PubMed

    Axén, Andreas; Andersson, Hanna; Lindeberg, Gunnar; Rönnholm, Harriet; Kortesmaa, Jarkko; Demaegdt, Heidi; Vauquelin, Georges; Karlén, Anders; Hallberg, Mathias

    2007-07-01

    Angiotensin IV analogs encompassing aromatic scaffolds replacing parts of the backbone of angiotensin IV have been synthesized and evaluated in biological assays. Several of the ligands displayed high affinities to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. Displacement of the C-terminal of angiotensin IV with an o-substituted aryl acetic acid derivative delivered the ligand 4, which exhibited the highest binding affinity (K(i) = 1.9 nM). The high affinity of this ligand provides support to the hypothesis that angiotensin IV adopts a gamma-turn in the C-terminal of its bioactive conformation. Ligand (4) inhibits both human IRAP and aminopeptidase N-activity and induces proliferation of adult neural stem cells at low concentrations. Furthermore, ligand 4 is degraded considerably more slowly in membrane preparations than angiotensin IV. Hence, it might constitute a suitable research tool for biological studies of the (IRAP)/AT(4) receptor.

  3. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR).

    PubMed

    Wolf, Steffen; Jovancevic, Nikolina; Gelis, Lian; Pietsch, Sebastian; Hatt, Hanns; Gerwert, Klaus

    2017-11-22

    We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.

  4. Chimeric antigen receptor T-cell therapy in AML: How close are we?

    PubMed Central

    Gill, Saar

    2016-01-01

    The majority of patients presenting with acute myeloid leukemia (AML) initially respond to chemotherapy but post-remission therapy is required to consolidate this response and achieve long-term disease-free survival. The most effective form of post-remission therapy relies on T-cell immunotherapy in the form of allogeneic hematopoietic cell transplantation (HCT). However, patients with active disease cannot usually expect to be cured with HCT. This inherent dichotomy implies that traditional T cell-based immunotherapy in the form of allogeneic HCT stops being efficacious somewhere between the measurable residual disease (MRD) and the morphologically obvious range. This is in part because the full power of T cells must be restrained in order to avoid lethal graft-versus-host disease (GVHD) and partly because only a sub-population of donor T cells are expected to be able to recognize AML cells via their T cell receptor. Chimeric antigen receptor (CAR) T cell therapy, most advanced in the treatment of patients with B-cell malignancies, may circumvent some of these limitations. However, major challenges remain to be overcome before CAR T cell therapy can be safely applied to AML. PMID:27890255

  5. The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis.

    PubMed

    Jin, Un-Ho; Lee, Syng-Ook; Pfent, Catherine; Safe, Stephen

    2014-07-09

    Patients with ER-negative breast tumors are among the most difficult to treat and exhibit low survival rates due, in part, to metastasis from the breast to various distal sites. Aryl hydrocarbon receptor (AHR) ligands show promise as antimetastatic drugs for estrogen receptor (ER)-negative breast cancer. Triple negative MDA-MB-231 breast cancer cells were treated with eight AHR-active pharmaceuticals including 4-hydroxtamoxifen, flutamide leflunomide, mexiletine, nimodipine, omeprazole, sulindac and tranilast, and the effects of these compounds on cell proliferation (MTT assay) and cell migration (Boyden chamber assay) were examined. The role of the AHR in mediating inhibition of MDA-MB-231 cell invasion was investigated by RNA interference (RNAi) and knockdown of AHR or cotreatment with AHR agonists. Lung metastasis of MDA-MB-231 cells was evaluated in mice administered cells by tail vein injection and prometastatic gene expression was examined by immunohistochemistry. We showed that only the proton pump inhibitor omeprazole decreased MDA-MB-231 breast cancer cell invasion in vitro. Omeprazole also significantly decreased MDA-MB-231 cancer cell metastasis to the lung in a mouse model (tail vein injection), and in vitro studies showed that omeprazole decreased expression of at least two prometastatic genes, namely matrix metalloproteinase-9 (MMP-9) and C-X-C chemokine receptor 4 (CXCR4). Results of RNA interference studies confirmed that omeprazole-mediated downregulation of CXCR4 (but not MMP-9) was AHR-dependent. Chromatin immunoprecipitation assays demonstrated that omeprazole recruited the AHR to regions in the CXCR4 promoter that contain dioxin response elements (DREs) and this was accompanied by the loss of pol II on the promoter and decreased expression of CXCR4. AHR-active pharmaceuticals such as omeprazole that decrease breast cancer cell invasion and metastasis may have important clinical applications for late stage breast cancer chemotherapy.

  6. Ligand- and receptor-based docking with LiBELa

    NASA Astrophysics Data System (ADS)

    dos Santos Muniz, Heloisa; Nascimento, Alessandro S.

    2015-08-01

    Methodologies on molecular docking are constantly improving. The problem consists on finding an optimal interplay between the computational cost and a satisfactory physical description of ligand-receptor interaction. In pursuit of an advance in current methods we developed a mixed docking approach combining ligand- and receptor-based strategies in a docking engine, where tridimensional descriptors for shape and charge distribution of a reference ligand guide the initial placement of the docking molecule and an interaction energy-based global minimization follows. This hybrid docking was evaluated with soft-core and force field potentials taking into account ligand pose and scoring. Our approach was found to be competitive to a purely receptor-based dock resulting in improved logAUC values when evaluated with DUD and DUD-E. Furthermore, the smoothed potential as evaluated here, was not advantageous when ligand binding poses were compared to experimentally determined conformations. In conclusion we show that a combination of ligand- and receptor-based strategy docking with a force field energy model results in good reproduction of binding poses and enrichment of active molecules against decoys. This strategy is implemented in our tool, LiBELa, available to the scientific community.

  7. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells.

    PubMed

    Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I

    2017-11-01

    T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.

  8. Autocrine-Derived Epidermal Growth Factor Receptor Ligands Contribute to Recruitment of Tumor-Associated Macrophage and Growth of Basal Breast Cancer Cells In Vivo

    PubMed Central

    Nickerson, Nicole K.; Mill, Christopher P.; Wu, Hsin-Jung; Riese, David J.; Foley, John

    2014-01-01

    Epidermal growth factor receptor (EGFR) expression has been linked to progression of basal breast cancers. Many breast cancer cells harbor the EGFR and produce its family of ligands, suggesting they may participate in autocrine and paracrine signaling with cells of the tumor microenvironment. EGFR ligand expression was profiled in the basal breast cancer cell line MDA-231 where AREG, TGF-α, and HBEGF were the three ligands most highly expressed. Autocrine signaling was modulated through silencing or overexpression of these three ligands using lentiviral constructs and the impact measured using motility, proliferation, and cytokine expression assays. Changes in receptor phosphorylation and receptor turnover were examined. Knockdown of AREG or TGF-α in vitro resulted in decreased motility (p < 0.05) and decreased expression of macrophage chemoattractants. Overexpression of TGF-α increased motility and chemoattractant expression, whereas AREG did not. HBEGF modulation had no effect on any cellular behaviors. All the cells with altered ligand production were inoculated into female athymic nude mice to form mammary fat pad tumors, followed by immunohistochemical analysis for necrosis, angiogenesis, and macrophage recruitment. In vivo, knockdown of AREG or TGF-α increased survival (p < 0.001) while decreasing angiogenesis (p < 0.001), tumor growth (p < 0.001), and macrophage attraction (p < 0.001). Overexpression of AREG appeared to elicit a greater effect than TGF-α on mammary fat pad tumor growth by increasing angiogenesis (p < 0.001) and macrophage attraction to the tumor (p < 0.01). We propose these changes in mammary tumor growth were the result of increased recruitment of macrophages to the tumor by cells with altered autocrine EGFR signaling. We conclude that AREG and TGF-α were somewhat interchangeable in their effects on EGFR signaling; however, TGF-α had a greater effect in vitro and AREG had a greater effect in vivo. PMID:23879171

  9. Autocrine-derived epidermal growth factor receptor ligands contribute to recruitment of tumor-associated macrophage and growth of basal breast cancer cells in vivo.

    PubMed

    Nickerson, Nicole K; Mill, Christopher P; Wu, Hsin-Jung; Riese, David J; Foley, John

    2013-01-01

    Epidermal growth factor receptor (EGFR) expression has been linked to progression of basal breast cancers. Many breast cancer cells harbor the EGFR and produce its family of ligands, suggesting they may participate in autocrine and paracrine signaling with cells of the tumor microenvironment. EGFR ligand expression was profiled in the basal breast cancer cell line MDA-231 where AREG, TGF-alpha, and HBEGF were the three ligands most highly expressed. Autocrine signaling was modulated through silencing or overexpression of these three ligands using lentiviral constructs and the impact measured using motility, proliferation, and cytokine expression assays. Changes in receptor phosphorylation and receptor turnover were examined. Knockdown of AREG or TGF-alpha in vitro resulted in decreased motility (p < 0.05) and decreased expression of macrophage chemoattractants. Overexpression of TGF-alpha increased motility and chemoattractant expression, whereas AREG did not. HBEGF modulation had no effect on any cellular behaviors. All the cells with altered ligand production were inoculated into female athymic nude mice to form mammary fat pad tumors, followed by immunohistochemical analysis for necrosis, angiogenesis, and macrophage recruitment. In vivo, knockdown of AREG or TGF-alpha increased survival (p < 0.001) while decreasing angiogenesis (p < 0.001), tumor growth (p < 0.001), and macrophage attraction (p < 0.001). Overexpression of AREG appeared to elicit a greater effect than TGF-alpha on mammary fat pad tumor growth by increasing angiogenesis (p < 0.001) and macrophage attraction to the tumor (p < 0.01). We propose these changes in mammary tumor growth were the result of increased recruitment of macrophages to the tumor by cells with altered autocrine EGFR signaling. We conclude that AREG and TGF-alpha were somewhat interchangeable in their effects on EGFR signaling; however, TGF-alpha had a greater effect in vitro and AREG had a greater effect in vivo.

  10. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton

    PubMed Central

    Britton, Graham J; Ambler, Rachel; Clark, Danielle J; Hill, Elaine V; Tunbridge, Helen M; McNally, Kerrie E; Burton, Bronwen R; Butterweck, Philomena; Sabatos-Peyton, Catherine; Hampton-O’Neil, Lea A; Verkade, Paul; Wülfing, Christoph; Wraith, David Cameron

    2017-01-01

    Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways. DOI: http://dx.doi.org/10.7554/eLife.20003.001 PMID:28112644

  11. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy

    PubMed Central

    Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E

    2014-01-01

    Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions. PMID:24116999

  12. Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Vigues, S.; Hobbs, J.

    2005-01-01

    The molecular mechanisms by which G protein-coupled receptor (GPCR)-type chemosensory receptors of animals selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. This study showed that each of the two subunits in the mammalian heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli, though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in mice.more » Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.« less

  13. Do mechanical forces contribute to nanoscale membrane organisation in T cells?

    PubMed

    Klotzsch, Enrico; Stiegler, Johannes; Ben-Ishay, Eldad; Gaus, Katharina

    2015-04-01

    Mechanotransduction describes how a cell senses and interacts with its environment. The concept originated in adhesion biology where adhesion receptors, integrins, facilitate force transmission between the extracellular matrix and the intracellular actin cytoskeleton. Indeed, during any adhesive contacts, cells do exert mechanical force. Hence, the probing of the local environment by cells results in mechanical cues that contribute to cellular functions and cell fate decisions such as migration, proliferation, differentiation and apoptosis. On the molecular level, mechanical forces can rearrange proteins laterally within the membrane, regulate their activity by inducing conformational changes and probe the mechanical properties and bond strength of receptor-ligands. From this point of view, it appears surprising that molecular forces have been largely overlooked in membrane organisation and ligand discrimination processes in lymphocytes. During T cell activation, the T cell receptor recognises and distinguishes antigenic from benign endogenous peptides to initiate the reorganisation of membrane proteins into signalling clusters within the immunological synapse. In this review, we asked whether characteristics of fibroblast force sensing could be applied to immune cell antigen recognition and signalling, and outline state-of-the-art experimental strategies for studying forces in the context of membrane organisation. This article is part of a Special Issue entitled: Nanoscale membrane orgainisation and signalling. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Receptor revision in CD4 T cells is influenced by follicular helper T cell formation and germinal-center interactions.

    PubMed

    Higdon, Lauren E; Deets, Katherine A; Friesen, Travis J; Sze, Kai-Yin; Fink, Pamela J

    2014-04-15

    Peripheral CD4 T cells in Vβ5 transgenic (Tg) C57BL/6J mice undergo tolerance to an endogenous superantigen encoded by mouse mammary tumor virus 8 (Mtv-8) by either deletion or T-cell receptor (TCR) revision. Revision is a process by which surface expression of the Vβ5(+) TCR is down-regulated in response to Mtv-8 and recombination activating genes are expressed to drive rearrangement of the endogenous TCRβ locus, effecting cell rescue through the expression of a newly generated, non-self-reactive TCR. In an effort to identify the microenvironment in which revision takes place, we show here that the proportion of T follicular helper cells (Tfh) and production of high-affinity antibody during a primary response are increased in Vβ5 Tg mice in an Mtv-8-dependent manner. Revising T cells have a Tfh-like surface phenotype and transcription factor profile, with elevated expression of B-cell leukemia/lymphoma 6 (Bcl-6), CXC chemokine receptor 5, programmed death-1, and other Tfh-associated markers. Efficient revision requires Bcl-6 and is inhibited by B lymphocyte-induced maturation protein-1. Revision completes less efficiently in the absence of signaling lymphocytic activation molecule-associated protein although initiation proceeds normally. These data indicate that Tfh formation is required for the initiation of revision and germinal-center interactions for its completion. The germinal center is known to provide a confined space in which B-cell antigen receptors undergo selection. Our data extend the impact of this selective microenvironment into the arena of T cells, suggesting that this fluid structure also provides a regulatory environment in which TCR revision can safely take place.

  15. Receptor-based 3D QSAR analysis of estrogen receptor ligands - merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    2000-08-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.

  16. Constitutive Androstane Receptor Ligands Modulate the Anti-Tumor Efficacy of Paclitaxel in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Fukumasu, Heidge; Rochetti, Arina L.; Pires, Pedro R. L.; Silva, Edson R.; Mesquita, Ligia G.; Strefezzi, Ricardo F.; De Carvalho, Daniel D.; Dagli, Maria L.

    2014-01-01

    Background Lung tumors are the leading cause of cancer deaths worldwide and paclitaxel has proven to be useful for patients with lung cancer, however, acquired resistance is a major problem. To overcome this problem, one promising option is the use of Constitutive Androstane Receptor (CAR) ligands in combination with chemotherapeutics against cancer cells. Therefore, we wish to elucidate the effects of CAR ligands on the antineoplastic efficacy of paclitaxel in lung cancer cells. Methodology/Principal Findings Our results from cell viability assays exposing CAR agonist or inverse-agonist to mouse and human lung cancer cells modulated the antineoplastic effect of paclitaxel. The CAR agonists increased the effect of Paclitaxel in 6 of 7 lung cancer cell lines, whereas the inverse-agonist had no effect on paclitaxel cytotoxicity. Interestingly, the mCAR agonist TCPOBOP enhanced the expression of two tumor suppressor genes, namely WT1 and MGMT, which were additively enhanced in cells treated with CAR agonist in combination with paclitaxel. Also, in silico analysis showed that both paclitaxel and CAR agonist TCPOBOP docked into the mCAR structure but not the inverse agonist androstenol. Paclitaxel per se increases the expression of CAR in cancer cells. At last, we analyzed the expression of CAR in two public independent studies from The Cancer Genome Atlas (TCGA) of Non Small Cell Lung Cancer (NSCLC). CAR is expressed in variable levels in NSCLC samples and no association with overall survival was noted. Conclusions/Significance Taken together, our results demonstrated that CAR agonists modulate the antineoplastic efficacy of paclitaxel in mouse and human cancer cell lines. This effect was probably related by the enhanced expression of two tumor suppressor genes, viz. WT1 and MGMT. Most of NSCLC cases present CAR gene expression turning it possible to speculate the use of CAR modulation by ligands along with Paclitaxel in NSCLC therapy. PMID:24959746

  17. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors.

    PubMed

    Jindal, Vishal; Arora, Ena; Gupta, Sorab

    2018-05-05

    Chimeric antigen receptor (CAR) T cell therapy is a novel and innovative immunotherapy. CAR-T cells are genetically engineered T cells, carrying MHC independent specific antigen receptor and co-stimulatory molecule which can activate an immune response to a cancer specific antigen. This therapy showed great results in hematological malignancies but were unable to prove their worth in solid tumors. Likely reasons for their failure are lack of antigens, poor trafficking, and hostile tumor microenvironment. Excessive amount of research is going on to improve the efficacy of CAR T cell therapy in solid tumors. In this article, we will discuss the challenges faced in improving the outcome of CAR T cell therapy in solid tumors and various strategies adopted to curb them.

  18. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells.

    PubMed

    Mahaut-Smith, Martyn P; Taylor, Kirk A; Evans, Richard J

    2016-01-01

    Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.

  19. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells

    NASA Astrophysics Data System (ADS)

    Bertoletti, Antonio; Sette, Alessandro; Chisari, Francis V.; Penna, Amalia; Levrero, Massimo; Carli, Marco De; Fiaccadori, Franco; Ferrari, Carlo

    1994-06-01

    IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1-4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6-8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.

  20. Solution structure of the chick TGFbeta type II receptor ligand-binding domain.

    PubMed

    Marlow, Michael S; Brown, Christopher B; Barnett, Joey V; Krezel, Andrzej M

    2003-02-28

    The transforming growth factor beta (TGFbeta) signaling pathway influences cell proliferation, immune responses, and extracellular matrix reorganization throughout the vertebrate life cycle. The signaling cascade is initiated by ligand-binding to its cognate type II receptor. Here, we present the structure of the chick type II TGFbeta receptor determined by solution NMR methods. Distance and angular constraints were derived from 15N and 13C edited NMR experiments. Torsion angle dynamics was used throughout the structure calculations and refinement. The 20 final structures were energy minimized using the generalized Born solvent model. For these 20 structures, the average backbone root-mean-square distance from the average structure is below 0.6A. The overall fold of this 109-residue domain is conserved within the superfamily of these receptors. Chick receptors fully recognize and respond to human TGFbeta ligands despite only 60% identity at the sequence level. Comparison with the human TGFbeta receptor determined by X-ray crystallography reveals different conformations in several regions. Sequence divergence and crystal packing interactions under low pH conditions are likely causes. This solution structure identifies regions were structural changes, however subtle, may occur upon ligand-binding. We also identified two very well conserved molecular surfaces. One was found to bind ligand in the crystallized human TGFbeta3:TGFbeta type II receptor complex. The other, newly identified area can be the interaction site with type I and/or type III receptors of the TGFbeta signaling complex.

  1. Restricted T cell receptor repertoire in CLL-like monoclonal B cell lymphocytosis and early stage CLL.

    PubMed

    Blanco, Gonzalo; Vardi, Anna; Puiggros, Anna; Gómez-Llonín, Andrea; Muro, Manuel; Rodríguez-Rivera, María; Stalika, Evangelia; Abella, Eugenia; Gimeno, Eva; López-Sánchez, Manuela; Senín, Alicia; Calvo, Xavier; Abrisqueta, Pau; Bosch, Francesc; Ferrer, Ana; Stamatopoulos, Kostas; Espinet, Blanca

    2018-01-01

    Analysis of the T cell receptor (TR) repertoire of chronic lymphocytic leukemia-like monoclonal B cell lymphocytosis (CLL-like MBL) and early stage CLL is relevant for understanding the dynamic interaction of expanded B cell clones with bystander T cells. Here we profiled the T cell receptor β chain (TRB) repertoire of the CD4 + and CD8 + T cell fractions from 16 CLL-like MBL and 13 untreated, Binet stage A/Rai stage 0 CLL patients using subcloning analysis followed by Sanger sequencing. The T cell subpopulations of both MBL and early stage CLL harbored restricted TRB gene repertoire, with CD4 + T cell clonal expansions whose frequency followed the numerical increase of clonal B cells. Longitudinal analysis in MBL cases revealed clonal persistence, alluding to persistent antigen stimulation. In addition, the identification of shared clonotypes among different MBL/early stage CLL cases pointed towards selection of the T cell clones by common antigenic elements. T cell clonotypes previously described in viral infections and immune disorders were also detected. Altogether, our findings evidence that antigen-mediated TR restriction occurs early in clonal evolution leading to CLL and may further increase together with B cell clonal expansion, possibly suggesting that the T cell selecting antigens are tumor-related.

  2. Human IgG1 antibodies antagonizing activating receptor NKG2D on natural killer cells

    PubMed Central

    Steigerwald, Jutta; Raum, Tobias; Pflanz, Stefan; Cierpka, Ronny; Mangold, Susanne; Rau, Doris; Hoffmann, Patrick; Kvesic, Majk; Zube, Christina; Linnerbauer, Stefanie; Lumsden, John; Sriskandarajah, Mirnaalini; Kufer, Peter; Baeuerle, Patrick A

    2009-01-01

    NKG2D is a surface receptor expressed on NK cells but also on CD8+ T cells, γδ T cells, and auto-reactive CD4+/CD28− T cells of patients with rheumatoid arthritis. Various studies suggested that NKG2D plays a critical role in autoimmune diseases, e.g., in diabetes, celiac disease and rheumatoid arthritis (RA), rendering the activating receptor a potential target for antibody-based therapies. Here, we describe the generation and characteristics of a panel of human, high-affinity anti-NKG2D IgG1 monoclonal antibodies (mAbs) derived by phage display. The lead molecule mAb E4 bound with an affinity (KD) of 2.7 ± 1.4 × 10−11 M to soluble and membrane-bound human NKG2D, and cross-reacted with NKG2D from cynomolgus macaque, indicating potential suitability for studies in a relevant primate model. MAb E4 potently antagonized the cytolytic activity of NKL cells against BaF/3-MICA cells expressing NKG2D ligand, and blocked the NKG2D ligand-induced secretion of TNFα, IFNγ and GM-CSF, as well as surface expression of CRTAM by NK cells cultured on immobilized MICA or ULBP-1 ligands. The antibody did not show a detectable loss of binding to NKG2D after seven days in human serum at 37°C, and resisted thermal inactivation up to 70°C. Based on these results, anti-human NKG2D mAb E4 provides an ideal candidate for development of a novel therapeutic agent antagonizing a key receptor of NK and cytotoxic T cells with implications in autoimmune diseases. PMID:20061825

  3. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system

    PubMed Central

    Kutleša, Snježana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B.; Jurecic, Roland

    2011-01-01

    Objective Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. Materials and Methods EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. Results The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Tα, RAG-1, and T-cell receptor – Vβ genes; and 3) produced interferon-γ in response to T-cell receptor stimulation. Conclusions These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation. PMID:19447159

  4. Regulation of phagocytosis by TAM receptors and their ligands

    PubMed Central

    Lu, Qingxian; Li, Qiutang; Lu, Qingjun

    2010-01-01

    The TAM family of receptors is preferentially expressed by professional and non-professional phagocytes, including macrophages, dendritic cells and natural killer cells in the immune system, osteoclasts in bone, Sertoli cells in testis, and retinal pigmental epithelium cells in the retina. Mutations in the Mertk single gene or in different combinations of the double or triple gene mutations in the same cell cause complete or partial impairment in phagocytosis of their preys; and as a result, either the normal apoptotic cells cannot be efficiently removed or the tissue neighbor cells die by apoptosis. This scenario of TAM regulation represents a widely adapted model system used by phagocytes in all different tissues. The present review will summarize current known functional roles of TAM receptors and their ligands, Gas 6 and protein S, in the regulation of phagocytosis. PMID:21057587

  5. Umami Responses in Mouse Taste Cells Indicate More than One Receptor

    PubMed Central

    Maruyama, Yutaka; Pereira, Elizabeth; Margolskee, Robert F.; Chaudhari, Nirupa; Roper, Stephen D.

    2013-01-01

    A number of gustatory receptors have been proposed to underlie umami, the taste of L-glutamate, and certain other amino acids and nucleotides. However, the response profiles of these cloned receptors have not been validated against responses recorded from taste receptor cells that are the native detectors of umami taste. We investigated umami taste responses in mouse circumvallate taste buds in an intact slice preparation, using confocal calcium imaging. Approximately 5% of taste cells selectively responded to L-glutamate when it was focally applied to the apical chemosensitive tips of receptor cells. The concentration–response range for L-glutamate fell approximately within the physiologically relevant range for taste behavior in mice, namely 10 mM and above. Inosine monophosphate enhanced taste cell responses to L-glutamate, a characteristic feature of umami taste. Using pharmacological agents, ion substitution, and immunostaining, we showed that intracellular pathways downstream of receptor activation involve phospholipase C β2. Each of the above features matches those predicted by studies of cloned and expressed receptors. However, the ligand specificity of each of the proposed umami receptors [taste metabotropic glutamate receptor 4, truncated metabotropic glutamate receptor 1, or taste receptor 1 (T1R1) and T1R3 dimers], taken alone, did not appear to explain the taste responses observed in mouse taste cells. Furthermore, umami responses were still observed in mutant mice lacking T1R3. A full explanation of umami taste transduction may involve novel combinations of the proposed receptors and/or as-yet-undiscovered taste receptors. PMID:16495449

  6. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    PubMed

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  7. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressingmore » the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation

  8. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.

    PubMed

    Zhou, Guoying; Sprengers, Dave; Boor, Patrick P C; Doukas, Michail; Schutz, Hannah; Mancham, Shanta; Pedroza-Gonzalez, Alexander; Polak, Wojciech G; de Jonge, Jeroen; Gaspersz, Marcia; Dong, Haidong; Thielemans, Kris; Pan, Qiuwei; IJzermans, Jan N M; Bruno, Marco J; Kwekkeboom, Jaap

    2017-10-01

    Ligand binding to inhibitory receptors on immune cells, such as programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4), down-regulates the T-cell-mediated immune response (called immune checkpoints). Antibodies that block these receptors increase antitumor immunity in patients with melanoma, non-small-cell lung cancer, and renal cell cancer. Tumor-infiltrating CD4 + and CD8 + T cells in patients with hepatocellular carcinoma (HCC) have been found to be functionally compromised. We analyzed HCC samples from patients to determine if these inhibitory pathways prevent T-cell responses in HCCs and to find ways to restore their antitumor functions. We collected HCC samples from 59 patients who underwent surgical resection from November 2013 through May 2017, along with tumor-free liver tissues (control tissues) and peripheral blood samples. We isolated tumor-infiltrating lymphocytes (TIL) and intra-hepatic lymphocytes. We used flow cytometry to quantify expression of the inhibitory receptors PD-1, hepatitis A virus cellular receptor 2 (TIM3), lymphocyte activating 3 (LAG3), and CTLA4 on CD8 + and CD4 + T cells from tumor, control tissue, and blood; we studied the effects of antibodies that block these pathways in T-cell activation assays. Expression of PD-1, TIM3, LAG3, and CTLA4 was significantly higher on CD8 + and CD4 + T cells isolated from HCC tissue than control tissue or blood. Dendritic cells, monocytes, and B cells in HCC tumors expressed ligands for these receptors. Expression of PD-1, TIM3, and LAG3 was higher on tumor-associated antigen (TAA)-specific CD8 + TIL, compared with other CD8 + TIL. Compared with TIL that did not express these inhibitory receptors, CD8 + and CD4 + TIL that did express these receptors had higher levels of markers of activation, but similar or decreased levels of granzyme B and effector cytokines. Antibodies against CD274 (PD-ligand1 [PD-L1]), TIM3, or LAG3 increased proliferation of CD8 + and CD4 + TIL

  9. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  10. Development of Protein Degradation Inducers of Androgen Receptor by Conjugation of Androgen Receptor Ligands and Inhibitor of Apoptosis Protein Ligands.

    PubMed

    Shibata, Norihito; Nagai, Katsunori; Morita, Yoko; Ujikawa, Osamu; Ohoka, Nobumichi; Hattori, Takayuki; Koyama, Ryokichi; Sano, Osamu; Imaeda, Yasuhiro; Nara, Hiroshi; Cho, Nobuo; Naito, Mikihiko

    2018-01-25

    Targeted protein degradation using small molecules is a novel strategy for drug development. We have developed hybrid molecules named specific and nongenetic inhibitor of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to degrade target proteins. Here, we show novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR). Through derivatization of the SNIPER(AR) molecule at the AR ligand and IAP ligand and linker, we developed 42a (SNIPER(AR)-51), which shows effective protein knockdown activity against AR. Consistent with the degradation of the AR protein, 42a inhibits AR-mediated gene expression and proliferation of androgen-dependent prostate cancer cells. In addition, 42a efficiently induces caspase activation and apoptosis in prostate cancer cells, which was not observed in the cells treated with AR antagonists. These results suggest that SNIPER(AR)s could be leads for an anticancer drug against prostate cancers that exhibit AR-dependent proliferation.

  11. ``Lock and key mechanism'' for ligand binding with adrenergic receptors and the arising mechanical effects on the cell membrane

    NASA Astrophysics Data System (ADS)

    Lunghi, Laura; Deseri, Luca

    2013-03-01

    Chemicals hitting the surface of cell aggregates are known to give arise to cyclic Adenosine Mono Phosphate (cAMP), a second messenger that transduces inside the cell the effects of species that cannot get through the cell membrane. Ligands bind to a specific receptor following the so called ``lock and key mechanism'' (beta)-adrenergic receptors are proteins embedded in the lipid bilayer characterized by seven transmembrane helices. Thinning and thickening in cell membranes may be initiated by conformational changes of some of three of the seven domains above. The cell response is linked to the coupling of chemical, conformational and mechanical effects. Part of the cAMP remains intracellular, whereas the remaining fractions migrates outside the cell due to membrane transporters. A new Helmholtz free energy, accounting for receptor and transporter densities, receptor conformation field and membrane elasticity is investigated. It is shown how the density of active receptors is directly related to the conformation field and it enters the resulting balance equation for the membrane stress. Balance laws for fluxes of transporters and receptors, coupled with the former because of the outgoing cAMP flux caused by the transporters, as well as for the diffusive powers must be supplied. The Center for Nonlinear Analysis through the NSF Grant No. DMS-0635983 is gratefully acknowledged.

  12. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4.

    PubMed

    Lee, Chen-Chen; Yang, Wen-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Tsai, Chi-Hao; Kang, Jaw-Jou

    2016-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent-activated transcriptional factor that regulates the metabolism of xenobiotic and endogenous compounds. Although AhR plays a crucial role in air toxicant-induced carcinogenesis, AhR expression was shown to negatively regulate tumorigenesis. Therefore, in the present study, we investigated the effect of AhR without ligand treatment on cancer invasion in lung cancer cell lines. Lung cancer cells expressing lower levels of AhR showed higher invasion ability (H1299 cells) compared with cells expressing higher levels of AhR (A549 cells). Overexpression of AhR in H1299 cells inhibited the invasion ability. We found that vimentin expression was inhibited in AhR-overexpressing H1299 cells. Additionally, the expression of EMT-related transcriptional factors Snail and ID-1 decreased. Interestingly, we found that Smad4 degradation was induced in AhR-overexpressing H1299 cells. Our data showed that AhR could interact with Jun-activation domain binding protein (Jab1) and Smad4, which may cause degradation of Smad4 by the proteasome. Our data suggest that AhR affects the transforming growth factor-β signaling pathway by inducing Smad4 degradation by the proteasome and suppressing tumor metastasis via epithelial to mesenchymal transition reduction in lung cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. A numerical model of a red blood cell infected by Plasmodium falciparum malaria: coupling cell mechanics with ligand-receptor interactions

    NASA Astrophysics Data System (ADS)

    Ishida, Shunichi; Imai, Yohsuke; Ichikawa, Yuki; Nix, Stephanie; Matsunaga, Daiki; Omori, Toshihiro; Ishikawa, Takuji

    2016-01-01

    We developed a numerical model of the behavior of a red blood cell infected by Plasmodium falciparum malaria on a wall in shear flow. The fluid and solid mechanics of an infected red blood cell (Pf-IRBC) were coupled with the biochemical interaction of ligand-receptor bindings. We used the boundary element method for fluid mechanics, the finite element method for membrane mechanics, and the Monte Carlo method for ligand-receptor interactions. We simulated the behavior of a Pf-IRBC in shear flow, focusing on the effects of bond type. For slip bonds, the Pf-IRBC exhibited firm adhesion, tumbling motion, and tank-treading motion, depending on the applied shear rate. The behavior of catch bonds resembled that of slip bonds, except for a 'catch' state at high shear stress. When the reactive compliance decreased to a value in the order of ? nm, both the slip and catch bonds behaved like an ideal bond. Such bonds do not respond to the force applied to the bond, and the velocity is stabilized at a high shear rate. Finally, we compared the numerical results with previous experiments for A4- and ItG-infected cells. We found that the interaction between PfEMP1 and ICAM-1 could be a nearly ideal bond, with a dissociation rate ranging from ? to ?.

  14. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    PubMed

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect.

  15. Differential regulation and impact of fucosyltransferase VII and core 2 β1,6-N-acetyl-glycosaminyltransferase for generation of E-selectin and P-selectin ligands in murine CD4+ T cells

    PubMed Central

    Schroeter, Micha F; Ratsch, Boris A; Lehmann, Jeanette; Baumgrass, Ria; Hamann, Alf; Syrbe, Uta

    2012-01-01

    Ligands for E-selectin and P-selectin (E-lig and P-lig) are induced on CD4+ T cells upon differentiation into effector T cells. Glycosyltransferases, especially α 1,3-fucosyltransferase VII (FucT-VII) and core 2 β1,6-N-acetyl-glycosaminyltransferase I (C2GlcNAcT-I), are critical for their synthesis. We here analysed the signals that control the expression of E-lig, P-lig and mRNA coding for FucT-VII and C2GlcNAcT-I. In line with previous reports, we found that P-lig expression correlates with the regulation of C2GlcNAcT-I, whereas E-lig expression can occur at low levels of C2GlcNAcT-I mRNA but requires high FucT-VII mRNA expression. Interestingly, the two enzymes are regulated by different signals. Activation-induced C2GlcNAcT-I up-regulation under permissive (T helper type 1) conditions was strongly reduced by cyclosporin A (CsA), suggesting the involvement of T-cell receptor-dependent, calcineurin/NFAT-dependent signals in combination with interleukin-12 (IL-12) -mediated signals in the regulation of C2GlcNAcT-I. In contrast, expression of FucT-VII mRNA was not significantly inhibited by CsA. Interleukin-4 inhibited the expression of FucT-VII but IL-2 and IL-7 were found to support induction of FucT-VII and E-lig. E-selectin, P-selectin and their ligands initially appeared to have rather overlapping functions. These findings however, unravel striking differences in the regulation of E-lig and P-lig expression, dictated by the dominance of FucT-VII and C2GlcNAcT-I, respectively, and their dependency on signals from either promiscuous or homeostatic cytokines (FucT-VII) or a strong T-cell receptor signal in combination with inflammatory cytokines in case of C2GlcNAcT-I. PMID:23039181

  16. Up-regulation of CC chemokine receptor 6 on tonsillar T cells and its induction by in vitro stimulation with α-streptococci in patients with pustulosis palmaris et plantaris

    PubMed Central

    Yoshizaki, T; Bandoh, N; Ueda, S; Nozawa, H; Goto, T; Kishibe, K; Takahara, M; Harabuchi, Y

    2009-01-01

    Pustulosis palmaris et plantaris (PPP) is a tonsil-related disease; tonsillectomy is somewhat effective in treating the condition. However, the aetiological association between the tonsils and PPP has not yet been elucidated fully. Recently, some chemokines and chemokine receptors, including CC chemokine receptor (CCR) 4, CCR6 and CX chemokine receptor (CXCR) 3, have been reported to play important roles in the development of psoriasis, a disease related closely to PPP. In this study, we found that CCR6 expression on both tonsillar and peripheral blood T cells was up-regulated more intensively in PPP patients than in non-PPP patients (P < 0·001 for both), but CCR4 and CXCR3 expressions were not. In vitro stimulation with α-streptococcal antigen enhanced CCR6 expression significantly on tonsillar T cells in PPP patients (P < 0·05), but this was not observed in non-PPP patients. The chemotactic response of tonsillar T cells to the CCR6 ligand CC chemokine ligand (CCL) 20 was significantly higher in PPP patients than in non-PPP patients (P < 0·05). The percentage of CCR6-positive peripheral blood T cells decreased after tonsillectomy in PPP patients (P < 0·01); this decrease correlated with an improvement of skin lesions (P < 0·05, r = −0·63). The numbers of CCR6-positive cells and the expression of CCL20 were increased significantly in pathological lesions compared with non-pathological lesions in PPP skin (P < 0·01, P < 0·05 respectively). These results suggest that a novel immune response to α-streptococci may enhance CCR6 expression on T cells in tonsils and that CCR6-positive T cells may move to peripheral blood circulation, resulting in recruitment to target skin lesions expressing CCL20 in PPP patients. This may be one of the key roles in pathogenesis of the tonsil-related disease PPP. PMID:19659772

  17. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    PubMed Central

    Cartellieri, Marc; Bachmann, Michael; Feldmann, Anja; Bippes, Claudia; Stamova, Slava; Wehner, Rebekka; Temme, Achim; Schmitz, Marc

    2010-01-01

    CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs). First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells. PMID:20467460

  18. Revisiting the Quinoxalinedione Scaffold in the Construction of New Ligands for the Ionotropic Glutamate Receptors.

    PubMed

    Demmer, Charles S; Rombach, David; Liu, Na; Nielsen, Birgitte; Pickering, Darryl S; Bunch, Lennart

    2017-11-15

    More than two decades ago, the quinoxalinedione scaffold was shown to act as an α-amino acid bioisoster. Following extensive structure-activity relationship (SAR) studies, the antagonists DNQX, CNQX, and NBQX in the ionotropic glutamate receptor field were identified. In this work, we revisit the quinoxalinedione scaffold and explore the incorporation of an acid functionality in the 6-position. The SAR studies disclose that by this strategy it was possible to tune in iGluR selectivity among the AMPA, NMDA, and KA receptors, and to some extent also obtain full receptor subtype selectivity. Highlights of the study of 44 new analogues are compound 2m being a high affinity ligand for native AMPA receptors (IC 50 = 0.48 μM), analogues 2e,f,h,k,v all displayed selectivity for native NMDA receptors, and compounds 2s,t,u are selective ligand for the GluK1 receptor. Most interestingly, compound 2w was shown to be a GluK3-preferring ligand with full selectivity over native AMPA, KA and NMDA receptors.

  19. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response.

    PubMed

    Gri, Giorgia; Gallo, Elena; Di Carlo, Emma; Musiani, Piero; Colombo, Mario P

    2003-01-01

    Efficient T cell priming by GM-CSF and CD40 ligand double-transduced C26 murine colon carcinoma is not sufficient to cure metastases in a therapeutic setting. To determine whether a cellular vaccine that interacts directly with both APC and T cells in vivo might be superior, we generated C26 carcinoma cells transduced with the T cell costimulatory molecule OX40 ligand (OX40L) either alone (C26/OX40L) or together with GM-CSF (C26/GM/OX40L), which is known to activate APC. Mice injected with C26/OX40L cells displayed only a delay in tumor growth, while the C26/GM/OX40L tumor regressed in 85% of mice. Tumor rejection required granulocytes, CD4+, CD8+ T cells, and APC-mediated CD40-CD40 ligand cosignaling, but not IFN-gamma or IL-12 as shown using subset-depleted and knockout (KO) mice. CD40KO mice primed with C26/GM/OX40L cells failed to mount a CTL response, and T cells infiltrating the C26/GM/OX40L tumor were OX40 negative, suggesting an impairment in APC-T cell cross-talk in CD40KO mice. Indeed, CD4+ T cell-depleted mice failed to mount any CTL activity against the C26 tumor, while treatment with agonistic mAb to CD40, which acts on APC, bypassed the requirement for CD4+ T cells and restored CTL activation. C26/GM/OX40L cells cured 83% of mice bearing lung metastases, whereas C26/OX40L or C26/GM vaccination cured only 28 and 16% of mice, respectively. These results indicate the synergistic activity of OX40L and GM-CSF in a therapeutic setting.

  20. Identification of a G protein coupled receptor induced in activated T cells.

    PubMed

    Kaplan, M H; Smith, D I; Sundick, R S

    1993-07-15

    Many genes are induced after T cell activation to make a cell competent for proliferation and ultimately, function. Many of these genes encode surface receptors for growth factors that signal a cell to proliferate. We have cloned a novel gene (clone 6H1) that codes for a member of the G protein-coupled receptor superfamily. This gene was isolated from a chicken activated T cell cDNA library by low level hybridization to mammalian IL-2 cDNA probes. The 308 amino acid open reading frame has seven hydrophobic, presumably transmembrane domains and a consensus site for interaction with G proteins. Tissue distribution studies suggest that gene expression is restricted to activated T cells. The message appears by 1 h after activation and is maintained for at least 45 h. Transcription of 6H1 is induced by a number of T cell stimuli and is inhibited by cyclosporin A, but not by cycloheximide. This is the first description of a member of this superfamily expressed specifically in activated T cells. The gene product may provide a link between T cell growth factors and G protein activation.

  1. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion

    PubMed Central

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K.; Keyomarsi, Khandan

    2016-01-01

    ABSTRACT Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen. PMID:27049344

  2. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    PubMed

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  3. Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells.

    PubMed

    Tanimoto, Azusa; Yamada, Tadaaki; Nanjo, Shigeki; Takeuchi, Shinji; Ebi, Hiromichi; Kita, Kenji; Matsumoto, Kunio; Yano, Seiji

    2014-07-15

    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4)--anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK.

  4. Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells

    PubMed Central

    Tanimoto, Azusa; Yamada, Tadaaki; Nanjo, Shigeki; Takeuchi, Shinji; Ebi, Hiromichi; Kita, Kenji; Matsumoto, Kunio; Yano, Seiji

    2014-01-01

    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK. PMID:24952482

  5. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wairagu, Peninah M.; Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701; Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where eachmore » pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.« less

  6. Toll-like receptor agonist imiquimod facilitates antigen-specific CD8+ T-cell accumulation in the genital tract leading to tumor control through IFNγ.

    PubMed

    Soong, Ruey-Shyang; Song, Liwen; Trieu, Janson; Knoff, Jayne; He, Liangmei; Tsai, Ya-Chea; Huh, Warner; Chang, Yung-Nien; Cheng, Wen-Fang; Roden, Richard B S; Wu, T-C; Trimble, Cornelia L; Hung, Chien-Fu

    2014-11-01

    Imiquimod is a Toll-like receptor 7 agonist used topically to treat external genital warts and basal cell carcinoma. We examined the combination of topical imiquimod with intramuscular administration of CRT/E7, a therapeutic human papillomavirus (HPV) vaccine comprised of a naked DNA vector expressing calreticulin fused to HPV16 E7. Using an orthotopic HPV16 E6/E7(+) syngeneic tumor, TC-1, as a model of high-grade cervical/vaginal/vulvar intraepithelial neoplasia, we assessed if combining CRT/E7 vaccination with cervicovaginal deposition of imiquimod could result in synergistic activities promoting immune-mediated tumor clearance. Imiquimod induced cervicovaginal accumulation of activated E7-specific CD8(+) T cells elicited by CRT/E7 vaccination. Recruitment was not dependent upon the specificity of the activated CD8(+) T cells, but was significantly reduced in mice lacking the IFNγ receptor. Intravaginal imiquimod deposition induced upregulation of CXCL9 and CXCL10 mRNA expression in the genital tract, which are produced in response to IFNγ receptor signaling and attract cells expressing their ligand, CXCR3. The T cells attracted by imiquimod to the cervicovaginal tract expressed CXCR3 as well as CD49a, an integrin involved in homing and retention of CD8(+) T cells at mucosal sites. Our results indicate that intramuscular CRT/E7 vaccination in conjunction with intravaginal imiquimod deposition recruits antigen-specific CXCR3(+) CD8(+) T cells to the genital tract. Several therapeutic HPV vaccination clinical trials using a spectrum of DNA vaccines, including vaccination in concert with cervical imiquimod, are ongoing. Our study identifies a mechanism by which these strategies could provide therapeutic benefit. Our findings support accumulating evidence that manipulation of the tumor microenvironment can enhance the therapeutic efficacy of strategies that induce tumor-specific T cells. ©2014 American Association for Cancer Research.

  7. GARP: a key receptor controlling FOXP3 in human regulatory T cells.

    PubMed

    Probst-Kepper, M; Geffers, R; Kröger, A; Viegas, N; Erck, C; Hecht, H-J; Lünsdorf, H; Roubin, R; Moharregh-Khiabani, D; Wagner, K; Ocklenburg, F; Jeron, A; Garritsen, H; Arstila, T P; Kekäläinen, E; Balling, R; Hauser, H; Buer, J; Weiss, S

    2009-09-01

    Recent evidence suggests that regulatory pathways might control sustained high levels of FOXP3 in regulatory CD4(+)CD25(hi) T (T(reg)) cells. Based on transcriptional profiling of ex vivo activated T(reg) and helper CD4(+)CD25(-) T (T(h)) cells we have identified GARP (glycoprotein-A repetitions predominant), LGALS3 (lectin, galactoside-binding, soluble, 3) and LGMN (legumain) as novel genes implicated in human T(reg) cell function, which are induced upon T-cell receptor stimulation. Retroviral overexpression of GARP in antigen-specific T(h) cells leads to an efficient and stable re-programming of an effector T cell towards a regulatory T cell, which involves up-regulation of FOXP3, LGALS3, LGMN and other T(reg)-associated markers. In contrast, overexpression of LGALS3 and LGMN enhance FOXP3 and GARP expression, but only partially induced a regulatory phenotype. Lentiviral down-regulation of GARP in T(reg) cells significantly impaired the suppressor function and was associated with down-regulation of FOXP3. Moreover, down-regulation of FOXP3 resulted in similar phenotypic changes and down-regulation of GARP. This provides compelling evidence for a GARP-FOXP3 positive feedback loop and provides a rational molecular basis for the known difference between natural and transforming growth factor-beta induced T(reg) cells as we show here that the latter do not up-regulate GARP. In summary, we have identified GARP as a key receptor controlling FOXP3 in T(reg) cells following T-cell activation in a positive feedback loop assisted by LGALS3 and LGMN, which represents a promising new system for the therapeutic manipulation of T cells in human disease.

  8. Structural basis of ligand interaction with atypical chemokine receptor 3

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  9. Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for the treatment of gastric cancer

    PubMed Central

    Pyo, Suhkneung; Kang, Chung Hyo; Lee, Chong Ock; Lee, Heung Kyoung; Choi, Sang Un; Park, Chi Hoon

    2018-01-01

    Gastric cancer is a malignancy that has a high mortality rate. Although progress has been made in the treatment of gastric cancer, many patients experience cancer recurrence and metastasis. Folate receptor 1 (FOLR1) is overexpressed on the cell surface in over one-third of gastric cancer patients, but rarely is expressed in normal tissue. This makes FOLR1 a potential target for chimeric antigen receptor (CAR) T cell immunotherapy, although the function of FOLR1 has not been elucidated. CAR are engineered fusion receptor composed of an antigen recognition region and signaling domains. T cells expressing CAR have specific activation and cytotoxic effects against cancer cells containing the target antigen. In this study, we generated a CAR that targets FOLR1 composed of a single-chain variable fragment (scFv) of FOLR1 antibody and signaling domains consisting of CD28 and CD3ζ. Both FOLR1-CAR KHYG-1, a natural killer cell line, and FOLR1-CAR T cells recognized FOLR1-positive gastric cancer cells in a MHC-independent manner and induced secretion of various cytokines and caused cell death. Conclusively, this is the first study to demonstrate that CAR KHYG-1/T cells targeting FOLR1 are effective against FOLR1-positive gastric cancer cells. PMID:29874279

  10. Protein kinase D2 is a digital amplifier of T cell receptor–stimulated diacylglycerol signaling in naïve CD8+ T cells

    PubMed Central

    Navarro, María N.; Feijoo-Carnero, Carmen; Arandilla, Alba Gonzalez; Trost, Matthias; Cantrell, Doreen A.

    2016-01-01

    Protein kinase D2 (PKD2) is a serine and threonine kinase that is activated in T cells by diacylglycerol and protein kinase C in response to stimulation of the T cell receptor (TCR) by antigen. We quantified the activation of PKD2 at the single-cell level and found that this kinase acts as a sensitive digital amplifier of TCR engagement, enabling CD8+ T cells to match the production of inflammatory cytokines to the quality and quantity of TCR ligands. There was a digital response pattern of PKD2 activation in response to TCR engagement, such that increasing the concentration and potency of TCR ligands increased the number of cells that exhibited activated PKD2. However, for each cell that responded to TCR stimulation, the entire cellular pool of PKD2 (~400,000 molecules) was activated. Moreover, PKD2 acted as an amplification checkpoint for antigen-stimulated digital cytokine responses and translated the differential strength of TCR signaling to determine the number of naïve CD8+ T cells that became effector cells. Together, these results provide insights into PKD family kinases and how they act digitally to amplify signaling networks controlled by the TCR. PMID:25336615

  11. The Hsp90 Inhibitor, 17-AAG, Prevents the Ligand-Independent Nuclear Localization of Androgen Receptor in Refractory Prostate Cancer Cells

    PubMed Central

    Saporita, Anthony J.; Ai, Junkui; Wang, Zhou

    2010-01-01

    BACKGROUND Androgen receptor (AR) is the key molecule in androgen-refractory prostate cancer. Despite androgen ablative conditions, AR remains active and is necessary for the growth of androgen-refractory prostate cancer cells. Nuclear localization of AR is a prerequisite for its transcriptional activation. We examined AR localization in androgen-dependent and androgen-refractory prostate cancer cells. METHODS AND RESULTS We demonstrate increased nuclear localization of a GFP-tagged AR in the absence of hormone in androgen-refractory C4-2 cells compared to parental androgen-sensitive human prostate cancer LNCaP cells. Analysis of AR mutants impaired in ligand-binding indicates that the nuclear localization of AR in C4-2 cells is truly androgen-independent. The hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), inhibits basal PSA expression and disrupts the ligand-independent nuclear localization of AR at doses much lower than required to inhibit androgen-induced nuclear import. CONCLUSIONS Hsp90 is a key regulator of ligand-independent nuclear localization and activation of AR in androgen-refractory prostate cancer cells. PMID:17221841

  12. Characteristics of splenic CD8+ T cell exhaustion in patients with hepatitis C.

    PubMed

    Sumida, K; Shimoda, S; Iwasaka, S; Hisamoto, S; Kawanaka, H; Akahoshi, T; Ikegami, T; Shirabe, K; Shimono, N; Maehara, Y; Selmi, C; Gershwin, M E; Akashi, K

    2013-10-01

    There is increasing interest in the role of T cell exhaustion and it is well known that the natural history of chronic hepatitis C virus infection (HCV) is modulated by CD8(+) T cell immunobiology. There are many pathways that alter the presence of exhaustive T cells and, in particular, they are functionally impaired by inhibitory receptors, such as programmed death-1 (PD-1) and T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3). We obtained spleen, liver and peripheral blood (before and after splenectomy) lymphoid cells from 25 patients with HCV-related cirrhosis undergoing liver transplantation for end-stage disease or splenectomy for portal hypertension. In all samples we performed an extensive phenotypic study of exhaustion markers [PD-1, Tim-3, interferon (IFN)-γ) and their ligands (PD-L1, PD-L2, galectin-9] in CD8(+) T cell subpopulations (both total and HCV-specific) and in antigen-presenting cells (APC; monocytes and dendritic cells). In the spleen, total and HCV-specific CD8(+) T cells demonstrated enhanced markers of exhaustion, predominantly in the effector memory subpopulation. Similarly, splenic APC over-expressed inhibitory receptor ligands when compared to peripheral blood. Finally, when peripheral blood CD8(+) T cells were compared before and after splenectomy, markers of exhaustion were reduced in splenic CD8(+) T cells and APC. Our data in HCV-related cirrhosis suggest that CD8(+) T cells in the spleen manifest a significantly higher exhaustion compared to peripheral blood and may thus contribute to the failure to control HCV. Counteracting this process may contribute to inducing an effective immune response to HCV. © 2013 British Society for Immunology.

  13. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    PubMed

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  14. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering.

    PubMed

    Ayala, Victor I; Deleage, Claire; Trivett, Matthew T; Jain, Sumiti; Coren, Lori V; Breed, Matthew W; Kramer, Joshua A; Thomas, James A; Estes, Jacob D; Lifson, Jeffrey D; Ott, David E

    2017-06-01

    Follicular helper CD4 T cells, T FH , residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8 hCXCR5 ) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8 hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8 hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8 hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8 hCXCR5 T cells were present throughout the follicles with some observed near infected T FH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication. IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, T FH , present inside B-cell follicles represent a

  15. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system.

    PubMed

    Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick

    2006-06-01

    Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.

  16. P2X receptor ligands and pain.

    PubMed

    Shieh, Char-Chang; Jarvis, Michael F; Lee, Chih-Hung; Perner, Richard J

    2006-08-01

    P2X receptors belong to a superfamily of ligand-gated ion channels that conduct the influx of Ca(2+), Na(+) and K(+) cations following activation by extracellular nucleotides such as ATP. Molecular cloning studies have identified seven subunits, namely P2X(1-7), that share approximately 40 - 50% identity in amino acid sequences within the subfamily. Using gene-silencing, pharmacological and electrophysiological approaches, recent studies have revealed roles for P2X(2), P2X(3), P2X(4) and P2X(7) receptors in nociceptive signalling. Homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localised in the peripheral sensory afferent neurons that conduct nociceptive sensory information to the spinal chord and brain. The discovery of A-317491, a selective and potent non-nucleotide P2X(3) antagonist, provided a pharmacological tool to determine the site and mode of action of P2X(3)-containing receptors in different pain behaviours, including neuropathic, inflammatory and visceral pain. Other P2X receptors (P2X(4) and P2X(7)) that are predominantly expressed in microglia, macrophages and cells of immune origin can trigger the release of cytokines, such as IL-1-beta and TNF-alpha. Genetic disruption of P2X(4) and P2X(7) signalling has been demonstrated to reduce inflammatory and neuropathic pain, suggesting that these two receptors might serve as integrators of neuroinflammation and pain. This article provides an overview of recent scientific literature and patents focusing on P2X(3), P2X(4) and P2X(7) receptors, and the identification of small molecule ligands for the potential treatment of neuropathic and inflammatory pain.

  17. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  18. Is the isolated ligand binding domain a good model of the domain in the native receptor?

    PubMed

    Deming, Dustin; Cheng, Qing; Jayaraman, Vasanthi

    2003-05-16

    Numerous studies have used the atomic level structure of the isolated ligand binding domain of the glutamate receptor to elucidate the agonist-induced activation and desensitization processes in this group of proteins. However, no study has demonstrated the structural equivalence of the isolated ligand binding fragments and the protein in the native receptor. In this report, using visible absorption spectroscopy we show that the electronic environment of the antagonist 6-cyano-7-nitro-2,3-dihydroxyquinoxaline is identical for the isolated protein and the native glutamate receptors expressed in cells. Our results hence establish that the local structure of the ligand binding site is the same in the two proteins and validate the detailed structure-function relationships that have been developed based on a comparison of the structure of the isolated ligand binding domain and electrophysiological consequences in the native receptor.

  19. Correlated receptor transport processes buffer single-cell heterogeneity

    PubMed Central

    Kallenberger, Stefan M.; Unger, Anne L.; Legewie, Stefan; Lymperopoulos, Konstantinos; Eils, Roland

    2017-01-01

    Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system. PMID:28945754

  20. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling

    PubMed Central

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-01-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334

  1. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling.

    PubMed

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-09-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.

  2. Prior irradiation results in elevated programmed cell death protein 1 (PD-1) in T cells.

    PubMed

    Li, Deguan; Chen, Renxiang; Wang, Yi-Wen; Fornace, Albert J; Li, Heng-Hong

    2018-05-01

    In this study we addressed the question whether radiation-induced adverse effects on T cell activation are associated with alterations of T cell checkpoint receptors. Expression levels of checkpoint receptors on T cell subpopulations were analyzed at multiple post-radiation time points ranging from one to four weeks in mice receiving a single fraction of 1 or 4 Gy of γ-ray. T cell activation associated metabolic changes were assessed. Our results showed that prior irradiation resulted in significant elevated expression of programmed cell death protein 1 (PD-1) in both CD4+ and CD8+ populations, at all three post-radiation time points. T cells with elevated PD-1 mostly were either central memory or naïve cells. In addition, the feedback induction of PD-1 expression in activated T cells declined after radiation. Taken together, the elevated PD-1 level observed at weeks after radiation exposure is connected to T cell dysfunction. Recent preclinical and clinical studies have showed that a combination of radiotherapy and T cell checkpoint blockade immunotherapy including targeting the programmed death-ligand 1 (PD-L1)/PD-1 axis may potentiate the antitumor response. Understanding the dynamic changes in PD-1 levels in T cells after radiation should help in the development of a more effective therapeutic strategy.

  3. Peroxisome Proliferator-Activated ReceptorLigands Alter Breast Cancer Cell Motility through Modulation of the Plasminogen Activator System

    PubMed Central

    Carter, Jennifer C.; Church, Frank C.

    2011-01-01

    We investigated peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands effect on cell motility and the plasminogen activator system using normal MCF-10A and malignant MCF-10CA1 cell lines. Ciglitazone reduced both wound-induced migration and chemotaxis. However, the effect was not reversed with pretreatment of cells with the PPAR-γ-specific antagonist GW9662. Immunoblot analysis of conditioned media showed ciglitazone decreased plasminogen activator inhibitor-1 (PAI-1) in both cell lines; this effect was also unaltered by PPAR-γ antagonism. Alternatively, treatment with the ω-6 fatty acid arachidonic acid (ArA), but not the ω-3 fatty acid docosahexanoic acid, increased both MCF-10A cell migration and cell surface uPA activity. Pretreatment with a PPAR-γ antagonist reversed these effects, suggesting that ArA mediates its effect on cell motility and uPA activity through PPAR-γ activation. Collectively, the data suggest PPAR-γ ligands have a differential effect on normal and malignant cell migration and the plasminogen activation system, resulting from PPAR-γ-dependent and PPAR-γ-independent effects. PMID:22131991

  4. Quiescence of Memory CD8(+) T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4.

    PubMed

    Kalia, Vandana; Penny, Laura Anne; Yuzefpolskiy, Yevgeniy; Baumann, Florian Martin; Sarkar, Surojit

    2015-06-16

    Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Differential expression of VEGF ligands and receptors in prostate cancer.

    PubMed

    Woollard, David J; Opeskin, Kenneth; Coso, Sanja; Wu, Di; Baldwin, Megan E; Williams, Elizabeth D

    2013-05-01

    Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  6. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition.

    PubMed

    Riddell, Stanley R; Sommermeyer, Daniel; Berger, Carolina; Liu, Lingfeng Steven; Balakrishnan, Ashwini; Salter, Alex; Hudecek, Michael; Maloney, David G; Turtle, Cameron J

    2014-01-01

    The ability to engineer T cells to recognize tumor cells through genetic modification with a synthetic chimeric antigen receptor has ushered in a new era in cancer immunotherapy. The most advanced clinical applications are in targeting CD19 on B-cell malignancies. The clinical trials of CD19 chimeric antigen receptor therapy have thus far not attempted to select defined subsets before transduction or imposed uniformity of the CD4 and CD8 cell composition of the cell products. This review will discuss the rationale for and challenges to using adoptive therapy with genetically modified T cells of defined subset and phenotypic composition.

  7. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  8. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    PubMed Central

    Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2016-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231

  9. ALX receptor ligands define a biochemical endotype for severe asthma

    PubMed Central

    Ricklefs, Isabell; Barkas, Ioanna; Duvall, Melody G.; Grossman, Nicole L.; Israel, Elliot; Bleecker, Eugene R.; Castro, Mario; Erzurum, Serpil C.; Fahy, John V.; Gaston, Benjamin M.; Denlinger, Loren C.; Mauger, David T.; Wenzel, Sally E.; Comhair, Suzy A.; Coverstone, Andrea M.; Fajt, Merritt L.; Hastie, Annette T.; Johansson, Mats W.; Peters, Michael C.; Phillips, Brenda R.; Levy, Bruce D.

    2017-01-01

    BACKGROUND. In health, inflammation resolution is an active process governed by specialized proresolving mediators and receptors. ALX/FPR2 receptors (ALX) are targeted by both proresolving and proinflammatory ligands for opposing signaling events, suggesting pivotal roles for ALX in the fate of inflammatory responses. Here, we determined if ALX expression and ligands were linked to severe asthma (SA). METHODS. ALX expression and levels of proresolving ligands (lipoxin A4 [LXA4], 15-epi-LXA4, and annexin A1 [ANXA1]), and a proinflammatory ligand (serum amyloid A [SAA]) were measured in bronchoscopy samples collected in Severe Asthma Research Program-3 (SA [n = 69], non-SA [NSA, n = 51] or healthy donors [HDs, n = 47]). RESULTS. Bronchoalveolar lavage (BAL) fluid LXA4 and 15-epi-LXA4 were decreased and SAA was increased in SA relative to NSA. BAL macrophage ALX expression was increased in SA. Subjects with LXA4loSAAhi levels had increased BAL neutrophils, more asthma symptoms, lower lung function, increased relative risk for asthma exacerbation, sinusitis, and gastroesophageal reflux disease, and were assigned more frequently to SA clinical clusters. SAA and aliquots of LXA4loSAAhi BAL fluid induced IL-8 production by lung epithelial cells expressing ALX receptors, which was inhibited by coincubation with 15-epi-LXA4. CONCLUSIONS. Together, these findings have established an association between select ALX receptor ligands and asthma severity that define a potentially new biochemical endotype for asthma and support a pivotal functional role for ALX signaling in the fate of lung inflammation. TRIAL REGISTRATION. Severe Asthma Research Program-3 (SARP-3; ClinicalTrials.gov NCT01606826) FUNDING Sources. National Heart, Lung and Blood Institute, the NIH, and the German Society of Pediatric Pneumology. PMID:28724795

  10. Effects of cryopreservation on chimeric antigen receptor T cell functions.

    PubMed

    Xu, Hao; Cao, Wenyue; Huang, Liang; Xiao, Min; Cao, Yang; Zhao, Lei; Wang, Na; Zhou, Jianfeng

    2018-06-14

    Chimeric antigen receptor T (CART) cell therapy has emerged as a potentially curative "drug" for cancer treatment. Cryopreservation of CART cells is necessary for their clinical application. Systematic studies on the effects of cryopreservation on the antitumor function of CART cells are lacking. Therefore, we compared the phenotypes and functions of CART cells that were cryopreserved during ex vivo expansion with those of freshly isolated populations. T cells expressing an anti-B-cell-maturation-antigen (BCMA) chimeric antigen receptor (CAR) were expanded in vitro for 10 days and then cryopreserved. After one month, the cells were resuscitated, and their transduction rates, apoptosis rates and cell subsets were examined via flow cytometry. The results indicated no significant changes in transduction rates or cell subsets, and the survival rate of the resuscitated cells was approximately 90% Furthermore, similar tumoricidal effects and degranulation functions of the resuscitated cells compared with normally cultured cells were verified by calcein release and CD107a assays. A NOD/SCID mouse model was used to estimate the differences in the in vivo antitumor effects of the cryopreserved and normally cultured T cells, but no significant differences were observed. Following co-culture with several target cell types, the cytokines released by the cryopreserved and normally cultured T cells were measured via enzyme-linked immunosorbent assays (ELISAs). The results revealed that the release of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) was significantly decreased. These data demonstrated that with the exception of a decrease in cytokine release, the cryopreserved CART cells retained their antitumor functions. Copyright © 2018. Published by Elsevier Inc.

  11. Regulation of expression of the ligand for CD40 on T helper lymphocytes.

    PubMed

    Castle, B E; Kishimoto, K; Stearns, C; Brown, M L; Kehry, M R

    1993-08-15

    Activated Th cells deliver contact-dependent signals to resting B lymphocytes that initiate and drive B cell proliferation. Recently, a ligand for the B lymphocyte membrane protein, CD40, has been identified that delivers contact-dependent Th cell signals to B cells. A dimeric soluble form of CD40 was produced and used to further characterize the regulation of expression of the CD40 ligand. Expression of the CD40 ligand was rapidly induced after Th lymphocyte activation, and its stability depended upon whether Th cells were activated with soluble or plastic-bound stimuli. Th cells activated with soluble stimuli rapidly turned over cell-surface CD40 ligand whereas Th cells activated with plastic-bound stimuli exhibited more stable CD40 ligand expression for up to 48 h. Removal of activated Th cells from the plastic-bound stimulus resulted in a rapid turnover of CD40 ligand, suggesting that continuous stimulation could maintain CD40 ligand expression. Ligation by soluble CD40 could also stabilize expression of CD40 ligand on the Th cell surface. Both CD40 ligand and IL-2 were transiently synthesized from 1 to 12 h after Th cell activation and had similar kinetics of synthesis. In Con A-activated Th cells newly synthesized CD40 ligand exhibited an initial high turnover (1.5 h t1/2) and after 5 h of Th cell activation became more stable (10-h t1/2). In Th cells activated with plastic-bound anti-CD3, CD40 ligand exhibited a similar biphasic turnover except that the rapid turnover phase began significantly later. This delay could allow more time for newly synthesized CD40 ligand to assemble or associate with other molecules and thus become stabilized on the cell surface. Newly synthesized CD40 ligand in Con A-activated Th cells appeared to not be efficient in delivering Th cell-dependent contact signals to resting B cells, implying the need for assembly or accessory proteins. Regulation of CD40 ligand expression was consistent with all the characteristics of Th cell

  12. Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis.

    PubMed

    Doolittle, Elizabeth; Peiris, Pubudu M; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P; Karathanasis, Efstathios

    2015-08-25

    Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection.

  13. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    PubMed

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  14. Abscisic Acid Regulates Inflammation via Ligand-binding Domain-independent Activation of Peroxisome Proliferator-activated Receptor γ*

    PubMed Central

    Bassaganya-Riera, Josep; Guri, Amir J.; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W.; Horne, William T.; Lewis, Stephanie N.; Bevan, David R.; Hontecillas, Raquel

    2011-01-01

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E2 and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation. PMID:21088297

  15. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma.

    PubMed

    Bassaganya-Riera, Josep; Guri, Amir J; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W; Horne, William T; Lewis, Stephanie N; Bevan, David R; Hontecillas, Raquel

    2011-01-28

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.

  16. Expression of inhibitory receptors and polyfunctional responses of T cells are linked to the risk of congenital transmission of T. cruzi

    PubMed Central

    Thomas, María Carmen; Carrilero, Bartolomé; González, John Mario; Cuéllar, Adriana; Segovia, Manuel; Puerta, Concepción Judith

    2017-01-01

    Congenital T. cruzi infections involve multiple factors in which complex interactions between the parasite and the immune system of pregnant women play important roles. In this study, we used an experimental murine model of chronic infection with T. cruzi to evaluate the changes in the expression of inhibitory receptors and the polyfunctionality of T cells during gestation and their association with congenital transmission rate of T. cruzi infection. The results showed that pregnant naïve mice had a higher percentage of CD4+ and CD8+ T cells that expressed inhibitory receptors than cells from non-pregnant naïve mice. However, in mice chronically infected with T. cruzi, gestation induced a significant decrease in the frequency of T cells that expressed or co-expressed inhibitory receptors, as well as an increase in the frequency of polyfunctional CD4+ and CD8+ T cells. This different behavior may be due to the breakdown in the infected mice of the gestation-induced immune homeostasis, probably to control the parasite load. Remarkably, it was observed that the mothers that transmitted the parasite had a higher frequency of T cells that expressed and co-expressed inhibitory receptors as well as a lower frequency of polyfunctional parasite-specific T cells than those that did not transmit it, even though the parasitemia load was similar in both groups. All together these data suggest that the maternal immune profile of the CD4+ and CD8+ T cells could be a determining factor in the congenital transmission of T. cruzi. PMID:28598971

  17. Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy

    PubMed Central

    Maus, Marcela V.; June, Carl H.

    2016-01-01

    Chimeric antigen receptors (CARs) are engineered fusion proteins constructed from antigen recognition, signaling, and costimulatory domains that can be expressed in cytotoxic T cells with the purpose of reprograming the T cells to specifically target tumor cells. CAR T-cell therapy uses gene transfer technology to reprogram a patient's own T cells to stably express CARs, thereby combining the specificity of an antibody with the potent cytotoxic and memory functions of a T cell. In early phase clinical trials, CAR T cells targeting CD19 have resulted in sustained complete responses within a population of otherwise refractory patients with B-cell malignancies and, more specifically, have shown complete response rates of ≈90% in patients with relapsed or refractory acute lymphoblastic leukemia. Given this clinical efficacy, preclinical development of CAR T-cell therapy for a number of cancer indications has been actively investigated, and the future of the CAR T-cell field is extensive and dynamic. Several approaches to increase the feasibility and safety of CAR T cells are currently being explored, including investigation into mechanisms regulating the persistence of CAR T cells. Additionally, numerous early-phase clinical trials are now investigating CAR T-cell therapy beyond targeting CD19, especially in solid tumors. Trials investigating combinations of CAR T cells with immune checkpoint blockade therapies are now beginning and results are eagerly awaited. This review evaluates several of the ongoing and future directions of CAR T-cell therapy. PMID:27084741

  18. Biomimetic Nanoarchitectures for the Study of T Cell Activation with Single-Molecule Control

    NASA Astrophysics Data System (ADS)

    Cai, Haogang

    Physical factors in the environment of a cell affect its function and behavior in a variety of ways. There is increasing evidence that, among these factors, the geometric arrangement of receptor ligands plays an important role in setting the conditions for critical cellular processes. The goal of this thesis is to develop new techniques for probing the role of extracellular ligand geometry, with a focus on T cell activation. In this work, top-down molecular-scale nanofabrication and bottom-up selective self-assembly were combined in order to present functional nanomaterials (primarily biomolecules) on a surface with precise spatial control and single-molecule resolution. Such biomolecule nanoarrays are becoming an increasingly important tool in surface-based in vitro assays for biosensing, molecular and cellular studies. The nanoarrays consist of metallic nanodots patterned on glass coverslips using electron beam and nanoimprint lithography, combined with self-aligned pattern transfer. The nanodots were then used as anchors for the immobilization of biological ligands, and backfilled with a protein-repellent passivation layer of polyethylene glycol. The passivation efficiency was improved to minimize nonspecific adsorption. In order to ensure true single-molecule control, we developed an on-chip protocol to measure the molecular occupancy of nanodot arrays based on fluorescence photobleaching, while accounting for quenching effects by plasmonic absorption. We found that the molecular occupancy can be interpreted as a packing problem, with the solution depending on the nanodot size and the concentration of self-assembly reagents, where the latter can be easily adjusted to control the molecular occupancy according to the dot size. The optimized nanoarrays were used as biomimetic architectures for the study of T cell activation with single-molecule control. T cell activation involves an elaborate arrangement of signaling, adhesion, and costimulatory molecules

  19. Follicular helper T cell in immunity and autoimmunity.

    PubMed

    Mesquita, D; Cruvinel, W M; Resende, L S; Mesquita, F V; Silva, N P; Câmara, N O S; Andrade, L E C

    2016-01-01

    The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  20. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    PubMed

    Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J

    2017-05-11

    The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction

  1. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia.

    PubMed

    Fitzgerald, Julie C; Weiss, Scott L; Maude, Shannon L; Barrett, David M; Lacey, Simon F; Melenhorst, J Joseph; Shaw, Pamela; Berg, Robert A; June, Carl H; Porter, David L; Frey, Noelle V; Grupp, Stephan A; Teachey, David T

    2017-02-01

    Initial success with chimeric antigen receptor-modified T cell therapy for relapsed/refractory acute lymphoblastic leukemia is leading to expanded use through multicenter trials. Cytokine release syndrome, the most severe toxicity, presents a novel critical illness syndrome with limited data regarding diagnosis, prognosis, and therapy. We sought to characterize the timing, severity, and intensive care management of cytokine release syndrome after chimeric antigen receptor-modified T cell therapy. Retrospective cohort study. Academic children's hospital. Thirty-nine subjects with relapsed/refractory acute lymphoblastic leukemia treated with chimeric antigen receptor-modified T cell therapy on a phase I/IIa clinical trial (ClinicalTrials.gov number NCT01626495). All subjects received chimeric antigen receptor-modified T cell therapy. Thirteen subjects with cardiovascular dysfunction were treated with the interleukin-6 receptor antibody tocilizumab. Eighteen subjects (46%) developed grade 3-4 cytokine release syndrome, with prolonged fever (median, 6.5 d), hyperferritinemia (median peak ferritin, 60,214 ng/mL), and organ dysfunction. Fourteen (36%) developed cardiovascular dysfunction treated with vasoactive infusions a median of 5 days after T cell therapy. Six (15%) developed acute respiratory failure treated with invasive mechanical ventilation a median of 6 days after T cell therapy; five met criteria for acute respiratory distress syndrome. Encephalopathy, hepatic, and renal dysfunction manifested later than cardiovascular and respiratory dysfunction. Subjects had a median of 15 organ dysfunction days (interquartile range, 8-20). Treatment with tocilizumab in 13 subjects resulted in rapid defervescence (median, 4 hr) and clinical improvement. Grade 3-4 cytokine release syndrome occurred in 46% of patients following T cell therapy for relapsed/refractory acute lymphoblastic leukemia. Clinicians should be aware of expanding use of this breakthrough therapy and

  2. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells.

    PubMed

    Park, Jae H; Brentjens, Renier J

    2010-04-01

    Chemotherapy-resistant B-cell hematologic malignancies may be cured with allogeneic hematopoietic stem cell transplantation (HSCT), demonstrating the potential susceptibility of these tumors to donor T-cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. For this reason, there is an urgent need for less-toxic forms of immune-based cellular therapy to treat these malignancies. Adoptive transfer of autologous T cells genetically modified to express chimeric antigen receptors (CARs) targeted to specific tumor-associated antigens represents an attractive means of overcoming the limitations of conventional HSCT. To this end, investigators have generated CARs targeted to various antigens expressed by B-cell malignancies, optimized the design of these CARs to enhance receptor mediated T cell signaling, and demonstrated significant anti-tumor efficacy of the resulting CAR modified T cells both in vitro and in vivo mouse tumor models. These encouraging preclinical data have justified the translation of this approach to the clinical setting with currently 12 open clinical trials and one completed clinical trial treating various B-cell malignancies utilizing CAR modified T cells targeted to either the CD19 or CD20 B-cell specific antigens.

  3. Structure of the Human Activating Natural Cytotoxicity Receptor NKp30 Bound to its Tumor Cell Ligand B7-H6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Li; Q Wang; R Mariuzza

    2011-12-31

    Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumor cells. In humans, the activating natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 play a major role in NK cell-mediated tumor cell lysis. NKp30 recognizes B7-H6, a member of the B7 family which is expressed on tumor, but not healthy, cells. To understand the basis for tumor surveillance by NCRs, we determined the structure of NKp30, a member of the CD28 family which includes CTLA-4 and PD-1, in complex with B7-H6. The overall organization of the NKp30-B7-H6-activating complex differs considerably from thosemore » of the CTLA-4-B7 and PD-1-PD-L T cell inhibitory complexes. Whereas CTLA-4 and PD-1 use only the front {beta}-sheet of their Ig-like domain to bind ligands, NKp30 uses both front and back {beta}-sheets, resulting in engagement of B7-H6 via the side, as well as face, of the {beta}-sandwich. Moreover, B7-H6 contacts NKp30 through the complementarity-determining region (CDR) - like loops of its V-like domain in an antibody-like interaction that is not observed for B7 or PD-L. This first structure of an NCR bound to ligand provides a template for designing molecules to stimulate NKp30-mediated cytolytic activity for tumor immunotherapy.« less

  4. Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy.

    PubMed

    Prajapati, Kushal; Perez, Cynthia; Rojas, Lourdes Beatriz Plaza; Burke, Brianna; Guevara-Patino, Jose A

    2018-02-05

    Natural killer group 2 member D (NKG2D) is a type II transmembrane receptor. NKG2D is present on NK cells in both mice and humans, whereas it is constitutively expressed on CD8 + T cells in humans but only expressed upon T-cell activation in mice. NKG2D is a promiscuous receptor that recognizes stress-induced surface ligands. In NK cells, NKG2D signaling is sufficient to unleash the killing response; in CD8 + T cells, this requires concurrent activation of the T-cell receptor (TCR). In this case, the function of NKG2D is to authenticate the recognition of a stressed target and enhance TCR signaling. CD28 has been established as an archetype provider of costimulation during T-cell priming. It has become apparent, however, that signals from other costimulatory receptors, such as NKG2D, are required for optimal T-cell function outside the priming phase. This review will focus on the similarities and differences between NKG2D and CD28; less well-described characteristics of NKG2D, such as the potential role of NKG2D in CD8 + T-cell memory formation, cancer immunity and autoimmunity; and the opportunities for targeting NKG2D in immunotherapy.Cellular and Molecular Immunology advance online publication, 5 February 2018; doi:10.1038/cmi.2017.161.

  5. Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor.

    PubMed

    Singer, M S; Shepherd, G M

    1994-06-02

    Olfactory receptors belong to the superfamily of seven transmembrane domain, G protein-coupled receptors. In order to begin analysis of mechanisms of receptor activation, a computer model of the OR5 olfactory receptor has been constructed and compared with other members of this superfamily. We have tested docking of the odor molecule lyral, which is known to activate the OR5 receptor. The results point to specific ligand-binding residues on helices III through VII that form a binding pocket in the receptor. Some of these residues occupy sequence positions identical to ligand-binding residues conserved among other superfamily members. The results provide new insights into possible molecular mechanisms of odor recognition and suggest hypotheses to guide future experimental studies using site-directed mutagenesis.

  6. Dissection of the insulin-sensitizing effect of liver X receptor ligands.

    PubMed

    Commerford, S Renee; Vargas, Leo; Dorfman, Suzanne E; Mitro, Nico; Rocheford, Erik C; Mak, Puiying A; Li, Xue; Kennedy, Patrick; Mullarkey, Tara L; Saez, Enrique

    2007-12-01

    The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Treatment of insulin-resistant mice with synthetic LXR ligands enhances glucose tolerance, inducing changes in gene expression expected to decrease hepatic gluconeogenesis (via indirect suppression of gluconeogenic enzymes) and increase peripheral glucose disposal (via direct up-regulation of glut4 in fat). To evaluate the relative contribution of each of these effects on whole-body insulin sensitivity, we performed hyperinsulinemic-euglycemic clamps in high-fat-fed insulin-resistant rats treated with an LXR agonist or a peroxisome proliferator-activated receptor gamma ligand. Both groups showed significant improvement in insulin action. Interestingly, rats treated with LXR ligand had lower body weight and smaller fat cells than controls. Insulin-stimulated suppression of the rate of glucose appearance (Ra) was pronounced in LXR-treated rats, but treatment failed to enhance peripheral glucose uptake (R'g), despite increased expression of glut4 in epididymal fat. To ascertain whether LXR ligands suppress hepatic gluconeogenesis directly, mice lacking LXRalpha (the primary isotype in liver) were treated with LXR ligand, and gluconeogenic gene expression was assessed. LXR activation decreased expression of gluconeogenic genes in wild-type and LXRbeta null mice, but failed to do so in animals lacking LXRalpha. Our observations indicate that despite inducing suggestive gene expression changes in adipose tissue in this model of diet-induced insulin resistance, the antidiabetic effect of LXR ligands is primarily due to effects in the liver that appear to require LXRalpha. These findings have important implications for clinical development of LXR agonists as insulin sensitizers.

  7. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia

    PubMed Central

    Minagawa, Kentaro; Jamil, Muhammad O.; AL-Obaidi, Mustafa; Pereboeva, Larisa; Salzman, Donna; Erba, Harry P.; Lamb, Lawrence S.; Bhatia, Ravi; Mineishi, Shin

    2016-01-01

    Background Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia. Methods and findings We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85–90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean) chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a

  8. Chimeras of the native form or achondroplasia mutant (G375C) of human fibroblast growth factor receptor 3 induce ligand-dependent differentiation of PC12 cells.

    PubMed Central

    Thompson, L M; Raffioni, S; Wasmuth, J J; Bradshaw, R A

    1997-01-01

    Mutations in the gene for human fibroblast growth factor receptor 3 (hFGFR3) cause a variety of skeletal dysplasias, including the most common genetic form of dwarfism, achondroplasia (ACH). Evidence indicates that these phenotypes are not due to simple haploinsufficiency of FGFR3 but are more likely related to a role in negatively regulating skeletal growth. The effects of one of these mutations on FGFR3 signaling were examined by constructing chimeric receptors composed of the extracellular domain of human platelet-derived growth factor receptor beta (hPDGFR beta) and the transmembrane and intracellular domains of hFGFR3 or of an ACH (G375C) mutant. Following stable transfection in PC12 cells, which lack platelet-derived growth factor (PDGF) receptors, all clonal cell lines, with either type of chimera, showed strong neurite outgrowth in the presence of PDGF but not in its absence. Antiphosphotyrosine immunoblots showed ligand-dependent autophosphorylation, and both receptor types stimulated strong phosphorylation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, an event associated with the differentiative response of these cells. In addition, ligand-dependent phosphorylation of phospholipase Cgamma and Shc was also observed. All of these responses were comparable to those observed from ligand activation, such as by nerve growth factor, of the native PC12 cells used to prepare the stable transfectants. The cells with the chimera bearing the ACH mutation were more rapidly responsive to ligand with less sustained MAPK activation, indicative of a preactivated or primed condition and consistent with the view that these mutations weaken ligand control of FGFR3 function. However, the full effect of the mutation likely depends in part on structural features of the extracellular domain. Although FGFR3 has been suggested to act as a negative regulator of long-bone growth in chrondrocytes, it produces differentiative signals similar to

  9. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation.

    PubMed

    Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura

    2015-12-10

    Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.

  10. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    PubMed

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.

  11. Scavenger receptor WC1 contributes to the γδ T cell response to Leptospira.

    PubMed

    Wang, Fei; Herzig, Carolyn T A; Chen, Chuang; Hsu, Haoting; Baldwin, Cynthia L; Telfer, Janice C

    2011-03-01

    WC1 molecules are exclusively expressed on the surface of γδ T cells. They belong to the scavenger receptor cysteine-rich (SRCR) superfamily and are encoded by a multi-gene family. WC1 molecules have been grouped on the basis of antibody reactivity. The expression of WC1 molecules from these serologically defined groups is correlated with differences in γδ T cell responses. The expression of receptors within the WC1.1 group correlates with the capacity of γδ T cells to respond to Leptospira antigen. In this study, we used RNA interference to directly investigate the role of WC1 expression in the response to Leptospira borgpetersenii. We found that when three out of thirteen WC1 gene products were downregulated by RNA interference, γδ T cell proliferation and IFN-γ production in response to Leptospira antigen was significantly reduced. Our data demonstrate that specific receptors in the WC1 family directly participate in Leptospira recognition and/or activation of γδ T cells. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Cell surface control of the multiubiquitination and deubiquitination of high-affinity immunoglobulin E receptors.

    PubMed Central

    Paolini, R; Kinet, J P

    1993-01-01

    Multiubiquitination of proteins is a critical step leading to selective degradation for many polypeptides. Therefore, activation-induced multiubiquitination of cell surface receptors, such as the platelet-derived growth factor (PDGF) receptor and the T cell antigen (TCR) receptor, may correspond to a degradation pathway for ligand-receptor complexes. Here we show that the antigen-induced engagement of high-affinity immunoglobulin E receptors (Fc epsilon RI) results in the immediate multiubiquitination of Fc epsilon RI beta and gamma chains. This ubiquitination is independent of receptor phosphorylation and is restricted to activated receptors. Surprisingly, receptor multiubiquitination is immediately reversible when receptors are disengaged. Therefore, multiubiquitination and deubiquitination of Fc epsilon RI receptors is controlled at the cell surface by receptor engagement and disengagement. The rapidity, specificity and, most importantly, the reversibility of the activation-induced receptor multiubiquitination suggest that this process may turn on/off a cell surface receptor signaling function thus far unsuspected. Images PMID:8382611

  13. Killer Cell Immunoglobulin-Like Receptor Gene Associations with Autoimmune and Allergic Diseases, Recurrent Spontaneous Abortion, and Neoplasms

    PubMed Central

    Kuśnierczyk, Piotr

    2013-01-01

    Killer cell immunoglobulin-like receptors (KIRs) are a family of cell surface inhibitory or activating receptors expressed on natural killer cells and some subpopulations of T lymphocytes. KIR genes are clustered in the 19q13.4 region and are characterized by both allelic (high numbers of variants) and haplotypic (different numbers of genes for inhibitory and activating receptors on individual chromosomes) polymorphism. This contributes to diverse susceptibility to diseases and other clinical situations. Associations of KIR genes, as well as of genes for their ligands, with selected diseases such as psoriasis vulgaris and atopic dermatitis, rheumatoid arthritis, recurrent spontaneous abortion, and non-small cell lung cancer are discussed in the context of NK and T cell functions. PMID:23372569

  14. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines.

    PubMed

    Moon, Edmund K; Wang, Liang-Chuan S; Bekdache, Kheng; Lynn, Rachel C; Lo, Albert; Thorne, Stephen H; Albelda, Steven M

    2018-01-01

    T cell trafficking into tumors depends on a "match" between chemokine receptors on effector cells (e.g., CXCR3 and CCR5) and tumor-secreted chemokines. There is often a chemokine/chemokine receptor "mismatch", with tumors producing minute amounts of chemokines, resulting in inefficient targeting of effectors to tumors. We aimed to alter tumors to produce higher levels of CXCL11, a CXCR3 ligand, to attract more effector cells following immunotherapy. Mice bearing established subcutaneous tumors were studied. In our first approach, we used modified chimeric antigen receptor (CAR)-transduced human T cells to deliver CXCL11 (CAR/CXCL11) into tumors. In our second approach, we intravenously (iv) administered a modified oncolytic vaccinia virus (VV) engineered to produce CXCL11 (VV.CXCL11). The effect of these treatments on T cell trafficking into the tumors and anti-tumor efficacy after subsequent CAR T cell injections or anti-tumor vaccines was determined. CAR/CXCL11 and VV.CXCL11 significantly increased CXCL11 protein levels within tumors. For CAR/CXCL11, injection of a subsequent dose of CAR T cells did not result in increased intra-tumoral trafficking, and appeared to decrease the function of the injected CAR T cells. In contrast, VV.CXCL11 increased the number of total and antigen-specific T cells within tumors after CAR T cell injection or vaccination and significantly enhanced anti-tumor efficacy. Both approaches were successful in increasing CXCL11 levels within the tumors; however, only the vaccinia approach was successful in recruiting T cells and augmenting anti-tumor efficacy. VV.CXCL11 should be considered as a potential approach to augment adoptive T cell transfer or vaccine immunotherapy.

  15. NKG2D and its ligands in cancer.

    PubMed

    Dhar, Payal; Wu, Jennifer D

    2018-04-01

    NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives. Copyright © 2018. Published by Elsevier Ltd.

  16. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells

    PubMed Central

    Lawson, Victoria

    2012-01-01

    CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)–antigen–CD1d complex show how docking between CD1d–antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand–CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR–self-antigen–CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity. PMID:22734667

  17. Adaptor protein-3 is required in dendritic cells for optimal Toll-like receptor signaling from phagosomes and antigen presentation to CD4+ T cells

    PubMed Central

    Mantegazza, Adriana R.; Guttentag, Susan H.; El-Benna, Jamel; Sasai, Miwa; Iwasaki, Akiko; Shen, Hao; Laufer, Terri M.; Marks, Michael S.

    2012-01-01

    SUMMARY Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4+ T cell activation and Th1 effector function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores. PMID:22560444

  18. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1.

    PubMed

    Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2014-06-01

    T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.

  19. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization.

    PubMed

    Bernardes, Amanda; Souza, Paulo C T; Muniz, João R C; Ricci, Clarisse G; Ayers, Stephen D; Parekh, Nili M; Godoy, André S; Trivella, Daniela B B; Reinach, Peter; Webb, Paul; Skaf, Munir S; Polikarpov, Igor

    2013-08-23

    Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPARα ligands effectively treat dyslipidemia and have significant antiinflammatory and anti-atherosclerotic activities. These effects and their ligand-dependent activity make nuclear receptors obvious targets for drug design. Here, we present the structure of the human PPARα in complex with WY14643, a member of fibrate class of drug, and a widely used PPAR activator. The crystal structure of this complex suggests that WY14643 induces activation of PPARα in an unusual bipartite mechanism involving conventional direct helix 12 stabilization and an alternative mode that involves a second ligand in the pocket. We present structural observations, molecular dynamics and activity assays that support the importance of the second site in WY14643 action. The unique binding mode of WY14643 reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering clues for improving the binding affinity and selectivity of ligand. We show that binding of WY14643 to PPARα was associated with antiinflammatory disease in a human corneal cell model, suggesting possible applications for PPARα ligands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis

    PubMed Central

    2014-01-01

    Introduction A major pathophysiologic mechanism in sepsis is impaired host immunity which results in failure to eradicate invading pathogens and increased susceptibility to secondary infections. Although many immunosuppressive mechanisms exist, increased expression of the inhibitory receptor programmed cell death 1 (PD-1) and its ligand (PD-L1) are thought to play key roles. The newly recognized phenomenon of T cell exhaustion is mediated in part by PD-1 effects on T cells. This study tested the ability of anti-PD-1 and anti-PD-L1 antibodies to prevent apoptosis and improve lymphocyte function in septic patients. Methods Blood was obtained from 43 septic and 15 non-septic critically-ill patients. Effects of anti-PD-1, anti-PD-L1, or isotype-control antibody on lymphocyte apoptosis and interferon gamma (IFN-γ) and interleukin-2 (IL-2) production were quantitated by flow cytometry. Results Lymphocytes from septic patients produced decreased IFN-γ and IL-2 and had increased CD8 T cell expression of PD-1 and decreased PD-L1 expression compared to non-septic patients (P<0.05). Monocytes from septic patients had increased PD-L1 and decreased HLA-DR expression compared to non-septic patients (P<0.01). CD8 T cell expression of PD-1 increased over time in ICU as PD-L1, IFN-γ, and IL2 decreased. In addition, donors with the highest CD8 PD-1 expression together with the lowest CD8 PD-L1 expression also had lower levels of HLA-DR expression in monocytes, and an increased rate of secondary infections, suggestive of a more immune exhausted phenotype. Treatment of cells from septic patients with anti-PD-1 or anti-PD-L1 antibody decreased apoptosis and increased IFN-γ and IL-2 production in septic patients; (P<0.01). The percentage of CD4 T cells that were PD-1 positive correlated with the degree of cellular apoptosis (P<0.01). Conclusions In vitro blockade of the PD-1:PD-L1 pathway decreases apoptosis and improves immune cell function in septic patients. The current results

  1. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors.

    PubMed

    Li, Xiang; Anderson, Marie; Collin, Delphine; Muegge, Ingo; Wan, John; Brennan, Debra; Kugler, Stanley; Terenzio, Donna; Kennedy, Charles; Lin, Siqi; Labadia, Mark E; Cook, Brian; Hughes, Robert; Farrow, Neil A

    2017-07-14

    The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Structural basis of ligand interaction with atypical chemokine receptor 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje

    2017-01-18

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally drivenmore » models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.« less

  3. New Insights into Ligand-Receptor Pairing and Coevolution of Relaxin Family Peptides and Their Receptors in Teleosts

    PubMed Central

    Good, Sara; Yegorov, Sergey; Martijn, Joran; Franck, Jens; Bogerd, Jan

    2012-01-01

    Relaxin-like peptides (RLN/INSL) play diverse roles in reproductive and neuroendocrine processes in placental mammals and are functionally associated with two distinct types of receptors (RXFP) for each respective function. The diversification of RLN/INSL and RXFP gene families in vertebrates was predominantly driven by whole genome duplications (2R and 3R). Teleosts preferentially retained duplicates of genes putatively involved in neuroendocrine regulation, harboring a total of 10-11 receptors and 6 ligand genes, while most mammals have equal numbers of ligands and receptors. To date, the ligand-receptor relationships of teleost Rln/Insl peptides and their receptors have largely remained unexplored. Here, we use selection analyses based on sequence data from 5 teleosts and qPCR expression data from zebrafish to explore possible ligand-receptor pairings in teleosts. We find support for the hypothesis that, with the exception of RLN, which has undergone strong positive selection in mammalian lineages, the ligand and receptor genes shared between mammals and teleosts appear to have similar pairings. On the other hand, the teleost-specific receptors show evidence of subfunctionalization. Overall, this study underscores the complexity of RLN/INSL and RXFP ligand-receptor interactions in teleosts and establishes theoretical background for further experimental work in nonmammals. PMID:23008798

  4. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin's Lymphomas.

    PubMed

    Onea, Alexandra S; Jazirehi, Ali R

    2016-01-01

    Recovery rates for B-cell Non-Hodgkin's Lymphoma (NHL) are up to 70% with current standard-of-care treatments including rituximab (chimeric anti-CD20 monoclonal antibody) in combination with chemotherapy (R-CHOP). However, patients who do not respond to first-line treatment or develop resistance have a very poor prognosis. This signifies the need for the development of an optimal treatment approach for relapsed/refractory B-NHL. Novel CD19- chimeric antigen receptor (CAR) T-cell redirected immunotherapy is an attractive option for this subset of patients. Anti-CD19 CAR T-cell therapy has already had remarkable efficacy in various leukemias as well as encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. In going forward with additional clinical trials, complementary treatments that may circumvent potential resistance mechanisms should be used alongside anti-CD19 T-cells in order to prevent relapse with resistant strains of disease. Some such supplementary tactics include conditioning with lymphodepletion agents, sensitizing with kinase inhibitors and Bcl-2 inhibitors, enhancing function with multispecific CAR T-cells and CD40 ligand-expressing CAR T-cells, and safeguarding with lymphoma stem cell-targeted treatments. A therapy regimen involving anti-CD19 CAR T-cells and one or more auxiliary treatments could dramatically improve prognoses for patients with relapsed/refractory B-cell NHL. This approach has the potential to revolutionize B-NHL salvage therapy in much the same way rituximab did for first-line treatments.

  5. Identification of Inhibitors of the Association of ZAP-70 with the T Cell Receptor by High-Throughput Screen

    DOE PAGES

    Visperas, Patrick R.; Wilson, Christopher G.; Winger, Jonathan A.; ...

    2016-12-13

    ZAP-70 is a critical molecule in the transduction of T cell antigen receptor signaling and the activation of T cells. Upon activation of the T cell antigen receptor, ZAP-70 is recruited to the intracellular ζ-chains of the T cell receptor, where ZAP-70 is activated and colocalized with its substrates. Inhibitors of ZAP-70 could potentially function as treatments for autoimmune diseases or organ transplantation. In this work, we present the design, optimization, and implementation of a screen for inhibitors that would disrupt the interaction between ZAP-70 and the T cell antigen receptor. Finally, the screen is based on a fluorescence polarizationmore » assay for peptide binding to ZAP-70.« less

  6. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, Gary W., E-mail: gary.cline@yale.edu; Zhao, Xiaojian; Jakowski, Amy B.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity tomore » islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  7. The effect of missing KIR ligands, activating KIR genotype and haplotype on the outcome of T-cell-replete hematopoietic stem cell transplantation from HLA-identical siblings in Thai patients.

    PubMed

    Khanuntong, S; Kuptawintu, P; Upaisilpsathaporn, K; Poolchareon, A; Bunworasate, U; Hirankarn, N

    2016-06-01

    This study was a retrospective analysis of Thai patients undergoing T-replete hematopoietic stem cell transplant from human leukocyte antigen (HLA)-identical sibling donors. We investigated 66 patients, including 40 patients with acute myeloid leukemia (AML), 12 patients with acute lymphoblastic leukemia and 14 patients with chronic myeloid leukemia. Killer cell immunoglobulin-like receptor (KIR) genes and HLA ligands were typed by polymerase chain reaction-sequence specific oligonucleotide probes. We analyzed the effect of the number of missing KIR ligands (Bw4, C1 and C2) on clinical outcomes. A beneficial effect of missing KIR ligand was not observed in both univariate and multivariate analysis. When we analyzed the effect of specific missing KIR ligand on clinical outcomes, there was a trend that patients with missing A11 ligand had lower relapse rate (P = 0.076). Therefore, we also conducted the analysis by including the group with missing KIR ligands of Bw4, C1, C2 and A11. Patients with two or more than two missing KIR ligands had a trend for better clinical outcome including reduced relapse (P = 055) and statistically significant in terms of reduced acute graft-vs-host disease (aGVHD) rate (P = 0.013). In multivariate analysis, patients with two or more than two missing KIR ligands had a statistically significant better clinical outcome in terms of reduced aGVHD rate (HR = 0.155, 95%CI = 0.040-0.605, P = 0.007). The association between clinical outcome with KIR haplotypes, centromeric B haplotype and activating KIR was not observed here. Although the sample size in this study is rather limited, these data can later be subjected to meta-analysis to help reach the conclusion of the usefulness of this additional promising KIR genotyping in various hematopoietic stem cell transplantation types. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Chimeric antigen receptor T cells: power tools to wipe out leukemia and lymphoma.

    PubMed

    Riet, Tobias; Abken, Hinrich

    2015-08-01

    Adoptive cell therapy for malignant diseases is showing promise in recent early-phase trials in the treatment of B cell leukemia/lymphoma. Genetically engineered with a tumor-specific chimeric antigen receptor, patient's T cells produce lasting and complete leukemia regression. However, treatment is associated with some toxicity which needs our attention and the field still faces some hurdles at the scientific, technologic and clinical levels. Surmounting these obstacles will establish chimeric antigen receptor T cell therapy as a powerful approach to cure hematologic malignancies, paving the way for the treatment of other common types of cancer in the future.

  9. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility

    PubMed Central

    Borbulevych, Oleg Y.; Piepenbrink, Kurt H.; Gloor, Brian E.; Scott, Daniel R.; Sommese, Ruth F.; Cole, David K.; Sewell, Andrew K.; Baker, Brian M.

    2011-01-01

    Summary Tell mediated immunity requires T cell receptor (TCR) cross-reactivity, the mechanisms behind which remain incompletely elucidated. The αβ TCR A6 recognizes both the Tax (LLFGYPVYV) and Tel1p (MLWGYLQYV) peptides presented by the human class I MHC molecule HLA-A2. Here we found that although the two ligands are ideal structural mimics, they form substantially different interfaces with A6, with conformational differences in the peptide, the TCR, and unexpectedly, the MHC molecule. The differences between the Tax and Tel1p ternary complexes could not be predicted from the free peptide-MHC structures and are inconsistent with a traditional induced-fit mechanism. Instead, the differences were attributable to peptide and MHC molecular motion present in Tel1p-HLA-A2 but absent in Tax-HLA-A2. Differential “tuning” of the dynamic properties of HLA-A2 by the Tax and Tel1p peptides thus facilitates cross-recognition and impacts how structural diversity can be presented to and accommodated by receptors of the immune system. PMID:20064447

  10. Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors

    PubMed Central

    Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya

    2013-01-01

    Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112

  11. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity.

    PubMed

    Tacken, Paul J; Zeelenberg, Ingrid S; Cruz, Luis J; van Hout-Kuijer, Maaike A; van de Glind, Gerline; Fokkink, Remco G; Lambeck, Annechien J A; Figdor, Carl G

    2011-12-22

    Effective vaccines consist of 2 components: immunodominant antigens and effective adjuvants. Whereas it has been demonstrated that targeted delivery of antigens to dendritic cells (DCs) improves vaccine efficacy, we report here that co-targeting of TLR ligands (TLRLs) to DCs strongly enhances adjuvanticity and immunity. We encapsulated ligands for intracellular TLRs within biodegradable nanoparticles coated with Abs recognizing DC-specific receptors. Targeted delivery of TLRLs to human DCs enhanced the maturation and production of immune stimulatory cytokines and the Ag-specific activation of naive CD8(+) T cells. In vivo studies demonstrated that nanoparticles carrying Ag induced cytotoxic T-lymphocyte responses at 100-fold lower adjuvant dose when TLRLs were co-encapsulated instead of administered in soluble form. Moreover, the efficacy of these targeted TLRLs reduced the serum cytokine storm and related toxicity that is associated with administration of soluble TLRLs. We conclude that the targeted delivery of adjuvants may improve the efficacy and safety of DC-based vaccines.

  12. Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase

    PubMed Central

    Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E

    2012-01-01

    Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804

  13. T cell receptors used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms1

    PubMed Central

    Borbulevych, Oleg Y.; Santhanagopolan, Sujatha M.; Hossain, Moushumi; Baker, Brian M.

    2011-01-01

    T cells engineered to express T cell receptors (TCRs) specific for tumor antigens can drive cancer regression. The first TCRs used in cancer gene therapy, DMF4 and DMF5, recognize two structurally distinct peptide epitopes of the melanoma-associated MART-1/Melan-A protein, both presented by the class I MHC protein HLA-A*0201. To help understand the mechanisms of TCR cross-reactivity and provide a foundation for the further development of immunotherapy, we determined the crystallographic structures of DMF4 and DMF5 in complex with both of the MART-1/Melan-A epitopes. The two TCRs use different mechanisms to accommodate the two ligands. Whereas DMF4 binds the two with a different orientation, altering its position over the peptide/MHC, DMF5 binds them both identically. The simpler mode of cross-reactivity by DMF5 is associated with higher affinity towards both ligands, consistent with the superior functional avidity of DMF5. More generally, the observation of two diverging mechanisms of cross-reactivity with the same antigens and the finding that TCR binding orientation can be determined by peptide alone extend our understanding of the mechanisms underlying TCR cross-reactivity. PMID:21795600

  14. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    PubMed Central

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-01-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface. PMID:27353000

  15. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    NASA Astrophysics Data System (ADS)

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-06-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.

  16. Synthesis and Characterization of PEGylated Toll Like Receptor 7 Ligands

    PubMed Central

    Chan, Michael; Hayashi, Tomoko; Mathewson, Richard D.; Yao, Shiyin; Gray, Christine; Tawatao, Rommel; Kalenian, Kevin; Zhang, Yanmei; Hayashi, Yuki; Lao, Fitzgerald S.; Cottam, Howard B.; Carson, Dennis A.

    2011-01-01

    Toll like receptor 7 (TLR7) is located in the endosomal compartment of immune cells. Signaling through TLR7, mediated by the adaptor protein MyD88, stimulates the innate immune system and shapes adaptive immune responses. Previously, we characterized TLR7 ligands conjugated to protein, lipid or polyethylene glycol (PEG). Among the TLR7 ligand conjugates, the addition of PEG chains reduced the agonistic potency. PEGs are safe in humans and widely used for improvement of pharmacokinetics in existing biologics and some low molecular weight compounds. PEGylation could be a feasible method to alter the pharmacokinetics and pharmacodynamics of TLR7 ligands. In this study, we systematically studied the influence of PEG chain length on the in vitro and in vivo properties of potent TLR7 ligands. PEGylation increased solubility of the TLR7 ligands and modulated protein binding. Adding a 6–10 length PEG to the TLR7 ligand reduced its potency toward induction of interleukin (IL)-6 by murine macrophages in vitro and IL-6 and tumor necrosis factor (TNF) in vivo. However, PEGylation with 18 or longer chain restored, and even enhanced, the agonistic activity of the drug. In human peripheral blood mononuclear cells, similar effects of PEGylation were observed for secretion of proinflammatory cytokines, IL-6, IL-12, TNF-α, IL-1β and type 1 interferon, as well for B cell proliferation. In summary, these studies demonstrate that conjugation of PEG chains to a synthetic TLR ligand can impact its potency for cytokine induction depending on the size of the PEG moiety. Thus, PEGylation may be a feasible approach to regulate the pharmacological properties of TLR7 ligands. PMID:21338093

  17. Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets

    PubMed Central

    Unsworth, Amanda J.; Bye, Alexander P.; Tannetta, Dionne S.; Desborough, Michael J.R.; Kriek, Neline; Sage, Tanya; Allan, Harriet E.; Crescente, Marilena; Yaqoob, Parveen; Warner, Timothy D.; Jones, Chris I.

    2017-01-01

    Objectives— The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. Approach and Results— We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbβ3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. Conclusions— We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbβ3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo. PMID:28619996

  18. Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells.

    PubMed

    Allegra, Alessandro; Innao, Vanessa; Gerace, Demetrio; Vaddinelli, Doriana; Musolino, Caterina

    2016-11-01

    Hematological malignancies frequently express cancer-associated antigens that are shared with normal cells. Such tumor cells elude the host immune system because several T cells targeted against self-antigens are removed during thymic development, and those that persist are eliminated by a regulatory population of T cells. Chimeric antigen receptor-modified T cells (CAR-Ts) have emerged as a novel modality for tumor immunotherapy due to their powerful efficacy against tumor cells. These cells are created by transducing genes-coding fusion proteins of tumor antigen-recognition single-chain Fv connected to the intracellular signaling domains of T cell receptors, and are classed as first-, second- and third-generation, differing on the intracellular signaling domain number of T cell receptors. CAR-T treatment has emerged as a promising approach for patients with hematological malignancies, and there are several works reporting clinical trials of the use of CAR-modified T-cells in acute lymphoblastic leukemia, chronic lymphoblastic leukemia, multiple myeloma, lymphoma, and in acute myeloid leukemia by targeting different antigens. This review reports the history of adoptive immunotherapy using CAR-Ts, the CAR-T manufacturing process, and T cell therapies in development for hematological malignancies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    PubMed

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  20. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-12-12

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.

  1. Treatment of solid tumors with chimeric antigen receptor-engineered T cells: current status and future prospects.

    PubMed

    Di, Shengmeng; Li, Zonghai

    2016-04-01

    Chimeric antigen receptors (CARs) are artificial recombinant receptors that generally combine the antigen-recognition domain of a monoclonal antibody with T cell activation domains. Recent years have seen great success in clinical trials employing CD19-specific CAR-T cell therapy for B cell leukemia. Nevertheless, solid tumors remain a major challenge for CAR-T cell therapy. This review summarizes the preclinical and clinical studies on the treatment of solid tumors with CAR-T cells. The major hurdles for the success of CAR-T and the novel strategies to address these hurdles have also been described and discussed.

  2. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain.

    PubMed

    Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria

    2018-01-01

    T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.

  3. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4

    PubMed Central

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M.; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L.; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A.; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L.; Burgdorf, Sven

    2016-01-01

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8+ T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte–associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality. PMID:27601670

  4. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    PubMed

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  5. Receptor-ligand binding sites and virtual screening.

    PubMed

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  6. High-Throughput Identification of Combinatorial Ligands for DNA Delivery in Cell Culture

    NASA Astrophysics Data System (ADS)

    Svahn, Mathias G.; Rabe, Kersten S.; Barger, Geoffrey; EL-Andaloussi, Samir; Simonson, Oscar E.; Didier, Boturyn; Olivier, Renaudet; Dumy, Pascal; Brandén, Lars J.; Niemeyer, Christof M.; Smith, C. I. Edvard

    2008-10-01

    Finding the optimal combinations of ligands for tissue-specific delivery is tedious even if only a few well-established compounds are tested. The cargo affects the receptor-ligand interaction, especially when it is charged like DNA. The ligand should therefore be evaluated together with its cargo. Several viruses have been shown to interact with more than one receptor, for efficient internalization. We here present a DNA oligonucleotide-based method for inexpensive and rapid screening of biotin labeled ligands for combinatorial effects on cellular binding and uptake. The oligonucleotide complex was designed as a 44 bp double-stranded DNA oligonucleotide with one central streptavidin molecule and a second streptavidin at the terminus. The use of a highly advanced robotic platform ensured stringent processing and execution of the experiments. The oligonucleotides were fluorescently labeled and used for detection and analysis of cell-bound, internalized and intra-cellular compartmentalized constructs by an automated line-scanning confocal microscope, IN Cell Analyzer 3000. All possible combinations of 22 ligands were explored in sets of 2 and tested on 6 different human cell lines in triplicates. In total, 10 000 transfections were performed on the automation platform. Cell-specific combinations of ligands were identified and their relative position on the scaffold oligonucleotide was found to be of importance. The ligands were found to be cargo dependent, carbohydrates were more potent for DNA delivery whereas cell penetrating peptides were more potent for delivery of less charged particles.

  7. Hypocretin Receptor Expression in Canine and Murine Narcolepsy Models and in Hypocretin-Ligand Deficient Human Narcolepsy

    PubMed Central

    Mishima, Kazuo; Fujiki, Nobuhiro; Yoshida, Yasushi; Sakurai, Takeshi; Honda, Makoto; Mignot, Emmanuel; Nishino, Seiji

    2008-01-01

    Study Objective: To determine whether hypocretin receptor gene (hcrtR1 and hcrtR2) expression is affected after long-term hypocretin ligand loss in humans and animal models of narcolepsy. Design: Animal and human study. We measured hcrtR1 and hcrtR2 expression in the frontal cortex and pons using the RT-PCR method in murine models (8-week-old and 27-week-old orexin/ataxin-3 transgenic (TG) hypocretin cell ablated mice and wild-type mice from the same litter, 10 mice for each group), in canine models (8 genetically narcoleptic Dobermans with null mutations in the hcrtR2, 9 control Dobermans, 3 sporadic ligand-deficient narcoleptics, and 4 small breed controls), and in humans (5 narcolepsy-cataplexy patients with hypocretin deficiency (average age 77.0 years) and 5 control subjects (72.6 years). Measurement and Results: 27-week-old (but not 8-week-old) TG mice showed significant decreases in hcrtR1 expression, suggesting the influence of the long-term ligand loss on the receptor expression. Both sporadic narcoleptic dogs and human narcolepsy-cataplexy subjects showed a significant decrease in hcrtR1 expression, while declines in hcrtR2 expression were not significant in these cases. HcrtR2-mutated narcoleptic Dobermans (with normal ligand production) showed no alteration in hcrtR1 expression. Conclusions: Moderate declines in hcrtR expressions, possibly due to long-term postnatal loss of ligand production, were observed in hypocretin-ligand deficient narcoleptic subjects. These declines are not likely to be progressive and complete. The relative preservation of hcrtR2 expression also suggests that hypocretin based therapies are likely to be a viable therapeutic options in human narcolepsy-cataplexy. Citation: Mishima K; Fujiki N; Yoshida Y; Sakurai T; Honda M; Mignot E; Nishino S. Hypocretin receptor expression in canine and murine narcolepsy models and in hypocretin-ligand deficient human narcolepsy. SLEEP 2008;31(8):1119-1126. PMID:18714784

  8. Mononuclear Phagocyte-Mediated Antifungal Immunity: The Role of Chemotactic Receptors and Ligands

    PubMed Central

    Swamydas, Muthulekha; Break, Timothy J.; Lionakis, Michail S.

    2015-01-01

    Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4+ T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens. PMID:25715741

  9. Prostate Cancer Cells Express More Androgen Receptor (AR) Following Androgen Deprivation, Improving Recognition by AR-Specific T Cells.

    PubMed

    Olson, Brian M; Gamat, Melissa; Seliski, Joseph; Sawicki, Thomas; Jeffery, Justin; Ellis, Leigh; Drake, Charles G; Weichert, Jamey; McNeel, Douglas G

    2017-12-01

    Androgen deprivation is the primary therapy for recurrent prostate cancer, and agents targeting the androgen receptor (AR) pathway continue to be developed. Because androgen-deprivation therapy (ADT) has immmunostimulatory effects as well as direct antitumor effects, AR-targeted therapies have been combined with other anticancer therapies, including immunotherapies. Here, we sought to study whether an antigen-specific mechanism of resistance to ADT (overexpression of the AR) may result in enhanced AR-specific T-cell immune recognition, and whether this might be strategically combined with an antitumor vaccine targeting the AR. Androgen deprivation increased AR expression in human and murine prostate tumor cells in vitro and in vivo The increased expression persisted over time. Increased AR expression was associated with recognition and cytolytic activity by AR-specific T cells. Furthermore, ADT combined with vaccination, specifically a DNA vaccine encoding the ligand-binding domain of the AR, led to improved antitumor responses as measured by tumor volumes and delays in the emergence of castrate-resistant prostate tumors in two murine prostate cancer models (Myc-CaP and prostate-specific PTEN-deficient mice). Together, these data suggest that ADT combined with AR-directed immunotherapy targets a major mechanism of resistance, overexpression of the AR. This combination may be more effective than ADT combined with other immunotherapeutic approaches. Cancer Immunol Res; 5(12); 1074-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Thy-1+ dendritic epidermal cells express T3 antigen and the T-cell receptor gamma chain.

    PubMed Central

    Stingl, G; Koning, F; Yamada, H; Yokoyama, W M; Tschachler, E; Bluestone, J A; Steiner, G; Samelson, L E; Lew, A M; Coligan, J E

    1987-01-01

    The murine epidermis is a heterogeneous epithelium composed of keratinocytes, melanocytes, Langerhans cells, and a recently described subpopulation (2-3%) of bone-marrow-derived leukocytes with a dendritic morphology and the cell surface phenotype Thy-1+, L3T4-, Lyt-2-. Previous studies have demonstrated that cell lines derived from freshly explanted Thy-1+ dendritic epidermal cells (DEC) have abundant mRNA for rearranged T-cell receptor (TCR) gamma-chain genes. Analysis of Thy-1+ DEC in situ, freshly isolated cell suspensions of Thy-1+ DEC, and long-term Thy-1+ DEC lines demonstrated that 100% of the Thy-1+ DEC reacted with a monoclonal antibody to the epsilon chain of the murine T3 complex and that 40-60% of resident Thy-1+ DEC were also reactive with an antiserum to the TCR gamma chain. Two Thy-1+ DEC lines expressed a disulfide-linked 70-kDa molecule that could be precipitated with an anti-gamma-chain antiserum and could be coprecipitated with an antiserum to the T3 delta chain; the molecule appeared as a single 34-kDa band under reducing conditions. The phenotype of Thy-1+ DEC (T3+, L3T4-, Lyt-2-, TCR gamma chain+) thus resembles that of the recently described subpopulation of murine and human lymphocytes that have been identified in the thymus, peripheral blood, and fetal blood. Images PMID:2885839

  11. Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization

    PubMed Central

    Sun, Yuxin; Best, Katharine; Cinelli, Mattia; Heather, James M.; Reich-Zeliger, Shlomit; Shifrut, Eric; Friedman, Nir; Shawe-Taylor, John; Chain, Benny

    2017-01-01

    T cells recognize antigen using a large and diverse set of antigen-specific receptors created by a complex process of imprecise somatic cell gene rearrangements. In response to antigen-/receptor-binding-specific T cells then divide to form memory and effector populations. We apply high-throughput sequencing to investigate the global changes in T cell receptor sequences following immunization with ovalbumin (OVA) and adjuvant, to understand how adaptive immunity achieves specificity. Each immunized mouse contained a predominantly private but related set of expanded CDR3β sequences. We used machine learning to identify common patterns which distinguished repertoires from mice immunized with adjuvant with and without OVA. The CDR3β sequences were deconstructed into sets of overlapping contiguous amino acid triplets. The frequencies of these motifs were used to train the linear programming boosting (LPBoost) algorithm LPBoost to classify between TCR repertoires. LPBoost could distinguish between the two classes of repertoire with accuracies above 80%, using a small subset of triplet sequences present at defined positions along the CDR3. The results suggest a model in which such motifs confer degenerate antigen specificity in the context of a highly diverse and largely private set of T cell receptors. PMID:28450864

  12. Enforcement of γδ-lineage commitment by the pre-T-cell receptor in precursors with weak γδ-TCR signals.

    PubMed

    Zarin, Payam; Wong, Gladys W; Mohtashami, Mahmood; Wiest, David L; Zúñiga-Pflücker, Juan Carlos

    2014-04-15

    Developing thymocytes bifurcate from a bipotent precursor into αβ- or γδ-lineage T cells. Considering this common origin and the fact that the T-cell receptor (TCR) β-, γ-, and δ-chains simultaneously rearrange at the double negative (DN) stage of development, the possibility exists that a given DN cell can express and transmit signals through both the pre-TCR and γδ-TCR. Here, we tested this scenario by defining the differentiation outcomes and criteria for lineage choice when both TCR-β and γδ-TCR are simultaneously expressed in Rag2(-/-) DN cells via retroviral transduction. Our results showed that Rag2(-/-) DN cells expressing both TCRs developed along the γδ-lineage, down-regulated CD24 expression, and up-regulated CD73 expression, showed a γδ-biased gene-expression profile, and produced IFN-γ in response to stimulation. However, in the absence of Inhibitor of DNA-binding 3 expression and strong γδ-TCR ligand, γδ-expressing cells showed a lower propensity to differentiate along the γδ-lineage. Importantly, differentiation along the γδ-lineage was restored by pre-TCR coexpression, which induced greater down-regulation of CD24, higher levels of CD73, Nr4a2, and Rgs1, and recovery of functional competence to produce IFN-γ. These results confirm a requirement for a strong γδ-TCR ligand engagement to promote maturation along the γδ T-cell lineage, whereas additional signals from the pre-TCR can serve to enforce a γδ-lineage choice in the case of weaker γδ-TCR signals. Taken together, these findings further cement the view that the cumulative signal strength sensed by developing DN cells serves to dictate its lineage choice.

  13. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.

    PubMed

    Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard

    2010-07-01

    Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  14. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis.

    PubMed

    Kanatli, Irem; Akkaya, Bahar; Uysal, Hilmi; Kahraman, Sevim; Sanlioglu, Ahter Dilsad

    2017-02-01

    Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    PubMed

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  16. Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on BRAFV600E Melanoma Lines with Vemurafenib.

    PubMed

    Frazao, Alexandra; Colombo, Marina; Fourmentraux-Neves, Emmanuelle; Messaoudene, Meriem; Rusakiewicz, Sylvie; Zitvogel, Laurence; Vivier, Eric; Vély, Frédéric; Faure, Florence; Dréno, Brigitte; Benlalam, Houssem; Bouquet, Fanny; Savina, Ariel; Pasmant, Eric; Toubert, Antoine; Avril, Marie-Françoise; Caignard, Anne

    2017-07-01

    Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF -mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Crystal Structures of T Cell Receptor (Beta) Chains Related to Rheumatoid Arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li,H.; van Vranken, S.; Zhao, Y.

    The crystal structures of the V{beta}17+ {beta} chains of two human T cell receptors (TCRs), originally derived from the synovial fluid (SF4) and tissue (C5-1) of a patient with rheumatoid arthritis (RA), have been determined in native (SF4) and mutant (C5-1{sub F104{yields}Y/C187{yields}S}) forms, respectively. These TCR {beta} chains form homo-dimers in solution and in crystals. Structural comparison reveals that the main-chain conformations in the CDR regions of the C5-1 and SF4 V{beta}17 closely resemble those of a V{beta}17 JM22 in a bound form; however, the CDR3 region shows different conformations among these three V{beta}17 structures. At the side-chain level, conformationalmore » differences were observed at the CDR2 regions between our two ligand-free forms and the bound JM22 form. Other significant differences were observed at the V{beta} regions 8-12, 40-44, and 82-88 between C5-1/SF4 and JM22 V{beta}17, implying that there is considerable variability in the structures of very similar {beta} chains. Structural alignments also reveal a considerable variation in the V{beta}-C{beta} associations, and this may affect ligand recognition. The crystal structures also provide insights into the structure basis of T cell recognition of Mycoplasma arthritidis mitogen (MAM), a superantigen that may be implicated in the development of human RA. Structural comparisons of the V{beta} domains of known TCR structures indicate that there are significant similarities among V{beta} regions that are MAM-reactive, whereas there appear to be significant structural differences among those V{beta} regions that lack MAM-reactivity. It further reveals that CDR2 and framework region (FR) 3 are likely to account for the binding of TCR to MAM.« less

  18. Lymphoid follicle cells in chronic obstructive pulmonary disease overexpress the chemokine receptor CXCR3.

    PubMed

    Kelsen, Steven G; Aksoy, Mark O; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, Xiuxia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-05-01

    The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1-4) by immunohistochemistry. CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3-4 (P < 0.01 for GOLD 3-4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV(1) (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells.

  19. Lymphoid Follicle Cells in Chronic Obstructive Pulmonary Disease Overexpress the Chemokine Receptor CXCR3

    PubMed Central

    Kelsen, Steven G.; Aksoy, Mark O.; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, XiuXia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-01-01

    Rationale: The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. Objectives: We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. Methods: CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1–4) by immunohistochemistry. Measurements and Main Results: CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3–4 (P < 0.01 for GOLD 3–4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV1 (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. Conclusions: These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells. PMID:19218194

  20. Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis

    PubMed Central

    Doolittle, Elizabeth; Peiris, Pubudu M.; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P.; Karathanasis, Efstathios

    2015-01-01

    Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection. PMID:26203676

  1. A new way to generate cytolytic tumor-specific T cells: electroporation of RNA coding for a T cell receptor into T lymphocytes.

    PubMed

    Schaft, Niels; Dörrie, Jan; Müller, Ina; Beck, Verena; Baumann, Stefanie; Schunder, Tanja; Kämpgen, Eckhart; Schuler, Gerold

    2006-09-01

    Effective T cell receptor (TCR) transfer until now required stable retroviral transduction. However, retroviral transduction poses the threat of irreversible genetic manipulation of autologous cells. We, therefore, used optimized RNA transfection for transient manipulation. The transfection efficiency, using EGFP RNA, was >90%. The electroporation of primary T cells, isolated from blood, with TCR-coding RNA resulted in functional cytotoxic T lymphocytes (CTLs) (>60% killing at an effector to target ratio of 20:1) with the same HLA-A2/gp100-specificity as the parental CTL clone. The TCR-transfected T cells specifically recognized peptide-pulsed T2 cells, or dendritic cells electroporated with gp100-coding RNA, in an IFNgamma-secretion assay and retained this ability, even after cryopreservation, over 3 days. Most importantly, we show here for the first time that the electroporated T cells also displayed cytotoxicity, and specifically lysed peptide-loaded T2 cells and HLA-A2+/gp100+ melanoma cells over a period of at least 72 h. Peptide-titration studies showed that the lytic efficiency of the RNA-transfected T cells was similar to that of retrovirally transduced T cells, and approximated that of the parental CTL clone. Functional TCR transfer by RNA electroporation is now possible without the disadvantages of retroviral transduction, and forms a new strategy for the immunotherapy of cancer.

  2. Ligand Entry and Exit Pathways in the β2-adrenergic Receptor

    PubMed Central

    Wang, Ting; Duan, Yong

    2009-01-01

    The recently determined crystal structure of the human β2-adrenergic (β2AR) G-protein coupled receptor provides an excellent structural basis for exploring β2AR -ligand binding and dissociation process. Based on this crystal structure, we simulated ligand exit from the β2AR receptor by applying the random acceleration molecular dynamics (RAMD) simulation method. The simulation results showed that the extracellular opening on the receptor surface was the most frequently observed egress point (referred to as pathway A) and a few other pathways through inter-helical clefts were also observed with significantly lower frequencies. In the egress trajectories along pathway A, the D192-K305 salt bridge between the extracellular loop 2 (ECL2) and the apex of the transmembrane helix 7 (TM7) was exclusively broken. The spatial occupancy maps of the ligand computed from the 100 RAMD simulation trajectories indicated that the receptor-ligand interactions that restrained the ligand in the binding pocket were the major resistance encountered by the ligand during exit and no second barrier was notable. We next performed RAMD simulations by using a putative ligand-free conformation of the receptor as input structure. This conformation was obtained in a standard MD simulation in the absence of the ligand and it differed from the ligand-bound conformation in a hydrophobic patch bridging ECL2 and TM7 due to the rotation of F193 of ECL2. Results from the RAMD simulations with this putative ligand-free conformation suggest that the cleft formed by the hydrophobic bridge, TM2, TM3 and TM7 on the extracellular surface likely serves as a more specific ligand-entry site and the ECL2-TM7 hydrophobic junction can be partially interrupted upon the entry of ligand that pushes F193 to rotate, resulting in a conformation as observed in the ligand-bound crystal structure. These results may help design β2AR-targeting drugs with improved efficacy as well as understand the receptor subtype

  3. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.

    PubMed

    Drent, Esther; Groen, Richard W J; Noort, Willy A; Themeli, Maria; Lammerts van Bueren, Jeroen J; Parren, Paul W H I; Kuball, Jürgen; Sebestyen, Zsolt; Yuan, Huipin; de Bruijn, Joost; van de Donk, Niels W C J; Martens, Anton C M; Lokhorst, Henk M; Mutis, Tuna

    2016-05-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38(+) fractions of CD34(+) hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38(+) malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. Copyright© Ferrata Storti Foundation.

  4. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation inmore » a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptorligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.« less

  5. Androgen Receptor Functional Analyses by High Throughput Imaging: Determination of Ligand, Cell Cycle, and Mutation-Specific Effects

    PubMed Central

    Szafran, Adam T.; Szwarc, Maria; Marcelli, Marco; Mancini, Michael A.

    2008-01-01

    Background Understanding how androgen receptor (AR) function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS), and in the analysis of environmental endocrine disruptors. Methodology/Principal Findings We report the development of a high throughput (HT) image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5–24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear “speckling” were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions. Conclusions/Significance HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations. PMID:18978937

  6. CMV drives the expansion of highly functional memory T cells expressing NK-cell receptors in renal transplant recipients.

    PubMed

    Makwana, Nandini; Foley, Bree; Fernandez, Sonia; Lee, Silvia; Irish, Ashley; Pircher, Hanspeter; Price, Patricia

    2017-08-01

    Cytomegalovirus (CMV) is a common opportunistic infection encountered in renal transplant recipients (RTRs) and may be reactivated without symptoms at any time post-transplant. We describe how active and latent CMV affect T-cell subsets in RTRs who are stable on maintenance therapy. T-cell responses to CMV were assessed in RTRs (n = 54) >2 years post-transplant, and healthy controls (n = 38). Seven RTRs had CMV DNA detectable in plasma. CMV antibody and DNA aligned with increased proportions of CD8 + T cells and reduced CD4/CD8 ratios. This paralleled an expansion of effector memory T-cell (T EM ), terminally differentiated T-cell (T EMRA ) and CD57 + T EMRA cell populations. Expression of NK-cell receptors, LIR-1 and KLRG1 on CD4 + and CD8 + CD57 + T EM and T EMRA cells correlated with elevated interferon-γ and cytotoxic responses to anti-CD3 and increased cytotoxic responses to CMV phosphoprotein (pp) 65 in RTRs who carried CMV DNA. CD8 + T cells from all CMV seropositive RTRs responded efficiently to CMV immediate early (IE) -1 peptides. The data show that latent and active CMV infection can alter T-cell subsets in RTRs many years after transplantation, and up-regulate T-cell expression of NK-cell receptors. This may enhance effector responses of CD4 + and CD8 + T cells against CMV. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structure and Interactions of the Human Programmed Cell Death 1 Receptor*

    PubMed Central

    Cheng, Xiaoxiao; Veverka, Vaclav; Radhakrishnan, Anand; Waters, Lorna C.; Muskett, Frederick W.; Morgan, Sara H.; Huo, Jiandong; Yu, Chao; Evans, Edward J.; Leslie, Alasdair J.; Griffiths, Meryn; Stubberfield, Colin; Griffin, Robert; Henry, Alistair J.; Jansson, Andreas; Ladbury, John E.; Ikemizu, Shinji; Carr, Mark D.; Davis, Simon J.

    2013-01-01

    PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC′ sheet, which is flexible and completely lacks a C″ strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC′ sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1·ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3–4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors. PMID:23417675

  8. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-12-15

    Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as "cellular drugs". As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  9. Involvement of tumour necrosis factor-α-related apoptosis-inducing ligand in enhanced cytotoxicity of lipopolysaccharide-stimulated dendritic cells to activated T cells

    PubMed Central

    Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao

    2002-01-01

    Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257–264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand–tumour necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses. PMID:12100718

  10. Engineered chimeric antigen receptor-expressing T cells for the treatment of pancreatic ductal adenocarcinoma

    PubMed Central

    Beatty, Gregory L

    2014-01-01

    Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells is under investigation as an approach to restore productive T cell immunosurveillance in patients with pancreatic ductal adenocarcinoma. Early findings demonstrate safety of this cell-based therapy and the capacity of CAR-expressing T cells to mediate anti-tumor activity as well as induce endogeneous antitumoral immune responses. PMID:25050204

  11. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.

    PubMed

    Kochenderfer, James N; Rosenberg, Steven A

    2013-05-01

    Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies.

  12. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    PubMed

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  13. The adapter protein SLP-76 mediates "outside-in" integrin signaling and function in T cells.

    PubMed

    Baker, R G; Hsu, C J; Lee, D; Jordan, M S; Maltzman, J S; Hammer, D A; Baumgart, T; Koretzky, G A

    2009-10-01

    The adapter protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is an essential mediator of signaling from the T-cell antigen receptor (TCR). We report here that SLP-76 also mediates signaling downstream of integrins in T cells and that SLP-76-deficient T cells fail to support adhesion to integrin ligands. In response to both TCR and integrin stimulation, SLP-76 relocalizes to surface microclusters that colocalize with phosphorylated signaling proteins. Disruption of SLP-76 recruitment to the protein named LAT (linker for activation of T cells) inhibits SLP-76 clustering downstream of the TCR but not downstream of integrins. Conversely, an SLP-76 mutant unable to bind ADAP (adhesion and degranulation-promoting adapter protein) forms clusters following TCR but not integrin engagement and fails to support T-cell adhesion to integrin ligands. These findings demonstrate that SLP-76 relocalizes to integrin-initiated signaling complexes by a mechanism different from that employed during TCR signaling and that SLP-76 relocalization corresponds to SLP-76-dependent integrin function in T cells.

  14. Glucocorticoid-induced TNF receptor family-related protein ligand regulates the migration of monocytes to the inflamed intestine

    PubMed Central

    Liao, Gongxian; van Driel, Boaz; Magelky, Erica; O'Keeffe, Michael S.; de Waal Malefyt, Rene; Engel, Pablo; Herzog, Roland W.; Mizoguchi, Emiko; Bhan, Atul K.; Terhorst, Cox

    2014-01-01

    Glucocorticoid-induced TNF receptor family-related protein (GITR) regulates the function of both T cells and antigen-presenting cells (APCs), while the function of GITR ligand (GITR-L) is largely unknown. Here we evaluate the role of GITR-L, whose expression is restricted to APCs, in the development of enterocolitis. On injecting naive CD4+ T cells, GITR-L−/−Rag−/− mice develop a markedly milder colitis than Rag−/− mice, which correlates with a 50% reduction of Ly6C+CD11b+MHCII+ macrophages in the lamina propria and mesenteric lymph nodes. The same result was observed in αCD40-induced acute colitis and during peritonitis, suggesting an altered monocyte migration. In line with these observations, the number of nondifferentiated monocytes was approximately 3-fold higher in the spleen of GITR-L−/−Rag−/− mice than in Rag−/− mice after αCD40 induction. Consistent with the dynamic change in the formation of an active angiotensin II type 1 receptor (AT1) dimer in GITR-L−/− splenic monocytes during intestinal inflammation, the migratory capability of splenic monocytes from GITR-L-deficient mice was impaired in an in vitro transwell migration assay. Conversely, αGITR-L reduces the number of splenic Ly6Chi monocytes, concomitantly with an increase in AT1 dimers. We conclude that GITR-L regulates the number of proinflammatory macrophages in sites of inflammation by controlling the egress of monocytes from the splenic reservoir.—Liao, G., van Driel, B., Magelky, E., O'Keeffe, M. S., de Waal Malefyt, R., Engel, P., Herzog, R. W., Mizoguchi, E., Bhan, A. K., Terhorst, C. Glucocorticoid-induced TNF receptor family-related protein ligand regulates the migration of monocytes to the inflamed intestine. PMID:24107315

  15. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas

    PubMed Central

    Onea, Alexandra S; Jazirehi, Ali R

    2016-01-01

    Recovery rates for B-cell Non-Hodgkin’s Lymphoma (NHL) are up to 70% with current standard-of-care treatments including rituximab (chimeric anti-CD20 monoclonal antibody) in combination with chemotherapy (R-CHOP). However, patients who do not respond to first-line treatment or develop resistance have a very poor prognosis. This signifies the need for the development of an optimal treatment approach for relapsed/refractory B-NHL. Novel CD19- chimeric antigen receptor (CAR) T-cell redirected immunotherapy is an attractive option for this subset of patients. Anti-CD19 CAR T-cell therapy has already had remarkable efficacy in various leukemias as well as encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. In going forward with additional clinical trials, complementary treatments that may circumvent potential resistance mechanisms should be used alongside anti-CD19 T-cells in order to prevent relapse with resistant strains of disease. Some such supplementary tactics include conditioning with lymphodepletion agents, sensitizing with kinase inhibitors and Bcl-2 inhibitors, enhancing function with multispecific CAR T-cells and CD40 ligand-expressing CAR T-cells, and safeguarding with lymphoma stem cell-targeted treatments. A therapy regimen involving anti-CD19 CAR T-cells and one or more auxiliary treatments could dramatically improve prognoses for patients with relapsed/refractory B-cell NHL. This approach has the potential to revolutionize B-NHL salvage therapy in much the same way rituximab did for first-line treatments. PMID:27186412

  16. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling

    PubMed Central

    Müller, Jennifer; Obermeier, Ingrid; Wöhner, Miriam; Brandl, Carolin; Mrotzek, Sarah; Angermüller, Sieglinde; Maity, Palash C.; Reth, Michael; Nitschke, Lars

    2013-01-01

    A high proportion of human B cells carry B-cell receptors (BCRs) that are autoreactive. Inhibitory receptors such as CD22 can downmodulate autoreactive BCR responses. With its extracellular domain, CD22 binds to sialic acids in α2,6 linkages in cis, on the surface of the same B cell or in trans, on other cells. Sialic acids are self ligands, as they are abundant in vertebrates, but are usually not expressed by pathogens. We show that cis-ligand binding of CD22 is crucial for the regulation of B-cell Ca2+ signaling by controlling the CD22 association to the BCR. Mice with a mutated CD22 ligand-binding domain of CD22 showed strongly reduced Ca2+ signaling. In contrast, mice with mutated CD22 immunoreceptor tyrosine-based inhibition motifs have increased B-cell Ca2+ responses, increased B-cell turnover, and impaired survival of the B cells. Thus, the CD22 ligand-binding domain has a crucial function in regulating BCR signaling, which is relevant for controlling autoimmunity. PMID:23836650

  17. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling.

    PubMed

    Müller, Jennifer; Obermeier, Ingrid; Wöhner, Miriam; Brandl, Carolin; Mrotzek, Sarah; Angermüller, Sieglinde; Maity, Palash C; Reth, Michael; Nitschke, Lars

    2013-07-23

    A high proportion of human B cells carry B-cell receptors (BCRs) that are autoreactive. Inhibitory receptors such as CD22 can downmodulate autoreactive BCR responses. With its extracellular domain, CD22 binds to sialic acids in α2,6 linkages in cis, on the surface of the same B cell or in trans, on other cells. Sialic acids are self ligands, as they are abundant in vertebrates, but are usually not expressed by pathogens. We show that cis-ligand binding of CD22 is crucial for the regulation of B-cell Ca(2+) signaling by controlling the CD22 association to the BCR. Mice with a mutated CD22 ligand-binding domain of CD22 showed strongly reduced Ca(2+) signaling. In contrast, mice with mutated CD22 immunoreceptor tyrosine-based inhibition motifs have increased B-cell Ca(2+) responses, increased B-cell turnover, and impaired survival of the B cells. Thus, the CD22 ligand-binding domain has a crucial function in regulating BCR signaling, which is relevant for controlling autoimmunity.

  18. Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines.

    PubMed

    Rueda, Felix; Eich, Christina; Cordobilla, Begoña; Domingo, Pere; Acosta, Gerardo; Albericio, Fernando; Cruz, Luis J; Domingo, Joan C

    2017-11-01

    Nanoliposomes (NLs) hold promise as new highly specific nanomedicine for anti-tumor vaccines, since they could be targeted to specific receptors on dendritic cell (DC) to induce maturation and activation and increase the anti-tumor immune response. Here we studied a NLs formulation targeted or not to FcR (the receptor for the IgG Fc fragment) for the treatment of androgen-responsive prostate cancer. Luteinizing-hormone-releasing hormone (LHRH) peptide (B- and T-cell epitopes), in tandem with a tetanus toxoid T-helper epitope (830-844 region) and several TLR (Toll-Like Receptor) ligands as adjuvants were co-encapsulated. Specific uptake in vitro of LHRH-TT liposomes targeted to the FcRs of human DCs was enhanced. DC maturation/activation, cytokine production and lymphocyte activation were consistently higher in targeted than non-targeted liposomes. Similar increase was observed as more adjuvants were administrated. Targeting to specific receptor and co-encapsulation of several TLR adjuvants are essential factors for the immune response in peptide based liposome vaccine. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. The Aryl Hydrocarbon Receptor: Differential Contribution to T Helper 17 and T Cytotoxic 17 Cell Development

    PubMed Central

    Hayes, Mark D.; Ovcinnikovs, Vitalijs; Smith, Andrew G.; Kimber, Ian; Dearman, Rebecca J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8+) and Th (CD4+) cells were isolated by negative selection from naive AhR+/− and AhR−/− mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry) expression for interferon (IFN)-γ and for key Th17 cytokines. In AhR+/− mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR−/− mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses. PMID:25203682

  20. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism

    PubMed Central

    Hughes, Travis S.; Chalmers, Michael J.; Novick, Scott; Kuruvilla, Dana S.; Chang, Mi Ra; Kamenecka, Theodore M.; Rance, Mark; Johnson, Bruce A.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.

    2011-01-01

    SUMMARY Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution NMR studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators. PMID:22244763

  1. T-cell receptor transfer for boosting HIV-1-specific T-cell immunity in HIV-1-infected patients.

    PubMed

    Mummert, Christiane; Hofmann, Christian; Hückelhoven, Angela G; Bergmann, Silke; Mueller-Schmucker, Sandra M; Harrer, Ellen G; Dörrie, Jan; Schaft, Niels; Harrer, Thomas

    2016-09-10

    Strategies to cure HIV-1 infection require the eradication of viral reservoirs. An innovative approach for boosting the cytotoxic T-lymphocyte response is the transfer of T-cell receptors (TCRs). Previously, we have shown that electroporation of TCR-encoding mRNA is able to reprogram CD8 T cells derived from healthy donors. So far, it is unknown whether the transfer of HIV-1-specific TCRs is capable to reprogram CD8 T cells of HIV-1-infected patients. To assess the efficiency of TCR-transfer by mRNA electroporation and the functionality of reprogramed T cells in HIV-1-infected patients, we performed an in-vitro analysis of TCR-transfer into T cells from HIV-1-infected patients in various stages of disease and from healthy controls. Peripheral blood mononuclear cells from 16 HIV-1-infected patients (nine HLA-A02-positive, seven HLA-A02-negative) and from five healthy controls were electroporated with mRNA-constructs encoding TCRs specific for the HLA-A02/HIV-1-gag p17 epitope SLYNTVATL (SL9). Functionality of the TCRs was measured by γIFN-ELISpot assays. SL9/TCR transfection into peripheral blood mononuclear cells from both HLA-A02-positive and HLA-A02-negative HIV-1-infected patients and from healthy blood donors reprogramed T cells for recognition of SL9-presenting HLA-A02-positive cells in γIFN-ELISpot assays. SL9/TCR-transfer into T cells from an immunodeficient AIDS patient could induce recognition of SL9-expressing target cells only after reversion of T-cell dysfunction by antiretroviral therapy. The transfer of HIV-1-p17-specific TCRs into T cells is functional both in HIV-1-infected patients as well as in healthy blood donors. TCR-transfer is a promising method to boost the immune system against HIV-1.

  2. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.

  3. Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy.

    PubMed

    Riet, Tobias; Holzinger, Astrid; Dörrie, Jan; Schaft, Niels; Schuler, Gerold; Abken, Hinrich

    2013-01-01

    Redirecting T cells with a chimeric antigen receptor (CAR) of predefined specificity showed remarkable efficacy in the adoptive therapy trials of malignant diseases. The CAR consists of a single chain fragment of variable region (scFv) antibody targeting domain covalently linked to the CD3ζ signalling domain of the T cell receptor complex to mediate T cell activation upon antigen engagement. By using an antibody-derived targeting domain a CAR can potentially redirect T cells towards any target expressed on the cell surface as long as a binding domain is available. Antibody-mediated targeting moreover circumvents MHC restriction of the targeted antigen, thereby broadening the potential of applicability of adoptive T cell therapy. While T cells were so far genetically modified by viral transduction, transient modification with a CAR by RNA transfection gained increasing interest during the last years. This chapter focuses on methods to modify human T cells from peripheral blood with a CAR by electroporation of in vitro transcribed RNA and to test modified T cells for function for use in adoptive immunotherapy.

  4. Action of RORs and Their Ligands in (Patho)physiology

    PubMed Central

    Solt, Laura A.; Burris, Thomas P.

    2012-01-01

    The retinoic-acid-receptor-related orphan receptors (RORs) are members of the nuclear receptor (NR) superfamily whose activity has been implicated in a number of physiological and pathological processes. The RORs, specifically RORα and RORγ, are considered master regulators of TH17 cells, a recently described subset of CD4+ T helper cells that have been demonstrated to have a pathological role in autoimmune disease. As with most members of the NR superfamily, RORs are ligand regulated, suggesting that their activity can be modulated by synthetic ligands. Recent advances in the field have established that selective inhibition of the RORs is a viable therapeutic approach for not only the treatment of autoimmune disorders, but ROR-mediated metabolic disorders as well. PMID:22789990

  5. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon.

    PubMed

    Kendig, Derek M; Hurst, Norman R; Bradley, Zachary L; Mahavadi, Sunila; Kuemmerle, John F; Lyall, Vijay; DeSimone, John; Murthy, Karnam S; Grider, John R

    2014-12-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as monosodium glutamate (MSG), in taste cells. Ascending contraction, descending relaxation, and calcitonin gene-related peptide release were measured in three-chamber flat-sheet preparations of rat colon in response to MSG alone or with inosine 5'-monophosphate (IMP). Velocity of artificial fecal pellet propulsion was measured by video recording in guinea pig distal colon. T1R1/T1R3 receptors were present in enteroendocrine cells of colonic sections from human, rat, mouse, and guinea pig. MSG initiated ascending contraction and descending relaxation components of the peristaltic reflex and calcitonin gene-related peptide release in flat-sheet preparations. IMP augmented the MSG-induced effects, suggesting activation of T1R1/T1R3 receptors. In T1R1(-/-) mice, mucosal stroking, but not MSG, elicited a peristaltic reflex. Intraluminal perfusion of MSG enhanced the velocity of artificial fecal pellet propulsion, which was also augmented by IMP. Propulsion was also increased by l-cysteine, but not l-tryptophan, supporting a role of T1R1/T1R3 receptors. We conclude that T1R1/T1R3 activation by luminal MSG or l-cysteine elicits a peristaltic reflex and CGRP release and increases the velocity of pellet propulsion in distal colon. This mechanism may explain how nutrients regulate colonic propulsion. Copyright © 2014 the American Physiological Society.

  6. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon

    PubMed Central

    Kendig, Derek M.; Hurst, Norman R.; Bradley, Zachary L.; Mahavadi, Sunila; Kuemmerle, John F.; Lyall, Vijay; DeSimone, John; Murthy, Karnam S.

    2014-01-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as monosodium glutamate (MSG), in taste cells. Ascending contraction, descending relaxation, and calcitonin gene-related peptide release were measured in three-chamber flat-sheet preparations of rat colon in response to MSG alone or with inosine 5′-monophosphate (IMP). Velocity of artificial fecal pellet propulsion was measured by video recording in guinea pig distal colon. T1R1/T1R3 receptors were present in enteroendocrine cells of colonic sections from human, rat, mouse, and guinea pig. MSG initiated ascending contraction and descending relaxation components of the peristaltic reflex and calcitonin gene-related peptide release in flat-sheet preparations. IMP augmented the MSG-induced effects, suggesting activation of T1R1/T1R3 receptors. In T1R1−/− mice, mucosal stroking, but not MSG, elicited a peristaltic reflex. Intraluminal perfusion of MSG enhanced the velocity of artificial fecal pellet propulsion, which was also augmented by IMP. Propulsion was also increased by l-cysteine, but not l-tryptophan, supporting a role of T1R1/T1R3 receptors. We conclude that T1R1/T1R3 activation by luminal MSG or l-cysteine elicits a peristaltic reflex and CGRP release and increases the velocity of pellet propulsion in distal colon. This mechanism may explain how nutrients regulate colonic propulsion. PMID:25324508

  7. Heparan Sulfate Modification of the Transmembrane Receptor CD47 Is Necessary for Inhibition of T Cell Receptor Signaling by Thrombospondin-1*

    PubMed Central

    Kaur, Sukhbir; Kuznetsova, Svetlana A.; Pendrak, Michael L.; Sipes, John M.; Romeo, Martin J.; Li, Zhuqing; Zhang, Lijuan; Roberts, David D.

    2011-01-01

    Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent Mr > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent Mr 230,000) and CD47 (apparent Mr > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser64 and Ser79. Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser64. PMID:21343308

  8. Extracting ligands from receptors by reversed targeted molecular dynamics.

    PubMed

    Wolf, Romain M

    2015-11-01

    Short targeted MD trajectories are used to expel ligands from binding sites. The expulsion is governed by a linear increase of the target RMSD value, growing from zero to an arbitrary chosen final RMSD that forces the ligand to a selected distance outside of the receptor. The RMSD lag (i.e., the difference between the imposed and the actual RMSD) can be used to follow barriers encountered by the ligand during its way out of the receptor. The force constant used for the targeted MD can transform the RMSD lag into a strain energy. Integration of the (time-dependent) strain energy over time yields a value with the dimensions of "action" (i.e, energy multiplied by time) and can serve as a measure for the overall effort required to extract the ligand from its binding site. Possibilities to compare (numerically and graphically) the randomly detected exit pathways are discussed. As an example, the method is tested on the exit of bisphenol A from the human estrogen-related receptor [Formula: see text] and of GW0072 from the peroxysome proliferator activated receptor.

  9. The molecular determinants of CD8 co-receptor function.

    PubMed

    Cole, David K; Laugel, Bruno; Clement, Mathew; Price, David A; Wooldridge, Linda; Sewell, Andrew K

    2012-10-01

    CD8(+) T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein 'co-receives' antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  10. APRIL modulates B and T cell immunity

    PubMed Central

    Stein, Jens V.; López-Fraga, Marta; Elustondo, Fernando A.; Carvalho-Pinto, Carla E.; Rodríguez, Dolores; Gómez-Caro, Ruth; de Jong, Joan; Martínez-A, Carlos; Medema, Jan Paul; Hahne, Michael

    2002-01-01

    The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an activation-dependent increase in APRIL mRNA expression. We therefore generated mice expressing APRIL as a transgene in T cells. These mice appeared normal and showed no signs of B cell hyperplasia. Transgenic T cells revealed a greatly enhanced survival in vitro as well as enhanced survival of staphylococcal enterotoxin B–reactive CD4+ T cells in vivo, which both directly correlate with elevated Bcl-2 levels. Analysis of humoral responses to T cell–dependent antigens in the transgenic mice indicated that APRIL affects only IgM but not IgG responses. In contrast, T cell–independent type 2 (TI-2) humoral response was enhanced in APRIL transgenic mice. As TACI was previously reported to be indispensable for TI-2 antibody formation, these results suggest a role for APRIL/TACI interactions in the generation of this response. Taken together, our data indicate that APRIL is involved in the induction and/or maintenance of T and B cell responses. PMID:12070306

  11. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis.

    PubMed

    Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank

    2013-05-15

    Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.

  12. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity

    PubMed Central

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M.; Kuchroo, Vijay K.; Constantin, Gabriela

    2014-01-01

    SUMMARY Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper-1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease. PMID:24703780

  14. Dimensionality of Motion and Binding Valency Govern Receptor-Ligand Kinetics As Revealed by Agent-Based Modeling.

    PubMed

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.

  15. The Formylpeptide Receptor 2 (Fpr2) and Its Endogenous Ligand Cathelin-related Antimicrobial Peptide (CRAMP) Promote Dendritic Cell Maturation*

    PubMed Central

    Chen, Keqiang; Xiang, Yi; Huang, Jiaqiang; Gong, Wanghua; Yoshimura, Teizo; Jiang, Qun; Tessarollo, Lino; Le, Yingying; Wang, Ji Ming

    2014-01-01

    Mouse formylpeptide receptor 2 (Fpr2) is a homologue of the human G-protein coupled chemoattractant receptor FPR2, which interacts with pathogen and host-derived chemotactic agonists. Our previous studies revealed reduced allergic airway inflammation and immune responses in Fpr2-deficient (Fpr2−/−) mice in association with diminished dendritic cell (DC) recruitment into the airway and draining lymph nodes. These defects prompted us to investigate the potential changes in the differentiation and maturation of DCs caused by Fpr2 deficiency. Bone marrow monocytes from Fpr2−/− mouse mice incubated with GM-CSF and IL-4 in vitro showed normal expression of markers of immature DCs. However, upon stimulation with the TLR4 agonist LPS, Fpr2−/− mouse DCs failed to express normal levels of maturation markers with reduced production of IL-12 and diminished chemotaxis in response to the DC homing chemokine CCL21. Fpr2−/− DCs also failed to induce allogeneic T-cell proliferation in vitro, and their recruitment into the T-cell zones of the spleen was reduced after antigen immunization. The capacity of Fpr2 to sustain normal DC maturation was dependent on its interaction with an endogenous ligand CRAMP expressed by DCs, because neutralization of either Fpr2 or CRAMP inhibited DC maturation in response to LPS. We additionally observed that the presence of exogenous CRAMP in culture increased the sensitivity of WT mouse DCs to LPS stimulation. The importance of CRAMP for DC maturation was further demonstrated by the observations that DCs from CRAMP−/− mice expressed lower levels of costimulatory molecules and MHC II and exhibited poor chemotaxis in response to CCL21 after LPS stimulation. Our observations indicate a nonredundant role for Fpr2 and its agonist CRAMP in DC maturation in immune responses. PMID:24808174

  16. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.

    PubMed

    Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang

    2016-05-09

    Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.

  17. Non-T cell activation linker (NTAL) proteolytic cleavage as a terminator of activatory intracellular signals.

    PubMed

    Arbulo-Echevarria, Mikel M; Muñoz-Miranda, Juan Pedro; Caballero-García, Andrés; Poveda-Díaz, José L; Fernández-Ponce, Cecilia; Durán-Ruiz, M Carmen; Miazek, Arkadiusz; García-Cózar, Francisco; Aguado, Enrique

    2016-08-01

    Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors. © Society for Leukocyte Biology.

  18. Multi-functional norrin is a ligand for the LGR4 receptor

    PubMed Central

    Deng, Cheng; Reddy, Pradeep; Cheng, Yuan; Luo, Ching-Wei; Hsiao, Chih-Lun; Hsueh, Aaron J. W.

    2013-01-01

    Summary Mammalian LGR4, 5 and 6 are seven-transmembrane receptors that are important for diverse physiological processes. These receptors are orthologous to DLGR2, a Drosophila receptor activated by the burs/pburs heterodimer important for morphogenesis. Although recent studies indicated that four R-spondin proteins are cognate ligands for LGR4, 5 and 6 receptors, several BMP antagonists in vertebrates have been postulated to be orthologous to burs and pburs. Using newly available genome sequences, we showed that norrin is a vertebrate ortholog for insect burs and pburs and stimulates Wnt signaling mediated by LGR4, but not by LGR5 and 6, in mammalian cells. Although norrin could only activate LGR4, binding studies suggested interactions between norrin and LGR4, 5 and 6. Norrin, the Norrie disease gene product, is also capable of activating Wnt signaling mediated by the Frizzled4 receptor and serves as a BMP antagonist. Mutagenesis studies indicated that different norrin mutations found in patients with Norrie disease can be categorized into subgroups according to defects for signaling through the three distinct binding proteins. Thus, norrin is a rare ligand capable of binding three receptors/binding proteins that are important for BMP and Wnt signaling pathways. PMID:23444378

  19. Multi-functional norrin is a ligand for the LGR4 receptor.

    PubMed

    Deng, Cheng; Reddy, Pradeep; Cheng, Yuan; Luo, Ching-Wei; Hsiao, Chih-Lun; Hsueh, Aaron J W

    2013-05-01

    Mammalian LGR4, 5 and 6 are seven-transmembrane receptors that are important for diverse physiological processes. These receptors are orthologous to DLGR2, a Drosophila receptor activated by the burs/pburs heterodimer important for morphogenesis. Although recent studies indicated that four R-spondin proteins are cognate ligands for LGR4, 5 and 6 receptors, several BMP antagonists in vertebrates have been postulated to be orthologous to burs and pburs. Using newly available genome sequences, we showed that norrin is a vertebrate ortholog for insect burs and pburs and stimulates Wnt signaling mediated by LGR4, but not by LGR5 and 6, in mammalian cells. Although norrin could only activate LGR4, binding studies suggested interactions between norrin and LGR4, 5 and 6. Norrin, the Norrie disease gene product, is also capable of activating Wnt signaling mediated by the Frizzled4 receptor and serves as a BMP antagonist. Mutagenesis studies indicated that different norrin mutations found in patients with Norrie disease can be categorized into subgroups according to defects for signaling through the three distinct binding proteins. Thus, norrin is a rare ligand capable of binding three receptors/binding proteins that are important for BMP and Wnt signaling pathways.

  20. Chimeric Antigen Receptor- and TCR-Modified T Cells Enter Main Street and Wall Street.

    PubMed

    Barrett, David M; Grupp, Stephan A; June, Carl H

    2015-08-01

    The field of adoptive cell transfer (ACT) is currently comprised of chimeric Ag receptor (CAR)- and TCR-engineered T cells and has emerged from principles of basic immunology to paradigm-shifting clinical immunotherapy. ACT of T cells engineered to express artificial receptors that target cells of choice is an exciting new approach for cancer, and it holds equal promise for chronic infection and autoimmunity. Using principles of synthetic biology, advances in immunology, and genetic engineering have made it possible to generate human T cells that display desired specificities and enhanced functionalities. Clinical trials in patients with advanced B cell leukemias and lymphomas treated with CD19-specific CAR T cells have induced durable remissions in adults and children. The prospects for the widespread availability of engineered T cells have changed dramatically given the recent entry of the pharmaceutical industry to this arena. In this overview, we discuss some of the challenges and opportunities that face the field of ACT. Copyright © 2015 by The American Association of Immunologists, Inc.